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Abstract

Innovation is typically a trial-and-error process. While some research paths lead to the

innovation sought, others result in dead ends. Because firms benefit from their competitors

working in the wrong direction, they do not reveal their dead-end findings. Time and resources

are wasted on projects that other firms have already found to be fruitless. This is a major prob-

lem, particularly in industries that rely heavily on trial-and-error research. We offer a simple

model with two firms and two research lines to study this prevalent problem. We characterize

the equilibrium in a decentralized environment that necessarily entails significant efficiency

losses due to wasteful dead-end replication and a flight to safety–an early abandonment of the

risky project. We show that different types of firms follow different innovation strategies and

create different kinds of welfare losses. In an extension of the core model, we also study a

centralized mechanism whereby firms are incentivized to disclose their actions and share their

private information in a timely manner.
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1 Introduction

Innovating faster and cheaper is critical for technological progress. However, the exact

path to success is unknown, so that researchers have to go through a costly and lengthy

trial-and-error process. Competition among researchers can greatly shape this process

and its outcomes, as highlighted by the following two examples from research in the

“oldest science”. Timothy Gowers, a Fields Medalist at Cambridge University, started

an unusual social experiment called the Polymath Project. Gowers invited all inter-

ested mathematicians to openly and jointly tackle a “difficult, unresolved mathematical

problem” on his blog. Driven by intellectual curiosity, 27 mathematicians contributed

more than 800 mathematical comments, and a generalization, which includes the orig-

inal problem as a special case, was solved in a mere 37 days. “Reading through the

comments, you see ideas proposed, refined, and discarded, all with incredible speed.

You see top mathematicians making mistakes, going down wrong paths ... through all

the false starts and wrong turns, you see a gradual dawning of insight” (Nielson 2011).

Indeed, the stunning rapidity of the Polymath Project’s success is that one researcher’s

failed ideas and dead-end attempts were not repeated by others, and everyone could

focus efforts on the tentatively most promising path.

Intellectual curiosity is not the only motivation for innovation. Incentive schemes,

such as patents and prizes, immensely intensify competition in research. In his conquest

of Fermat’s Last Theorem, Andrew Wiles worked in complete secrecy for eight years.

He even published one of his old papers every six months to keep his colleagues unaware

of the direction of his research. When a mistake was found by the referees in his initial

proof, he refused the call from the mathematics community to publicize his flawed proof.

“He did not want ... to risk others copying his ideas and stealing the prize” (Singh 1998).1

Research competition in mathematics is only the tip of the iceberg. In private in-

dustries, because of the monetary interests involved, the scope of the problem is ex-

travagant. Firms conduct their research in secrecy and befuddle their competitors; in

addition, they do not share information about the exploratory paths that have proven to

be fruitless. As a result, many firms waste years and millions of dollars on projects that

their competitors have already found to be dead ends. In pharmaceuticals, for example,

all firms in competition to develop a particular drug typically follow similar paths: they

try out and then give up on similar compounds due to toxicity or inefficacy. According

1By the time Wiles corrected his initially flawed proof, it was too late for the crowning Fields Medal
because he was over the age limit of forty. Instead, the Fields Medal Committee awarded him a silver
plaque to acknowledge his achievement.
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to a report by the Pharmaceutical Research and Manufacturers of America (PhRMA,

2011), developing a drug can cost more than $1 billion and take 10 to 15 years, most of

which arises because firms go through each other’s early failed attempts.2 Such dead-end

duplications are common in many sectors with trial-and-error research.

The two engines of technological progress – competition and innovation – are at

odds when it comes to information discovery and sharing. This fact has already alarmed

policy makers. For instance, a new project at the Massachusetts Institute of Technology,

called New Drug Development Paradigms, is aiming to bring together major drug makers

and health authorities to identify and resolve the severe dead-end duplication problem

in pharmaceuticals and encourage precompetitive information sharing (Singer, 2009).3

While there is general agreement that there should be more information available to

competitors about failed research attempts, a better understanding of the economic

incentives of competing firms is vital in order to address the question of “precompetitive

information sharing” raised by policy makers and scientists. How does competition affect

firms’ research choices and incentives to disclose their findings? Do firms invest too much

or too little in risky projects with unknown outcomes and potential dead ends? Which

types of firms will most likely pursue risky projects instead of safe projects? What

kinds of inefficiencies, if any, arise from the fact that firms can observe only their own

failed attempts? Could there be scope for compensating firms that reveal their dead-end

findings? Our goal in this paper is to shed light on these important questions.

To study the aforementioned issues, we build a dynamic model of a winner-takes-all

research competition between two firms that differ in their arrival rates of innovations.

Firms start their competition on a research line that is ex-ante lucrative, but risky –

an outcome upon arrival could be good or bad. A good outcome delivers a one-time

lump-sum payoff of Π (e.g., the market value of a drug), while a bad outcome reveals

that the research line is a dead end, in which case the payoff is simply 0. In reality, firms

have a strong incentive to keep their dead-end findings unknown to their competitors.

To model this feature, we introduce an additional research line that is ex-ante less

2For interested readers, further details on pharamaceutical research and the extent of dead-end
duplication can be found in Singer (2009) and PhRMA (2011).

3Another example is the launch by the US Food and Drug Administration and the Critical Path Insti-
tute – a non-profit organization – of a joint program ”Coalition Against Major Diseases;” which focuses
particularly on detailed information sharing about research on Alzheimer’s disease. (http://www.c-
path.org/camd.cfm). Similarly an international agreement, the ”Bermuda Principles,” was reached in
1996 to require biologists to share their data on human genome research online (Nielson, 2011). Scien-
tists who refused to share data would receive no grant money. On March 14, 2000, US President Bill
Clinton and UK Prime Minister Tony Blair issued a joint statement supporting the Bermuda Principles,
asking scientists all around the world to follow these principles (The White House, 2000).
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lucrative – as aimed for, this structure makes the firm that discovers a dead end switch

secretly to the alternative research. For tractability, we assume that the return to this

alternative research is low but certain – so we dub the research line “safe”. We assume

that neither the research activity (i.e., which research line the firm is taking) nor the

dead-end discovery is publicly observable, while a success is observable (say, through

patenting or publication).

Our first contribution is to build a tractable and parsimonious model with the features

described above. Our model features both private outcomes and private actions, as is

common in real-world innovation competition. Hence, the analysis of the model requires

keeping track of two payoff-relevant beliefs: one about the nature of the risky research

and another about the position (research activity) of the competitor. First, to examine

the efficiency properties, we solve the model for the case of a single player and then

for the case with a social planner who has access to both firms’ private information.

We then focus on the decentralized case where both firms compete in a winner-takes-all

fashion. We characterize a pure strategy equilibrium in closed form and show that it is

unique if the game features enough asymmetry in firms’ innovation productivities and

payoffs of the research lines. The contrast between the social planner’s solution and

the decentralized equilibrium outcome is stark and discontinuous in the value of the

safe research due to strategic behavior: If the value of the safe research is zero, hiding

a dead end on risky research does not bring any strategic advantage. However, if the

value of the safe research is strictly positive, however small, the decentralized equilibrium

generates a drastically different equilibrium prediction where firms strictly prefer hiding

their dead-end findings. This has severe welfare effects.

Our second contribution is to identify two major sources of inefficiencies. The first

inefficiency arises when one of the firms discovers a dead end and switches silently to the

second (safe) research line and the opponent firm still keeps researching on the risky line,

even though the competitor had already found it to be a dead end. We call this the dead-

end inefficiency. We also identify a second inefficiency due to the information externality.

A firm that has not itself discovered any outcome, nor observed a patent from its rival,

could become discouraged about the risky research line and switch to the safe line, even

though the risky line is not a dead end, something that never occurs under perfect

information. We call this the early-switching inefficiency. In addition, we show that

when this inefficiency arises, it is always the firm with the lower innovation productivity

that switches earlier. While the dead-end inefficiency keeps firms going in a fruitless

direction when time and resources should have been used to make discoveries elsewhere
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(i.e., overinvestment in the wrong project), the early-switching inefficiency prevents firms

from concentrating on valuable research (i.e., underinvestment in a valuable project);

both effects slow down society’s technical progress overall, potentially resulting in a

sizeable welfare loss. Our numerical analysis suggests that even a very small amount of

competition on the safe line generates a very large welfare loss.

Our final contribution is to solve for the required compensation schemes that would

incentivize the firms to share their dead-end findings. Asymmetric treatment of winners

and losers in the standard patent system creates incentives for research secrecy and

concealment of dead-end information. Hence an important lesson we draw from our

analysis is that rewarding failed attempts is crucial for improving efficiency. Due to

the standard difficulties with decentralized information trading (See Arrow (1962) for

more on Arrow’s Information Paradox), we focus on a third party that ex-ante collects

monetary installments and rewards the revelation of dead ends as time progresses in

an incentive-compatible way. As a result, firms are incentivized to participate in the

scheme at any point in time, share their dead-end findings without any delay upon their

discovery, and follow the first-best decision rules. Notice that while private industries

currently reward only profitable, positive outcomes, “patents for dead-end discoveries”

already exist in some academic professions that publish impossibility results.

Related Literature Our framework combines elements from several literatures.

Innovation as the major source of long-run productivity growth has been the center of

a large endogenous growth literature. Monopolistic competition has been the key mech-

anism in these models (see the books by Grossman and Helpman (1993), Aghion and

Howitt (1997, 2009), Acemoglu (2008), and Jones and Vollrath (2013) for various mod-

els and applications). The main premise of these models is that there exists a potential

quality or technology improvement, yet the arrival of this improvement is stochastic

and affected by the R&D investment of the competing firms. Our paper contributes

to this literature by offering a new model in which the existence of a technological im-

provement is uncertain and therefore firms form their beliefs about the existence of the

improvement (or dead end) and update them by observing their competitors’ successful

findings (patents). Thus, our paper sheds new light on the understanding of the process

of innovation.4

More directly, our paper contributes to the branch of endogenous growth models with

4See also Jovanovic and Rob (1990) and Jovanovic and Nyarko (1996) for a different perspective on
the innovation process.
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step-by-step innovations (see, e.g., Aghion, Harris, Howitt, and Vickers (2001), Aghion,

Bloom, Blundell, and Griffith, and Howitt (2005), Acemoglu and Akcigit (2012), Peters

(2012)). In this class of models, two firms in each sector are engaged in a research com-

petition against each other repeatedly over time. The main feature of these models is

that the technology gap between the two competing firms is endogenously determined

through the research investments of the leader, follower or neck-and-neck firms. We

follow this literature by introducing a two-stage competition game. In our model, firms

start in a neck-and-neck position, and their research investment stochastically deter-

mines the technology gap between the competitors. Unlike in that literature, our model

features asymmetric information and therefore firms do not observe their competitor

but form a belief about it. Moreover, in those models, the technology leader’s successful

R&D pushes forward the technology frontier and the follower’s successful R&D effort

typically replicates the steps that were previously already taken by the leader.5 As a

result, the follower’s R&D effort is spent on wasteful duplications of earlier successful

findings of the leader. In our model, competing firms not only replicate each other’s

dead-end results as opposed to the successful findings, but also generate an unexpected

information externality that leads to the early-switching inefficiency – both types of

inefficiencies would have vanished, had private information been made public in our

model.

A series of studies have shown that competition among firms and their incentives have

important policy implications (see, for instance, Green and Scotchmer (1995), Nickell

(1996), Blundell, Griffith, and Van Reenen (1999), Scotchmer (2004), and Lerner (2012),

among many others). Our paper adds to this discussion by providing a new informational

perspective and shows that innovation competition under asymmetric information affects

the rival firms differentially, depending on their firm characteristics, which would then

have differential effects on welfare and the design of innovation policy.

On the technical side, our paper also contributes to the strategic bandit literature.

Manso (2011) takes an optimal contracting approach to a single-agent experimentation

problem and his insight is that an optimal incentive contract involves rewarding failure,

though the role of information is not the focus of the model. See also Nanda and Rhodes-

Kropf (2012) and the references therein.6 Strategic experimentation in teams has been

5One can also consider a model where both the leader’s and the follower’s innovations push the
frontier as in Acemoglu and Akcigit (2012); in that case, no duplication emerges.

6Multi-armed bandit problems have been previously applied to R&D environments. See Weitzman
(1979), Jensen (1981), Bhattacharya, and Chatterjee and Samuelson (1986). See also Pastorino (2011)
for a bandit problem with interdependent arms and its applications to R&D and labor markets. The
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studied in game theory literature; see, e.g. Bolton and Harris (1999), Bonatti and Hörner

(2011), and Thomas (2011) among many others. Free-riding rather than competition

is a common feature in these models. In these papers, early switching is due to the

assumption on outcome arrivals that ensure no news is bad news, while in our model,

it arises endogenously through competition; indeed, our model would not generate early

switching if there were perfect information. The bandit literature usually analyzes fixed

games with specific assumptions on the observability of actions and outcomes; we also

study efficient information sharing from a mechanism design perspective.

Finally, there is a literature that studies models of “buried treasures”. For instance,

Fershtman and Rubinstein (1997) investigate a static model of “buried treasures” in

which two agents simultaneously rank a finite set of boxes, exactly one of which contains

a prize, and subsequently commit to opening the boxes according to that order. There

is indeed a dead-end outcome in this model, but due to its static nature, dead-end

information is irrelevant and the model does not have a learning element at all. Relatedly,

Chatterjee and Evans (2004) offer a dynamic two-arm bandit model of R&D rivalry.7 In

their model, exactly one of the two arms contains a prize but firms do not know which

one. In contrast to our central focus here, there is no dead-end discovery in the paper.

As a result, searching is always desirable and the issue of dead-end replication does not

arise, which is exactly the focus of our paper.

The rest of the paper is structured as follows. Section 2 outlines the model. Section 3

characterizes the equilibrium in a decentralized market. Section 4 provides a numerical

example. Section 5 provides an extension to our core analysis and studies a mechanism

to incentivize information sharing. Section 6 concludes and also provides a discussion of

potential extensions.

2 Model

Research experimentation is an intrinsically dynamic process. Private outcomes and

private actions complicate equilibrium belief formation, especially in the presence of

stochastic arrivals on both research lines. In the sequel, we attempt to offer the simplest

possible dynamic model that captures the essence of the central trade-offs in such market

environments.

issue of dead-end discovery or replication does not arise in these papers.
7See also Das (2012) for a related study.
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2.1 Basic Environment

There are two firms in the economy that engage in research competition in continuous

time and maximize their present values with a discount rate r > 0. Firms can compete

on two alternative research lines: safe and risky. Each firm can do research on at most

one line at a time. For our purpose, we assume firms start the game with a competition

on the risky line.8 The arrival of outcomes in both lines follow Poisson arrival processes.

The safe research is commonly known to deliver a one-time lump-sum payoff π > 0

upon arrival of an outcome. The risky research has an additional uncertainty besides

stochastic arrival. An outcome in the risky research upon arrival could be good or bad.

A good outcome delivers a one-time lump-sum payoff of Π, while a bad outcome reveals

that the risky research line is a dead end, in which case the payoff is simply 0. Firms

share a common prior µ0 ∈ (0, 1) on the risky research being good.

Assumption 1 The risky research is ex-ante more profitable than the safe research:

µ0Π > π.

The two firms differ in their R&D productivities, which are captured in our model

by heterogeneous Poisson arrival rates of a discovery. In particular, firm n ∈ {1, 2}
has an arrival rate of λn > 0 independent of the research line and has to pay a cost

λnc > 0 per unit of time. We assume λ1 < λ2. We hence call them weak and strong

firms, respectively. We shall write Λ ≡ λ1 + λ2 as the total arrival rate of both firms.9

At time t, a firm can choose one of three options: (1) research on the risky line (2)

research on the safe line, or (3) exit the game with 0 payoff. A firm can change its actions,

but it cannot return to the research line it had left. This irreversibility assumption

simplifies the analysis of inference/belief-updating without affecting our main focus; it

comes at a cost: the calculation of a continuation payoff is more involved.

The firm’s research activity is private and unobservable to the public. However, a

successful discovery is public.10 Therefore, a firm is uncertain about which research line

8In Appendix E, we extend the model by allowing firms to choose simultaneously at t = 0 which line
to start with (for instance, firms can start with the safe line and switch to the risky line later in the
game). This extension complicates the problem, though they are not directly related to our motivation.

9The only asymmetry between firms is in terms of their arrival rates. Allowing other asymmetries
would only complicate the analysis without adding new insights. The role of asymmetry is to rule out
coordination equilibria that are not robust. Asymmetry is also a realistic condition from an empirical
point of view.

10For example, this could be because a patent is needed for a firm to receive the positive lump-sum
payoff. Note that in our model, a priori, the incentive for delaying a patent might emerge. Strategic
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its competitor is working on and whether the risky research line has been found to be a

dead end, unless it received an arrival on the risky research line or observed a patent by

the competitor.

To avoid technical issues associated with continuous-time games, we endow the

continuous-time game with two private stages k = 0, 1 for each firm in our formal

analysis.11 The game starts at stage 0. In the (common) stage 0, firm n takes the risky

research and chooses a stopping time Tn,0 ∈ [0,+∞] at the beginning of this stage. The

interpretation is that firm n intends to stay on the risky research line until Tn,0 as long

as nothing happens. The game proceeds to stage 1 for firm n at time t = Tn,0 or when

new information arrives at firm n. New information takes one of the following three

forms:

1. firm n makes a discovery on the risky research line,

2. firm n observes a good-outcome discovery from its competitor on the risky line, or

3. firm n observes a discovery from its competitor on the safe line.

In our game, once an outcome is discovered on a research line, no further positive

payoffs will be derived from it. Note that stage 1 is firm n’s private stage, because it

could be potentially triggered by a private dead-end observation.

If firm n enters its private stage k = 1 at t = Tn,0 when its stopping time expires

without observing the arrival of new information, then firm n chooses either “exit” or

the “safe research line” with a stopping time Tn,1. If firm n’s private stage k = 1 is

triggered by the arrival of new information, firm n chooses either “exit” or an available

research line together with a stopping time Tn,1. Note that there is a difference between

the two cases. In the latter case, even though new information arrives, firm n can still

patenting will be one of the extensions to our model discussed in Section 6.
11We allow a firm to react immediately, without a lag, to new information it obtains either by making

a discovery on its own or observing potential good discoveries by its opponent. This creates a well-
known modelling issue of timing of events in continuous time. The standard approach adopted in the
literature is to focus on Markov strategies that depend only on the beliefs over the risky line, which
leads to well-defined outcomes and evolution of beliefs. This approach will not resolve the difficulty
in our model with three actions, as a firm’s decision not only depends on its assessment of the risky
research line, but also on the availability of its outside options in a winner-takes-all competition. For
instance, the discovery by the opponent on either research line will not stop the game immediately but
obviously affects the continuation game. Moreover, in a multiple-line problem with irreversibility, we
need to keep track of the research lines that have been visited in the past (this is not necessary in a
one-line problem, as switching research lines ends the game). See also Murto and Välimäki (2011) for
further discussion.
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continue on the risky line if it has not abandoned it yet; in the former case, firm n

voluntarily gives up the risky line at Tn,0 conditional on no arrival of information.

The game for firm n ends if it ever exits, or at t = Tn,0+Tn,1, or if information arrives.

Note that the game only consists of at most two private stages for each firm because

an observable discovery will remove a research line from the choice set. We focus on a

perfect Bayesian equilibrium in pure strategies.12

To facilitate the reading of the paper, we summarize the notation that appears fre-

quently in the main text.13

Primitives Values

π safe return wSSn firm n’s value from competing on the safe line

Π risky return wSS the joint value from cooperating on the safe line

µ0 prior on the good risky line wSn firm n’s value from monopolizing the safe line

λn firm n’s arrival rate wRn firm n’s value from monopolizing the risky line

Λ λ1 + λ2 wRRn the joint value from cooperating on the risky line

c flow cost per unit of arrival

Beliefs

µtn firm n’s beliefs over the risky line at time t

βtn firm n’s period-t belief that the competitor is on the risky line

btn firm n’s period-t belief that the competitor is on the risky line conditional on the line’s being bad

Table 1

2.2 The Safe Line

The core of our idea is that competition on the safe research prevents the disclosure

of socially efficient information regarding the risky research line. To understand the

dynamics of this competition and the effects of the existence of the safe research line,

we first shut down the risky research line and consider only the safe research with

zero outside options; our findings here will be used later to determine the equilibrium

continuation payoffs. In the sequel, we characterize the strategic behavior in three

different market structures: monopoly, cooperation, and competition.

12In contrast, pure strategy equilibria usually do not exist in existing free-riding bandit models.
13In choosing this notation, the superscript SS indicates there are two firms on the safe line; the

superscript S indicates that only one firm is on the safe line. The subscript n indicates that the profit
is attributed to firm n.
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2.2.1 Monopoly

Write firm n’s monopolistic value from the safe line as wSn . Assuming that the firm’s

strategy is to work on the line until a discovery is made, we can express wSn recursively

using the following continuous-time Bellman equation:

wSn = −λncdt+ e−rdt
[
λndtπ + (1− λndt)wSn

]
, (1)

where the first term on the right-hand side is the research cost; the second term is the

discounted expected instantaneous return – a lump-sum payoff π is received with an in-

stantaneous probability λndt; and the third term is the discounted expected continuation

payoff.

The Bellman equation immediately gives us

wSn =
λn

λn + r
(π − c) . (2)

This expression is intuitive. By working on the research line, firm n derives a payoff of

λn (π − c) per unit of time (flow payoff), with effective discounting λn + r. From this

expression, the firm will research on the safe line if π > c.

Assumption 2 π > c.

It also transpires from the monotonicity of λn
λn+r

in λn that the strong firm enjoys

larger monopolistic profits.

2.2.2 Cooperation

Next, we consider the cooperative benchmark in which firms maximize their joint value,

wSS. The Bellman equation is

wSS = −Λcdt+ e−rdt
[
Λdtπ + (1− Λdt)wSS

]
.

Therefore the joint value of cooperation is

wSS =
Λ

Λ + r
(π − c) ,

which is positive under Assumption 2. Comparing this with expression (2), the firms

now work as one team and hence the arrival rate is Λ = λ1 + λ2 and the the total flow

10



cost is Λc. Since Λ
Λ+r

is strictly increasing in Λ, all-firm cooperation is welfare improving

over any subset of firms’ cooperation, including monopoly as a special case.

2.2.3 Competition

Now consider the winner-takes-all competition between the two firms. Denote firm n’s

valuation of the safe research line under competition as wSSn . Assuming that the two

firms work on the research line until a discovery is made, the Bellman equation gives us

the following intuitive recursion:

wSSn = −λncdt+ e−rdt
[
λndtπ + (1− λndt− λ−ndt)wSSn

]
, (3)

where the third term is the discounted continuation payoff upon no discovery by either

firm n or firm −n. The Bellman equation immediately gives us

wSSn =
λn

Λ + r
(π − c) . (4)

Comparing with the single-firm case (2) , the extra term λ−n in the denominator repre-

sents an extra discounting resulting from the competition. Once again, firm n’s strategy

is optimal if Assumption 2 holds. It is clear that wSSn < wSn , meaning that the competi-

tion lowers a firm’s payoff. Note that wSS = wSSn +wSS−n is the sum of firms’ value under

competition. The following proposition summarizes this result:

Proposition 1 When the research line has a known return, competition is efficient.

3 Equilibrium Analysis of the Model

Now we turn to the full model and analyze dynamic competition with two research

lines. We again proceed with three market structures: monopoly, cooperation, and

competition.

3.1 Monopoly

If firm n has only the risky research line available, then its monopolistic value can be

found using the Bellman equation

wRn = −λncdt+ e−rdt
[
λndtµ

0Π + (1− λndt)wRn
]
.

11



Note that there is no belief updating in the monopolistic problem. Hence wRn =
λn
λn+r

(µ0Π− c) . If firm n has only the safe research line available, then similarly its

monopolistic value is wSn = λn
λn+r

(π − c) .
Now when the single firm n has two research lines, it will choose when to switch to

the safe research line. Firm n’s monopolistic value is given by the Bellman equation,

vn = −λncdt+ e−rdt
[
λndt

(
µ0Π + wSn

)
+ (1− λndt) vn

]
, (5)

where µ0Π+wSn on the right-hand side is the expected lump-sum payoff upon an arrival:

firm n receives µ0Π from the risky research and wSn from monopolizing the safe research

line. The Bellman equation immediately gives us

vn =
λn

λn + r

(
µ0Π− c+ wSn

)
= wRn +

λn
λn + r

wSn

This expression is intuitive. Firm n’s expected monopolistic profit from the risky research

line is wRn , and it also receives the monopolistic profit wSn from the safe research line with

an arrival rate of λn and an effective discount rate of λn + r.

3.2 Cooperation: Planner’s Problem

We now consider the case in which firms behave cooperatively to maximize joint value.

Several observations are in order.

1. Firms should share all the information to avoid wasteful research efforts.

2. Let wSS and wRR be the joint value of the two firms if they work only on the safe

line and only the risky line, respectively. Using an argument similar to that in the

previous section,

wRR =
Λ

Λ + r

(
µ0Π− c

)
and wSS =

Λ

Λ + r
(π − c) .

By Assumptions 1–2, we have wRR > wSS > 0.

The planner’s strategy space is larger than the monopolist’s problem. In particular,

the problem involves the optimal allocation of joint efforts. Therefore, a more interesting

question is how to allocate the joint efforts and, in particular, whether splitting the

research lines between the two firms is more desirable. We shall show that the first best
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allocation of efforts requires that both firms work on the risky line until a discovery is

made (which is made public immediately) and then both switch to the safe line. Splitting

the task is never optimal.

Proposition 2 Under Assumptions 1–2, the strategy that maximizes joint value is for

both firms to work on the risky line together until a discovery is made, and then both

switch to the safe line. The joint value is given by

V = wRR +
Λ

Λ + r
wSS, (6)

and if firm n is awarded the good discovery it makes, then its value is

Vn =
λn
Λ
wRR +

Λ

Λ + r
wSSn . (7)

Proof. See Appendix A.

The interpretation of the joint value under this strategy is as follows: Recall that

wRR is the joint value of researching only on the risky research until an outcome is found.

When the firms follow a strategy of researching on the risky line and then switching to

the safe line upon discovery, this also adds the continuation value of the safe research on

top of wRR. A discovery on the risky line arrives at the rate Λ and the firm’s continuation

payoff from the safe research upon arrival is simply wSS.

Proposition 1 and Proposition 2 together imply that absent either risky innovation

or market competition, the R&D game has an efficient outcome. Next, we show that

the interaction of risky innovation and competition leads to undesired inefficiencies.

3.3 Competition in a Decentralized Market

When it comes to competition, which research line a firm is working on is private infor-

mation and only the good discovery is observable. We now highlight how the ingredients

in our model affect the learning dynamics.

First, we model two types of outcomes because such a model is more applicable to

the prevalence of trial-and-error types of research competition. Uncertainty about the

type of an opponent’s discovery is crucial for our learning dynamics generated by the

dead-end discoveries.

Second, the independence of the arrival rates in the binary states implies that there

will be no belief updating if research activities and dead-end findings are public. As
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a result, non-trivial belief updating is entirely driven by the unobservability of dead-

end discoveries and private research actions. This is precisely the focus of our analysis.

Moreover, this independence assumption implies that efficiency is attainable under per-

fect information but not otherwise. Hence, the independence assumption isolates and

highlights the trade-off in the applications of our main interest.14

Third, arrival on the safe line is also stochastic, which affects the learning dynamics

indirectly. Upon observing an opponent’s discovery on the safe line, a firm can make

an inference about the opponent’s potential past observations on the risky line, and the

extent of this inference in equilibrium turns out to depend crucially on the timing of the

safe line discovery. The observational structure in our model is mixed. Actions are not

observable unless they lead to a good discovery, but at that point, the competition on

that line is ended.

We shall now demonstrate how learning and private beliefs become tractable in our

model.

3.3.1 Learning and Private Beliefs

Write µtn as firm n’s private belief that the risky research line contains a good outcome

at time t (which obviously depends on the realization of private and public histories).

Write βtn as the probability that firm n assigns to his opponent, firm −n, being on the

risky line at time t. Denote by btn the probability that firm n assigns to his opponent

being on the risky line at time t conditional on the fact that the risky line is bad.

Suppose both firms start on the risky line and switch only upon an observation. If

firm n does not observe anything – neither from itself nor from its opponent – from t to

t+ dt, firm n will update µtn using Bayes’ rule as follows:

µt+dtn =
µtn (1− λ−ndt) (1− λndt)

µtn (1− λ−ndt) (1− λndt) + (1− µtn) [1− (1− btn)λ−ndt] (1− λndt)

=
µtn (1− λ−ndt)

µtn (1− λ−ndt) + (1− µtn) [1− (1− btn)λ−ndt]
.

Note that the final expression is independent of (1− λndt) , that is to say, firm n does

not learn from the fact that it does not observe anything from its own research. This is

because the arrival rate λn is independent of the type of the outcomes (see the discussion

above).

14We discuss the relaxation of this assumption in the conclusion.
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The interpretation for the second equality above is as follows. The numerator mea-

sures the probability that the opponent does not make a (public) discovery and the risky

line is good. The denominator measures the probability that firm n does not observe any-

thing from its opponent – when the risky research is a dead end, the only observable dis-

covery from its opponent is on the safe line, which occurs with probability (1− btn)λ−ndt,

and hence the probability of observing nothing from −n is 1− (1− btn)λ−ndt.

From the above Bayesian updating, we derive the law of motion for private beliefs15:

µ̇tn = −µtn
(
1− µtn

)
btnλ−n. (8)

The critical feature of the learning is that when the opponent discovers faster, i.e.,

when λ−n is larger, then firm n learns faster. The intuition is as follows. As λ−n increases,

the opponent will discover an outcome on the risky research sooner. Therefore, if no

good outcome is observed from the opponent over a fixed period of time, it is more likely

that the opponent actually found a dead end. Therefore, everything else equal, the weak

firm becomes more pessimistic than the strong firm on the risky research over time with

no discovery.

If firm n knows that a bad (dead-end) outcome has arrived before t, then µtn = 0; if

n knows that the good outcome has occurred before t, then µtn = 1.

Learning with stopping strategies Suppose both firms work on the risky line

before T > 0 until a discovery is made. How will the private beliefs evolve? First, at any

t ≤ T, if firm n has not observed anything from its opponent or from its own research,

then

βtn =
e−λ−nt

e−λ−nt + (1− µ0)λ−nte−λ−nt
=

1

1 + (1− µ0)λ−nt
. (9)

We need to interpret this formula: e−λ−nt is the probability that the opponent firm −n
does not make any discovery by time t; (1− µ0)λ−nte

−λ−nt is the probability that the

opponent makes one dead-end discovery and that is the only discovery by time t; since

the arrival rate is λ−i, the probability of one and only one arrival by time t is∫ t

0

e−λ−isλ−ie
−λ−i(t−s)ds = λ−ite

−λ−it.

15To see this, subtract µti from both sides of Bayes’ formula, divide them by dt and then take the
limits.
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The denominator in (9) is the total probability of no observation from the opponent,

which consists of two pieces: the probability of no arrival, e−λ−nt, and the probability of

only one private (dead-end) arrival (1− µ0)λ−nte
−λ−nt. The opponent will stay on the

risky line only when there is no arrival by t ≤ T. This is reflected in the numerator of

(9) .

Similarly, if firm n has not observed anything from its opponent and from its own

research, then conditional on the risky research having a dead end,

btn =
e−λ−nt

e−λ−nt + λ−nte−λ−nt
=

1

1 + λ−nt
. (10)

Note that btn is conditional on the risky research having a dead end, and hence, (1− µ0)

is excluded from Bayes’ formula (9) .

Substituting equation (10) into the filtering equation (8) , we obtain

µ̇tn = −µtn
(
1− µtn

) λ−n
1 + λ−nt

. (11)

As this formula demonstrates, even though the rate of discovery λ−n is constant over time

in our model, the rate of learning from no observation, λ−n
1+λ−nt

, changes hyperbolically

in time. The following lemma provides the explicit form for the belief.

Lemma 1 Under the stopping strategies described above, the belief of firm n at time

t ≤ T that the risky research has a good outcome is

µtn =
µ0

1 + (1− µ0)λ−nt
. (12)

Proof. See Appendix B.

Now, consider the case in which firm n has not discovered anything from its own

research but observes the opponent’s discovery on the safe research at t ≤ T. Given the

stopping strategy that firm −n adopts, firm n could infer that the opponent has already

discovered a dead end on the risky research previously and has since switched to the

safe research. Therefore, in this case, µtn = 0.

Next, consider the case in which firm n has not discovered anything through its own

research but observes the opponent’s discovery on the safe research at t > T. Then there

is no updating µtn = µTn , and in fact, this observation is valid as long as firm −n switches

at time T, and it does not matter when firm n switches. This observation is immediate
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from the following:

µtn =
µTne

−Λ(t−T )

µTne
−Λ(t−T ) + (1− µTn ) e−Λ(t−T )

= µTn .

Finally, if firm n has not discovered anything from its own research at t > T, its

belief µtn is still µTn . Note that there is a very interesting discontinuity: when firm −n
makes a discovery on the safe research at or before T, then µtn jumps down to 0, while,

if the discovery is made right after T, the belief is constant at µTn , as if nothing had

occurred. This discontinuity illustrates the intricacy of the belief updating process and

strategic incentives in our model.

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (T = 36)

Beliefs on the Opponent Being on the Risky Arm

 

 

Belief of Firm 1
Belief of Firm 2

0 10 20 30 40 50 60 70 80
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Time (T = 36)

Beliefs on the Goodness of the Arm

 

 

Belief of Firm 1
Belief of Firm 2

Figure 1A: btn Figure 1B: µtn

With the above discussion as a precursor, Figures 1A and 1B depict the evolution

of beliefs, btn and µtn, conditional on no arrival under the following pair of stopping

strategies: until an observation reveals the nature of the risky line, firm 1 stays on the

risky line until T > 0, and firm 2 sticks to the risky line.16

Of course, a priori, there is no guarantee that the equilibrium evolution of beliefs will

be as clean as conjectured above. We confirm this in the next section.

3.3.2 Equilibrium

Recall that we assume firm 1 is weaker than firm 2 in the sense that λ1 < λ2.

Proposition 3 Under Assumptions 1–2, there is a pure strategy perfect Bayesian equi-

librium in which both firms start on the risky research and switch silently to the safe line

upon a dead-end discovery. In this equilibrium,

16The parameters come from a simple numerical exercise provided in section 4.
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• unless an outcome is observed, the strong firm will not stop, and the weak firm

(firm 1) will switch to the safe research line at

T =
1

(1− µ0)λ2

[
µ0Π

π

r + Λ

r + Λ− λ1

(
π−c
π

) − 1

]
+

λ1
π−c
π

(r + Λ)
(
r + Λ− λ1

π−c
π

) ,
• if the first news that a firm observes from its opponent before T is a good outcome

of the risky research, then both firms switch to the safe research,

• if the first news that a firm observes from its opponent before T is an outcome on

the safe research, then both firms exit,

• if firm 2 observes a good outcome on the risky research after T, it will switch to

the safe research if it is still available.

Finally, if there is enough asymmetry across research lines and players, i.e., µ0Π
π

and λ2

λ1
are large enough, then the above describes the unique pure strategy equilibrium

outcome.

Proof. See Appendix C.

In contrast to the planner’s problem, this result shows that a small prize on the

safe research changes the incentives of competing firms discontinuously and distorts

the market outcome. In this equilibrium, the weak firm abandons the risky research

too early compared to the first best scenario in which both firms stay on the risky

research until a discovery is made. Indeed, this is the case even when λ1 approaches λ2.

This equilibrium also reveals that the two asymmetric firms generate different types of

inefficiencies absent from a discovery on the safe line. First, the strong firm generates

wasteful duplicative R&D from the time that the weak firm discovers a failure until it

discovers the failure itself or the weak firm discovers the safe line before T . Second, the

weak firm generates wasteful R&D only from the time that the strong firm discovers a

failure until its switching time T or the time at which the strong firm discovers the safe

line. Moreover, the weak firm generates inefficiency from the time it switches until the

strong firm discovers an outcome in the risky line, due to early switching. In short, the

weak firm endures two kinds of inefficiencies: early-switching and dead-end inefficiencies,

while the larger firm endures only the dead-end inefficiency. We offer a more detailed

analysis of welfare, as well as other effects of decentralized competition, via a numerical

example in the next section.
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We also want to comment on the role of asymmetry. If firms are symmetric or payoffs

on both research lines are close, we can construct an equilibrium where firms coordinate

on who switches research lines, and mixed strategy equilibria are also possible.

The following proposition provides a comparative statics analysis with respect to the

parameters of the model:

Proposition 4 The equilibrium stopping time T is increasing in µ0 and Π, and decreas-

ing in λ2 and π.

Proof. See Appendix C.

These comparative statics are intuitive. As µ0 and Π become larger and π becomes

smaller, the risky line becomes more attractive. However, when λ2 becomes larger, the

weak firm updates its belief downwards faster. The response of T with respect to λ1 is

non-monotonic as it affects both the weak firm’s payoffs in both lines simultaneously.

4 A Numerical Example

In this section, we provide a numerical analysis, taking pharmaceutical research com-

petition as an example. Due to its simplicity, our goal is to illustrate the behavior and

welfare implications of the model and highlight its general quantitative features for rea-

sonable parameter values. Our model has 7 parameters: r, µ0, Π, π, c, λ1 and λ2. Table

2 summarizes the parameter values in our example.

Parameter Values (Monthly) and Equilibrium Stopping Time

r µ0 λ1 λ2 c Π π T

0.4% 17% 2.6% 6.5% $63 million $1.4 billion $87 million 36 months

Table 2

These parameters come from a simple calibration exercise in which we rely on reports

by the Pharmaceutical Research and Manufacturers of America (PhRMA, 2011). The

details of the parameter choices are described in Appendix D.

4.1 Summary Statistics

Table 3 summarizes the key variables given the parameters in Table 2. Each firm n starts

on the risky line with an initial belief µ0
n = 1/6. As time elapses, firms receive outcomes

according to the Poisson process. Note that firm 2 observes an outcome roughly 2.5 times
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more frequently than the weak firm 1 (λ2/λ1). Since firm 2 receives an outcome faster,

its average experimentation time on the risky line is shorter by around 13.8 months as

opposed to 16.1 months for firm 1. Note that this is despite the fact that firm 1 follows

a cut-off rule according to which it switches to the safe line at T = 36 if it does not

observe an outcome either from itself or from its competitor.

Comparison of Decentralized and Planner′s Solutions

Moment Decentralized Planner’s

Average time to develop a risky drug 14.9 years 11 years

Average cost to develop a risky drug $499 million $382 million

Fraction of risky drugs invented by firm 1 28% 29%

Average risky experimentation by firm 1 16.1 months 10.9 months

Average risky experimentation by firm 2 13.8 months 10.9 months

Average safe experimentation by firm 1 9.1 months 10.9 months

Average safe experimentation by firm 2 11.7 months 10.9 months

Average wasteful risky research investment by firm 1 9.6 months 0

Average wasteful risky research investment by firm 2 11.4 months 0

Table 3

The associated beliefs under this strategy were already depicted in Figures 1A and

1B.
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Figure 2A depicts the distribution for experimentation durations on the risky line in

each trial. The first point to note is the spike at t = 35. In almost 12% of the trials, firm

1 does not observe any outcome and follows its equilibrium cut-off strategy, switching
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to the safe line at t = T . Second, compared to firm 1, firm 2’s distribution has more

mass at lower durations. This is due to the fact that firm 2 has a faster arrival rate,

which allows it to discover the true nature of the risky line more quickly. Finally, in

the planner’s economy, information sharing increases the effective arrival rate for both

firms (λ1 + λ2) . This shifts the distribution of experimentation durations to the left and

hence reduces the average time spent on the risky line to 10.9 months, which is 32% and

21% lower than the average experimentation times for firms 1 and 2, respectively.

Next, we study the time that firms spend on risky research between two consecutive

risky drug inventions. Figure 2B plots the results of the numerical simulations. In

the decentralized economy in which firms have private information about their R&D

outcomes, firms spend on average 14.9 years on the risky line per drug. Note that some

of this time is spent on research in a line that the competitor already knows is a dead

end. The planner’s economy avoids this problem, and firms spend 11 years -that is 26%

less time- on the risky line per drug.
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It is also important to understand the sources of inefficiencies in the economy. The

decentralized economy differs from the planner’s economy in two major dimensions.

First, when a firm discovers a dead end on the risky line before T, it switches to the safe

line without sharing this information with the competitor. As a result, the competitor is

wasting R&D dollars on a research line that is already known to be a dead end. This is

what we call the dead-end inefficiency. Figure 3A plots the distribution of the number

of periods spent on research in a dead end. Note that the maximum wasteful R&D

by firm 1 has an upper bound of T , due to the cut-off strategy, which mitigates the

welfare loss (however, as will be shown below, this strategy increases the second type of

inefficiency). Since firm 2 learns the true nature of the line faster, firm 1 spends more
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time on a dead-end risky line before T. On the other hand, while firm 2 incurs wasteful

R&D spending less frequently before T, it is the only firm that can potentially stay

longer on a dead-end research line. The average dead-end replication time is 9.6 months

for firm 1 and 11.4 for firm 2.

Figure 3B describes the second source of inefficiency: early switching. The planner

prefers both firms to experiment until an outcome is found on the risky line. However,

in the decentralized economy in which firms do not observe the private information of

their competitors, they become pessimistic about the outcome on the risky line, as time

elapses. In equilibrium, firm 1 switches to the safe line at time T even in situations where

firm 2 has not received any information about the risky line by then. This generates

missing experimentations by firm 1 due to early switching, which are plotted in Figure

3B.

Finally, we illustrate the monetary cost of the problem in Figure 4, which plots the

distribution of the total amount of R&D dollars spent between two consecutive risky

drugs. In the decentralized economy, firms spend on average $499 million on a risky drug,

a significant portion of which is wasted due to the two aforementioned inefficiencies.

Firms spend on average $382 million in the planner’s economy, which is 23% less.
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The following section discusses the sources of these inefficiencies in greater detail.
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4.2 Two Types of Inefficiencies: Dead End and Early Switching

In this section, we focus on two different types of inefficiencies demonstrated in our

equilibrium. We consider three regimes: the first best regime (FB) is the cooperation

setup with information sharing, the decentralization regime (D) is the decentralized

market without information sharing, and the intermediate regime (I) has full information

sharing, but artificially requires the weak firm 1 to stop at T , the stopping time in regime

D.

Let us denote the welfare associated with the regime α as Wα, where α ∈ {FB,D, I} .
Therefore, WFB − WI is the welfare loss due to early switching only (excluding the

information externality upon the discovery of bad news), and WI −WD is the welfare

loss due to the information externality – socially efficient information of a dead-end

finding is not disclosed.

From Proposition 2, we know that WFB = wRR + Λ
Λ+r

wSS. Since the intermediate

regime differs from the first-best regime only after T , we have

WFB −WI = λ1

[(
µ0Π + wSS

)
−
(
π + wR2

)] e−(Λ+r)T

Λ + r
,

where λ1

(
µ0Π + wSS

)
and λ1

(
π + wR2

)
are firm 1’s contribution to the total welfare

(measured in flow payoffs) when firm 1 works on the risky line and the safe line, respec-

tively; e−ΛT is the probability that a discovery has not been made on the risky research

by T.

Finally, note that the difference between regime (I) and regime (D) arises only when

the risky research is a dead end. In this case, a dead-end discovery is not observable

to the opponent, unless a subsequent discovery on the safe line is reported before T.

Therefore, we need again to consider the probability that only one discovery is made by

the same firm n before t, which is given by Pr (one arrival before t) = λnte
−λnt. Using

this fact, we obtain17

WI −WD =
(
1− µ0

) λ1λ2

r + Λ

[
2

π

r + Λ

(
1− e−(r+Λ)T

)
− Te−(r+Λ)T

(
π − λ1c

r + λ2

)]
Table 4 summarizes the numerics. Note that firms do not want to share the dead-end

discovery on the risky line because of the competition on the safe line, which has a per

unit of arrival rate net return π − c.

17This follows from: WI−WD =
(
1− µ0

){ ∫ T
0
λ2te

−λ2te−(r+λ1)tλ1πdt+
∫ T
0
λ1te

−λ1te−(r+λ2)tλ2πdt∫∞
T
λ1Te

−λ1T e−(r+λ2)t
[
e−λ1(t−T )λ2π +

(
1− e−λ1(t−T )

)
λ2c
]
dt

}
.
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Welfare Analysis

π − c WFB−W I WI−WD WFB−WD WFB
WFB−WD

WFB

Level of
Competition

Early-switching
Inefficiency

Dead-end
Inefficiency

Total
Inefficiency

First-best
Welfare

Percentage
Inefficiency Loss

$1 $0.024 m $19.3 m $19.3 m $162.9 m 12%

$1 m $0.026 m $19.5 m $19.6 m $163.8 m 12%

$10 m $0.044 m $21.9 m $22.0 m $172.0 m 13%

$30 m $0.364 m $31.7 m $32.1 m $254.5 m 13%

Table 4

The finding is striking. We notice that even if the net return on the safe line is only

$1, the incentive of preventing the opponent from competing for this $1 causes a total

efficiency loss of $19.3 million, which amounts to 12% of the first-best welfare level! The

logic, as we have already pointed out, is that this $1 completely changes the incentives to

share private information. Without it, the firm does not lose anything from information

sharing.

Remark Note that the dead-end inefficiency is much larger than the early-switching

inefficiency. We should not be optimistic about the early-switching inefficiency.

Indeed, early-switching delays the discovery on the risky line by almost 4 years for

the same set of parameters as we demonstrated previously. If consumers’ welfare

is taken into account, then early-switching will have a much larger implication.

5 Extension: Incentivizing Information Sharing

In this section, we shall consider an extension to our core analysis and explore the pos-

sibility of a mechanism that incentivizes information sharing. It should be emphasized

that we do not suggest that our mechanism is practical, because, as in the theoretical

mechanism design literature, our mechanism depends on the details of the model; rather,

we want to investigate theoretically the outreach and the limits of the simple idea of

trading dead-end discoveries. The idea is to create a centralized institution to reward

dead-end discoveries. This is the counterpart of the prevailing practice of rewarding

good-end discoveries through patents and prizes. After all, many professions publish

and reward dead-end discoveries and impossibility results. We focus on the case where

outcomes are verifiable. Similar to good outcome patenting where firms prove that their
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experiments lead to the solution of a problem (e.g., a drug curing a disease), we assume

that firms can provide their research results and data to prove their dead-end findings

(similar to the data policy of academic journals and proofs of impossibility results).

Remark One important question to answer is why there is a need for a mechanism

designer instead of allowing firms to trade dead-end discoveries in a decentralized

market or to sign contracts among themselves. This is the core of the classic

problem of information trading, as pointed out by Arrow (1962) in an argument for

patenting through centralized institutions. Information is different from standard

commodities. The buyer of information, once the buyer learns the information or

verifies it, obtains what he needed in the first place and has no incentive to pay

anymore. This problem discourages information trading in a decentralized market.

Therefore, a mediator is often necessary for the sale of information.

5.1 Feasible Mechanisms

The mechanism must be dynamic in nature to accommodate the stochastic arrival.

Ideally, a dynamic mechanism that enforces information disclosure should satisfy the

following properties:

• budget balance,

• a firm at any point in time should be allowed to walk away from the mechanism.

That is, we face a design problem in which firms cannot commit to their future

actions,

• a firm should not walk away from the mechanism at some point and then come

back in the future to take advantage of the information accumulated during its

leave, and

• a dead-end outcome should be made public immediately upon its discovery with

no delay.

One particular issue with this type of mechanism is that if a firm walks away (off the

equilibrium path), the other firm is left wondering what the firm has actually observed

that made it leave; there is a myriad of off-path beliefs, and each belief can potentially

support a different decentralized continuation equilibrium play. Thus, the parameters of

the mechanism will depend on the specification of off-path beliefs. Note, however, that
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this issue must emerge in any dynamic mechanism design problem where agents could

receive new information over time when agents cannot commit to their plan of actions

at time 0.

The off-path beliefs have to be realistic and robust to perturbations. Indeed, we could

think of perturbation of firm strategies in the game-theoretic tradition of trembling-hand

perfection, or alternatively, we can think of a rare, random exogenous shock that forces

a firm to leave the mechanism. In the latter case, exiting the mechanism becomes

an on-path behavior and beliefs follow directly from standard Bayes’ updating. These

considerations lead us to adopt the following specification of off-path beliefs:

• If a firm quits the mechanism at some point, which is off the equilibrium path,

then the other firm’s belief does not suddenly change.

We shall design a mechanism with these properties. The mechanism simply states

the following: At any time t, each firm can report a failure it discovered to a mediator;

if firm n reports a failure, then firm −n will be liable to pay ptn to firm n, and the

mechanism concludes. For example, firm n can deposit ptn in a neutral account at time t

managed by the mediator. Our goal is to find the range of ptn that satisfies the incentive

conditions.

5.2 Incentives

Henceforth we shall restrict our attention to a constant price path such that ptn = pn.

5.2.1 No-delay Condition

Suppose firm n has an unreported dead-end discovery at time t (this discovery can be

made right before t, or this discovery could have been made a while ago, which is off the

equilibrium path). If firm n reveals the failure, then besides ptn it will get a continuation

payoff wSSn = λn
Λ+r

(π − c) .
Reporting immediately at t should lead to a higher payoff than delaying it to t + h

for any h > 0. That is,∫ t+h

t

e−
(Λ+r)(τ−t)

[−λnc+ λn (π + pn) + λ−n (wssn − p−n)] dτ ≤ pn + wSSn (13)

holds for any h > 0. Since pn ≥ 0, the RHS of (13) is strictly positive. Therefore,

whenever the integrand in the LHS is negative, then (13) holds trivially. If the integrand
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is strictly positive, the LHS is strictly increasing in h. Therefore, that (13) holds for any

h is equivalent to

[−λnc+ λn (π + pn) + λ−n (wssn − p−n)]
1

Λ + r
≤ pn + wSSn .

If instead −λnc + λn (π + pn) + λ−n (wssn − p−n) > 0, then since the LHS of (13) is

increasing in h, (13) is equivalent to

[−λnc+ λn (π + pn) + λ−n (wssn − p−n)]
1

Λ + r
≤ pn + wSSn .

This can be simplified into

λn
(
π − c− wSSn

)
≤ r

(
pn + wSSn

)
+ λ−n (p−n + pn) .

The intuition for this expression is as follows. By delaying, firm n loses the interest on(
pn + wSSn

)
, and in the case of the opponent’s discovery, firm n loses the transfer pn and

has to make an additional payment p−n to the opponent. This is the RHS. Meanwhile,

the firm makes an additional gain, which is equal to the benefit from monopolizing the

safe line: λn
(
π − c− wSSn

)
.

Substituting wSSn into the above expression and simplifying, we have

λ−nλn
Λ + r

(π − c) ≤ (λ−n + r) pn + λ−np−n. (14)

5.2.2 No Walk-away upon Discovery of a Dead End

At any time, a firm should not leave the mechanism to start a decentralized competition.

Let us denote firm n’s value of walking away after the discovery of a failure at t as vSn,t,

which is the value of monopolizing the safe line until firm −n switches to the safe line.

Note that for firm 1, vS1,t = vS1,0 because firm 2 will never switch before a discovery.

Therefore,

vS1,0 =

∫ ∞
0

e−(Λ+r)t
[
λ1 (π − c) + λ2w

SS
1

]
dt = wSS1 +

λ2

Λ + r
wSS1 .

For firm 2, vS2,0 ≥ vS2,t because firm 1 will switch at a finite time T even without a
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discovery. Therefore we can write vS2,0 as

vS2,0 =

∫ T

0

e−(Λ+r)t
[
λ2 (π − c) + λ1w

SS
2

]
dt+

∫ ∞
T

e−(Λ+r)tλ2 (π − c) dt

= wSS2 +
[
1− e−(Λ+r)T

] λ1

Λ + r
wSS2 .

The value of sharing the information is wSSn + pn. Therefore it must be that wSSn + pn ≥
vSn,0. Hence, we have another lower bound: pn ≥ vSn,0 − wSSn . Therefore,

p1 ≥
λ1λ2

(Λ + r)2 (π − c) and p2 ≥
[
1− e−(Λ+r)T

] λ1λ2

(Λ + r)2 (π − c) . (15)

5.2.3 Participation Constraint

The third condition is the participation constraint before any discovery. Let V D
n be firm

n’s value in the decentralized market, n = 1, 2. Then the participation constraint is

given by

V D
n ≤

{
µ0
∫∞

0
e−(Λ+r)t

[
λn
(
Π− c+ wSSn

)
+ λ−nw

SS
n

]
dt

+ (1− µ0)
∫∞

0
e−(Λ+r)t

[
λn
(
pn − c+ wSSn

)
+ λ−n

(
wSSn − p−n

)]
dt

}
.

The left-hand side is always V D
n since when firm n walks away before any discovery,

the game will resume as if the decentralized game has started at time t = 0 due to no

updating until that point in the centralized market. This condition can be simplified to

(
1− µ0

) λnpn − λ−np−n
Λ + r

≥ V D
n −

[
λn

Λ + r

(
µ0Π− c

)
+

Λ

Λ + r
wSSn

]
.

By Proposition 2, λn
Λ+r

(µ0Π− c) + Λ
Λ+r

wSSn on the right-hand side is firm n’s payoff Vn

under full information sharing. Therefore, the condition can be rewritten as

(
1− µ0

) λnpn − λ−np−n
Λ + r

≥ V D
n − Vn.

This expression is very intuitive. The left-hand side is the expected net transfer firm n

receives from participating in the mechanism: there will be transfer only when the risky

line has a dead end that occurs with a prior probability (1− µ0) ; on the equilibrium

path, the belief will never update because of full information sharing; firm n receives a

transfer pn at a rate λn and makes a transfer p−n at a rate λ−n, and hence, the discounted

value of the net transfer on a dead-end line is λnpn−λ−np−n
Λ+r

. The right-hand side is the
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value firm n gives up by participating in the mechanism: it obtains a value Vn under

full information sharing enforced by the mechanism, but V D
n in a decentralized market.

λnpn − λ−np−n ≥
Λ + r

1− µ0

(
V D
n − Vn

)
.

This condition holds for n = 1, 2, and hence, we obtain an upper bound and a lower

bound for λ1p1 − λ2p2:

K ≤ λ1p1 − λ2p2 ≤ K.

where

K ≡ Λ + r

1− µ0

(
V D

1 − V1

)
and K ≡ Λ + r

1− µ0

(
V2 − V D

2

)
.

It is feasible only when K ≤ K. This condition is equivalent to

V D
1 + V D

2 ≤ V1 + V2.

The right-hand side is the first-best joint payoff under full information. The left-hand

side is the sum of values of the firms in the decentralized economy. Clearly, this condition

is always satisfied.

5.3 Efficient Mechanism

Now, we summarize the two conditions on the prices:

1. No-delay condition:

λ−nλn
Λ + r

(π − c) ≤ (λ−n + r) pn + λ−np−n, for n = 1, 2. (16)

2. No-walk-away with a dead end:

p1 ≥
λ1λ2

(Λ + r)2 (π − c) and p2 ≥
[
1− e−(Λ+r)T

] λ1λ2

(Λ + r)2 (π − c) . (17)

3. Participation constraint:

K ≤ λ1p1 − λ2p2 ≤ K. (18)

Proposition 5 Each price vector (p1, p2) that satisfies conditions (16) and (18) char-

acterizes a mechanism that restores efficiency: both firms work on the risky research
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until a discovery is made and then switch to the safe research; firm n reports a dead-end

discovery immediately upon its discovery and receives a payment pn from its competitor.

Proof. Note that the set of price vectors (p1, p2) that satisfy (16)-(17) is non-empty.

Indeed, we can set p1 = λ2p2+K
λ1

, which satisfies (18) . By setting p2 large enough, all other

constraints will be satisfied simultaneously. By definition, firms share their information

without delay under the mechanism with (p1, p2). The result then follows.

There is a continuum of price vectors that satisfy conditions (16)-(17) . One way to

refine this set of price vectors is to introduce a liability constraint. Instead of pushing in

this direction, we characterize the “cheapest” prices that are enough to restore efficiency.

To do this, we minimize the flow transfer λ1p1 + λ2p2 over all mechanisms.

5.4 Minimum Implementable Transfers

Formally, minimizing the flow transfer λ1p1 + λ2p2 over all mechanisms is the following

linear programming problem:

min
(p1,p2)

{λ1p1 + λ2p2} subject to



C1: λ1λ2

Λ+r
(π − c) ≤ (λ1 + r) p2 + λ1p1

C2: λ1λ2

Λ+r
(π − c) ≤ (λ2 + r) p1 + λ2p2

C3: λ1λ2

(Λ+r)2 (π − c) ≤ p1

C4:
[
1− e−(Λ+r)T

]
λ1λ2

(Λ+r)2 (π − c) ≤ p2

C5: K ≤ λ1p1 − λ2p2 ≤ K.


.

The set of binding constraints in this program is determined by primitive parameter

values of c, λn, r, π, µ0 and Π. We present numerical solutions using the previous set of

parameters. The interesting finding is that the cost of the mechanism is quite minimal

relative to the size of the recovered welfare loss.

Minimum Price Mechanism

π − c p∗1 p∗2 λ1p
∗
1 + λ2p

∗
2 welfare recovery

$ 1 $ 0.5 (50c/) $ 0.20 (20c/) $ 0.02 (2c/) $19.3 million

$ 1 million $ 0.5 million $ 0.2 million $ 0.02 million $19.6 million

$ 10 million $ 4.7 million $ 1.8 million $ 0.24 million $22 million

Table 5

In the numerical computations, the two binding constraints of the mechanism are

the no-delay condition for firm 1 (C1) and the no-walk-away condition for firm 2 (C4).
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The following graph plots the prices dictated by the minimum transfer mechanism as a

function of the competition level on the safe research line.
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Figure 5

Two features stand out in the above plot. First, the price that each firm has to pay

to compensate its competitor is increasing in the level of the competition on the safe

research line. Second, the price that firm 1 receives (p1) is always higher than that of

firm 2, since sharing information on a dead-end finding means that both firms will now

compete on the safe line. For firm 1 this entails a larger reduction in value because it

will then face a stronger competitor (firm 2).

6 Concluding Discussion and Future Research

The goal of this paper has been to uncover the potential inefficiencies in research com-

petitions due to dead-end replication. We offered a parsimonious two-line research com-

petition model with two asymmetric firms. We identified two types of inefficiencies that

arise in this model and show that different firms incur different types of inefficiencies.

The efficiency loss is significant, and we have discussed a simple mechanism to improve

efficiency. We have made several simplifying assumptions to highlight the effects of

a dead-end discovery and asymmetric information. In what follows, we shall discuss

possible extensions of our model and future research.
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6.1 State-dependent Arrival Rate

In this paper, we have assumed that the arrival rate λn is independent of the true state.

More generally, one might allow the arrival rate to be a function of the state as well, λsn,

where s ∈ {G,B} where G stands for the good risky line and B stands for the dead-end

risky line. A source of exogenous learning shows up in this environment. For instance,

if λGn 6= λBn , then firm n will learn from the fact that there is no discovery from its own

research. In particular, if λGn > λBn , then for firm n, no news from its own research is

bad news. In this case, learning from n’s own research and learning from the opponent’s

research (no discovery) reinforce each other. If, instead, λGn < λBn , then no news is good

news. Therefore, learning from n’s own research and learning from the opponent tend

to push the learning in different directions. Our model isolates the endogenous learning

through competition from the exogenous learning. It remains to analyze which force

will be stronger and how they interact over time. We believe this complication will not

change the qualitative predictions of our model.

6.2 Strategic Patenting

In our model, a firm receives a lump-sum payoff from its good discovery immediately.

We could enrich the model to study strategic patenting decisions and ask whether a firm

has an incentive to delay its patenting decision to its own benefit. In this section, we

shall argue that the equilibrium we characterize is robust to an endogenous patenting

decision. Therefore, to study strategic patenting decisions, we need to enrich the model

(for example, by allowing multiple arrivals). This is an interesting question to ask but

is orthogonal to the current focus.

Assume firm −n’s strategy is to patent its discovery immediately. Consider firm n.

If firm n has a non-patented successful discovery at a point when the other firm has

already switched, then there is no benefit from delayed patenting, and there is a cost

due to discounting. Now consider the case where firm n has a non-patented discovery

at t when the competing firm is still working on the risky research (note that such a

discovery may be made exactly at t or it is discovered before but delayed until t). If n

patents this discovery at t, then we can derive its payoff as Vt = Π + wSSn . Suppose the

firm decides to delay it until t + s, for some s > 0. Since we know that the firm will

not delay patenting when the other firm has switched, we can assume without loss of

generality that at t + s firm −n is still on the risky line. Firm n’s expected payoff at t
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is therefore,

Vt,s =

∫ t+s

t

e−(r+Λ)(τ−t) [λn (π + Π) + λ−nw
SS
n − λnc

]
dτ + e−(r+Λ)s

(
Π + wSSn

)
.

Now

∂Vt,s
∂s

= e−(r+Λ)s
[
λn (π + Π) + λ−nw

SS
n − λnc

]
− (r + Λ) e−(r+Λ)s

(
Π + wSSn

)
= e−(r+Λ)s

{
−rΠ− λ−n

[
Π− λn (π − c)

r + Λ

]}
< e−(r+Λ)s [−rΠ− λ−n (Π− π)] .

Note that under Assumption 1, Π > π and hence ∂Vt,s
∂s

< 0. Therefore, firm n, if it has

a non-patented innovation at time t, will not delay patenting by any s > 0.

Remark 1 Note that we have just shown that it is optimal for firm n to patent immedi-

ately when firm −n’s strategy is registering immediately whenever Π > π. The intuition

is that if firm n delays for dt, the cost of delay is of the order λ−nΠ, yet the benefit is

λ−nπ because firm n keeps firm −n away for dt.

6.3 Macroeconomic Applications

The increase in potentially wasteful R&D dollars has been a common concern both in

academic and policy spheres. Macro data on innovation and R&D spending in the US

exhibits a worrisome time-series pattern. The ratio of registered innovation counts to

total innovation efforts in the US has been steadily decreasing over time. Figures 6A

and 6B document this stylized fact.

In figure 6A, we plot the ratio of the total number of USPTO patents granted to US

residents over aggregate R&D investment in the US. In the early 1950s, the patent-R&D

ratio was around 1.4 and it had decreased by almost 70%, to 0.4, in the early 2000s.

There could be various explanations for this decline, and Kortum (1993) argues that one

of them is the increasing duplicative R&D efforts by competing firms. He suggests that

the increase in market size leads to a larger ex-post value of innovation, which, combined

with competition, leads to a larger R&D spending per patent. A similar and even more

drastic picture emerges in the pharmaceutical industry. Figure 6B plots the number of

drug approvals per R&D investment for this industry. The ratio declines from 1.4 in

the early 1960s to 0.1 in the early 2000s, which is a decline of more than 90%. This
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observation again hints at a severe problem of R&D duplication for drug inventions.
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We provide two comparative statics as a preliminary attempt to use our model to

touch on this issue. The first one is the increase in the market value of drugs. Although

this increase in value could be caused by many different factors (increase in market size,

for instance), the end effect is an increase in the ex-post returns to innovation. In our

model, an increase in the market value of drugs leads to more experimentation on the

risky line, which causes an increase in the cut-off value T of the weak firm 1. This in

turn also increases dead-end replications and reduces the number of drugs per R&D

investment. Figure 7A plots the average number of drugs per R&D investment as a

function of the market value.
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Another potential explanation emerging from our model is the increase in uncertainty

or the decrease in the probability of a good outcome on the risky line.18 To understand

this better, consider the case in which µ0 = 1 and the decentralized equilibrium would

be efficient. As uncertainty increases (µ0 declines), the decentralized economy increases

18In reality this could be caused by the fishing-out effect.
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the amount of dead-end replications. This increase in wasteful spending reduces the

number of drugs per R&D investment as illustrated in Figure 7B.

A more detailed analysis of the macroeconomic implications of the inefficiencies iden-

tified in this paper requires incorporating the microeconomic structure into a formal

general equilibrium growth model. Akcigit and Liu (2013) take a step in this direction.

We believe that additional interesting macroeconomic questions are still awaiting future

exploration.
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Appendix

A Proof of Proposition 2

We begin with some useful observations. If the two firms start on the risky line together,

continuing until a discovery is made, and then both switch to the safe line, then their

joint value is given by the following Bellman equation

V = −Λcdt+ e−rdt
[
Λdt

(
µ0Π + wSS

)
+ (1− Λdt)V

]
,

which implies

V =
Λ

Λ + r

(
µ0Π− c+ wSS

)
. (19)

This joint value can be also rewritten as

V =
Λ (µ0Π− c)

Λ + r
+

Λ

Λ + r

Λ (π − c)
Λ + r

= wRR +
Λ

Λ + r
wSS. (20)

Note that V consists of two parts. Firms first extract an expected payoff wRR from the

risky line, and meanwhile derive a flow payoff ΛwSS from the safe line with effective

discounting Λ + r.

Proof of Proposition 2. We relax the firms’ decision problem by allowing

reversibility; that is, they always have the option to restart a research line that they

previously quit. This relaxed problem makes the computation of the continuation payoff

easier. In the relaxed problem, the joint value V̂ of the two firms can be derived from

the following Bellman equation,

V̂ = max


Λdt

(
µ0Π + wSS

)
e−rdt − Λcdt+ (1− Λdt) V̂ e−rdt,

Λdt
(
π + wRR

)
e−rdt − Λcdt+ (1− Λdt) V̂ e−rdt,

λ1dt
(
µ0Π + wSS

)
e−rdt + λ2dt

(
π + wRR

)
e−rdt − Λcdt+ (1− Λdt) V̂ e−rdt,

λ2dt
(
µ0Π + wSS

)
e−rdt + λ1dt

(
π + wRR

)
e−rdt − Λcdt+ (1− Λdt) V̂ e−rdt


(21)

where the four terms on the right side are the payoffs from strategies in which both firms

start with the risky line, both firms start with the safe line, firm 1 starts with the risky
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line and firm 2 starts with the safe line, and firm 2 starts with the risky line and firm 1

starts with the safe line, respectively.

We claim that µ0Π + wSS > π + wRR. This is because

µ0Π + wSS = µ0Π +
Λ

Λ + r
(π − c)

>
Λµ0Π + rπ + Λπ − Λc

Λ + r

= π + wRR.

Note that the inequality follows from Assumption 1. Therefore, the first term on the

right side of (21) is the largest and hence

V̂ = Λdt
(
µ0Π + wSS

)
e−rdt − Λcdt+ (1− Λdt) V̂ e−rdt.

This immediately implies that the optimal value of the relaxed problem, V̂ , is achieved

by a strategy in which both firms start on the risky line. This strategy is feasible in the

constrained problem where firms cannot switch back to a previously abandoned research

line. Therefore, this strategy is optimal in the original problem, and the optimal value

is given by Equation (20) ,

V = wRR +
Λ

Λ + r
wSS.

This completes the proof.

B Proof of Lemma 1

We conjecture that the differential equation has a solution of the following form µt =

Ψ (t) ≡ A
1+Bt

where A and B are constants. Substituting the conjecture into (11) we get

−BA
(1 +Bt)2 = − A

(1 +Bt)

(
1− A

1 +Bt

)
λ−n

1 + λ−nt
,

which reduces to

B +Bλ−nt = (1− A)λ−n + λ−nBt.

Equating the constant terms we get B = (1− A)λ−n.Moreover, we impose the boundary

condition Ψ (0) = µ0. Then we get A = µ0 and B = (1− µ0)λ−n. This verifies our

conjecture. �
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C Proofs of Proposition 3 and Proposition 4

We proceed in four steps. In step 1, we characterize the stopping time T. In step 2, we

show that both firms’ stopping strategies are optimal. Last, step 3 proves the uniqueness.

Step 1: Characterization of the stopping time T.

Suppose at time t, firm n’s belief on the risky line is µtn and its belief that its opponent,

firm −n, is still on the risky line is βtn. Recall from Equation (4) that wSSn is firm n’s

expected payoff from competing with firm −n on the safe line, wSSn = λn
Λ+r

(π − c) .
We define vS1 as the value of firm 1 when it is alone on the safe line but anticipating

that the strong firm 2 might switch to the safe line only after a discovery. Intuitively,

vS1 = −λ1cdt+ e−rdt
[
λ1dtπ + λ2dtw

SS
1 + (1− Λdt) vS1

]
,

which implies

vS1 =
λ1 (π − c) + λ2w

SS
1

Λ + r
= wSS1

(
1 +

λ2

Λ + r

)
.

In order for firm 1 to switch exactly at t, it must be that firm 1 is indifferent between

switching at t or waiting until the next instant (we are assuming continuity of the value

function and this will be true). The payoff from “stay on the risky research for another

dt and then switch” is
(1− rdt)λ1dt

{
µt1
(
Π + wSS1

)
+ (1− µt1)

[
bt+dt1 vS1 +

(
1− bt+dt1

)
wSS1

]}
+ (1− rdt) βt1λ2dtw

SS
1

+ (1− rdt) (1− Λdt)
[
βt1v

S
1 +

(
1− βt1

)
wSS1

]
−λ1cdt

 .

The first line is firm 1’s discounted expected return when it makes a discovery on the risky

line during (t, t+ dt) . If the line is good, with probability µt1, it leads to an immediate

lump-sum payoff Π and a continuation payoff of competing in the safe research, wSS1 ;

if the line is bad, the dead-end discovery gives rise to a 0 immediate payoff, but the

expected continuation payoff depends on the position of the competitor. The second

line is firm 1’s discounted expected payoff in the case where the opponent firm 2 makes

a discovery. It again depends on the position of firm 2. If firm 2 is on the risky line,

which happens with probability βt1, firm 1 will compete with firm 2. If firm 2 is on the

safe line, a discovery on the safe line indicates that the risky line is bad, and the game

is over. The third line is firm 1’s discounted expected payoff in the case of no discovery.

The final line is the cost of researching.
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The payoff from spending the next dt on the safe line and staying there forever is

given by {
(1− rdt)λ1dtπ + (1− rdt) βt1λ2dtw

SS
1

+ (1− rdt) (1− Λdt)
[
βt1v

S
1 +

(
1− βt1

)
wSS1

]
− λ1cdt

}
.

The interpretation is similar to the previous case.

Therefore, by taking the limit, the indifference condition becomes

µt1
(
Π + wSS1

)
+
(
1− µt1

) [
bt1v

S
1 +

(
1− bt1

)
wSS1

]
= π. (22)

This condition carries the following intuition. At time t, spending an additional amount

of time dt on either line delivers the same expected return conditional on an arrival of

an outcome. To see this, note that the RHS is simply the expected return from the safe

line. The LHS is the expected return on the risky line. With probability µt1, the line is

good, in which case firm 1 receives the patent value Π and competes with firm 2 on the

safe line and obtains wSS1 . With the remaining probability (1− µt1) the line is bad, in

which case, firm 1 switches secretly to the safe line and obtains a payoff, depending on

whether firm 2 is already on the safe line.

Therefore, the stopping time T is characterized by the following equation:

µT1 Π +
(
1− µT1

)
bT1
(
vS1 − wSS1

)
+ wSS1 = π (23)

From equations (10) and (12) , we know that for n = 1, 2,

bTn =
1

1 + λ−nT
and µTn =

µ0

1 + (1− µ0)λ−nT

Hence

T =
1

(1− µ0)λ2︸ ︷︷ ︸
learning channel

[
µ0
(
Π + wSS1

)
+
(
1− µ0

)
vS1 − π

]︸ ︷︷ ︸
Risky research premium

(
1

π − wSS1

)
︸ ︷︷ ︸

Competition Channel

=
1

(1− µ0)λ2

[
µ0Π + (1− µ0)

(
vS1 − wSS1

)
(π − wSS1 )

− 1

]

=
1

(1− µ0)λ2

[
µ0Π

π

(r + Λ)(
r + Λ− λ1

π−c
π

) − 1

]
+

λ1
π−c
π

(r + Λ)
(
r + Λ− λ1

π−c
π

)
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Remark 2 (Proposition 4) From the explicit expression for T above, it is easy to

check that T is increasing in µ0 and Π, and decreasing in r, λ2 and π. The comparative

static relative to λ1 is ambiguous.

Step 2: Best responses of the stopping times in the candidate equilibrium.

In this part, we show that the two firms’ stopping times are best responses to each

other, given that both start on the risky research line. In Step 4, after we introduced the

idea of an auxiliary problem, we shall show that the initial choices of the risky research

line are mutual best responses in the candidate equilibrium.

Assume firm 2 does not stop the risky research before a discovery. Recall that T is

the unique solution of

µt1Π +
(
1− µt1

)
bt1
(
vS1 − wSS1

)
+ wSS1 = π

That is, T uniquely solves

µ0

1 + (1− µ0)λ2t
Π +

(1− µ0)

1 + (1− µ0)λ2t

(
vS1 − wSS1

)
+ wSS1 = π.

We know the LHS is monotone decreasing in t. Hence if t < T, firm 1 strictly prefers

to stay on the risky line, and if t > T, the firm strictly prefers to quit. Therefore, it is

optimal for firm n to stop at t = T before a discovery is made.

Now assume firm 1 uses the stopping strategy characterized by T . Consider firm 2.

There are two cases to consider.

Case 2.1: At t ≥ T, firm 2’s payoff conditional on being on the risky line in the

candidate equilibrium is given by the recursion:

V2 = −λ2cdt+ (1− rdt)
[
λ2dt

(
µT2 Π + wSS2

)
+ λ1dt

λ2

r + λ2

(
µT2 Π− c

)
+ (1− Λdt)V2

]
.

Note that since µT1 Π− c ≥ 0 (otherwise, firm 1 would have already switched to the safe

line before T ), µT2 Π− c > 0 by (12) . Hence

V2 =
1

r + Λ

[
−λ2c+ λ2

(
µT2 Π + wSS2

)
+ λ1

λ2

(
µT2 Π− c

)
r + λ2

]
.

In order for firm 2 to stay on the risky research, we need V2 ≥ wSS2 . Plugging in param-
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eters, the sufficient condition can be simplified progressively as

−λ2c+ λ2

(
µT2 Π + wSS2

)
+ λ1

λ2

(
µT2 Π− c

)
r + λ2

≥ (r + Λ)wSS2

µT2 Π

(
1 +

λ1

r + λ2

)
+ wSS2 −

λ1c

r + λ2

≥ π

µT2 Π− π + wSS2 +
(
µT2 Π− c

) λ1

r + λ2

≥ 0 (24)

Note that at the time of the cutoff, the beliefs are such that µT2 > µT1 . A lower bound

for µT1 is described as follows. Consider the same belief-updating procedure for firm 1,

but now the payoffs are in such a way that the return on the risky line is higher and

the return on the safe line is lower. This will give us a lower bound for µT1 since, in this

environment, firm 1 will need a lower belief than the actual game to switch. To generate

this payoff structure, assume firm 1 does not face any competition on the risky line

but faces competition with certainty on the safe line (continuing with the same belief

updating). In that case the indifference condition in (23) reads as

µT
∗

1 Π + wSS1 = π

since bT
∗

1 = 0. Therefore, we have

µT
∗

1 =
π − wSS1

Π
< µT1 < µT2 .

Therefore, a sufficient condition for (24) is

µT
∗

1 Π− π + wSS2 +
(
µT
∗

1 Π− c
) λ1

r + λ2

≥ 0

Using the expression for µT
∗

1 , the sufficient condition becomes

(λ2 − λ1) (π − c)
r + Λ

+
λ1 (π − c)
r + Λ

≥ 0.

This sufficient condition always holds.

Case 2.2: We need to show that firm 2 does not want to switch at any t < T. To

this end, suppose, to the contrary, that firm 2 switches at t < T , while firm 1 follows the

prescribed equilibrium strategy. Consider firm 2’s response to the following strategy:

Firm 1 follows the candidate equilibrium strategy prescribed for firm 2.
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If firm 2 has an incentive to switch at t < T in the candidate equilibrium, it has

an even stronger incentive to switch before t against the alternative strategy for firm

1 prescribed above. The reason is that the alternative strategy of firm 1 increases the

competition on the risky line and reduces the competition on the safe line. We shall

derive a contradiction as follows.

Given firm 1’s alternative strategy, firm 2’s belief goes down continuously over time

before a discovery is observed, and hence there exists T2 at which an indifference condi-

tion similar to (23) holds:

π = µT2
2 Π +

(
1− µT2

2

)
bT2

2

(
vS2 − wSS2

)
+ wSS2 . (25)

We claim that T2 > T. To see this, suppose, to the contrary, that T ≥ T2. Then the

following inequalities are immediate by definition:

µT2
2 ≥ µT2 ,

µT1
2 > µT1 ,(

1− µT2
)
bT2 >

(
1− µT1

)
bT1 ,

vS2 − wSS2 > vS1 − wSS1 ,

wSS2 > wSS1 .

Using these inequalities, we derive from (25) that

π = µT2
2 Π +

(
1− µT2

2

)
bT2

2

(
vS2 − wSS2

)
+ wSS2

≥ µT2 Π +
(
1− µT2

)
bT2
(
vS2 − wSS2

)
+ wSS2

> µT1 Π +
(
1− µT1

)
bT1
(
vS1 − wSS1

)
+ wSS1

= π.

A contradiction.

Step 3: (Uniqueness) There are no other equilibrium stopping strategies

when λ2

λ1
and µ0Π

π
are large.

Suppose to the contrary that there are other equilibria with stopping time T1 and

T2. Since µ0Π > π, we know T1 > 0 and T2 > 0. We have two cases to consider.

Case 3.1: +∞ ≥ T1 > T2.

We define vS2 (T2, T1) as the value of firm 2 at T2 when it switches to the safe line

but anticipating that firm 1 might switch to the safe line only after a discovery or at the
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random time τ 1.

First note that T2 < +∞ because of belief updating. In order for firm 2 to switch

exactly at T2, it must be that firm 2 is indifferent between switching at T2 or waiting

until the next instant and then switching. The payoff from “staying on the risky research

line for another dt,” is
(1− rdt)λ2dt

{
µT2

2

(
Π + wSS2

)
+
(
1− µT2

2

) [
bT2+dt

2 vS2 (T2 + dt, T1) +
(
1− bT2+dt

2

)
wSS2

]}
+ (1− rdt) βT2

2 λ1dtw
SS
2

+ (1− rdt) (1− Λdt)
[
βT2+dt

2 vS2 (T2 + dt, T1) +
(
1− βT2+dt

2

)
wSS2

]
−λ2cdt

 .

The payoff from “spend the next dt on the safe line and stay there forever,” is given

by

{
(1− rdt)λ2dtπ + (1− rdt) βT2

2 λ1dtw
SS
2

+ (1− rdt) (1− Λdt)
[
βT2+dt

2 vS2 (T2 + dt, T1) +
(
1− βT2+dt

2

)
wSS2

]
− λ2cdt

}
.

Therefore, by taking the limit, the indifference condition becomes

µT2
2

(
Π + wSS2

)
+
(
1− µT2

2

) [
bT2

2 v
S
2 (T2, T1) +

(
1− bT2

2

)
wSS2

]
= π,

or, equivalently,

µT2
2 Π +

(
1− µT2

2

)
bT2

2

[
vS2 (T2, T1)− wSS2

]
+ wSS2 = π. (26)

Notice that vS2 (T2, T2) = wSS2 ≤ vS2 (T2, T1) for any T1 > T2. Then (26) gives us

µT2
2 Π + wSS2 ≤ π,

which is

T2 ≥
µ0Π−

(
π − wSS2

)
(π − wSS2 ) (1− µ0)λ1

. (27)

Now consider firm 1. Firm 1’s belief on the risky line does not update after T2, and

its expected payoff is equivalent to that from staying on the risky line until a discovery,
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i.e.,

∫ ∞
0

e−(Λ+r)t

[
λ1

(
µT2

1 Π− c+
λ1

Λ + r
(π − c)

)
+ λ2

(
λ1

(
µT2

1 Π− c
)

λ1 + r

)]
dt

=

λ1

(
µT2

1 Π− c+ λ1

Λ+r
(π − c)

)
+ λ2

(
λ1(µT2

1 Π−c)
λ1+r

)
Λ + r

.

Since firm 1 has the option of competing on the safe line with firm 2, it must be that

λ1

(
µT2

1 Π− c+ λ1

Λ+r
(π − c)

)
+ λ2

(
λ1(µT2

1 Π−c)
λ1+r

)
Λ + r

≥ wSS1 =
λ1 (π − c)

Λ + r
.

This condition can be simplified to

µT2
1 Π− c ≥ λ1 + r

Λ + r

λ2 + r

Λ + r
(π − c) .

Hence,

T2 ≤
1

(1− µ0)λ2

[
µ0Π

λ2+r
Λ+r

λ1+r
Λ+r

(π − c) + c
− 1

]
(28)

Comparing (27) and (28) , a contradiction will be derived if

µ0Π−
(
π − wSS2

)
(π − wSS2 ) (1− µ0)λ1

>
1

(1− µ0)λ2

[
µ0Π

λ2+r
Λ+r

λ1+r
Λ+r

(π − c) + c
− 1

]
,

which is equivalent to

µ0Π

[
λ2

λ1+r
Λ+r

(π − c) + c
− λ1

λ2+r
Λ+r

λ1+r
Λ+r

(π − c) + c

]
> λ2 − λ1. (29)

First, since π − c > 0, we have

λ2

λ1+r
Λ+r

(π − c) + c
− λ1

λ2+r
Λ+r

λ1+r
Λ+r

(π − c) + c
=

(
λ2

λ2+r
Λ+r
− λ1

)
λ1+r
Λ+r

(π − c) + (λ2 − λ1) c[
λ1+r
Λ+r

(π − c) + c
] [

λ2+r
Λ+r

λ1+r
Λ+r

(π − c) + c
]

>

(
λ2

λ2

Λ
− λ1

)
λ1

Λ

π
.
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Hence a sufficient condition for (29) is

µ0Π

π

[(
λ2
λ2

Λ
− λ1

)
λ1

Λ

]
> λ2 − λ1.

This is guaranteed if
λ2

λ1

> 2 and
µ0Π

π
>

λ2 − λ1(
λ2

λ2

Λ
− λ1

)
λ1

Λ

.

Case 3.2: +∞ > T2 ≥ T1. In this case, firm 2 does not update its belief after T1 if it

does not observe anything on the risky line. Therefore, for firm 2 to switch at T2 ≥ T1,

it must be that firm 2 is indifferent between switching at T1 (competing with firm 1 on

the safe line) and staying on the risky line (monopolizing the risky line with the option

value of the safe line) at any t ≥ T1. Following the argument in the previous case, the

indifference condition of firm 1 is

µT1
1 Π +

(
1− µT1

1

)
bT1

1

(
vS1 (T1, T2)− wSS1

)
+ wSS1 = π.

Recall that our equilibrium indifference condition is given by

µT1 Π +
(
1− µT1

)
bT1
(
vS1 − wSS1

)
+ wSS1 = π.

Since bTn
(
1− µTn

)
= 1−µ0

1+(1−µ0)λ−nT
, the LHS of the previous equation is strictly decreasing

in T. Now suppose T ≤ T1. Then it follows from vS1 > vS1 (T1, T2) that

π = µT1 Π +
(
1− µT1

)
bT1
(
vS1 − wSS1

)
+ wSS1

≥ µT1
1 Π +

(
1− µT1

1

)
bT1

1

(
vS1 − wSS1

)
+ wSS1

> µT1
1 Π +

(
1− µT1

1

)
bT1

1

(
vS1 (T1, T2)− wSS1

)
+ wSS1

= π.

This is a contradiction. Hence T > T1, i.e., µT2 < µT1
2 .

In our equilibrium, firm 2 prefers to stay on the risky line after T1 > T upon no

discovery and its belief is µT2 (since there is no updating between T and T1). Hence

1

Λ + r

[
λ2

(
µT2 Π− c+ wSS2

)
+ λ1

λ2

Λ + r

(
µT2 Π− c

)]
≥ wSS2 .

But at t = T1 in the supposed equilibrium with stopping times +∞ > T2 > T1, we have

for firm 2 (which is indifferent between staying on the risky line until a discovery or
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switching at T1). Hence

wSS2 =
1

Λ + r

[
λ2

(
µT1

2 Π− c+ wSS2

)
+ λ1

λ2

Λ + r

(
µT1

2 Π− c
)]

>
1

Λ + r

[
λ2

(
µT2 Π− c+ wSS2

)
+ λ1

λ2

Λ + r

(
µT2 Π− c

)]
= wSS2 ,

where the strict inequality follows because µT2 < µT1
2 . This is a contradiction.

D Details of the Numerical Exercise

Our model has 7 structural parameters: r, µ0, Π, π, c, λ1 and λ2. Our strategy is to

calibrate the model to the clinical trial stage of the pharmaceutical research during the

late 1990s since these are the years for which we have information both on the cost

of drugs and on the profits of the companies. We take the annual interest rate to be

r = 5%. According to PhRMA (2011) only one out of six drug candidates survives the

clinical stage; thus, we set µ0 = 1/6. The remaining five parameters are calibrated to

the relevant moments from the data.

The analysis requires the empirical characterization of two asymmetric firms. For

this purpose, we use the population of pharmaceutical companies in Compustat in 2000.

Since the strength of the firms is determined by the R&D spendings in our model, we

rank the firms in the Compustat sample according to their R&D investments in 2000. We

form the strong firm by averaging the numbers of the top 3% of companies in Compustat.

Similarly, the weak firm is formed by averaging the second top 3% percent of companies.

The following table summarizes the empirical target moments and their data sources19:

19‡Obtained from PhRMA (2011). ∗Obtained from Grabowski, Vernon and DiMasi (2002). §Obtained
from Compustat (dnum=2834) for 2005. Ratios are defined as the strong firm’s moment divided by
the weak firm’s moment. Profits are computed as: Revenue-R&D-Cost of goods sold. Rate of return
to R&D is the ratio of profit to R&D.
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Some Key Facts on Pharmaceutical R&D and Calibration Targets

Moment Description Data Model

‡Average time to develop a drug 10-15 years 14.8 years
‡Fraction of candidate drugs that survive the clinical trial 1/6 1/6
∗Net present value of a drug $1.4 billion $1.4 billion
∗Average cost to develop a drug $480 million $496 million
§Ratio of R&D spendings 2.5 2.5
§Ratio of profits 2.5 2.9

Note that our calibrated model delivers a cutoff time T = 36, which means that the

weak firm experiments in the risky research line for 36 months as long as it neither re-

ceives an outcome from its own research effort nor observes a patent from the competitor

firm. As discussed in the main text, this is one of the key sources of inefficiency in this

competition.

E An Alternative Extensive Form

In the main text, we have assumed that the game starts on the risky line. This section

considers a model in which both firms have no research activity before t = 0, and

simultaneously, right at t = 0, each of them has to decide which line to take to start the

game. In particular, a firm can start on the safe line and then switch to the risky line,

or it could choose not to research at all.

Proposition 6 The equilibrium described in Proposition 3 in the text is the unique pure

strategy equilibrium when firms can choose the initial starting line freely, provided that

there is enough asymmetry across research lines and players, i.e., µ0Π
π

and λ2

λ1
are large

enough.

Proof Given the proof for Proposition 3, we need to show two additional claims. In Step

1 below, we shall show that there is no equilibrium in which either player starts

with the safe research line. In Step 2 below, we verify that the initial choices

of the risky line are best responses to each other in the candidate equilibrium.

In particular, we need to verify that the following deviation is unprofitable for a

firm: start on the safe line with the hope that it can make a discovery before T ,

which will fool the opponent into thinking that the risky line had already been
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discovered to be a dead end; hence the opponent is misled into quitting the entire

game, leaving the risky line to the deviating firm. This deviation is not possible

in our benchmark model as a firm cannot return to the risky line there.

Step 1: We shall also show that there is no equilibrium in which either player starts

with the safe research line if µ0Π > π
(

1 + Λ
r+λ−n

+ λ−n
λn+r

)
. There are several cases to

consider.

Case 1.1: Both firms start on the safe line, with stopping times T1, T2 ∈ (0,+∞],

respectively. We claim that T1 = T2 = T ∗ ∈ (0,+∞]. Suppose for the purpose of

contradiction that Tn > T−n; then upon no observation of discovery from T−n on, firm

n’s belief will become more pessimistic over time. Consequently, if firm n does not

want to switch at T−n upon no discovery, it will not switch at any future time upon no

discovery. That is, Tn = ∞. Now, we have a situation in which firm n works on the

safe line until a discovery and firm −n starts with the safe line but switches at T−n.

Since firm −n’s belief on the risky line will never get updated, the firm should instead

start with the risky line at t = 0. A contradiction. Hence the only possibility left is

Tn = T−n > T ∗ ∈ (0,+∞].

Then, firm n’s expected payoff will be

Vn =

∫ T ∗

0

e−(Λ+r)t
[
λn
(
π + vRRn

)
+ λ−nv

RR
n − λnc

]
dt+ e−(Λ+r)T ∗vRRn , (30)

where vRRn is firm n’s expected payoff of competing with firm −n on the risky research

line with 0 outside options (because the outcome on the safe line has been discovered).

Now fix firm −n’s strategy and consider a deviation of firm n of starting with the

risky line until firm n makes a discovery. Firm n’s payoff will be at least

V d
n =

∫ T ∗

0

e−(Λ+r)t
[
λn
(
µ0Π + wSSn

)
+ λ−nv

RR
n − λnc

]
dt+ e−(Λ+r)T ∗vRRn . (31)

The reason for V d
n being a lower bound is that conditional on no discovery up to time

T ∗, the continuation payoff for firm n is at least vRRn because firm n still has the option

of going to the safe line.
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Notice that

V d
n − Vn =

∫ T ∗

0

e−(Λ+r)t
[
λn
(
µ0Π + wSSn

)
+ λ−nv

RR
n − λn

(
π + vRRn

)
− λ−nvRRn

]
dt

=

∫ T ∗

0

e−(Λ+r)t
[
λn
(
µ0Π− π + wSSn − vRRn

)]
dt.

Since firms’ total payoff with competition on the risky line without the option of the safe

line is less than the cooperative counterpart, we have vRRn +vRR−n <
λn(µ0Π−c)

Λ+c
+ λ−n(µ0Π−c)

Λ+c
.

Hence for at least one n = 1, 2, vRRn < λn(µ0Π−c)
Λ+c

. For this n, we have

V d
n − Vn >

∫ T ∗

0

e−(Λ+r)t

[
λn

(
µ0Π− π + wSSn −

λn (µ0Π− c)
Λ + c

)]
dt

= (µ0Π− π)λn
λ−n + r

Λ + r

∫ T ∗

0

e−(Λ+r)tdt

> 0.

Hence, for this firm n, deviation is profitable.

Case 1.2: Firm n starts on the safe line with stopping time Tn ∈ (0,+∞]. Firm −n
starts on the risky line, with stopping time T−n,0 ∈ (0,+∞], and T−n,1 ≥ 0 (the second

stopping time is for the stage in which firm n makes a discovery on the safe line).

Consider the subgame right after firm n takes the safe line. We modify firm n’s

problem as follows:

(a) Fix firm −n’s strategy as staying on the risky line forever until a discovery is ob-

served on the risky line. Let T̃n be firm n’s one optimal stopping time in this

auxiliary problem. We claim that in this auxiliary problem we can take T̃n > 0.

Indeed, T̃n ≥ Tn. The reason is that this modification makes staying on the safe

line for any t > 0 more attractive than in the original problem (the potential ben-

efit from the risky line is reduced, while the benefit from the safe line is increased

because firm n will face less competition there).

(b) On top of (a), ask firm −n to reveal its discovery (including the dead-end finding)

until firm n leaves the safe line.20 Hence, at any t, by which no discovery is made,

there is no belief updating. Therefore, if firm n starts with the safe line in the

auxiliary problem (a), then it will always stay on the safe line before a discovery

is made.
20Note that we construct this artificial problem for firm n where firm −n’s strategy is superimposed

exogenously. This should not be confused with the observability assumption in the original problem.
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Let V RR
n be firm n’s payoff upon switching to the risky line in the auxiliary problem

(b). Firm n’s expected payoff at time 0 in this auxiliary problem can be written as∫ ∞
0

e−(Λ+r)t
[
λn
(
π + V RR

n − c
)

+ λ−nw
SS
n

]
dt

=
λn

Λ + r
V RR
n +

λn
Λ + r

(π − c)
(

1 +
λ−n

Λ + r

)
.

Because firm −n’s strategy is exogenously fixed as in (a), V RR
n is independent of π.

Consider an alternative strategy for firm n in the auxiliary problem (b): abandon

the safe line immediately. The expected payoff from this alternative strategy is V RR
n . A

contradiction arises if

λn
Λ + r

V RR
n +

λn
Λ + r

(π − c)
(

1 +
λ−n

Λ + r

)
< V RR

n

which is equivalent to

π − c < V RR
n

(
λ−n + r

λn

Λ + r

Λ + r + λ−n

)
.

Note that V RR
n ≥ µ0 λn(Π−c)

Λ+r
− (1− µ0) λnc

λn+r
. Hence, a sufficient condition for the above

expression is

π − c <

[
µ0λn (Π− c)

Λ + r
−
(
1− µ0

) λnc

λn + r

](
λ−n + r

λn

Λ + r

Λ + r + λ−n

)
=

[
µ0 (Π− c)−

(
1− µ0

)
c

Λ + r

λn + r

]
λ−n + r

Λ + r + λ−n

=

[
µ0Π− c−

(
1− µ0

)
c
λ−n
λn + r

]
λ−n + r

Λ + r + λ−n
.

This is

µ0Π− c > (π − c) Λ + r + λ−n
r + λ−n

+
(
1− µ0

)
c
λ−n
λn + r

µ0Π− c > π
Λ + r + λ−n
r + λ−n

− cΛ + r + λ−n
r + λ−n

+
(
1− µ0

)
c
λ−n
λn + r

µ0Π > π
Λ + r + λ−n
r + λ−n

− c Λ

r + λ−n
+
(
1− µ0

)
c
λ−n
λn + r
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A sufficient condition is given by

µ0Π

π
> 1 +

Λ

λ−n
+
λ−n
λn

.

Therefore, under the above condition, working on the safe line is not optimal.

Step 2: Best responses of the initial choices in the candidate equilibrium.

We shall use the idea of the auxiliary problems in Step 1. Suppose firm n has a

profitable deviation that consists of starting on the safe line with stopping time T̃n ∈
(0,+∞]. Now in the auxiliary problem (a) the deviation is even more desirable for the

same reason we articulated before. Now consider auxiliary problem (b) in addition. Since

there is no updating before firm n switches back to the risky line, taking T̃n = +∞ is also

necessarily a profitable deviation. Therefore, the same condition in Step 1 will apply.
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