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Abstract

We study the role of incomplete information and outside options in determining bar-

gaining postures and surplus division in repeated bargaining between a long-run player

and a sequence of short-run players. The outside option is not only a disagreement point

but reveals information privately held by the long-run player. In equilibrium, the unin-

formed short-run players’ offers do not always respond to changes in reputation and the

informed long-run player’s payoffs are discontinuous. The long-run player invokes inef-

ficient random outside options repeatedly in order to build reputation to a level where

the subsequent short-run players succumb to his extraction of a larger payoff, but he also

runs the risk of losing reputation and relinquishing bargaining power. We investigate

equilibrium properties when the discount factor goes to 1 and when the informativeness

of outside option diffuses. In both cases, bargaining outcomes become more inefficient

and the limit reputation building probabilities are interior.
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1 Introduction

Many real world negotiations take place repeatedly in the shadow of outside options, such

as those provided by experts, arbitrators or even courts. Consider, for example, a firm that

is in disputes with its employees regarding wage increases or with its customers regarding

compensation for damages.1 These disputes often involve interaction between a single privately

informed long-run player and a sequence of short-run players. The recent high-profile litigations

surrounding Merck, a pharmaceutical firm, offer an interesting case in point. Merck refused

to settle and contested every case in court. After losing the first case with a compensation

verdict of $253 million in 2005, it continued to fight in court over the following two years. After

winning most of the cases, the firm ended up settling further 27,000 cases out of court for $4.85

billion in total, an amount far smaller than experts predicted at the beginning.2

In these examples, the bargainers obtain random outside options when they fail to reach

an agreement. Moreover, the outside option represents not merely a “disagreement point” in a

repeated setup; it can partially reveal the informed party’s private information. The decision on

whether to take the outside option must take into account not only the amount of information

that this decision will disclose per se but also learning from the subsequent realization of

uncertain payoffs. While the bargaining literature has long recognized the fundamental roles

played by outside options and incomplete information (e.g., Nash (1950, 1953), Harsanyi and

Selten (1972)), this linkage between the two essential ingredients of bargaining is yet to be

explored. Our goal is to investigate how the additional source of learning from random outside

options determines bargaining strategies and outcomes and to provide an analytical tool to

study other related repeated interactions.

We consider a discrete-time repeated bargaining model in which a long-run player (e.g., a

firm) bargains with a sequence of short-run players (e.g., customers or employees). In each

period, a new short-run player enters the game and the two parties bargain (e.g., over damage

compensation or wage increase). If they reach an agreement, the corresponding transfer is made

from the long-run player to the short-run player who subsequently leaves the game. If they

disagree, the players invoke an uncertain outside option (e.g., through a court verdict), which

is inefficient due to a deadweight cost. For each pair of long-run and short-run players, the

disagreement payoffs are drawn independently from a finite set according to a distribution that

takes one of two types, “good” or “bad”, and is privately known by the long-run player. The

long-run player has an incentive to build a reputation for having a good distribution of outside

1The sheer existence of collective governance arrangements such as courts is a demonstration of the promi-

nence of these applications.
2Source: New York Times, http://www.nytimes.com/2007/11/09/business/09merck.html
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options. We analyze the reputation equilibria in which the players’ strategies are functions of

reputation (i.e., posterior belief on the good type) and reputation is valuable.

Our first main results (Theorem 1 and Corollary 1) establish the existence of a reputation

equilibrium and its behavioral and payoff properties. Even though the short-run players are

unrestricted in the set of offers, their equilibrium offers respond discontinuously to the long-run

player’s reputation. We show that every reputation equilibrium features two threshold levels of

reputation, 0 < p∗ < p∗∗ < 1. When reputation falls between the two thresholds, the long-run

player always turns down the equilibrium demand and the inefficient random outside option

is invoked, and as a result, the belief updating process is driven solely by the realizations of

random signals. When reputation is above p∗∗, the long-run player accepts the short-run players’

low equilibrium demand. There is no further learning and bargaining outcome is efficient, but

the long-run player extracts the full benefits of reputation. When reputation is below p∗, the

long-run player randomizes, the outside option is invoked only occasionally, and the negative

reputational effect of an adverse signal is reduced, and may even be overturned, by the act of

rejection. The long-run player’s payoffs are discontinuous in his reputation.

The short-run player trades off the deadweight cost of disagreement and the high expected

outside option against the bad type. This trade-off endogenously determines p∗∗. By revealing

his private information, the long-run player relinquishes his bargaining power and the short-

run players extract all the surplus in the ensuing bargaining. Therefore, the long-run player’s

benefit from revealing his type is merely the payoff that the current short-run player is willing

to give up in order to induce acceptance: this amount equals the one-off deadweight cost that

the short-run player would eschew in the case of an agreement. The long-run player weighs this

one-off deadweight cost against the probability of building reputation to p∗∗ beyond which he

obtains a larger share of the surplus from each subsequent short-run player. Since the reputation

building probability is increasing in the prior belief, this trade-off endogenously determines p∗.

The precise calibration of the rate of information revelation plays a role in the determination

of equilibrium incentives in our model, as in Cramton (1984), Chatterjee and Samuelson (1987)

and Abreu and Gul (2000), among others. In our repeated setup, the possibility of learning from

random outside options gives rise to an additional incentive to reject a myopically attractive

offer: not only does the long-run player not reveal himself to be a bad type but he can get lucky

and increase his reputation. Thus, he can “gamble” his reputation at the expense of efficiency.

Indeed, this incentive dominates in the limit as we next show.

We establish the limit properties of reputation equilibria as the long-run player becomes

increasingly patient (Theorem 2). We first show that, as the discount factor δ goes to 1,

the limiting equilibrium outcome is unique: the lower reputation threshold p∗ converges to

0, while the upper threshold p∗∗ remains unchanged. Thus, as the long-run player becomes
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more patient, the players adopt incompatible bargaining postures, and inefficiency arises, over

a wider range of beliefs. Explicit bounds are derived for the equilibrium payoffs as well as for

the reputation building probability, i.e., the probability with which the posterior reaches the

upper threshold starting from prior p ∈ (0, p∗∗). As δ → 1, the accumulated signals become

increasingly informative and, consequently, reputation building is fast and incurs no discounting

cost, but the reputation building probability is interior: reputation can be built, though not

always. Nonetheless, the reputation gain is small at a low prior. These results on the long-run

distributions of payoff and belief contrast with the high payoff bounds established by Fudenberg

and Levine (1989, 1992) and the impermanence of reputation shown in Cripps, Mailath and

Samuelson (2004).3

We also explore the limiting equilibrium properties in a parametrized model where, as the

real time interval ∆ goes to 0, the value and informativeness of outside options shrink corre-

spondingly at the rate that keeps the discounted sum of payoffs and aggregate informativeness

over a unit of real time asymptotically constant. The reputation equilibrium is shown to be

unique for generic ∆ (Theorem 3). We obtain in closed-form the limit schedules of the reputa-

tion building probability and discounted payoffs. The reputation building probability is always

interior despite the fact that reputation building takes real time. As ∆ → 0, the one-off in-

centive offered by the short-run player to induce agreement vanishes and the long-run player’s

reputation concerns prevail. Consequently, the lower threshold p∗ again converges to 0, and the

equilibrium in the limit features only one threshold p∗∗. Diffusive outside options shut down the

signaling channel of information revelation and amplify the incentives to gamble reputation.

This contrasts with the equilibrium dynamics obtained by Gul and Pesendorfer (2012) and

Daley and Green (2012) in dynamic games where exogenous information arrives in a Brownian

motion.

Although we have chosen to present our analysis in a bargaining setup in which one party

pays the other and the offer space is unbounded, it can be readily adapted to a standard surplus-

splitting bargaining model. The presence of informative and random payoff realizations is a

salient feature of many repeated interactions beyond the bargaining setup that we consider, from

repeated sales between a long-lived seller and a sequence of short-lived buyers to entry deterrence

by an incumbent facing a series of potential entrants. With appropriate interpretations of

the disagreement points, the tools developed in this paper can be adapted to analyze such

applications, which we elaborate on in Section 6.

The rest of the paper is organized as follows. The next section describes the model of

repeated bargaining with random outside options. Section 3 presents our main results on

3See also Benabou and Laroque (1992) and Bar-Issac (2003) for related applications in which private infor-

mation is fully revealed in the long run.
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reputation equilibrium and its limit properties as δ goes to 1. Section 4 investigates the limiting

equilibrium when information diffuses. We discuss several extensions of our analysis as well as

the related literature in Section 5. Some concluding remarks are offered in Section 6. Formal

proofs are relegated to the Appendix, and the Supplemental Material (Lee and Liu (2013))

contains additional results and proofs that are left out for expositional reasons.

2 The Model

2.1 Repeated Bargaining with Outside Options

We consider a repeated bargaining model in discrete time. Periods are indexed by t = 0, 1, 2, . . ..

A single long-run player 1 faces an infinite sequence of short-run players 2 with a new player 2

entering in every period.

The game within each period t is as follows. Player 2 makes a demand s ∈ R, which player

1 can accept or reject. If the demand is accepted, player 1 pays s to player 2 who then leaves

the game. If the demand is rejected, a transfer v ∈ R from player 1 to player 2 is drawn with

probability f θ (v) , where θ ∈ {G,B} is privately known by player 1. Let Eθ [v] denote the

expectation of v under f θ. This outside option is inefficient: it incurs a cost c > 0 to player 2

with the cost to player 1 normalized to 0.

Let pt ∈ [0, 1] denote player 1’s reputation, i.e., player 2’s belief on θ = G, at the beginning

of period t, with p0 ∈ (0, 1) being the commonly known prior. Players observe the realized

transfer and whether it results from voluntary agreement or outside option; rejected demand is

not publicly observable. Player 1 minimizes his repeated game expected transfers/payments to

the short-run players with a discount factor δ ∈ (0, 1).4 Each player 2 maximizes his stage-game

expected payoff.

We make the following assumptions.

Assumption 1 (Full Support) fG and fB share a common support V ⊂ R, which is a finite

set with at least two elements.

Assumption 2 (Strict Monotone Likelihood Ratio Property) fB(v)
fG(v)

is strictly increasing in v.

Assumption 3 EB [v]− EG[v] > c.

Assumption 1 ensures that no single realization of v can reveal player 1’s type. Assumption

4Whenever we refer to player 1’s “payoff” below, we mean the negative of his transfer.
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2 implies that higher realizations of v are more likely to arise from type B.5 Assumption 3 says

that the difference between the expected values of the outside option to player 2 from the two

player 1 types outweighs the cost; this provides an incentive for player 2 to induce the costly

outside option.

2.2 Strategies and Equilibrium

A Markov (behavioral) strategy of the short-run player, d, maps his belief to a probability

distribution over all possible demands, i.e., d : [0, 1] → 4(R). A Markov strategy of the long-

run player of type θ ∈ {G,B} is a function rθ that specifies a probability of rejection of each

demand at each belief, i.e., rθ : [0, 1] × R → [0, 1]. We write player 1’s discounted average

expected transfer to player 2 at belief p as Sθ(p). We suppress the dependence of Sθ on the

strategy profile and the discount factor to save on notation.

We say that a strategy profile
(
d, rG, rB

)
together with beliefs {pt} is a reputation equilibrium

if (i) it is a perfect Bayesian equilibrium, (ii) Sθ (p) is non-increasing in p over [0, 1] , and (iii)

once player 1’s type is revealed, belief no longer changes.

Perfect Bayesian equilibrium is defined in Fudenberg and Tirole (1991). Even though they

only consider finite games, its extension to an infinite game is straightforward (see Hörner and

Vieille (2009), for instance). Monotone equilibrium payoffs capture reputation as a valuable

asset. Similar monotonicity conditions are also invoked by Benabou and Laroque (1992) and

Mathis, McAndrews and Rochet (2009) in reputation setups and by Fudenberg, Levine and

Tirole (1987) in a single-sale bargaining setup. Assuming that belief does not change from

0 or 1 ensures that, once player 1’s type is revealed, the continuation game is played as if it

has complete information. This assumption is standard in dynamic Bayesian games, including

bargaining literature with payoff uncertainties. See Nöldeke and van Damme (1990) for a

pathological example that can arise without the restriction.

In equilibrium, the short-run player can make a demand that will be rejected for sure; let

us refer to such a demand as a losing demand; a demand that is offered and accepted with

positive probability by either type of long-run player in equilibrium will be referred to as a

serious demand.

5We can weaken this assumption to a version of a statistical identifiability condition. Assumption 2 simplifies

the exposition.
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3 Gambling Reputation

3.1 Equilibrium

In this section, we investigate the dynamics of the reputation equilibrium of our bargaining

game. In a reputation equilibrium, once the long-run player has revealed his type θ ∈ {G,B},
each short-run player demands Eθ[v] and type θ accepts it for sure. Our results below are

concerned with behavior and payoffs at interior reputation levels.

Our first main result establishes that, with a sufficiently patient long-run player, a reputation

equilibrium exists, and every reputation equilibrium features two serious demands and two

threshold levels of reputation.

Theorem 1 There exists δ̄ ∈ (0, 1) such that, for any δ > δ̄, a reputation equilibrium exists,

and every reputation equilibrium admits only two serious demands, s∗ = EB[v] − c > s∗∗ =

EG[v], and two reputation thresholds, 0 < p∗ < p∗∗ = 1 − c
EB [v]−EG[v]

, such that the following

hold:

(a) If p ∈ (p∗∗, 1) , s∗∗ is demanded and accepted by both types of player 1 for sure.

(b) If p ∈ (p∗, p∗∗) , losing demands are made and outside options are invoked for sure.

(c) If p ∈ (0, p∗) , s∗ is the only serious demand and is made with positive probability; type G

rejects every equilibrium demand; type B is indifferent between rejecting and accepting s∗

and rejection by type B occurs with positive probability.6

(d) At p∗, only losing demands are made; at p∗∗, player 2 is indifferent between losing de-

mands and s∗∗, which is the only serious demand and is accepted for sure by both types if

demanded.

Proof. See Appendices B and C.

Since acceptance of the higher serious demand leads to revelation of type B, we immediately

obtain from Theorem 1 the payoff implications below.

6There is, however, payoff-equivalent multiplicity regarding type B’s exact randomizing behavior in this

region of beliefs. For instance, there could be p̂ < p∗ such that, in (0, p̂), rejection occurs with an interior

probability while, in [p̂, p∗), rejection occurs with probability 1. See Appendix B.3 for more details and the Sup-

plemental Material (Section 2) for an example. Besides, for each equilibrium in which player 1 rejects a demand

with an interior probability, there are other outcome-equivalent equilibria involving player 2’s randomization

instead; see the Supplemental Material (Section 1.1).
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Corollary 1 For any reputation equilibrium with two thresholds, p∗ and p∗∗, established in

Theorem 1, we have the following:

(a) For any p ∈ (p∗∗, 1) , SB(p) = S = EG[v].

(b) For any p ∈ (0, p∗), SB(p) = S = EB[v]− (1− δ)c.

(c) For any p, SG(p) = S.

The reputation equilibrium in our model has the following noteworthy features. First, even

though the short-run players are not restricted in the set of demands, they do not adjust

their offers in order to induce acceptance and avoid the deadweight cost c of outside options.

Their equilibrium offers are inflexible and respond discontinuously to the long-run player’s

reputation, and this results in inefficiency of bargaining outcomes as well as discontinuity in

the payoffs. There is empirical support for this prediction of our model. For instance, in her

study of repeated shareholder litigations involving long-run underwriters, Alexander (1991)

finds that, beyond very few exceptions, the estimated strength of the case does not matter for

the settlement amount.

Second, the long-run player’s payoffs admit two flat boundaries: one at low reputation levels

and the other at high reputation levels. When reputation falls in the intermediate region, this

player’s bargaining posture resembles a gambling process: he refuses every equilibrium demand

and resorts to outside options, and his reputation evolves according to the realizations of random

signals until it settles at one of the two boundaries. These reputation dynamics provide one

possible explanation of the bargaining postures illustrated by our motivating example in the

Introduction. Facing a series of product liability litigations, the firm may have suffered damage

to its reputation by losing the first few cases in court but repeated gambles eventually proved

successful as later court victories propelled reputation to a level where all further cases settled

at a low amount.

Third, type G’s payment is equal to EG[v], his expected value of each outside option, at

all reputation levels. However, this results from voluntary agreement only when reputation

is above the upper threshold p∗∗. At lower reputation levels, type G rejects all equilibrium

demands and his transfers to the short-run players are determined by random outside options

drawn with distribution fG. Indeed, type G’s response to the cutoff level of demand EG[v]

depends on the reputation level and is determined endogenously in equilibrium.7

7This indeterminacy of type G’s response to the cutoff contrasts with the reputational bargaining literature

that assumes a behavioral type who follows a commitment cutoff strategy (e.g., Myerson (1991) and Abreu and

Gul (2000)). Indeed, one can construct equilibria in which EG [v] is demanded and rejected for sure at some

reputation levels, while it is demanded and accepted for sure at others. See Section 1.2 of the Supplemental

Material.
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The intuition behind the dynamics of the reputation equilibrium is as follows. First, when

reputation is high, the short-run player’s expected payoff from the outside option is low. Thus,

there exists a threshold level of reputation beyond which the incentive to avoid the deadweight

cost dominates and player 2 proposes a demand low enough to induce acceptance by both

types of player 1. This demand corresponds to s∗∗ and the threshold is p∗∗. Second, consider

the incentives when reputation is below p∗∗. For player 2, the expected value of the outside

option is high relative to the deadweight cost; this induces an aggressive demand that type G

rejects. Type B faces the following trade-off: the randomness of the outside option offers a

non-negligible chance of settling forever at a belief above p∗∗ with low future payments, but by

accommodating player 2’s demand and revealing his type, he could claim his contribution to

the total surplus, amounting to the one-off saving of the deadweight cost c. When reputation

is close to p∗∗, the benefit from gambling with random outside options dominates. The lower

threshold p∗ is then determined by the balance between the one-off saving of the deadweight cost

and the benefit from gambling reputation. Finally, when reputation is below p∗, equilibrium

requires that player 2’s demand leaves type B indifferent. Since acceptance of any demand

higher than s∗∗ leads to revelation of type B, the corresponding serious demand is s∗ which

does not respond to reputation.

We next provide an outline of our constructive proof. The equilibrium value function is

discontinuous and admits two fixed payoff boundaries: one for p < p∗ (equal to S) and the other

for p > p∗∗ (equal to S). The task boils down to identifying the lower reputation threshold

p∗ and the short-run player’s randomization at p∗∗. Formally, we define, for each α ∈ [0, 1] , a

contraction mapping Tα on type B’s value function S as follows:

[Tα (S)] (pt) =


EB[v] if pt = 0

min
{
S, (1− δ)EB[v] + δEB [S (pt+1) |pt]

}
if pt ∈ (0, p∗∗)

αEG[v] + (1− α)
[
(1− δ)EB[v] + δEB [S (pt+1) |pt]

]
if pt = p∗∗

S if pt > p∗∗

The equilibrium properties stated in Theorem 1 motivate the definition of Tα above, in

which α corresponds to the randomization at p∗∗, and the second line is set up to determine p∗.

We show that each Tα admits a unique fixed point Sα, which is a candidate equilibrium value

function, and p∗ (α) := sup
{
p : Sα (p) = S

}
is a candidate for the lower reputation threshold.

(For more details, see Appendix C.1: From Equilibrium Contraction Mapping.)

Then, we verify that there indeed exists an α ∈ [0, 1] such that the fixed point Sα together

with p∗ (α) correspond to a reputation equilibrium of the following kind: at p ∈ (0, p∗(α)), type

B plays a mixed strategy such that the posterior right after the rejection but before the outside
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option is exactly p∗(α), and SB (p∗ (α)) = S. (See Appendix C.2: From Contraction Mapping

to Equilibrium.)

3.2 Limit Properties: δ → 1

Our next main result concerns the properties of reputation equilibrium as player 1 becomes

increasingly patient. We examine both equilibrium strategies and payoffs.

Starting from belief p ∈ (0, p∗∗), let R(p) denote the probability with which reputation

reaches (i.e., hits exactly or moves above) p∗∗ in equilibrium. We suppress the dependence of

R on δ to save on notation. Note that, when it falls below p∗ in equilibrium, reputation can

still bounce back to p∗ via player 1’s own randomization after which gambling can occur again;

R(p) takes this into account.

Denote by ρ the solution of

EB

[
ρ

log

(
fG(v)

fB(v)

)]
= 1. (1)

We show in Appendix D that ρ > 1. Let λ (p) = log
(

p
1−p

)
, λ∗∗ = log

(
p∗∗

1−p∗∗

)
, and λ =

log
(
fG(v)
fB(v)

)
, where v = minV.

Theorem 2 For each δ, fix a reputation equilibrium with two reputation thresholds p∗ and p∗∗.

We have the following:

(a) “Limit Uniqueness”: limδ→1 p
∗ = 0.

(b) “Reputation Building Probability”: For any p ∈ (0, p∗∗), limδ→1R(p) exists and

lim
δ→1

R(p) ∈
[
ρλ(p)−λ∗∗−λ, ρλ(p)−λ∗∗] ⊂ (0, 1).

(c) “Payoffs”: For all but countably many p ∈ (0, p∗∗),

lim
δ→1

SB(p) = EG[v]
(

lim
δ→1

R(p)
)

+ EB[v]
(

1− lim
δ→1

R(p)
)
.

Proof. See Appendix D.

Part (a) shows that in any limiting reputation equilibrium the lower threshold p∗ converges

to 0, and p∗∗ is independent of δ by Theorem 1. Therefore, in the limit, disagreement occurs and

inefficient outside options are invoked for all p ∈ (0, p∗∗), while agreement is achieved and the

bargaining outcome is efficient for p > p∗∗. Except at p∗∗, the equilibrium outcome is uniquely

determined.
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Part (b) obtains tight bounds on the reputation building probability. As δ → 1, the ac-

cumulated signals become increasingly informative, but the reputation building probability is

interior starting from any prior p ∈ (0, p∗∗): reputation can be built, though not always. As

p→ 0, λ(p)→ −∞ and hence ρλ(p)−λ∗∗ → 0, i.e., the reputation building probability becomes

arbitrarily small.

Part (c) further shows that type B’s payment in the limit is the weighted average between

EG[v] and EB[v] with the reputation building probability as the coefficient on the former.8

Combined with part (b), this implies that even though the reputation building probability

is strictly interior, conditional on the event that reputation is built, the speed of reputation

building is fast relative to δ → 1 and there is no discounting cost in the limit. Furthermore,

as p → 0, the limit payment converges to EB[v]: at a very low prior, reputation building is

essentially futile in terms of payoff gain.

Example 1 Let V = {0, 2, 4}, c = 1
10

, fG(0) = fB(4) = 10
27

, fG(2) = fB(2) = 1
3
, fG(4) =

fB(0) = 8
27

. Then, p∗∗ = 0.6625 and ρ ' 2.7287. Figure 1 plots the bounds on the limit

reputation building probability established in Theorem 2 above.
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Figure 1: Bounds on reputation building probability

8There are countably many p < p∗∗ that can be reached from p∗∗ after a finite path of signal realizations.

For these beliefs, SB (p) depends on SB (p∗∗) that is in general not the same as EG [v] due to player 2’s

randomization.
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4 Informativeness of Outside Options

In the previous section, we took δ → 1 but kept the signal structure fixed as in the traditional

repeated game and reputation literature (e.g., Fudenberg and Levine (1992)). An equivalent way

of interpreting δ is to fix the interest rate r > 0 and treat the real time interval ∆ > 0 between

fixed actions as a parameter: δ = e−r∆. However, in our model, as δ → 1 or ∆ → 0, outside

options arrive more frequently and the aggregate precision of signals within unit time explodes.

In this section, we investigate the limit properties of our model while keeping asymptotically

constant the aggregate informativeness of signals within a unit of real time.

We focus on a symmetric binary case of our model. Let the repeated bargaining game

be played in discrete periods in real time t = 0,∆, 2∆, . . .. The set of outside options is

V = {−
√

∆,
√

∆} with fG(−
√

∆) = fB(
√

∆) = 1+µ
√

∆
2
∈
(

1
2
, 1
)
. Hence, EG [v] = −µ∆ and

EB [v] = µ∆. Both Assumptions 1 and 2 are satisfied; we take c = 2µ∆
κ

for some constant

κ > 1, in accordance with Assumption 3 (i.e., EB [v]−EG [v] = 2µ∆ > 2µ∆
κ

= c). We suppress

the dependence on ∆ to simplify notation.

This parametrization corresponds to the binary approximation of a Brownian motion: the

sum of signals per unit of real time is approximately normal with a type-dependent mean (−µ
for type G and µ for type B) and a type-independent variance (normalized to 1); see, for

example, Cox and Miller (1965). The discounted sum of expected outside option payments for

the two types in the limit are lim∆→0
EG[v]

1−e−r∆ = −µ
r

and lim∆→0
EB [v]

1−e−r∆ = µ
r
, respectively.9

Recall that Theorem 1 obtains properties of all reputation equilibria. However, multiple

equilibria could arise due to the long-run player’s randomization below the lower threshold

and the short-run player’s randomization exactly at the upper threshold. In the parametrized

model, we can strengthen Theorem 1 into the following.

Theorem 3 Consider the symmetric binary model parametrized by ∆. There exists ∆ > 0 such

that the reputation equilibrium outcome is unique for all but at most countably many ∆ < ∆.

In the generically unique equilibrium with two reputation thresholds p∗ and p∗∗, we have the

following:

9Our parametrization differs from the treatment in several other papers that investigate discrete-time ap-

proximations of continuous-time repeated games. Fudenberg and Levine (2007, 2009), for instance, fix the stage

game payoffs and let signals diffuse by letting ∆ → 0. See also Abreu, Milgrom and Pearce (1991) for the

case of Poisson signals. In these models, signals are informative about action choices but do not directly affect

stage-game payoffs. In our game, v serves as both signal and payoff. Indeed, if we fix V to be independent of

∆, the discounted average payoffs for both types are finite but collapse into the same level while the discounted

sum of payoffs explodes. However, the limiting properties are well-defined. See Lee and Liu (2012) for a formal

analysis.
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(a) At any p ∈ (0, p∗], type B rejects the equilibrium demand with probability p
1−p

1−p∗
p∗
≤ 1.

(b) At p∗∗ = κ−1
κ

, which is independent of ∆, player 2’s mixing probability is uniquely deter-

mined.

Proof. See Appendix E.

With symmetric binary signals, the equilibrium value function over the intermediate levels

of reputation (p∗, p∗∗) is recursively written as the following second-order difference equation

SB(pn) = (1− e−r∆)EB [v] + e−r∆

(
1 + µ

√
∆

2
SB(pn−1) +

1− µ
√

∆

2
SB(pn+1)

)
, (2)

where, from pn, the posterior after a favorable (unfavorable) signal is pn+1 (pn−1). This can be

solved explicitly with the two payoff boundaries S and S, as illustrated in Figure 2 below. The

explicit derivation of the equilibrium value function can be further exploited to pin down the

generic uniqueness of the equilibrium.10

p∗∗

SB(p)

EB[v]

S

S

p∗0
p

1

Figure 2: Equilibrium value function with symmetric binary signals

As before, we denote by R(p) the probability that, starting from p ∈ (0, p∗∗), reputation

hits or goes above p∗∗ in equilibrium. Note that R(p) is a function of ∆.

Theorem 4 Consider the generically unique reputation equilibrium of the symmetric binary

model parametrized by ∆. We have the following:

10There are alternative ways to parametrize the symmetric binary case of our model, for which generic

uniqueness can be obtained similarly.
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(a) lim∆→0 p
∗ = 0.

(b) For any p ∈ (0, p∗∗), lim∆→0R(p) = 1
κ−1

p
1−p ∈ (0, 1).

(c) For any p ∈ (0, p∗∗),

lim
∆→0

rSB(p)

1− e−r∆
= µ

[
1−

(
1

κ− 1

p

1− p

)γ]
− µ

(
1

κ− 1

p

1− p

)γ
,

where γ = 1
2

+

√
µ2+2r

2µ
> 1.

(d) At any p ∈ [0, 1], lim∆→0
rSB(p)
1−e−r∆ is continuous. In particular,

lim
∆→0

rSB(0)

1− e−r∆
= µ and lim

∆→0

rSB(p∗∗)

1− e−r∆
= −µ.

Proof. See Appendix F.

Theorem 4 is the counterpart of Theorem 2. The new results simultaneously take limits on

signal precision as well as the long-run player’s patience, while Theorem 2 considers the limit

only on patience. We explain below the role of signal diffusion by comparing the driving forces

behind the two theorems.

In Theorem 2 above, increased patience puts a greater weight on the low future payments

above p∗∗, and since the aggregate informativeness of signals in a unit time explodes as ∆→ 0,

reputation building, if it occurs, is fast in real time; in the limit, there is no discounting cost.

If signal precision decreases with ∆, however, reputation building takes real time. Nonetheless,

since the sum of signals per unit of time is informative even as ∆ → 0, reputation building

must happen with positive probability for a finite amount of real time. For the same reason, the

difference between the two types’ discounted sum of payments does not disappear as ∆ → 0.

Thus, despite the fact that the discounting cost is positive for any fixed interest rate r, the

benefit of reputation building does not vanish.

Regarding the cost of reputation building, note that, in our infinitely repeated game, choos-

ing not to gamble leads to the revelation of type B and a constant flow of high payment

thereafter. Since the high serious demand is less than the expected value of the outside option

by c, the benefit of opting out of gambling is just the one-off saving of c, which vanishes with

∆. It follows that, just as in Theorem 2, the incentive to gamble reputation dominates for any

p < p∗∗ as ∆ becomes small.

We derive the limit reputation building probability in closed form. In contrast to Theorem

2, reputation building takes real time here, and hence, to obtain limit payoffs, we compute the
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discounted reputation building probability, which amounts to

R̂ (p) =

(
1

κ− 1

p

1− p

)γ
.

Comparing the discounted reputation building probability with its undiscounted counterpart

derived in part (b) reveals exactly how much discounting takes place: since γ > 1, R̂ (p) <
1

κ−1
p

1−p , and in addition, R̂ (p)→ 1
κ−1

p
1−p as r → 0. It is also shown that the value function in

the limit is continuous everywhere even though it is a step function for any fixed ∆ > 0.

Example 2 Let µ = 0.2 and κ = 5. Then, p∗∗ = 0.8. Figure 3 plots the undiscounted

reputation building probability (r = 0) against the discounted reputation building probability at

r = 0.05; Figure 4 simulates type B’s limit payments at r = 0 and at r = 0.05.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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p

 

 
r=0
r=0.05

Figure 3: Discounted reputation building probability,
(

1
κ−1

p
1−p

)γ

5 Discussion

In this section, we discuss several extensions of our analysis above and relate our contributions

to the existing literature in more detail.

5.1 Extensions

Non-Markov Equilibria. In our analysis, we have restricted attention to strategies that condition

actions only on the reputation level of the long-run player at each history. This enables us

to highlight the role of reputation in shaping outcomes of the repeated interactions that we
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Figure 4: Payment, lim∆→0
rSB(p)
1−e−r∆

consider. If we allow for non-Markov strategies, many new equilibrium possibilities arise in our

repeated game. To see this, note that, when player 1’s type is known, our model admits a folk

theorem: when p = 0, any payment in the closed interval
[
EB[v]− c, EB[v]

]
can be supported

by a subgame perfect equilibrium. Then, by simply allowing for non-Markov behavior after

the bad type reveals himself, our equilibrium construction can be extended to deliver a wider

range of equilibrium payoffs. Formal details of these non-Markov equilibria appear in the

Supplemental Material (Section 3.1).

Non-Monotone Equilibria. In a reputation equilibrium, the long-run player’s payoffs (pay-

ments) are monotone increasing (decreasing) in reputation. Since the good type’s equilibrium

expected payment at p = 1 is equal to EG[v], i.e., the expected value of his outside option, the

monotonicity property then implies that SG(p) = EG[v] for all p ∈ [0, 1], and this endogenizes

the stationary cutoff demand equal to EG[v]. It turns out that the precise details of our equi-

librium dynamics change if the restriction is relaxed. In the Supplemental Material (Section

3.2), we construct examples of non-reputation equilibria with non-monotone payoffs. By allow-

ing type G to adopt non-stationary cutoffs, it is shown that both long-run types’ equilibrium

payments could oscillate.

(Un)observability of Demands. We have assumed that the details of bargaining are observ-

able if and only if there is an agreement. This assumption is consistent with many applications.

For instance, in the cases of shareholder-auditor bargaining documented by Alexander (1991)

and Palmrose (1991), the details of disagreement are private information and the terms of

agreement are publicly observable. We can also extend our model by considering voluntary
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disclosure of an accepted demand and/or voluntary concealment of a rejected demand. Our

equilibrium is robust under the following natural specification of beliefs upon observing a con-

fidential agreement or open disagreement: player 2 assigns probability 1 to the bad type. This

equilibrium survives refinements such as the intuitive criterion. This argument eliminates any

benefit of confidentiality and suggests that other factors not captured in the current model are

responsible for confidential agreements observed in the real world. For example, a confidential

agreement may reduce the arrival of new disputes. On the other hand, allowing for observability

of rejected demands brings about a fresh signaling issue.

5.2 Related Literature

Bargaining. The bargaining literature has long recognized the fundamental roles of outside

options and incomplete information in determining bargaining strategies and outcomes. The

study of outside option in bargaining dates at least back to Nash (1950, 1953); the previous

bargaining literature on incomplete information has focused on the role of private information

about valuations (e.g., Cramton (1984), Gul, Sonnenschein and Wilson (1986) and Chatterjee

and Samuelson (1987)), patience (e.g., Chatterjee and Samuelson (1987) and Abreu, Pearce

and Stacchetti (2012)) or bargaining postures (e.g., Myerson (1991), Abreu and Gul (2000) and

Abreu and Pearce (2007)). These models consider negotiations over a single sale.

In this paper, we explore an interplay between outside options and incomplete information

in a repeated bargaining model: outside options provide informative signals and determine the

players’ immediate disagreement payoffs. Part of the mechanics of incomplete information in

our paper is not new. When players have private information about their outside options, their

decisions on whether or not to take the outside option must take into account the amount of

information that this decision will disclose. Cramton (1984) and Chatterjee and Samuelson

(1987), who consider private information about valuations instead, also analyze bargaining

models in which a precise calibration of the rate of information revelation plays a role in the

determination of equilibrium incentives. The distinct aspect of our model is the learning from

random outside options and strategic responses in a repeated setup, which give rise to the

gambling phenomenon. Indeed, as shown in Theorems 2 and 4, this phenomenon prevails in

the limit.

A different kind of linkage between outside options and incomplete information in single-

sale bargaining is considered by Compte and Jehiel (2002) who show that introducing outside

options into the Myerson-Abreu-Gul setup of single-sale bargaining with commitment types may

cancel out the delay and inefficiency that such informational asymmetry otherwise generates.

Atakan and Ekmekci (2012) consider a search market as a way of endogenizing outside options
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and explore the role of reputation.

Reputation. Two aspects of our model differentiate our analysis from the canonical reputa-

tion approach of Fudenberg and Levine (1989, 1992). First, the long-run player in our model

has private information about his payoffs rather than bargaining posture. Thus, this player

builds a reputation for having a strong outside option rather than being insistent.11 Second,

we have informative outside options, and this makes the reputation building for the bad type

essentially futile with a very small prior: Corollary 1 shows that the reputation gain amounts

only to the one-off cost of the outside option, i.e., (1− δ)c.
To bring our analysis closer to Fudenberg and Levine (1989, 1992), we could assume an

insistent type who accepts a demand if and only if it is no larger than some cutoff C, and

make outside options uninformative such that fB = fG with expectation E[v].12 This is

a Fudenberg-Levine-style model but its stage game has the following features. First, it is an

extensive form game. Second, not all of the long-run player’s strategies are identifiable since only

actual transfers are observed. Third, the Stackelberg strategy is not well-defined since the most

aggressive insistent strategy (i.e., cutoff equal to E[v] − c) makes player 2 indifferent between

offering a compatible demand and a losing demand; hence, one should consider C > E[v]−c. In

the Supplemental Material (Section 4), we obtain a payoff bound similar to that of Fudenberg

and Levine (1989, 1992) under Markov assumption.13 This direct comparison between our

model and the alternative model confirms that informative outside options are indeed the

source of the low reputation benefit.

Exogenous Information in Dynamic Games. Our model is closely related to Gul and Pe-

sendorfer (2012) who study a dynamic model of political campaigns where the exogenous signal

is a Brownian motion. With asymmetric information, the equilibrium in their model is char-

acterized by two cutoff levels of the median voter’s belief: one cutoff delineates the region of

hard information provision from that of signaling through mixed actions and the other cutoff

is the belief at which the voter is convinced of the candidate’s policy. While the equilibrium

of our discrete-time model resembles this equilibrium, our continuous-time limit, with signals

parametrized to approximate a Brownian motion, is different: Theorem 4 shows that there is

only one threshold p∗∗ in the limit. Indeed, this distinction reveals a different force behind our

bargaining game. In Gul and Pesendorfer (2012), stopping the arrival of external information

11In our model, a specific cutoff strategy is derived for type G but his response to the cutoff itself is flexible.

See Appendix A.2.
12Uninformative outside options violate Assumptions 2 and 3. Hence, the alternative model is not a limit of

our model as outside options become less informative. This is also confirmed in Section 4.
13Schmidt (1991) considers reputation in a finite horizon repeated bargaining model without informative

outside options.
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saves the accumulated cost of future information provision. In contrast, in our repeated bar-

gaining setup, the decision to stop gambling reveals the type and confers the bargaining power

to the short-run players who extract all gains from trade in the continuation game. Hence, the

cost saving is only the one-off amount equal to c, which vanishes in the continuous-time limit.14

The dynamic signaling model of Daley and Green (2012) contains a similar equilibrium

structure in which exogenous signals drive the belief process between two thresholds. This pa-

per further differs from ours because the two thresholds in their equilibrium are simultaneously

determined by the informed seller’s trade-off between delayed trade of a single asset and high

competitive prices at high beliefs. See Kremer and Skrzypacz (2007) for another dynamic sig-

naling model with exogenous information. Repeated models with exogenous signals in discrete

time are analyzed by Benabou and Laroque (1992), Bar-Isaac (2003) and Mathis, McAndrews

and Rochet (2009). These studies derive reputation dynamics in which the informed long-run

player draws random signals above an endogenously determined threshold but any reputation

built in this process must eventually disappear.

In all aforementioned works, with the exception of Gul and Pesendorfer (2012), the informed

player faces a competitive price environment and hence his payoff responds continuously to the

belief. In contrast, the uninformed players in our bargaining model are fully strategic, and the

signals are themselves disagreement payoffs; beliefs are updated from the realized transfers.

These features are not only relevant for applications, but they are of conceptual importance be-

cause studying strategic price formation is a prime motivation of bargaining models. Indeed, we

obtain the following important implication from strategic uninformed players: their equilibrium

offers change only discretely to reputation, even though there is a priori no constraint on the

offer space.15 Moreover, in the discrete-time model, this results in the long-run player’s value

function being discontinuous. All these issues pose analytical challenges in our model. The

incentives of the short-run players determine the two fixed boundaries of the long-run player’s

equilibrium value, as well as the upper threshold p∗∗, and the precise details of the short-run

player’s mixing at p∗∗ are critical for matching the gambling process with the equilibrium value

function.

14Note that we have normlized the long-run player’s cost of the outside option to be zero. This is without

any loss since otherwise the short-run players would also extract this cost saving once the long-run player has

revealed his type.
15See Alexander (1991) for empirical support of this prediction of our model.
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6 Conclusion

In this paper we demonstrate the role of informative outside options in determining reputation

dynamics in a repeated bargaining model. The possibility of learning from the informative

outside options gives the long-run player with weak outside options an additional incentive to

reject a myopically attractive offer: not only does he not reveal himself to be the bad type, he

can also get lucky and improve his reputation if the signal happens to be favorable. Thus, he

can gamble his reputation. Nonetheless, at a very low prior, reputation building is essentially

futile in terms of payoff gain.

A direction to enrich our analysis would be to explore the interaction between the reputation

dynamics and detailed institutional features of the application. For instance, our bargaining

setup could be extended to address other potentially relevant features of negotiation, from

coalition formation (e.g., class action) to other more complex bargaining protocols and outside

option processes (e.g., strategic third party). Another interesting direction for future research is

to consider a long-lived uninformed player, which would generate a tension between incentives

for experimentation versus reputation building with informative signals.

The tools developed in this paper can be applied to analyze other repeated interactions

where informative and random payoff realizations give rise to incentives for the gambling repu-

tation phenomenon with two fixed payoff boundaries. We wrap up the paper by selecting and

discussing some examples below.

Repeated Sales. A seller serves a sequence of identical buyers. The seller privately knows

his unit production cost, which is either high or low. Each buyer only consumes one unit of

the product and his valuation is commonly known to be higher than the high cost. Each buyer

makes an offer. A disagreement invokes a random and fair but imperfect third party arbitration

that results in an informative signal about the seller’s private cost.16 Applying our analysis

to this model, we will obtain gambling reputation dynamics: transactions are conducted with

direct involvement of third parties when the belief on the high cost seller lies between two

thresholds, while the low cost seller bets his reputation until it reaches one of the boundaries.

Entry Deterrence. An incumbent faces a sequence of potential entrants over spatially sep-

arated markets. The incumbent has private information about technology or consumer brand

loyalty, and this stochastically affects the parties’ profits. Each entrant decides whether to enter

and the incumbent decides whether to start a price war. We can interpret entry as “disagree-

ment” and the profits after entry as “informative outside options.” Applying our analysis to

this model, we will again derive gambling dynamics: entry is deterred only when the incum-

bent’s reputation is high, and the incumbent will fight for sure when the reputation is between

16Gambetta (1993) and Dixit (2009) report an intriguing example of the Sicilian Mafia’s role as an arbitrator.
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two thresholds, betting on the random payoffs to improve his reputation. We emphasize the

difference between this model and the standard chain-store model à la Kreps and Wilson (1982)

and Milgrom and Roberts (1982). In the above model, the incumbent is not building a repu-

tation for being tough per se. Such an incumbent will not scare the entrant away; rather, the

incumbent is building a reputation of having a superior technology or high consumer loyalty,

convincing the potential entrants that entry will not be profitable.

Appendix

A Preliminary Results

In this section, we offer several preliminary results of our analysis that will be utilized later.

Also, throughout the rest of the paper, we introduce the following notation. Let v and v denote

the largest and smallest elements in V , respectively. Also, let v∗ ∈ V be such that fB(v)
fG(v)

≥ 1 if

v > v∗ and fB(v)
fG(v)

< 1 if v ≤ v∗. The existence of v∗ is ensured by Assumption 2.

A.1 Stopped Martingale

Consider an auxiliary belief updating process {pt}∞t=0 starting from a prior p0 that is driven by

the realizations of outside options according to the true distribution fB. Then, by Bayes’ rule,

the posterior on type G upon a realization of v ∈ V at pt is

pt+1 =
ptf

G (v)

ptfG (v) + (1− pt) fB (v)
. (3)

Fix p∗∗ ∈ (0, 1) . Let the stopping time τ designate the first time such that pt ≥ p∗∗. Let M (p0)

be the probability with which τ <∞, i.e., pt reaches p∗∗ in finite time.

Lemma 1 limp0→0M (p0) = 0.

Proof. From (3) ,
pt+1

1− pt+1

=
pt

1− pt
fG (v)

fB (v)
. (4)

Hence,

EB

[
pt+1

1− pt+1

∣∣∣∣ pt] =
∑

v∈V

(
pt

1− pt
fG (v)

fB (v)

)
fB (v)

=
∑

v∈V

pt
1− pt

fG (v)

=
pt

1− pt
.
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That is, pt
1−pt is a martingale and pt∧τ

1−pt∧τ is a stopped martingale, where t ∧ τ := min {t, τ} .
By the definition of stopping time τ , (4) , and the (strict) monotone likelihood ratio property

(MLRP), pt∧τ
1−pt∧τ is bounded above by p∗∗

1−p∗∗
fG(v)
fB(v)

. Therefore, by the martingale stopping theorem

(e.g., Theorem 6.2.2, Ross (1996)),

EB

[
lim
t→∞

pt∧τ
1− pt∧τ

]
= EB

[
pt∧τ

1− pt∧τ

]
=

p0

1− p0

.

By the definition of the stopped martingale,

EB

[
lim
t→∞

pt∧τ
1− pt∧τ

]
≥M (p0)

p∗∗

1− p∗∗
.

Hence,

M (p0)
p∗∗

1− p∗∗
≤ p0

1− p0

as p0→0→ 0.

It follows that limp0→0M (p0) = 0.

A.2 Serious Demands

Here, we present some useful properties of the players’ behavior in a reputation equilibrium.

Let us begin with type G’s equilibrium strategy: type G rejects any demand strictly above

EG [v], i.e., his outside option value, while accepting any demand strictly below it.17

Lemma 2 In any reputation equilibrium, for any p ∈ (0, 1), rG (p, s) = 0 if s < EG [v] and

rG (p, s) = 1 if s > EG [v] .

Proof. When player 1 is known to be type G, i.e., when p = 1, the unique reputation

equilibrium is such that player 2 demands EG [v] and player 1 accepts a demand if and only if

it is less than or equal to EG[v]. Hence, SG (1) = EG[v]. By monotonicity of SG(p), therefore,

every reputation equilibrium is such that SG (p) ≥ EG[v] for all p ∈ [0, 1] . By always rejecting

player 2’s demands, G can guarantee EG[v] as the (discounted average) expected transfer. It

therefore follows that SG (p) = EG[v] for all p ∈ [0, 1] .

Now, suppose that player 2 demands s < EG[v] at some history. Accepting s yields an

expected transfer equal to (1 − δ)s + δEG[v] < EG[v], while rejection yields (1 − δ)EG[v] +

δEG[v] = EG[v]. Thus, G must accept s for sure. A similar argument shows that G must reject

s > EG[v] for sure.

We next derive the following property of type B’s equilibrium strategy.

17Recall that the long-run player’s cost of the outside option is normalized to 0.
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Lemma 3 Fix any δ and any reputation equilibrium. Also, fix any p, and consider any equilib-

rium demand s > EG[v] that could be offered at this history. If B’s equilibrium strategy accepts

s with a positive probability, then it accepts any s′ < s for sure.

Proof. Note that rejected demands are not observable. Let X denote B’s expected transfer

from rejecting any demand at this history. By Lemma 2, accepting s reveals that player 1 is B

and hence yields an expected transfer equal to (1− δ)s + δEB[v], which is at most X since B

weakly prefers to accept s.

Suppose that another demand s′ < s is offered on or off the equilibrium path. Since, by

monotonicity, SB(p) ≤ SB(0) = EB[v] for all p, B’s expected transfer from accepting s′ is at

most (1− δ)s′ + δEB[v] < X. Thus, B must strictly prefer to accept s′.

Our next lemma concerns the short-run player’s equilibrium demand. If player 1 is patient

enough, there are only two serious demands despite the fact that a priori player 2 has the option

to demand anything in the real line. Any other demands must be either off the equilibrium

path, or offered and rejected for sure in equilibrium.

Lemma 4 (Serious Demands) Fix any δ > c
EB [v]−EG[v]+c

, and consider any reputation equi-

librium. A serious demand at any p ∈ (0, 1) is either EG[v] or EB [v]− c.

Proof. We prove Lemma 4 by way of contradiction. Fix any p. Let s be a serious demand

at p. We consider the following cases.

Case 1: s < EG[v].

But then, by Lemma 2, G accepts s and, hence, SG(p) = (1− δ)s + EG[v] < EG[v], which

contradicts that SG(p) = EG[v] for all p.

Case 2: s > EB[v].

By Lemma 2, for s to be a serious demand, B must accept s. Since accepting s > EB[v]

reveals B, B’s subsequent expected transfer as of the next period is EB[v]. If B rejects s, his

current period expected transfer is EB[v] < s, while future transfers are bounded above by

EB[v]. Therefore, B must strictly prefer to reject s, a contradiction.

Case 3: s ∈
(
EG[v], EB[v]− c

)
.

But then, consider player 2 demanding EB[v] − c instead of s. Player 2’s expected payoff

from the deviation is p
(
EG[v]− c

)
+(1−p)

(
EB[v]− c

)
since, by Lemma 2, G rejects EB[v]−c

for sure and B’s rejection also yields EB[v] − c in expectation. Note that G also rejects s for

sure and hence B accepts s < EB[v] − c with a strictly positive probability by assumption.

Thus, the deviation is profitable, a contradiction.

Case 4: s ∈
(
EB[v]− c, EB[v]

]
and B rejects s with probability rB ∈ (0, 1).
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But then, consider player 2 demanding s−ε > EB[v]−c for some ε ∈
(
0, rB

(
s− EB[v] + c

))
.

By Lemma 2, G rejects this for sure while, by Lemma 3, B accepts this for sure. Hence, player

2’s expected payoff from this deviation is p
(
EG[v]− c

)
+ (1− p)(s− ε), while the payoff from s

is p
(
EG[v]− c

)
+ (1− p)(1− rB)s+ (1− p)rB

(
EB[v]− c

)
. Since ε < rB

(
s− EB[v] + c

)
, such

a deviation is profitable, a contradiction.

Case 5: s ∈
(
EB[v]− c, EB[v]

]
and B accepts s for sure.

We proceed in the following steps.

Step 1 : If there is another equilibrium demand s′ 6= s, then s′ = EG[v].

Proof of Step 1. Suppose not; so, s′ 6= EG[v] is offered in equilibrium. There are several

cases to consider here.

(i) s′ < EG[v] or s′ ∈
(
EG[v], EB[v]− c

)
In this case, by Lemma 3, B accepts s′ for sure. But we have already shown in Cases 1 and

3 above that this cannot be possible.

(ii) s′ ∈
(
EB[v]− c, s

)
We know from Lemmas 2 and 3 that G rejects s′ for sure, while B accepts it for sure. Thus,

player 2 strictly prefers to demand s over s′, a contradiction.

(iii) s′ > s

In this case, s′ must be accepted by B since, otherwise, player 2 obtains

p
(
EG[v]− c

)
+ (1− p)

(
EB[v]− c

)
,

which, since s > EB[v]− c, is strictly less than what he obtains from demanding s, amounting

to

p
(
EG[v]− c

)
+ (1− p)s.

But then, by Lemma 3, any s′−ε ∈ (s, s′) is accepted for sure by B and we can invoke arguments

similar to those for Case 4 above to show the existence of a profitable deviation for player 2, a

contradiction.

Step 2 : Rejection reveals G.

Proof of Step 2. This follows immediately from Step 1 and Lemmas 2 and 3.

Now, by Step 2, the expected transfer from rejection equals

(1− δ)EB[v] + δEG[v], (5)

while that from accepting s, since this reveals B, is

(1− δ)s+ δEB[v]. (6)

But since s > EB[v]−c and δ > c
EB [v]−EG[v]+c

, (6) is strictly larger than (5) and, hence, B could

profitably deviate by rejecting s. This is a contradiction.
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B Proof of Theorem 1: Equilibrium Properties

Before presenting our contraction mapping arguments for existence, we first establish properties

(a)-(d) of a reputation equilibrium via a series of lemmas.

B.1 Part (a): p > p∗∗

Lemma 5 Fix any δ, and consider any reputation equilibrium. For any p, player 2’s expected

payoff is at least EG[v].

Proof. Suppose not; so, for some p, player 2’s expected payoff is less than EG[v] − ε for

some ε > 0. Now, consider player 2 demanding EG[v]− ε
2
. By Lemma 2, G accepts this for sure

and B’s rejection yields EB[v] − c > EG[v] by Assumption 3. Thus, player 2’s corresponding

expected payoff is at least EG[v]− ε
2
. This is a contradiction.

Let S = EB[v]− (1− δ)c, and define δ̄ implicitly such that

S = (1− δ̄)EB[v] + δ̄fB(v)EG[v] + δ̄(1− fB(v))S, (7)

where v is the smallest element in V . Given Assumption 3, it is straightforward to see that

such δ̄ < 1 exists. Also, note that if δ = c
EB [v]−EG[v]+c

we have

S = (1− δ)EB[v] + δEG[v]. (8)

Comparing (8) with (7), we see that δ̄ > c
EB [v]−EG[v]+c

.

Throughout the analysis below, assume that δ > δ̄, and consider any reputation equilibrium.

Since δ > δ̄, Lemma 4 holds.

Lemma 6 For any p ∈ (p∗∗, 1), where p∗∗ = EB [v]−EG[v]−c
EB [v]−EG[v]

, EG[v] is demanded and accepted for

sure by both types and, hence, SG(p) = SB(p) = EG[v].

Proof. Fix any p > p∗∗. Let us proceed in the following steps.

Step 1 : EG[v] is the unique equilibrium demand.

Proof of Step 1. Suppose otherwise; so, there exists another demand s 6= EG[v] offered in

equilibrium. There are two cases to consider.

Case 1: s < EG[v].

But then, by Lemma 2, G accepts s < EG[v] and, hence, SG(p) < EG[v], which contradicts

that SG(p) = EG[v] for all p.

Case 2: s > EG[v].
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In this case, by Lemma 2, G rejects s for sure and, by Lemma 4, s can be accepted by B

only if s = EB[v]− c. Note that player 2’s expected payoff from rejection conditional on player

1 being B is also EB[v]− c. Thus, by demanding s, player 2’s expected payoff is

p
(
EG[v]− c

)
+ (1− p)

(
EB[v]− c

)
,

which, since p > p∗∗, is strictly less than EG[v]. This contradicts Lemma 5.

Step 2 : Acceptance of EG[v] will not reduce the posterior.

Proof of Step 2 : Let rG and rB denote the equilibrium rejection probability by G and B,

respectively. We need to establish that rB ≥ rG and rG < 1.

First, suppose that rB < rG. Player 2’s expected payoff then is

p
[
rG
(
EG[v]− c

)
+ (1− rG)EG[v]

]
+ (1− p)

[
rB
(
EB[v]− c

)
+ (1− rB)EG[v]

]
< p

[
rB
(
EG[v]− c

)
+ (1− rB)EG[v]

]
+ (1− p)

[
rB
(
EB[v]− c

)
+ (1− rB)EG[v]

]
= prB

(
EG[v]− c

)
+ (1− p)rB

(
EB[v]− c

)
+ (1− rB)EG [v]

= prB (−c) + (1− p)rB
(
EB[v]− EG [v]− c

)
+ EG [v]

≤ p∗∗rB (−c) + (1− p∗∗)rB
(
EB[v]− EG [v]− c

)
+ EG [v] (because p > p∗∗)

=
EB[v]− EG [v]− c
EB[v]− EG [v]

rB (−c) +
c

EB[v]− EG [v]
rB
(
EB[v]− EG [v]− c

)
+ EG [v]

= EG [v] .

But this contradicts Lemma 5.

Next, suppose that rG = 1; so, from above, rB = 1. But then, since p > p∗∗, player 2’s

expected payoff is strictly less than EG[v]. This contradicts Lemma 5.

Step 3 : EG[v] is accepted for sure by both types.

Proof of Step 3. It follows from Steps 1 and 2 that, for any p > p∗∗, SB(p) ≤ EG[v];

otherwise, B can simply accept the equilibrium demand at every p > p∗∗. Since rejecting EG[v]

yields at best (1− δ)EB[v] + δEG[v] > EG[v], B must accept EG[v] for sure.

Finally, G must also accept EG[v] for sure. Otherwise, since B accepts this demand for

sure, player 2’s expected payoff is strictly less than EG[v]. This contradicts Lemma 5.

B.2 Payoffs and Strategies at p < p∗∗

Lemma 7 For any p ∈ (0, p∗∗], SB(p) ≤ S.

Proof. Suppose not; so, for some p ∈ (0, p∗∗], SB(p) > S. There are two cases to consider.

Case 1: There is no serious demand.
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Note that rejected demands are not observable. Let X be B’s expected transfer from

rejection. By assumption, there exists some ε > 0 such that X > S + ε. Since every demand

is rejected, player 2’s expected payoff is

p
(
EG[v]− c

)
+ (1− p)

(
EB[v]− c

)
. (9)

Next, consider player 2 demanding EB[v]− c+ ε. G rejects this for sure and, by accepting,

B’s expected transfer is at most (1 − δ)
(
EB[v]− c+ ε

)
+ δEB[v], but this is strictly smaller

than X and hence B would accept it for sure. Thus, player 2’s expected payoff from demanding

EB[v]− c+ ε is p
(
EG[v]− c

)
+ (1− p)

(
EB[v]− c+ ε

)
, which is strictly larger than (9). This

is a contradiction.

Case 2: There is a serious demand.

By Lemma 4, the serious demand is either EG[v] or EB[v]− c. Thus, B’s expected transfer

from accepting a demand is at most (1− δ)
(
EB[v]− c

)
+ δEB[v] = S. Since rejected demands

are not observable, it then follows that SB(p) ≤ S.

Lemma 8 For any p ∈ (0, p∗∗), one of the following holds:

(i) SB(p) ≤ S, and there are only losing demands.

(ii) SB(p) = S, and EB[v] − c is the only serious demand, which B is indifferent between

accepting and rejecting. Furthermore, rejection by B must occur with positive probability and it

strictly increases reputation.

Proof. Fix any p ∈ (0, p∗∗). There are several cases to consider.

Case 1: EG[v] is the only demand.

Let rG and rB denote the equilibrium rejection probability by G and B, respectively. Player

2’s expected payoff is

p
[
rG
(
EG[v]− c

)
+ (1− rG)EG[v]

]
+ (1− p)

[
rB
(
EB[v]− c

)
+ (1− rB)EG[v]

]
. (10)

Also, if player 2 offers a demand larger than EB [v]
1−δ , it must be rejected for sure and, hence, he

can guarantee

p
(
EG[v]− c

)
+ (1− p)

(
EB[v]− c

)
. (11)

Note that, since p < p∗∗, (11) is strictly larger than EG[v].

We now go through each of the following possible sub-cases:

(1.1) rB ≤ rG < 1. Then, since EB[v] − c > EG[v] by Assumption 3, (10) is less than or

equal to

p
[
rG
(
EG[v]− c

)
+ (1− rG)EG[v]

]
+ (1− p)

[
rG
(
EB[v]− c

)
+ (1− rG)EG[v]

]
= rG

[
p
(
EG[v]− c

)
+ (1− p)

(
EB[v]− c

)]
+
(
1− rG

)
EG[v],
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which is less than (11) since rG < 1 and p < p∗∗. This implies that player 2 would not demand

EG[v], a contradiction.

(1.2) rB < rG = 1. Then, (10) becomes

p
(
EG[v]− c

)
+ (1− p)

[
rB
(
EB[v]− c

)
+ (1− rB)EG[v]

]
,

which is less than (11) since rB < 1. Thus, player 2 would not demand EG[v], a contradiction.

(1.3) rB > rG ≥ 0. In this case, SB(p) is given by rejection and, since B’s future transfers

are bounded below by EG[v], we have

SB(p) ≥ (1− δ)EB[v] + δEG[v] > EG[v]. (12)

Also, since rB > rG, accepting EG[v] must improve reputation and, hence, monotonicity implies

that SB(p) ≤ (1− δ)EG[v] + δSB(p), or SB(p) ≤ EG[v]. This contradicts (12).

(1.4) rB = rG = 1. Then, given Lemma 7, part (i) of the claim holds.

Case 2:
{
EG[v], s

}
for some s 6= EG[v] is in the support of player 2’s equilibrium strategy.

In this case, clearly, it must be that s > EG[v] and hence, by Lemma 2, G rejects it for sure.

We proceed by considering each possible sub-case:

(2.1) B accepts s with positive probability. Then, by Lemma 4, s = EB[v]− c and, hence,

by Lemma 3, B accepts EG[v] for sure. Player 2’s expected payoff from demanding EG[v] is,

therefore, at most EG[v], which is less than (11) since p < p∗∗. This implies that EG[v] cannot

be demanded, a contradiction.

(2.2) B rejects s for sure. In this case, we can apply the same arguments as for Case 1 above

to consider each possible response to EG[v].

Case 3: EG[v] is not demanded.

If there is no serious demand, by Lemma 7, (i) holds. It then remains to show that, otherwise,

part (ii) of the claim holds. In this case, by Lemma 4, EB[v] − c is the only serious demand

and, by Lemma 2, only B accepts it. Since accepting this demand reveals B, the corresponding

expected transfer amounts to S. Let X denote B’s expected transfer from rejection. Clearly,

X ≥ S. We first show that SB(p) = X = S.

Suppose not; so, there exists some ε > 0 such that X > S + ε. Then, consider player

2 demanding EB[v] − c + ε. By accepting this demand, B’s expected transfer is at most

(1 − δ)(EB[v] − c + ε) + δEB[v] = S + (1− δ) ε < X and, hence, B must accept it for sure.

This implies that there exists a profitable deviation for player 2 from demanding EB[v] − c, a

contradiction.

Next, we show that rejection by B must occur in equilibrium. Otherwise, by Lemma 2,

rejection reveals G and, hence, yields the expected transfer (1− δ)EB[v] + δEG[v] < S, where

the inequality holds since δ > c
EB [v]−EG[v]+c

. This contradicts that SB(p) = S.
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Finally, since G rejects all equilibrium demands and B accepts EB[v]− c, rejection strictly

increases reputation.

B.3 Parts (b) and (c): p ∈ (p∗, p∗∗) and p ∈ (0, p∗)

Lemma 9 There exists some p∗ ∈ (0, p∗∗) such that SB(p) = S for all p ∈ (0, p∗) and SB(p) <

S for all p > p∗.

Proof. Suppose not. Then, by Lemma 8 and monotonicity, there are two cases to consider.

Case 1: SB(p) = S for all p ∈ (0, p∗∗).

Consider p = p∗∗ − ε for some small ε > 0. By Lemma 8, rejection weakly improves

reputation and, therefore, for sufficiently small ε, the posterior after the smallest realization of

outside option, v, must be above p∗∗. Thus, by Lemmas 6 and 7, we have

SB(p) ≤ (1− δ)EB[v] + δfB(v)EG[v] + δ(1− fB(v))S. (13)

But since δ > δ̄, the right-hand side of (13) is strictly less than S, a contradiction.

Case 2: SB(p) < S for all p ∈ (0, p∗∗).

By Lemma 8, in this case, there are only losing demands at every p ∈ (0, p∗∗). Then,

reputation is updated purely by the realizations of random variable v; i.e., for any pt ∈ (0, p∗∗),

the posterior pt+1 after v is given by Bayes’ formula (3) . Consider a stochastic process {pt}∞t=0

defined by the prior p0 ∈ (0, p∗∗) and Bayes’ formula (3). Let M (p0) be the probability with

which pt first reaches p∗∗ in finite time. It follows from Lemma 1 in Appendix A.1 above that

limp0→0M (p0) = 0.

Next, since belief is updated purely by the realizations of random variable v from any

p ∈ (0, p∗∗), the (discounted average) expected payment SB (p0) is obtained by a sequence of

constant flow transfers with an expectation of EB[v] until the posterior reaches or exceeds p∗∗.

However, we have just shown that limp0→0M (p0) = 0. Then, limp0→0 S
B (p0) = EB[v] > S, a

contradiction.

Parts (b) and (c) of Theorem 1 follow from combining Lemma 9 with Lemma 8. In addition,

we obtain the following.

Lemma 10 Fix p∗ as defined in Lemma 9. There exists p̂ ≤ p∗ such that part (ii) of Lemma 8

holds for any p ∈ (0, p̂): EB[v] − c is the only serious demand, which B is indifferent between

accepting and rejecting, and rejection by B must occur with a positive probability and it strictly

increases reputation.
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Proof. Given an equilibrium value function SB (p) , observe that p∗ := sup
{
p : SB (p) = S

}
.

Define p̂ implicitly such that

p∗ =
p̂fG (v)

p̂fG (v) + (1− p̂) fB (v)
,

i.e., p∗ is the updated posterior from p̂ if the realized signal is v.

Now, suppose the contrary of the claim; so, for all p ∈ (0, p∗), part (i) of Lemma 8 holds.

Fix any p ∈ (0, p̂). By the definitions of p∗ and p̂, and since only losing demands are made, the

posterior at the next period is bounded above by p∗. Thus,

SB(p) = (1− δ)EB[v] + δS > S.

But this contradicts that SB(p) = S.

B.4 Part (d): p∗ and p∗∗

Lemma 11 At p∗, rejection occurs for sure.

Proof. Suppose not; then, by part (ii) of Lemma 8, the serious demand must be EB[v]− c
and acceptance of this demand leads to the continuation payment equal to S. Also, rejection

strictly increases reputation, say, to p′. Putting together these facts, we obtain

SB(p∗) = S = (1− δ)EB [v] + δEB [Sα (pt+1) |pt = p′] = SB(p′) < S,

where the last inequality follows from the definition of p∗ and monotonicity of SB(p). This is

a contradiction

Lemma 12 At p∗∗, we have the following:

(i) EG[v] is the only serious demand.

(ii) If EG[v] is offered, it must be accepted for sure by both types.

Proof. (i) Suppose not; so, there is another serious demand, s. By Lemma 4, s = EB[v]−c.
Then, B accepts EG[v] for sure by Lemma 3. We also know that G rejects s for sure by Lemma

2. Therefore, rejection must strictly improve reputation. Thus, by Lemmas 6 and 7, B’s

expected transfer from rejection here is at most

(1− δ)EB[v] + δF (v∗)EG[v] + δ(1− F (v∗))S < S,

where the inequality follows from δ > δ̄. This contradicts that s is accepted in equilibrium.

(ii) Suppose not; consider the following two cases.
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Case 1: G accepts EG[v] for sure.

Then, B must reject EG[v] and, hence, given that this is the only serious demand, acceptance

must strictly increase reputation. Thus, by Lemma 6, the corresponding expected transfer for

B is (1 − δ)EG[v] + δEG[v] = EG[v], which is clearly less than that from rejection. This is a

contradiction.

Case 2: G rejects EG[v] with probability rG > 0.

Let rB denote B’s corresponding rejection probability. We know that p∗∗(EG[v]− c) + (1−
p∗∗)(EB[v] − c) = EG[v]. This implies that, if rB < rG, player 2’s expected payoff is less than

EG[v], which contradicts Lemma 5. Thus, rB ≥ rG and, hence, accepting EG[v] weakly improves

reputation and the corresponding payment to type B is at most (1 − δ)EG[v] + δSB(p∗∗) <

SB(p∗∗), where SB(p∗∗) must also be the payment from rejection at p∗∗ (which happens with

a positive probability) because EG[v] is the only serious demand and rejected offers are not

observable. This contradicts that rB ≥ rG > 0.

C Proof of Theorem 1: Construction

C.1 From Equilibrium to Contraction Mapping

Consider the reputation process {pt} governed by (3) in Appendix A above. Let FB(v) =∑
v≤v′ f

B(v′); as defined before, v∗ ∈ V is such that fB(v)
fG(v)

≥ 1 if and only if v > v∗.

Fix p∗∗ = EB [v]−EG[v]−c
EB [v]−EG[v]

. Let S be the set of bounded non-increasing real-valued functions

S : [0, 1] →
[
EG [v] , EB [v]

]
. We know that S is a Banach space under the supremum norm.

For each α ∈ [0, 1] , define an operator Tα on S as follows:

[Tα (S)] (pt) =



EB[v] if pt = 0

min
{
S, (1− δ)EB[v] + δEB [S (pt+1) |pt]

}
if pt ∈ (0, p∗∗)

αEG[v] + (1− α)

[
(1− δ)EB[v] + δFB (v∗)EG[v]

+δ
(
1− FB (v∗)

)
EB [S (pt+1) |pt, v > v∗]

]
if pt = p∗∗

S if pt > p∗∗.

The definition of Tα is motivated by the equilibrium properties derived in Appendix B above.

We explain the above definition of the operator in more detail below:

• If pt > p∗∗, by Lemma 6 above, the value function is tied down by the payoff boundary,

S = EG [v].
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• If pt = p∗∗, player 2 must randomize. Upon a losing demand, belief updating depends on

the realization of v and, hence, the corresponding continuation payment is given by

(1− δ)EB[v] + δFB (v∗)EG[v] + δ
(
1− FB (v∗)

)
EB [S (pt+1) |pt, v > v∗] . (14)

Accepting the serious demand EG[v] leads to an immediate payment EG [v] and the

posterior pt+1 is unchanged at p∗∗. The latter implies that, at the next period, player 1

again entertains random demands between EG[v] and losing demands, and therefore, only

EG [v] and (14) appear in computing the continuation payment. This in turn implies that

the equilibrium value at p∗∗ must itself be a convex combination of EG [v] and (14) . We

denote by α ∈ [0, 1] the coefficient on the former. Thus, α is one-to-one to the probability

with which player 2 demands EG[v] at p∗∗. Note that if δ > c
FB(v∗)(EB [v]−EG[v])+c

, (14)

is bounded above by S = EB [v] − (1− δ) c. Therefore [Tα(S)](p∗∗) is just the following

expression appearing in the corresponding definition in Section 3.1 above:

αEG[v] + (1− α)
[
(1− δ)EB[v] + δEB [S (pt+1) |pt]

]
.

• If pt ∈ (0, p∗∗), by Lemma 8 above, either the first payoff boundary S binds, or the equi-

librium features rejection (which happens when pt ∈ (p∗, p∗∗)) and hence the equilibrium

value is given by (1− δ)EB[v] + δEB [S (pt+1) |pt]. Therefore, by monotonicity of the

value function, for pt ∈ (0, p∗∗), the value must be

min
{
S, (1− δ)EB[v] + δEB [S (pt+1) |pt]

}
.

• Note that Tα does not involve p∗, which is unknown and to be endogenized below. The

other threshold, p∗∗, is the unique point that makes player 2 indifferent and therefore we

take it as given in the definition of contraction mapping.

We establish the following properties of Tα for any α ∈ [0, 1].

Lemma 13 For each α ∈ [0, 1] , Tα is a contraction mapping with a Lipschitz constant δ < 1.

Hence, Tα admits a unique fixed point Sα. Furthermore,

(a) Sα is non-increasing in α, i.e., Sα (p) ≤ Sβ (p) for all p whenever α ≥ β; and

(b) Sα is continuous in α in supremum norm.
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Proof. We first check Blackwell’s two sufficient conditions for contraction mapping.

(i) Monotonicity: Suppose S ≤ S ′. Then,

[Tα (S)] (pt) =



EB[v], if pt = 0

min
{
S, (1− δ)EB[v] + δEB [S (pt+1) |pt]

}
if pt ∈ (0, p∗∗)

αEG[v] + (1− α)

[
(1− δ)EB[v] + δFB (v∗)EG[v]

+δ
(
1− FB (v∗)

)
EB [S (pt+1) |pt, v > v∗]

]
if pt = p∗∗

EG[v] if pt > p∗∗

≤



EB[v], if pt = 0

min
{
S, (1− δ)EB[v] + δEB [S ′ (pt+1) |pt]

}
if pt ∈ (0, p∗∗)

αEG[v] + (1− α)

[
(1− δ)EB[v] + δFB (v∗)EG[v]

+δ
(
1− FB (v∗)

)
EB [S ′ (pt+1) |pt, v > v∗]

]
if pt = p∗∗

EG[v] if pt > p∗∗

= [Tα (S ′)] (pt) .

(ii) Discounting:

[Tα (S + a)] (pt) =



EB[v] if pt = 0

min
{
S, (1− δ)EB[v] + δEB [S (pt+1) + a|pt]

}
if pt ∈ (0, p∗∗)

αEG[v] + (1− α)

 (1− δ)EB[v] + δFB (v∗)EG[v]+

δ
(
1− FB (v∗)

)
·

EB [S (pt+1) + a|pt, v > v∗]

 if pt = p∗∗

EG[v] if pt > p∗∗

≤ δa+



EB[v] if pt = 0

min
{
S, (1− δ)EB[v] + δEB [S (pt+1) |pt]

}
if pt ∈ (0, p∗∗)

αEG[v] + (1− α)

 (1− δ)EB[v] + δFB (v∗)EG[v]+

δ
(
1− FB (v∗)

)
·

EB [S (pt+1) |pt, v > v∗]

 if pt = p∗∗

EG[v] if pt > p∗∗

= δa+ [Tα (S)] (pt) .
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By the definition of Tα, its unique fixed point Sα satisfies:

Sα (pt) =



EB[v] if pt = 0

min
{
S, (1− δ)EB[v] + δEB [Sα (pt+1) |pt]

}
if pt ∈ (0, p∗∗)

αEG[v] + (1− α)

[
(1− δ)EB[v] + δFB (v∗)EG[v]

+δ
(
1− FB (v∗)

)
EB [Sα (pt+1) |pt, v > v∗]

]
if pt = p∗∗

S if pt > p∗∗.

(15)

Next, we derive the two stated properties of the unique fixed point Sα:

(a) Monotonicity of Sα in α.

For any S ∈ S, Sα = limn→∞ (Tα)n (S) . Note that by definition, if α ≥ β, then

Tα (S) ≤ Tβ (S) .

Hence, by monotonicity of Tα (in S; the first of Blackwell’s conditions above), and by the above

inequality, we have

Tα (Tα (S)) ≤ Tα (Tβ (S)) ≤ Tβ (Tβ (S)) .

Iterating the same argument, we obtain, for any n, (Tα)n (S) ≤ (Tβ)n (S). Hence, Sα ≤ Sβ.

(b) Continuity of Sα in α.

Consider a sequence αn → α. We want to show that Sαn → Sα in sup-norm ‖·‖. We can

write

Tαn (S) (pt) =



EB[v] if pt = 0

min
{
S, (1− δ)EB[v] + δEB [Sα (pt+1) |pt]

}
if pt ∈ (0, p∗∗)

αnE
G[v] + (1− αn)

[
(1− δ)EB[v] + δFB (v∗)EG[v]

+δ
(
1− FB (v∗)

)
EB [Sα (pt+1) |pt, v > v∗]

]
if pt = p∗∗

EG[v] if pt > p∗∗.

Note that this differs from (15) only at p∗∗.

Then, by definition,

‖Tαn (S)− Tα (S)‖
= |αn − α| ·

∣∣(1− δ)EB[v] + δFB (v∗)EG[v] + δ
(
1− FB (v∗)

)
EB
v∗ [S (pt+1) |pt]− EG[v]

∣∣
≤ |αn − α|

(
EB[v] + EG[v]

)
.

Therefore, for any ε > 0, there exists N such that, if n > N, ‖Tαn (S)− Tα (S)‖ < ε for any

S ∈ S.
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Since δ is a Lipschitz constant of the contraction mapping Tα, we have, for n > N ,∥∥(Tαn)2 (S)− (Tα)2 (S)
∥∥ =

∥∥(Tαn)2 (S)− Tα (Tαn (S)) + Tα (Tαn (S))− (Tα)2 (S)
∥∥

≤
∥∥(Tαn)2 (S)− Tα (Tαn (S))

∥∥+
∥∥Tα (Tαn (S))− (Tα)2 (S)

∥∥
≤ ε+ δ ‖Tαn (S)− Tα (S)‖
≤ ε+ δε

= (1 + δ) ε.

Thus, if n > N ,
∥∥(Tαn)2 (S)− (Tα)2 (S)

∥∥ < (1 + δ) ε for any S ∈ S.

Now, fix n > N , and assume for the purpose of induction that, for any integer m > 0,

‖(Tαn)m (S)− (Tα)m (S)‖ <
(
1 + δ + · · ·+ δm−1

)
ε for any S ∈ S.

Then, we obtain∥∥(Tαn)m+1 (S)− (Tα)m+1 (S)
∥∥

=
∥∥(Tαn)m+1 (S)− Tα (Tαn)m (S) + Tα (Tαn)m (S)− (Tα)m+1 (S)

∥∥
≤ ‖Tαn (Tαn)m (S)− Tα (Tαn)m (S)‖+ ‖Tα (Tαn)m (S)− Tα (Tα)m (S)‖
≤ ε+ δ ‖(Tαn)m (S)− (Tα)m (S)‖
≤ ε+ εδ

(
1 + δ + · · ·+ δm−1

)
= (1 + δ + · · ·+ δm) ε.

That is, for any m, and for any S ∈ S,

‖(Tαn)m (S)− (Tα)m (S)‖ < ε

1− δ
.

Thus, when n > N , ‖Sαn − Sα‖ < ε
1−δ as m→∞. This proves the continuity of Sα in α.

C.2 From Contraction Mapping to Equilibrium

The family of fixed points {Sα : α ∈ [0, 1]} obtained in the previous section offers poten-

tial candidates for the equilibrium payoffs SB(p). To go from the contraction mapping to an

equilibrium, we need to identify the exact randomization at p∗∗. We proceed as follows.

C.2.1 Defining p∗ (α)

For each α ∈ [0, 1] , we define

p∗ (α) := sup
{
p : Sα (p) = S

}
,
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where Sα (p) is the fixed point of Tα. That is, p∗ (α) is the supremum of p such that the upper

payment boundary is binding.

The next result guarantees that p∗ (α) is well-defined.

Lemma 14 For any α ∈ [0, 1] , there exists p ∈ (0, p∗∗) such that Sα (p) = S.

Proof. Suppose to the contrary that there does not exist such a p. Then by the definition

of Sα in (15) above, Sα (p) < S for all p > 0. Therefore, from the definition of the fixed point

Sα, the value of Sα (p0) for 0 < p0 < p∗∗ is obtained by aggregating a sequence of constant flow

payoff EB [v] until the posterior belief reaches or exceeds p∗∗. However, from the martingale

convergence property established in Lemma 1, the probability of the latter event converges to

0 as p0 → 0. Then, limp0→0 Sα (p0) = EB [v] > S, a contradiction.

Then, by the definition of the fixed point and Lemma 14, we can immediately obtain that,

with sufficiently large δ (as required in Theorem 1), p∗ (α) ∈ (0, p∗∗) . By monotonicity, Sα (p) =

S for any p ∈ (0, p∗ (α)) . However, we do not know whether Sα (p∗ (α)) = S; as we see below,

this becomes relevant for our arguments.

C.2.2 Candidate Equilibrium Σα

For each α ∈ [0, 1] , let p∗ = p∗(α) = sup
{
p : Sα (p) = S

}
. Also, let p∗∗ = EB [v]−EG[v]−c

EB [v]−EG[v]
. Then,

consider the strategy profile Σα and associated belief system as follows:

1. Player 2’s strategy:

(a) At p = 0, it demands EB[v] for sure.

(b) At any p ∈ (0, p∗∗), it demands EB[v]− c for sure.

(c) At p = p∗∗, it demands EG[v] with probability x = α
1−δ+αδ ∈ [0, 1] and EB[v] − c

with probability 1− x.

(d) At any p ∈ (p∗∗, 1], it demands EG[v] for sure.

2. Type G’s strategy: for all p, it accepts s if and only if s ≤ EG[v].18

3. Type B’s strategy:

(a) At p = 0, it accepts s if and only if s ≤ EB[v].

18We could construct another equilibrium in which this type accepts EG[v] only at p ≥ p∗∗.
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(b) At any p ∈ (0, p∗],

- it rejects s for sure if s > EB[v]− c and accepts s for sure if s < EB[v]− c;
- it rejects EB[v]− c with probability r(p) = p

p∗
1−p∗
1−p ∈ [0, 1] .

(c) At any p ∈ (p∗, p∗∗), it accepts s if and only if s ≤ max
{
ξ(p), EG[v]

}
, where ξ(p) =

Sα(p)−δEB [v]
1−δ .

(d) At p = p∗∗, it accepts s if and only if s ≤ max
{
ξ(p∗∗), EG[v]

}
, where ξ(p∗∗) =

X−δEB [v]
1−δ and

X = (1− δ)EB[v] + δFB (v∗)EG[v] + δ
(
1− FB (v∗)

)
EB [Sα (pt+1) |pt = p∗∗, v > v∗] .

(e) At any p ∈ (p∗∗, 1], it accepts s if and only if s ≤ EG[v].

4. Beliefs:

(a) The belief is updated by Bayes’ rule whenever possible.

(b) At any p ∈ (0, 1), the posterior belief assigns probability 1 to type B after acceptance

of a demand strictly higher than EG[v]; there is no change of belief after acceptance

of a demand lower than or equal to EG[v].

(c) At any p ∈ (p∗∗, 1), the posterior belief assigns probability 1 to type G after rejection

(which is off-path).

C.2.3 Verification

We next show that Σα is an equilibrium for some α in two lemmas. By the definition of the

fixed point, we have Sα(p∗(α)) = min
{
S, L(α)

}
, where

L (α) := (1− δ)EB[v] + δEB [Sα (pt+1) |pt = p∗ (α)] .

Lemma 15 The proposed strategy profile Σα and the associated beliefs form a reputation equi-

librium if and only if Sα (p∗ (α)) = L(α) = S.

Proof. The “only if” part: Suppose that Σα is a reputation equilibrium. Fix any p ∈
(0, p∗(α)). At this belief, Σα requires that type B be indifferent between accepting and rejecting

EB[v]− c; furthermore, right after rejection but before the outside option, the posterior jumps

exactly to p∗(α). This implies that

SB(p) = S = (1− δ)EB [v] + δEB [Sα (pt+1) |pt = p∗ (α)] . (16)
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Moreover, Σα says that, at p∗(α), rejection must occur for sure. This means that

Sα (p∗ (α)) = (1− δ)EB [v] + δEB [Sα (pt+1) |pt = p∗ (α)] . (17)

Putting (16) and (17) together, we obtain that Sα (p∗ (α)) = L(α) = S.

The “if” part: Suppose that Sα (p∗ (α)) = L(α) = S. We claim that the fixed point Sα gives

the value function associated with Σα. This follows from the definition; only the value at p∗∗

needs some explanation.

At p∗∗, the definition of Sα implies that

Sα (p∗∗) = αEG[v] + (1− α)

[
(1− δ)EB[v] + δFB (v∗)EG[v]

+δ
(
1− FB (v∗)

)
EB [Sα (pt+1) |pt = p∗∗, v > v∗]

]
.

Now, by the definition of Σα, player 2 demands EG[v] with probability x = α
1−δ+αδ . Then, we

can re-arrange the above expression to obtain

Sα (p∗∗) = x (1− δ)EG [v]+xδSα (p∗∗)+(1− x)

[
(1− δ)EB[v] + δFB (v∗)EG[v]

+δ
(
1− FB (v∗)

)
EB [Sα (pt+1) |pt = p∗∗, v > v∗]

]
.

This is precisely the Bellman equation for type B’s expected payment at p∗∗ under Σα.

It remains to verify that Σα forms a reputation equilibrium when Sα (p∗ (α)) = S. First,

consider player 2’s strategy. Recall that, at p∗∗, we have

EG[v] = p∗∗EG[v] + (1− p∗∗)EB[v]− c.

Thus, at this belief, player 2 is indifferent between offering EG[v], which is accepted for sure,

and a losing demand. Also, EB[v] is the payoff that player 2 can guarantee from type B

via the outside option. It is then clear that the short-run player’s offer is optimal against

player 1’s strategies at p > p∗∗ and at p ≤ p∗ (α) < p∗∗. For p ∈ (p∗ (α) , p∗∗), note that

ξ(p) < EB[v] − c (since Sα(p) < S) and, therefore, it is optimal for player 2 to make a losing

demand as prescribed.

Second, consider type G. Fix any (on- or off-path) history at which this long-run player has

to respond to offer s. Note that he expects the transfer EG[v] from the outside option; according

to the equilibrium, the continuation payment at the next period is also equal to EG[v]. Thus,

it is optimal to accept s if and only if s ≤ EG[v].

Finally, consider type B. We know from the “if” part of the proof of Lemma 15 in the main

text that the equilibrium payoff SB(p) is indeed given by Sα(p) if Sα (p∗ (α)) = S. To show that

deviation is not possible, fix any belief p and any (on- or off-path) demand s. His strategies at

p = 0 and p = 1 are clearly best responses. Consider the following remaining cases.
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Case 1: p ∈ (0, p∗ (α)]

In this case, since rejected offers are not observable, right after type B’s rejection in the

candidate equilibrium the posterior is p∗ (α) , and hence his expected payment is

(1− δ)EB [v] + δEB [Sα (pt+1) |pt = p∗ (α)] = Sα (p∗ (α)) = S

where the first equality follows from the fact that rejection occurs with probability 1 at p∗ (α)

in the candidate equilibrium and the second inequality follows by the condition of Lemma 15.

Note that S is also the payment from accepting EB[v] − c and revealing type B. Hence, at

p ∈ (0, p∗], it is optimal for type B to accept s if and only if s ≤ EB[v]− c.

Case 2: p ∈ (p∗ (α) , p∗∗)

By definition, ξ(p) is the demand such that the continuation payment from accepting such a

demand and revealing type B is Sα (p) , where Sα corresponds to the value function computed

from the candidate equilibrium strategy of rejecting the on-path demand. If ξ(p) > EG [v] ,

accepting s ≤ ξ(p) is a best response. If ξ(p) ≤ EG [v] , then the candidate equilibrium calls type

B to accept s ≤ EG [v] , which is also type G’s strategy. Hence, the posterior will not change

after the acceptance of s ≤ EG [v] . Hence, acceptance leads to a payoff of (1− δ) s+ δSα (p) ≤
Sα (p). Hence, the candidate equilibrium’s prescription of accepting s is indeed a best response.

Case 3: p = p∗∗

Note that ξ(p∗∗) is the demand such that the continuation payment from accepting such a

demand and revealing type B is exactly X, i.e., the payment given by rejection according to

the candidate equilibrium. Hence, the same argument for Case 2 applies here.

Case 4: p ∈ (p∗∗, 1)

Clearly, it is optimal to accept s if s ≤ EG[v]. Suppose that s > EG[v]. By parts (b) and

(c) of the proposed beliefs above, accepting this offer leads to payment (1− δ)s+ δEB[v] while

the continuation payment from rejection is at most (1 − δ)EB[v] + δEG[v]. Thus, rejection is

optimal if δ > 1
2
. Recall that δ̄ > c

EB [v]−EG[v]+c
> 1

2
, where the last inequality follows from the

assumption that EB[v]− EG[v] > c.

Given Lemma 15, the construction from contraction mapping to equilibrium is concluded by

the next lemma. Recall from the definition of the fixed point that Sα(p∗(α)) = min
{
S, L(α)

}
,

where L (α) := (1− δ)EB[v] + δEB [Sα (pt+1) |pt = p∗ (α)].19 The proof turns out to be non-

trivial. Note that although Sα is continuous and monotone in α (Lemma 13), as we alter the

parameter α the entire fixed point Sα shifts, including the value of p∗(α).

Lemma 16 There exists α ∈ [0, 1] such that Sα (p∗ (α)) = L(α) = S.

19Note that L (α) may not be monotone in α even though Sα is.
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Proof. We shall prove the lemma by way of contradiction. Suppose that the lemma is

false; then, there are several cases to consider.

Case 1: For all α ∈ [0, 1] , L(α) > S.

Then, since Sα is decreasing in α (Lemma 13), we have

L(1) = (1− δ)EB[v] + δEB [S1 (pt+1) |pt = p∗ (1)] > S.

Note also that S1(p∗(1)) = min{S, L(1)} = S.

Let h = (v1, v2, . . .) denote a sequence of realized signals v and φ(p, h) the posterior updated

from p after h via Bayes’ formula (3). Then, letH be the at most countable set of finite sequences

of signals such that either φ (p∗ (1) , h) ≥ p∗∗ or φ (p∗ (1) , h) < p∗ (1) but neither of the two

inequalities will hold for any sub-history of h. Thus, by the definitions of the fixed point and

p∗(1), for any h ∈ H, S1 (φ (p∗ (1) , h)) is either EG[v] or S.20

Let Pr(·) be the probability measure over H induced by the signals. For any small η > 0,

there exists a finite subset of H, say, Ĥ, such that Pr
(
Ĥ|H

)
> 1−η. Since φ (p, h) is continuous

and monotone in p, for any finite sequence of signals h = (v1, v2, ..., vn) ∈ Ĥ, we can find εh > 0

such that the following condition holds: for any p ∈ [p∗ (1) , p∗ (1) + εh], φ (p, h) > p∗∗ or

φ (p, h) < p∗ (1) for the first time along h. Let ε = minh∈Ĥ {εh} . Hence, [p∗ (1) , p∗ (1) + ε] ⊂
[p∗ (1) , p∗ (1) + εh] for any h ∈ Ĥ. That is, the interval [p∗ (1) , p∗ (1) + ε] reaches the same

stopping regions [p∗∗, 1) or (0, p∗ (1)) at the same time along any h in Ĥ.

By the definition of p∗(1), for any p ∈ (p∗(1), p∗∗),

S1(p) = (1− δ)EB[v] + δEB [S1(pt+1)|pt = p] .

Therefore, for any p ∈ [p∗ (1) , p∗ (1) + ε] , we have

|S1(p)− L(1)| = δ
∣∣EB [S1(pt+1)|pt = p]− EB [S1(pt+1)|pt = p∗(1)]

∣∣
≤ δ Pr

(
H − Ĥ|H

)
EB[v] ≤ δηEB[v]. (18)

Since L(1) > S, for η is very close to 0, (18) implies that S1(p) > S. But this contradicts the

definition of p∗ (1) .

Case 2: For some β ∈ [0, 1] , L(β) < S.

In this case, Sβ (p∗ (β)) = min
{
S, L (β)

}
= L (β) < S. Define α∗ := inf

{
α : L (α) < S

}
.

By Lemma 13, α∗ ≤ β. If L(α∗) = S, then the claim holds for α∗; so, suppose otherwise.

20When α = 1, player 2 demands EG[v] for sure, and hence, S1 (p∗∗) = EG[v] by the definition of the fixed

point.
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Case 2.1: L (α∗) < S.

(i) α∗ = 0

In this case, the argument is almost symmetrical to that of Case 1 above. A contradiction can

be derived by showing that S0 (p∗ (0)− ε) < S for some ε > 0. Let H be the at most countable

set of finite sequences of signals such that starting from p∗ (0) , the posterior after any h ∈ H,
which we write as φ (p∗ (0) , h) , is such that either φ (p∗ (0) , h) > p∗∗ or φ (p∗ (0) , h) < p∗ (0) ,

but neither of the two inequalities will hold for any sub-history of h. It will be made clear later

that the strict inequalities in this statement are critical, as compared to Case 1.

In terms of payoffs, for any h ∈ H, S0 (φ (p∗ (0) , h)) is either S or S. Note that when α = 0,

S0 (p∗∗) > S by definition of the fixed point. Again, let Pr be the probability measure over H

induced by the signals. For any small η > 0, there exists Ĥ, a finite subset of H, such that

Pr
(
Ĥ|H

)
> 1−η. For any finite sequence of signals h = (v1, v2, ..., vn) ∈ Ĥ, we can find εh > 0

such that the following condition holds: φ (p∗ (0)− εh, h) > p∗∗ or φ (p∗ (0)− εh, h) < p∗ (0)

for the first time along h. The existence of εh is guaranteed by the continuity of φ (p, h) in p

from Bayes’ formula. The monotonicity of φ (p, h) in p moreover implies that the entire interval

[p∗ (0)− εh, p∗ (0)] reaches the same stopping regions (p∗∗, 1) or (0, p∗ (0)) at the same time

along history h.

Let ε = minh∈Ĥ {εh} . Hence [p∗ (0)− ε, p∗ (0)] ⊂ [p∗ (0)− εh, p∗ (0)] for any h ∈ Ĥ. That

is, the interval [p∗ (0)− ε, p∗ (0)] reaches the same stopping regions (p∗∗, 1) or (0, p∗ (0)) at the

same time along any h in Ĥ. Therefore, for any p ∈ [p∗ (0)− ε, p∗ (0)] , we have∣∣(1− δ)EB [v] + δEB [S0 (φ (p, v))]− (1− δ)EB [v] + δEB [S0 (φ (p∗ (0) , v))]
∣∣

= δ
∣∣EB [S0 (φ (p, v))]− EB [S0 (φ (p∗ (0) , v))]

∣∣
≤ δ Pr

(
H − Ĥ|H

)
EB [v] ≤ δηEB [v] . (19)

If L (0) = (1− δ)EB [v] + δEB [S0 (φ (p∗ (0) , v))] < S, then when η is very close to 0, (19)

implies that

(1− δ)EB [v] + δEB [S0 (φ (p, v))] < S

for any p ∈ [p∗ (0)− ε, p∗ (0)] . But then by the definition of the fixed point, S0 (p) = S for any

p < p∗ (0) . This is a contradiction.

(ii) α∗ > 0

Then, by the definition of the fixed point, Sα∗ (p∗ (α∗)) = min
{
S, L (α∗)

}
< S. Consider

α ∈ (α∗ − ε, α∗) for some small ε > 0. Let us proceed in the following steps as illustrated by

Figure 5.

• Sα∗ (p∗ (α∗)) ≤ Sα (p∗ (α∗)) < S. This follows from the continuity and monotonicity of Sα

in α (Lemma 13).
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Figure 5: L (α∗) < S and α∗ > 0
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• Sα (p∗ (α)) = min
{
S, L (α)

}
= S. This follows from the fact that L (α) ≥ S by the

definition of α∗.

• p∗(α) < p∗(α∗). This follows from the two steps above because Sα(·) is a decreasing

function.

• For any p ∈ (p∗ (α) , p∗ (α∗)), Sα (p) < S = Sα∗ (p). This follows from the previous step

and the definition of p∗(·).

But since α < α∗, the last step above contradicts that Sα is decreasing in α (Lemma 13).

Case 2.2: L (α∗) > S.

Then, by the definition of fixed point, Sα∗ (p∗ (α∗)) = min
{
S, L (α∗)

}
= S. Note that β > α∗

such that L(β) < S. Then, by the definition of α∗, there exists a sequence {εn} with εn ↓ 0

such that L (α∗ + εn) < S and β > α∗ + εn. Let us proceed in the steps below as illustrated by

Figure 6.

• p∗ (α∗ + εn) ≤ p∗ (α∗) . This follows from the fact that Sα is decreasing in α.

• S > L (α∗ + εn) = Sα∗+εn (p∗ (α∗ + εn)) ≥ Sα∗+εn (p∗ (α∗)). This follows from the previous

step because Sα(·) is a decreasing function.

Now, by the continuity of Sα in α (Lemma 13), and since εn → 0, ‖Sα∗+εn − Sα∗‖ → 0.

Note that

Sα∗+εn (p∗ (α∗)) = (1− δ)EB[v] + δEB [Sα∗+εn (pt+1) |pt = p∗ (α∗)] .
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Figure 6: L (α∗) > S
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Thus, the previous steps imply that

S > (1− δ)EB[v] + δEB [Sα∗+εn (pt+1) |pt = p∗ (α∗)]

→ (1− δ)EB[v] + δEB [Sα∗ (pt+1) |pt = p∗ (α∗)] = L (α∗) > S.

This is a contradiction.

D Proof of Theorem 2

D.1 Part (a): Limit Uniqueness

Let us begin with an outline of the proof. Fix the equilibrium payment of type B, SB. For

each fixed discount factor δ, we define an auxiliary decreasing, divergent, sequence of payment

levels, Wn, n = 0, 1, ..., such that W0 = SB (p∗) and Wn ≤ SB (pn) for each n = 1, 2, ... ...

and Wn ≤ SB (pn) for some sequence of “sparse” belief levels, pn, n = 0, 1, ... starting from

p0 = p∗. We shall show that min
{
n : Wn ≤ EG[v]

}
→ ∞ as δ → 1. That is, for any finite n,

Wn is always above EG[v] as δ approaches 1. Since SB (pn) is above Wn, we know that for any

n, pn < p∗∗ as δ → 1. Since the sequence, pn, n = 0, 1, 2, ... is “sparse” by definition, this is

possible only when p∗ is close to 0. This intuition is illustrated in Figure 7.

D.1.1 Auxiliary Process Wn

The auxiliary sequence of payments is defined via the following first-order recursive equation:

Wn = (1− δ)EB [v] + δ(1− fB(v))EB[v] + δfB(v)Wn+1, (20)
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Figure 7: Wn and SB(p)
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where v ∈ V is the smallest (best) signal. Let W0 = SB(p∗), that is, type B’s equilibrium payoff

at the lower threshold belief p∗. It is clear that Wn is strictly decreasing and divergent.

Write p0 = p∗. Let pn be the posterior obtained from p∗ after n consecutive realizations of

v. That is,

pn+1 =
pnfG (v)

pnfG (v) + (1− pn) fB (v)
> pn.

We first obtain the following two lemmas.

Lemma 17 For any n > 0, Wn < SB(pn) whenever Sn > EG[v].

Proof. Given W0 = SB(p0), we prove the claim by induction. Suppose that Wn ≤ SB(pn)

and SB(pn) > EG[v]. By Theorem 1, the latter assumption implies that pn ∈ (p∗, p∗∗) where

only rejection occurs in equilibrium and, hence, we have

SB(pn) = (1−δ)EB [v]+δ

∑
v 6=v

fB (v)SB
(

pnfG (v)

pnfG (v) + (1− pn) fB (v)

)+δ
(
1− fB (v)

)
SB(pn+1)

(21)

Now we compare (21) with (20). By induction, Wn ≤ SB(pn). Moreover, SB(p) < EB[v] for

all p > 0. Hence, Wn+1 < SB(pn+1).

Lemma 18 limδ→1 S
B(p∗) = EB [v] (the limit exists and is equal to EB [v]).

Proof. Consider p∗−ε for some small ε > 0. We know from Lemma 10 that, in equilibrium,

rejection occurs at p∗− ε such that the belief weakly improves immediately after rejection, say,
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to p′. Thus, for small enough ε, there exists some v′ ∈ V such that, for any v < v′,

p′fG (v)

p′fG (v) + (1− p′) fB (v)
> p∗. (22)

We know that

SB(p∗ − ε) = (1− δ)EB[v] + δ
∑
v∈V

fB (v)SB
(

p′fG (v)

p′fG (v) + (1− p′) fB (v)

)
= S. (23)

We also know that SB(p) ≤ S = EB [v] − (1− δ) c for all p > 0. Thus, (22) and (23) imply

that there exists some ε′ > 0 such that, for any p ∈ (p∗, p∗+ ε′), SB(p)→ EB [v], as δ → 1. By

monotonicity of SB(·), the claim then follows.

D.1.2 Limit of p∗ via Wn

Now, suppose that it takes N (δ) consecutive best signals to hit or exceed p∗∗ from p∗ in

equilibrium. Then, Lemma 17 implies that

N(δ) ≥ N̂ (δ) = min
{
n : Wn ≤ EG [v]

}
.

By standard formula, the solution to the first-order difference equation (20) is given by Wn =
b(1−an)

1−a + anW0, where a = 1
δfB(v)

and b = −1−δfB(v)
δfB(v)

EB[v]. Thus, Wn ≤ EG[v] is equivalent to

n ≥
log

(
EG[v]− b

1−a
W0− b

1−a

)
log a

=
log
(
EB [v]−EG[v]
EB [v]−SB(p∗)

)
log
(

1
δfB(v)

) .

Note that SB(p∗) < EB [v] for any δ < 1 and by Lemma 21, limδ→1 S
B(p∗) = EB [v] . Hence

lim inf
δ→1

N̂(δ) ≥ lim inf
δ→1

log
(
EB [v]−EG[v]
EB [v]−SB(p∗)

)
log
(

1
δfB(v)

) =∞,

It then follows that lim infδ→1N(δ) =∞ and, hence, limδ→1 p
∗ exists and the limit is 0.

D.2 Part (b): Reputation Building Probability R(p)

Our idea is to use the success probability Q (p) of reaching p∗∗ before dropping to p∗ computed

from the generalized gambler’s ruin process to approximate the reputation building probability

R (p) . Observe that to compute R (p) , the overall reputation building probability, we need
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to consider the randomization at the low region (0, p∗] because even when reputation drops

below p∗, it could bounce back with positive probability. We shall show as p∗ → 0 the gap

between Q (p) and R (p) vanishes. Hence, we first need to derive some relevant properties of

the equilibrium at low beliefs, i.e., at p ∈ (0, p∗], where we know from Theorem 1 that type B

may sometimes accept an equilibrium demand and, hence, reveal himself. We first show that

the posterior belief upon a rejection at any belief p less than p∗ can be bounded above by p∗

and below by a constant that is independent of p. Using this, we then find a constant lower

bound of the total probability with which player 1 voluntarily reveals himself at any p < p∗.

D.2.1 Reputation Building via Randomization at p < p∗

For any p ∈ (0, 1) and any v ∈ V , define

φ1
v(p) =

pfG(v)

pfG(v) + (1− p) fB(v)
,

that is, φ1
v(p) is the posterior obtained from Bayesian updating upon signal v. Define recursively,

for k ≥ 1, φk+1
v (p) = φ1

v

(
φkv(p)

)
. Also, let φ−kv (p) represent the inverse of φkv (p), that is, starting

from φ−kv (p), k consecutive realizations of signal v take the posterior belief exactly to p. Note

that, by the MLRP, there exists some v∗ ∈ V such that φ1
v(p) > p if and only if v ≤ v∗.

Lemma 19 Fix any p ∈ (0, p∗], and suppose that rejection occurs at p. Let p′ be the posterior

immediately after the rejection but before the signal. Then, p′ ∈
[
φ−1
v (p∗), p∗

]
, where v = minV.

Proof. Suppose not. There are two cases to consider.

Case 1: p′ < φ−1
v (p∗).

Then, since SB(p) = S for all p ∈ (0, p∗), and by the definition of φ−1
v (p∗), we have

SB(p) = (1− δ)EB [v] + δ
∑

v∈V
fB (v)SB

(
p′fG (v)

p′fG (v) + (1− p′) fB (v)

)
= (1− δ)EB [v] + δS > S.

But this contradicts that SB(p) = S.

Case 2: p′ > p∗.

But then, since both SB(p) and SB(p′) are determined by the continuation payoff from

rejection, we have

SB(p) = (1− δ)EB [v] + δ
∑

v∈V
fB (v)SB

(
p′fG (v)

p′fG (v) + (1− p′) fB (v)

)
= SB(p′) < S,
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where the last inequality follows from the definition of p∗. But this contradicts SB(p) = S.

With slight abuse of notation, for any p, let rB(p) denote the total equilibrium probability

of rejection by type B. We know from Theorem 1 that, if p < p∗∗, type G rejects all equilibrium

demands for sure.

Fix any p ∈
(
0, φ−1

v (p∗)
)
. It must be that

rB(p) ≤ p

1− p
1− φ−1

v (p∗)

φ−1
v (p∗)

.

Otherwise, the posterior after rejection will not reach
[
φ−1
v (p∗), p∗

]
as required by Lemma 19.

Let

y(p) := 1− p

1− p
1− φ−1

v (p∗)

φ−1
v (p∗)

=
φ−1
v (p∗)− p

(1− p)φ−1
v (p∗)

∈ (0, 1).

Thus, y(p) gives a lower bound on the probability of acceptance (and revelation) at p.

Note that φ−1
v (p∗) =

φ−2
v (p∗)fG(v)

φ−2
v (p∗)fG(v)+(1−φ−2

v (p∗))fB(v)
. Hence, by simple algebra, we obtain

y
(
φ−2
v (p∗)

)
=

φ−1
v (p∗)− φ−2

v (p∗)

(1− φ−2
v (p∗))φ−1

v (p∗)
=
fG (v)− fB (v)

fG (v)
.

Then, Lemma 19 implies that, for any p ≤ p∗ (and hence φ−2
v (p) ≤ φ−2

v (p∗)),

y
(
φ−2
v (p)

)
≥ y

(
φ−2
v (p∗)

)
=
fG (v)− fB (v)

fG (v)
. (24)

D.2.2 Bounding the Probability of Revelation

Define %(p) as the aggregate probability with which, starting from p, type B reveals his type

in equilibrium. Also, for any p < p∗∗, let P (p, n, v) denote the posterior belief obtained from p

after a sample equilibrium path over n periods in which player 1 rejects the demand followed

by the realization of signal v in each period.

Lemma 20 There exists some η ∈ (0, 1), independent of p, such that, for any p ∈ (0, p∗],

%(p) ≥ η.

Proof. We proceed in following steps.

Step 1 : There exists a finite integer k, independent of p, such that φkv (p) < φ−2
v (p), where

v = maxV and v = minV . (That is, k consecutive worst signals reduce reputation to a level

from which two best signals will not bring it back.)
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Proof of Step 1. Bayes’ rule implies that

log

(
φkv (p)

1− φkv (p)

)
= log

(
p

1− p

)
+ k log

(
fG (v)

fB (v)

)
and

log

(
p

1− p

)
= log

(
φ−2
v (p)

1− φ−2
v (p)

)
+ 2 log

(
fG (v)

fB (v)

)
.

Hence, φkv (p) < φ−2
v (p) is equivalent to

log

(
p

1− p

)
+ k log

(
fG (v)

fB (v)

)
< log

(
p

1− p

)
− 2 log

(
fG (v)

fB (v)

)
,

which is in turn equivalent to

k > −
2 log

(
fG(v)
fB(v)

)
log
(
fG(v)
fB(v)

) > 0. (25)

Step 2 : Fix any p ∈ (0, p∗] and any integer k satisfying (25). We have

% (p) ≥
(
fB (v)

)2k
min

{
fG (v)− fB (v)

fG (v)
, 1−

(
fG (v)

fB (v)

)k}
=: η ∈ (0, 1) . (26)

Proof of Step 2. Consider P (p, 2k, v), where k is given by (25) above and v is the worst

signal; that is, starting at p, consider the posterior belief after a continuation history of 2k

periods in which rejection followed by signal v happens in each period. There are two cases to

consider.

Case 1: P (p, 2k, v) ≤ φ−2
v (p).

In this case, (24) above implies immediately that

%(p) ≥
(
fB (v)

)2k
y
(
φ−2
v (p∗)

)
=
(
fB (v)

)2k fG (v)− fB (v)

fG (v)
. (27)

Case 2: P (p, 2k, v) > φ−2
v (p).

Note that

log

(
P (p, 2k, v)

1− P (p, 2k, v)

)
= log

(
p

1− p

)
+ 2k log

(
fG (v)

fB (v)

)
+

2k∑
n=1

log

(
1

rB (P (p, n, v))

)

= log

(
φ2k
v (p)

1− φ2k
v (p)

)
+

2k∑
n=1

log

(
1

rB (P (p, n, v))

)
.
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Hence, if P (p, 2k, v) > φ−2
v (p), then we have

log

(
p

1− p

)
+ 2k log

(
fG (v)

fB (v)

)
+

2k∑
n=1

log

(
1

rB (P (p, n, v))

)
> log

(
φ−2
v (p)

1− φ−2
v (p)

)
. (28)

However, by definition of k, φkv (p) < φ−2
v (p), that is,

log

(
p

1− p

)
+ k log

(
fG (v)

fB (v)

)
< log

(
φ−2
v (p)

1− φ−2
v (p)

)
. (29)

Putting (28) and (29) together, we obtain

log

(
p

1− p

)
+ 2k log

(
fG (v)

fB (v)

)
+

2k∑
n=1

log

(
1

rB (P (p∗, n, v))

)
> log

(
p

1− p

)
+ k log

(
fG (v)

fB (v)

)
,

which yields

log

(
2k∏
n=1

rB (P (p, n, v))

)
< k log

(
fG (v)

fB (v)

)
,

and hence,
2k∏
n=1

rB (P (p, n, v)) <

(
fG (v)

fB (v)

)k
. (30)

Therefore,

%(p) ≥
2k∑
n=1

[(
1− rB (P (p, n, v))

) (
fB (v)

)n n−1∏
`=0

rB (P (p, `, v))

]

>
(
fB (v)

)2k
2k∑
n=1

[(
1− rB (P (p, n, v))

) n−1∏
`=0

rB (P (p, `, v))

]

=
(
fB (v)

)2k
2k∑
n=1

[
n−1∏
`=0

rB (P (p, `, v))−
n∏
`=0

rB (P (p, `, v))

]

=
(
fB (v)

)2k

[
1−

2k∏
`=1

rB (P (p, `, v))

]

>
(
fB (v)

)2k

[
1−

(
fG (v)

fB (v)

)k]
, (31)

where the last inequality follows from (30).

The statement of Step 2 then follows from (27) and (31).
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D.2.3 Success Probability Q (p) from Generalized Gambler’s Ruin

Recall that ρ is defined by EB

[
ρ

log

(
fG(v)

fB(v)

)]
= 1. By Jensen’s inequality, EB

[
log
(
fG(v)
fB(v)

)]
<

log
(
EB
[
fG(v)
fB(v)

])
= 0, where the last equality follows from the fact that the expectation is taken

over fB(v). Hence, by Lemma 7.3.1 in Ethier (2010), ρ > 1.

We know that, in equilibrium, whenever pt ∈ (p∗, p∗∗), the realization of signal v ∈ V

updates the belief such that

log

(
pt+1

1− pt+1

)
= log

(
pt

1− pt

)
+ log

(
fG (v)

fB (v)

)
.

Let Q(p0) denote the “success probability” with which, starting from p0 ∈ (p∗, p∗∗), the posterior

belief pt hits or exceeds p∗∗ before hitting or falling below p∗. Then, by Theorem 7.3.2 in Ethier

(2010), we have

L(p0) ≡ ρλ(p0)−λ∗ − 1

ρ
λ∗∗−λ∗+log

(
fG(v)

fB(v)

)
− 1

≤ Q(p0) ≤ ρ
λ(p0)−λ∗−log

(
fG(v)

fB(v)

)
− 1

ρ
λ∗∗−λ∗−log

(
fG(v)

fB(v)

)
− 1

≡ U(p0), (32)

where λ(p) = log
(

p
1−p

)
, λ∗ = log

(
p∗

1−p∗

)
and λ∗∗ = log

(
p∗∗

1−p∗∗

)
.

Since p∗ → 0 as δ → 1 by part (a) of Theorem 2, we have λ∗ → −∞ as δ → 1. Since ρ > 1,

applying l’Hôpital’s rule, we obtain

lim
δ→1

L(p0) = ρ
λ(p0)−λ∗∗−log

(
fG(v)

fB(v)

)
∈ (0, 1) and lim

δ→1
U(p0) = ρλ(p0)−λ∗∗ ∈ (0, 1). (33)

D.2.4 Connecting Q (p) and R (p) in the Limit

Now, in order to work out the overall reputation building probability R(p0), i.e., the probability

with which, starting from p0 ∈ (p∗, p∗∗), pt goes above p∗∗, we also have to consider the fact that,

once the belief goes down to the region (0, p∗], it may still bounce back. However, Lemma 20

shows that, at any such low belief, revelation occurs with probability at least η ∈ (0, 1) . Hence,

the interval (0, p∗) becomes absorbing with a probability of at least η. Using this constant, we

connect the success probability from the generalized gambler’s ruin with reputation building

probability in our game.

Lemma 21 For any p0 ∈ (0, p∗∗) , limδ→1R (p0) exists and limδ→1R (p0) = limδ→1Q(p0).
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Proof. Define Π = sup
{
R (p) : p ∈

[
p∗, φ2k

v (p∗)
]}
. This supremum may not be achieved

for any p, but, by definition, there exists a monotone sequence p′n → p′ such that R (p′n)→ Π.

(We first take a sequence of R’s and then since p comes from a compact set, we take a further

sequence of p′n). Then, we have

R (p′n) ≤ Q (p′n) + (1−Q (p′n)) (1− η) Π. (34)

To see this, first recall that Q(p0) represents the probability with which the belief reaches

p∗∗ before falling to the region (0, p∗]. Therefore, with probability 1−Q(p0), the belief falls to

some level in (0, p∗]. At such a belief, consider a sample equilibrium continuation history of

2k periods, where k is given by (25) in the proof of Lemma 20 above. We know from Lemma

20 that the aggregate revealing probability over such a sample history is at least η. With the

remaining probability 1 − η, the reputation building probability in the continuation game is

bounded above by Π for the following reason: (i) by Lemma 19, the posterior at the end of 2k

periods can be at most φ2k
v (p∗); (ii) if the posterior at the end of 2k periods falls short of p∗,

the reputation building probability in the continuation game must be less than Π because the

posterior must first bounce to at least p∗ but this can only happen in equilibrium if player 1

sometimes accepts an equilibrium demand.

Since L (p′n) ≤ Q (p′n) ≤ U (p′n), (34) can be written as

R (p′n) ≤ U (p′n) + (1− L (p′n)) (1− η) Π.

But since both L and U are continuous functions, taking limits of the above inequality, we

obtain Π ≤ U (p′) + (1− L (p′)) (1− η) Π, or

Π ≤ U (p′)

1− (1− L (p′)) (1− η)
. (35)

Note that p′ ∈
[
p∗, φ2k

v (p∗)
]

and L (p′) ≤ U (p′) ≤ U
(
φ2k
v (p∗)

)
→ 0 as p∗ → 0. Thus, as p∗ → 0,

Π→ 0.

Thus, since limδ→1 p
∗ = 0, applying the same logic for any p0 ∈ (0, p∗∗) yields

lim sup
δ→1

R(p0) ≤ lim sup
δ→1

[Q (p0) + (1−Q (p0)) (1− η) Π] = lim
δ→1

Q(p0).

Note that R(p0) ≥ Q(p0) by definition. Hence,

lim inf
δ→1

R (p0) ≥ lim
δ→1

Q(p0) ≥ lim sup
δ→1

R(p0).

Therefore, limδ→1Q(p0) = limδ→1R(p0).

Lemma 21, together with equations (32)and (33) , proves part (b) of Theorem 2.
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D.3 Part (c): Payoffs

Let δ = e−r∆ for some r → 0. Consider the equilibrium belief process pt conditional on type

B. Fix some small ε > 0 (as ∆→ 0, the number of signals that could be observed in ε amount

of real time explodes) and p ∈ (ε, p∗∗). Denote by τ∆ the “real time” that it takes pt to move

out of (ε, p∗∗) in equilibrium.

Lemma 22 Fix any ε > 0. There exists some ∆′ > 0 such that, if ∆ < ∆′, we have τ∆ < ε

with probability at least 1− ε.

Proof. From part (a) above, we know that p∗ → 0 as ∆ → 0. Hence, there exists ∆′′

such that p∗ < ε if ∆ < ∆′′. Hence, whenever pt ∈ (ε, p∗∗) ⊂ (p∗, p∗∗) , Theorem 1 says that

only rejection occurs in equilibrium and, hence, belief is updated purely by Bayes’ rule. Note

that pt
1−pt is a martingale conditional on rejection occurring, and therefore, by the martingale

convergence theorem, pt converges almost surely. Clearly, it cannot converge to some p′ ∈
(ε, p∗∗) since both ε and p∗∗ are fixed. Hence, since τ is finite almost surely, there exists N such

that τ < N with probability at least 1− ε. Take ∆′ = min
{
ε
N
,∆′′

}
, and the claim follows.

By part (b) above, we know that, for any p0 ∈ (0, p∗∗), R(p0) → Q(p0) as δ → 1 (where

Q(·) denotes the probability of the belief first reaching p∗∗). With slight abuse of notation, let

R (p0, ε,∆) be the probability that, starting from p0 ∈ (ε, p∗∗), the belief reaches p∗∗ at the

end of time ε. Then, limε→0 lim∆→0R (p0, ε,∆) = limδ→1Q(p0). By Lemma 22, it follows that

limδ→1 S
B(p0) = limδ→1

[
Q(p0)EG[v] + (1−Q(p0))EB[v]

]
.

E Proof of Theorem 3

To simplify exposition, in what follows, we let δ = e−r∆, q = 1+µ
√

∆
2

, and c = 2µ∆
κ

. As before,

define p∗∗ = EB [v]−EG[v]−c
EB [v]−EG[v]

= κ−1
κ

. Theorem 1 implies that there exists δ̄∆ such that a reputation

equilibrium exists if δ > δ̄∆. In particular, δ̄∆ is determined implicitly by (7) in Section B

above. The following guarantees that we can apply Theorem 1 in our parametrized model with

δ = e−r∆.

Lemma 23 There exists ∆ > 0 such that e−r∆ > δ̄∆ for any ∆ < ∆ and any r > 0.

Proof. Plugging the relevant parameters into (7), we obtain

(1 + µ
√

∆)δ̄
2
∆ − (3 + κ+ (1− κ)µ

√
∆)δ̄∆ + 2 = 0.
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The only solution in (0, 1) for this quadratic equation for sufficiently small ∆ is

δ̄∆ =
(3 + κ+ (1− κ)µ

√
∆)−

√
(3 + κ+ (1− κ)µ

√
∆)2 − 8(1 + µ

√
∆)

2(1 + µ
√

∆)
.

Taking lim∆→0 on both sides, we finally obtain

lim
∆→0

δ̄∆ =
3 + κ−

√
κ2 + 6κ+ 1

2
∈ (0, 1) .

Notice that e−r∆ monotonically converges to 1 as ∆→ 1. The lemma follows immediately.

Let φ1(p) = pq
pq+(1−p)(1−q) and, for integer k ≥ 1, define φk+1(p) = φ1(φk(p)) recursively.

Let φ−k be the inverse of φk. By the symmetry of signals, for any k and k + 1, we have

φk(p) = φ−1(φk+1(p)).

Consider the following second-order difference equation (SODE) for integer n:

Sn = (1− δ)EB[v] + δqSn−1 + δ(1− q)Sn+1 (36)

with initial conditions S−1 = S0 = S = EB[v]− (1− δ)c.
The explicit solution, for n ≥ 0, is given by

Sn = EB[v] +K1

1 +
(
1− 4δ2q(1− q)

) 1
2

2δ(1− q)

n+1

+K2

1−
[
1− 4δ2q(1− q)

] 1
2

2δ(1− q)

n+1

, (37)

where

K1 = −1

2

1− 1− 2δ(1− q)(
1− 4δ2q(1− q)

) 1
2

(EB[v]− S0

)

K2 = −1

2

1 +
1− 2δ(1− q)(

1− 4δ2q(1− q)
) 1

2

(EB[v]− S0

)
.

Note here that 1−2δ(1−q)

[1−4δ2q(1−q)]
1
2
< 1 and EB[v]− S0 = (1− δ) c > 0 and hence K2 < K1 < 0; {Sn}

is a decreasing and divergent sequence.

Simple algebra shows that, given δ > δ̄ where δ̄ is given in (7) above for Theorem 1,

S1 > EG[v]. Define N as the following integer, which is finite because {Sn} is divergent:

N = sup{n : Sn > EG[v]}. (38)

Note that N is a function of δ.

Now, we consider a reputation equilibrium.
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Lemma 24 Consider the symmetric binary model. Fix any ∆ < ∆, where ∆ is as in Lemma

23, and assume that SN+1 < EG[v], where SN+1 is the (N + 1)-th value of the solution to (36)

and N is as defined by (38). Then, consider any reputation equilibrium with two reputation

thresholds p∗ = sup{p : SB(p) = S} and p∗∗ = EB [v]−EG[v]−c
EB [v]−EG[v]

. We obtain the following:

1. For any p ∈ (0, p∗), rejection occurs such that player 1’s reputation immediately after

rejection is p∗; thus, rB(p) = p
p∗

1−p∗
1−p ∈ (0, 1). Moreover, SB(p∗) = S, and p∗ is uniquely

determined by p∗ = φ−N(p∗∗).

2. At p∗∗, there exists a unique probability x ∈ (0, 1) with which player 2 demands EG[v]

(which is accepted for sure).

Proof. 1. Let us first prove the first part of this lemma. Fix any p ∈ (0, p∗). We proceed

in the following steps.

Step 1 : Player 1’s reputation immediately after rejection, say, p0, is such that p0 ≤ p∗.

Proof of Step 1. Suppose not; so, p0 > p∗. There are two cases to consider.

First, suppose that p0 ≥ p∗∗. Then, since SB(p) = EG[v] for any p ∈ (p∗∗, 1), we have

SB(p) = S = (1− δ)EB[v] + δ(1− q)SB
(
φ1(p0)

)
+ δqSB

(
φ−1(p0)

)
= (1− δ)EB[v] + δ(1− q)EG[v] + δqSB

(
φ−1(p0)

)
.

But since SB
(
φ−1(p0)

)
≤ S by monotonicity of the payoffs and δ > δ̄, we have a contradiction.

Second, suppose that p0 ∈ (p∗, p∗∗). By Theorem 1 of the main text, every equilibrium

demand is rejected for sure at p0 and, hence, given the definition of p∗ and monotonicity of

SB(p),

SB(p0) = (1− δ)EB[v] + δ(1− q)SB
(
φ1(p0)

)
+ δqSB

(
φ−1(p0)

)
< S. (39)

But (39) contradicts that

SB(p∗ − ε) = (1− δ)EB[v] + δ(1− q)SB
(
φ1(p0)

)
+ δqSB

(
φ−1(p0)

)
= S.

Step 2 : SB(p0) = S.

Proof of Step 2. Suppose not; so, SB(p0) < S. Given the definition of p∗ and Step 1, it

must then be that p0 = p∗. We have

SB(p0) = (1− δ)EB[v] + δ(1− q)SB
(
φ1(p0)

)
+ δqS < S, (40)

while, for any p ∈ (0, p∗),

SB(p) = (1− δ)EB[v] + δ(1− q)SB
(
φ1(p0)

)
+ δqS = S. (41)

54



Comparing (41) with (40), we derive a contradiction.

Step 3 : p0 = φ−N(p∗∗). That is, p0 is independent of p.

Proof of Step 3. For expositional ease, let pn = φn(p0). First, we show that p1 > p∗. To see

this, from Steps 1-2, we have

SB(p0) = (1− δ)EB[v] + δ(1− q)SB
(
p1
)

+ δqS = S,

which exactly pins down SB(p1) < S. Also, since δ > δ̄, SB(p1) > EG[v]. Thus, p1 ∈ (p∗, p∗∗).

Then, given Step 2, and using the symmetry of signals, we obtain

SB(p1) = (1− δ)EB[v] + δ(1− q)SB
(
p2
)

+ δqSB(p0)

= (1− δ)EB[v] + δ(1− q)SB
(
p2
)

+ δqS,

which pins down SB(p2), and so forth.

But by Theorem 1 of the main text, we know that SB(p) = EG[v] for all p > p∗∗ and

SB(p) > EG[v] for all p < p∗∗. Thus, it must be that SB(pn) = Sn only for positive integer

n ≤ N , where Sn solves (36) and N is given by (38).

Now, we want to show that pN = p∗∗. Suppose not; so, pN < p∗∗. Hence, at pN , rejection

occurs for sure and the corresponding equilibrium payoff must be such that

SB(pN) ≥ (1− δ)EB[v] + δqSB
(
pN−1

)
+ δ(1− q)EG[v]. (42)

On the other hand, from the recursive equation (36), we have

SB(pN) = SN = (1− δ)EB[v] + δqSB
(
pN−1

)
+ δ(1− q)SN+1. (43)

Thus, (43) contradicts (42) since we assume that SN+1 < EG[v].

Step 4 : p∗ = p0 = φ−N(p∗∗). That is, the posterior after a rejection at p < p∗ is exactly p∗.

Proof of Step 4. Suppose not; so, by Step 1 above, p0 < p∗. Step 3 shows that p0 = φ−N(p∗∗)

regardless of p. So, if we take p ∈ (p0, p∗) , the posterior after a rejection is lower than p. But

this contradicts Lemma 8: rejection cannot reduce player 1’s reputation.

It follows immediately from Step 4 and Bayes’ rule that rB(p) = p
p∗

1−p∗
1−p .

2. We know from Theorem 1 that, at p∗∗, EG[v] is the only possible serious demand and it

will be accepted for sure if offered, leaving the belief unchanged at p∗∗. Letting x denote player

2’s mixing probability on the demand EG[v], we can then write

SB(p∗∗) = SN = x
[
(1− δ)EG[v] + δSN

]
+ (1− x)X, (44)

where

X ≡ (1− δ)EB[v] + δqSN−1 + δ(1− q)EG[v]. (45)
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Simple computation yields

x =
X − SN

X − (1− δ)EG[v]− δSN
.

Note first that SN < X. This follows from comparing (45) above to the recursive equation

SN = (1− δ)EB[v] + δqSN−1 + δ(1− q)SN+1,

where, by assumption, SN+1 < EG[v]. Also, we have SN > (1−δ)EG[v]+δSN since SN > EG[v]

by definition. Thus, x ∈ (0, 1).

The next lemma pins down the generic uniqueness of the reputation equilibrium.

Lemma 25 SN+1 < EG[v] for all but at most countably many ∆ < ∆.

Proof. By the definition of N, SN+1 ≤ EG[v] = −µ∆. The lemma is equivalent to saying

that the set {∆ ∈ (0,∆) : SN+1 + µ∆ = 0} is at most countable. Note that N is a function of

∆. For each integer n = 1, 2, ..., consider Dn = {∆ ∈ (0,∆) : Sn + µ∆ = 0}. It suffices to

show that ∪∞n=1Dn is at most countable. To this end, notice that after substituting δ = e−r∆,

q = 1+µ
√

∆
2

and c = 2µ∆
κ

, it follows from (37) that

Sn =µ∆− µ∆
1− e−r∆

κ

[
1− 1− e−r∆(1− µ

√
∆)

[1− e−2r∆(1− µ2∆)]
1
2

][
1 + [1− e−2r∆(1− µ2∆)]

1
2

e−r∆(1− µ
√

∆)

]n+1

− µ∆
1− e−r∆

κ

[
1 +

1− e−r∆(1− µ
√

∆)

[1− e−2r∆(1− µ2∆)]
1
2

][
1− [1− e−2r∆(1− µ2∆)]

1
2

e−r∆(1− µ
√

∆)

]n+1

. (46)

Suppose 1 − µ
√

∆ 6= 0. Then, Sn is an analytic function of ∆; thus, Dn, the set of zeros

for Sn + µ∆ = 0, is at most countable (see, for instance, Theorem 3.7 in Conway (1978)). It

follows that ∪∞n=1Dn is at most countable.

F Proof of Theorem 4

F.1 Part (a)

In this parametrized model, p∗∗ = κ−1
κ

and p∗ = φ−N(∆)(p∗∗), whereN(∆) is defined in Appendix

E above. We know that N(∆)→∞ as ∆→ 0, but since the precision q is a function of ∆, φ

also changes with ∆. Lemma 26 below derives p∗ as a function of N and ∆ explicitly. Lemma

27 provides a sufficient condition for p∗ → 0 in terms of the speed of N(∆) → ∞. Finally, we

show that indeed this sufficient condition is satisfied.
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Lemma 26 With N as defined in (38) above, we have

p∗ = φ−N(∆)(p∗∗)

=
(κ− 1)(1− µ

√
∆)N(∆)

(κ− 1)(1− µ
√

∆)N(∆) + (1 + µ
√

∆)N(∆)
.

Proof. The arguments in Appendix E above imply that p∗∗ = φN(∆)(p∗). To pin this

down further, we have φ−1(p) = (1−µ
√

∆)p

1+µ
√

∆−2µ
√

∆p
, and hence, φ−1(p∗∗) = (κ−1)(1−µ

√
∆)

κ(1−µ
√

∆)+2µ
√

∆
. Thus, for

N(∆) given by (38) above, we obtain

1

φ−N(∆)(p∗∗)
=

1 + µ
√

∆

1− µ
√

∆
· 1

φ−N(∆)−1(p∗∗)
− 2µ

√
∆

1− µ
√

∆

=
1

φ−1(p∗∗)

(
1 + µ

√
∆

1− µ
√

∆

)N(∆)−1

− 2µ
√

∆

1− µ
√

∆
·

(
1+µ
√

∆

1−µ
√

∆

)N(∆)−1

− 1(
1+µ
√

∆

1−µ
√

∆

)
− 1

=
1

κ− 1

(
1 + µ

√
∆

1− µ
√

∆

)N(∆)

+ 1.

Since φ−N(∆)(p∗∗) = p∗, the claim follows.

In order to compute the limit of p∗ as ∆→ 0, we need to conduct a rate comparison.

Lemma 27 If N(∆)
√

∆ ≥ O
(
log
(

1
∆

))
, then lim∆→0

(
1+µ
√

∆

1−µ
√

∆

)N(∆)

=∞ and lim∆→0 p
∗ = 0.

Proof. Since p∗ = 1

1+ 1
κ−1

(
1+µ
√

∆

1−µ
√

∆

)N(∆) by Lemma 26, it suffices to show that
(

1+µ
√

∆

1−µ
√

∆

)N(∆)

→

∞ for p∗ → 0. Note that, as ∆→ 0,(
1 +

2µ
√

∆

1− µ
√

∆

) 1
2

(
1

µ
√

∆
−1
)
→ e.

Thus, lim∆→0

(
1+µ
√

∆

1−µ
√

∆

)N(∆)

= ∞ if N(∆) grows faster than 1√
∆

as ∆ → 0. This is sufficient if

N(∆)
√

∆ = O
(
log
(

1
∆

))
.

Now, to the first-order approximation, we obtain from (46) above:

Sn > µ∆− µr∆2

κ
·

[
1 +

√
(2r + µ2)∆− 2rµ2∆2

(1− r∆)(1− µ
√

∆)

]n+1

=: Ŝn. (47)
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Define N̂(∆) = sup{n : Ŝn > EG[v] = −µ∆}. Since Sn and Ŝn are both decreasing, and by

(47), it then follows that N̂ ≤ N for any ∆. Since ŜN̂(∆)+1 ≤ −µ∆, we obtain

N̂(∆) + 2 ≥
log
(

2κ
r∆

)
log

(
1+
√

(2r+µ2)∆−2rµ2∆2

(1−r∆)(1−µ
√

∆)

) ,
which implies that N̂ (∆), and hence N (∆), grow faster than 1√

∆
if

1√
∆

log

(
1 +

√
(2r + µ2)∆− 2rµ2∆2

(1− r∆)(1− µ
√

∆)

)
= O(1). (48)

In particular, if this is true, we know that N̂ (∆)
√

∆ = O
(
log
(

2κ
r∆

))
. Since N (∆) ≥ N̂ (∆), it

follows from Lemma 27 that lim∆→0 p
∗ = 0. We show condition (48) below.

As ∆→ 0, we obtain

1√
∆

log
(

1 +
√

(2r + µ2)∆− 2rµ2∆2
)

= log
(

1 +
√

(2r + µ2)∆− 2rµ2∆2
) 1√

∆

= log
(

1 +
√

(2r + µ2)∆− 2rµ2∆2
) 1√

(2r+µ2)∆−2rµ2∆2
·
√

(2r+µ2)∆−2rµ2∆2
√

∆

→ log exp(
√

2r + µ2) =
√

2r + µ2 > 0,

since

√
(2r+µ2)∆−2rµ2∆2

√
∆

→
√

2r + µ2 > 0; similarly, since µ
√

∆+r∆−rµ∆
√

∆√
∆

→ µ, we obtain

− 1√
∆

log
(

(1− r∆)(1− µ
√

∆)
)
→ log exp(µ) = µ.

Thus, as ∆→ 0,

1√
∆

log

(
1 +

√
(2r + µ2)∆− 2rµ2∆2

(1− r∆)(1− µ
√

∆)

)
→
√

2r + µ2 + µ > 0.

F.2 Part (b)

As in Appendix D.2, we use the success probability Q (p) for the gambler’s ruin process to

approximate the reputation building probability R (p) . The bound on the error terms for a

fixed discount factor obtained there continues to be valid. To compute the limit as ∆→ 0, we

apply the estimate on N (∆) obtained in Appendix F.1.
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F.2.1 Success Probability

Fix a prior p0 ∈ (p∗, p∗∗). As before, let Q(p0) denote the probability that, conditional on type

B, pt exceeds p∗∗ before dropping below p∗ in equilibrium. Let dxe denote the smallest integer

larger than or equal to x ∈ R. By the gambler’s ruin result with symmetric binary signals (e.g.,

Theorem 7.1.1 in Ethier (2010)), and taking account of the integer problem, we obtain

Q(p0) =

(
q

1−q

)⌈λ(p0)−λ∗
λ

⌉
− 1(

q
1−q

)⌈λ∗∗−λ(p0)
λ

⌉
+
⌈
λ(p0)−λ∗

λ

⌉
− 1

,

where λ = log
(

q
1−q

)
.

Now, we set q = 1+µ
√

∆
2

and take ∆→ 0.

Lemma 28 lim∆→0Q(p0) = p0

(κ−1)(1−p0)
.

Proof. To simplify the calculation, let us re-write

Q(p0) =

(
1+µ
√

∆

1−µ
√

∆

)dz∗e
− 1(

1+µ
√

∆

1−µ
√

∆

)dz∗e+dz∗∗e
− 1

=

1− 1(
1+µ
√

∆

1−µ
√

∆

)dz∗e(
1+µ
√

∆

1−µ
√

∆

)dz∗∗e
− 1(

1+µ
√

∆

1−µ
√

∆

)dz∗e
, (49)

where

z∗ :=
λ(p0)− λ∗

λ
=

log
(

p0

1−p0

1−p∗
p∗

)
log
(

q
1−q

) =
log
(

p0

1−p0

1−p∗
p∗

)
log
(

1+µ
√

∆

1−µ
√

∆

)

z∗∗ :=
λ∗∗ − λ(p0)

λ
=

log
(

p∗∗

1−p∗∗
1−p0

p0

)
log
(

q
1−q

) =

log

(
κ−1
p0

1−p0

)
log
(

1+µ
√

∆

1−µ
√

∆

) .
Step 1 :

(
1+µ
√

∆

1−µ
√

∆

)z∗
→∞ as ∆→ 0.
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Proof of Step 1. Since
(

1+µ
√

∆

1−µ
√

∆

)
= 1 + o(1),

(
1+µ
√

∆

1−µ
√

∆

) 1(
1+µ
√

∆

1−µ
√

∆

)
−1 → e as ∆→ 0. Therefore,

(
1 + µ

√
∆

1− µ
√

∆

) log( p0
1−p0 )

log

(
1+µ
√

∆

1−µ
√

∆

)
=

(
1 + µ

√
∆

1− µ
√

∆

)(
1+µ
√

∆

1−µ
√

∆

)
−1(

1+µ
√

∆

1−µ
√

∆

)
−1

log( p0
1−p0 )

log

(
1+µ
√

∆

1−µ
√

∆

)

=

(1 + µ
√

∆

1− µ
√

∆

) 1(
1+µ
√

∆

1−µ
√

∆

)
−1


log( p0

1−p0 ) 1(
1+µ
√

∆

1−µ
√

∆

)
−1

 log

(
1+µ
√

∆

1−µ
√

∆

)

→ exp

 log
(

p0

1−p0

)
log e

 =
p0

1− p0

> 0. (50)

We have already shown in Lemma 27 in Appendix F.1 above that lim∆→0

(
1+µ
√

∆

1−µ
√

∆

)N(∆)

= ∞.

Thus, by (50), we obtain

(
1 + µ

√
∆

1− µ
√

∆

)z∗

=

(
1 + µ

√
∆

1− µ
√

∆

) log( p0
1−p0 )+ 1

κ−1 log

(
1+µ
√

∆

1−µ
√

∆

)N(∆)

log

(
1+µ
√

∆

1−µ
√

∆

)

=

(
1 + µ

√
∆

1− µ
√

∆

)N(∆)
κ−1

(
1 + µ

√
∆

1− µ
√

∆

) log( p0
1−p0 )

log

(
1+µ
√

∆

1−µ
√

∆

)
→∞.

Step 2 : lim∆→0Q(p0) = 1

lim∆→0

[(
1+µ
√

∆

1−µ
√

∆

)dz∗∗e] .
Proof of Step 2. Since

(
1+µ
√

∆

1−µ
√

∆

)
> 1 and z∗ ≤ dz∗e < z∗+ 1, and by Step 1,

(
1+µ
√

∆

1−µ
√

∆

)dz∗e
→

∞ as ∆→ 0. The claim then follows from (49).

Now, by (50), we obtain

lim
∆→0

(
1 + µ

√
∆

1− µ
√

∆

)z∗∗

= lim
∆→0

(
1 + µ

√
∆

1− µ
√

∆

) log

 κ−1
p0

1−p0


log

(
1+µ
√

∆

1−µ
√

∆

)
=

(κ− 1)(1− p0)

p0

= lim
∆→0

(
1 + µ

√
∆

1− µ
√

∆

)z∗∗+1

,

which, by the squeeze theorem, implies lim∆→0

(
1+µ
√

∆

1−µ
√

∆

)dz∗∗e
= (κ−1)(1−p0)

p0
. Thus, by Step 2,

lim
∆→0

Q(p0) =
1

lim∆→0

(
1+µ
√

∆

1−µ
√

∆

)dz∗∗e =
p0

(κ− 1)(1− p0)
,

which belongs to (0, 1) for p0 < p∗∗ = κ−1
κ

.
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F.2.2 Reputation Building Probability

Next, recall from the proof of part (b) of Theorem 2 in Section D.2 that

R(p0) ≤ [Q (p0) + (1−Q (p0)) (1− η) Π] , (51)

where, from (26) and (35),

Π ≤ Q (p′)

1− (1−Q (p′)) (1− η)
, p′ ∈

[
p∗, φ2k

v (p∗)
]

η =
(
fB (v)

)2k
min

{
fG (v)− fB (v)

fG (v)
, 1−

(
fG (v)

fB (v)

)k}
, where k > −

2 log
(
fG(v)
fB(v)

)
log
(
fG(v)
fB(v)

) .

We know that Q(p0) ≤ R(p0), and have already solved for lim∆→0Q(p0) in Lemma 28.

Thus, to show that indeed lim∆→0R(p0) = lim∆→0Q(p0) for any p0 ∈ (0, p∗∗), (51) implies that

it suffices to show that lim∆→0 (1− η) Π = 0.

With symmetric binary signals such that fG(v) = fB(v) = q, we have k > 2; without loss

of generality, let us set k = 3. It is easy then to check that η = q5(2q−1). Also, Π is increasing

in Q(·), which is itself increasing in p. Since we are considering an upper bound for R(·), let us

take p′ = φ2k
v (p∗). Since (1− η)Π ≤ (1−η)

η
Q(p′) +1−η =

(
η

1−η
1

L(p′)
+ 1
)−1

, we show that η
1−η

1
Q(p′)

→∞
as ∆→ 0.

First, substituting for η = q5(2q − 1) =
(

1+µ
√

∆
2

)5

· µ
√

∆, we obtain

η

1− η
=

(1 + µ
√

∆)5µ
√

∆

32− (1 + µ
√

∆)5µ
√

∆
=

(
1+µ
√

∆

1−µ
√

∆

)5

µ
√

∆(
2

1−µ
√

∆

)5

−
(

1+µ
√

∆

1−µ
√

∆

)5

µ
√

∆
. (52)

It is straightforward to check that this goes to 0 as ∆→ 0.

Second, to find Q(p′), note that p′ = φ6(p∗) = φ−N(∆)−6(p∗∗) = 1

1+ 1
κ−1

(
1+µ
√

∆

1−µ
√

∆

)N(∆)−6 . By

straightforward calculation, we obtain

Q(p′) =

(
1+µ
√

∆

1−µ
√

∆

)6

− 1(
1+µ
√

∆

1−µ
√

∆

)N(∆)

− 1

. (53)
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Now, putting together (52) and (53), we obtain

η

1− η
1

Q(p′)
=

(
1+µ
√

∆

1−µ
√

∆

)5

µ
√

∆(
2

1−µ
√

∆

)5

−
(

1+µ
√

∆

1−µ
√

∆

)5

µ
√

∆
·

(
1+µ
√

∆

1−µ
√

∆

)N(∆)

− 1(
1+µ
√

∆

1−µ
√

∆

)6

− 1

=
µ
√

∆(
2

1+µ
√

∆

)5

− µ
√

∆
·

(
1+µ
√

∆

1−µ
√

∆

)N(∆)

− 1(
1+µ
√

∆

1−µ
√

∆

)6

− 1

=
1(

2
1+µ
√

∆

)5

− µ
√

∆
·

(
1+µ
√

∆

1−µ
√

∆

)N(∆)

− 1(
1+µ
√

∆

1−µ
√

∆

)
−1

µ
√

∆
·
∑5

i=0

(
1+µ
√

∆

1−µ
√

∆

)i .
By the results of Appendix F.1, we have

lim
∆→0

(1 + µ
√

∆

1− µ
√

∆

)N(∆)

− 1

 =∞.

Also, lim∆→0

[(
2

1+µ
√

∆

)5

− µ
√

∆

)
= 32, lim∆→0

(
1+µ
√

∆

1−µ
√

∆

)
−1

µ
√

∆
= lim∆→0

2
1−µ
√

∆
= 2, and

lim
∆→0

(1 + µ
√

∆

1− µ
√

∆

)5

+

(
1 + µ

√
∆

1− µ
√

∆

)4

+

(
1 + µ

√
∆

1− µ
√

∆

)3

+

(
1 + µ

√
∆

1− µ
√

∆

)2

+

(
1 + µ

√
∆

1− µ
√

∆

)
+ 1

 = 6.

Thus, we obtain

lim
∆→0

η

1− η
1

Q(p′)
=

lim∆→0

[(
1+µ
√

∆

1−µ
√

∆

)N(∆)

− 1

]
32 · 2 · 6

=∞,

as required for lim∆→0(1− η)Π = 0.

Therefore, given part (a) of Theorem 4 and Lemma 28, we establish that, for any p ∈
(0, p∗∗) =

(
0, κ−1

κ

)
, lim∆→0R(p) = lim∆→0Q(p) = p

(κ−1)(1−p) (and the limit exists).

F.3 Parts (c) and (d)

To compute the value function in the limit, we deal with two issues. First, in the diffusion limit,

reputation building takes real time, and hence, a version of discounted reputation building

probability is needed. This is obtained through Lemmas 29 and 30. Second, the payoff at

exactly p∗∗ becomes critical. For generic ∆ > 0, SB (p∗∗) is not the same as EG [v] ; moreover,

for any p ∈ (0, p∗∗) , there will be ∆ such that p is non-generic in the sense that it is reachable
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from p∗∗ after a finite number of signals (see part (c) of Theorem 2). We consider a convergent

sequence {∆n} and corresponding sets of generic beliefs {Pn} (the computation of limiting

payoffs at these beliefs does not involve p∗∗). This is the content of Lemma 32. Finally, in

Lemmas 33 and 34 we show that the value function must be continuous in the limit, thereby

deriving the payoff limits for all p.

F.3.1 Discounted Success Probability

Fix p0 ∈ (p∗, p∗∗), and consider the random belief process {pt}. Define

τ = inf {t ≥ 0 : pt ≥ p∗∗ or pt ≤ p∗} ,

and let

z∗ =


log
(

p0

1−p0

)
− log

(
p∗

1−p∗

)
log
(

q
1−q

)
 and z∗∗ =


log
(

p∗∗

1−p∗∗

)
− log

(
p0

1−p0

)
log
(

q
1−q

)
 .

We consider the discounted success probability, Q̂(p0) := EB
[
δτ+11{pτ≥p∗∗}

]
.

Lemma 29 For any δ ∈ (0, 1) , we have

EB
[
δτ+11{pτ≥p∗∗}

]
=

ρz
∗ − ρz∗

ρz
∗+z∗∗ − ρz∗+z∗∗

,

where

ρ =
1 +

√
1− 4q (1− q) δ2

2 (1− q) δ
and ρ =

1−
√

1− 4q (1− q) δ2

2 (1− q) δ
.

Moreover, ρ > 1 > ρ > 0.

Proof. The formula follows immediately from Theorem 7.1.7 in Ethier (2010), which

obtains the probability generating function for stopping times in the gambler’s ruin process.

Note here that the gambler’s ruin process in our model starts at t = 0, and hence, at τ , τ + 1

random variables are observed. Since δ ∈ (0, 1) and q ∈
(

1
2
, 1
)
, it is straightforward to verify

that ρ > 1 > ρ > 0.

In order to compute lim∆→0 Q̂(p0), notice that q is a function of ∆ as is p∗, which is

determined in equilibrium; thus, z∗ and z∗∗ change in ∆. We have shown in part (a) of Theorem

4 that p∗ → 0. The next lemma therefore holds for any p0 ∈ (0, p∗∗).
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Lemma 30 For any p0 ∈ (0, p∗∗), we have

lim
∆→0

EB
[
δτ+11{pτ≥p∗∗}

]
=

(
1

κ− 1

p0

1− p0

) 1
2

+

√
µ2+2r
2µ

.

Proof. By Lemma 29, E
[
δτ+11{pτ≥p∗∗}

]
=

ρz
∗−ρz∗

ρz
∗+z∗∗−ρz∗+z∗∗ . The computation is done in two

steps.

Step 1 : lim∆→0
ρz
∗−ρz∗

ρz
∗+z∗∗−ρz∗+z∗∗ = lim∆→0

1
ρz
∗∗ .

Proof of Step 1 : We first show lim∆→0 ρ
z∗ = +∞. Plugging q = 1+µ

√
∆

2
and δ = e−r∆ into

ρ, we get

ρ =
1 +

√
1− e−2r∆(1− µ2∆)

e−r∆(1− µ
√

∆)
.

To the first-order approximation, we obtain

ρz
∗

=

[
1 +

√
1− e−2r∆(1− µ2∆)

e−r∆(1− µ
√

∆)

]z∗

>

[
1 +

√
1− (1− µ2∆)

1− µ
√

∆

]z∗

=

(
1 + µ

√
∆

1− µ
√

∆

)z∗

→ +∞,

where the last limit follows from Step 1 in the proof of Lemma 28, which utilizes the fact that,

as ∆→ 0, p∗ = 0 and hence z∗ → +∞.

Moreover, 0 < ρ < 1 < ρ by Lemma 29. Therefore, ρz
∗+z∗∗ > ρz

∗ → +∞, and hence,

lim
∆→0

ρz
∗ − ρz∗

ρz
∗+z∗∗ − ρz∗+z∗∗

= lim
∆→0

ρz
∗

ρz
∗+z∗∗ = lim

∆→0

1

ρz
∗∗ .

Step 2 : lim∆→0
1

ρz
∗∗ =

(
1

κ−1
p0

1−p0

) 1
2

+

√
µ2+2r
2µ

.

Proof of Step 2 : Since log
(

q
1−q

)
= log(1 + µ

√
∆) − log(1 − µ

√
∆), and letting C =

log
(

p∗∗

1−p∗∗

)
− log

(
p0

1−p0

)
, we can rewrite

z∗∗ =
C

log(1 + µ
√

∆)− log(1− µ
√

∆)
.
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Note that

lim
∆→0

log ρz
∗∗

= lim
∆→0

C ·
(

log
(

1 +
√

1− e−2r∆(1− µ2∆)
)

+ r∆− log(1− µ
√

∆)
)

log(1 + µ
√

∆)− log(1− µ
√

∆)
.

Then, by l’Hôpital’s rule, we obtain

lim
∆→0

log ρz
∗∗

= C · lim
∆→0

[
1

µ

( 1− µ2∆

1 +
√
K(∆)

· 2re−2r∆(1− µ2∆) + e−2r∆µ2

2
√
K(∆)/∆

+ r
√

∆(1− µ2∆) +
µ

2
(1− µ

√
∆)
)]
,

where K(∆) = 1− e−2r∆(1− µ2∆).

Since K(∆)
∆
→ µ2 + 2r as ∆→ 0, we obtain

lim
∆→0

log ρz
∗∗

= C ·

(
1

2
+

√
µ2 + 2r

2µ

)
,

which, after substituting for C, implies

lim
∆→0

ρz
∗∗

=

(
p∗∗

1− p∗∗
1− p0

p0

) 1
2

+

√
µ2+2r
2µ

.

Substituting p∗∗ = κ−1
κ

into this and taking the inverse, we establish the lemma.

F.3.2 Discounted Payoffs

Lemma 31 For any p0 ∈ (p∗, p∗∗), we have

EB
[
SB (p0)

]
= EB [v]

(
1− EB

[
δτ+1

])
+ SEB

[
δτ+11{pτ≤p∗}

]
+ EB

[
δτ+1SB (pτ ) 1{pτ≥p∗∗}

]
.

Proof. Our argument below adopts the idea behind the proof for Wald’s equation. Define

a random variable It as follows:

It =

{
1 if τ ≥ t

0 if τ < t
.

Note that pt is determined by v0, v1, ..., vt−1, the realized outside option payments up to t;
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therefore, {τ ≥ t} , and hence It, are independent of vt. Then,

EB

[
τ∑
t=0

δtvt

]
= EB

[
∞∑
t=0

δtvtIt

]

= EB

[
∞∑
t=0

δtEB [vt] It

]

= EB [v]EB

[
∞∑
t=0

δtIt

]

= EB [v]EB

[
τ∑
t=0

δt

]

=
EB [v]

1− δ
(
1− EB

[
δτ+1

])
.

It follows that

EB
[
SB (p0)

]
= (1− δ)EB

[
τ∑
t=0

δtvt + δτ+1S
B (pτ )

1− δ

]
= EB [v]

(
1− EB

[
δτ+1

])
+ EB

[
δτ+1SB (pτ )

]
= EB [v]

(
1− EB

[
δτ+1

])
+ EB

[
δτ+1SB (pτ ) 1{pτ≤p∗}

]
+ EB

[
δτ+1SB (pτ ) 1{pτ≥p∗}

]
= EB [v]

(
1− EB

[
δτ+1

])
+ SEB

[
δτ+11{pτ≤p∗}

]
+ EB

[
δτ+1SB (pτ ) 1{pτ≥p∗}

]
,

which completes the proof.

Now take a sequence {∆n} → 0. For each ∆n, there exists a set of beliefs Pn ⊂ (0, p∗∗) such

that (0, p∗∗) \Pn is countable, and each p ∈ Pn is not reachable from p∗∗ (and hence from p∗∆n
)

via any path of signals. Let P = ∪∞n=1Pn. By definition, (0, p∗∗) \P is countable.

Lemma 32 For any p0 ∈ P, we have

lim
∆n→0

EB

[
SB (p0)

1− e−r∆

]
=
µ

r

(
1− lim

∆n→0
Q̂ (p0)

)
− µ

r
lim

∆n→0
Q̂ (p0) ,

where lim∆→0 Q̂ (p0) =
(

1
κ−1

p0

1−p0

) 1
2

+

√
µ2+2r
2µ

.

Proof. Since p0 ∈ P, if the posterior belief enters the region [p∗∗, 1] starting from p0, it

cannot hit exactly p∗∗. Hence, SB (pτ ) 1{pτ≥p∗∗} = S1{pτ>p∗∗}. Recall that lim∆n→0 c (∆n) = 0,
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and therefore, we have

lim
∆n→0

S

1− δ
= lim

∆n→0

EB [v]

1− δ
=
µ

r

lim
∆n→0

S

1− δ
= lim

∆n→0

EG [v]

1− δ
= −µ

r
.

By Lemma 31,

lim
∆n→0

EB

[
SB (p0)

1− δ

]
= lim

∆n→0

[
EB [v]

1− δ
(
1− EB

[
δτ+1

])
+

S

1− δ
EB
[
δτ+11{pτ≤p∗}

]
+

S

1− δ
EB
[
δτ+11{pτ≥p∗∗}

]]
=
µ

r
lim

∆n→0

(
1− EB

[
δτ+1

]
+ EB

[
δτ+11{pτ≤p∗}

])
− µ

r

(
lim

∆n→0
EB
[
δτ+11{pτ≥p∗∗}

])
=
µ

r

(
1− lim

∆n→0
EB
[
δτ+11{pτ≥p∗∗}

])
− µ

r

(
lim

∆n→0
EB
[
δτ+11{pτ≥p∗∗}

])
. (54)

The proof is then completed by plugging in lim∆n→0E
B
[
δτ+11{pτ≥p∗∗}

]
from Lemma 30.

F.3.3 Continuity

We know that EB
[
SB(p)
1−δ

]
defined on p ∈ [0, 1] is a discontinuous step function for any ∆. In

particular, SB (p∗∗) is determined by the short-run player’s randomization at p∗∗. We want to

show that nevertheless lim∆→0E
B
[
SB(p)
1−δ

]
is continuous everywhere in p.

Lemma 33 lim∆→0
SB(p∗∗)

1−δ = −µ
r
.

Proof. As we take multiple limits and the order of quantifiers matters, let us write
SB∆(p∗∗)

1−e−r∆

explicitly as a function of ∆ (recall that p∗∗ is independent of ∆). Suppose to the contrary that

the claim is not true. Since
SB∆(p∗∗)

1−e−r∆ ∈
[
− µ∆

1−e−r∆ ,
µ∆

1−e−r∆
]
⊂
[
−2µ

r
, 2µ
r

]
for sufficiently small ∆,

there exists a sequence {∆n} such that
SB∆n (p∗∗)

1−e−r∆n converges to some constant η > −µ
r

as ∆n → 0.

For this sequence ∆n, we construct Pn and P = ∪∞n=1Pn, previously defined just above Lemma

32. Since [0, p∗∗] \P is countable, there exists a sequence {pm} ⊂ P such that limm→∞ pm = p∗∗.

Then, by Lemma 32,

lim
∆n→0

SB∆n
(pm)

1− e−r∆n
=
µ

r

(
1− lim

∆n→0
Q̂ (pm)

)
− µ

r
lim

∆n→0
Q̂ (pm) ,
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where lim∆n→0 Q̂ (pm) =
(

1
κ−1

pm
1−pm

) 1
2

+

√
µ2+2r
2µ

and the latter goes to 1 as pm → p∗∗. Thus, as

pm → p∗∗,

lim
∆n→0

SB∆n
(pm)

1− e−r∆n
→ −µ

r
.

However, by monotonicity of SB∆n
(p) ,

SB∆n (pm)

1−e−r∆n ≥ EB
∆n

[
SB∆n (p∗∗)

1−e−r∆n

]
. This contradicts the assump-

tion that
SB∆n (p∗∗)

1−e−r∆n → η > −µ
r
.

Finally, we are ready to strengthen Lemma 32 to hold for any p ∈ [0, p∗∗].

Lemma 34 For any p0 ∈ [0, p∗∗] , we have

lim
∆n→0

EB

[
SB (p0)

1− e−r∆

]
=
µ

r

(
1− lim

∆n→0
Q̂ (p0)

)
− µ

r
lim

∆n→0
Q̂ (p0) ,

where lim∆→0 Q̂ (p0) =
(

1
κ−1

p0

1−p0

) 1
2

+

√
µ2+2r
2µ

.

Proof. Since S1{pτ≥p∗∗} ≤ SB (pτ ) 1{pτ≥p∗∗} ≤ S (p∗∗) 1{pτ≥p∗∗}, it follows from Lemma 33

that lim∆→0
SB(pτ )

1−δ 1{pτ≥p∗∗} = −µ
r
1{pτ≥p∗∗}. Applying the dominated convergence theorem,

lim
∆→0

1

1− δ
EB
[
δτ+1SB (pτ ) 1{pτ≥p∗∗}

]
= lim

∆→0

S

1− δ
EB
[
δτ+11{pτ≥p∗∗}

]
= −µ

r
lim
∆→0

EB
[
δτ+11{pτ≥p∗∗}

]
.

By Lemma 31, we have

lim
∆→0

EB
[
SB (p0)

]
1− δ

=
µ

r

(
1− lim

∆→0
EB
[
δτ+11{pτ≥p∗∗}

])
− µ

r

(
lim
∆→0

EB
[
δτ+11{pτ≥p∗∗}

])
.

The result follows from plugging in lim∆→0E
B
[
δτ+11{pτ≥p∗∗}

]
from Lemma 30.
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