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Abstract

Spike timing-dependent plasticity (STDP) modifies synaptic strengths based on timing information available locally at each
synapse. Despite this, it induces global structures within a recurrently connected network. We study such structures both
through simulations and by analyzing the effects of STDP on pair-wise interactions of neurons. We show how conventional
STDP acts as a loop-eliminating mechanism and organizes neurons into in- and out-hubs. Loop-elimination increases when
depression dominates and turns into loop-generation when potentiation dominates. STDP with a shifted temporal window
such that coincident spikes cause depression enhances recurrent connections and functions as a strict buffering mechanism
that maintains a roughly constant average firing rate. STDP with the opposite temporal shift functions as a loop eliminator
at low rates and as a potent loop generator at higher rates. In general, studying pairwise interactions of neurons provides
important insights about the structures that STDP can produce in large networks.
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Introduction

Spike timing-dependent plasticity (STDP) is a widespread

mechanism that modifies synapses on the basis of the intervals

between ensembles of pre- and postsynaptic spikes [1,2]. The most

prevalent form of STDP involves potentiation of the synapse when

presynaptic spikes precede postsynaptic spikes, and depression for

the reverse ordering [3]. STDP is inherently a local synaptic

modification rule because the determinant of synaptic modifica-

tion is the timing of pre- and postsynaptic spikes. Neurons, on the

other hand, are typically embedded in interconnected networks in

which each neuron receives thousands of synapses from other

neurons [4,5]. A number of studies have explored how STDP

shapes the distribution of synaptic weights for a population of

synapses converging onto a single neuron [6–10]. Here, we

consider the more difficult problem of bridging the gap between

the locality of STDP and the global structures that it generates in a

recurrent network of spiking neurons.

The problem of STDP in a recurrent network has been

addressed before in a number of studies [11–22]. The generally

antisymmetric shape of the STDP window, in which reversing the

ordering of pre- and postsynaptic spikes reverses the direction of

synaptic change, led to the proposal that this synaptic modification

rule should eliminate strong recurrent connections between

neurons [11,23]. This idea has recently been expanded by

Kozloski and Cecchi [21] to larger polysynaptic loops in the case

of ‘‘balanced’’ STDP in which the magnitudes of potentiation and

depression are equal. These authors also showed that balanced

STDP organizes network neurons into in- and out-hubs. The

possibility of enhancing recurrent connections through pair-based

STDP was also proposed by Song and Abbott [11] and is further

explored by Clopath and colleagues [22] in a more complex

model. An excessively active group of neurons has been shown to

decouple from the rest of the network through STDP [13], and in

presence of axonal delays, STDP enhances recurrent connections

when the neurons fire in a tonic irregular mode [14]. Here, we

show that, surprisingly, all of these network properties can be

explained through an understanding of the effect of STDP on

pairwise interactions of neurons. This provides an analytically

tractable way of relating the structures arising in a network to

properties of the STDP model being used to modify synapses.

Results

STDP is characterized by a change of synaptic strength, Dw,

induced by a pair of pre- and postsynaptic action potentials with

time difference (pairing interval) Dt~t post {t pre . The functional

relation between the synaptic modification and the pairing interval

is given by

Dw~F (Dt)~

{A{ e(Dt{d)=t{ ifDtƒd

Az e{(Dt{d)=tz ifDtwd :

8>>><
>>>:

ð1Þ

The positive parameters A
z

and A
{

specify the maximum

potentiation and depression, respectively. We express the synaptic

strengths in units of the membrane potential (mV), so A
z

and A
{

have mV units. The time constants t
z

and t
{

determine the
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temporal spread of the STDP window for potentiation and

depression. The parameter d , when it is nonzero, introduces a shift

in the STDP window such that for positive values of d even in

cases where a presynaptic action potential precedes a postsynaptic

spike by a short interval (0vDtvd ), the corresponding synapse

gets depressed [10]. Conversely, for negative values of d the

synapse gets potentiated even when a postsynaptic action potential

precedes a presynaptic spike by a short interval (0wDtwd ) [14].

We recover conventional STDP by setting d~0. For conventional

STDP, spike interactions are all-to-all, meaning that all possible

pre-post pairs contribute to plasticity. However, using an STDP

model with only nearest-neighbor interactions does not qualita-

tively alter the obtained results (see Text S1). The main motivation

for using all-to-all interactions in the first cases analyzed below is

the clarity of explaining the resulting synaptic dynamics with these

interactions. In the case of shifted STDP (d=0), we use only

nearest-neighbor spike pairs to drive plasticity, for reasons of

stability explained in [10]. Moreover, as the results show, the

background firing rates of neurons play an important role in

synaptic dynamics with nearest-neighbor interactions if the STDP

window is shifted.

The effect of STDP on synaptic weights depends not only on

properties of the STDP window function of equation 1, but also on

how boundaries are imposed on the range of allowed synaptic

weights [7,9,24]. In the case of ‘‘soft’’ boundaries, the synaptic

dynamics will be confined only to a narrow region in the middle of

the range of synaptic strengths [24] (see Text S1, figure S2),

whereas in the case of ‘‘hard boundaries’’, the synapses can

explore the whole range of their allowed strengths. Therefore, we

restrict our analysis to the case of hard boundaries as it results in

more interesting network structures.

To gain analytical insights into the structures that arise from

STDP in a network and then to verify those insights, we take a

dual approach for each form of STDP we study. First, we consider

a pair of connected neurons that we imagine to have been

extracted from a full network, representing the remaining neurons

of the network as independent Poisson input to each of these

neurons (figure 1, middle, with network inputs shown as gray

connections). This simplified model allows us to perform a detailed

analytic study of how STDP affects the synapses between the two

explicitly modeled neurons (drawn in yellow and green in figure 1,

middle). Modifications of synapses from the rest of the ‘‘network’’

onto these two neuron is not modeled directly, but is duplicated by

changing the mean effective network input into each neuron, which

alters its baseline firing rate. Despite these simplifications, many of

the structures induced by STDP in a large network can be explained

by analogy with properties of this two-neuron system. As the second

component of our approach, we verify that analytic predictions

extracted from the simplified model apply to full networks with

STDP acting at all synapses by simulating these full networks.

The two representative excitatory neurons drawn from the

network are labeled neuron 1 and neuron 2, and are reciprocally

connected (figure 1, middle). We denote the strength of the

synapse from neuron 1 to neuron 2 as w
21

and the strength of the

synapse from 2 to 1 as w
12

. Due to the additional ‘‘network’’

inputs, each neuron fires at a baseline rate, given by �rr
1

and �rr
2
,

respectively. We assume that there are no significant correlations

between the baseline spike trains of neurons 1 and 2, because the

recurrent inhibition is strong. In the presence of a strong recurrent

inhibition, spontaneous fluctuations in the activity of excitatory

and inhibitory populations accurately track each other and cancel

the effect of shared input [25], and this is true for the networks we

study except where otherwise indicated (figure S3). It is worth

noting that we do not assume that the baseline firing rates are

constant; they are functions of the synaptic strengths in the

network and therefore change with STDP. We are interested in

the local dynamics of pairs of reciprocal synapses given the current

values of baseline firing rates. As we will see below, this pairwise

analysis can predict how the baseline firing rates will change over

time as STDP affects the network. Under the conditions we

assume, synapses are modified primarily by random pre-post

pairings of their baseline spike trains. The average amount of

modification due to this baseline activity is the same for both

synapses (i.e. the same for both w
21

and w
12

). On top of the baseline

firing, the reciprocal synaptic connections induce correlations

between the spike trains of the two neurons. Each spike arriving

from neuron 1 to neuron 2 transiently increases the firing rate of

neuron 2 proportional to w
21

(figure 1, yellow areas). This transient

increase (or causal bump) potentiates w
21

(figure 1, top) and

depresses w
12

(figure 1, bottom). Likewise, the causal bump in the

cross-correlation induced by neuron 2 into neuron 1 (figure 1,

green areas) potentiates w
12

and depresses w
21

. Taken together, the

average drift of the synaptic pair can be expressed as

dw
21

dt
~A�rr

1
w

21
{B�rr

2
w

12
zC�rr

1
�rr

2

dw
12

dt
~A�rr

2
w

12
{B�rr

1
w

21
zC�rr

1
�rr

2
,

ð2Þ

where the coefficients A, B and C can be calculated from the

parameters of the neuronal and plasticity models (see Text S1). In

each equation, the coefficient A represents the potentiation

induced on a synaptic weight by the causal effect it has on the

firing of its postsynaptic neuron, B represents the depression

induced in the same synapse by the causal effect of its reciprocal

synapse on presynaptic firing, and C characterizes the synaptic

modification due to random pairings of the baseline spike trains of

the two neurons. Because the synaptic strengths are bounded

between 0 and wmax, the drift of the synaptic pair, as described by

these equations, is restricted to a limited region in the state space .

As we will see in the following sections, this restriction results in a

number of interesting effects that would not arise in a strictly linear

system.

Author Summary

The connectivity structure in neural networks reflects, at
least in part, the long-term effects of synaptic plasticity
mechanisms that underlie learning and memory. In one of
the most widespread such mechanisms, spike-timing
dependent plasticity (STDP), the temporal order of pre-
and postsynaptic spiking across a synapse determines
whether it is strengthened or weakened. Therefore, the
synapses are modified solely based on local information
through STDP. However, STDP can give rise to a variety of
global connectivity structures in an interconnected neural
network. Here, we provide an analytical framework that
can predict the global structures that arise from STDP in
such a network. The analytical technique we develop is
actually quite simple, and involves the study of two
interconnected neurons receiving inputs from their
surrounding network. Following analytical calculations for
a variety of different STDP models, we test and verify all
our predictions through full network simulations. More
importantly, the developed analytical tool will allow other
researchers to figure out what arises from any other type
of STDP in a network.

Pairwise Analysis of STDP in a Network
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In what follows, we first examine the effect of different

parameterizations of the STDP window on the synaptic pair.

This leads to a number of predictions about the structures that

arise from STDP in networks. We then test each prediction

through numerical simulations of a large network. In the case in

which the STDP window is not shifted (d~0), the time constants

of the window are assumed to be equal (t
z
~t

{
~20ms), but we

vary the balance between potentiation and depression by changing

the maximum values A
z

and A
{

. The same qualitative results

hold when the maximum values are set equal and the potentia-

tion/depression balance is modified by changing the time

constants (see Text S1).

Balanced STDP
The simplest form of STDP that we consider is balanced with

equal potentiation and depression domains, i.e. with

A
z
~A

{
~0:005mV. In this case, the coefficient C vanishes

because the baseline potentiation and depression cancel each

other. In addition, the coefficients A and B are equal. These

conditions greatly simplify the system of equations (2). We visualize

the dynamics of the synaptic pair by phase planes (figure 2). Note

that all phase planes throughout this paper are snapshots of the

dynamics for a given network firing rate, and as we will see below,

they should be recomputed if the baseline firing rates change

appreciably. When the baseline firing rates are equal (�rr
1
~�rr

2
), the

values of the synaptic weights do not change when w
21

and w
12

are

equal, i.e. the synaptic drift is zero on the line w
21
~w

12
(figure 2A,

solid line). However, this equilibrium is unstable. If the two

synapses have unequal strengths, the stronger synapse grows even

stronger and weakens the other synapse until they reach the

boundary of their allowed range (figure 2A, arrows). Then, the

synapses continue their dynamics along the boundary edge until

they reach the upper-left (w
21
~0,w

12
~wmax) or lower-right

(w
21
~wmax,w

12
~0) corner of the state space (figure 2A, filled

circles), depending on which synapse was stronger to begin with.

These ‘‘attractors’’ of the synaptic dynamics indicate that, at

steady-state, loops between pairs of neurons are eliminated by this

form of STDP. A linear system of differential equations cannot

have more than one attractor. The existence of two attractors here

is a consequence of restricting the dynamics to a limited range, and

it suggests that STDP favors unidirectional connections and

eliminates loops in a network (figure 3A), in agreement with the

results of [21]. The attractors also imply that, for each neuron, the

strengthening of an incoming synapse is accompanied by the

weakening of an outgoing synapse and vice versa. If we consider

the effect of this interplay at the level of a network, it is expected

that for each neuron the number of above-threshold incoming and

outgoing synapses will be linearly related with a coefficient of -1,

such that their sum remains constant. Our simulation results and

previous work [21] also confirm this prediction (figure 3B).

When the baseline rates of the two neurons are not equal, the

line of equilibrium is tilted to w
21
~w

12
�rr2=�rr1 (figure 2B, see Text

S1). As a result, the size of the basins of the two attractors differ,

and the outgoing synapses of the neuron with the higher firing rate

are more likely to strengthen, while its incoming synapse are likely

to weaken (figure 2B, top-left corner). Conversely, outgoing

synapses from the neuron with the lower firing rate are more

likely to weaken and its incoming synapses strengthen. If we

generalize this behavior to the context of a network, an important

prediction can be made: neurons with low initial firing rates should

attract strong excitatory synapses onto themselves but project

weaker synapse to other neurons. Neurons with high firing rates

should experience the opposite trend; they lose incoming synaptic

input through synaptic weakening, while their outgoing synapses

strengthen. Therefore, if the external input is biased to give a sub-

population of excitatory neurons an initially higher (lower) firing

rate than the rest of the network, these neurons will become out-

hubs (in-hubs) through STDP. We tested this by setting the mean

of the external input to the neurons such that the initial firing rate

Figure 1. Pairwise interactions of neurons through reciprocal
synapses and the corresponding spike-train cross correlations.
Two representative neurons embedded in a network are shown with
their reciprocal synapses (middle). P(Dt) is the probability density of
pairing intervals Dt between the two spike trains, which is superim-
posed on the STDP window. Both synapses are modified by the pairings
of the baseline spike trains of the neurons (blue area in top and bottom
panels). Whenever neuron 1 fires, the synapse w

21
(yellow) induces a

transient increase in the firing rate of neuron 2 which in turn increases
the probability of pairings with short intervals (yellow areas in top and
bottom panels). This transient firing rate increase potentiates w

21
,

because it falls into the potentiation domain of STDP (top), but it falls
into depression domain for w

12
(bottom). The transient increase in the

firing rate of neuron 1 in response to spikes of neuron 2 (green areas in
top and bottom panels) has the opposite effect.
doi:10.1371/journal.pcbi.1002906.g001

Pairwise Analysis of STDP in a Network
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of the first hundred excitatory neurons (1–100) was 40Hz, the

initial firing rate of the next hundred excitatory neurons (101–200)

was 10Hz, and the initial firing rate for the rest of the excitatory

neurons (201–500) together with that of the inhibitory neurons was

20Hz. The results show that the sub-population with high initial

rate indeed turns into out-hubs, while the sub-population with low

initial rate turns into in-hubs once the synaptic weights reach

steady state (figure 3C).

Another related prediction is that the firing rates of neurons in

the network tend to equalize through STDP. This is because

neurons with high initial firing rate become out-hubs, thereby

receiving less input from the rest of the network, which lowers their

final, equilibrium firing rates. At the same time, they share their

initial high firing rate with the other neurons of the network

through the strengthening of their outgoing synapses. The opposite

happens to neurons with low initial firing rates; they turn into in-

hubs. As a result the final firing rates of the neurons become

homogenized across the network at steady-state. To test this

prediction, we tracked the evolution of the average firing rates of

the above three sub-populations throughout the simulation. The

results confirm that the final firing rates of all three sub-

populations equalize once the synaptic weights reach steady-state

(figure 3D).

As another prediction, the steady-state mean of the synaptic

weights is expected to converge to the midpoint of its allowed

range, regardless of the initial distribution of weights and the initial

firing rate of the network. This is due to the precise balance

between the potentiation and depression domains of STDP in this

case. If the initial mean is already at the midpoint of the allowed

range, the potentiation and depression events have equal

probabilities across the network due to this balance. If the initial

mean is smaller than the midpoint, a number of depression events

would not be fully realized because they are likely to push the

synaptic weights to 0, so equality of potentiation and depression is

disrupted in favor the former, and the mean tends to increases.

Similarly, if the initial mean is larger than the midpoint, some of

the potentiation events push the corresponding weight above the

maximum value and are truncated. This decreases the mean.

Therefore, the mean tends to the midpoint in both cases, and the

baseline firing rate (which already has the tendency to equalize)

does not change this scenario. The simulation results confirm this

prediction (figure 3F). If the initial value of the weights are drawn

from a uniform distribution, the mean will be at the midpoint from

the very beginning, and it remains there throughout the

simulation, making the final network firing rate equal to the

initial rate (figure 3E). Note that in figure 3E, and in similar figures

to follow, we plot quantities as a function of the initial firing rate of

the network, as opposed, for example, the external input used to

modify this rate. We do this to make apparent changes in the

network firing rate caused by STDP.

STDP with dominant potentiation
In studies of a single neuron receiving Poisson input through

synapses that are modified by STDP, it has been shown that

stability requires depression to dominate over potentiation [6–9].

If potentiation dominates in this case, all the synaptic weights get

potentiated to the maximum allowed value. Interestingly, for

STDP within a network of neurons, potentiation dominated

Figure 2. Dynamics of reciprocal synapses when STDP is balanced. A. When the baseline firing rates of the two neurons are the same
(20 Hz), synapses that have the same weight remain at equilibrium (solid diagonal line). When one of the synapses is initially larger than the other, it
grows while the smaller one shrinks until they hit the boundaries and eventually settle into the attractors at the bottom right or top left. Attractors
are depicted as filled circles and unstable fixed points as open circles. The attractors correspond to unidirectional connections as depicted
schematically. The arrows show the trajectories of the synapses due to plasticity, obtained by numerical evaluation of equation (2) at each point. B.
When the baseline firing rates are not the same (20 Hz vs. 30 Hz), the line of equilibria becomes tilted. The neuron with the lower rate (depicted
smaller) is more likely to receive a unidirectional synapse.
doi:10.1371/journal.pcbi.1002906.g002

Pairwise Analysis of STDP in a Network
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Figure 3. Simulation results for a network with balanced STDP. A. The number of loops in the steady-state weight matrix, divided by the
number of loops in a shuffled version of this matrix, as a function of the length of the loop. The initial firing rate of the network was 20 Hz. Error bars
depict the standard deviations from using 100 different shuffled versions. The ratios are less than one (dashed line) for all loop lengths, so STDP
decrease the number of loops from the chance level. The inset shows the final distribution of weights in the network. B. The number of above-
threshold incoming synapses plotted against the number of above-threshold outgoing synapses in the steady-state connectivity matrix when the
initial rate was 20 Hz. Each mark depicts a neuron. The threshold values h for counting the loops is equal to the mean weight (1mV). Inset shows the
same plot for a shuffled version of the steady-state weight matrix. C. The steady-state weight matrix when neurons 1–100 receive stronger external
input and initially fire at 40 Hz, neurons 101–200 receive weaker external input and initially fire at 10 Hz, and the rest of the neurons fire initially at
20 Hz. Neurons 1–100 receive fewer synapses from the network (dark horizontal band on top) and send out more synapses (bright vertical band on
the left), so they have turned into out-hubs. Neurons 101–200 receive more synapses from the network (bright horizontal band) and send out less
synapses (dark vertical band), so they have turned into in-hubs. D. The average firing rate of the three sub-populations of neurons as a function of
time. The firing rates tend to equalize at steady-state. The inset shows the final distribution of weights in the network. E. The average steady-state
and initial average firing rates of the network are equal. F. The steady-state mean synaptic weight as a function of the initial rate. It remains constant
in the middle of the allowed range (1mV) regardless of the initial rate and distribution of weights. Note that in E and F the statistics of the external
inputs is the same for all neurons, hence the average initial rates are the same, unlike in C and D.
doi:10.1371/journal.pcbi.1002906.g003

Pairwise Analysis of STDP in a Network
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STDP can be stable because this instability is counteracted by the

depression induced on reciprocal pairs of synapses. In other words,

if one synapse between a reciprocally connected pair of neurons

grows, the other synapse is likely to be weakened, preventing the

outcome in which all the synapses are maximally potentiated.

When the potentiation/depression balance is tipped in favor of

potentiation (A
{
~0:005mV and A

z
~1:01 A

{
in our examples),

the coefficient A in equation (2) becomes larger than B (see Text

S1). In addition, the baseline parameter C is positive. By setting

the right-hand-sides of equations (2) to zero, the fixed point values

of the two synaptic weights are found to be w
21
~C�rr

2
=(B{A) and

w
12
~C�rr

1
=(B{A). Both of these values are negative, so the fixed

point lies outside the allowed range of synaptic strengths.

Furthermore, this fixed point is unstable (in both directions),

which means that the weights tend to drift away from it (figure 4;

see Text S1).

We now examine the influence of the outlying, unstable fixed

point on the dynamics within the allowed region of synaptic values

when the baseline firing rates of the two neurons are equal. If the

initial weights are fairly close to each other (figure 4A, red area),

they eventually end up at the attractor in the upper-right corner of

the phase space due to repulsion from the outlying, unstable fixed

point. This attractor corresponds to strong recurrent connections.

Trajectories of weights that hit the upper boundary (w
12
~wmax)

perpendicularly, form another fixed point that is unstable (figure 4,

open circle on top). Trajectories to the left of this critical line are

eventually absorbed by the attractor at the top-left corner

(corresponding to a unidirectional connection), while trajectories

to its right are absorbed by the top-right attractor (corresponding

to recurrent connections). A similar unstable fixed point exists on

the rightmost boundary (w
21
~wmax; figure 4, open circle on the

right). As a result, the state-space of the weights is partitioned into

three basins of attraction: one leading to the attractor correspond-

ing to recurrent connections (figure 4, red shading) and the others

to attractors that produce unidirectional connections (yellow and

green shadings).

The appearance of the attractor corresponding to recurrent

connections leads to a prediction about networks: STDP with

dominant potentiation can generate loops in a network in contrast

to balanced STDP. This prediction is confirmed by our numerical

simulations showing that there are more loops induced in the

steady-state weight matrix of a network in this case (figures 5A).

As the baseline firing rates of the neurons increase, the basin for

the attractor with recurrent connections expands (figure 4B, red

area). This leads to the prediction that when a network is driven by

stronger external input and consequently has a higher initial

average firing rate, it will have more loops. Numerical simulation

confirms this observation (figure 5B). To quantify the degree of

recurrence in a network, we define a ‘‘recurrence index’’ as the

sum of the number of loops with less than 10 synapses divided by

the sum of similar loops in a shuffled version of the network (see

Methods). Simulation results show that the recurrence index

increases as a function of the initial firing rate of the network and

rises rather abruptly when the initial rate exceeds 10Hz, and

slightly decreases when the initial rate exceeds 15Hz (figure 5B).

The eventual decrease of the recurrence index is due to the effect

of correlations in the baseline firing, which appear in high rates

and are not included in our analysis (see figure S3). The baseline

correlations originate from the shared input that the neurons

receive from the embedding network and is not related to their

Figure 4. Dynamics of reciprocal synapses when STDP is potentiation dominated. A. When the baseline firing rates of the two neurons are
both 20 Hz, an unstable fixed point exists out of the allowed range, schematically illustrated at the bottom left. Arrows show that the trajectories drift
away from this outlying fixed point. Initial conditions starting within the red area end up at the attractor at the top-right corner, which corresponds to
recurrent connections. Trajectories that hit the boundaries perpendicularly delineate the borders of the basins of attraction (solid curves). Initial
conditions in the yellow area end up at the attractor at the bottom right, corresponding to a unidirectional connection from neuron 1 to neuron 2.
Initial conditions within the green area go to the attractor at top left, corresponding to a unidirectional connection from neuron 2 to neuron 1. B. The
same as A when the baseline firing rates are 50 Hz. The basin of attraction for recurrent connections (red area) becomes larger when the baseline
firing rate increases.
doi:10.1371/journal.pcbi.1002906.g004

Pairwise Analysis of STDP in a Network
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pairwise connectivity. Therefore it induces modifications to the

reciprocal synapses regardless of the attractor structure explained

here.

The existence of the attractor corresponding to the recurrent

connections also leads to the prediction that a network modified by

potentiation dominant STDP settles into higher steady-state firing

rates than a network with balanced STDP, starting from the same

initial conditions. The simulations confirm this prediction as well

(figure 5C). The steady-state mean synaptic weight is expected to

increase as a function of the initial firing rate because the basin of

attraction corresponding to recurrent connections expands at high

firing rates. The simulation results agree with this expectation up

to the initial firing firing rate of 15Hz, after which the steady-state

mean decreases slightly (figure 5D). As in the case of the

recurrence index (figure 5B) this decrease is due to the baseline

correlations that appear at high firing rates.

STDP with dominant depression
If depression dominates over potentiation in STDP

(A
z
~0:005mV and A

{
~1:01A

z
mV in our examples), the

coefficient B in equations (2) is larger than A (see Text S1), and the

baseline parameter C is negative. For these conditions, both

elements of the fixed point of the weights, w
21
~C�rr

2
=(B{A) and

w
12
~C�rr

1
=(B{A), are negative, which is once again outside of the

allowed range of synaptic values. In this case, however, the fixed

point is a saddle node, which attracts trajectories from one

direction and repels them from the other (see Text S1).

As before, we consider two neurons with equal baseline firing

rates. The weight trajectories tend to move toward the outlying

fixed point in the direction that passes through the origin

(w
21
~w

12
~0; see figure 6A, arrows). This tendency makes the

origin an attractor of the dynamics within the allowed range of

synaptic weights. This attractor correspond to completely discon-

nected neurons. Because the outlying fixed point is a saddle node,

the trajectories also tend to drift away from it in the direction

perpendicular to the positive-slope diagonal. This tendency

produces attractors corresponding to unidirectional connections

(figure 6, top-left and bottom-right). Once again, trajectories that

hit the borders perpendicularly partition the weight space into

three basins of attractions corresponding to each attractor

(figure 6).

The dynamics of the synaptic pair we have considered suggests

that some pairs of neurons in a network should become

disconnected when depression dominates over potentiation. This

Figure 5. Simulation results for a network with potentiation-dominated STDP. A. The number of loops in the steady-state weight matrix
divided by the number of loops in a shuffled version of this matrix, as a function of the length of the loop. The initial firing rate of the network was
20 Hz. Error bars depict the standard deviations from 100 different shuffled versions. The ratios are more than one (dashed line) for all loop lengths,
so potentiation-dominated STDP increases the number of loops. The inset shows the final distribution of weights in the network. B. Recurrence index
of the steady-state weight matrix as a function of the average initial firing rate. The recurrence index is defined as the total number of loops shorter
than 10 divided by the same quantity for a shuffled network. The steady-state weight matrix rapidly becomes more recurrent when the initial rate (i.e.
the external input) changes from 10 to 15 Hz and then deceases slightly. C. The average steady-state firing rate as a function of the average initial
firing rate. D. The steady-state mean of the synaptic weight as a function of the initial rate.
doi:10.1371/journal.pcbi.1002906.g005
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is a more potent mechanism for eliminating loops than the

previous cases, so we expect that STDP with dominant depression

eliminates more loops in a large network than the other forms we

have considered. Numerical simulations confirm that, indeed,

there are fewer loops in the steady-state of a network with

depression-dominated STDP compared to the previous cases

(compare figure 7A to figures 3A and 5A). In addition, the number

of disconnected pairs is large, as predicted (figure 7B).

When the baseline rates of the two neurons increase, the basin

of the attractor corresponding to disconnected pair becomes larger

(figure 6B). In a newtork, when neurons become excessively active,

more connections should thus be eliminated, and the average rate

should return to a lower value. Thus, the steady-state firing rate of

a network with depression-dominated STDP should be lower than

that of a network with balanced STDP starting from the same

initial conditions. Simulation results corroborate this observation

by showing that the steady-state firing rate of the network increases

moderately as a function of the initial firing rate (figure 7C,

compare with figure 3E), so depression dominant STDP imple-

ments a partial buffering of steady-state firing rates. Finally, the

mean synaptic weight is a decreasing function of the initial firing

rate in this case (figure 7D).

STDP with a rightward shifted window
The rightward shifted STDP model, in which nearly synchro-

nous pre- and postsynaptic action potentials induce depression, has

been shown to stabilize the distribution of the synaptic weights

converging onto a single neuron. The rightward shift can arise

from the finite rise time of activation of NMDA receptors [10].

Here, we study this model in the context of a network. The

restriction of spike pairings that induce plasticity to those between

nearest neighbor pre- and postsynaptic spikes, which is necessary

in this case [10], makes the dynamics of the pair of weights more

complicated than in the previous cases, because the coefficients A,

B and C in equations (2) depend on the baseline firing rates (see

Text S1). Furthermore, the coefficient A can become negative at

high firing rates, which makes the behavior of the system even

more complicated. However, if we divide the analysis into three

different rate regimes, we can elucidate the full range of behaviors.

If depression dominates over potentiation in this model, the

synaptic dynamics will be tantamount to the depression-dominant

unshifted STDP described above, and the shift only makes

depression even more dominant. Novel properties of this model

only arise when potentiation dominates over depression, thus we

assume that the potentiation domain is larger than the depression

domain (Az~0:0075mV and A
{
~0:0050mV as in [10]), and

we set the amount of the shift to be d~2:5ms.

When the initial baseline firing rates of the two neurons are low,

the coefficients A, B and C are all positive. This is because the

pairing intervals are not typically short enough to fall into the

depression domain caused by the shift. In addition, the coefficient

A is slightly smaller than B. This makes the fixed point for the

weights positive and large, meaning that once again it falls out of

the putative range of allowed synaptic weights, but this time on the

positive not the negative side (figure 8A). We use the term

‘‘putative’’ here because, as we will see, the upper limits on the

synaptic weights are not actually required in this case. The fixed

point is a saddle node (see Text S1) and attracts the trajectories of

weights along the direction toward the top-right corner of the state

space (figure 8A, arrows), which corresponds to recurrent

connections. This case is qualitatively similar to what we found

for STDP with dominant potentiation (compare figures 8A and

Figure 6. Dynamics of reciprocal synapses when STDP is depression dominated. A. When the baseline firing rates of the two neurons are
20 Hz, a saddle node exists out of the allowed range, schematically illustrated at the bottom left. Arrows show the movement of trajectories. Initial
conditions starting within the blue area end up at the attractor at the origin, which corresponds to a loss of connectivity. Trajectories that hit the
boundaries perpendicularly delineate the borders of the basins of attractions (solid curves). Initial conditions in the yellow area go to the attractor at
the bottom right, corresponding to a unidirectional connection from neuron 1 to neuron 2. Initial conditions in the green area go to the attractor at
top left, corresponding to a unidirectional connection from neuron 2 to neuron 1. B. The same as A but for a baseline firing rates of 50 Hz. The basin
of attraction for the origin (connectivity loss) becomes larger when the baseline firing rate increases.
doi:10.1371/journal.pcbi.1002906.g006
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4A,B), so the baseline firing rate tends to become higher than its

initial value and eventually the dynamics of the system falls into

the regime described by figure 8B.

At higher baseline firing rates, the coefficient A becomes negative.

This occurs because the pairing intervals between presynaptic spikes

and their causally induced postsynaptic spikes become short enough

to fall into the depression domain caused by the shift. This creates a

single stable fixed point for the two weights that lies within the

putative allowed range of synaptic weights. Both weights are

attracted to this fixed point, forming a recurrent connection

(figure 8B, arrows; see Text S1), though not of maximal strength.

If the two neurons start with even higher baseline rates, the

coefficients A and C are both negative. This follows because at

very high firing rates, even the intervals between randomly paired

spikes of the baseline activity are short enough to fall into the

depression domain caused by the shift. This pushes the fixed point

of the weights out of the allowed range (figure 8C) but, in this case,

on the negative side. Because this fixed point is stable, the weights

tend to approach it, creating an attractor at the origin that

eliminates both weights and disconnects the neurons. This

mechanism prunes the weights in the embedding network until

the baseline firing rate decreases enough to make the parameter C

positive. Then, the regime with a stable fixed point within the

allowed range (figure 8B) is restored. This is why no upper bounds

on the synaptic weights are required in this case.

Combining these effects, we find that, if the shift is larger than a

critical value (1:8ms in this case, see figure S1), a network will

settle into a regime with a single stable fixed point within a narrow

range of steady-state firing rates, regardless of the initial firing rate

or the strength of the external input. The condition for this

scenario to occur is that the fixed point of the weights becomes

stable before it grows negative, as the initial firing rate increases.

This happens when the potentiation domain is larger than

depression domain and the shift is sufficiently large. The

calculations show that a shift of 2:5ms fulfills this condition for

our chosen values of potentiation and depression magnitudes (see

figure S1). By generalizing from the dynamics of a pair of synapses,

two predictions can be made. First, the steady-state matrix of

synaptic weights should have many recurrent connections because

there is no mechanism to eliminate loops, and reciprocal

connections should tend to be strengthened. This prediction is

confirmed by numerical simulations that show a highly recurrent

steady-state connectivity (figure 9A). Second, because the pairwise

connections settle into a regime with a single stable fixed point

regardless of the initial baseline rate, the steady-state firing rate of

the network should be resilient to changes in the external input or

Figure 7. Simulation results of a network with depression-dominated STDP. A. The number of loops in the steady-state weight matrix
divided by the number of loops in a shuffled version of this matrix, as a function of the length of the loop. The initial firing rate of the network was
20 Hz. Error bars depict the standard deviation from 100 different shuffled versions. The ratios are less than one (dashed line) for all loop lengths.
Depression-dominated STDP decrease the loops more efficiently that balanced STDP (figure 3A), which is provided for comparison (dotted line). The
inset shows the final distribution of weights in the network. B. The number of disconnected pairs in the steady-state weight matrix, divided by the
number of disconnected pairs in a shuffled version of the same matrix, as a function of the initial firing rate. The same ratio in the case of balanced
STDP is illustrated (dotted line) for comparison. C. The average steady-state firing rate as a function of the average initial firing rate. Depression-
dominated STDP partially buffers the effect of external input on the average steady-state firing rate. D. The steady-state mean synaptic weight as a
function of the initial rate.
doi:10.1371/journal.pcbi.1002906.g007

Pairwise Analysis of STDP in a Network

PLOS Computational Biology | www.ploscompbiol.org 9 February 2013 | Volume 9 | Issue 2 | e1002906



in the initial firing rate. Numerical simulations show that the

steady-state firing rate of the network varies very slightly as a

function of the initial firing rate (figure 9B). Interestingly, the

narrow range of the steady-state firing rates agrees precisely with

the prediction of the pairwise analysis (dashed lines in figures 9B

and figure S1). Thus, rightward shifted STDP implements a

homeostatic mechanism that strongly buffers the steady-state firing

rates from external influences. Finally, the mean synaptic weight

decreases with increased initial firing rate in this case (figure 9C).

STDP with a leftward shifted window
A leftward shifted STDP model, in which synchronous pre- and

postsynaptic spikes cause potentiation as a result of axonal

conduction delays, has been shown to have a desynchronizing

effect on population bursts and a synchronizing effect on random

spiking in a recurrent network [14]. Here, we study this model

within the framework of pairwise analysis. As in the previous

section, we consider the interactions of nearest-neighboring spikes.

If potentiation dominates over depression in this model, the

synaptic dynamics will be tantamount to the potentiation-

dominant unshifted STDP described above and the shift only

makes potentiation further dominant. Therefore, in order to

observe novel behaviors of this model, we assume that the

depression domain is larger than potentiation domain

(Az~0:0050mV and A
{
~0:0075mV), and we set the amount

of the shift to be d~{2:5ms, i.e. the parameters are chose to be

the flipped versions of those in the rightward shifted model above.

When the initial baseline firing rate is low, the coefficients A and

B are positive (BwA) and C is negative. This is because the

pairing intervals are not typically short enough to fall into the

potentiation domain caused by the shift. As a result the fixed point

is positive, unstable in both directions, and out of the allowed

range of weights (figure 10A). The weight trajectories tend to drift

away from the fixed point in the direction that passes through the

origin, so this behavior is qualitatively similar to what we found for

STDP with dominant depression. The attractor at the origin

corresponds to completely disconnected neurons, therefore the

baseline firing rate tends to become less than its initial value.

For higher initial baseline firing rates, coefficient B becomes

negative, because the pairing intervals between pre- and postsyn-

aptic spikes become short enough to fall into the potentiation

domain caused by the shift. This turns the fixed point into a saddle

node and pushes it into the allowed range of weights (figure 10B).

The weights drift away from the fixed point in the directions that

passes through the origin and the top-right corner, and are

attracted to it in the perpendicular direction. As a result, both the

origin and top-right corner turn into attractors, corresponding to

disconnected and recurrently connected neurons respectively

(figure 10B, closed circles). Because these two points are the only

attractors of the system, the network is expected to become highly

recurrent in this case and the neurons to become either recurrently

connected or disconnected. This regime happens for a narrow

range of initial firing rates. As the initial firing rate increases, the

basin of the top-right attractor becomes larger (figure 10C). As a

result, more recurrent connections form and hence the baseline

firing rate increases, which eventually pushes the system into the

regime described in the following paragraph.

For even higher initial baseline firing rates, not only coefficient

B becomes negative, but also C turns positive and the fixed point is

pushed out of the allowed range on the negative side (figure 10D).

It remains a saddle node, so the weights are repelled from it in the

direction that passes through the top-right corner, which becomes

the only attractor of the system corresponding to recurrent

connection. Therefore, it is expected that all the synapse in the

network potentiate up to the upper limit of the weights in this case.

In summary, the above description shows that as the initial

baseline firing rate increases, the networks undergoes three

different phase: 1) for low initial rates it behaves similarly to

depression-dominant STDP, i.e. recurrent connections are elim-

inated and the steady-state firing rate is partially buffered; 2) for

Figure 8. Dynamics of reciprocal synapses with rightward shifted STDP. A. When the baseline firing rates of the two neurons are 1.8 Hz, a
saddle node exists out of the allowed range, schematically illustrated at the top right. Arrows show the movement of trajectories. Initial conditions
starting within the red area end up at the attractor at the top right corner, which corresponds to strong recurrent connections. This increases the
baseline firing rate of the embedding network and pushes the network into the regime shown in B. B. When the baseline firing rates of the two
neurons are 37 Hz, a single stable fixed point exists within the allowed range of synaptic weights. All initial conditions end up at this fixed point,
resulting in a recurrent reciprocal connection. C. When the baseline firing rates of the two neurons are 50 Hz, a stable fixed point exists out of the
allowed range, schematically illustrated at the bottom left. Movement of trajectories toward the stable fixed point results in connectivity loss,
regardless of the initial condition. This effect reduces the rate of the embedding network and pushes the system into the regime shown in B. It is not
necessary to impose upper bounds in this case, so they are depicted as dotted lines.
doi:10.1371/journal.pcbi.1002906.g008

Pairwise Analysis of STDP in a Network

PLOS Computational Biology | www.ploscompbiol.org 10 February 2013 | Volume 9 | Issue 2 | e1002906



higher initial rates the network becomes highly recurrent and the

steady-state rate increases; 3) for even higher initial rates, all the

weights become potentiated up to the maximum, and the firing

rate is pathologically high. The simulation results confirm these

predictions. When the initial rate is less than 20Hz, the steady-

state rate increases modestly (figure 11B, left) and the the mean of

synaptic weights decreases (figure 11C, left) as a function of initial

rate. The number of loops also decrease in this regime (figure 11A,

blue). For higher initial rates, the mean synaptic weight and the

steady-state rate increase rapidly (figures 11B-C, middle) and the

network is highly recurrent (figure 11A, red). For initial rates

higher than 30Hz, the mean synaptic weight equals the maximum

allowed value, implying that all the weights are maximally

potentiated (figure 11C, right), and the steady-state rate is

pathologically high. Although the simulation results qualitatively

show the full range of behaviors predicted by pairwise analysis, the

initial firing rate at which the transitions occur in simulations is

lower than that predicted from calculations (see Text S1). This

discrepancy is due to baseline correlations that appear at high rates

(see figure S3). In presence of baseline correlations, the neurons

tend to fire synchronously regardless of their pairwise connections,

and hence the synapses get potentiated indiscriminately due to

leftward shift of the STDP.

Discussion

By analyzing pairwise interactions of neurons affected by STDP,

we clarified how conventional pair-based STDP functions as a loop-

eliminating mechanism in a network of spiking neurons and organizes

neurons into in- and out-hubs, as reported in [21]. Loop-elimination

increases when depression dominates, and turns to loop generation

when potentiation dominates. STDP with dominant depression

implements a partial buffering mechanism for network firing rates.

Rightward shifted STDP can generate recurrent connections in a

network and functions as a strict buffering mechanism to maintain a

roughly constant network firing rate. STDP with leftward shift

functions as a partial buffer of firing rates and a loop eliminator at low

rates, and as a potent loop generator at higher rates.

All of our analytical results were obtained by considering the

effect of imposing weight constraints on a linear system describing

pairwise interactions of neurons in the presence of STDP. The

effect of constraints on Hebbian plasticity has been explored

before to explain the formation of visual receptive fields [26]. Our

work can be viewed as an extension of this approach to a specific

form of Hebbian plasticity that involves the timing of spikes,

namely STDP. In the context of a recurrent network, this method

can predict the outcome of STDP in shaping the connectivity of

the network and qualitatively captures the direction of change of

firing rates in the network. However, the steady-state firing rate of

the network cannot be quantitatively calculated by this approach,

since the analysis is focused on the snapshots of the weight

dynamics given the current firing rates.

The network used in our numerical simulations was densely

connected so that every neuron could potentially form a synaptic

connection to every other one. However, our analytical results

does not rely on any particular assumption about the density or

Figure 9. Simulation results for a network with rightward shifted STDP. A. The number of loops in the steady-state weight matrix, divided
by the number of loops in a shuffled version of this matrix, as a function of the length of the loop. The initial firing rate of the network was 20 Hz.
Error bars illustrate the standard deviation from 100 different shuffled versions. The ratios are all greater than one (dashed line), showing that the
network generates loops. The inset shows the final distribution of weights in the network. B. The average steady-state firing rate as a function of the
average initial firing rate. Rightward shifted STDP strongly buffers the effect of the external input on the average steady-state rate, which always ends
up in the narrow interval between 26:89 and 40 Hz (dashed lines) predicted by the pair-based analysis (figure S1). C. The steady-state mean of the
synaptic weight as a function of the initial rate.
doi:10.1371/journal.pcbi.1002906.g009
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sparsity of network connectivity. Instead, the results indicate that

STDP can organize patterns of connectivity in particular ways

within the framework provided by anatomical constraints,

developmental hard-wiring and other physiological mechanisms,

such as other forms of plasticity.

In a series of articles, Gilson and colleagues studied the

structures that arise from STDP in a recurrent network in response

to the patterns of correlations in the external input [15–20]. Here,

we took a different approach. We focused on the network

structures that arise in the absence of correlations either imposed

by external input or originated from common inputs within the

network, inspired by the observation that these are dramatically

reduced by fast and strong recurrent inhibition [25]. Instead, we

systematically studied the effect of the shape of the STDP window

Figure 10. Dynamics of reciprocal synapses with leftward shifted STDP. A. When the baseline firing rates of the two neurons are 1.8 Hz, an
unstable fixed point exists out of the allowed range, schematically illustrated at the top right. Arrows show the movement of trajectories. Initial
conditions starting within the blue area end up at the attractor at the bottom left corner corresponding to connection loss, qualitatively similar to
depression dominant STDP (figure 6) B. When the baseline firing rates of the two neurons are 35 Hz a saddle node exists within the allowed range of
synaptic weights. The initial conditions in the blue area end up at the bottom left attractor (connectivity loss) and the initial condition in the red area
end up at the top right (recurrence). C. When the baseline firing rates of the two neurons are 38 Hz, the basin of attraction of the recurrent attractor
(red) increases. This in turn increases the baseline firing rate and pushes the system into the regime explained in D. D. When the baseline firing rates
of the two neurons are 50 Hz, a saddle node exists out of the allowed range, schematically illustrated at the bottom left. Movement of trajectories
away from this fixed point results in recurrent connections, regardless of the initial condition, so all the weights potentiate up to the maximum
allowed value.
doi:10.1371/journal.pcbi.1002906.g010
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on the structures that arise in this decorrelated state. Our results

can be viewed as a basis over which any structures induced by

external correlations will be mounted.

A prominent feature of STDP is its ability to organize neurons

into in- and out-hubs. The dependence of hub-formation on

baseline firing rate shows how heterogeneity at the level of external

inputs can influence the internal structure of a neural network.

Moreover, this property of STDP can play an important protective

role in pathological cases in which a sub-population of excitatory

neurons fires at atypically high rates. Through STDP, most of the

incoming synapses to this sub-population will be weakened to

mitigate the excessive high firing rate. Decoupling of a highly

active sub-population from an embedding network through STDP

has been observed previously in networks with an excitation-

inhibition balance [13].

A related study based on simulations of a small network showed

that depending on the external input, an STDP rule that is

phenomenologically similar to the triplet model [27] can either

induce feedforward structures or recurrent connections, which was

argued to be incompatible with simple pair-based STDP [22].

Although our study only addressed structures arising from pair-

based STDP, our results show that recurrent connections can arise

if potentiation dominates depression or the plasticity window is

shifted. Interestingly, the dependence of the structures on external

input in the case of leftward shifted STDP is similar to that of the

more elaborate model studied by Clopath and colleagues [22].

A number of studies indicate that, apart from the timing of

spikes, several other factors including firing rates, inhibitory inputs,

dendritic spikes and neuromodulation influence plasticity induc-

tion [27–30]. Various STDP rules (including the multi-spike

STDP models reviewed in [31]) have been proposed to

incorporate some of these factors. The method we have developed

can be used with these other STDP models, but we did not include

an analysis of multi-spike STDP or more complex models because

we did not want an excessive number of examples nor complexity

in the STDP rule to obscure the basic approach and the insights

that it provides.

The ability of pair-based STDP to generate recurrent connec-

tions has been shown previously [11]. Although in that case the

depression domain was elongated, but the magnitude of potenti-

ation domain was larger such that overall potentiation was

dominant over depression, which agrees with our results on loop

generation through STDP. Lubenov and colleagues have shown

that STDP with leftward shifted window, arising from axonal

conduction delays, can generate recurrent connections and

thereby synchronize neurons when the network is initialized with

a tonic irregular firing mode. In the bursting mode, leftward

shifted STDP has the opposite effect, i.e. it eliminates loops and

desynchronizes the neurons [14]. Because the networks we studied

were in excitatory/inhibitory balanced state in which the firing

patterns are irregular and asynchronous [28–30], our findings

about loop generation through leftward shifted STDP agree with

the results of [14], even though the same model can function as a

loop eliminating mechanism at low initial firing rates.

A combination of axonal, synaptic and dendritic propagation

delays can induce a leftward shift in STDP window [14]. On the

other hand, the finite rise time of the NMDA receptor activation

can give rise to a rightward shift in the window [10]. Thus the

exact magnitude and direction of the shift depends on the relative

contribution of these opposing factors. For instance, because the

Figure 11. Simulation results for a network with leftward shifted STDP. A. The number of loops in the steady-state weight matrix, divided
by the number of loops in a shuffled version of this matrix, as a function of the length of the loop. The initial firing rate of the network was 5 Hz for
the blue curve and 25 Hz for the red curve. Error bars illustrate the standard deviation from 100 different shuffled versions. The ratios are smaller than
one (dashed line) for the blue curve, showing that leftward shifted STDP eliminates loops at low firing rates. The ratios are all greater than one
(dashed line) for the red curve, and higher than all other cases (compare with figures 5A and 9A). Thus, leftward shifted STDP is a very potent loop
generator at higher rates. The inset shows the final distribution of weights in the network in these two cases (colors matched). B. The average steady-
state firing rate as a function of the average initial firing rate. C. The steady-state mean synaptic weight as a function of the initial rate. For low initial
rates, it is a decreasing function, for intermediate initial rates it increases, and for high initial rates in hits the upper boundary.
doi:10.1371/journal.pcbi.1002906.g011
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back-propagating postsynaptic spikes arrive at distal synapses with

a longer delay than at proximal ones, leftward shifted STDP is

expected to be observed more in the distal dendrites and rightward

shift is expected at proximal sites. Moreover, the relative

magnitude of potentiation and depression varies considerably

along the dendritic tree [31–34]. Therefore, each of the different

versions of STDP window analyzed in our study may be relevant

in a particular region of the dendritic tree. A general prediction of

our study is then that different regions of the dendritic tree may

participate in different network structures as a result of differences

in their STDP windows.

In a number of studies, clusters of three or four synaptically

connected neurons have been observed in cortical slices at a higher

frequency than expected from a random or distance-based

connectivity pattern [35,36]. We doubt that STDP can account

for these clusters unless network synapses were unrealistically

strong, so strong that the causal effect of single spikes from one

neuron can pass through two or more synapses and transiently

increase the firing rate of another neuron. Otherwise the effects of

STDP would be restricted to mono-synaptically connected

neurons, even in larger ensembles. In fact, our results show that

loops of length 3 are usually the loops least affected by STDP. This

can be explained by the direct effect of STDP being confined to

loops of length 2. In loops of length 3, unlike longer loops, there is

no contribution from reciprocally connected pairs of neurons

(loops of length 2).

In conclusion, studying pairwise interactions of neurons through

STDP provides a number of important insights about the

structures that arise from this plasticity in large networks. This

approach can be extended to networks with more complex STDP

models and more structured external input.

Methods

The Neuron model
We used leaky integrate-and-fire (LIF) model neuron in our

simulations. The membrane potential of the LIF neuron obeys

t m
dV

dt
~(V r {V )zI , ð3Þ

where t m ~20ms is the membrane time constant, V r ~{60mV
is the resting potential, and I is the synaptic input (see below).

Although the input appears as a current, it is actually measured in

units of the membrane potential (mV) because a factor of the

membrane resistance has been absorbed into its definition. When

the membrane potential V reaches the firing threshold

V th ~{40mV , the neuron fires an action potential and the

membrane potential resets to the resting value V r .

Network model
A network of N

ex
~500 excitatory and N

in
~500 inhibitory LIF

neurons was simulated. Each neuron receives excitatory and

inhibitory inputs from all the other neurons in the network. The

strengths of the excitatory-to-inhibitory, inhibitory-to-excitatory

and inhibitory-to-inhibitory synapses are fixed. At the beginning of

each simulation, their strengths were drawn from uniform

distributions ranging from 0 to w ex ? in
max ~4mV, w in ? ex

max ~8mV,

and w in ? in
max ~8mV respectively. The excitatory-to-excitatory

connections are modified by pair-based STDP as described below.

They are also initialized at the beginning of each run to random

values from a uniform distribution ranging between 0 and

wmax~2mV. Although the inhibitory connections are stronger

than excitatory connections (but inhibitory-to-excitatory and

inhibitory-to-inhibitory connections are equally strong), the network

settles into an excitation/inhibition balanced state with these initial

conditions (see figure S3). In this state, individual neurons fire

irregularly and asynchronously [28–30] and the strong recurrent

inhibition causes the firing correlations due to shared input to be

very week [25]. The connections are all to all and self connections

are prohibited for all neurons.

Each presynaptic action potential arriving at an excitatory or

inhibitory synapse induces an instantaneous jump or fall in

synaptic input respectively, by an amount proportional to the

appropriate synaptic weight. The input decays exponentially

between presynaptic action potentials. In addition to synaptic

inputs originating from the neurons within the network, the input

to each neuron includes an external constant bias term and

independent white noise. Taken together, the input to the i th

excitatory or inhibitory neuron is described by

dIi

dt
~{

Ii

t s
z

XN ex ,N in

j~1,j=i

Jij

Xtkj vt

k

d(t{tk
j )zmizsji(t) : ð4Þ

Here, the synaptic time constant is t s ~5ms, J denotes the full

matrix of connections ( ex? ex , ex? in , in? ex and in? in )

and the first sum runs over all neurons (N ex and N in for

excitatory and inhibitory populations, respectively). The second

sum runs over all the times tk
j of spikes produced by neuron j prior

to time t, indexed by k. The parameters mi and s determine the

mean and the variability of the input (s has not subscript i because

it is the same for all neurons), and ji(t) satisfies Sji(t)T~0 and

Sji(t)jj(t’)T~dijd(t{t’), with the brackets denoting averages.

The parameter s was set to 20 mV=
ffiffiffiffiffiffiffi
ms
p

to provide an average

initial baseline firing rate of 1Hz for the neurons in the network

when mi is zero. In the simulations, the value of mi was changed

systematically to modify initial firing rates. Each simulation is run

until the excitatory-to-excitatory connections reached a steady-

state in which the average firing rate, and the mean and variance

of the synaptic weights remained constant.

Counting loops
To count the number of closed loops implied by the matrix of

excitatory-to-excitatory synaptic weights (W ), we first turn the

network into a directed graph [21]. This is done by comparing

each synaptic weight to a threshold value h, and assigning the

value 1 to the synapse if its weight is greater than or equal to h, and

assigning a zero otherwise. This defines the adjacency matrix M of

the resultant directed graph, which can be written formally as

M~H(W{h) , ð5Þ

where H(x) is the Heaviside step function. The number of closed

loops of length n in the adjacency matrix M is then

Ln~
tr(Mn)

n
, ð6Þ

where tr denotes the matrix trace (the sum of the diagonal

elements). To evaluate the degree of recurrence in a network, we

compare the number of closed loops obtained from the above

equation with the number in a randomly permuted (shuffled)

version of the same matrix. This distinguishes recurrent connec-

tions formed by chance from those that arise from plasticity. In the

following sections, whenever we mention the number of loops in a

network, we are in fact referring to the number of loops in the
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adjacency matrix formed by turning the network into a directed

graph as described above. In addition, when we refer to a

‘‘number’’ of synapses, we really refer to the number of synapses

with strengths greater than the threshold h. To obtain a loop count

that is not biased by the overall strengths of the weights, we chose

h to be equal to the mean of the excitatory synaptic weights. For

figures 3, 5, 7, 9, 11 (5Hz initial rate) and 11(25Hz initial rate) ,

respectively, h was set to 1, 1:12, 0:88, 1:1, 0:22 and 1:48 mV.

Supporting Information

Figure S1 Parameter range for stability in rightward
shifted STDP. The gray area shows the range of baseline firing

rates at which a stable positive fixed point for reciprocal synapses

exists, as a function of the shift (d ). Other parameters of the STDP

window are A
z
~0:0075mV, A

{
~0:0050mV and

t
z
~t

{
~20ms. For dv1:8ms no positive stable fixed point

exists. For d~2:5 (dotted line) which was used in simulations, the

upper and lower bounds of the baseline rates supporting a stable

positive fixed point are 26:89 and 40 Hz respectively (dashed

lines). The steady-state firing rate is predicted to end up in this

range, which agrees with simulations (figure 9B).

(EPS)

Figure S2 Dynamics of reciprocal synapses with weight-
dependent STDP (soft bounds). The nulclines dw

21
=dt~0

and dw
12
=dt~0 are depicted by yellow and green curves,

respectively. The top row shows the results for balanced STDP

(A
z
~A

{
~0:005), the middle row shows the results for

potentiation-dominant STDP (A
z
~0:006,A

{
~0:005), and the

bottom row shows the results for depression-dominant STDP

(A
z
~0:005,A

{
~0:006). The columns correspond to different

baseline firing rates. The position of the fixed point changes very

slightly by changing the parameters. In all of the panels

t
z
~t

{
~20ms.

(EPS)

Figure S3 The average cross-covariance of spike trains
of excitatory neurons in the simulated networks. The first

row shows the results for the initial state of the network, when

STDP is not yet started. Next rows show the results for the final

network (steady-state) for each STDP model. The columns

correspond to different initial firing rates, induced by external

input. The inset number in each panel is the average coefficient of

variation (CV) of inter-spike-intervals. The gray panels show the

cases where the average cross-covariance significantly deviate from

zero and the CV is much smaller than 1, i.e. the uncorrelated

asynchronous irregular state becomes disrupted. In all panels, the

cross-covariance and the CV are averaged over 100 randomly

chosen neurons (4950 pairs for cross-covariance), the duration of

spike trains is 1000s, and the bin size is 1ms.

(EPS)

Text S1 Supplementary information. This file includes the

details of deriving the equations for pairwise interactions of

weights, shifted STDP, STDP with soft bounds, and the

calculation of cross-covariance of spike trains in the network.

(PDF)
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