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Abstract 
The Role of Initiation Factor Dynamics in Translation Initiation 

Margaret Mary Elvekrog 

Like most biological polymerization reactions, ribosome-catalyzed protein synthesis, or 

translation, can be divided into initiation, elongation, and termination stages. Initiation is the rate-

limiting stage of translation and a critical site for translational control of gene expression. 

Throughout all stages of protein synthesis, the ribosome is aided by essential protein co-factors 

known as translation factors. I have studied the role that two translation initiation factors, IF1 and 

IF3, play in the mechanism and regulation of translation initiation in Escherichia coli. Specifically, I 

have used single-molecule fluorescence resonance energy transfer (smFRET) as a primary tool 

for investigating how the dynamics of IF1 and IF3 regulate the accuracy with which the 

translational machinery selects an initiator transfer RNA (tRNA) and the correct messenger RNA 

(mRNA) start codon during the initiation stage of protein synthesis. 

In Chapter Two, I describe investigations into the role of IF3’s conformational dynamics in 

substrate selection. E. coli IF3 is an essential protein that binds directly to the small, 30S, 

ribosomal subunit and plays crucial roles in controlling the accuracy of tRNA and mRNA codon 

selection during translation initiation. IF3 is comprised of globular N-terminal (NTD) and C-

terminal (CTD) domains that are connected via a flexible, lysine-rich linker that is highly 

conserved across prokaryotes in both length and hydrophilicity. By developing a fluorescently 

labeled IF3 that retains full biochemical activity, I have used smFRET to demonstrate that 30S 

subunit-bound IF3 can dynamically interconvert between three interdomain configurations during 

translation initiation. It is shown that formation of a properly base-paired anticodon-codon 

interaction between an initiator N-formylmethionyl-tRNAfMet (fMet-tRNAfMet) and an authentic AUG 

start codon within a correctly formed 30S initiation complex (30S IC) results in an IF3 interdomain 

reconfiguration. Interpreted within the context of the available genetic, biochemical, and structural 

data, it is proposed that this IF3 configuration represents a conformation of the 30S IC that is 



optimized for rapid docking of the large, 50S, ribosomal subunit and formation of a 70S initiation 

complex (70S IC) that is ready to enter the elongation stage of protein synthesis. Work toward 

testing this mechanistic model is presented in Chapter Three.  

In Chapter Four, I describe investigations into the dynamics of 30S IC assembly. 

Assembly of a 30S IC involves the association of IF1, IF2(GTP), IF3, initiator tRNA, and mRNA 

with a 30S subunit. Because the efficiency of 30S IC assembly is likely to vary across mRNAs 

depending on the details of each mRNA’s translation initiation region, 30S IC assembly may 

serve as a critical point of regulation for the translational control of gene expression. The 

molecular details of 30S IC assembly remain poorly defined, thus preventing a full understanding 

of the assembly pathway(s) and its regulation. Due to its role in ribosome recycling and the high 

affinity with which it binds to the 30S subunit, current models of 30S IC assembly posit that IF3 is 

the first initiation factor that binds to the 30S subunit and that this factor remains bound to the 30S 

subunit throughout the assembly process. The order and relative timing of IF1, IF2(GTP), mRNA, 

and tRNA binding to the IF3-bound 30S subunit, however, are currently unknown. As a first step 

toward developing a complete kinetic scheme describing 30S IC assembly, I have developed an 

smFRET signal between IF3 and IF1. Due to its stable and early association with the 30S 

subunit, IF3 is an appropriate static landmark from which to monitor the kinetics of IF1 binding to 

the 30S subunit during 30S IC assembly. IF1 has roles in initiator tRNA and start codon selection, 

as well as stabilizing IF2 on the 30S subunit. Thus, elucidating the timing of IF1’s binding to the 

30S subunit relative to tRNA, mRNA, and IF2 binding provides previously inaccessible insight into 

the function of IF1 in regulating substrate selection and stabilizing IF2 on the 30S subunit. My 

results reveal that IF1 binds to the 30S subunit reversibly in the presence of just IF3, as well as in 

the presence of IF3 and initiator tRNA. Analogous experiments performed in the presence of both 

IF2 and IF3 demonstrate that IF2 virtually traps IF1 onto the 30S subunit. Taken together, this 

work reveals IF1’s 30S subunit binding kinetics and lays the foundation for further investigations 

into the 30S IC assembly pathway. 
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Chapter 1 
 

Introduction 
 

1.1  Protein synthesis and the ribosome  
 

Much of the work done within a cell is performed by proteins, and protein synthesis, 

folding, and incorporation into macromolecular assemblies represent the final steps in the gene 

expression pathway. Protein synthesis occurs on enzymatic ribonucleoprotein complexes called 

ribosomes. This process involves translation of the genetic code carried by a messenger RNA 

(mRNA) template by the ribosome using aminoacyl-transfer RNAs (aa-tRNAs) substrates. 

Although significant differences exist regarding the size of ribosomes and the complexity of the 

translation process across the three domains of life, the role of the ribosome in catalyzing protein 

synthesis is universally conserved [1]. 

In all species, the ribosome consists of two unequally-sized subunits. In bacteria, the 

small subunit has a relative sedimentation coefficient of 30S (Svedberg units), the large subunit 

has a sedimentation coefficient of 50S, and the intact 2.5 MDa ribosome sediments at 70S. 

Eukaryotic ribosomes are significantly larger, having 40S and 60S subunits, and an 80S 

ribosome. The differences between eukaryotic and prokaryotic ribosomes are exploited in 

medicine; antibiotics that interfere specifically with bacterial ribosomes have been used for many 

years to treat bacterial infections. The following discussion will be limited to prokaryotic ribosomes 

and translation. 

As a ribonucleoprotein macromolecular complex, the ribosome is composed of 

approximately two thirds RNA and one third proteins. The 30S subunit consists of 21 proteins and 

a ribosomal RNA (rRNA) molecule of ~1,500 nucleotides which sediments at 16S. The 50S 

subunit has two rRNA molecules sedimenting at 5S and 23S (composed of 120 and 2,900 

nucleotides, respectively), and 34 proteins [2]. Structural features of the ribosome are presented 

in Figure 1.1A.  
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Figure 1.1 The 70S ribosome and the translation cycle. (A) The 70S ribosome with the three tRNA 
binding sites indicated. A = aminoacyl-tRNA (aa-tRNA) binding site, P = peptidyl-tRNA binding site, E = 
deacylated-tRNA binding (“exit”) site. The large subunit is shown in blue and the small subunit in tan. The 
approximate mRNA binding site is drawn in gray. Figure from Ref. [3]. (B) The assembly of a translationally 
active ribosome occurs during initiation with the aid of three initiation factors, IF1, IF2, and IF3. The 
ribosome, assembled on the translation initiation region of the mRNA and containing initiator tRNA in its P 
site, then enters the elongation phase as the next tRNA is delivered to A site of the translational machinery 
in a ternary complex with elongation factor EF-Tu(GTP). Peptide bond formation occurs between the P- and 
A-site aminoacyl tRNAs and the growing polypeptide chain is transferred to the A-site tRNA. The tRNAs and 
mRNA next translocate through the ribosome with the aid of EF-G(GTP), placing the P-site and A-site 
tRNAs in the E and P sites, respectively. The A site is now free to accept the next aa-tRNA in the next round 
of elongation. The elongation cycle continues until a stop codon enters the A site. Release factor (RF) 1 or 2 
recognizes the stop codon and binds to the ribosome. RF1/2 catalyzes polypeptide release, freeing the 
assembled polypeptide chain from the P-site tRNA, where it can now leave the ribosome through the exit 
tunnel. RF3(GTP) binds to the ribosome, prompting release of RF1/2, GTP hydrolysis, and its own release. 
The post-termination ribosomal complex (PoTC) is then recycled by ribosome recycling factor (RRF), EF-
G(GTP), and IF3. Figure adapted from Ref. [3]. 
 

Translation is a polymerization process, and thus can be conceptualized as having 

initiation, elongation, and termination phases, followed by a ribosome recycling phase. A 

schematic overview of the translation cycle is found in Figure 1.1B, and a brief description of each 

stage can be found in the figure caption. The elongating ribosome performs three main functions: 

(1) a genetic function – the decoding of mRNA; (2) an enzymatic function – as a 

peptidyltransferase; and (3) a translocation function – as a conveyer of the mRNA chain and 

tRNA molecules through the ribosome during elongation (see Figure 1.1B) [4]. Inspection of base 
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pairing between an mRNA codon and a tRNA anticodon (‘decoding’) is performed on the 30S 

subunit, while peptide bond catalysis occurs in the peptidyltransferase center (PTC) of the 50S 

subunit. The two subunits cooperatively perform translocation.  

The focus of my Ph.D. work has been translation initiation, and each of the molecular 

components of initiation are introduced and described in Section 1.2. Next, Section 1.3 describes 

details of the initiation factors (IFs), three essential protein translation factors that regulate 

initiation. My Ph.D. work has focused on IF3, and specifically the mechanism of IF3’s role in 

regulating the fidelity of translation initiation. IF3’s structure, function, and interactions with the 

ribosome are detailed in Section 1.3.3. The current state of our knowledge of the structural 

features of the 30S initiation complex (30S IC) and 70S initiation complex (70S IC) is presented in 

Section 1.3.4. The motivation for my Ph.D. work is described in Section 1.3.5, and an overview of 

the biophysical technique primarily employed for this work – single-molecule fluorescence 

resonance energy transfer (smFRET) – is presented in Section 1.4. Lastly, Section 1.5 

summarizes this chapter and outlines the following chapters in this dissertation. 

1.2 Translation Initiation – a highly regulated portal to gene expression 

Initiation is the rate-limiting step in translation [5-8], taking several seconds in vivo [9], 

during which the two subunits of the ribosome and an aminoacylated and formylated initiator 

tRNA (N-formylmethionyl-tRNA) assemble at the start codon of an mRNA transcript. This 

assembly process sets the reading frame of the mRNA and thus is critical to the fidelity of gene 

expression. This 70S IC is the result of a multi-step assembly process involving the formation of 

several successive intermediate ribosomal complexes which differ in composition and 

conformation (Figure 1.2). The combined action of three protein initiation factors, IF1, IF2, and 

IF3, are essential for ensuring the speed and fidelity of each step in this process [10, 11]. 

There are three major intermediate ribosomal complexes assembled during the 

translation initiation pathway (reviewed in [11]). Much remains unknown about these initiation 

complexes, however, such as the timing and organization of IF1, IF2, and IF3 binding to the first 

complex, or the IFs’ timing of dissociation from the last complex. The first IC is a relatively 



Chapter 1 – Introduction 
 

 

4

unstable complex referred to as the 30S pre-initiation complex (30S pre-IC). Here, an mRNA is 

bound to a 30S subunit on its translation initiation region (TIR), along with a P (peptidyl-tRNA 

binding) site-bound initiator tRNA (fMet-tRNAfMet) and IF1, IF2, and IF3. There is no physical 

interaction between the mRNA and initiator tRNA at this point. The 30S pre-IC then undergoes a 

rate-limiting conformational change to bring the mRNA start codon and initiator tRNA into direct 

contact in the 30S P site, where they can now form a codon-anticodon interaction. This new, 

stable complex is referred to as the 30S initiation complex (30S IC). The next step in the process 

is the association of the 50S subunit to the 30S IC to form a 70S IC. Stable 50S subunit joining is 

thought to occur concomitantly with dissociation of IF1 and IF3, GTP hydrolysis by IF2 followed 

by Pi release and IF2 dissociation. During this process, the initiator tRNA is also adjusted in the P 

site of the 50S subunit so that it is optimally positioned in the PTC for peptide bond formation with 

the first aminoacyl-tRNA that will be delivered to the ribosome during translation elongation. 

Consequently, the binding of the 50S subunit to the 30S IC, the positioning of the initiator tRNA, 

and the ejection of the IFs to form the 70S initiation complex (70S IC) mark the irreversible 

transition from the initiation to the elongation phase of translation.  

Initiation is arguably the most critical stage of translation, however, as it sets the reading 

frame of a gene transcript, and, with cis and trans regulatory elements, determines the fate of a 

particular mRNA (i.e. whether or not the mRNA will enter translation elongation for rapid 

decoding). Indeed, regulation of gene expression at the translational level generally occurs during 

the initiation stage of translation and, in eukaryotes, numerous translationally regulated genes 

involved in both health and pathology have been identified [12, 13]. Although initiation is more 

complicated in eukaryotes and archaea than prokaryotes, important structural and mechanistic 

features are conserved between these three domains [12, 13]. The structures of eukaryotic, 

archael, and prokaryotic ribosomes reveal very similar mRNA binding and decoding sites, and all 

three prokaryotic IFs have structural or functional counterparts in eukaryotes and archaea (IF1 = 

e/aIF1A [14, 15]; IF2 = e/aIF5B [16]; IF3 = e/aIF1 [17, 18]). Thus, a mechanistic understanding of 
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the roles of the prokaryotic initiation factors is likely to be somewhat transferable to eukaryotic 

initiation. 

Figure 1.2 A minimal kinetic model of translation initiation. Three protein initiation factors, IFs 1, 2, and 
3, assemble with an initiator tRNA, fMet-tRNAfMet, and a start codon-carrying mRNA on the 30S ribosomal 
subunit (30S pre-IC). A rate-limiting conformational change of the initiation complex occurs during codon-
anticodon interaction and 30S IC formation. The 50S ribosomal subunit rapidly joins to the correctly 
assembled 30S IC and is accompanied by dissociation of the IFs. The precise timing of these components’ 
association and dissociation remains unknown. The figure cartoons are as follows: “30S subunit” indicates 
the small ribosomal subunit and “50S subunit” indicate the large ribosomal subunit; “E”, “P”, and “A” refer to 
the deacylated-, peptidyl-, and aminoacyl-tRNA binding sites, respectively; “1”, “2”, and “3” represent IF1, 
IF2, and IF3; “GTP” is guanosine triphosphate; “fMet” is N-formylmethionyl-tRNAfMet (initiator tRNA); “mRNA” 
is a messenger RNA containing, at minimum, a translation initiation region (Shine-Dalgarno sequence, 
spacer, and AUG start codon); “30S IC” refers to a fully assembled 30S initiation complex containing a 30S 
ribosomal subunit, all three IFs, mRNA with an AUG start codon in the P site, and initiator tRNA bound to the 
P site; “70S IC” is a 70S ribosome containing P-site initiator tRNA bound to an AUG start codon. 
 
1.2.1 The small (30S) ribosomal subunit 

The 30S subunit is frequently described as morphologically resembling a “chick”, with a 

head, neck, body, spur, and beak (Figure 1.3). Its 16S rRNA forms the scaffold for the subunit, 

with the ribosomal proteins mainly found on the periphery of the particle. The side of the 30S 

subunit that interfaces with the 50S subunit upon subunit association is mainly composed of 

rRNA, while its solvent-exposed back side contains many of the ribosomal proteins. The interface 

side also contains the binding sites for the mRNA, tRNAs, and translation factors [19-21]. The 

30S and 50S subunits are associated into the 70S ribosome through 12 intersubunit bridges (see 

Table 1.1), which are formed from either rRNA-rRNA, rRNA-protein, or protein-protein contacts 

[22]. The standard nomenclature used to refer to ribosomal proteins and rRNA nucleotides is as 

follows: “S” and “L” for small subunit and large subunit proteins, respectively, and “h” and “H” for 

16S rRNA and 23S rRNA helices, respectively. 
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Figure 1.3 Overview of the 30S ribosomal subunit. (A) Secondary structure diagram of 16S RNA from E. 
coli. Adapted from Ref. [23, 24]. Domains are colored as indicated. (B & C) Front (subunit interface side) 
and back (solvent-exposed side) views of the 30S ribosomal subunit (PDB code 2J00). The morphological 
features are indicated and the domains of the ribosomal RNA are colored as in (A). Ribosomal proteins are 
indicated in gray. Modeled after a figure in Ref. [19]. The ribosomal subunits were rendered in PyMOL [25]. 
 
Table 1.1 Intersubunit bridges in the 70S ribosome. From Ref. [26]. Numbers refer to nucleotide (nt) 
positions in 16S or 23S rRNA. H, helix; S, small subunit protein; L, large subunit protein; P-P, protein-
protein; R-R, RNA-RNA; R-P, RNA-protein; P-R, protein-RNA. 
Interaction type 30S component  

(16S rRNA helix/nt or S protein) 
50S component  

(23S rRNA helix/nt or L protein) 
Bridge B1a 

P-R 
 

S13 
 

H38, 886-888 
Bridge B1b 

P-P 
 

S13 
 

L5 
Bridge B2a 

R-R 
 

H44, 1408-1410, 1494-1495 
 

H69, 1913-1914, 1918 
Bridge B2b 

R-R 
R-R 

 
H24, 784-785, 794 

H45, 1516-1519 

 
H67/h69, 1836-1837, 1922 
H71/h69, 1919-1920, 1932 

Bridge B2c 
R-R 

 
H24/H27, 770-771, 900-901 

 
H67, 1832-1833 

Bridge B3 
R-R 

 
H44, 1484-1486 

 
H71, 1947-1948, 1960-1961 

Bridge B4 
R-R 
P-R 

 
H20, 763-764 

S15 

 
H34, 717-718 
H34, 713, 717 

Bridge B5 
R-R 
R-P 
R-R 
R-R 

 
H44, 1418-1419 
H44, 1420-1422 
H44, 1474-1476 
H44, 1474-1476 

 
H64, 1768-1769 

L14 
H62, 1689-1690 

H64, 1989 
Bridge B6 

R-R 
R-P 

 
H44, 1429-1430, 1474-1476 

H44, 1431 

 
H62, 1689-1690, 1702-1705 

L19 
Bridge B7a 

R-R 
 

H23, 698, 702 
 

H68, 1848-1849, 1896 
Bridge B7b 

R-P 
R-P 

 
H23, 712-713 
H24, 773-776 

 
L2 
L2 

Bridge B8 
R-P 

 
H14, 345-347 

 
L14 
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1.2.2 The translation initiation region of prokaryotic mRNAs 

Unlike eukaryotic mRNAs, bacterial mRNAs are normally polycistronic, containing 

multiple coding regions, and bind multiple ribosomes [2]. Another feature separating eukaryotes 

from prokaryotes is the presence of transcription and translation processes in the same cellular 

compartment, which allows co-transcriptional translation. The coupling of these processes helps 

minimize ribosomes’ search for start codons.  

To prevent translation initiation at internal methionine codons, all canonical mRNAs have 

TIRs with a few distinct elements. The TIR is found in the 5’ untranslated region (UTR) upstream 

of the start codon and includes a purine-rich Shine-Dalgarno (SD) sequence that can be 3-9 

bases in length [27]. The SD is complementary to nucleotides located at the 3’ end of the 16S 

rRNA (the anti-SD (ASD) sequence: 5’-CACCUCCUU-3’) (see Figure 1.4). The binding of the SD 

to the ASD anchors the mRNA to the 30S subunit and helps reduce the space to be searched in 

the hunt for the start codon [27, 28]. Once the SD-ASD interaction is established, the start codon 

is now positioned in the vicinity of the P site, where it can be recognized and ultimately locked 

into the P site by the initiator tRNA [29]. The length and sequence of the SD, as well as the length 

and sequence of the spacer between the SD and the start codon, are variable and can influence 

the efficiency with which a particular mRNA is translated. For example, extended SD-ASD 

complementarities, and consequently a short spacer between the SD and start codon, can reduce 

the expression level of a particular mRNA [30]. The start codon in E. coli is most frequently (90% 

of all genes) AUG, while GUG and UUG are used in 8% and 1% of all E. coli genes. The unusual 

start codons AUU and AUC are used in the remaining 1% of E. coli genes [31-33].  
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Figure 1.4 The mRNA binding site on the 30S ribosomal subunit. A 27 nucleotide mRNA (in gray, red, 
and green) is bound in the neck region of the 30S subunit. The AUG start codon (in green) is positioned 
near the P site. The Shine-Dalgarno (SD) sequence is indicated in red. The complementary anti-SD 
sequence at the 3’ end of the 16S RNA is indicated in blue. (A) The mRNA-bound 30S subunit from T. 
thermophilus (PDB code 2HGR). (B) A closer view of the mRNA binding site, with the start codon and 
SD:ASD interaction depicted. (C) A 90 rotation about the vertical axis to more clearly view the SD:ASD 
interaction.  
 

Another critical element in the TIR is the presence/absence of secondary structure within 

this region [34, 35]. Base-pairing within this region restricts ribosome-binding, making this a 

common means of translational control of gene expression. For example, riboswitches are 

sequences within the 5’ UTRs of prokaryotic mRNAs whose secondary structures are altered in 

response to the binding of a metabolite, with the consequence of secluding or exposing the SD 

sequence and preventing or permitting translation under certain metabolic or stress conditions 

[36, 37]. 

1.2.3 The initiator tRNA 

In prokaryotes, and also in the chloroplasts and mitochondria of eukaryotes, all polypeptide 

chains begin with N-formyl-methionine, though in many cases this N-terminal methionine is post-

translationally or co-translationally removed or modified [38]. The initiator tRNA that delivers this 

first amino acid is tRNAfMet, which differs from the elongator methionine tRNA in three distinct 

ways [39] (see Figure 1.5). tRNAfMet has a mismatch in its acceptor arm (C1A72), which prevents 

elongation factor Tu (EF-Tu) from binding to tRNAfMet and delivering it to the ribosomal A 

(aminoacyl-tRNA binding) site during elongation [40]. This mismatch is also critical for interactions 

between Met-tRNAfMet and the methionyl-tRNA transformylase enzyme [41]. There are three 

highly conserved consecutive GC base pairs in the anticodon stem of tRNAfMet which rigidify the 

stem and help target the tRNA to the P site [39, 42, 43]. Two of these base pairs interact with P 

site 16S rRNA nucleotides, specifically: the tRNA base pair G29-C41 with the rRNA nucleotide 
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G1338, and the tRNA base pair G30-C40 with rRNA nucleotide A1339 [44, 45]. The third 

distinctive element in tRNAfMet is the presence of a purine-11-pyrimidine-24 in the dihydrouridine 

(“D”) stem, which is unlike the pyrimidine-11-purine-24 base pair that is always found in elongator 

tRNAs. Both tRNAMet and tRNAfMet are aminoacylated by methionyl tRNA synthetase due to its 

recognition of their same anticodon: CAU. Met-tRNAfMet goes on to be formylated by methionyl-

tRNA transformylase, which catalyzes the transfer of a formyl group from N10-

formyltetrahydrofolate to the α-amino group of the methionine [39]. fMet-tRNAfMet is recognized by 

IF2 by virtue of its formyl group [46], and possibly its acceptor arm [47] and elbow region [48], 

while IF3 recognizes its anticodon stem and loop elements [49]. These features can be 

introduced into non-initiator tRNAs, and cause them to be recognized as an initiator tRNA by 

these IFs [40, 46, 49, 50].  

 
Figure 1.5 Initiator and elongator methionine tRNAs. Cloverleaf representation of the secondary 
structure of (A) the initiator fMet-tRNAfMet, and (B) elongator Met-tRNAMet. The regions critical for initiator 
tRNA recognition by the 30S ribosomal subunit, IF2, IF3, and the methionyl-tRNA transformylase are 
indicated in boxes. Additional details can be found in the text. 
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1.3 The Initiation Factors (IFs) 

The 30S subunit shows no inherent preference for a start codon-initiator tRNA codon-

anticodon interaction over a cognate elongator codon-anticodon interaction. With this in mind, it 

starts to become obvious that external chaperones must be used to ensure the fidelity of 30S IC 

and 70S IC formation. IF1, IF2, and IF3 perform this fidelity function in prokaryotes. All three of 

these factors are essential for cell viability [51-53] and their functions are thought to be at least 

partially conserved across all three domains of life [15-17]. 

1.3.1 Initiation Factor 1 (IF1) 

IF1 is the smallest, and least understood, of the IFs. Homologs of IF1 are present in 

prokaryotes, archaea, and eukaryotes, clearly indicating a universal role for this initiation factor 

[14, 15, 54]. In E. coli, IF1 is encoded by the gene infA and is composed of 71 amino acids for a 

total molecular weight of 8.2 kDa. Structurally, it is composed of a rigid five-stranded β-barrel 

flanked by flexible and disordered extremities, with the residues connecting β3 and β4 (residues 

38-44) forming a flexible 310-helix (Figure 1.6A). The N-terminal tail (residues 1-6) and C-terminal 

tail (residues 67-71) are highly flexible, as revealed by their intense (15N,1H)-nuclear Overhauser 

effects (NOEs), as measured by solution nuclear magnetic resonance (NMR) spectroscopy [55]. 

IF1 belongs to the common oligomer binding (OB) fold family of proteins, along with other nucleic 

acid-binding proteins including ribosomal protein S1, cold shock proteins CspA and CspB, and 

the N-terminal domain of aspartyl-tRNA synthetase [55]. 
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Figure 1.6 Initiation Factor 1. (A) Ribbon diagram of the structure of IF1 from E. coli determined with 
multidimensional NMR spectroscopy. Main-chain superposition of 19 refined structures. The dominant 
features are the five-stranded -barrel and 310 helix. PDB code 1AH9. (B) Crystal structure of a complex of 
IF1 with the T. thermophilus 30S ribosomal subunit. A space-filling model of IF1 is in purple, and a ribbon 
diagram of the 30S subunit is in wheat (RNA) and orange (ribosomal proteins). PDB code 1HR0. Structures 
rendered in PyMOL [25]. 
 
 IF1’s interactions with the 30S subunit are mainly electrostatic, as evidenced by the 

dependence of its affinity on buffer ionic strength, and involve the positively charged Lys and Arg 

residues on the protein interacting with the negatively charged 16S rRNA phosphate backbone 

[56-58]. Binding of IF1 to the 30S subunit and its equilibrium dissociation constant (Kd) from the 

30S subunit has been measured by fluorescence polarization and is highly affected by the 

presence of IF2 and/or IF3. Alone, IF1 has a weak affinity for the 30S subunit (Kd = 2 M). Adding 

IF3 decreases this value ~75-fold to 28 nM, while adding IF2 decreases it over 200-fold (Kd = 9 

nM). Including IF2 and IF3 results in a Kd of 4 nM [59]. 

A crystal structure of Thermus thermophilus IF1 bound to a T. thermophilus 30S subunit 

was solved to 3.2 Å resolution [60] (Figure 1.6). This structure agreed with previous biochemical 

and mutagenesis work in localizing IF1’s binding site to the A site of the 30S subunit [61, 62]. IF1 

binds in a cleft between the 530 loop and h44 of 16S rRNA and ribosomal protein S12. IF1 

causes several localized conformational changes upon binding the A site. These include flipping 
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of A1492 and A1493 such that they are no longer stacked within h44 and are then buried in 

pockets between IF1 and S12. This local conformational change induces longer-range 

conformational changes, including a rotation of the 30S head, platform and shoulder toward the A 

site. This IF1-bound conformational state of the 30S subunit is thought to affect the association-

dissociation equilibrium of the ribosomal subunits during subunit joining [63]. 

IF1 is clearly an important cellular component, as it is essential for cell viability and 

influences the rate of translation: omission of IF1 from otherwise complete protein synthesis 

reaction mixtures results in a much-reduced translation rate [64]. An autonomous role of IF1 in 

translation has not yet been identified, but IF1 is known to function by enhancing the activities of 

IF2 and IF3 [65]. It enhances IF3’s subunit anti-association activity (see section 1.3.3.7), and is 

thought to stabilize, and possibly position, IF2 for effective interaction with the initiator tRNA and 

optimal 50S subunit joining [66]. IF1 may also be required for dissociation of IF2 from 70S ICs 

[67]. In mammalian mitochondria, a 37 amino acid insert in the sequence of IF2mt has functionally 

replaced IF1 [68]. Comparable to IF1, this IF2mt insert region also binds in the A site of the 30S 

subunit [69].  

1.3.2 Initiation Factor 2 (IF2) 

IF2, like EF-Tu, elongation factor G (EF-G), and release factor 3 (RF3), is a ribosome-

dependent guanosine triphosphatase (GTPase). It’s the largest of the three IFs and is encoded 

by infB gene. IF2 has homologs in both archaea (aIF5B) and eukarya (eIF5B) [16]. There are 

three IF2 isoforms in E. coli: IF2α (97.3 kDa), IF2β (79.7 kDa), and IF2γ (78.8 kDa), which are 

tandemly translated from three independent start sites of the infB gene [70]. Their separate in 

vivo activities are indistinguishable and E. coli only needs one isoform to survive, however 

optimal growth conditions require all three isoforms [71, 72].  

The structure of IF2 from E. coli has not yet been solved, but structures of the C-terminal 

core of aIF5B from Methanobacterium thermoautotrophicum have been solved [73] (Figure 1.7) in 

the nucleotide-free, GDP-bound, and GTP-bound forms. Overlays of these three structures reveal 

local conformational changes in the G domain that affect the C terminus, over 90 Å away [73]. IF2 
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contains six major domains [74]. Domains I-III are found in the N-terminal region. Both the 

primary structure and length are highly variable, and no specific function has been assigned to 

the N-terminal region. In fact, this region is not even required for cell viability in yeast (i.e. in the 

homologous eIF5B) [73]. The N-terminal region is connected to domain IV of the C-terminal 

region through a highly flexible linker [75]. Domains IV-VI make up the highly conserved C-

terminal region. Domain IV is the G domain – the domain responsible for GTP binding and 

hydrolysis. It is an eight-stranded β-sheet adjacent to six α-helices and a 310 helix. The G domain 

displays the conserved sequence elements characteristic of GTP binding proteins, such as Ras, 

Rho, and the signal recognition particle. Domain V is composed of a β-barrel, domain VI-I is an 

αβα sandwich connected to domain VI-2 by an extended α-helix. All of IF2’s known functions are 

performed by the C-terminal region [76]. These functions include: (i) catalysis of 50S subunit 

association to the 30S IC, (ii) hydrolysis of GTP, and (iii) recognition of the initiator tRNA through 

its formyl group and 3’ acceptor end [77, 78]. 

 
Figure 1.7 Initiation Factor 2. Ribbon diagrams of the IF2N domain (residues 2-50) from E. coli (left) and 
domains IVVI-2 from the IF2 homolog aIF5B from M. thermoautotrophicum complexed with GDPNP (right). 
Each domain is indicated with a separate color and labeled according to E. coli nomenclature. Domains II 
and III, and part of I, (residues 51-390) are missing. The IF2N structure was solved by multidimensional 
NMR spectroscopy and the structure of aIF5B(GDPNP), along with aIF5B(GDP) and aIF5B, was solved with 
X-ray crystallography. PDB codes 1HD9 and 1G7T. Figure adapted from Ref. [11] and rendered in PyMOL 
[25]. 
 

IF2 is the only initiation factor that has high affinity for both ribosomal subunits [11]. Its 

binding to the 30S ribosomal subunit is through both ionic and hydrophobic interactions, and is 

highly affected by the presence of IF1, IF3, initiator tRNA, and GTP [79]. In their presence, IF2 
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has a Kd of 5.6 nM, while alone its Kd is 37 nM [79]. Early crosslinking studies indicated that IF2 

and IF1 are in close proximity on the ribosome [62]. Cryogenic electron microscopy (Cryo-EM) 

studies differ regarding the presence of a direct contact between IF2 and IF1; one was absent in 

the 30S IC [80], but seemingly present in the 70S IC structure [47] (see section 1.3.4). 

1.3.3 Initiation Factor 3 (IF3)  

1.3.3.1 The gene and amino acid sequences of IF3 

 The gene encoding E. coli IF3, infC, has a 540-nucleotide open reading frame [31]. An 

interesting feature of the infC coding sequence is its use of the non-canonical start codon AUU, 

making infC one of only two known genes in E. coli to use this start codon, with the other being 

pcnB coding for poly(A) polymerase [31, 33]. The use of this AUU codon is conserved across all 

known prokaryotic infC sequences, with the exception being the dsg gene (a homolog of infC) of 

Myxococcus xanthus, which uses AUC instead [81]. In E. coli, this AUU start codon is located 

eleven bases downstream of the center of a strong Shine and Dalgarno (SD) sequence: 

GGAGGAA [27, 31]. IF3 from E. coli is largely basic in character, with an isoelectric point (pI) of 

10.3 [31, 82], and is composed of 180 amino acid residues [83] for a total molecular mass of 20.5 

kDa [31].  

1.3.3.2 Structural features of IF3 

 IF3 is an elongated protein, composed of two similarly sized, globular domains connected 

by a hydrophilic, flexible linker peptide [84-90]. All attempts at crystallizing intact IF3 have thus far 

been unsuccessful [85, 91] apparently due to the interdomain linker’s flexibility. The linker peptide 

is highly susceptible to proteolysis by numerous proteases, including trypsin, omptin, and 

Staphylococcus aureus endoproteinase Glu-C [84, 85, 92], while IF3’s two globular domains are 

quite resistant to proteolysis. The proteolytic susceptibility of the linker has been exploited to 

investigate the structural features of IF3’s globular domains separately [85-88]. 

The structures of the isolated N-terminal domain (NTD) and C-terminal domain (CTD) of 

IF3 from Bacillus stearothermophilius and E. coli were solved by X-ray crystallography [86] and 

NMR spectroscopy [87, 88], respectively. The sequence identity of IF3 from these two species is 
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54% [93] (see Figure 1.10). The NTD and CTD each have /ß topology and contain an exposed 

ß-sheet, a motif common in many ribosomal, and other RNA-binding, proteins [86].  

The crystal structure of IF3 NTD from B. stearothermophilius (residues 3 to 78) [86], and 

the structure of E. coli IF3 NTD (residues 7 to 83) solved by solution NMR spectroscopy [87], both 

reveal a globular /ß fold containing one helix, H1, packed against a mixed four-stranded ß-sheet 

with central strands S1 and S4 parallel to each other and peripheral strands S2 and S3 

antiparallel (Figure 1.8). 2D nuclear Overhauser effect spectroscopy (NOESY) is an NMR 

technique commonly employed to determine protein structure via correlation of through-space 

nuclear interactions within the protein. Here, 2D NOESY spectra of the NTD isolated by both 

proteolytic cleavage of the full-length IF3 and by overexpression of the truncated gene were 

indistinguishable [87], indicating that the domain was well folded and unaffected by proteolysis. 

 
Figure 1.8 Initiation Factor 3. Ribbon diagrams of the crystal structures of IF3 N-terminal domain (NTD) 
(left) and C-terminal domain (CTD) (right) from B. stearothermophilus. The amino acids indicated by stick 
structures are those residues involved in 30S subunit binding, as determined by NMR spectroscopy (see 
text for details). The protruding helix in the NTD has been shown to be disordered and flexible in E. coli. 
Interdomain linker residues 78 to 82 (B. stearo numbering) are missing. PDB entries 1TIF and 1TIG. 
Structures rendered in PyMOL [25]. 
 

The structures of IF3’s CTD from B. stearothermophilus and E. coli, solved by X-ray 

crystallography and NMR, respectively, reveal that it also has an /ß fold, consisting of two 

parallel -helices, H3 and H4 (Figure 1.8), which are packed against a mixed four-stranded ß-

sheet. The first two strands of this sheet, S5 and S6, are parallel, while the next strand, S8, is 

anti-parallel to both S6 and S7 [86, 88]. The CTD very closely resembles U1A, a small protein 

that binds to the spliceosome [88].  



Chapter 1 – Introduction 
 

 

16

1.3.3.3 Structural aspects of IF3’s interdomain linker 

One discrepancy between the crystal structure and NMR structure of IF3’s NTD is the 

presence of an -helix (H2) (residues 62 to 75 in B. stearothermophilus numbering, residues 70 

to 83 in E. coli) at the C-terminus of the NTD that protrudes out from the globular /ß domain 

which was seen in the crystal, but not the NMR, structure. In the NMR structure, the first six and 

last six amino acid residues (Ser78 to Glu83) were disordered. Eight of these H2 residues are 

interdomain linker residues (residues Glu76 to Lys89, E. coli numbering), which led to the 

proposal that IF3’s interdomain linker is -helical, not a flexible random coil. All other structural 

work on IF3 has refuted this conclusion, however. Circular dichroism and NMR spectroscopy 

were used to investigate the helical content of peptides containing the interdomain linker 

sequences from E. coli and B. stearothermophilus [90]. In solution, and under physiologically 

relevant temperatures for this mesophile and thermophile, the peptides were only 3% and 17% -

helical, respectively [90]. Under conditions comparable to those used to crystallize the NTD [85, 

86]), the B. stearothermophilus peptide was 68% -helical, suggesting that the crystallization 

conditions employed may have induced these linker residues to adopt a conformation that would 

not normally be stably sampled [90].  

The conformation of intact E. coli IF3 was studied with heteronuclear NMR spectroscopy 

at 30C and the rotational correlation times of the two globular domains were uncorrelated, 

indicating that their relative motions are independent and show little or no interaction, implying 

unrestricted motion of the interdomain linker [89]. In line with this, the amide protons within the 

linker region of the protein were shown to be in fast exchange with water [89]. IF3’s lysine 

residues were selectively labeled with [-15N] lysine and heteronuclear relaxation studies of the 

linker residues displayed increased 15N T2 values and negative 1H{15N} NOEs, further indicating 

that the lysine-rich interdomain linker is highly flexible [89]. Additional evidence for the linker’s 

disorder comes from its high degree of proteolytic susceptibility, both in solution and bound to 
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rRNA, as limited proteolysis can only occur in exposed flexible regions and not in helical chain 

segments of a protein [94].  

The majority of all structural work on IF3, with the B. stearothermophilus IF3 NTD crystal 

structure as the sole exception, indicates that, in solution, IF3 behaves like two rigid globules 

connected by a flexible chain, and is thus able to adopt a large variety of interdomain 

conformations. These conformers were computationally modeled using the protein structure 

prediction program DIANA [95] by fixing the NTD’s and CTD’s tertiary structures but allowing 

unrestrained sampling of dihedral angle space for the linker [89]. The structure prediction 

algorithm produced a set of conformers with inter-domain distances ranging from 28 to 65 Å, with 

an average distance between the centers of mass of 46 Å [89], see Figure 1.9. This is consistent 

with a neutron scattering study of B. stearothermophilus IF3 in solution, where the average 

distance between the centers of mass of the two domains was also 46 Å [85]. 
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Figure 1.9 The IF3 interdomain linker is disordered in solution. Figure from Ref. [89]. C traces of four 
sample IF3 conformers obtained using DIANA, a protein structure prediction software program for NMR data 
[95]. The structures were obtained by leaving the linker region (residues 78 to 89) unrestrained, but 
restraining the backbone  and  dihedral angles of all residues within the structured part of the NTD and 
CTD (residues 11 to 77, and 90 to 176) to within 1 of their respective values in the minimized mean 
structure obtained for each isolated domain. A set of 200 conformers was calculated and the 100 
conformers having the lowest value for the target function were retained for statistical analysis. Of these, the 
interdomain distance varied from 28.2 to 64.5 Å, and the average distance between the centers of mass of 
the two domains was 46.3(8.9) Å. 
 
1.3.3.4 Conservation of the interdomain linker’s flexibility, length, and hydrophilicity  

 In E. coli, the interdomain linker includes residues Glu76 to Lys89, and the corresponding 

B. stearothermophilus residues are Glu68 to Lys81. Deletion of the linker to produce separate 

CTD and NTD polypeptides results in a lethal phenotype and co-expression of the independently 

expressed CTD and NTD, even at high concentrations, cannot rescue the cells [94]. Clearly a 

physical link between the CTD and NTD is critical for IF3’s function. A comparison of the length of 

this region, and the identity and character of its residues, across prokaryotes revealed that the 

specific sequence is not highly conserved, however its length, and the hydrophilic and basic 
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character of its residues, is very highly conserved through evolution [89, 94] (see Figure 1.10). 

The high conservation of its length and charge strongly suggest that either or both of these 

factors are important in IF3’s function. 

Figure 1.10 The IF3 interdomain sequence is highly conserved in length and hydrophilicity. Multiple 
sequence alignment of the IF3 sequence from 25 diverse bacterial species performed using position-specific 
iterated basic local alignment search tool (PSI-BLAST) and visualized in CLUSTALW [96, 97]. The 
interdomain linker region is indicated by the black box. The sequences for IF3 from E. coli and B. 
stearothermophilus are indicated with arrows. 
 
 Interestingly, a systematic in vivo mutational analysis of the length and character of the 

residues within the linker concluded that the linker could be shortened by up to six residues 

before affecting cell viability [94]. Additionally, the positively charged linker residues could be 

deleted or replaced with uncharged hydrophilic residues without loss of cell viability [94]. 

Replacing the hydrophilic linker with a poly-proline linker did result in a lethal phenotype however, 

indicating the need for flexibility within the linker. NMR spectroscopy confirmed that the structures 

of the poly-proline mutant and a ∆8 residue mutant were comparable to wild-type IF3 and binding 

studies showed that these IF3 mutants still bind with wild-type-like affinity to 30S subunits, thus 

demonstrating that loss of function was not the result of misfolding or impaired binding. The 
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results of this mutational study contradict the hypothesis that the linker’s length and charge are 

critical to IF3’s function, but instead imply that the linker’s flexibility and hydrophilicity are most 

important. 

1.3.3.5 Interactions between IF3 and the 30S ribosomal subunit 

Throughout the 1980s, a number of studies were done to determine IF3’s binding site on 

the ribosome using various crosslinking approaches, site-directed mutagenesis, and chemical 

and enzymatic protection studies. Although a few studies reported that IF3 bound to 50S 

subunits, today it is accepted that IF3’s binding site is on the 30S subunit. Despite decades of 

effort, however, IF3’s precise positioning on the 30S subunit remains unknown, though cryo-EM, 

directed hydroxyl radical probing, and X-ray crystal structures have helped narrow down its 30S 

subunit binding site, as will be described in the following paragraphs. 

From crosslinking [62, 98-104], mutagenesis [105-107], and chemical protection [108] 

experiments, a number of ribosomal proteins and 16S rRNA nucleotides were identified that are 

either in direct contact with IF3, or whose accessibility changes upon IF3 binding. The ribosomal 

proteins that were repeatedly seen to be crosslinked with IF3, using a variety of different 

chemical, photochemical, and UV crosslinking agents, include S7, S11, S12, S13, S18, S19, and 

S21 (Figure 1.11A) [62, 98, 101-103]. Interestingly, these ribosomal proteins span a large surface 

area of the interface side of the 30S subunit, including the head, platform, and body regions of the 

subunit. This observation lead to suggestions that IF3 binds to both the head and platform of the 

30S subunit [102]. Crosslinking between IF3 and 16S rRNA also revealed two distinct 16S rRNA 

regions that IF3 interacts with: the central domain (nucleotides 819-859) and the 3’ end (helix 45: 

nucleotides 1506-1529) [62]. Later studies, using site-directed mutagenesis, identified additional 

nucleotides in 16S rRNA helix 24 that were critical for IF3 binding, including universally conserved 

nucleotides G791 [105] and A792 [106], as well as nucleotides G1530 and A1531 [107]. 

Chemical protection studies revealed that some helix 23 and 24 16S rRNA nucleotides, including 

G700, G703, and G791, are protected from kethoxal attack when IF3 was bound [108], and 

hydroxyl radical protection revealed an extensive footprint of nucleotides in helix 23 (685-688 and 
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693-703) and helix 24 (774-776, 783-793, 799-802, and 807-810) that surround these bases 

[109]. Thus, it seems that IF3 interacts with helices 23, 24, and 45 of the platform region of the 

30S subunit (Figure 1.11B). 

 
Figure 1.11 Regions of the 30S subunit involved in IF3 binding. (A) Ribosomal proteins that have been 
crosslinked with IF3 or protected from hydroxyl radicals or chemical modification by IF3. Proteins S1 and 
S21 are not shown. Details on the probing techniques and affected proteins can be found in Appendix C. (B) 
The helices in the central domain region of the 16S rRNA that IF3 has been shown to interact with. PDB 
code 2J00. 
 

Many early studies were also done to identify the amino acid residues within IF3 that are 

critical for its interactions with the 30S subunit. Again, site-directed mutagenesis and chemical 

modification approaches were taken which revealed a number of residues that are essential for 

its 30S binding. These include NTD residue Tyr71, and CTD residues Tyr107, Tyr109, Lys110, 

Lys112, and Pro176 [110-113]. Later, (15N,1H)-HSQC NMR spectroscopy was used to more 

directly probe which IF3 NTD and CTD residues are involved in subunit binding during a 30S 

subunit titration [114]. These residues were identified by intensity changes in the cross peaks 

belonging to amides of individual IF3 amino acids during titrations of IF3 into 30S subunits. The 

affected residues are indicated in Figure 1.8, clearly demonstrating that most IF3-30S interactions 

are through the CTD. 

A low resolution (27 Å) cryo-EM structure of an IF3-30S subunit complex confirmed that 

IF3’s binding site lies in the cleft between the head and platform of the 30S in agreement with the 
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position implied in Figures 1.11A and B, however relative placement of the NTD and CTD in the 

positive electron density could not be unambiguously determined due to their similar sizes and 

morphologies, and the resolution level of the electron maps [115]. Further confidence in the 

specific location of IF3 on the 30S subunit came with a directed hydroxyl radical probing study 

using Fe(II)-1-[p-(bromoacetamido) benzyl]-EDTA (BABE) probes attached to 14 single Cys 

residues introduced into IF3 (5 on the NTD, 2 on the linker, 7 on the CTD) [109]. Fe(II)-BABE 

reacts to form thioether bonds with cysteine residues on a protein through the BABE bromoacetyl 

group, and iron redox chemistry, which generates hydroxyl radicals, is stimulated by the addition 

of ascorbate and hydrogen peroxide [116]. These hydroxyl radicals cleave RNA chains found 

within 20 Å of the Fe(II)-BABE probe. IF3’s interactions with both 16S rRNA and P site- and 

mRNA-bound initiator tRNA were probed with this directed approach. Only the location of the 

CTD was determined with a relatively high confidence level, however, as only one of the five NTD 

probes cleaved rRNA, thus making the placement of this domain rather tenuous. The CTD was 

localized to the platform interface of the 30S, near the P site, while the NTD was placed near the 

E site, on the opposite side of the 30S- and mRNA-bound initiator tRNA. The placement of the 

CTD was in agreement with the cryo-EM study and the position implied in Figure 1.11, while the 

placement of the NTD differed (see Figure 2.1 in chapter 2 for the placement of IF3 on the 30S 

subunit determined in these studies). An X-ray crystal structure of T. thermophilus IF3-CTD 

bound to a T. thermophilus 30S subunit [117] reported that  IF3-CTD binds on the upper end of 

the platform on the solvent side of the 30S subunit, between helices 23, 26, and the 3’ end of 

helix 45. This location may represent a secondary binding site of IF3, and does not rule out the 

interface side of the platform region of the 30S subunit as the primary binding site. The platform 

region of the 30S subunit coincides with crystal contacts in the T. thermophilus 30S crystals, thus 

making it unlikely that IF3, soaked into these crystals, would be able to bind to this location 

without disrupting crystal packing [109].  

Collectively, these biochemical and structural studies reveal the general vicinity of the 

30S subunit that is involved in IF3 binding (Figure 1.12A). This region of the 30S subunit is also 
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involved in the formation of a number of intersubunit bridges, including B1a, B1b, B2a, B2b, and 

B7a (see Table 1.1 and Figure 1.12B), which may enable IF3 to perform its anti-50S subunit 

association function during ribosome recycling, as well as regulate 50S subunit joining in the later 

stages of translation initiation (see section 1.3.3.7). IF3’s precise binding site, however, both in 

the absence and presence of mRNA, initiator tRNA, and the other initiation factors, awaits higher 

resolution cryo-EM or X-ray crystal structures. 

 

Figure 1.12 The approximate 30S subunit binding site of IF3. A. Directed hydroxyl radical probing [109], 
time-resolved chemical footprinting [118], and cryo-EM [115], respectively, were used to investigate the 
location of IF3 on the 30S subunit. Discrepancies exist regarding the relative position of IF3’s NTD and CTD, 
but all three studies place IF3 on the platform of the 30S, near the neck. B. Regions of the 30S subunit 
involved in intersubunit bridges. 16S rRNA in wheat and ribosomal proteins in orange except for those rRNA 
residues (red) and r-protein residues (magenta) involved in RNA-RNA, RNA-protein, or protein-protein 
intersubunit bridge interactions. Figure from Mr. Wei Ning. IF3’s binding site coincides with that of bridges 
B1a, B1b, B2a, B2b, and B7a (indicated) [26]. 
 
1.3.3.6 IF3’s affinity for the 30S ribosomal subunit 

The Kd for fluorescein-labeled IF3’s interaction with 30S subunits was measured with 

fluorescence polarization to be 33 nM [119, 120]. IF3’s two globular domains have different 

affinities for the 30S subunit, as evidenced by an NMR titration of intact IF3 with 30S subunits 

[114], and also through binding studies of the isolated NTD and CTD. The CTD is the 16S rRNA-

binding domain of IF3 and has a relatively high affinity (Kd = ~3 M) for the 30S subunit even in 

the absence of the NTD [121]. The NTD, on the other hand, has far fewer specific interactions 

with 16S rRNA nucleotides (Figure 1.8) and instead is thought to interact mainly with ribosomal 

proteins. In the absence of the CTD, the isolated NTD has a very weak, unmeasureable affinity 

for the 30S subunit [88, 121]. These differential affinities may explain the preferred order of IF3’s 
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binding with the 30S subunit, which has been observed with both NMR spectroscopy and time-

resolved chemical footprinting to occur first through IF3’s CTD, and then through its NTD [114, 

118] (see Figure 1.13). The presence/absence of IF1 and/or IF2 in the ribosomal complex does 

not affect IF3’s binding affinity for the 30S subunit [120]. Likewise, their presence/absence does 

not affect the IF3-dependent hydroxyl radical footprinting pattern of the 16S rRNA, indicating that 

IF3’s binding may be similar in the presence or absence of the other initiation factors [109]. 

Notably, nearly all of the detected signals from the Fe(II)-BABE probes were from IF3’s CTD, so 

the influence of the other initiation components on IF3’s NTD remains to be shown. 

Figure 1.13 Cartoon depiction of IF3’s stepwise association with and dissociation from the 30S 
subunit. A. Time-resolved chemical probing [118] and titrations of 15N-labeled IF3 with 30S subunits 
monitored by two-dimensional (15N,1H)-HSQC NMR spectroscopy [114] reveal that IF3’s CTD associates 
with the 30S subunit prior to NTD binding. B. Time-resolved chemical probing [118] also revealed that IF3 
dissociates in the reverse order: first the NTD dissociates, then the CTD. The presence of IF3 hinders the 
establishment of a subset of intersubunit bridges, including B7a (see Figure 1.12B). 
 
1.3.3.7 IF3 regulates translation initiation 

One of the first functions of IF3 that was identified and thoroughly investigated is its role 

as a ribosome dissociation factor [122-124]. This title was eventually changed to “anti-association 

factor” since it was shown, through various kinetic studies, that IF3 functions by binding to vacant 

(i.e. lacking mRNA, tRNA, IF1, and IF2) 30S subunits and preventing premature 50S association 

(Scheme 1), rather than through active dissociation of 70S ribosomes (Scheme 2) [125-128].  

 70S 


 50S + 30S Scheme 1 

IF3 + 30S 


 30S•IF3 
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 IF3 + 70S 
  [70S•IF3] Scheme 2 

 [70S•IF3] 
  50S + 30S•IF3 

  
In the absence of tRNA, mRNA, and the other initiation factors, and at physiologically 

relevant Mg2+ concentrations (3-6 mM), IF3 binds tightly to 30S subunits (Kd = 33 nM, see section 

1.3.3.6) and inhibits stable 70S ribosome formation possibly by occluding regions of the 30S 

subunit that are involved in essential intersubunit bridges, including bridges B1a, B1b, B2a, B2b, 

and B7a (see section 1.3.3.5) [109]. This function is somehow relaxed on complete and correctly 

assembled 30S ICs, however, as 50S subunits will rapidly join to 30S ICs containing IF1, 

IF2(GTP), IF3, mRNA, and initiator tRNA [129-131]. It remains to be shown, however, how IF3 

blocks subunit joining under some conditions, but relaxes this block under other conditions. 

Empty 70S ribosomes readily form from free 30S and 50S subunits in the absence of IF3, even if 

IF1, IF2, and initiator tRNA are present in the solution [129-131]. Thus, IF3 plays an important 

role in preventing the formation of these ‘dead-end’ 70S ribosomes. 

 IF3’s role as a subunit anti-association factor is in play during both the late stages of 

ribosome recycling (see Figure 1.1) and the early stages of 30S IC assembly [132, 133]. Its role 

as an “initiation factor” extends beyond this anti-association role, however, as IF3 is critically 

important in substrate selection during initiation. In the absence of the other IFs, 30S•IF3 

complexes select against all codon-anticodon interactions other than tRNAfMet-AUG, tRNAfMet-

GUG, and tRNAfMet-UUG [49, 65, 134-137]. All other P-site codon-anticodon interactions, even if 

they are a cognate pair (e.g. tRNAPhe-UUU), are destabilized if IF3 is present on the 30S subunit. 

IF3, or the 30S•IF3 complex, shows a particular preference for the anticodon stem and loop of 

tRNAfMet, and even a minimal tRNAfMet mimic, containing just these elements (see section 1.2.3), 

can be selected if an AUG, GUG, or UUG codon is bound in the P site of the 30S•IF3 complex 

[49]. Whether this selection occurs through an IF3-induced 30S subunit conformational change 

that reveals a preference by the 30S subunit for initiator codon-anticodon interactions [44], or 
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through direct recognition of the codon-anticodon interaction by IF3 [49], or through any number 

of other possible mechanisms, remains to be clearly shown.  

 In contrast with the aforementioned mechanism in which IF3 inspects the codon-

anticodon interaction and specifically selects an initiator tRNA interacting with a start codon, 

another model suggests that IF3 indiscriminately destabilizes all tRNAs, including the initiator 

tRNA [72], and that IF2 is primarily responsible for specifically promoting the stabilization of 

initiator tRNA. That is, there is a kinetic tug-of-war between IF3 and IF2 to promote selection of 

just fMet-tRNAfMet over all other aa-tRNAs, including unformylated Met-tRNAfMet. Systematic 

investigations of the effect of each IF on the kinetics of tRNA binding revealed that IF3 

indiscriminately increases the dissociation rate constant, kd, of all three tRNAs studied (fMet-

tRNAfMet, Met-tRNAfMet, and Phe-tRNAPhe) [130, 131]. IF1 and IF2 counter this effect by varying 

the association rate constant, ka, to favor the binding of fMet-tRNAfMet. Thus, there is a clear 

discrepancy in the translation initiation field regarding the mechanism of IF3’s function in 

substrate selection. 

 Other functions of IF3 include start codon selection. IF3 also prevents initiation from 

internal or non-canonical start codons (non-AUG, GUG, or UUG) [138], as well as leaderless 

mRNAs [138, 139]. These functions were revealed through infC allele mutations (e.g. infC135), 

which showed increases in initiation from these types of mRNAs and codons [140-142]. These 

infC mutants also displayed decreased abilities in preventing initiation from tRNAs other than 

tRNAfMet [138] and start codons other than AUG, GUG, and UUG [81, 140, 141]. 

 IF3’s two-domain structure and ability to perform a number of seemingly disparate 

functions led some to speculate that each of IF3’s domains were uniquely responsible for distinct 

functions [121]. Although IF3’s CTD alone can perform the subunit anti-association role in vitro 

[121], the intact protein is required for IF3’s substrate discrimination functions. This is evident 

from point mutations in the NTD, CTD, and linker that individually inactivate IF3’s discriminatory 

abilities without disrupting its 30S binding affinity [113, 141]. Additionally, in vivo work 

investigating the length and amino acid character requirements of the linker peptide 
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demonstrated the absolute requirement for intact IF3, albeit with some allowed plasticity in the 

linker’s length and composition, in IF3’s functions [94]. 

1.3.3.8 Autoregulation of infC expression 

 The gene for IF3, infC, begins with the unusual start codon AUU in all known prokaryotic 

species (see section 1.3.3.1) [31]. In line with IF3’s known functions in start codon and tRNA 

discrimination, IF3 controls expression of its own gene at the translational level [143, 144]. In a 

clear demonstration that IF3’s role in initiation fidelity is also performed in vivo, decreased 

intracellular IF3 concentrations trigger an increase in spurious initiation [51], as do 16S rRNA 

mutations that decrease IF3’s affinity for the 30S subunit [145, 146]. When infC’s AUU codon is 

changed to AUG, IF3 expression increases 30-fold [144, 147, 148], while conversion of other 

genes’ canonical start codons to AUU results in repression of their expression unless they are 

expressed in a mutant infC background [141]. Similarly, IF3 expression is derepressed in mutants 

deficient for IF3 function (e.g. infC135) [140]. 

1.3.4 Structural insights into the 30S initiation complex and 70S initiation complex 

 The 30S IC is a relatively stable intermediate along the translation initiation pathway in 

which the reading frame of an mRNA is established (see section 1.2). Its assembly requires two 

main steps: 30S subunit binding to the TIR of an mRNA, and stable association of an initiator 

tRNA with the mRNA’s start codon in the P site of the 30S subunit. These events are 

accomplished in vivo with the aid of IF1, IF2(GTP), and IF3, thus making the 30S IC a seven-

component macromolecular complex. At this time, no structures have been solved of a 

completely assembled 30S IC. There is, however, a cryo-EM structure of a 30S IC lacking just 

IF3, thus composed of a 30S subunit, mRNA, fMet-tRNAfMet, IF1, and IF2(GTP) [80] (Figure 1.14). 

This structure is valuable for its insights into the interactions of IF2 and fMet-tRNAfMet on the 30S 

subunit; however, since this initiation complex was formed in the absence of IF3, one needs to 

exercise caution in drawing too many conclusions about the physiological relevance of this 

complex and its components’ binding sites. 
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 T. thermophilus initiation components were used to assemble these 30S ICs [80]. Five 

subpopulations of particles were parsed apart from the heterogeneous sample, though the major 

subpopulation (40% of the total particles) was the completely assembled 30S IC (though lacking 

IF3) (see Figure 1.14). In that major subpopulation, fMet-tRNAfMet is stabilized on the 30S subunit 

through two major interactions: (1) its decoding stem is bound to the P site; (2) its acceptor end is 

in direct contact with domain IV of IF2 (see section 1.2.3). The conformation of fMet-tRNAfMet is 

similar to that seen in an X-ray crystal structure of a 70S ribosome carrying an AUG start codon 

and initiator tRNA at the P site [149], though differs enough to assign the tRNA’s 30S IC 

conformation to an intermediate state: “30S P/I.” The specific differences include a slight, 

clockwise rotation of the decoding stem, bending it towards the initiation codon, and a re-

positioning of the tRNA’s elbow towards the exit site. These conformational changes may require 

the presence of IF2, since they were not seen in the 70S crystal structure lacking IF2. IF2’s 

location and position on the 30S IC are also revealing. Its N-terminal and G1 domains were not 

visible in the cryo-EM maps, suggesting that they are disordered within the 30S IC. The location 

of its G domain is comparable to those of other ribosome-dependent GTPases bound to the 

ribosome. IF2 is anchored to the 30S subunit via its interaction with fMet-tRNAfMet’s acceptor arm 

and also through interactions of domains I/II near helices h5 and h14 of 16S rRNA. Interestingly, 

this structure revealed the lack of a direct interaction between IF2 and IF1, contrary to long-

standing hypotheses [62, 82]. The two factors are mutually stabilizing, however, and the absence 

of a direct interaction between the two suggests that their stabilization may occur through factor-

induced conformational changes of the 30S subunit. 
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Figure 1.14 Cryo-EM structures of a 30S “IC”. (A) The 30S “IC” includes a 30S ribosomal subunit, mRNA, 
IF1, IF2(GTP), and fMet-tRNAfMet from Thermus thermophilus. (B) Rotation of the IF2-fMet-tRNAfMet sub-
complex relative to (A). Those domains of IF2 that were visible in the cryo-EM density are labeled. Figure 
from Ref. [80].  
 

The 50S subunit-joining step is a major checkpoint for translational regulation. Efficient 

conversion of a 30S IC into the 70S IC is critical for entry into further steps in the translation 

cycle, and thus efficient translation of a particular mRNA into its corresponding polypeptide. The 

70S IC is composed of an mRNA-bound 70S ribosome containing fMet-tRNAfMet in the P site of 

both the 30S subunit and 50S subunit (that is, in the classical P/P configuration). Conversion of a 

30S IC to a 70S IC involves the joining of a 50S subunit to a 30S IC, GTP hydrolysis by IF2, and 

the dissociation of the three IFs. The temporal organization of all of these steps remains unknown 

and widely debated [63, 118, 130, 131, 150, 151], though it has been established that GTP 

hydrolysis requires 50S subunit docking. The molecular consequences of GTP hydrolysis, 

however, remain poorly defined. 

Three cryo-EM structures of intermediates along the 30S IC → 70S IC pathway have 

been solved. Two of these structures contain T. thermophilus 30S and 50S subunits, fMet-

tRNAfMet, mRNA, and IF2 with (a) the non-hydrolyzable GTP analog GMPPCP, or (b) GDP [48]. 

The other structure contained E. coli 30S and 50S subunits, IF1, IF2(GDPNP), IF3, mRNA, and 

fMet-tRNAfMet [47]. Thus, the first two structures represent a pseudo 70S IC (a) before GTP 

hydrolysis and (b) after GTP hydrolysis, but before IF2 release. Both of these structures represent 
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the 70S IC after release of IF1 and IF3. The third cryo-EM structure represents a state before 

GTP hydrolysis and release of any of the IFs. With respect to the former two pseudo 70S ICs 

prepared in the absence of IF1 and IF3, the conformation of the 70S IC may not be the same, or 

even similar, to a 70S IC which has undergone IF-mediated subunit association [54].  

As with the 30S IC cryo-EM structure, these 70S IC-like structures offer insight into the 

conformations of IF2 and fMet-tRNAfMet within a 70S IC. In the T. thermophilus 70S, fMet-

tRNAfMet, mRNA, IF2(GMPPCP/GDP) structures, IF2 interacts with rRNA in both the 30S and 50S 

subunits. It is close to helix H89 of the 23S rRNA and the GTPase center of the 50S subunit, 

while it is close to helices h5, h15 and h17 of the 16S rRNA and protein S12 of the 30S subunit. 

IF2’s G-domain and domain III interact with the 50S, while its domain II and NTD interact with the 

30S subunit. In contrast to what was seen in the 30S IC cryo-EM structure, IF2 contacts the D-

loop of fMet-tRNAfMet, not the acceptor arm. Both IF2 and the ribosome undergo significant 

conformational rearrangements upon GTP hydrolysis, as evidenced by comparison of the 

GMPPCP and GDP structures. IF2 has fewer interactions within the ribosome in the GDP-bound 

state, suggesting a conformational state of IF2 just prior to its dissociation. In contrast, before 

GTP hydrolysis, IF2 is involved in many interactions with both ribosomal subunits.  

The E. coli 70S IC structure [47] shows both similarities and differences with the T. 

thermophilus structure. Both show similar IF2-ribosome interactions, but differ with respect to the 

interactions between IF2 and fMet-tRNAfMet. In the E. coli structure, as in the T. thermophilus 30S 

IC-like structure, but unlike the T. thermophilus 70S IC-like structure, IF2 is in direct contact with 

the single-stranded CCA end of the acceptor arm of the tRNA. Also, IF1 interacts with domain II 

of IF2, unlike in the 30S IC structure, where no direct contacts were seen. A region of electron 

difference density near the tRNA exit (E) site (see Figure 1.1A) was tentatively assigned to IF3, in 

line with its 30S subunit location as determined by directed hydroxyl radical probing [109]. The 

density may indeed be due to IF3 as a number of rapid kinetic studies have shown that IF3 

dissociates following 50S subunit association [63, 150], though the relative timing of its 
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dissociation with respect to 50S subunit association has been a point of contention in the field 

[63, 118, 131, 150, 152]. 

1.3.5 Toward a mechanistic understanding of IF3’s role in regulating the fidelity of 
translation initiation – the motivation for my Ph.D. work 
 
Translation initiation is a critical stage in gene expression as it sets the reading frame of 

the mRNA for protein synthesis and regulates which mRNAs enter translation elongation for rapid 

decoding. Initiation is tightly regulated by the three IFs, all of which are essential for cell viability 

and are required to ensure the speed and fidelity of the multi-step initiation process. IF3 regulates 

substrate selection by helping discriminate the codon-anticodon interaction, favoring start codon 

and initiator tRNA selection. It also has roles in regulating the conversion of the 30S IC to the 70S 

IC by permitting rapid 50S subunit joining only to fully assembled 30S ICs. IF3 is a two domain 

protein connected by a lysine-rich linker that is highly conserved across prokaryotes in both 

length and hydrophilicity [89, 94]. The integrity of the linker is required in vivo, and its flexibility 

and hydrophilicity are critical to its function [94]. The linker’s flexibility allows IF3 to adopt a range 

of interdomain distances in solution, spanning ~30 to 65 Å [89], and also enables the two 

domains’ stepwise association with and dissociation from the 30S subunit [114, 118]. This 

ordered binding indicates that the CTD and NTD have significantly different affinities for the 

ribosome and behave independently. The CTD of IF3, as well as the archaeal and eukaryotic 

orthologs a/eIF1 [17, 153-155], binds with high affinity to the rRNA on the small subunit near the 

P site and occupies the site where 50S subunit 23S rRNA helix 69 binds upon subunit joining, 

thus the CTD of IF3 sterically blocks formation of intersubunit bridge B2b [109, 156]. The NTD 

fails to bind to the 16S rRNA of the 30S subunit [121] but instead is likely to interact with 

ribosomal proteins [114, 157], though there are discrepancies among IF3-30S structural studies 

regarding its binding site [109, 115, 118]. IF3 has been crosslinked with numerous ribosomal 

proteins spanning a broad area of the 30S subunit interface [62, 98, 101, 103, 158-160], 

suggesting the possibility of multiple NTD binding sites. Although an earlier model proposed that 

the CTD performs all IF3 functions and the NTD and linker play accessory roles in stabilizing the 
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CTD on the 30S subunit [121], the identification of loss-of-function point mutations in each 

domain clearly indicate that both domains as well as the linker are required for IF3’s function 

[113, 142]. The two IF3 domains’ ordered binding to, and dissociation from, the 30S subunit, as 

well as the requirement for CTD rearrangement for stable 50S subunit joining and the probable 

existence of multiple NTD binding sites, suggest that IF3 may be conformationally dynamic on the 

30S subunit and that the relative position of the two domains of IF3 may be critical to its function.  

Fluorescence resonance energy transfer (FRET) can serve as a spectroscopic ruler due 

to its sensitivity to the distance between two fluorophores within the biophysically relevant window 

of 1-10 nm. Thus, it should be possible to monitor relative changes in the position of 30S subunit-

bound IF3’s NTD and CTD by FRET between fluorophores attached to each domain. The identity 

of each FRET state and the frequency with which each state is sampled, along with the presence 

and behavior of any conformational dynamics, are mechanistically important. Unfortunately, these 

dynamics and the unique interdomain distance information from each 30S subunit-bound IF3 

molecule in a heterogeneous sample are lost in an ensemble experiment as only the average 

FRET efficiency of the population is captured (see Figure 1.15). Single-molecule FRET 

(smFRET), however, enables one to capture this information for each molecule in a population 

and identify sub-populations, rarely sampled FRET states, and any conformational dynamics 

exhibited by individual molecules within the population. Monitoring the relative interdomain 

distance of 30S subunit-bound IF3’s NTD and CTD with smFRET on a variety of 30S ICs (i.e. in 

the presence and absence of IF1, IF2, and tRNA) enables mechanistically important 

measurements on the range of interdomain distances sampled as a function of the 30S IC 

identity. Any interdomain dynamics on the hundreds of milliseconds time scale can also be 

measured as a function of 30S IC identity and further elucidate the molecular mechanism 

underlying IF3’s function in translation initiation. Thus, smFRET was employed along with a 

biochemically active, dual fluorescently labeled IF3 and highly purified in vitro translation system 

to investigate the range of interdomain distances sampled by IF3 on 30S subunits, as well as any 
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interconversions between these states, with the aim of elucidating the molecular mechanism of 

IF3’s relative interdomain distance with its function in regulating translation initiation. 

1.4 Fluorescence Resonance Energy Transfer (FRET) – a powerful tool for measuring 
macromolecular conformational changes 

 
Fluorescence (or Förster, after Theodor Förster, who proposed the theory [161]) 

resonance energy transfer (FRET) is a non-radiative energy transfer process that occurs between 

an electronically excited fluorophore (donor) and a second chromophore (acceptor), frequently 

another fluorophore, that are in close proximity [162]. The fluorescence emission spectrum of the 

donor must overlap with the absorption spectrum of the acceptor fluorophore, and the two 

fluorophores must be within a minimal spatial radius (usually 1-10 nm), for the donor to transfer 

its excitation energy to the acceptor through a long-range, induced-dipole induced-dipole 

interaction. Because of this dipole-dipole mechanism, the efficiency of resonance energy transfer 

is highly sensitive to the separation distance between the two dipoles (i.e. the fluorophores) and 

the ability of a donor fluorophore to transfer its excitation energy to an acceptor fluorophore 

decreases sharply with increasing distance between the molecules (Figure 1.15), as evidenced 

by the dependence of FRET efficiency (E) on the inverse sixth power of the separation distance 

(R) (Eqn. 1.1). 

 

 

E =  
1

1 +  
R

R0











6  [1.1] 

The distance dependence of FRET makes it an excellent tool for monitoring relative distance 

changes between fluorophores on the nanometer scale, with applications ranging from 

macromolecular conformational changes [163-169] to the oligomerization of membrane proteins 

in a living cell [170, 171] to protein folding [172-176], and RNA folding and catalysis [177-187]. 

Absolute distance measurements, however, should be interpreted with great care, for reasons 

described below. 
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Figure 1.15 Fluorescence Resonance Energy Transfer. A. Efficient FRET requires significant spectral 
overlap between a donor fluorophore’s emission spectrum (ED) and an acceptor fluorophore’s absorption 
spectrum (AA). B. FRET with the fluorophore pair Cy3 and Cy5 is sensitive to distance changes between 35 
and 65 Å. Figure adapted from Ref. [188]. 
 
 Along with the inter-fluorophore separation, R, FRET efficiency is also dependent on R0, 

the Förster distance, which depends on the particular donor-acceptor pair and is a function of a 

number of other parameters. It is defined as the donor-acceptor separation distance when 

transfer efficiency is 0.5 (Eqn. 1.2). 
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
6

, [1.2] 

where κ2 describes the relative orientation of the transition dipoles of the donor and acceptor, QD 

is the quantum yield of the donor in the absence of the acceptor, J(λ) is the overlap integral, 

which is a function of the degree of spectral overlap between the donor emission and the 

acceptor absorption, and n is the refractive index of the medium, which is typically assumed to be 

n = 1.4 for biomolecules in aqueous solution [162]. Both QD and J(λ) depend on the environment 

of the fluorophores, thus R0 should be determined under the same conditions as those employed 

in the FRET experiments. Of all these variables, κ2 is the most difficult to experimentally 

determine. κ2 can take on a value from 0 to 4, with a value of 1 corresponding to parallel 

transition dipoles, and a value of 4 resulting from dipoles that are both parallel and collinear [162]. 
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Fluorescence anisotropy measurements of the donor and acceptor fluorophores can allow limits 

to be determined for κ2 variation [162]. If the two probes undergo unrestricted isotropic motion, 

and give fundamental fluorescence anisotropy, r, values for both fluorophores less than 0.2, then 

κ2 is approximately equal to 2/3. Frequently, Förster distances are calculated using an assumed 

value of 2/3 for κ2. This is generally considered acceptable if only relative, not absolute, changes 

in distance are measured [189]. For absolute distance measurements, it is critical that κ2, and the 

other R0 parameters, be precisely determined. 

The efficiency of FRET can be estimated from the ratio of the acceptor’s emission 

intensity (IA) to the total emission intensity (IA + ID) (Eqn 1.3).  

 
 
EFRET 

IA
IA  ID

 [1.3] 

One of FRET’s advantages stems from it being a ratiometric method, making it largely immune to 

instrumental noise and drift. 

1.4.1 A single-molecule approach to measuring conformational dynamics 

Fluorescence- and force-based measurements of single biological molecules have 

become immensely popular over the past couple of decades due to numerous advantages in 

taking a single-molecule approach to measuring various dynamic processes [190-193]. smFRET 

has proven to be one of the most widely implemented single-molecule techniques. The 

advantages of smFRET over ensemble FRET stem from the ability to probe biological events 

directly without the population averaging that arises in ensemble studies, or the need to 

synchronize complex biochemical reactions (see Figure 1.16 and the figure caption for details). 

Distributions of distances between a FRET pair within a heterogeneous population, rather than an 

average distance, can be determined with smFRET. It is an especially powerful tool for 

monitoring the dynamics of individual, surface-immobilized molecules for extended timescales 

(milliseconds to minutes) – timescales especially relevant for translation initiation. This enables 

one to observe rare conformational transitions and non-accumulating reaction intermediates, 



Chapter 1 – Introduction 
 

 

36

events that are hard to detect with ensemble FRET, as well as to probe the detailed kinetics of 

structural changes without the need for synchronization.  

 

Figure 1.16 FRET at the single-molecule and ensemble levels. A macroscopic example of the power of 
single-molecule observations is cartooned here. FRET monitored between a donor-acceptor fluorophore pair 
attached to a runner’s shoes can measure the runner’s stride length and running rate. Individual runners 
within a population of marathoners vary in their running speed and step size both among each other, and 
within each individual’s overall marathon run (e.g. bottom runner alternates between fast (gray box) and 
slow speeds). This heterogeneity can be captured by monitoring each runner individually (smFRET), while 
this information is lost by measuring the average speed of the ensemble of runners over the whole 
marathon. Figure prepared by Prof. Ruben L. Gonzalez, Jr. and found in Ref. [188]. 
 
1.4.2 Technical aspects of smFRET 

Experimentally, smFRET can be employed using fluorescently labeled molecules that are 

either freely diffusing or surface-immobilized. The former are restricted to a diffusion-limited 

observation time window, making them appropriate only for very fast (<10 ms) phenomena or 

equilibrium/thermodynamic measurements. Surface immobilization of fluorescently labeled 

biomolecules, employed in my studies, extends the observation window to a point where it is now 

only limited by the rate of fluorophore photobleaching.  

Molecules can be specifically immobilized on quartz microscope slide surfaces which 

have been coated with either biotinylated bovine serum albumin (BSA) or biotinylated 

polyethylene glycol (PEG), and then streptavidin [189, 194, 195]. The choice of BSA or PEG can 

be determined by the overall charge of the macromolecule of interest [195]. DNA- and RNA-only 

studies can be done with BSA-biotin surfaces since quartz, BSA, and streptavidin are all 



Chapter 1 – Introduction 
 

 

37

negatively charged, preventing binding to the surface except at biotin attachment points. PEG 

surfaces are better for protein studies, as BSA surfaces can be quite adhesive to positively 

charged regions of proteins [195]. Biotin-PEG surfaces were used for all the work described in 

this thesis, and biotin-PEG was mixed with non-biotin-PEG solution at 0.1% final concentration to 

ensure spatially well-separated biotin anchors on the quartz surface for ribosome immobilization. 

smFRET is typically performed using two main classes of fluorescence microscopes: (1) 

A confocal or near-field scanning optical microscope with photomultiplier tube (PMT) or 

avalanche photodiode (APD) single element point detection, or (2) a wide-field microscope with a 

two-dimensional detector such as an electron-multiplying charge coupled device (EMCCD) 

camera [194]. The latter is advantageous due to its high-throughput sampling, allowing hundreds 

of single molecules to be detected simultaneously, though its time resolution (>1 ms) and 

sensitivity are not as good as the point detection route. Wide-field microscopy can be performed 

via epi-illumination or evanescent field excitation. Again, the latter is advantageous since the 

evanescent field of excitation light extends only ~100-200 nm from the interface where the 

sample is bound, thus greatly reducing background fluorescence. An evanescent field is 

generated by total internal reflection (TIR) of the excitation light at the quartz-water interface. TIR 

requires an incident angle of the laser excitation source larger than the critical angle for the 

interface. This angle can be achieved using either a prism or the edge of a high numerical 

aperture (NA) objective (NA > 1.4). In prism-based TIR fluorescence microscopy, employed here, 

an inverted microscope is used to hold the sample flowcell with a fused silica prism on top (see 

Figure 1.17). The incident laser beam is focused through a long focal length lens, enters the 

prism, passes through refractive index-matching oil and is internally reflected at the quartz-water 

interface. The emitted fluorescence signal from the surface-immobilized molecules is collected 

through the objective (1.2 NA, 60x magnification), below the sample. Donor and acceptor 

fluorescence emission is wavelength separated onto two halves of an EMCCD camera using a 

dichroic mirror and bandpass filters, allowing the two images to be obtained simultaneously [194].  
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Figure 1.17 Experimental set-up for TIRFM-based smFRET. A. A microfluidic flowcell. Flowcells are 
prepared with a quartz microscope slide that has been passivated with biotinylated PEG, a glass coverslip, 
and thin strips of double-sided tape. B. Schematic of a prism-based TIRF microscope for single-molecule 
fluorescence imaging. The inset shows an enlarged view of a surface-tethered, fluorescently labeled 
biomolecule illuminated by the evanescent field produced at the interface between the quartz surface and 
the aqueous solution. Figure prepared by Mr. Colin Kinz-Thompson and found in Ref. [196]. 
 
1.4.3 An overview of smFRET data analysis 
 

Donor (Cy3) and acceptor (Cy5) fluorophore emission intensities are collected 

simultaneously on two halves of a capacitor array within an EMCCD camera. Fluorescence 

intensity versus time trajectories for each Cy3 and Cy5 molecule are obtained by first identifying 

the fluorescent regions in an image that correspond to single molecules. This initial step in the 

data analysis procedure is performed using the MetaMorph software package (Molecular 

Dynamics, Inc.). Regions corresponding to single Cy3 and Cy5 molecules are identified by setting 

a minimum intensity threshold significantly higher than the background signal and then selecting 

the regions that lie above this threshold intensity. Cy3 and Cy5 emission intensities are co-

localized by first identifying the regions corresponding to Cy5 fluorophores, followed by the 

transfer of the coordinates of these regions to the other half of the image where they overlay with 

Cy3 emission intensities. The Cy3 and Cy5 intensity versus frame number trajectories are plotted 

for each of the 200-400 regions within the image, where the time between frames is determined 

by the time resolution of the experiment (typically 100 msec). Each of these fluorescence versus 

time trajectories are visually inspected for the presence of characteristic smFRET and single-

fluorophore behavior: (i) the Cy3 and Cy5 intensities are within the range expected for single 



Chapter 1 – Introduction 
 

 

39

fluorophores, (ii) fluctuations of the Cy3 and Cy5 intensities exhibit anticorrelation in time, (iii) the 

Cy3 and Cy5 trajectories exhibit single-step photobleaching during the observation period 

(usually 1-2 minutes). Following this selection process, the Cy3 and Cy5 trajectories are baseline 

corrected using the average intensity of the last 25 frames of each trajectory. The Cy5 trajectories 

are also corrected for the bleed through from Cy3 emission into the Cy5 channel that results from 

imperfect emission filters. This value was experimentally determined to be ~7% for our TIRFM 

[197], therefore 7% of the baseline-corrected Cy3 intensity is subtracted from the raw Cy5 

intensity at every time point in the trace before the Cy5 trajectory is baseline corrected. FRET 

efficiency is then calculated as the ratio of Cy5 fluorescence emission intensity over the sum of 

the total emission intensities from Cy3 and Cy5 (equation 1.3).  

 Figure 1.18 depicts representative plots and histograms obtained in the course of 

smFRET data analysis. After plotting the fluorescence intensity versus time trajectory (Figure 

1.18A), and the corresponding smFRET versus time trajectory (Figure 1.18B) for each identified 

single molecule, all of these trajectories are combined to plot a one-dimensional FRET efficiency 

histogram (Figure 1.18C). These histograms are useful in obtaining an initial estimate of the 

number of FRET states present in a data set, as well as the relative occupancy of each FRET 

state. The histogram is fit with multiple Gaussian distributions to determine the mean and 

standard deviation of the Gaussian representing each FRET state. The standard deviation is 

determined as the full width at half maximum (FWHM) of each Gaussian distribution. An effective 

means to observe how the relative occupancy of a FRET state changes over time is through a 

two-dimensional surface contour plot of the time evolution of population FRET (Figure 1.18D). 

 The raw, noisy smFRET trajectories are then idealized using a hidden Markov model in 

order to more rigorously identify the number of conformational states underlying the observed 

FRET signals and their FRET efficiency values (Figure 1.18E) [198-201]. A Markov model 

describes a discrete stochastic process in which the condition of the present state is independent 

of any past or future state of the system. A hidden Markov model describes a process in which an 

observed time series is conditionally dependent on a hidden discrete state variable (i.e. 
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conformational state) [199]. Trajectory idealization identifies the number of states and transitions 

between these states, enabling the measurement of the dwell time spent in each FRET state prior 

to transitioning to another FRET state. Histograms of these dwell times can be fit to single- or 

multi-exponential functions to determine the mean lifetime (τ) spent in a state between transitions 

(Figure 1.18F). The transition rate is calculated as the reciprocal of the mean lifetime (1/τ). Taken 

together, these data analysis approaches are a powerful way to extract information about the 

number of conformational states sampled by single molecules within a population, as well as the 

transition rates between these states.  

 
Figure 1.18 smFRET data analysis. A. Representative Cy3 and Cy5 fluorescence emission intensity 
versus time trajectories are shown in green and red, respectively. B. The corresponding smFRET versus 
time trajectory (FRET = ICy5/(ICy5+ICy3)). C. One dimensional FRET efficiency histogram. There are 30 bins in 
the range of -0.2 to 1.2 FRET efficiencies (bin size = 0.047 FRET). The histogram is normalized to the most 
populated bin. D. Two dimensional surface contour plot of the time evolution of population FRET containing 
all (N=262) individual smFRET trajectories in the data set. The contours are plotted from tan (lowest 
population) to red (highest population). E. Hidden Markov modeling of smFRET trajectories. The raw data 
was idealized with the vbFRET software package [199]. F. Lifetime analysis. Dwell times spent at one FRET 
state before transitioning to another FRET state are plotted as one-dimensional histograms and fitted with 
an exponential decay function. Dwell times spent in the non-zero FRET state before transitioning to the zero 
FRET state (left) and dwell times spent in the zero FRET state before transitioning to the non-zero FRET 
state (right) The data are normally well described by a single exponential decay of the form A1(exp(-t/1)), 
where 1 is the lifetime of the corresponding FRET state. The transition rate is calculated as 1/1. The 
representative lifetime analysis is exemplified with IF3(Cy3)-IF1(Cy5) data. 
 
1.5 Summary and thesis overview 

 
Translation initiation is a complicated, multi-step assembly pathway that is a key 

regulatory checkpoint in gene expression. Initiation factors 1, 2, and 3 play critical roles in 

controlling the rate and fidelity of initiation, yet much remains unknown about the mechanistic 
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details of their regulatory roles. The conformational dynamics of each IF, as well as of the 

ribosomal initiation complexes (30S pre-IC, 30S IC, 70S IC), likely play important roles in their 

functions, and may be critical to a better understanding of the regulation of translation initiation. 

The conformational and compositional heterogeneities inherently present in ribosomal complexes 

during translation initiation make smFRET an ideal technique for revealing mechanistically 

important subpopulations obscured in ensemble studies. smFRET has been used extensively in 

the past few years to investigate the aa-tRNA selection and translocation steps of translation 

elongation (reviewed in [202]). Far fewer single-molecule investigations into translation initiation 

have been performed. In our research group, smFRET has been used investigate the role of IF2 

dynamics in regulating translation initiation [203], and in other labs it has been used to investigate 

inter-ribosomal subunit dynamics and the role of GTP hydrolysis by IF2 during late events in 

translation initiation [204].  

Chapter Two of this thesis describes investigations on the conformational dynamics of 

30S subunit-bound IF3 and how these dynamics are affected by the presence of IF1 and/or IF2, 

as well as the presence and identity of the P-site start codon and aa-tRNA. These results provide 

novel insight into the ribosome-bound conformational state and dynamics of IF3, especially as a 

function of the identity of the 30S P site substrates. They also reveal a role for IF3’s two-domain 

nature in signaling 30S IC assembly. In Chapter Three, the role of the conformational dynamics of 

30S-subunit bound IF3 in regulating 50S subunit joining following 30S IC assembly is 

investigated. Some preliminary results are presented, along with potential future directions for the 

project. Chapter Four presents measurements of IF1’s 30S subunit association and dissociation 

kinetics investigated through the use of an IF1-IF3 smFRET signal. These results provide insight 

into IF1’s role in the regulation of translation initiation by demonstrating its stabilizing effect on 

IF2. Finally, detailed materials and methods for all of the experiments described herein are found 

in Chapter Five. 
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Chapter 2 
 

An interdomain reconfiguration of IF3 signals proper  
initiator tRNA and mRNA start codon selection  

during translation initiation 
 

2.1 Introduction 

Translation initiation, the rate-limiting step of protein synthesis and a significant regulatory 

checkpoint in gene expression [1, 2], requires a multi-step, initiation factor-regulated assembly of 

a 30S IC followed by a 70S IC containing an accurately selected initiator tRNA and properly 

positioned start codon within its P site (see Figure 1.2 and section 1.2). This assembly process 

sets the mRNA reading frame, thus incorrect start codon selection can trigger a frameshifting 

error resulting in production of truncated and consequently misfolded protein [1, 2], and selection 

of a non-initiator tRNA results in an incorrect N-terminal protein sequence. In prokaryotes, IF1, 

IF2, and IF3 play essential roles in ensuring proper substrate selection [3]. Of these, IF3 is 

particularly critical for maintaining the fidelity of translation initiation, having known functions in 

discriminating the start codon [4-7], tRNA [8-11], and codon-anticodon interaction [8, 9, 12]. In the 

absence of IF1 and IF2, 30S subunit-bound IF3 can, either directly or through an IF3-induced 

conformational change of the 30S subunit, select against all codon-anticodon interactions other 

than AUG-fMet, GUG-fMet, and UUG-fMet [8, 9], while kinetic studies have shown that IF3 

indiscriminately destabilizes all P-site tRNAs [13, 14]. Beyond its ability to assist in proper tRNA 

selection, IF3 further regulates fidelity during 70S IC assembly by preventing efficient 50S subunit 

association with incompletely or incorrectly assembled 30S ICs [13, 15-17]. Despite its numerous 

known roles in regulating the fidelity of initiation complex assembly, mechanistic explanations for 

how IF3 performs these roles have remained elusive. 

                                            

 Elvekrog, MM and Gonzalez Jr, RL (2011) An interdomain reconfiguration of IF3 signals proper 
initiator tRNA and mRNA start codon selection during translation initiation (Submitted) 
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IF3 is composed of two globular and similarly sized, N- and C-terminal domains (NTD 

and CTD, respectively) that are separated by a highly conserved and flexible linker which is 

essential for IF3’s in vivo functions [18-21]. When free in solution, the flexible linker allows IF3 to 

adopt a range of conformations in which the interdomain distance varies from 28 to 64 Å [20] (see 

Figure 1.9). IF3 also exhibits dynamic behavior with stepwise association with, and dissociation 

from, the 30S subunit due to the two domains’ independent behavior and different affinities for the 

30S subunit, with the CTD having a much higher affinity for the 30S subunit relative to the NTD 

(see Figure 1.13) [22-24]. Biochemical and structural studies of IF3’s interactions with an empty 

30S subunit demonstrate that IF3’s binding site includes the G700 region (helix 23) of the 16S 

rRNA on the upper part of the platform of the 30S subunit and the G790 region (helix 24) and 3’ 

region (helix 45) of the 16S rRNA at the interface between the platform and body domains of the 

30S subunit, near the P and E sites [22, 25-29] (see discussion in section 1.3.3.5 and Figures 

1.11 and 1.12). Although most studies agree that the CTD of IF3, as well as the orthologous 

a/eIF1 in archaea and eukaryotes, binds at the small subunit platform region near the P site [22, 

27, 28, 30-34], discrepancies exist regarding the placement of the NTD [22, 27, 28] as well as the 

possible existence of alternative IF3 binding sites on the 30S subunit [35, 36]. IF3’s interactions 

with a fully assembled 30S IC, when IF1, IF2, mRNA, and tRNA are also bound to the 30S 

subunit, may differ signficantly from its interactions with an empty 30S subunit. Regardless, 

multiple studies implicate 16S rRNA residues and ribosomal proteins on the 30S subunit for IF3 

binding that are also involved in the formation of some subset of intersubunit bridges [37, 38] (see 

Table 1.1 and Figure 1.12). This shared binding site implies a need for conformational 

rearrangement and/or dissociation of IF3 in order for intersubunit bridge formation and stable 70S 

IC assembly. Hence, although the conformational dynamics of IF3 may present an obstacle to 

structural studies of free and ribosome-bound IF3, they are critical to understanding its functional 

roles in regulating the fidelity of translation initiation. 

The aim of this work was to test the hypothesis that 30S subunit-bound IF3 is 

conformationally dynamic during the 30S IC assembly pathway and that its dynamics are 
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essential to IF3’s roles in substrate selection. Employing an IF3 variant labeled with a Cy3 FRET 

donor fluorophore and a Cy5 FRET acceptor fluorophore at its NTD and CTD, I developed an 

intramolecular NTD-CTD IF3 single-molecule fluoresence resonance energy transfer (smFRET) 

signal that reports on the interdomain dynamics of 30S IC-bound IF3. Using smFRET, I show that 

the 30S IC-bound IF3 exists in a dynamic equilibrium between at least three stable interdomain 

configurations. Moreover, I show that recognition of a cognate start codon-initiator tRNA 

interaction during translation initiation uniquely shifts this interdomain configuration equilibrium 

toward a single state. These findings reveal a novel, structural rationale for IF3’s role in regulating 

the fidelity of substrate selection in translation initiation. 

The materials and methods used to obtain the results described herein are presented in 

section 2.2. Sections 2.3.1 to 2.3.6 describe the design, preparation, and biochemical activity 

testing of a dual fluorescently labeled IF3 for smFRET studies of its 30S subunit-bound 

interdomain configurations. The results of these smFRET investigations are found in the 

remainder of section 2.3, from 2.3.7 to 2.3.13, and the conclusions and possible future directions 

are found in section 2.4. 

2.2 Experimental Methods 

2.2.1 Buffers 

A low-salt version of the standard Tris-polymix buffer developed and optimized for in vitro 

translation work was used for all smFRET and biochemistry work [39-41]. The buffer conditions, 

as optimized for translation initiation work by Dr. Jiangning Wang and described in her Ph.D. 

dissertation [42], are: 10 mM Tris-acetate (Tris-HOAc) (pH25C = 7.5), 20 mM KCl, 5-15 mM 

Mg(OAc)2 (with the exact concentration depending on the experiment), 1 mM NH4OAc, 0.1 mM 

Ca(OAc)2, 0.1 mM EDTA, 6 mM -mercaptoethanol (BME), 5 mM putrescine-HCl, and 1 mM 

spermidine-free base. See Chapter 5 for a complete list of all buffers used and their 

compositions. All reagents were of molecular biology grade or higher. Those buffers used for 

protein purification are described in detail in Ref. [43] and Chapter 5. 
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2.2.2 30S ribosomal subunits 

 Highly active, tightly-coupled 70S ribosomes were purified by Dr. Jiangning Wang from E. 

coli strain MRE600 using sucrose density gradient ultracentrifugation (SDGC) as previously 

described [43]. These intact ribosomes were then dissociated into their component 30S and 50S 

subunits by dialyzing against buffer containing 1 mM Mg2+, followed by purification of the 30S and 

50S subunits using SDGC in 1 mM Mg2+ buffer. The 30S subunits were pelleted, resuspended, 

and stored in small aliquots at -80C in a buffer containing 7.5 mM Mg2+ until further use. 

2.2.3 Messenger RNAs 

 5’-biotinylated mRNAs with sequences derived from the mRNA encoding gene product 

32 from T4 bacteriophage (T4gp32) were chemically synthesized by Dharmacon, Inc. (Thermo 

Scientific). The mRNAs were purified by polyacrylamide gel electrophoresis (PAGE) and 2’-

deprotected/desalted by Dharmacon. The sequence of the short (64 nucleotide) T4gp32 mRNA 

variant (#1) is found in Table 2.1. Two other mRNA variants were used for work in this chapter in 

which the start codon was modified to AUU (mRNA #2), and in which the first two codons were 

swapped, placing UUC in the start codon position and AUG in position two (mRNA #3). The 

sequence of the mRNA used for the primer extension inhibition (“toeprinting”) biochemical activity 

assay discussed in section 2.3.5 is also listed in Table 2.1 (mRNA #4). This mRNA was 

generated by in vitro transcription. 

Table 2.1 mRNA sequences. The nucleotides in bold are the Shine-Dalgarno sequence with the core 
AGGA sequence, the spacer nucleotides are italicized, and the P-site (start) codon is underlined. Those 
mRNAs modified to contain a 5’ biotin moiety are indicated with “Bi.” 

# mRNA nucleotide sequence 

1 5’-Bi-CAACCUAAAACUUACACAAAUUAAAAAGGAAAUAGACAUGUUCAAAGUCGAAAAAUCUACUGCU-3’ 

2 5’-Bi-CAACCUAAAACUUACACAAAUUAAAAAGGAAAUAGACAUUUUCAAAGUCGAAAAAUCUACUGCU-3’ 

3 5’-Bi-CAACCUAAAACUUACACAAAUUAAAAAGGAAAUAGACUUCAUGAAAGUCGAAAAAUCUACUGCU-3’ 

4 5’GGCAACCUAAAACUUACACAGGGCCCUAAGGAAAUAAAAAUGUUUAAAGAAGUAUACACUGCUGAACUCGCU
GCACAAAUGGCUAAACUGAAUGGCAAUAAAGGUUUUUCUUCUGAAGAUAAAGGCGAGUGGAAACUGAAACUCG
AUAAUGCGGGUAACGGUCAAGCAGUAAUUCGUUUUCUUCCGUCUAAAAAUGAUGAACAAGCACCAUUCGCAAU
UCUUGUAAAUCACGGUUUCAAGAAAAAUGGUAAAUGGUAUAUUGAAACAUGUUCAUCUACCCAUGGUGAUUAC
GAUUCUUGCCCAGUAUGUCAAUACAUCAGUAAAAAUGAUCUAUACAACACUGACAAUAAAGAGUACAGUCUUG
UUAAACGUAAAACUUCUUACUGGGCUAACAUUCUUGUAGUAAAAGACCCAGCUGCUCCAGAAAACGAAGGUAA
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AGUAUUUAAAUACCGUUUCGGUAAGAAAAUCUGGGAUAAAAUCAAUGCAAUGAUUGCGGUUGAUGUUGAAAUG
GGUGAAACUCCAGUUGAUGUAACUUGUCCGUGGGAAGGUGCUAACUUUGUACUGAAAGUUAAACAAGUUUCU
GGAUUUAGUAACUACGAUGAAUCUAAAUUCCUGAAUCAAUCUGCGAUUCCAAACAUUGACGAUGAAUCUUUCC
AGAAAGAACUGUUCGAACAAAUGGUCGACCUUUCUGAAAUGACUUCUAAAGAUAAAUAAGG-3’ 

 

2.2.4 Transfer RNAs 

N-formylmethionine-specific tRNA from E. coli was purchased from MP Biomedicals, and 

phenylalanine- and lysine-specific tRNAs from E. coli were purchased from Sigma-Aldrich. tRNAs 

were aminoacylated and, in the case of tRNAfMet, formylated as described previously [43] and 

detailed in section 5.1.1. Aminoacylation and formylation yields were determined by hydrophobic 

interaction chromatography (HIC) on a TSKgel Phenyl-5PW column (8.0 mm (ID) x 7.5 cm (L)) 

(Tosoh Bioscience) and were consistently >90% for tRNAfMet and tRNAPhe, and >60% for tRNALys 

[43]. fMet-(Cy3)tRNAfMet, labeled at the 4-thiouridine at nucleotide position 8 (s4U8), was prepared 

by Dr. Jiangning Wang as previously described [42, 43]. 

2.2.5 Translation factors  

 The genes encoding IF1, IF2, and IF3 from E. coli were cloned, and the proteins 

overexpressed and purified as previously described [43] and detailed in section 5.2. Briefly, all 

genes were cloned into a pProEX-HTb plasmid (Invitrogen) under control of an isopropyl -D-1-

thiogalactopyranoside (IPTG)-inducible pTrc promoter. This plasmid introduces a six-histidine 

(6xHis) affinity tag followed by a tobacco etch virus (TEV) protease cleavage site at the amino 

terminus of each translation factor. The cloning strategy and plasmid employed necessitated that 

the N-terminal ends of the IFs differ slightly from their wild-type E. coli gene sequences. 

Specifically, the N-terminal ends are: G-A-M1 (IF1), G-A-Q-D-D-M1 (IF2), and G-A-M-A-K2 (IF3), 

where the underlined amino acid and sequence position denote the beginning of the wild-type 

gene sequence. 

 The three initiation factors were purified using standard Ni2+-nitrilotriacetic acid (NTA) 

affinity purification procedures (resin from Qiagen) [43]. The 6xHis affinity tag was removed from 

each initiation factor by cleavage with TEV protease followed by a second Ni2+-NTA column. 

Additional purification steps vary by initiation factor. IF1 is further purified by size exclusion 
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column chromatography (HiLoad 16/60 Superdex 75 prep grade–GE Biosciences), while IF2 and 

IF3 require additional purification with a cation exchange column (HiTrap SP HP–GE 

Biosciences; see Figure 2.2 for a representative IF3 cation exchange column chromatogram). 

The detailed protocol for purification of IF1, IF2, and IF3 is found in Ref [43] and section 5.2. The 

design, mutagenesis, purification, and Cy3-/Cy5-fluorophore labeling of the IF3 variant used in 

this study is described in the Results section (2.3.1).  

2.2.6 Preparation of 30S Initiation Complexes (30S ICs) for smFRET investigations 

 The nomenclature used throughout this dissertation to describe the contents of the 30S 

IC under investigation is as follows:  30SIC-A/B
(-)tRNA,XYZ , where the superscript indicates the identity of 

the aa-tRNA present in the complex (e.g., fMet) or lack of a tRNA (–tRNA) in the complex, and 

XYZ refers to the identity of the start codon if it differs from the canonical AUG. The subscript –

A/B indicates which non-IF3 initiation factors are absent from the complex. For example, 

  30SICfMet,AUU is an initiation complex assembled with a 30S subunit, fMet-tRNAfMet, an mRNA with 

an AUU start codon, and all three initiation factors. As an additional example,   30SIC-2
-tRNA  refers to 

an initiation complex formed from a 30S subunit, mRNA with an AUG start codon, IF1, and IF3, 

but lacking aa-tRNA and IF2. 

 30S ICs were always assembled in low-salt Tris-polymix buffer containing 5 mM Mg2+ by 

mixing 1.8 M 5’-biotinylated mRNA, 0.9 M IF1, 0.9 M IF2, 1 mM GTP, 0.9 M aa-tRNA, and 

0.6 M fluorescently-labeled IF3. Lastly, 0.6 M 30S subunits were added to this mixture to 

initiate the assembly reaction. The 30S ICs were incubated at 37C for 10 minutes, and 

subsequently aliquoted, flash frozen with liquid nitrogen, and stored at -80C until further use. 

2.2.7 Surface-Immobilization of 30S ICs within microfluidic flowcells 

 Quartz microscope slides (G. Finkenbeiner) were extensively cleaned and then 

chemically passivated with PEG-Succinimidyl Carbonate (SC) (m.w. 5,000; Laysan Bio, Inc.) 

containing 0.1% biotin-modified PEG-SC according to published protocols [44]. Flowcells were 

assembled on these passivated slides as depicted in Figure 1.17. Immediately prior to 30S IC 
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sample introduction, a solution of 10 M “Block” containing 10 M UltraPure BSA (Invitrogen) and 

10 M hybridized DNA duplex was loaded into the flowcell to limit non-specific binding of the 

fluorescently labeled molecules to the flowcell surface, followed by a mixture of 1 M streptavidin 

(Invitrogen) and 10 M “Block.” 30S ICs, diluted to 100-300 pM in low-salt Tris-polymix buffer, 

were then added to the passivated flowcell and immobilized via the 5’-biotin-mRNA on the 

surface through a PEG-biotin-streptavidin-biotin interaction. Saturating concentrations of IF1 (0.9 

M), IF2 (0.9 M), aa-tRNA (0.9 M), and GTP (1 mM) were kept in all dilution and wash buffers 

(when present in the 30S IC). Single-molecule fluorescence imaging was then performed with a 

lab-built TIRF microscope system (see sections 1.4.2 and 2.2.8). The concentration of 30S IC 

was optimized in order to achieve a surface concentration of ~200-400 surface-immobilized 30S 

ICs per field of view (FOV) (~60 x 120 m2), but was always in the range of 100-300 pM. After 

delivery to the flowcell, 30S ICs were incubated for 5 min at room temperature (r.t.). Unbound 

30S ICs were then flushed out with low-salt Tris-polymix buffer supplemented with an oxygen 

scavenging system (optimized for these experiments as: 165 U/mL glucose oxidase, 2170 U/mL 

catalase, 1% -D-glucose) and triplet state quenchers (1 mM 1,3,5,7-cyclooctatetraene, 1 mM p-

Nitrobenzyl alcohol) to minimize singlet oxygen-induced fluorophore damage and transitions into 

dark triplet states, respectively (see section 5.6). In total, 8-10 min passed between sample 

delivery to the flowcell and data acquisition since time was needed to mount the slide on the 

microscope stage and focus the illuminated FOV.  

2.2.8 TIRFM imaging of surface-immobilized 30S ICs 

 A lab-built, wide-field prism-based TIRFM was designed and constructed as previously 

described [44] (see Figure 1.17). A diode-pumped 532 nm laser (CrystaLaser) was used as an 

excitation source and a back-thinned, 512 x 512 pixel electron-multiplying (EM)CCD camera 

(Cascade II: Princeton Instruments) was used as a detector. A DualView emission splitter 

(Photometrics) was used to split the capacitor array within the EMCCD detector into separate 

donor and acceptor channels, creating Cy3 and Cy5 observation areas of 60 x 120 m2 each that 
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enabled visualization of 200-400 spatially well-separated initiation complexes per movie (2 x 2 

pixel binning). All data were collected under 7 mW 532 nm laser power excitation (as measured 

at the prism) and all movies were collected at 10 frames per second time resolution. 

2.2.9 smFRET data analysis 

Single Cy3 and Cy5 fluorophores were selected and their corresponding Cy3 and Cy5 

fluorescence emission versus time trajectories were generated as described in section 1.4.3 and 

in Refs. [45-47]. Briefly, each fluorescence emission trajectory was visually inspected and those 

trajectories that exhibited characteristic single-fluorophore fluorescence intensities and single-

step fluorophore photobleaching were kept for further analysis. Those trajectories that showed 

Cy3-Cy5 anti-correlated behavior were retained (see Figure 2.7 for representative trajectories) 

and, of these, trajectories exhibiting photobleaching of Cy3 or Cy5 within the first second (10 

frames) were discarded. Following this initial selection process, the Cy3 and Cy5 signals were 

baseline-corrected by subtracting the average intensity of the last ten data points after 

photobleaching. Additionally, the Cy5 signal was adjusted to account for Cy3 signal bleed-through 

due to imperfect emission filters which allow a small amount of Cy3 emission to bleed through 

into the Cy5 emission channel. This value was experimentally determined to be 7% for our 

system [46]. FRET efficiency versus time trajectories were then plotted for each trajectory using 

the equation FRET=ICy5/(ICy3+ICy5), where ICy3 and ICy5 are the intensities of the baseline corrected 

Cy3 and Cy5 data points, respectively. 

 For each dataset, the data from just the first 0.5 seconds were used to generate a 

normalized population FRET histogram in order to minimize the zero FRET peak which arises 

from fluorophore photobleaching (see Figure 2.9 for representative example). Origin 8.0 

(OriginLab) was used to fit each histogram with Gaussian distributions and the lower and upper 

limits for each FRET efficiency value were set by using the full width at half-maximum (FWHM) of 

the Gaussian distributions. Subpopulation analysis was done manually following smFRET 

trajectory idealization using the vbFRET software package to idealize each smFRET trajectory as 
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a hidden Markov model [48]. The smFRET data is also plotted as a time-evolution of population 

FRET histogram (see Figure 2.9 for representative example) for the first five seconds.  

2.3 Results and Discussion 

2.3.1 Design and preparation of an IF3 variant for dual labeling with Cy3 and Cy5 

In order to probe relative distance changes between IF3’s two domains, a two-Cys-

containing IF3 variant was designed which could be dual fluorescently-labeled at Cys residues 

with maleimide-conjugated versions of the Cy3/Cy5 FRET pair (see Figure 2.1). Single residues 

in IF3’s NTD and CTD were chosen for QuickChange site-directed mutagenesis (Stratagene) that 

are solvent-exposed and have low sequence conservation based on BLAST multiple sequence 

alignment [49]. Based on modeling of IF3 linker conformers using NMR constraints, the centers-

of-mass of the NTD and CTD are able to adopt a range of separation distances from 28 to 64 Å in 

solution (Figure 1.9) [20]. Fortuitously, the extremes of these distances lie on both sides of the 

Förster distance, R0, for the Cy3/Cy5 FRET pair (R0 = 55 Å) [50, 51], enabling sensitive 

measurements of relative interdomain distance changes. Initially, IF3’s wild-type single Cys65 

was the target NTD residue, and two sites within the CTD (K97C and M143C) were chosen for a 

single step mutagenesis route. Cys65 is a highly conserved (>90%) [5] and solvent inaccessible 

(<30% as determined by MOLMOL [52]) residue, however, and initial attempts at labeling wild-

type IF3 under non-denaturing conditions gave labeling efficiencies of only 15-20%. Additionally, 

although other research groups have claimed that modifying this Cys residue does not perturb 

IF3’s ability to bind 30S subunits [28, 53, 54], I have found that the biochemical activity of IF3(Cy3 

or Cy5) is significantly lower compared with unlabeled IF3 in multiple biochemical activity assays 

(see section 2.3.5). Thus, a modified strategy was taken to obtain a double Cys-containing IF3 

variant. Cys65 was first mutated to Ala, following the route of Dallas and Noller [28]; however this 

mutation proved to be disruptive to IF3’s biochemical activity. A C65S construct was then 

generated which demonstrated wild-type-like activity. Other NTD residues were then chosen for 

the introduction of a Cys residue. These point mutants included: R40C, E44C, E61C, Q23C, 

L29C, S57C, and S38C (see Table 2.2). A step-wise mutagenesis approach was taken to 
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introduce the C65S, CTD, and NTD mutations. The gene sequences of all mutants were verified 

by DNA sequencing (Genewiz, Plainfield, NJ) and the proteins were overexpressed, purified, 

fluorescently-labeled and screened for biochemical activity. Of all the constructs, however, the 

only double Cys-containing IF3 variant exhibiting high biochemical activity is IF3(C65S-S38C-

K97C) (see Table 2.2 and section 2.3.5). Thus, all subsequent smFRET work was performed with 

a Cy3- and Cy5-labeled version of IF3(C65S-S38C-K97C) (see the following section for labeling 

details and section 5.2.2.1 for the exact sequence of this protein). 

Figure 2.1 An intramolecular IF3 smFRET signal to monitor interdomain dynamics. A. Ribbon diagram 
of IF3 NTD and CTD from B. stearothermophilus. Residues 61 to 78 (B. stearo numbering) were removed 
and the flexible, interdomain linker was drawn in to accurately represent its flexibility in E. coli IF3 [20, 21, 
55]. E. coli IF3 was mutagenized and then labeled with Cy3 and Cy5 at residues Cys38 and Cys97. The 
corresponding B. stearothermophilus residues are rendered as sticks. PDB codes 1TIF and 1TIG. B. The 
chemical structures of maleimide-conjugated Cy3 and Cy5 fluorophores. 
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Table 2.2 IF3 Cys mutants The plasmids for the following mutants were generated via site-
directed mutagenesis, and their corresponding protein was overexpressed, purified, and tested 
for biochemical activity. 

Mutant Activity in fMet-(Cy3)tRNAfMet dissociation assay* 

IF3(K97C) + 

IF3(M142C) – 

IF3(C65A-K97C) – 

IF3(C65A-M142C) – 

IF3(C65S) + 

IF3(E61C) – 

IF3(E44C) – 

IF3(R40C) – 

IF3(C65S-M142C) – 

IF3(C65S-Q23C) –  (poor overexpression) 

IF3(C65S-L29C) – (poor overexpression) 

IF3(C65S-S57C) –  (poor overexpression) 

IF3(C65S-K97C) + 

IF3(C65S-K97C)Cy5 + 

IF3(C65S-S38C) + 

IF3(C65S-S38C)Cy3 + 

IF3(C65S-S38C-K97C) + 

IF3(C65S-S38C-K97C)Cy3-Cy5 + 

IF3(C65S-S38C-K97C-Y75N)Cy3-Cy5 – (**) 

*See section 2.3.5 for assay details. “Inactive” (–) protein is defined as % fMet-(Cy3)tRNAfMet 
falling outside the error limits of wild-type IF3 in the tRNA dissociation assay. “Active” (+) protein 
is within error of the wild-type IF3’s activity in this assay. 

**IF3-Y75N is a previously described loss of function point mutant [4, 5] (see section 2.3.4). 
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2.3.2 Fluorophore-labeling of IF3(C65S-S38C-K97C) 

IF3(C65S-S38C-K97C) was buffer-exchanged into IF3 Labeling Buffer (100 mM Tris-

OAc, pHrt = 7.0; and 50 mM KCl) and incubated with a 10-fold molar excess of tris(2-

carboxyethyl)phosphine (TCEP) hydrochloride for one hour at room temperature (r.t.). An 

equimolar mixture of Cy3- and Cy5-maleimide fluorophores (GE Healthcare) (20-fold molar 

excess over IF3 of each) was then added to the reaction mixture. The reaction was allowed to 

proceed in the dark for 1 hour at r.t. followed by overnight at 4C. The reaction was quenched 

with a final concentration of 100 mM BME and the reaction volume was brought up to 1 mL with 

IF3 Labeling Buffer and transferred to a 10,000 MWCO slide-a-lyzer cassette (Thermo Scientific) 

and dialyzed at 4C against 1 L HIC Buffer A (1 M (NH4)2SO4 and 100 mM Na2HPO4 pH 7.0) to 

remove unreacted dye. 

2.3.3 Purification and characterization of IF3(Cy3-Cy5) 

The dual labeling strategy used here (i.e. labeling two Cys residues simultaneously with a 

mixture of two maleimide-conjugated dyes) results in numerous products, namely: unlabeled IF3, 

IF3 singly labeled at either its NTD or CTD with Cy3, IF3 singly labeled at either its NTD or CTD 

with Cy5, IF3 doubly labeled at its NTD and CTD with Cy3, IF3 doubly labeled at its NTD and 

CTD with Cy5, and the Cy3/Cy5 doubly labeled variants IF3-NTD(Cy3)-CTD(Cy5) and IF3-

NTD(Cy5)-CTD(Cy3) (see Figure 2.3A). These products were separated using a TSKgel Phenyl-

5PW HIC column (Tosoh Bioscience), which is a strategy that has been shown previously to 

enable comparable separations [56]. The HIC column was pre-equilibrated with HIC Buffer A, and 

a 0-100% HIC Buffer B (100 mM Na2HPO4 pH 7.0) gradient over 20 column volumes (CVs) (1 CV 

= 4 mL) enabled separation of the labeled IF3 species (see Figure 2.2). The two IF3(Cy3-Cy5) 

fractions were collected, concentrated, and stored in a total volume of 50% glycerol at -20C. 

Imperfect separation of each labeled species resulted in some heterogeneity, however only those 

proteins labeled with both Cy3 and Cy5 (hereafter: IF3(Cy3-Cy5)) are able to undergo FRET. The 
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contaminating singly-labeled IF3 species will not undergo FRET, thus further “purification” occurs 

at the level of smFRET data acquisition and processing.  

 

Figure 2.2 Purification and fluorescent labeling of IF3. IF3, containing an N-terminal His6-tag, was 
overexpressed and purified by Ni2+-NTA affinity chromatography. TEV protease was added to cleave the 
His6-tag from the protein’s N-terminus. A second Ni2+-NTA column was performed to separate IF3 from the 
His6-tag. The protein was purified to homogeneity by cation exchange column chromatography. A. Cation 
exchange column purification of IF3(C65S/S38C/K97C). The major peak (*) represents pure IF3. B. 
Purification of Cy3 and Cy5 labeled IF3 with hydrophobic interaction column (HIC) chromatography. Peaks 1 
and 2 are both IF3(Cy3-Cy5), as confirmed by MALDI-TOF mass spectrometry (Appendix A) and smFRET 
(Figure 2.4).  

The identity of the protein from peaks 1 and 2 (see Figure 2.2B) was verified through 

trypsin digestion of the interdomain linker followed by matrix-assisted laser desorption/ionization 

time-of-flight (MALDI-TOF) mass spectrometry analysis of the labeled domains (for details, see 

section 5.2.2.6; for mass spectra, see Appendix A). The identity of IF3 from both HIC peaks was 

similar: both contained a mixture of IF3-NTD(C65S-S38C)Cy3, IF3-NTD(C65S-S38C)Cy5, IF3-

CTD(K97C)Cy3, and IF3-CTD(K97C)Cy5 (see Appendix A). Additionally, both of these IF3(Cy3-

Cy5) samples were shown to behave biophysically similar, as shown with smFRET (see section 

2.3.9) (Figure 2.4). 
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Figure 2.3 Both IF3(Cy3-Cy5) samples (peaks 1 and 2 from HIC purification) display similar smFRET 
behavior within 30SICfMet. A. Cartoon representation of the possible IF3 Cy3-Cy5 labeling products 
(unlabeled IF3, singly- and doubly-labeled IF3). The red star represents Cy5 and the green star represents 
Cy3. B. MALDI-TOF mass spectrometry confirmed that the identities of HIC peaks 1 and 2 (Figure 2.2) are 
both a mixture of IF3(CTD)-Cy3, IF3(CTD)-Cy5, IF3(NTD)-Cy5, and IF3(NTD)-Cy5 (see Appendix A).  A 
cartoon representation of these heterogeneous samples is depicted on the right with a split red and green 
star. C. IF3 from both HIC peaks behaves biophysically similarly as evidenced by the use of each sample in 
an smFRET experiment. See section 2.3.9 for a description of the experiment and Figure 1.2 for details on 
the 30S IC cartoons. Time-evolution of population FRET histogram and normalized population FRET 
histogram of 30S IC-bound IF3(Cy3-Cy5) on complexes containing 5’-biotinylated-mRNA, IF1, IF2(GTP), 
and fMet-tRNAfMet. (left) IF3(Cy3-Cy5) from peak 1 (see Figure 2.3B), (right) IF3(Cy3-Cy5) from peak 2. 
With this work and the MALDI-TOF mass spectrometry analysis as exceptions, all other experiments were 
performed with the IF3(Cy3-Cy5) sample from peak #1. 
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2.3.4 Preparation of a fluorescently-labeled loss-of-function point mutant: IF3(C65S-
S38C-K97C-Y75N)-Cy3-Cy5 

 
In addition to IF3(Cy3-Cy5), another IF3 variant was generated containing the 

substitution mutation Y75N. This point mutation, and its corresponding allele infC362, has been 

well described, and used previously, as a loss-of-function mutation that does not interfere with 

IF3’s ability to bind to 30S subunits [4, 5, 57, 58]. Compared with wild-type IF3, IF3-Y75N is 

defective in its ability to (i) discriminate start codons, (ii) perform initiator tRNA selection, and (iii) 

inhibit initiation on leaderless mRNA. Considering the location of this residue on the edge of the 

NTD near the linker region (see Figure 2.13), I hypothesized that the loss-of-function phenotypes 

triggered solely by this single Tyr-to-Asn substitution may be the result of, or result in, an 

alteration in the conformational flexibility of the linker region, and thus the interdomain dynamics 

of IF3. To test this hypothesis, the Y75N point mutation was introduced into the double Cys IF3 

variant and the resulting construct was fluorescently labeled with Cy3 and Cy5 as described in 

section 2.3.3. 

2.3.5 Verification of IF3 mutants’ biochemical activity  

It was important to determine whether attachment of the Cy3/Cy5 fluorophores to IF3’s 

Cys residues perturbed the biochemical activity of the protein compared with unlabeled wild-type 

IF3. Traditionally, ensemble biochemical approaches are taken to verify the activity of reaction 

components for both ensemble and single-molecule fluorescence biochemical investigations. 

Considering that the environment of a surface-immobilized 5’-biotinylated-mRNA-bound 30S 

subunit may be different than that of freely mobile components in a test tube, I sought to develop 

an assay that probed a biochemical activity of the fluorescently-labeled IF3 on immobilized 

ribosomes using TIRFM. One of IF3’s functions is to indiscriminately destabilize P-site tRNAs 

from 30S ICs [13]. This effect is most pronounced on 30S ICs lacking IF2 but containing IF1, IF3, 

mRNA, and aa-tRNA [13]. Thus, a TIRFM-based assay was developed that rapidly, and visually, 

probes IF3’s ability to destabilize tRNAs, specifically fMet-(Cy3)tRNAfMet (see Figure 2.4), based 

on this property. Details of the experimental set-up can be found in section 5.5 and the caption for 
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Figure 2.4. Briefly, 30S ICs were prepared side-by-side containing 5’-biotinylated mRNA, 30S 

subunits, IF1, and fMet-(Cy3)tRNAfMet, either with or without IF3. Equal concentrations of the +/-

IF3 complexes were delivered to channels in a microfluidic flowcell of a passivated quartz 

microscope slide (see section 2.2.7 and Figure 1.17 for a description of the flowcell). The number 

of immobilized fMet-(Cy3)tRNAfMet-containing 30S subunits were quantified in each of these 

channels by determining a fluorescence intensity threshold and quantifying the number of 

fluorescent regions of this minimum intensity. Raw counts were converted to “%fMet-

(Cy3)tRNAfMet bound” by normalizing the (+)IF3 data to the (-)IF3 data (see Figure 2.4). The 

activity of unlabeled IF3(C65S-S38C-K97C) and IF3(C65S-S38C-K97C)-Cy5-Cy5 (here dual 

labeled with Cy5 due to the use of fMet-(Cy3)tRNAfMet) is within error of wild-type IF3. Notably, 

Cy5-labeled wild-type IF3 has much lower activity than unlabeled IF3 in this assay (see section 

2.3.1) and the Y75N point mutant effectively serves as a negative control in this assay, showing 

activity comparable to the (-)IF3 30S IC. 
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Figure 2.4 TIRFM-based IF3 activity assay. A. Representative Cy3 FOV for data collected in the absence 
(left) and presence (right) of wild-type IF3. B. Wild-type IF3, IF3(C65S/S38C/K97C) and IF3(Cy5-Cy5) 
display high biochemical activity in tRNA dissociation. Complexes containing biotin-mRNA, 30S subunits, 
IF1, IF3, and fMet-(Cy3)tRNAfMet display high levels of tRNA dissociation. Error bars represent the standard 
deviation of the mean obtained from three independent data sets. Each of the five complexes was imaged in 
a separate channel in the same flow-cell. fMet-(Cy3)tRNAfMet counts were normalized to those of the (-)IF3 
complex imaged in the same flow-cell. Wild-type IF3 was Cy5 labeled at its native Cys65 residue. See text 
(section 2.3.5) for further details.  

In addition to this TIRFM-based activity assay, the biochemical activity of all IF3 variants 

used in the work described in this chapter was also probed using a standard primer extension 

inhibition assay referred to as “toeprinting” which tests the activity of the ribosome and its 

components [8, 9, 43, 59]. This assay was employed to test the ability of the fluorescently labeled 

IF3 in promoting the selection of tRNAfMet over tRNAPhe on 30S ICs lacking IF1 and IF2 (see 

section 1.3.3.7) [8, 9]. Reactions were performed as developed and described by Hartz and Gold 

[8, 9], and detailed in Fei et al. [43] and in section 5.4. Briefly, initiation complexes were 

assembled with 30S subunits, a 1:10 mixture of tRNAfMet to tRNAPhe, and a 32P-primer annealed-

mRNA with a sequence derived from T4gp32 (Table 2.1, mRNA #4), containing an AUG start 
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codon followed by UUU, a codon cognate for tRNAPhe. The identity of the P site-bound tRNA 

(tRNAfMet versus tRNAPhe) can be determined based on the location of the complex on the mRNA 

(AUG versus UUU in the P site) (see Figure 2.5). This location is determined by reverse 

transcription of the ribosome-bound mRNA to generate a cDNA product. Reverse transcriptase 

(RT)’s cDNA synthesis is terminated when RT encounters a tRNA-bound 30S subunit on the 

mRNA. This signature, short cDNA appears as a “toeprint” band on a sequencing gel. RT is 

halted at the edge of the 30S subunit, 15 nucleotides downstream of the 5’ nucleotide positioned 

in the P site (the “A” of the start codon if tRNAfMet is bound or the 5’ “U” of the second codon if 

tRNAPhe is bound in the complex). The length of the cDNA product varies by three nucleotides 

(one codon) depending on whether tRNAfMet or tRNAPhe is bound in the complex, and the ratio of 

the intensity of the 32P signal from these two bands is an effective read-out of the efficiency of 

complex formation containing either tRNAfMet or tRNAPhe. In the absence of IF3, the 30S subunit 

does not discriminate between these two tRNAs and the resulting ratio of the toeprint band 

intensities is comparable to the tRNA concentrations (1:10 tRNAfMet:tRNAPhe). Addition of IF3 

shifts tRNA selection toward tRNAfMet, overcoming even the 10-fold excess of tRNAPhe (see 

Figure 2.5). As also seen in Figure 2.5, IF3(Cy3-Cy5), and each of the singly-labeled IF3 variants, 

achieves wild-type-like activity under increased IF3 concentrations. The need for slightly elevated 

IF3(Cy3-Cy5) concentrations to achieve wild-type-like activity suggests that introduction of the 

Cy3/Cy5 fluorophores may result in a binding defect of IF3. Any defect in IF3 binding did not 

hinder subsequent smFRET experiments, however, as the fluorescence/FRET signal indicated a 

30S subunit-IF3(Cy3-Cy5) interaction, and IF3(Cy3-Cy5) remained stably bound to the 

immobilized 30S subunits over the course of data collection (20-30 minutes). Comparable to the 

results from the TIRFM-based assay, and as reported previously [5], the Y75N point mutant 

showed no ability to promote selection of tRNAfMet over tRNAPhe even at high concentrations in 

the toeprinting assay. Thus, despite this IF3 mutant’s ability to bind to the 30S subunit with wild-

type-like affinity [5], it is totally impaired in its ability to inspect the codon-anticodon interaction 

and reject tRNAPhe. 
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Figure 2.5 Primer extension inhibition (“toeprinting”) IF3 activity assay. Toeprinting tests the ability of 
wild-type IF3, IF3(C65S/S38C/K97C), IF3(Cy3-Cy5), and the singly-labeled IF3 mutants IF3(C65S/S38C)-
Cy3 and IF3(C65S/K97C)-Cy5 to promote selection of tRNAfMet over tRNAPhe on 30S subunits bound to 32P-
primer-annealed T4gp32 mRNA. A. Cartoon depiction of the toeprinting assay. “R.T.” is reverse 
transcriptase. The 30S subunit shows a preference for tRNAfMet over tRNAPhe only in the presence of IF3. B. 
top row. Lane 1: (-)IF3, (-)tRNAPhe. The strong stop at +15 indicates that tRNAfMet is bound to the AUG 
codon in the P site of the 30S subunit. Lane 2: (-)IF3, (+)tRNAfMet, and (+)10-fold excess of tRNAPhe over 
tRNAfMet. The strong stop at +18 indicates that tRNAPhe is bound to the UUU codon in the P site of the 30S 
subunit. Lanes 3-11: Increasing concentrations of wild-type IF3 shift the preference of the 30S subunit from 
tRNAPhe (+18) to tRNAfMet (+15). Lanes 12-20: Similar behavior is seen with increasing concentrations of 
unlabeled IF3(C65S/S38C/K97C). B. second row. IF3(C65S/S38C/K97C)-Cy3-Cy5 and the negative 
control IF3(C65S/S38C/K97C/Y75N)-Cy3-Cy5 (see section 2.3.5 of text). Lane numbering as above.  B. 
third row. IF3(C65S/S38C)-Cy3. B. bottom row. IF3(C65S/K97C)-Cy5. C. Selectivity of tRNAfMet over 
tRNAPhe for each construct tested. Selectivity is defined as described in section 5.4. 
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2.3.6 30S ICs containing IF3(Cy3-Cy5) can be specifically surface-immobilized 

Control experiments were performed to ensure that smFRET data collected with samples 

containing IF3(Cy3-Cy5) reflected the behavior of IF3 molecules that were 30S IC-bound and 

immobilized on the flowcell surface via a biotinylated mRNA. A channel-to-channel comparison 

within the same slide was performed to investigate the affinity, specificity, and interdomain 

configuration of 30S IC-bound IF3(Cy3-Cy5) (both  30SIC-1/2
-tRNA  and  30SIC-1

-tRNA ) and free IF3(Cy3-

Cy5) for the slide surface in the presence and absence of mRNA containing a biotin moiety. 

Complexes were prepared in parallel and delivered to each flowcell at identical concentrations. 

IF3(Cy3-Cy5) displays very limited affinity for the surface in the absence of ribosomal subunits 

(only 7% of delivered molecules were surface immobilized) (see Figure 2.6).   30SIC-1/2
-tRNA  

complexes are >80% specifically immobilized, and the introduction of other initiation components, 

such as IF2 in   30SIC-1
-tRNA , brings that specificity to >90% (see below).  

 

Figure 2.6 IF3(Cy3-Cy5) exhibits high 30S subunit affinity and minimal non-specific binding to biotin- 
and streptavidin-passivated quartz slide surfaces. A channel-to-channel comparison within the same 
flowcell was performed to investigate the affinity and specificity of  30SIC-IF1,IF2

-tRNA  and free IF3(Cy3-Cy5) for the 
slide surface in the presence and absence of mRNA containing a 5’ biotin moiety. Complexes were prepared 
in parallel and injected into each flowcell at identical concentrations. The data were normalized to the 

  30SIC-IF1,IF2
-tRNA  results. 

Formation of 30S complexes in the presence of IF2 further limits non-specific binding of 

IF3(Cy3-Cy5). A side-by-side comparison was done of  30SIC-IF1
-tRNA  complexes prepared identically 
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except with mRNA containing or lacking the 5’ biotin moiety. Equal concentrations of complexes 

were delivered into adjacent channels of the same flowcell and for  30SIC-IF1
-tRNA  complexes formed 

on a 5’-biotinylated mRNA, the average number of immobilized molecules was 184 ± 28. An 

equal concentration of complexes formed with mRNA that was not biotinylated, and imaged in a 

separate channel of the same flowcell, showed an average of 17 ± 6 immobilized complexes. The 

error represents the standard deviation of the mean of ten movies collected on the same flowcell 

channel. Thus,   30SIC-IF1
-tRNA  complexes prepared with biotin-mRNA show greater than 90% biotin-

streptavidin specific binding. 

2.3.7 IF3 can adopt at least three distinct interdomain configurations on 30S ICs 

In order to test the hypothesis that IF3 is conformationally dynamic on 30S ICs and that 

these dynamics may be linked to its roles in substrate selection, a series of partially, completely, 

and incorrectly (containing an non-initiator tRNA or non-start codon) assembled 30S ICs were 

prepared to represent the physiologically relevant 30S ICs in which IF3 may be found. First, the 

interdomain configuration of IF3 bound to an mRNA-immobilized 30S subunit in the absence of 

the other initiation components was investigated. Due to IF3’s roles in both ribosome recycling 

and initiation (see section 1.3.3.6 and Figure 1.1), IF3 is expected to be the first initiation 

component to bind to the 30S subunit and may play roles in recruiting and stabilizing the other IFs 

[3]. smFRET versus time trajectories were recorded with 30S ICs lacking IF1, IF2, and tRNA 

(  30SIC-IF1,IF2
-tRNA ) (see Figure 2.7). As is clear from both the individual trajectories and composite 

histogram (where the total number of trajectories, N, is 796), IF3(Cy3-Cy5) can adopt three 

distinct interdomain configurations, with the FRET efficiency values of these states centered at 

0.24 ± 0.04, 0.43 ± 0.12, and 0.84 ± 0.06 (where the standard deviation is determined by 

½(FWHM) for each Gaussian fitted peak) hereafter referred to as IF30.24, IF30.43, and IF30.84. 

Recalling that smFRET is an effective tool for measuring relative distance changes between 

fluorophores, with the FRET efficiency proportional to the inverse sixth power of the distance 

between the fluorophores, these three FRET efficiencies can be conceptualized as IF3 
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interdomain configurations. Assuming a Förster radius, R0, of 55 Å for the Cy3/Cy5 FRET donor-

acceptor pair, and isotropic and rapid rotation of Cy3 and Cy5 (i.e. κ2 = 2/3) [50, 51], these FRET 

efficiencies correspond to fluorophore separation (R) values of ~67 Å, 58 Å, and 42 Å, 

respectively (see equation 1.1). Considering the location of the fluorophores on each of IF3’s two 

globular domains, these values become a proxy for interdomain distances of 30S IC-bound IF3. 

Here these states likely reflect extended (0.24, 67 Å), intermediate (0.43, 42 Å), and compact 

(0.84, 42 Å) forms of IF3. Notably, the R values for 30S IC-bound IF3 are well within the range of 

interdomain distances that IF3 was observed to sample in an NMR study of IF3 free in solution 

(28 to 64 Å) [20] (see Figure 1.9). It is important to note that the broad FRET distribution of the 

intermediate state, IF30.43 (0.43 ± 0.12), arises due to its proximity to R0, where small changes in 

distance (~1 Å) result in substantial changes in FRET efficiencies (see Figure 1.11B). The other 

states, IF30.24 and IF30.84 are further outside this sensitivity window, and consequently the 

observed FRET efficiency is less sensitive to changes in fluorophore distance and the 

corresponding distributions are therefore narrower. 

While ~70% of the individual smFRET trajectories, from three independent data sets 

(Figure 2.9B, Table 2.3, and Appendix B), were observed to statically occupy either IF30.24, 

IF30.43, or IF30.84 prior to photobleaching, yielding fractional occupancies of 21 ± 5% (IF30.24), 35 ± 

8% (IF30.43) and 13 ± 4% (IF30.84), ~30% of the smFRET trajectories exhibited at least one IF30.24 

→ IF30.43, IF30.43 → IF30.24,  IF30.43 → IF30.84, or IF30.84 → IF30.43 transition. This analysis suggests 

that   30SIC-1/2
-tRNA -bound IF3 can interconvert between IF30.24, IF30.43, and IF30.84, but does so on a 

timescale much slower than our observation time (limited by the ~1-5 sec lifetime of the Cy5 

fluorophore prior to photobleaching, with the exact fluorophore lifetime dependent on the FRET 

efficiency. See section 5.6).  
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Figure 2.7 IF3 can adopt at least three distinct interdomain configurations on 30S ICs. (Top) cartoon 
depiction of the contents of the 30S IC. (Middle) Time-evolution of population FRET histogram. “N” 
represents the total number of FRET trajectories in the data set. The intensity at zero FRET efficiency arises 
due to Cy3 and Cy5 photobleaching.To the right of the contour plot is a normalized population FRET 
histogram of the first 0.5 seconds of data; bin size = 0.047 FRET.  The population FRET histogram was fit 
with Gaussian distributions (black line). (Bottom) Representative examples of single-molecule fluorescence 
intensity and FRET versus time trajectories. Cy3 (green), Cy5 (red), and FRET (blue) trajectories for each of 
the five distinguishable subpopulations present in 30S IC-bound IF3(Cy3-Cy5) data sets. FRET efficiency is 
calculated as ICy5/(ICy3+ICy5). Representative static trajectories from IF30.24, IF30.43, and IF30.84, and 
interconvertible trajectories showing transitions between IF30.24 and IF30.43, and between IF30.43 and IF30.84. 
In each trajectory, the irreversible transition to zero FRET efficiency is indicative of photobleaching.  

2.3.8 A structural interpretation of IF3’s three 30S subunit-bound interdomain 
configurations 

 
It is already clear from these  30SIC-IF1,IF2

-tRNA  data that IF3 can adopt at least three distinct 

interdomain configurations on 30S ICs and that it can interconvert between these states, 
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confirming part of my hypothesis (section 2.1). Interpreting these IF3 interdomain configurations 

in a structural and molecular context leads to a few possible models (Figure 2.8). First, one can 

consider the possibility that these dynamics arise from motion between IF3’s domains in which 

one domain is bound to the 30S subunit while the other domain is detached from the ribosome 

and freely mobile due to IF3’s flexible interdomain linker. This scenario is unlikely, however, 

considering the sub-microsecond expected timescale for motions of a small, two-domain protein 

in which the two domains are connected by a flexible linker [60]. This is at least five orders of 

magnitude faster than the time resolution of the TIRF microscope employed here, thus this type 

of behavior would be detected as a single, average FRET efficiency rather than three distinct, 

slowly interconverting FRET efficiencies. 

Another possible model to explain the dynamics of 30S subunit-bound IF3 is that these 

dynamics reflect conformational dynamics of the 30S subunit to which IF3 remains tightly bound 

(Figure 2.8A). It has been shown that the head domain of the 30S subunit is dynamic in the 

absence of a P-site codon-anticodon interaction and freely rotates about the neck helix in 16S 

rRNA [61]. Considering that IF3 has been crosslinked with a number of ribosomal proteins 

located in the head domain, including S7, S13 and S19, as well as S11 on the platform, near the 

neck (Figure 1.11), it is possible that IF3’s interactions with these ribosomal proteins may be 

reflect these 30S subunit dynamics. 

A third scenario to consider is the possible existence of three IF3 binding sites on the 30S 

subunit (Figure 2.8B). Although there are now a number of studies which agree that IF3’s CTD 

binds on the platform near the P site [22, 27, 28, 32], many of these same studies disagree on the 

30S subunit binding site for IF3’s NTD [22, 27, 28]. The CTD binds with high affinity to rRNA even 

in the absence of the NTD [24, 62], while the NTD is thought to bind to ribosomal proteins and 

cannot bind to the 30S subunit in the absence of the linker and CTD [24]. Considering the number 

of 30S subunit ribosomal proteins that IF3 has been crosslinked with, and the differing ribosomal 

affinities of the two IF3 domains, it is possible that IF3’s CTD remains tightly bound on the 

platform region of the 30S subunit while IF3’s NTD samples at least three separate binding sites 
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spanning a broad area of the subunit. Support for the CTD’s stable binding to the 30S subunit 

comes from another smFRET signal that I developed between IF1 and IF3’s CTD (see Chapter 

4). The CTD of IF3 remains anchored to the 30S subunit regardless of the presence or absence 

of other initiation components. It has yet to be shown with this IF1-IF3 smFRET signal if the NTD 

is able to sample three binding sites, in support of this model. 

Lastly, it is possible, and even likely, that these dynamics reflect a combination of 

scenarios two and three (A and B in Figure 2.8), as well as others not mentioned here (see Figure 

2.8C). 

 

Figure 2.8 Possible models for the three smFRET efficiency values observed with 30S subunit-bound 
IF3. A. Dynamics of the 30S subunit head could result in relative repositioning of the tightly bound IF3 CTD 
and NTD. B. IF3 may have multiple binding sites, and dissociation from one site and rebinding to another 
site could result in different interdomain distances. C. The three interdomain configurations of IF3 may arise 
due to a combination of 30S subunit rearrangements and IF3 rearrangements on the 30S subunit.  
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2.3.9 IF3’s 30S IC-bound interdomain configuration is influenced by the presence of the 
other IFs 

 
Clearly IF3 can adopt at least three distinct interdomain configurations on 30S ICs and it 

can interconvert between these states, however it remained to be demonstrated if these 

dynamics are linked to IF3’s function in substrate selection. IF3 has been shown to regulate 

initiator tRNA and start codon selection together with IF1 and IF2. Thus, a systematic approach 

was taken to first investigate the influence of these other IFs on the interdomain configurations 

and dynamics of 30S IC-bound IF3, before embarking on investigations of the tRNA and mRNA 

substrates. The effects of IF1 and IF2 on the interdomain configuration of 30S IC-bound IF3 were 

investigated by imaging 30S ICs similar to  30SIC-IF1,IF2
-tRNA  but prepared and imaged in the presence 

of saturating amounts of IF1 (  30SIC-IF2
-tRNA ), IF2 (  30SIC-IF1

-tRNA ), or both IF1 and IF2 (  30SIC-tRNA ) (see 

Figure 2.9). The presence of IF1 shifts the conformational equilibria of 30S IC-bound IF3 further 

toward IF30.43 compared with   30SIC-IF1,IF2
-tRNA , yielding fractional occupancies of 16 ± 3% (IF30.24), 54 

± 1% (IF30.43) and 5 ± 1% (IF30.84). In contrast, the presence of IF2 dramatically shifts the 

conformational equilibria of 30S IC-bound IF3 toward IF30.84, yielding fractional occupancies of 5 

± 4% (IF30.24), 10 ± 5% (IF30.43), and 82 ± 9% (IF30.84) (see Figure 2.9). Notably, the IF30.84 state 

is largely inaccessible to 30SIC-bound IF3 in the presence of IF1, regardless of whether or not 

IF2 is present. This IF30.84 state predominates when IF2 is bound in the absence of IF1, however, 

and is also accessible to IF3 in the absence of both IF1 and IF2, on  30SIC-IF1,IF2
-tRNA . This suggests 

that a function of IF1 is to regulate the accessibility of this state, whether it is a conformation of 

the 30S subunit or an IF3 binding site (see model, Figure 2.8). The intracellular concentrations of 

the three IFs are tightly regulated and should be approximately equal under normal physiological 

conditions [63, 64]. Additionally, free 30S subunits should have all three IFs bound >99% of the 

time [63], so the most physiologically relevant 30S IC to consider is 30SIC-tRNA, which almost 

exclusively favors IF30.24 and IF30.43, yielding fractional occupancies of 27 ± 7% (IF30.24), 49 ± 3% 

(IF30.43), and only 5 ± 3% (IF30.84) (see Figure 2.9).  
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In considering the influence of the other initiation factors on the interdomain configuration 

of 30S IC-bound IF3, currently available data suggest that IF1 and IF3 do not directly contact 

each other within the 30S IC [65, 66], indicating that the influence exerted by IF1 over the 

conformational equilibria of 30S IC-bound IF3 is indirectly mediated via the 30S subunit. IF3 is 

known to increase the affinity of IF1 for the 30S subunit [64], and binding of IF1 triggers both local 

and global conformational changes of the 30S subunit, including disruption of the noncanonical 

A1413-G1487 base pair in helix 44, and other long-range conformational changes of 16S rRNA 

helix 44 and the 30S subunit neck and head domains [67]. These conformational changes may 

affect IF3’s interactions with the 30S subunit since IF3 binding to the 30S subunit also triggers 

enhanced reactivity of G1487 toward the chemical probe kethoxal, suggesting that IF3 binding 

may affect helix 44 in a similar manner to IF1 [29]. Additionally, IF1’s binding site neighbors that 

of ribosomal protein S12, a protein that has been crosslinked to IF3 in multiple studies [68-72] 

(see Figure 1.11). Finally, the eukaryotic counterparts of IF1 and IF3 (eIF1A and eIF1, 

respectively) have been shown to cooperatively trigger large-scale conformational changes of the 

40S subunit [30], suggesting the possibility of a similar cooperation on the prokaryotic ribosome 

by IF1 and IF3.  

In contrast, for   30SIC-1
-tRNA , IF2 has been crosslinked with IF3 [65], suggesting a direct 

physical interaction between these two factors. It remains unclear, however, whether IF2 exerts 

its influence over the conformational equilibria of 30S IC-bound IF3 through direct contacts with 

IF3, by indirectly modulating the conformation of the 30S subunit, or through a combination of 

both of these effects. The 30S IC containing all three IFs, 30SIC-tRNA, may have a network of 

interactions among the IFs. IF2 and IF1 have been crosslinked [65] and have been shown to 

directly contact each other in a recent 70S IC cryo-EM structure [66], though a 30S IC cryo-EM 

structure failed to identify a direct interaction between these two factors. IF1 and IF2 have been 

functionally replaced by a single factor, IF2mt, in mammalian mitochondria, however, which can be 

taken as evidence for their cooperative roles in initiation. 
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Figure 2.9 The interdomain configuration of 30S IC-bound IF3 is affected by IF1 and IF2. A. Time-
evolution of population FRET histograms for  30SIC-IF1,IF2

-tRNA ,  30SICIF2
-tRNA ,  30SIC-IF1

-tRNA , and 30SIC-tRNA. The 
cartoon above each contour plot indicates the contents of each 30S IC. See Figure 1.2 for further details on 
the 30S IC cartoons. “N” represents the total number of FRET trajectories in each data set. The data are 
combined from three independent data sets. To the right of each contour plot is a normalized population 
FRET histogram of the first 0.5 seconds of data; bin size = 0.047 FRET.  Each histogram was fit with 
Gaussian distributions (black line). The intensity at zero FRET arises due to Cy3 and Cy5 photobleaching. 
B. Subpopulation analysis of smFRET versus time trajectories for  30SIC-IF1,IF2

-tRNA ,  30SIC-IF2
-tRNA ,   30SIC-IF1

-tRNA , and 
30SIC-tRNA. The mean and standard deviation of the percentage occupancy of each subpopulation were 
calculated from three independent data sets (see Appendix B). 
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2.3.10 IF3 undergoes an interdomain reconfiguration on a completely assembled 30S IC 

To further test the hypothesis that IF3’s interdomain configurations are linked to its role in 

substrate selection, a 30S IC was assembled which contained all the components of a correctly 

assembled 30S initiation complex in order to investigate IF3’s interdomain configuration upon 

initiator tRNA and start codon selection. These complexes should have fMet-tRNAfMet stably 

bound to the P site through interactions with 16S rRNA residues A1339, G1338, and A790, as 

well as Watson-Crick base pairing with the AUG codon on the mRNA. In these complexes, the 

30S IC-bound IF3 predominantly (76 ± 10% of all trajectories) occupies IF30.84 (Figure 2.10 and 

2.11B), with 4 ± 4% fractional occupancy in IF30.24 and 15 ± 7% in IF30.43. By comparing the 

behavior of 30S IC-bound IF3 on 30SICfMet with 30SIC-tRNA, it is obvious that the presence of fMet-

tRNAfMet bound to its cognate AUG codon triggers a significant interdomain reconfiguration of 30S 

IC-bound IF3 (Figure 2.10). This striking comparison suggests that the interdomain configuration 

of the 30S IC-bound IF3 is responsive to the presence of a stable P-site codon-anticodon 

interaction. 

 

Figure 2.10 An IF3 interdomain reconfiguration signals proper initiator tRNA and start codon 
selection during translation initiation. Time-evolution of population FRET histograms for 30SIC-tRNA and 
30SICfMet. Normalized population FRET histograms for the first five frames of data are shown to the right of 
each contour plot. IF3 undergoes an interdomain reconfiguration in the presence of initiator tRNA and an 
AUG start codon. 
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 The interdomain reconfiguration of 30S IC-bound IF3 does not occur uniquely in 

30SICfMet, however. Recall that the IF30.84 state favored here is also the state favored by IF3 on 

the incompletely assembled   30SIC-IF1
-tRNA  (Figure 2.9). Thus, the molecular implications of this IF3 

interdomain reconfiguration, whether, for example, in signaling the complete assembly of a 30S 

IC or promoting rapid 50S subunit joining (see section 2.4 and Chapter 3), are that this 

reconfiguration may be a necessary but insufficient means to perform these roles. Instead, it is 

likely that numerous conformational rearrangements of the 30S subunit and its initiation 

components cooperatively signal 30S IC assembly. Whether or not the interdomain configurations 

favored by IF3 on these different complexes is exactly the same at the atomic level, however, 

cannot be known from these smFRET data. These experiments are limited by only revealing one 

distance constraint within these macromolecular complexes. Additionally, the FRET efficiency 

here, 0.84, is outside the optimal window of sensitivity to distance separations (see Figure 1.15), 

so small changes in distance would not be detected with this smFRET signal. Other smFRET 

signals could be designed which more precisely reveal the IF3 NTD-CTD separation on these 

complexes by moving the fluorophores closer to R0 (55 Å) for these 30S ICs. Nevertheless, these 

30SICfMet data reveal the responsiveness of IF3’s interdomain configuration to the presence of 

correctly selected substrates.  
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Figure 2.11 IF3 fails to undergo an interdomain reconfiguration on incorrectly assembled 30S ICs. A. 
Time-evolution of population FRET histograms for 30SIC-tRNA, 30SICfMet, 30SICfMet,AUU, 30SICPhe, and 
30SICLys. B. Subpopulation analysis of smFRET versus time trajectories for 30SIC-tRNA, 30SICfMet, 
30SICfMet,AUU, 30SICPhe, and 30SICLys. The mean and standard deviation of the percentage occupancy of 
each subpopulation were calculated from three independent data sets. The non-cognate codon-anticodon 
interaction that may be occurring in 30SICfMet,AUU, 30SICPhe, and 30SICLys is indicated in the cartoons. 

2.3.11 IF3 fails to undergo an interdomain reconfiguration on incorrectly assembled 30S 
ICs 

 
If indeed this interdomain reconfiguration of 30S IC-bound IF3 occurs uniquely on 

properly assembled 30S ICs (i.e. 30SICfMet), then it follows that IF3 bound to an incorrectly 

assembled 30S IC, containing a non-canonical start codon or elongator tRNA, should fail to 

undergo this reconfiguration, and instead remain in another interdomain configuration. Thus, 30S 
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ICs were assembled with a 5’-biotinylated mRNA (mRNA #2, Table 2.1) containing the non-

canonical AUU start codon (see section 1.2.2). IF3 has a known sensitivity to AUU as it is the 

start codon IF3 uses to autoregulate the expression of its own gene, infC (see section 1.3.3.8) 

[73, 74]. Confirming the substrate selection-dependence to the IF3 interdomain reconfiguration, 

the IF30.84 state of 30S IC-bound IF3 on these complexes, hereafter 30SICfMet,AUU, was minimally 

occupied (7 ± 0.1%), unlike in 30SICfMet. Instead, 30SICfMet,AUU showed high fractional 

occupancies of IF30.24 and IF30.43: 20 ± 4% and 57 ± 5%, respectively, of all smFRET trajectories 

(Figure 2.11). 

Table 2.3 Subpopulation analysis of 30S IC-bound IF3(Cy3-Cy5) under various conditions. “30SIC” 
represents a complex containing IF3(Cy3-Cy5) and a biotinylated mRNA with an AUG start codon. The 
subscript following “30SIC” for all other complexes indicates which IFs were absent; the superscript 
indicates which tRNA, and mRNA start codon if not AUG, was used in the 30S IC. The mean and standard 
deviation of the percentage occupancy of each subpopulation were calculated from three independent 
data sets. All trajectories were idealized using vbFRET [48] and assigned to states as follows: IF30.24 (0-
0.25 FRET), IF30.43 (0.3-0.65 FRET), and IF30.84 (0.7-1 FRET). These states were determined using the 
full-width at half maximum (FWHM) of Gaussian fits to population histograms of the first 0.5 sec of data. 
The shaded boxes indicate the most highly populated state within that 30S IC. 

Complex IF30.24 (%) IF30.43 (%) IF30.84 (%) IF30.240.43 (%) IF30.430.84 (%) 

        Static Dynamic 

  30SIC-1/2
-tRNA

 20.6 + 5.1 35.1 + 8.2 12.9 + 4.0 27.8 + 8.5 2.1 + 0 

  30SIC-2
-tRNA

 16.2 + 3.5 53.7 + 1.1 4.8 + 1.3 20.4 + 4.8 1.8 + 0 

  30SIC-1
-tRNA

 5.1 + 4.2 10.3 + 4.8 81.5 + 8.5 1.0 + 0 1.7 + 0.4 

  30SIC-tRNA
 26.6 + 7.2 48.6 + 2.9 4.8 + 2.9 18.6 + 5.8 1.2 + 0 

  30SICfMet
 4.1 + 4.2 15.2 + 7.1 75.7 + 10.0 1.9 + 0 2.0 + 1.8 

  30SICfMet,AUU  19.7 + 3.6 57.2 + 5.3 6.8 + 0.1 15.1 + 4.3 1.0 + 0 

  30SICPhe
 22.7 + 1.3 54.4 + 3.1 3.7 + 2.2 17.0 + 2.6 1.8 + 0 

  30SICLys
 20.9 + 3.1 55.5 + 1.3 6.4 + 4.3 14.3 + 6.1 1.7 + 0 

 

To further test the substrate dependence of IF3’s interdomain reconfiguration, 30S ICs 

were formed on an mRNA containing an AUG start codon but with either Phe-tRNAPhe or Lys-

tRNALys, both of which are non-cognate with AUG. As seen with 30SICfMet,AUU, 30SICPhe and 
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30SICLys showed very low occupancy of IF30.84, the compact IF3 interdomain configuration 

favored in 30SICfMet (4 + 2% and 6 + 4%, respectively), instead favoring IF30.24 (23 + 1% and 21 + 

3%) and IF30.43 (54 + 3% and 56 + 1% for 30SICPhe and 30SICLys, respectively) (Figure 2.11 and 

Table 2.3). These results indicate that IF3’s interdomain configuration is responsive to the 

presence of a cognate P-site codon-anticodon interaction, and that it fails to undergo an 

interdomain reconfiguration in its absence. 

2.3.12 IF3 fails to undergo an interdomain reconfiguration on 30S ICs containing a 
cognate elongator tRNA codon-anticodon interaction 
 
I was next interested in investigating whether the 30S IC-bound interdomain configuration 

of IF3 is uniquely responsive to a cognate AUG start codon-initiator tRNA anticodon interaction or 

if it responds to a stable, cognate P-site codon-anticodon interaction formed from any cognate 

codon and anticodon (i.e. initiator or elongator). 30S ICs were assembled with Phe-tRNAPhe and 

an mRNA containing a UUC codon cognate for Phe-tRNAPhe in place of an AUG codon at the 

location of the start codon (see Table 2.1 for mRNA #3 sequence). tRNAPhe naturally has a higher 

propensity to bind to the P site than most elongator tRNAs since its anticodon stem contains the 

two GC base pairs (G29-C41 and G30-C40) needed for stable interaction with the P site 16S 

rRNA (bases A1339 and G1338) (see Figure 2.12) [61, 75, 76].  

 
 
Figure 2.12 P-site tRNA-mRNA interactions. A. Anticodon stem-loop (ASL) sequences of tRNAfMet, 
tRNAPhe, and tRNALys with anticodon stem base pairs critical for P site interactions indicated with arrows. 
Figure adapted from Ref. [75]. B. tRNA anticodon stem base pair G29-C41 interacts with A1339 to form a 
Type I A-minor interaction in the P site, while G30-C40 interacts with P site residue G1338 to form a Type II 
A-minor interaction. 16S rRNA base 790 also interacts with the opposite side of the ASL to prevent the 
tRNA’s transit into the E site. Figure from Ref. [76]. 
 



90 
Chapter 2 – A substrate-dependent IF3 interdomain reconfiguration 

 
 

Despite this structural advantage, the tRNAPhe codon-anticodon interaction, if indeed 

stably present in 30SICPhe,UUC, failed to trigger the interdomain reconfiguration of 30S IC-bound 

IF3 that was triggered in 30SICfMet (Figure 2.12). This result is in line with previous work 

demonstrating that IF3 is responsive not just to codon-anticodon complementarity rules, but also 

to the unique features of tRNAfMet’s anticodon stem, loop, and the anticodon itself [12]. A few 

studies have shown that IF3 only selects AUG-, GUG-, and UUG-tRNAfMet codon-anticodon P-site 

interactions, never UUU-tRNAPhe or AUU-tRNAfMet interactions [8, 12].  

 

Figure 2.13 An IF3 interdomain reconfiguration requires a cognate AUG start codon-initiator tRNA 
anticodon interaction. A cognate elongator codon-anticodon interaction between Phe-tRNAPhe and a UUC 
codon fails to trigger the IF3 interdomain reconfiguration that occurs with a cognate initiator AUG-fMet-
tRNAfMet codon-anticodon interaction. Time-evolution of population FRET histogram and 1D histogram for 
both complexes. The Phe-UUC 30S IC results need to be triplicated. 

2.3.13 The loss-of-function point mutation, Y75N, has a unique smFRET signature 

Lastly, the previously identified and characterized loss-of-function point mutant, IF3-Y75N 

[4, 5], which has a known substrate selection defect but maintains the ability to bind to 30S 

subunits was chosen to further test the connection between substrate selection and IF3’s 30S IC-

bound interdomain configuration. Y75N was introduced into the double Cys IF3 construct – 
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IF3(C65S-S38C-K97C-Y75N) – and dual labeled with Cy3 and Cy5 as described (see section 

2.3.1). Use of this sample in fully assembled 30S ICs (i.e. 30SICfMet) revealed a novel IF3 

interdomain configuration favored by this IF3 variant (Figure 2.13) compared with others tested. 

Although the IF30.84 interdomain configuration is sampled by a sizable fraction of the sample 

population (19%), the IF30.43 state predominates in these 30S ICs. These results reveal a novel 

phenotype for this point mutation, that being a unique 30S IC-bound interdomain configuration 

compared with wild-type IF3 (with wild-type being the IF3(Cy3-Cy5) variant). Considering the 

phenotypes of this point mutant (loss of ability to select the initiator tRNA, inability to discriminate 

start codons, and inability to inhibit initiation on leaderless mRNAs), these results support the 

hypothesis that the interdomain configuration of IF3 on the 30S is critical for performing these 

functions. The proximity of Tyr75 to the linker suggests that its flexibility, or its interactions with 

the 30S subunit, may be impaired and restrict the protein’s ability to sample its wild-type 

configurations.  
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Figure 2.14 The loss-of-function IF3 point mutation Y75N exhibits a unique 30S IC-bound 
interdomain configuration. A. Structural model of IF3(C65S-S38C-K97C) containing the loss-of-function 
substitution mutation Y75N. Ribbon diagram of IF3 from B. stearothermophilus with E. coli IF3 numbering 
[77, 78]. Residues 79 to 82 are missing, and the protruding NTD -helix (residues 61 to 78 (B. stearo 
numbering))  is flexible in E. coli [20]. Residues C65S, S38C, K97C, and Y75N are labeled. IF3 was 
modeled and rendered in PyMOL [79]. PDB codes 1TIF (NTD) and 1TIG (CTD). B. Time-evolution of 
population FRET histogram and normalized population histogram for the IF3-Y75N(Cy3-Cy5) 30S IC and 
IF3(Cy3-Cy5) 30S IC complexes. The IF3-Y75N(Cy3-Cy5) results need to be triplicated. 
 
2.4 Conclusions and Future Directions 

Taken together, these results reveal that 30S IC-bound IF3 can adopt at least three 

interdomain configurations, and the equilibrium between these configurations is regulated by the 

IFs and the P-site codon-anticodon interaction. This equilibrium converges on a single 30S IC-



93 
Chapter 2 – A substrate-dependent IF3 interdomain reconfiguration 

 
 

bound IF3 interdomain configuration upon correct initiator tRNA and start codon selection. These 

results support the hypothesis that the interdomain configuration of 30S IC-bound IF3, and 

perhaps the 30S IC itself, is important in substrate selection and may signal complete 30S IC 

assembly. The existence of multiple 30S IC-bound IF3 interdomain configurations may explain 

the discrepancies among 30S-IF3 structural studies, as well as direct future structural 

investigations of 30S ICs. Considering the steps in the initiation pathway that follow 30S IC 

assembly, namely 50S subunit joining to form a 70S IC, it is possible that IF3’s interdomain 

reconfiguration on completely and correctly assembled 30S ICs may occur to promote 50S 

subunit joining, and possibly its own dissociation from the ribosome. In contrast, IF3’s other 30S 

IC interdomain configurations may restrict these events, perhaps by occupying binding sites on 

the 30S subunit which prevent intersubunit bridge formation, and thus also preventing rapid and 

stable 50S subunit joining. A mechanistic model relating IF3’s 30S IC-bound interdomain 

configuration to 50S subunit joining is developed and presented in Chapter 3. 

The role of IF3’s interdomain configurations and dynamics in substrate selection can be 

tested further with IF3 mutants in which the linker length or flexibility is altered toward the aim of 

disrupting IF3’s ability to sample all of its accessible interdomain configurations. It would also be 

interesting to test the less frequently used start codons GUG and UUG (see section 1.2.2), in 

addition to the non-canonical CUG codon. Lastly, chimeric tRNAs, such as fMet-tRNAPhe or Phe-

tRNAfMet, or tRNAfMet containing alterations in its anticodon stem or loop, can be employed to 

tested the structural features of the tRNA substrate which are discriminated by IF3 [80].  
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Chapter 3 
Initiation factor 3-mediated 50S subunit joining 

 
3.1 Introduction 

 50S subunit joining to a completely assembled 30S IC is a pivotal step toward transit into 

translation elongation and rapid mRNA decoding (Figure 3.1). For this reason, subunit joining to 

30S ICs is highly regulated by the IFs. IF2(GTP) catalyzes rapid 50S subunit joining to initiator 

tRNA-bound 30S subunits  [1, 2], while IF1 affects subunit association by inducing large scale 

conformational changes in the 30S subunit [3-5]. IF3 is especially critical in regulating 50S 

subunit joining by preventing the efficient formation of 70S ribosomes lacking initiator tRNA 

(Figure 3.2) [2, 6] or containing either a non-initiator tRNA [7] (see Table 3.1) or a non-canonical 

AUU start codon [4, 8, 9]. In the absence of IF3, this substrate discrimination, especially for an 

AUG versus AUU start codon, is largely lost and 50S subunits associate rapidly with 30S ICs 

formed on AUU- and AUG-containing mRNAs [8]. Association of the 50S subunit with the 30S IC 

involves the sequential, multi-step formation of twelve intersubunit bridges (see Table 1.1) [10]. 

Recalling that the binding site of IF3 on the 30S subunit coincides with the binding sites for a 

number of intersubunit bridges (Figure 1.12) [11], it follows that the presence of IF3 on a 30S IC 

may either prevent 50S subunit joining entirely or else hinder the formation of a subset of these 

bridges, thus preventing the ribosome’s conversion from an unstable to a stable 70S IC [8, 12]; 

these lines of reasoning form the foundation for two opposing models for how IF3 regulates 

subunit joining. 

 

Figure 3.1 A minimal mechanistic model for translation initiation. The two main steps in translation 
initiation are the formation of the 30S IC and 70S IC. These steps are regulated by the initiation factors. 
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Table 3.1 Effects of initiation factors, and the presence and identity of tRNA on the first-order rate 
constant, kc, of 50S joining to 30S-mRNA initiation complexes. From Ref. [7]; measured by light 
scattering, as depicted in Figure 3.2. The shaded cells highlight the effect of omitting or including IF3 in 
otherwise completely assembled 30S ICs. 

IF1 IF2 IF3 kc (s
-1) 

    fMet-tRNAfMet Phe-tRNAPhe

+ + + 0 2.9 0.0071 
+ - + 0 0.0098 ~ 0 
- + + 0.020 8.7 0.015 
- - + 0.020 0.038 0.0032 
+ + - 1.4 42 4.0 
+ - - 0.43 0.24 0.16 
- + - 0.63 36 0.79 
- - - 0.56 0.30 0.19 

 

 

Figure 3.2 The kinetics of 50S subunit joining to 30S ICs formed in the absence or presence of 
initiator tRNA and initiation factors. Data from Antoun et al. [2]. A. Cartoon of the 50S subunit joining 
reaction in the absence of initiator tRNA. The raw light scattering data is shown in black. 30S ICs were 
formed in the presence of the IFs indicated in the legend. The calculated rate constants, kc, for 50S subunit 
joining are found in Table 3.1. B. Cartoon of the 50S subunit joining reaction in the presence of initiator 
tRNA, with raw light scattering data shown below. 
 

The two opposing mechanistic models for how IF3 regulates 50S subunit joining to 30S 

ICs are schematized in Figure 3.3. In the first model, IF3 must spontaneously dissociate from a 

correctly assembled 30S IC before 50S subunit joining [2, 7]. This model is supported by data 

collected using stopped-flow techniques with detection of Rayleigh-scattered light to estimate the 

rate constant for 50S subunit joining in the presence and absence of IF3. In the absence of IF3, it 

was shown, through a 50S subunit concentration series, that 70S ribosome formation obeyed 
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second-order kinetics. In the presence of IF3, however, the rate of 50S subunit joining, kc, 

became a hyperbolic function with a clear plateau. When IF3 was titrated into fixed 

concentrations of mRNA-programmed 30S ICs, subunit association was inhibited with a linear 

dependence of 1/kc on 1/[IF3]. These data therefore imply that IF3 is a competitive inhibitor of 

50S subunit joining, indicating that the presence of IF3 and a 50S subunit on a 30S IC is mutually 

exclusive. In this model, the rate of 50S subunit joining would be limited by the rate of IF3 

dissociation.  

In the second model, IF3 remains bound to a correctly assembled  30S IC upon 50S 

subunit joining and dissociates either during or after the 50S subunit has joined [4, 8, 12, 13]. This 

model was developed based on results from rapid kinetics, ensemble FRET, and time-resolved 

hydroxyl radical probing experiments indicating that IF3 is present, at least transiently, on 50S 

subunit-associated 30S ICs [4, 8, 12, 13]. Attempts to explain the discrepancies between these 

two models include suggestions by Gualerzi and co-workers that the Ehrenberg study was 

performed with an N-terminally degraded IF3 [12]. Others posited that differing buffer 

compositions and the use of mRNAs differing in SD strength and spacer length have a significant 

effect on the rate of IF3 dissociation [4], which may explain differences in the timing of IF3 

dissociation with respect to 50S subunit joining. Also important to keep in mind are the inherent 

limitations of a given biophysical technique. For example, the detection of light scattering to 

measure subunit association may be limited to detection of just stable 70S ribosome formation, 

giving limited or no information on transient subunit association, which may be a necessary 

intermediate on the pathway of, or an impetus for, IF3 dissociation (D. MacDougall, personal 

communication). Thus, the mutual exclusivity of these two models may not be as pronounced as 

their authors suggest.  
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Figure 3.3 Two opposing models for the timing of IF3’s dissociation during translation initiation. In 
Model 1, IF3 spontaneously dissociates from a completely assembled 30S IC before 50S subunit joining 
occurs. In Model 2, IF3 remains bound to the 30S IC during 50S subunit association and dissociates at 
some point during or after 50S subunit joining. 
 

In Chapter Two, it was shown that 30S IC-bound IF3 is conformationally dynamic and 

that its conformational dynamics are linked to IF3’s role in substrate selection (Figure 3.4). These 

results already support the latter of these two mechanistic models due to the long-lived presence 

of IF3 on a completely assembled 30S IC (see Figure 3.4). IF3 remains stably bound on surface-

immobilized 30S subunits over the course of 20-30 minutes of smFRET data acquisition. 

Contrasting with this, if IF3 spontaneously dissociated from completely assembled 30S ICs on a 

reasonable timescale, as described by Model #1, smFRET data acquisition would not be possible 

due to the dissociation of the fluorescent observable. The new evidence for IF3 being 

conformationally dynamic on 30S ICs, however, suggests additional layers of complexity beyond 

the relative timing of IF3’s dissociation from the ribosome to explain IF3’s role in regulating 

subunit joining.  
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Figure 3.4 An IF3 interdomain reconfiguration signals proper initiator tRNA and start codon selection 
during translation initiation. Time-evolution of population FRET histograms for 30SIC-tRNA, 30SICfMet, 
30SICfMet,AUU, 30SICPhe, and 30SICLys.  Normalized population FRET histograms, containing the first five 
frames of data, are shown to the right of each contour plot. The contents of each 30S IC are depicted in the 
cartoon above each FRET histogram. The non-cognate codon-anticodon interaction in the three plots on the 
right is depicted by a loose interaction between the tRNA and the 30S subunit P site. 
 

As presented in Chapter Two, and depicted in Figure 3.4, IF3 undergoes an interdomain 

reconfiguration to a single, unique interdomain configuration only upon proper initiator tRNA and 

start codon selection. Ensemble biochemical studies of 50S subunit joining (Table 3.1, Figure 3.2, 

and Refs. [2, 4, 6-8]) have shown that, in the presence of IF3, subunit joining occurs most rapidly 

with completely assembled 30S ICs, containing an AUG start codon and fMet-tRNAfMet. 

Perturbation of the identity of the tRNA or start codon can slow down subunit joining by up to 400-

fold [7], while complete omission of tRNA slows subunit joining by more than 1200-fold [7] (Table 

3.1). Correlating these previous kinetic results with this new structural finding on the interdomain 

configuration of IF3 on comparable correctly versus incorrectly assembled 30S ICs leads to a 

new mechanistic model which incorporates the interdomain configuration of IF3 into its ability to 

regulate 50S subunit joining (Figure 3.5). Here, it is both the presence and interdomain 

configuration of IF3 that determines the efficiency of subunit joining. IF3’s switch to a single 

compact interdomain configuration on completely and correctly assembled 30S ICs may be more 

conducive to 50S subunit joining, the formation of intersubunit bridges, and/or IF3’s dissociation 

rate from the 70S ribosome, whereas IF3’s other 30S IC-bound interdomain configurations may 
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occlude a subset of these intersubunit bridges, thus preventing rapid and stable subunit joining, 

and perhaps also slowing down IF3’s dissociation from 70S ribosomes. 

It is unlikely that IF3’s interdomain configuration is the sole determinant of rapid 50S 

subunit joining, however. This is evident by the stable sampling of IF30.84, the presumably 

“subunit joining ready” IF3 interdomain configuration, in the presence of just IF2 and the absence 

of IF1 or fMet-tRNAfMet (see Figure 2.9). These 30S ICs (  30SIC-IF1
-tRNA ) do not undergo rapid subunit 

joining (see Table 3.1 row 3), suggesting that IF3’s interdomain reconfiguration may be 

necessary, but not sufficient, for subunit joining. Instead, the interdomain configuration of 30S IC-

bound IF3 is likely to be one of a number of conditions, including the presence of IF2(GTP) and 

fMet-tRNAfMet on the 30S IC, which must be met for rapid, stable 70S IC formation.  

 

Figure 3.5 A mechanistic model for the role of 30S IC-bound IF3’s interdomain configuration in 
regulating the fidelity of 70S IC formation. 30S IC-bound IF3 samples at least three distinct and 
interconvertible interdomain configurations on the various 30S ICs it encounters along the initiation pathway, 
as revealed in Chapter Two. IF3 converges on a single interdomain configuration within completely and 
correctly assembled 30S ICs containing the full array of initiation components: IF1, IF2, an AUG start codon, 
and fMet-tRNAfMet. On incompletely or incorrectly assembled 30S ICs, containing, for example, a non-
canonical start codon or non-initiator tRNA, IF3 predominantly samples two other interdomain 
configurations. These results are found in Chapter Two and cartooned here in the dashed box. At the right is 
a possible model for how IF3’s interdomain configuration on the 30S IC regulates subunit joining. It is 
proposed that only in one specific interdomain configuration does IF3 allow rapid subunit joining, while in its 
other interdomain configurations, IF3 may occlude intersubunit bridge formation, thus slowly down or 
preventing 50S subunit joining. IF3’s conformational rearrangements can result from either (i) dynamics of 
the 30S subunit, (ii) multiple IF3 binding sites, and (iii) a combination of these scenarios (see Figure 2.8). 
 
3.2 Preliminary results and discussion 

Although this new mechanistic model remains to be rigorously tested, I have taken steps 

toward developing an smFRET signal development between IF3 and the 50S subunit – a signal 

that can indicate the timing of the 50S subunit’s joining with an IF3-bound 30S IC. The 

interdomain configuration of 30S IC-bound IF3 during this subunit joining step can be measured 
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with IF3(Cy3-Cy5) (see Chapter Two), while observation of both IF3’s interdomain configuration, 

as well as the presence of a joined 50S subunit on the 30S IC, will necessitate a third fluorophore 

on the 50S subunit (see Figure 3.7). 

3.2.1 Development of a smFRET signal between IF3 and the 50S subunit 

50S subunits reconstituted with mutageneized and labeled ribosomal protein L9(Q18C)-

Cy5 were prepared by Dr. Jingyi Fei during the development of a smFRET signal between L9 and 

ribosomal protein L1 [14]. Measurements of the distance between the Cys18 residue of L9 and 

the 16S rRNA nucleotides protected by IF3 [15] enabled rough estimation of the separation 

between L9 and 30S-bound IF3. These distances, measured in PyMOL [16] with PDB files 2J00 

and 2J01, are: L9(Q18C) to G685 of rRNA helix 23 = 49 Å, L9(Q18C)  to G703 of helix 23 = 52 Å, 

and L9(Q18C)  to U793 of helix 24 = 89 Å. According to the location of IF3’s NTD and CTD 

modeled using constraints from directed hydroxyl radical probing [15], L9 is closer to IF3’s NTD 

than its CTD.  

3.2.2 IF3 remains bound to the 30S subunit following 50S subunit joining 

 A proof-of-principle experiment has been performed to verify that IF3-NTD is within FRET 

distance of L9 (see Figure 3.6). Cy5-labeled 50S subunits were stopped-flow delivered in realtime 

to surface immobilized 30S ICs that were assembled with a complete set of initiation components 

(i.e. 30SICfMet). The arrival of 50S subunits to IF3-bound 30S ICs was visualized by the onset of 

FRET. Based on ~25 smFRET trajectories, the measured FRET efficiency is ~0.45, a FRET 

efficiency corresponding to a distance of ~57 Å, assuming an R0 value of 55 Å, and in line with 

the distances measured using a 70S ribosome crystal structure (see section 3.2.1). It is clear 

from these acquired smFRET trajectories that IF3 remains stably bound to 70S ribosomes for at 

least several seconds, possibly limited by photobleaching. These data support the second model 

described in section 3.1 (Figure 3.3) and further suggest that IF3 does not immediately dissociate 

upon 50S subunit association, but can remain relatively stably bound to a 70S ribosome. These 

results also support a cryo-EM structure of a 70S IC containing the initiator tRNA, IF1, 
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IF2(GDPNP), and IF3 [17], as well as time-resolved chemical probing investigations of the timing 

of IF3’s dissociation with respect to 50S subunit arrival [12].  

 Numerous questions arise from these results, however, such as whether all intersubunit 

bridges are formed on these IF3-bound 70S ribosomes (i.e. have the 70S ribosomes undergone a 

transition from an “unstable” to a “stable” intersubunit configuration [8, 12]), as well as IF3’s 

precise lifetime on the 70S ribosome, and what stimulus is required for its eventual release, 

assuming it is not simply the presence of a successfully joined 50S subunit. Another member of 

the Gonzalez research group, Mr. Daniel MacDougall, is investigating the role of IF3 in stable 70S 

ribosome formation with an smFRET signal between IF2 and the 50S subunit ribosomal protein 

L11, and his preliminary results indicate that IF3 significantly affects the frequency of stable 

subunit joining, as well as the stability of the interaction between the joined subunits. The L9-IF3 

smFRET signal described here can be used to answer questions about IF3-NTD’s lifetime on the 

ribosome, however it is limited by the lack of a physical observable that reports on the relative 

interdomain distance of IF3’s NTD and CTD, as well as the location of IF3’s CTD upon 50S 

subunit binding – data that may demonstrate a mechanistically important conformational 

rearrangement of IF3.  
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Figure 3.6 smFRET between IF3 and the 50S subunit. 50S subunits were delivered to surface-
immobilized 30S ICs and FRET was observed between IF3(C65S-S38C)-Cy3 and ribosomal protein 
L9(Q18C)-Cy5. The cartoon represents a 70S ribosome carrying IF1, IF2(GTP), IF3(Cy3), initiator tRNA, 
and a Cy5-labeled 50S subunit. A. A representative fluorescence versus time trajectory. Cy3 fluorescence 
emission intensity in green and Cy5 fluorescence emission in red. B. The corresponding FRET versus time 
trajectory, calculated as FRET = ICy5/(ICy3+ICy5). C. The normalized population FRET histogram from all 
FRET trajectories (N=25) plotted with all 1200 frames of data. The peak at zero FRET is due to Cy3 and Cy5 
photobleaching. 
 
 
3.2.3  Future directions: the interdomain configuration of ribosome-bound IF3 during 50S  

subunit joining 
 
 Future experiments can be done to test the interdomain configuration of IF3 during 50S 

subunit joining. In order to probe both the relative interdomain distance between IF3’s NTD and 

CTD to get insight into IF3’s interdomain configuration, as well as identify the timing of 50S 

subunit joining to an IF3-bound 30S subunit, experiments can be designed as depicted in Figure 
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3.7. Two separate observables will be needed for these experiments. First, 30S IC-bound 

IF3(Cy3-Cy5) will enable measurements on the interdomain configuration of 30S- and 70S-bound 

IF3. Secondly, fluorescently labeled 50S subunits will be needed to indicate the arrival of the 50S 

subunit. This arrival event can be determined from fluorescence co-localization experiments in 

which one can monitor the appearance and disappearance of fluorophores within a diffraction-

limited region of the TIRFM field-of-view (see, for example, Ref. [18]). Co-localization experiments 

would require careful controls to ensure that non-specific binding of the fluorophore-labeled 

components to the TIRF-illuminated surface of the microfluidic flowcell is minimal, as well as 

careful optimization of the TIRFM optics and data analysis procedures to minimize user bias 

when identifying and co-localizing regions of fluorescence intensity. Alternatively, the arrival of the 

50S subunit can be determined by FRET between the 50S subunit and IF3(Cy3-Cy5). In this 

case, a fluorophore needs to be chosen that is both photostable and has spectral overlap with 

either Cy3 or Cy5. Possible fluorophores include Cy7 or Atto488. The specific labeling position 

could be L9(Q18C) of the 50S subunit due to this residue’s proximity to IF3’s NTD, or if the 

fluorescence co-localization approach is taken, the 50S subunits could be non-specifically labeled 

on peripheral lysine residues following the procedure developed and described by Dr. Jiangning 

Wang [19]. Though technically challenging, these experiments have the potential to reveal a 

wealth of information on the interdomain configuration of IF3 during 50S subunit joining, as well 

as report on any 70S IC-bound IF3 conformational dynamics and the timing of IF3’s dissociation. 

Importantly, these experiments will enable direct testing of the new mechanistic model presented 

in section 3.1 (Figure 3.5), namely that IF3’s ability to regulate 50S subunit joining stems from the 

interdomain configuration of the ribosome-bound IF3. 



110 

Chapter 3 – IF3-mediated 50S subunit joining 

 

 

Figure 3.7 A possible experiment to monitor the interdomain configuration of IF3 during 50S subunit 
joining. The relative distance between IF3’s NTD and CTD can be measured with 30S subunit-bound 
IF3(Cy3-Cy5), and the joining of a 50S subunit to an IF3-bound 30S subunit can be monitored either via 
FRET between IF3-NTD and the L9 protein of the 50S subunit, or via fluorescence co-localization between 
an IF3-bound fluorophore (either Cy3 or Cy5) and 50S-bound fluorophore (e.g. Atto488 or Cy2). 
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Chapter 4 
 

Real-time observation of IF1 binding to the small 
ribosomal subunit during translation initiation 

 
4.1 Introduction 
 

Translation initiation involves formation of a 30S IC that, upon 50S subunit joining, 

ultimately forms an elongation-competent 70S IC (Figure 1.2) (Reviewed in Refs. [1-5]). 

Assembly of a 30S IC involves the association of IF1, IF2(GTP), IF3, initiator tRNA, and mRNA 

with a 30S subunit. The efficiency with which a particular mRNA is assembled within a 30S IC is a 

major determinant of its expression level [6]. There can be numerous cis or trans-acting 

regulators that affect an mRNA’s interaction with the 30S subunit, leading either to its activation 

or repression [6-8]. One of these regulators is the strength of the mRNA’s translation initiation 

region (TIR) [9-11]. Considering that the efficiency of the overall 30S IC assembly is likely to vary 

across mRNAs depending on the details of each mRNA’s TIR, 30S IC assembly may serve as a 

critical point of regulation for the translational control of gene expression. The molecular details of 

30S IC assembly remain poorly defined, however, thus preventing a full understanding of the 

assembly pathway(s) and its regulation. 

Due to its role in ribosome recycling [12-16] and the high affinity with which it binds to the 

30S subunit [17], current models for 30S IC assembly propose that IF3 is the first initiation 

component to bind to the 30S subunit and that it remains bound to the 30S subunit throughout the 

30S IC assembly process. The order and relative timing of IF1, IF2(GTP), mRNA, and tRNA 

binding to the IF3-bound 30S subunit, however, are still debated [2]. In fact, virtually every 

possible permutation of the binding order for these components has been proposed [3, 18-27], 

                                            

 Elvekrog, MM and Gonzalez Jr, RL (2011) Real-time observation of IF1 binding to the 

small ribosomal subunit during translation initiation (In preparation) 
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leading to some models in which the 30S IC assembly pathway is described as being random [4, 

28].  

 In general, single-molecule methods provide a powerful means for dissecting the 

assembly of macromolecular complexes such as the 30S IC, as well as for characterizing the 

mechanistically revealing kinetics of each step in the assembly pathway(s). As a good example, 

single-molecule fluorescence was used recently to reveal the assembly pathway of the 

spliceosome, which is a macromolecular machine containing over 100 protein and RNA 

components [29]. That study elucidated the order and reversibility of the main steps in the 

assembly pathway, revealing that splicing can be regulated at any step during spliceosome 

assembly. As a first step toward developing a complete kinetic scheme describing 30S IC 

assembly, I have developed an smFRET signal between IF3 and IF1. Due to its stable and early 

association with the 30S subunit, IF3 is an appropriate static landmark from which to monitor the 

kinetics of IF1 binding to the 30S subunit during 30S IC assembly.  

 IF1 is thought to have roles in initiator tRNA and start codon selection [30-32], as well as 

an influence on the stability of IF2 binding to the 30S subunit [33]. Thus, determining the timing of 

IF1 binding to the 30S subunit relative to tRNA, mRNA, and IF2 binding to the 30S subunit will 

provide previously inaccessible insight into the function of IF1 in regulating substrate selection 

and IF2’s stability on the 30S subunit. IF1 may also have functions in later steps in initiation, 

specifically in regulating the rate of subunit joining [30, 34, 35], as well as possibly stabilizing 

IF2’s interaction with fMet-tRNAfMet for optimal subunit joining [36, 37]. The relative timing of IF1’s 

dissociation either from the 30S IC or 70S IC has important mechanistic implications for its 

function in initiation. 

 The results described in this chapter reveal that IF1 binds to the 30S subunit reversibly in 

the presence of just IF3, as well as in the presence of IF3 and initiator tRNA. Analogous 

experiments performed in the presence of both IF2 and IF3 demonstrate that IF2 virtually traps 

IF1 onto the 30S subunit, though additional experiments are needed to probe the reversibility or 

irreversibility of IF1’s binding to the 30S subunit in the presence of IF2. Future experiments also 
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include measurements of the timing of IF1’s dissociation from the 30S IC with respect to 50S 

subunit joining. 

4.2 Experimental Methods 

4.2.1 Preparation of 30S Initiation Complexes (30S ICs) 

 The nomenclature used throughout this chapter will follow the style introduced in Chapter 

2 with the exception that all 30S ICs here necessarily contain 30S ribosomal subunits, IF1(Cy5), 

IF3(Cy3), and a 64 nucleotide 5’-biotin-mRNA containing either an AUG or AUU start codon 

(mRNAs #1 or #2 in Table 2.1). Thus, for example, an initiation complex referred to as   30SIC-IF2
fMet 

is composed of a 30S subunit, IF1(Cy5), IF3(Cy3), an AUG-containing mRNA, and fMet-tRNAfMet, 

but is lacking IF2. Details on the design, preparation, labeling, and biochemical activity testing of 

IF1(Cy5) and IF3(Cy3) are found in sections 3.3.13.3.3 and 2.3.12.3.5, respectively. Low-salt 

Tris-polymix buffer was used for all smFRET and ensemble biochemical experiments, with the 

concentration of Mg(OAc)2 determined by the experiment. 30S IC components (ribosomes, aa-

tRNAs, initiation factors, mRNAs) were all from E. coli and prepared as described in sections 2.2, 

5.1 and 5.2, and detailed in Ref. [38]. 

4.2.2 TIRF microscope imaging of surface-immobilized 30S ICs 

 30S ICs were assembled at micromolar concentrations of all initiation components with 

the ribosomes and fluorescently-labeled components at limiting concentrations [1.8 M 5’-bi-

mRNA, 0.6 M 30S ribosomal subunits, 0.9 M fMet-tRNAfMet (when included), 0.9 M IF2 (when 

included), 1 mM GTP, 0.6 M IF1(Cy5), 0.6 M IF3(Cy3)] and incubated for 10 minutes at 37C. 

30S ICs were then aliquoted, flash frozen with liquid nitrogen, and stored at -80C until further 

use. For TIRFM imaging, 30S ICs were diluted to 100-300 pM concentrations in 5 mM Mg(OAc)2 

low-salt Tris-polymix buffer containing 50 nM IF1(Cy5), 0.9 M IF2 (when included), and 0.9 M 

fMet-tRNAfMet (when included), and delivered to a PEG-biotin-streptavidin passivated quartz 

microscope flowcell (see Figure 1.17 and section 2.2.7). The final imaging buffer contained an 

oxygen scavenging system (glucose oxidase and catalase) and triplet state quenchers (1,3,5,7-
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cyclooctatetraene and p-nitrobenzyl alcohol) at the concentrations optimized for IF3(Cy3-Cy5) 

TIRFM work (see section 2.2.7). All data were collected under 7 mW 532 nm laser power 

excitation (measured at the prism), and at 10 frames per second time resolution for 1200 frames 

(two minutes). 

4.2.3 smFRET data analysis 

 Trajectory selection and histogram generation were performed as described in section 

1.4.3. The average non-zero FRET value (0.80  0.09) was determined from fitting each 

normalized population FRET histogram (first ten seconds of data) with two Gaussian curves in 

Origin 8.0 (OriginLab). The error in the average FRET value (0.09) is a measure of the broadness 

of the FRET state, which is a function of the signal-to-noise ratio, the range of inter-fluorophore 

distances sampled by the FRET pair, and the number of trajectories in the data set, and was 

calculated from the average ½(FWHM) of the non-zero peaks. The standard deviation of the 

value of the peak center from nine randomly chosen data sets is 0.02, indicating the 

reproducibility of the FRET value both day-to-day and among different 30S ICs. The rates of 

transitions between zero and non-zero FRET states were calculated as described in Figure 4.4.  

4.3 Results and Discussion 

4.3.1 Design of an IF1-IF3 smFRET signal 

 The lack of structural information on fully assembled 30S ICs hindered the rational design 

of an IF1-IF3 smFRET signal. Instead, the signal was developed serendipitously with reagents 

originally designed and prepared for other research projects. Cy3-labeled IF3 was prepared en 

route to development of dual-labeled IF3 for investigations of IF3’s intramolecular dynamics (see 

Chapter 2). Both IF3(C65S-S38C)-Cy3 and IF3(C65S-K97C)-Cy3 were available and 

biochemically active (see section 2.3.5). IF1(Cy5), on the other hand, was originally developed as 

a FRET partner for both IF2 and fMet-tRNAfMet. Early efforts in my Ph.D. work were put toward 

the development of labeled IF1 for investigations into its role in positioning of IF2 and initiator 

tRNA on 30S ICs and 70S ICs. This work was motivated by two different 70S IC cryo-EM 
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structures, prepared in the absence and presence of IF1, which revealed distinctly different IF2 

conformations on the 70S IC [36, 37, 39]. Although this original hypothesis remains untested, 

another member of the Gonzalez research group, Dr. Jiangning Wang, used these triangulated 

smFRET signals (IF1-IF2, IF2-tRNA, tRNA-IF1) to investigate the conformational dynamics of the 

30S initiation complex [40]. The approach taken to label IF1 followed the same route used to label 

other translation factors [38], that is, the site-specific labeling of a single Cys residue in the 

protein using maleimide-conjugated Cy5. Wild-type E. coli IF1 does not contain any Cys residues, 

so multiple sequence alignment coupled with structural analysis and previous IF1 mutagenesis 

studies identified three positions in the IF1 amino acid sequence where replacement with Cys 

could be made: Q10C, L14C, and T33C [41-43]. IF1-Q10C (see Figure 4.1B) was the first 

positive hit during the site-directed mutagenesis stage, and all subsequent work was performed 

with this mutant. Multiple attempts at generating IF1-L14C and IF1-T33C proved unsuccessful. 

 
Figure 4.1 An IF1(Cy5)-IF3(Cy3) smFRET signal. A. The binding site of IF3 was modeled into the 30S-IF1 
crystal structure [35] based on constraints from directed hydroxyl radical probing [44]. IF3’s NTD is placed 
near the E site and its CTD is close to the P site. The mRNA and P-site tRNA binding sites are indicated. 
Figure adapted from Ref. [44]. The red and green stars indicate Cy5 and Cy3, respectively. B. Ribbon 
diagram of IF1(Q10C) with the Gln-to-Cys mutation indicated in yellow. This residue was labeled with 
maleimide-conjugated Cy5. IF1 was modeled and rendered in PyMOL [45] using the PDB file 1AH9. 

4.3.2 Preparation of fluorescently-labeled and biochemically-active IF1 
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 As described in section 2.2.5 and Ref. [38], the cloning strategy for wild-type IF1 and the 

pProEX-HTb plasmid (Invitrogen) employed necessitated that the N-terminal end of IF1 differ 

slightly from the wild-type E. coli gene sequence. Specifically, the N-terminal end is G-A-M1, 

where the underlined amino acid and sequence position denote the beginning of the wild-type 

gene sequence. The mutant IF1(Q10C) was generated by QuickChange II-E site-directed 

mutagenesis (Stratagene). After positive gene sequence identification (Genewiz, South Plainfield, 

NJ), the pProEX-HTb plasmid containing the IF1(Q10C) gene was transformed into BL21-DE3 

cells for optimal protein overexpression with Isopropyl β-D-1-thiogalactopyranoside (IPTG). His6-

tagged IF1 was overexpressed and purified as previously described [38] using a standard metal-

chelate affinity chromatography approach involving two Ni2+-NTA columns with an intermediate 

TEV cleavage step. Lastly, the protein was purified to homogeneity using gel filtration (Superdex 

75, GE Healthcare). IF1 was labeled with 20-fold excess of Cy5 maleimide following one hour at 

room temperature with ten-fold molar excess of tris(2-carboxyethyl)phosphine (TCEP) to reduce 

any disulfide bonds. Unreacted dye was removed by gel filtration, and unlabeled IF1(Q10C) was 

separated from IF1(Q10C)-Cy5 by hydrophobic interaction chromatography (HIC) (see Figure 

4.2). The collected HIC fractions were 100% Cy5-labeled, enabling efficient 30S IC complex 

formation and TIRFM imaging. Protein concentration was measured by the Bradford method [46]. 

 
Figure 4.2 Purification of IF1(Cy5). A. Gel filtration (Superdex 75, GE Healthcare) was used to separate 
IF1(Cy5) from unreacted dye following the labeling reaction. The peak at 90 mL (see also the figure inset) is 
IF1(Cy5), while the dominant peak at 120 mL is unreacted dye. B. Hydrophobic interaction column 
chromatography (Tosoh Bioscience) was used to further purify IF1(Cy5) from unlabeled IF1. The peak at 35 
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mL is labeled IF1 and the peak at 15 mL is unlabeled IF1, as confirmed by injection of only unlabeled IF1 
(not shown). The protein was monitored at 230 nm due to its low extinction coefficient at 280 nm. The signal 
at 650 nm is indicative of Cy5. This sample was concentrated and tested for biochemical activity with the 
Toeprinting assay. 

 The biochemical activity of IF1(Q10C)-Cy5 (hereafter IF1(Cy5)) was verified by a primer-

extension inhibition assay (“toeprinting”) [47]. Specifically, this assay tests IF1’s ability to enhance 

the formation of correctly initiated 70S ICs in the presence of IF2 and IF3. 30S and 50S subunits 

are mixed with 32P-primer-annealed mRNA, IF1, IF2, IF3, and an equal mixture of fMet-tRNAfMet 

and tRNAPhe in a buffer containing ATP and dNTPs for reverse transcription. After allowing the 

reaction mixture to equilibrate, primer-extension was initiated by addition of avian myeloblastosis 

virus (AMV) reverse transcriptase (New England Biolabs). Reactions performed in the presence 

of IF1 generally show an approximately three-fold increase in the intensity at the +15 (fMet-

tRNAfMet) toeprint compared with reactions performed in the absence of IF1 (Figure 4.3).  

 
Figure 4.3 IF1(Cy5) is biochemically active. The standard primer-extension inhibition (“Toeprinting”) assay 
was performed to test the activity of IF1(Cy5) in enhancing the formation of a correctly initiated 70S IC in the 
presence of IF2 and IF3. IF2(GTP), IF3, fMet-tRNAfMet, tRNAPhe, 30S and 50S ribosomal subunits were 
present in all three reactions. The presence of IF1 enhances the percent of correctly initiated 70S ICs by 3-
fold (lanes 2 vs. 3). IF1(Cy5) has activity comparable to unlabeled IF1 (lanes 3 vs. 2). The extent of 70S IC 
formation was calculated by taking the ratio of signal intensity at the +15 toeprint over the signal intensity of 
the full length cDNA (not shown) [47].  

4.3.3 Preparation of fluorescently-labeled and biochemically-active IF3 NTD and CTD 
variants 
 
 As described in Chapter 2 (section 2.3.1), numerous residues on IF3’s NTD and CTD 

were chosen for conversion to Cys in the development of a double Cys-containing IF3 for dual 

Cy3- and Cy5-labeling (see Table 2.2). Along the way, single-Cys IF3 variants were also purified 
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and Cy3- or Cy5-labeled in order to determine the least perturbing locations for fluorophore 

labeling. IF3(C65S-S39C)-Cy3 and IF3(C65S-K97C)-Cy3 are single NTD and CTD Cys IF3 

variants, respectively, which still show activities comparable to wild-type IF3. Their activities were 

tested with toeprinting as described in sections 2.3.5, 5.4, and Ref. [38] (see Figure 2.6).  

4.3.4 IF3’s CTD is within FRET distance of IF1 on  30SIC-IF2
-tRNA 

 The precise location of IF3’s NTD and CTD on the 30S subunit is not known, but directed 

hydroxyl radical probing placed the CTD on the platform near the P site using a number of 

constraints [44]. The location of the NTD was tentatively placed near the E site on the 30S 

subunit, though this placement was based on just a single NTD residue’s cleavage pattern. This 

placement of the NTD contradicted the findings from a low-resolution cryo-EM structure of IF3-

30S, however [48]. Considering the uncertainties in the placement of IF3’s NTD and CTD on the 

30S subunit, my initial attempts at developing an IF1-IF3 smFRET signal involved testing both 

IF3(C65S-S39C)-Cy3 and IF3(C65S-K97C)-Cy3 in  30SIC-IF2
-tRNA to determine which IF3 variant, if 

either, was close enough to IF1(Cy5) for FRET to occur (see section 1.4). IF3(C65S-K97C)-Cy3 

reproducibly failed to cause FRET with IF1(Cy5) in -tRNA
IF2-30SIC , indicating that IF3’S NTD is 

greater than ~90 Å from IF1’s Q10C residue (assuming R0 for Cy3/5 of 55 Å [49, 50]), at least on 

  30SIC-IF2
-tRNA (recall from Chapter 2 that IF3 adopts a different conformational state on 30S ICs +/- 

IF1, IF2, and initiator tRNA). IF3(C65S-S39C)-Cy3, on the other hand, is within FRET range of 

IF1 on all 30S ICs tested (+/- IF2 and/or initiator tRNA). IF1-Cy5 and IF3(C65S-S39C)-Cy3 

(hereafter IF3-Cy3) produce a FRET signal with an efficiency of 0.80 ± 0.09, which corresponds 

to approximately 44 Å (assuming R0 for Cy3/5 of 55 Å [49, 50]) separation between the two 

fluorophores. These results are in line with the placement of IF3’s CTD near the P site [44, 51, 

52] and the NTD binding site distal to IF1’s binding site, perhaps closer to the E site (see Figure 

4.1), at least on   30SIC-IF2
-tRNA. Future experiments can be done to test whether IF3(C65S-K97C)-

Cy3 is within FRET distance of IF1(Q10C)-Cy5 on fMet30SIC , which is a 30S IC in which IF3 

undergoes a large-scale conformational change relative to  30SIC-IF2
-tRNA (see Chapter 2). These 
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experiments would give credence to the model that IF3’s NTD samples different binding sites on 

the 30S subunit depending on the presence and identity of other initiation components (see 

section 2.4 and Figure 2.8). 

 

4.3.5 The binding kinetics of IF1 on  30SIC-IF2
-tRNA 

 smFRET trajectories recorded of IF3(Cy3)-IF1(Cy5) on  30SIC-IF2
-tRNA with IF1(Cy5) at 15 nM 

concentration in solution were divided into two distinct subpopulations: fluctuating and static 

(Figure 4.6). The majority (94%) are fluctuating trajectories that show frequent transitions 

between zero and non-zero FRET (0.80  0.09 FRET) (see Figure 4.4A). This type of behavior 

can arise in single-molecule FRET experiments due to three main phenomena: (1) 

association/dissociation events of the acceptor (Cy5)-labeled ligand; (2) a reversible large-scale 

conformational change of the ribosomal subunit which brings the Cy3- and Cy5-labeled proteins 

into and out of FRET distance range; (3) it could result from the photophysical phenomenon 

known as “blinking” which occurs when Cy5 transits into a non-fluorescent, triplet (dark) state for 

a period of time, resulting in zero FRET efficiency [53, 54]. In order to determine the source of this 

FRET signal, I performed an IF1(Cy5) concentration series, monitoring the IF1-IF3 FRET signal 

of   30SIC-IF2
-tRNA  over a range of IF1(Cy5) concentrations from 15 nM to 75 nM. This concentration 

range was chosen based on the previously reported Kd of 28 nM for IF1 binding to 30S-IF3 

complexes [28]. Also, I was restricted to an upper limit of 75 nM IF1(Cy5) due to the decrease in 

the signal-to-noise ratio that comes with increased concentrations of Cy5 in solution. One of the 

benefits of TIRFM is its restricted penetration depth, which limits direct excitation to those 

fluorophores in the evanescent field near the quartz-water interface; nevertheless increased 

concentrations of Cy5 in solution do result in increased background fluorescence due to indirect 

excitation of Cy5 by the 532 nm excitation laser. This increase in background signal results in 

additional noise in the Cy3-Cy5 intensity versus time trajectories and FRET versus time 

trajectories (see, for example, Figure 4.5). 
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Figure 4.4 Kinetic analysis of smFRET versus time data. A. Sample raw (blue) and idealized (red) FRET 

trajectory from -tRNA
IF2-30SIC data. The trajectory was idealized as a Hidden Markov model using the vbFRET 

software package [55]. The “bound” state includes all data points greater than or equal to 0.2 FRET, while 
the “free” state includes all points below 0.2 FRET. B. Sample dwell time histogram of zero FRET state data. 
C. Sample dwell time histogram of data from the non-zero FRET state. D. A plot of the ka and kd values 
versus IF1(Cy5) concentration. ka and kd were calculated as: ka = 1/off and kd = 1/on, where off and on were 
measured from fitting each dwell time histogram (see B and C) with a single exponential decay. Error bars 
represent the standard deviation of the mean rate from duplicate data sets. 
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The resulting FRET trajectories display an IF1(Cy5) concentration dependent increase in 

the rate of transitions from the zero to non-zero state. The concentration dependence of the IF1 

association rate, and the concentration independence of its dissociation rate, clearly indicates 

that this FRET signal is a read-out of IF1(Cy5) association and dissociation, not Cy5 blinking or a 

large-scale conformational change of the ribosomal subunit. This concentration dependent 

behavior is consistent with a pseudo first order bimolecular binding process. A plot of the zero to 

non-zero FRET transition rate as a function of IF1(Cy5) concentration (Figure 4.4D) yields a 

second order rate constant for the association of IF1 (ka) with  30SIC-IF2
-tRNA  of 5.45  0.18 M-1s-1, 

determined from the slope of a linear fit of the ka versus IF1 concentration data. The transition 

rate from the non-zero to zero FRET states, on the other hand, is independent of the IF1(Cy5) 

concentration, consistent with a unimolecular dissociation process. This first order rate constant 

for IF1(Cy5) dissociation (kd) from  30SIC-IF2
-tRNA  is 0.82  0.42 s-1. An equilibrium dissociation 

constant, Kd, can be calculated from these rate constants using the relationship Kd = kd/ka, 

resulting in a value of 150  102 nM.  

Though kinetic measurements on IF1’s binding to 30S subunits have not been previously 

measured, thermodynamic measurements have been made of its association with 30S subunits 

in the presence of IF3 and/or IF2. The Kd value measured here is comparable to the previously 

measured Kd (28 nM) for IF1 binding to 30S subunits in the presence of IF3, though lacking 

mRNA. The 5-fold difference in these values may arise from the presence versus absence of 

mRNA in the 30S ICs, but is more likely to result from differences in the buffer conditions used in 

the two experiments. IF1 Kd measurements have previously been shown to be very sensitive to 

ionic strength, especially NH4
+ concentrations [28]. Another source of error in these Kd 

measurements may be from the route used here to calculate ka and kd. It is possible that ka was 

underestimated by excluding single data point transitions between FRET states. Exclusion of 

these data points would result in an increase in the value of the zero FRET dwell times, leading to 

smaller ka values. Alternatively, or additionally, kd may have been overestimated since a 
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correction for the photobleaching rate was not performed here. The overestimation of kd and 

underestimation of ka results in an overestimated Kd. Thus, the ~150 nM Kd measured here 

represents an upper limit of the actual Kd value for IF1’s binding to 30S-IF3-mRNA complexes. In 

the future, this experiment will be repeated to obtain triplicate results, and a rigorous 

photobleaching correction will be employed to correct the kd values. 

 
Figure 4.5 An IF1(Cy5) concentration dependent increase in the population of the non-zero FRET 
state. 30SIC-IF2

-tRNA  complexes imaged with 15 nM, 30 nM, 45 nM, 60 nM, and 75 nM IF1(Cy5) in solution. The 
concentration dependence to the FRET signal indicates that the signal is due to reversible IF1(Cy5) 
dissociation and re-binding behavior. 

 An important feature of the IF3(Cy3)-IF1(Cy5) FRET trajectories not just from   30SIC-IF2
-tRNA , 

but from all the collected data sets, is the existence of two main subpopulations: (1) trajectories 

that display transitions between the zero and non-zero FRET states, and (2) trajectories in which 

only the non-zero FRET state is sampled before signal loss due to Cy3 or Cy5 photobleaching, 

which is an irreversible photochemical destruction of the fluorophores (Figure 4.6). As will be 

discussed in later sections, the percentage of trajectories within each of these two subpopulations 

changes as a function of the initiation components present in the 30S IC (i.e. +/- tRNA, IF2). The 

former subpopulation arises from multiple, reversible IF1(Cy5) binding and dissociation events 

during the observation period (two minutes) prior to Cy3 photobleaching whereas the latter 

subpopulation reports just a single IF1(Cy5) binding event, whose lifetime in the non-zero FRET 

state is mainly limited by photobleaching. The percentage of trajectories within each of these two 
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subpopulations is a function of the stability of IF1 on the particular 30S IC and is indicative of the 

reversibility or irreversibility of IF1’s binding to the particular 30S IC. As is clear from the data 

here, IF1 binds reversibly to 30S subunits carrying IF3. 

 

Figure 4.6 Subpopulation analysis of IF1(Cy5)-IF3(Cy3) smFRET trajectories. SPFluct refers to the 
trajectories are those which exhibit at least one IF1(Cy5) dissociation and re-binding event. SPStatic refers to 
the trajectories that remain in a non-zero FRET state until irreversible dissociation or photobleaching. Errors 
bars, when present, are from duplicate data sets and represent the standard deviation of the mean 
population percentage. All experiments were performed at 50 nM IF1(Cy5). All experiments need to be 
triplicated. See Table 4.1 for the exact values of each subpopulation and its error term. 
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Table 4.1: IF1(Cy5) association and dissociation rate constants, equilibrium dissociation constants, and 
FRET trajectory subpopulation analysis 
 ka (M-1 s-1) kd (s

-1) Kd (nM) SPFluctuating 
(%) 

SPStatic 
(%) 

  30SIC-IF2
-tRNA  a 5.5  0.2 c 0.8  0.4 c 150  102 c 94.2  1.4 5.8  1.4 

  30SIC-IF2
-tRNA,AUU  b 5.5  2.9 d 0.7  0.2 d 140.1  34.7 d 96.3  1.3 3.7  1.3 

30S IC-tRNA  (N.D.) (N.D.) (N.D.) 12  1.7 d 88  1.7 d 
30S IC-tRNA,AUU  (N.D.) (N.D.) (N.D.) 12.7  1 d 87.3  1 d 
30S ICfMet  (N.D.) (N.D.) (N.D.) 23.1  3.8 d 76.9  3.8 d 
30S ICfMet,AUU  (N.D.) (N.D.) (N.D.) 21.2  3.5 d 78.8  3.5 d 

  30SIC-IF2
fMet  b 6.0 0.4 67.7 96.4 3.6 

  30SIC-IF2
fMet,AUU  b 7.9  4.6 d 1.1  0.9 d 129.6  37.3 d 92.5 7.5 

a ka calculated from the slope, m, of a linear fit (y=mx+b) of (1/(zero)) vs. [IF1-Cy5]; kd = 1/(nonzero); Kd = 
kd/ka 
b ka = 1/((zero)*([IF1-Cy5])); [IF1-Cy5] = 50 nM; kd = 1/nonzero; Kd = kd/ka 
c Error calculated as the average of the slope of linear fits from two separate concentration data series 
d Error calculated as the standard deviation of the average of two data sets 
N.D. = not determined due to the small number of fluctuating trajectories. See section 4.3.6 for a 
description of how these values can be measured or estimated in the future. 

 
4.3.6 IF2 increases the stability of IF1 in  30SIC-tRNA 

 Inclusion of IF2(GTP) within a 30S IC containing IF1(Cy5) and IF3(Cy3) (i.e. 30SIC-tRNA) 

results in distinctly different FRET behavior compared with those 30S ICs imaged in the absence 

of IF2 (see Figure 4.7), however the mean FRET efficiency value of the IF1-IF3 signal remains at 

0.80 ± 0.09. In the presence of IF2, IF1(Cy5) now rarely exhibits multiple reversible binding and 

dissociation events, but instead remains stably bound to the  30SIC-tRNA  for the duration of Cy5’s 

lifetime before photobleaching in 88% of all trajectories (see Figure 4.7). In the future, an IF2 

concentration dependent experiment will be performed to test if the percentage of traces in the 

fluctuating subpopulation decreases under increasing IF2 concentrations. This experiment will 

test if the IF2 concentration employed here, 0.9 M, was saturating. If these experiments were 

performed under sub-saturating conditions, it is possible that the 12% of the total trajectories that 

showed at least one dissociation and re-binding event (i.e. “fluctuating”) may have arisen from 

30S ICs lacking IF2. These IF2 concentration dependent experiments will confirm either the 

reversibility or the irreversibility of IF1’s binding to 30S subunits in the presence of IF2, which is a 

mechanistically important aspect to both the overall 30S IC assembly pathway, as well as the role 

of IF1 in regulating the assembly pathway. 
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The large percentage (88%) of static trajectories for IF1 binding to 30SIC-tRNA complexes 

indicates IF2’s stabilizing effect on IF1. Although the binding kinetics for IF1’s interaction with a 

30S-IF2-IF3 complex have not been previously investigated, the Kd for IF1’s interaction with a 

30S-IF3-IF2 complex has been measured using fluorescence anisotropy and shown to be 4 nM 

[28]. This value is three orders of magnitude lower than IF1’s Kd for binding with just an empty 

30S subunit, which is 2 M [28], clearly demonstrating IF2’s stabilizing effect on IF1.  

The small percentage of reversible IF1 binding events within these 30SIC-tRNA complexes 

requires alternate approaches to estimate IF1’s binding kinetics. Careful measurement of IF1’s ka 

will require stopped-flow delivery of IF1 to 30SIC-tRNA in order to accurately measure its initial 

binding to the 30S subunit. A lower limit for the kd can be estimated from the IF1(Cy5) 

photobleaching rate. For these experiments, a laser shuttering strategy can be employed to 

extend the fluorophores’ lifetime and more accurately measure IF1’s residence time on these 

30SIC-tRNA complexes. These experiments, in combination with an IF2 concentration series, will 

enable measurements of IF1’s binding kinetics and determine the reversibility or irreversibility of 

this binding pathway. 
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Figure 4.7 IF2 stabilizes IF1 on the 30S IC. Top row: cartoon representation of the contents of the 30S IC 
(A.   30SIC-IF2

-tRNA  B. 30SIC-tRNA). The red star indicates Cy5 and the green star indicates Cy3. Second row: 
representative fluorescence versus time trajectories. Third row: the corresponding FRET trajectories 
calculated as FRET = ICy5/(ICy3+ICy5). Bottom row: Time-evolution of population FRET histograms. The 
normalized population histogram to the right of each 2D FRET histogram is plotted with the first 100 frames 
(10 seconds) of data to minimize contamination due to photobleaching. The number of trajectories in each 
plot is indicated in the upper right hand corner (“N”). IF1(Cy5) was included in solution at 50 nM 
concentration. 
 
 IF2’s stabilizing effect on IF1 is reasonable in light of known functions of IF1 and IF2 

during translation initiation. The interplay between IF1 and IF2 on 30S ICs, and even 70S ICs, is 

well established and it has been suggested that IF1’s main function in translation is to position or 

stabilize IF2 so that it can effectively perform its roles in initiator tRNA selection and 50S subunit 
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joining [56]. IF1’s dissociation may be required for IF2 release though this remains speculative 

and the timing of IF1’s dissociation during initiation is unknown [33]. IF1 is a highly conserved 

protein across all domains with an exception being that no IF1 homolog is present in mammalian 

mitochondria. Interestingly, recent findings reveal that the sequence of mitochondrial IF2 (IF2mt) 

contains a 37 amino acid insertion that biochemical and molecular modeling data show 

substitutes for the function of IF1 [57]. A cryo-EM structure of IF2mt in complex with initiator tRNA 

on a bacterial 30S subunit reveals that the insertion region of IF2mt binds in the same location that 

is normally occupied by IF1, confirming the orthology between IF1 and this short domain on IF2mt 

[58]. Cryo-EM structures of a 70S IC and a pseudo 30S IC reveal the close proximity of IF1 and 

IF2 on initiation complexes, though discrepancies exist regarding whether or not IF1 and IF2 are 

in direct contact on the 30S subunit [1, 36].  

4.3.7 IF1 is insensitive to the presence of fMet-tRNAfMet on  30SIC-IF2
fMet 

 When fMet-tRNAfMet is included at 0.9 M concentration during  30SIC-IF2
fMet  preparation, 

dilution, and imaging, the IF1(Cy5)-IF3(Cy3) FRET signal is largely unaffected by its inclusion 

compared with   30SIC-IF2
-tRNA  (see Figure 4.7 and Table 1). The FRET efficiency remains centered at 

~0.80, and IF1(Cy5) exhibits reversible association and dissociation to the 30S ICs in 96% of the 

trajectories. The calculated equilibrium dissociation constant, Kd = 68 nM, is within error of the 

value for the same 30S IC prepared with an AUG start codon (Table 1), though this result needs 

to be reproduced. The insensitivity of the FRET signal to the presence or absence of tRNA may 

be due to the tRNA’s short residence time on the 30S IC. It has been shown that IF1 and IF3, in 

the absence of IF2, play a cooperative role in indiscriminately destabilizing P-site tRNAs by 

increasing their kd’s; an effect that is counteracted on fully assembled 30S ICs by IF2’s selective 

stabilization of fMet-tRNAfMet [21]. The previously measured Kd for fMet-tRNAfMet on comparable 

complexes (  30SIC-IF2
fMet ) is 460 nM, while in the presence of IF2 it is decreased to 2.7 nM [32]. 
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Figure 4.8 IF1’s 30S subunit binding kinetics are unaffected by the presence of initiator tRNA. Top 
row: cartoon representation of the contents of the 30S IC (A.  30SIC-IF2

-tRNA  B. 30SICfMet). The red star indicates 
Cy5 and the green star indicates Cy3. Second row: representative fluorescence versus time trajectories. 
Third row: the corresponding FRET trajectories calculated as FRET = ICy5/(ICy3+ICy5). Bottom row: Time-
evolution of population FRET histograms. The normalized population histogram to the right of each 2D 
FRET histogram is plotted with the first 100 frames (10 seconds) of data to minimize contamination due to 
photobleaching. The number of trajectories in each plot is indicated in the upper right hand corner (“N”). 
IF1(Cy5) was included in solution at 50 nM concentration. 
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4.3.8 IF1 is stabilized on the completely assembled initiation complex (  30SICfMet) 

When both fMet-tRNAfMet and IF2 are included in the 30S IC with IF1(Cy5) and IF3(Cy3), 

IF1(Cy5) is stabilized on the 30S IC, exhibiting reversible binding and dissociation behavior in 

only 23  4% of the total trajectories (see Figure 4.9, and Table 1). Comparison of the time-

evolution of population FRET histograms and the percentage of trajectories in each 

subpopulation between 30SICfMet data and those from  30SIC-IF2
-tRNA ,  30SIC-tRNA  and   30SIC-IF2

fMet  (see 

Figure 4.9 and Table 4.1) suggests that IF2 has the greatest effect on the stability of IF1 in 

  30SICfMet , with the presence or absence of P-site tRNA largely undetected by this IF1-IF3 FRET 

signal at the concentrations of IF2 and tRNA employed. 

Although IF1’s kinetic behavior on 30SIC-tRNA and 30SICfMet appears similar, the 

percentage of trajectories that show reversible dissociation and re-binding events in 30SICfMet is 

reproducibly larger than the percentage of fluctuating trajectories in 30SIC-tRNA (23.1  3.8% vs. 

12  1.7%). This difference may be mechanistically meaningful, though future experiments are 

needed to confirm this. For one, both IF2 and fMet-tRNAfMet concentration dependent 

experiments are needed to test if these data were collected under saturating conditions (here: 0.9 

M each of tRNA and IF2). As described in section 4.3.6, the apparent reversibility of IF1’s 

binding to 30SICfMet may arise due to sub-saturating conditions of IF2 and fMet-tRNAfMet. These 

concentration series experiments also have the potential to reveal the preferred order of binding 

for IF1, IF2, and fMet-tRNAfMet, if indeed these components follow an ordered assembly pathway. 

It was shown in sections 4.3.6 and 4.3.7 that IF1 is relatively insensitive to the presence of fMet-

tRNAfMet, but is significantly stabilized by IF2. If the binding of IF2 and fMet-tRNAfMet is ordered, 

then this may be observed by changes in IF1’s 30S subunit binding kinetics during a titration of 

fMet-tRNAfMet or IF2. Future experiments can also be done to test the effect of the identity of the 

tRNA on the stability of IF1 on the 30S IC. Phe-tRNAPhe, for example, has been shown to 

destabilize IF2 [40], which would likely lead to reversible IF1 binding to the 30S IC.  
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Figure 4.9 The effects of IF2 and fMet-tRNAfMet on the 30S IC binding stability of IF1. Top row: cartoon 
representation of the contents of each 30S IC (A =  30SIC-IF2

-tRNA ; B =  30SIC-IF2
fMet ; C = 30S IC-tRNA; D = 30S 

ICfMet). The red star indicates Cy5 and the green star indicates Cy3. Second row: Representative 
fluorescence versus time trajectories. Third row: The corresponding FRET trajectories calculated as FRET = 
ICy5/(ICy5+ICy3). Bottom row: Time-evolution of population FRET histograms. The normalized population 
histogram to the right of each 2D FRET histogram is plotted with the first 100 frames (10 seconds) of data to 
minimize contamination due to photobleaching. The number of trajectories in each plot is indicated in the 
upper right hand corner (“N”). The signal that grows in at zero FRET in the 2D histogram (in panels C and D) 
is due to fluorophore photobleaching. The signal at zero FRET in panels A and B indicates either the 
absence of IF1(Cy5) from the 30S IC (an “off state” dwell) or photobleaching. For all three 30S ICs, IF1(Cy5) 
was included in solution at 50 nM concentration.  

4.3.9 The IF1(Cy5)-IF3(Cy3) smFRET signal employed here is insensitive to the identity of 
the P-site start codon 

 
 In line with the insensitivity of the IF1-IF3 FRET signal to the presence of the tRNA, this 

signal is also unable to distinguish between 30S ICs assembled on mRNAs carrying a canonical 

AUG versus the non-canonical AUU start codon (see Figure 4.10), though a subset of these 

experiments need to be reproduced and all need to be triplicated. It is expected that sensitivity to 

the start codon would arise only when tRNA is present in the 30S IC, and that it is the stable 

codon-anticodon interaction, or lack thereof, that may be detectable by the initiation factors or 
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30S subunit itself. Any difference in the fMet-tRNAfMet-AUG vs. -AUU interaction, however, is 

undetected by this IF1-IF3 smFRET signal in either  30SICfMet,AUU or  30SIC-IF2
fMet,AUU when compared 

with their AUG counterparts (Figure 4.10), which correlates well with the signal’s insensitivity to 

the presence of the tRNA. Other 30S IC smFRET signals, including the IF3(Cy3-Cy5) signal 

discussed in Chapter 2 and an IF2(Cy5)-tRNA(Cy3) signal developed by Dr. Jiangning Wang 

[40], are highly sensitive to differences in the P-site codon, however, reinforcing the importance of 

cautious data interpretation and the limitations of a single distance constraint from FRET. This 

limitation can easily be overcome by designing multiple smFRET signals to probe different 

aspects of the system of interest. 

 
Figure 4.10 IF1(Cy5)-IF3(Cy3) smFRET data collected on 30S ICs containing mRNA with the non-
canonical AUU start codon is comparable to data collected on 30S ICs containing mRNA with the 
canonical AUG start codon. FRET versus time trajectories. For all six 30S ICs, IF1(Cy5) was included at 
50 nM concentration. (A-C) smFRET data collected on 30S ICs formed with mRNA containing the non-
canonical AUU start codon. (D-E) smFRET data collected on 30S ICs formed with mRNA containing the 
non-canonical AUG start codon. The cartoons above each FRET trajectory indicate the contents of the 30S 
IC. 
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4.4 Conclusions and Future Directions 

 The development of an smFRET signal between IF1 and IF3, and preliminary 

investigations into IF1’s 30S subunit binding kinetics, mark the first steps toward a detailed kinetic 

scheme for the 30S IC assembly pathway. The data presented here reveal that IF1 binds 

reversibly to the 30S subunit in the presence of just IF3, as well as in the presence of IF3 and 

initiator tRNA. IF1 is stabilized on the 30S subunit by IF2, and future experiments will be 

performed to determine the reversibility of IF1’s binding to these 30S ICs. The results here also 

show the insensitivity of IF1’s binding kinetics to the presence of fMet-tRNAfMet and the start 

codon on 30S ICs. 

Also notable from this work is the lack of a FRET signal between IF1(Cy5) and IF3-NTD-

(Cy3), and the presence of a high FRET efficiency (0.80  0.09) signal between IF1(Cy5) and 

IF3-CTD-(Cy3). This result lends support to the placement of IF3’s CTD at the P site, and IF3’s 

NTD distal from IF1’s binding site at the A site, perhaps closer to the E site as proposed by Dallas 

and Noller [44] (see Chapter 2). Notably, this result comes only from a test for IF1(Cy5) FRET to 

IF3’s CTD versus NTD on  30SIC-IF2
-tRNA , and it remains to be seen if an IF1-IF3(NTD) FRET signal is 

detectable on other 30S ICs if IF3 undergoes an interdomain reconfiguration (see Figure 2.8). 

Future experiments will be designed to probe the timing of IF1’s dissociation from the 

ribosome during the initiation pathway, especially with respect to the timing of 50S subunit joining 

and 70S IC assembly. These experiments could resolve a decades-old debate about the timing of 

IF1’s release with respect to 50S subunit joining and IF2 release [33, 43, 59]. Technically, these 

experiments are somewhat challenging since they will involve a third fluorescent dye on the 50S 

subunit in order to observe the timing of 50S subunit joining in a real-time subunit delivery 

experiment (see section 3.2.3). Labeling of the 50S subunit is straightforward, however, as shown 

by previous and ongoing work in our research group and others’ [60-63]. It may also be possible 

to develop an smFRET signal between IF1 and the 50S subunit that would eliminate the need for 

a three-fluorophore experiment. Other interesting experiments could be performed to probe the 
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proposed anti-subunit association role of IF1 [30, 34, 35], especially through the use of 16S rRNA 

mutants displaying unusual subunit joining kinetics, such as the helix 44 mutants A1413C, 

A1410G, or A1408G [31]. 
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Chapter 5 
 

Materials and Methods 
 

 
 Data were collected and analyzed for this dissertation following numerous established 

methods, as well as methods that were developed and/or optimized along the way. This chapter 

contains detailed protocols for all techniques performed in the collection and analysis of this 

dissertation’s results. Sections 5.1 and 5.2 contain detailed protocols for the preparation of most 

of the components within the in vitro translation system employed for the work in this dissertation. 

The methods used in the preparation and purification of ribosomes and ribosomal subunits can 

be found in Dr. Jiangning Wang’s dissertation [1]. Details on all biochemical activity assays 

performed are found in sections 5.3 and 5.4. smFRET data collection and analysis procedures 

are included in sections 5.5 and 5.6. 

 
5.1 Preparation of tRNA reagents 
 
 The following sections describe the aminoacylation and formylation of tRNAfMet, and the 

aminoacylation of tRNAPhe. The other tRNA reagents used in the work described in this 

dissertation, Lys-tRNALys and fMet-(Cy3)tRNAfMet, were generously prepared by Drs. Michael 

Englander and Jiangning Wang, respectively. Please refer to their dissertations [1, 2] for details 

on the preparation of these reagents.   

 
5.1.1 Aminoacylation and formylation of tRNAfMet 

 
5.1.1.1 Preparation of 10N-formyltetrahydrofolate from folinic acid 
 

The formyl donor substrate for formylmethionyl-tRNA formyltransferase, 10N-

formyltetrahydrofolate, is chemically prepared starting from the calcium salt of folinic acid (Acros 

Organics) as previously described [3]. The following procedure was originally obtained from Prof. 

Ruben Gonzalez’s laboratory notebook titled “tRNA Labeling” from his postdoctoral research work 

at Stanford University. The reaction chemistry is depicted in Figure 5.1. 
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1. Obtain folinic acid (calcium salt, 100 mg) from Acros Organics. CAS #: 1492-18-8. Calcium salt 
pentahydrate 95%-105% 
 
2. Dissolve 25 mg of folinic acid in 2 mL of 50 mM BME (prepare BME stock as follows: 6.99 L 
BME + 1993.01 L nanopure water). Run reaction in a 15 mL Falcon tube. 
 
3. Treat the solution with 220 L of 1 M HCl (prepare 1 M HCl stock by diluting 12.1 M stock). 
Precipitated material will need to be resuspended by warming in 37C water bath. 
 
4. After 3 hours at room temperature, cyclization to 5:10-methenyltetrahydrofolate (MTHF) should 
be complete. Cyclization is monitored via absorbance at 355 nm. 355 nm = 25 x 103 M-1cm-1 for 
5:10-MTHF (see Figure 5.2). 
 
5. Adjust concentration of 5:10-MTHF to 15 mM using 0.1 M HCl as a diluent and the above 
extinction coefficient. 
 
6. Prepare 200 L aliquots and store at -20C. 
 
7. Before use, warm aliquot to room temperature, neutralize with 20 mol KOH and 10 mol Tris-
HCl, pHrt=7.8 (10 L 5:10 MTHF + 1 L 1 M KOH + 0.5 L Tris-HCl) and incubate at room 
temperature for 15 minutes to generate 10N-formyltetrahydrofolate. 
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Reaction chemistry: 
 

 
 

Figure 5.1 Synthetic pathway for the preparation of 10-formyltetrahydrofolic acid from 
folinic acid. 
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Figure 5.2 Preparation of 5:10-methenyltetrahydrofolic acid. UV-Vis spectra of the conversion of folinic 
acid to 5:10-methenyltetrahydrofolic acid in the presence of BME and HCl. Peak at 355 nm increases over 
time. Reaction was complete at 3 hours. 
 
5.1.1.2 Aminoacylation of tRNAfMet 

 
Methionyl tRNA synthetase and formylmethionyl-tRNA formyltransferase, both from E. 

coli, were prepared as previously described [4].  

Procedure 
1. Prepare 5 mL of 5x Aminoacylation/Formylation (AF) buffer using the following recipe: 

625 µL 1 M Tris-HCl, pH37C=7.5 
35.7 µL 4.9 M MgCl2 
1875 µL 2 M KCl 
5 µL 0.5 M EDTA 
25 µL 1 M DTT 
1250 µL 50 mM ATP 
1184 µL nanopure water 
 

2. Prepare 10N-formyltetrahydrofolate as described in section 5.1.1.1. 
 
3. Prepare a mixture with the following components, adding the enzymes last and adjusting 

the volume with nanopure water: 
20 µM tRNAfMet 
80 µM methionine 
300 µM 10N-formyltetrahydrofolate 
1x AF buffer 
0.02 µM methionyl tRNA synthetase 
0.20 µM formylmethionyl-tRNA formyltransferase 
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4. Incubate the tRNA reaction mixture for 10 minutes at 37ºC. Quench the reaction by 
adding 0.1x total reaction volume of 3 M NaOAc, pH 5.2. 
*Note: Steps 5 and 6 are performed in a cold (4ºC) room. 
 

5. Extract the mixture twice with cold (4ºC) phenol (1x reaction volume), and twice with 1x 
reaction volume of cold chloroform.  

 
6. Add 3x reaction volume of -20ºC 100% ethanol. Mix well by pipetting. 

 
7. Incubate the reaction mixture at -80ºC for at least one hour. 

 
8. Centrifuge the mixture for 20 minutes at 18,000 x g at 4ºC. 

 
9. Carefully remove the supernatant, taking care not to disturb the white pellet. 

 
10. Resuspend the pellet in 25-50 µL of 10 mM KOAc (pH 5) and apply to a Micro Bio-Spin 6 

gel filtration spin column (Biorad) that has been equilibrated with 10 mM KOAc (pH 5). 
 

11. Immediately prepare aliquots (3-5 µL), flash freeze with liquid nitrogen, and store at -
80ºC. 

 
12. Use a 1:100 dilution of a tRNA aliquot to calculate the final tRNA concentration by 

measuring absorbance at 260 nm with a UV-Vis spectrometer. The extinction coefficient 
for tRNAfMet is 726,700 M-1cm-1 at 260 nm. 

 
5.1.1.3 Assessing the aminoacylation and formylation yields for fMet-tRNAfMet 
 

The aminoacylation and formylation yields are assessed by hydrophobic interaction 

chromatography (HIC). The HIC buffers are: 

 
tRNA HIC Buffer A:  1.7 M NH4SO4 
   10 mM NH4OAc, pH 6.3* 
 
tRNA HIC Buffer B: 10% Methanol 
   10 mM NH4OAc, pH 6.3* 
 
*Note that this is the pH of the 1 M NH4OAc stock solution, not the final HIC Buffer pH. The final 
solution does not need to be pH adjusted. 
 
The tRNA HIC buffers should be filtered and chilled prior to use. Dilute 0.1 nmoles of fMet-

tRNAfMet (one or two aliquots, depending on the final concentration) with 60-70 µL of tRNA HIC 

Buffer A and inject the sample onto the HIC column that has been equilibrated with tRNA HIC 

Buffer A. Elute the tRNA over a linear gradient of 0-100% tRNA HIC Buffer B over 25 column 

volumes. The three tRNA species (tRNAfMet, Met-tRNAfMet, and fMet-tRNAfMet) elute from the HIC 
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column sequentially due to their increasing hydrophobicities (see Figure 5.3). Typically, fMet-

tRNAfMet is obtained with a >90% yield, as assessed by chromatogram peak areas. 
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Figure 5.3 Assessment of fMet-tRNAfMet aminoacylation and formylation yield. HIC chromatogram of 
0.1 nmol fMet-tRNAfMet eluted with a 0-100% Buffer B over 25 column volumes gradient. The major peak at 
~22 mL is fMet-tRNAfMet and the minor peaks at ~12 and 15 mL are tRNAfMet and Met-tRNAfMet, respectively. 
 
5.1.2 Aminoacylation of tRNAPhe 

 
Phenylalanyl tRNA synthetase from E. coli was prepared as previously described [4].  
 
Procedure 

1. Prepare a mixture with the following components, adding the synthetase last and 
adjusting the volume with nanopure water: 

15 µM tRNAPhe 
55 µM phenylalanine 
200 mM Tris-HCl, pH37C=7.5 
15 mM MgCl2 
25 mM KCl 
2 mM BME 
5 mM ATP 
10 mM phosphoenolpyruvate (PEP) 
30 U mL-1 pyruvate kinase 
0.75 µM phenylalanyl tRNA synthetase 

 
2. Incubate the tRNA reaction mixture for 10 minutes at 37ºC. Quench the reaction by 

adding 0.1x total reaction volume of 3 M NaOAc, pH 5.2. 
*Note: Steps 3 and 4 are performed in a cold (4ºC) room. 
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3. Extract the mixture twice with cold (4ºC) phenol (1x reaction volume), and twice with 1x 

reaction volume of cold chloroform.  
 
4. Add 3x reaction volume of -20ºC 100% ethanol. Mix well by pipetting. 

 
5. Incubate the reaction mixture at -80ºC for at least one hour. 

 
6. Centrifuge the mixture for 20 minutes at 18,000 x g at 4ºC. 

 
7. Carefully remove the supernatant, taking care not to disturb the white pellet. 

 
8. Resuspend the pellet in 25-50 µL of 10 mM KOAc (pH 5) and apply to a Micro Bio-Spin 6 

gel filtration spin column that was equilibrated with 10 mM KOAc (pH 5). 
 

9. Immediately prepare aliquots (3-5 µL), flash freeze with liquid nitrogen, and store at -
80ºC. 

 
10. Use a 1:100 dilution of the tRNA aliquot to calculate the final tRNA concentration by 

measuring absorbance at 260 nm with a UV-Vis spectrometer. The extinction coefficient 
for tRNAPhe is 760,000 M-1cm-1 at 260 nm. 

 
11. Assess the extent of aminoacylation by HIC chromatography as described in section 

5.1.1.3. See Figure 5.4 for a sample chromatogram. 
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Figure 5.4 Assessment of Phe-tRNAPhe aminoacylation. HIC chromatogram of 0.1 nmol Phe-tRNAPhe 
eluted with a 0-100% Buffer B over 25 column volumes gradient. The major peak at ~31 mL is Phe-tRNAPhe. 
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5.2 Preparation and purification of translation initiation factors 
 
Translation initiation factors IF1, IF2, and IF3 were all overexpressed, purified, and biochemically 

tested. IF2 was prepared by either Dr. Jiangning Wang or Mr. Daniel MacDougall. Please refer 

to Dr. Wang’s dissertation [1] for detailed purification and biochemical testing protocols. The 

purification and biochemical testing of IF1 and IF3 are described in the following sections. 

 
5.2.1  Preparation and purification of IF1 
 
5.2.1.1  IF1 amino acid sequence 
 
1     11   21  31    41    51  61      
MAKEDNIEMQGTVLETLPNTMFRVELENGHVVTAHISGKMRKNYIRILTGDKVTVELTPYDLSKGRIVFRS 
71 
R 
 
5.2.1.2   IF1 purification 
 
Wild-type E. coli IF1 was originally cloned into a pProEX-HTb plasmid, transformed into 

DH5/pRS3559 cells, and is identified in the laboratory strain collection as RG21. I transformed 

the plasmid into BL21-DE3 cells for optimal overexpression. Information on all cell strains can be 

found in Appendix D. A typical IF1 protein yield is 0.5 mg L-1. 

 
Overnight culture 
 
Innoculate two 5 mL starter cultures of Terrific Broth (TB) (Difco) media with single colonies from 

an agar plate freshly streaked with the glycerol stock (MME Strain #2) (see Appendix D). -

Carboxybenzylpenicillin (carbenicillin) should be present in the starter cultures at 100 g/mL. 

Grow with shaking at 250 rpm and 37C. Minimize growth period to 12-14 hours.  

 
Cell growth and protein overexpression 

Innoculate two 1 L cultures of TB media with the overnight cultures and 100 g/mL carbenicillin. 

Grow with shaking at 250 rpm and 37C. Check the optical density (OD) at 600 nm every 30 

minutes using a 1 mL sample from each culture and disposable 1.5 mL, 1 cm pathlength 

cuvettes. Once the OD600 reaches 0.6-0.8, save a 1 mL fraction of each culture for analysis and 
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induce protein overexpression by the addition of isopropyl β-D-1-thiogalactopyranoside (IPTG) to 

a final concentration of 1 mM to each 1 L culture. Continue to grow the cultures with shaking at 

250 rpm and 37C for 3-4 additional hours. 


Cell harvesting of His6-tagged IF1 
 
Terminate cell growth by centrifuging the cultures in 0.5 L centrifuge bottles in a JA-10 rotor at 

7,500 rpm for 15 minutes at 4C. Store the cell pellet at -20C, and properly dispose of the 

supernatant after treatment with bleach. 

 
Purification 
 
Purification should continue without interruption once the procedure is started; the procedure 

requires four days. This purification procedure is modified from a protocol developed in the 

research group of Joseph Puglisi (Stanford). The buffers should be prepared the day of use and 

chilled to 4C before being pH adjusted to 7.5. All purification steps should be done at 4C. 

 
Required buffers: 
 
Lysis and Equilibration Buffer 
10 mM Tris-HCl, pH4C=7.5   
60 mM NH4Cl 
10 mM MgCl2 
5 mM BME 
0.1 mM phenylmethyl sulfonyl fluoride (PMSF) 
10 mM imidazole 
 
Wash Buffer 
20 mM Tris-HCl, pH4C=7.5   
10 mM MgCl2 
5 mM BME 
0.1 mM PMSF 
0.5 mM Ethylenediaminetetraacetic acid (EDTA) 
30 mM imidazole 
 
Elution Buffer 
20 mM Tris-HCl, pH4C=7.5   
10 mM MgCl2 
5 mM BME 
0.1 mM PMSF 
0.5 mM Ethylenediaminetetraacetic acid (EDTA) 
250 mM imidazole 
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1X TEV Protease Buffer 
20 mM Tris-HCl, pH4C=7.5   
200 mM NaCl 
0.1% Triton-X 
2 mM BME 
 
2X Storage Buffer (for protein storage, add equal volume of 100% glycerol to bring concentration 
to 1x) 
20 mM Tris-OAc, pHr.t.= 7.0 
100 mM KCl 
10 mM BME 
 
Labeling Buffer 
100 mM Tris-OAc, pHr.t. = 7.0 
50 mM KCl 
 
IF1 HIC Buffer A 
1M (NH4)SO4 
100 mM Na2HPO4, pHr.t.=7.0 
 
IF1 HIC Buffer B 
100 mM Na2HPO4, pHr.t.=7.0 
 
Cell resuspension 
 
Thaw the cell pellets on ice and then resuspend with 20-30 mL Lysis and Equilibration Buffer. 

Save 10 L of the resuspended cell pellet for gel analysis. Pass suspension through French 

Press 3-4 times with the pressure gauge set to an internal gauge pressure of 1200 psi. Lysate 

should be released dropwise and collected in a side-arm flask on ice. Clear the lysate by 

centrifugation at 20,000 x g in a JA-17 rotor for 30 minutes at 4C. Save 10 L samples of the 

lysate, supernatant, and pellet for gel analysis. Carefully decant the supernatant into a disposable 

50 mL Falcon tube and discard the cell pellet. If the lysate is not cleared after 30 minutes of 

centrifugation, as is often the case with IF1, add 0.5-1 mL of 5% poly(ethyleneimine) to precipitate 

genomic DNA, and then centrifuge the sample for another 30 minutes at 20,000 x g. 

Preparation of 5% poly(ethyleneimine) 

Take the tare weight of a 50 mL Falcon tube. Add ~5 mL of poly(ethyleneimine) (Sigma; P3143 – 

100 mL; 50% (w/v) in water). Spin down in Sorvall centrifuge for 5 min. Measure the net weight, 



149 

Chapter 5 – Materials and Methods 

 

and using the known density (1.08 g/mL), calculate the volume. Add enough water to make a final 

solution that is 5% v/v. Mix the solution on a shaker or rocker for at least an hour to fully mix.  

Batch binding of His6-tagged IF1 to Ni2+-Nitrilotriacetic acid (NTA) resin 
 
Equilibrate 2-3 mL of Ni2+-NTA resin (Qiagen) in a disposable column with 20-30 mL Lysis and 

Equilibration buffer. Plug the bottom of the column and pour 10 mL of the cleared lysate into the 

column with the equilibrated Ni-NTA column material. Cap the top of the column and gently invert 

to mix the resin with the lysate. Then, transfer the suspension to the Falcon tube containing the 

remaining lysate. Secure the tube to a rotator and mix continuously for 30 minutes to ensure 

binding of all His6-tagged IF1 to the Ni2+-NTA resin beads. 

First Ni2+-NTA column 
 
Pour the Ni2+-NTA resin and lysate mixture back into the disposable column and collect the flow 

through. Wash the resin with 25 mL of Lysis and Equilibration buffer and collect the flow through. 

Then wash the resin with 25 mL of Wash buffer and collect the flow through. Elute the His6-

tagged IF1 protein with 25-30 mL of Elution buffer. Collect the eluate in 2-3 mL fractions. Analyze 

each fraction as well as the cell pellet, lysate supernatant, column binding flow through, 

equilibration flow through, wash flow through, and all the eluate fractions with a Tris-tricine gel or 

10-20% pre cast Tris-tricine gradient gel (NuSep). 

Tris-Tricine gel preparation 

2x Tricine sample buffer 
2 mL 4x Tris-HCl/SDS pH 6.8 
2.4 mL Glycerol (26% final) 
0.8 g SDS (8% final) 
0.31 g DTT (0.2 M final) 
2 mg Coomassie blue (0.02% final) 
Add nanopure water to 10 mL and mix 
Store 1 mL aliquots at -20C 
 
4x Tris-HCl/SDS pH 6.8 (0.5 M Tris-HCl containing 0.4% SDS) 
6.05 g Tris-base 
40 mL nanopure water 
Adjust pH to 6.8, then add 
0.4 g SDS 
Add nanopure water to a final volume of 100 mL 
Store at 4C for up to 1 month 
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Separating gel solution 
49 mL 40% acrylamide/bisacrylamide 
50 mL 4x Tris-HCl/SDS, pH 8.45 
21.1 mL Glycerol 
Nanopure water to 200 mL 
 
Stacking gel solution 
9.72 mL 40% acrylamide/bisacrylamide 
24.8 mL 4x Tris-HCl/SDS, pH 8.45 
Nanopure water to 100 mL 
 
Separating gel 
8 mL separating gel solution 
80 mL APS 
8 L TEMED 
 
Stacking gel 
3 mL stacking gel solution 
30 L APS 
3 L TEMED 
 
*When preparing gel, add water-saturated butanol to the top of the separating gel and leave until 
polymerization is complete. Then discard and rinse with nanopure water. 
 
10x Anode buffer 
121.1 g Tris base (0.2 M final) 
500 mL nanopure water 
Adjust the pH to 8.9 with HCl 
 
1x Cathode buffer 
12.11 g Tris base (0.1 M final) 
17.92 g Tricine (0.1 M final) 
1 g SDS (0.1% final) 
Dilute to 1 L with nanopure water 
No pH adjustment 
 
Isopropanol fixing solution 
250 mL isopropanol 
100 mL glacial acetic acid 
Add nanopure water to 1 L 
 
Rapid coomassie staining solution 
100 mL glacial acetic acid 
0.06 g Coomassie Brilliant Blue G-250 
Add nanopure water to 1 L 
 
Heat each sample for 5 min at 95C. Run gel at constant voltage, 150 V, for 40 minutes. Fix the 

gel for 15 minutes, and then stain with Coomassie stain for 3 hr, and destain with water or a 10% 

acetic acid/10% methanol mixture, using a KimWipe to help soak up extra stain. 
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Cleavage of His6-tag by TEV protease 
 
Pool the protein-containing eluate fractions and carefully transfer this solution into 3,500 

molecular weight cut off (mwco) dialysis tubing that has been rinsed with nanopure water. Secure 

the dialysis tubing with two clips on each end – magnetic sinkers on one end and plastic floaters 

on the other. Place the tubing in 1.5 L of 1x TEV protease buffer. Stir overnight at 4C. Save a 10 

L fraction of the protein as a (-)TEV sample for gel analysis. Add 1 mL of 1 mg/mL TEV protease 

to the dialysis tubing and invert to mix. Allow the cleavage reaction to proceed overnight with 

stirring at 4C. After 24 hours, check for cleavage completion by running a Tris-tricine gel of +/- 

TEV fractions. Cleavage is complete when >90% of the protein is cleaved as determined by gel 

analysis. 

Removal of TEV protease and His6-tags 
 
Transfer IF1 from the dialysis tubing to a 50 mL Falcon tube. Equilibrate 2-3 mL of regenerated 

Ni2+-NTA with 20-30 mL of Wash buffer, and then batch bind the protein to the resin for 30 

minutes as performed in the first First Ni2+-NTA column step. Transfer the resin back to the 

column and collect the flow through. Add 1 column volume (2-3 mL) of Wash buffer to the resin 

after all protein has eluted. Collect this in the same tube as the flow through. All His6-tags should 

remain bound to the resin, and the His6-tag-free IF1 should have been eluted and collected.  

 

Ensure that protein is present either through Tris-tricine gel analysis or by measuring the protein 

concentration using the Bradford method [5]. Spin concentrate and buffer exchange IF1 into 1x 

Storage Buffer using a 5,000 mwco spin concentrator (Amicon). In the meantime, equilibrate the 

Superdex 75 gel filtration column with 300 mL of 2x IF1 Storage buffer. 

Gel filtration purification of IF1 

Gel filtration chromatography is used as a final purification step for IF1 to remove any remaining 

contaminants from the protein sample. Inject the entire 1 mL IF1 sample onto a Superdex 75 

column pre-equilibrated with 2x IF1 Storage buffer. Elute the protein over 1.5 column volumes 
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with 2x IF1 Storage buffer. The protein elutes at ~85 mL (Figure 4.2A). Spin concentrate the 

purified protein to ~0.5 mL and add an equal volume of 100% glycerol for storage at -20C. Verify 

the identity of the final product by Tris-tricine gel analysis and/or MALDI-TOF mass spectrometry 

at the Columbia University Medical Center’s Protein Core Facility (see Appendix A). The 

concentration of the final IF1-in-glycerol stock should be determined by the Bradford method, 

using a carefully prepared calibration curve [5, 6]. 

5.2.1.3 IF1 mutagenesis 
 
In order to site-specifically label IF1 with maleimide-conjugated Cy3 or Cy5, it was necessary to 

introduce single Cys residues into IF1 since wild-type IF1 from E. coli lacks Cys residues. Multiple 

sequence alignment combined with structural analysis and previous IF1 mutagenesis studies 

identified three positions in the IF1 amino acid sequence where replacement with Cys could be 

made: Q10C, L14C, and T33C [7-9]. See Table 5.1 for primers designed for mutagenesis with the 

Stratagene QuikChange II kit. 

Table 5.1 Primers for IF1 mutagenesis 
IF1.Q10C.A 5’-GCCAAAGAAGACAATATTGAAATGTGCGGTACCGTTCTTGAAACGTTGCC-3’ 

IF1.Q10C.B 5’-CGGTTTCTTCTGTTATAACTTTACACGCCATGGCAAGAACTTTGCAACGG-3’ 

IF1.L14C.A 5’-CAATATTGAAATGCAAGGTACCGTTTGTGAAACGTTGCCTAATACCATGTTC-3’ 

IF1.L14C.B 5’-GTTATAACTTTACGTTCCATGGCAAACACTTTGCAACGGATTATGGTACAAG-3’ 

IF1.T33C.A 5’-TAGAAAACGGTCACGTGGTTTGTGCACACATCTCCGG-3’ 

IF1.T33C.B 5’-ATCTTTTGCCAGTGCACCAAACACGTGTGTAGAGGCC-3’ 

 
Preparation of the primers 

1. Determine the concentration of the primers spectrophotometrically. Assume that 1 OD260 = 33 

g/mL ssDNA. 

2. Prepare a diluted primer solution (12 ng/L) from the stocks using sterile nanopure water. 

Preparation of the DNA template 

Template DNA can be purified using a large-scale or a mini-prep kit (Qiagen). Determine the 

concentration of the DNA template spectrophotometrically, assuming that 1 OD260 = 50 g/mL 

dsDNA. Prepare a 20 ng/L solution. 

Preparation of a dNTP/10x buffer solution 
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First make the dNTP stock solution.  

Mix: 

30 L sterile nanopure water 
5 L dATP (100 mM) 
5 L dTTP (100 mM) 
5 L dGTP (100 mM) 
5 L dCTP (100 mM) 
50 L 40 mM dNTPs (10 mM of each dNTP). 

Add 250 L 10x PfuUltra HF reaction buffer to the tube with the dNTP stock. Aliquot the 

dNTP/buffer solution in portions of 30 L into PCR-tubes and store at -20C. Note: the dNTP 

solution should not go through multiple freeze/thaw cycles. For a 50 L PCR reaction you need 1 

L of the dNTP stock and 5 L of the 10x buffer. Consequently, 6 L of the premade dNTP/10x 

buffer mixture is added per reaction. 

Preparation of the PCR reactions 

There were a number of difficulties encountered early on in IF1 mutagenesis that were later 

attributed to 2 structure of the primers or template DNA. These were overcome through the use 

of 3% final (v/v) dimethyl sulfoxide (DMSO) (Sigma; anhydrous >99.9%) added to each reaction 

mixture (Table 5.2). Add the following components in the order listed, using thin-walled PCR 

tubes. Before adding the Pfu Turbo, spin each reaction down briefly to collect the samples at the 

bottom of each tube. 

 
Table 5.2 IF1 mutagenesis reaction mixture for use with Stratagene Quik Change II kit 

Water 20.25 L 
dNTPs 1 L 

Reaction buffer (from kit) 5 L 
Primer A (12 ng/L) 10 L 
Primer B (12 ng/L) 10 L 
Template (20 ng/L) 3.75 L 

DMSO 1.5 L 
Pfu Turbo 1 L 
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Running the PCR reactions 
 
Table 5.3 Thermocycler program for IF1 mutagenesis
1. 95C 2.5 min Denaturation 
2. 95C 30 sec Denaturation 
3. 50C 1 min Annealing 
4. 68C 23 min. Polymerization 

Repeat #2-4 25x 
5. 4C  Cooling 
 
Gel analysis of the PCR amplification and DpnI digestion 
 
1. Take 10 L of each reaction and save for running an agarose gel after the digestion is 

complete. 
2. Add 1 L of the DpnI digestion enzyme (Stratagene or NEB) directly to the PCR reaction 

samples, mix gently and thoroughly, spin down the reaction mixtures and immediately 
transfer the tubes to a 37C incubator. Incubate for 3 hours. 

3. Run a 1% agarose gel with both the 10 L reaction mixtures before digestion and 10 L of 
each reaction mixture after digestion. A strong band should appear for both sets of reaction 
mixtures at the correct size for the plasmid in its linear form. A weaker band for the template 
may appear for the reaction mixtures before digestion but should disappear after digestion. 

 

Heat shock transformation of a plasmid into Stratagene XL1-Blue supercompetent cells: 

Place five Falcon tubes (15 mL) and one microfuge tube of XL1-Blue supercompetent cells on 

ice. Add 1 L of DNA to each growth tube, then wash down with 50 L of cells. Let sit on ice for 

30 min. Transfer 5 mL of LB broth to a 15 mL Falcon tube. Equilibrate to 42C in water bath. Heat 

shock cells for 45 seconds at 42C. Place on ice for 2 min. Add 500 L LB to each growth tube. 

Place tubes in shaking incubator for 1.5 hours at 37C. Plate 100 L onto LB + carbenicillin 

plates. Incubate overnight at 37C. For transformation by electroporation, follow the directions in 

the Stratagene QuikChange manual.  

 

Pick six colonies for overnight cultures (5 mL LB and 5 L carbenicillin), followed by plasmid 

purification by plasmid mini-prep kit (Qiagen). Elute final sample with nanopure water. Check 

plasmid concentration and send ~500 ng of each sample for DNA sequencing to Genewiz 

(Plainfield, NJ). *Note: the first sequencing trial produced no reliable signal (all N’s), but the 

second trial, using Genewiz’s GC rich/hairpin structure protocol, produced a reliable signal. The 
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CAA  TGC mutation (Q10C) appeared in the correct location (see notebook, p. 45). IF1-L14C 

and IF1-T33C were never successfully generated. Transformed the plasmid corresponding to the 

positive hit (sample #1) into BL21(DE3) cells by electroporation and purified protein as described 

in section 5.2.1.2. 

 
5.2.1.4 IF1 labeling with maleimide-conjugated Cy3 or Cy5  
 
Preparation of Cy3- or Cy5-maleimide dye aliquots 

Dissolve 1 mg Cy3 or Cy5 with 100 L anhydrous DMSO. (Note: it is critical that the DMSO 

remain anhydrous. Purge bottle with nitrogen during DMSO removal using a nitrogen-filled 

balloon inserted into the SureSeal with a syringe and needle.) Prepare 10 L aliquots. Rinse 

original tube with 20 L DMSO and distribute this evenly into all the aliquots. Parafilm the top of 

each tube and poke holes into the parafilm with a needle. Place each tube in the speed vacuum 

lyophilizer and cover the lid of the centrivap with Al foil to minimize the dyes’ exposure to light. 

Lyophilize for ~1 hour, or until dry. Store the aliquots under Al foil at 4C in a container with 

desiccant.  

 

This labeling protocol is based on the Thiol-Reactive Probes protocol (Invitrogen) and Amersham 

CyDye Maleimides protocol (GE Healthcare). Buffer exchange protein into Labeling Buffer (100 

mM Tris-OAc, pH 7.0; 50 mM KCl) using a 10,000 MWCO spin concentrator. Add 10-fold molar 

excess of Tris(2-carboxyethyl)phosphine (TCEP) to reduce disulfide bonds and incubate at 37C 

for 1 hour under Al foil. Agitate by pipeting up and down every 10 min. Then add 20-fold molar 

excess of dye and incubate in the dark at 4C overnight, 2 hours at r.t., or 30 min. at 37C. 

Quench reaction by adding 5 mM BME (final conc.). Remove unreacted dye by gel filtration 

chromatography (Superdex 75, GE Healthcare) with 2x IF3 Storage Buffer (Figure 4.2A). Remove 

unlabeled IF1 by hydrophobic interaction chromatography (HIC), using a 0  100% IF1 HIC 

Buffer B gradient over 20 CV (Figure 4.2B). Spin concentrate IF1(fluor) and buffer exchange into 
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2x Storage Buffer. Add equal volume of 100% glycerol for storage at -20C. This HIC purification 

yields 100% labeled IF1, which is ideal for smFRET experiments. 

 
5.2.2 Preparation and purification of IF3 
 
5.2.2.1 E. coli IF3 amino acid sequence 
 
      10         20         30         40         50         60  
GAMAKGGKRVQTA RPNRINGEIR AQEVRLTGLE GEQLGIVSLR EALEKAEEAG VDLVEISPNA  
 
        70         80         90        100        110        120  
EPPVCRIMDY GKFLYEKSKS SKEQKKKQKV IQVKEIKFRP GTDEGDYQVK LRSLIRFLEE  
 
       130        140        150        160        170        180  
GDKAKITLRF RGREMAHQQI GMEVLNRVKD DLQELAVVES FPTKIEGRQM IMVLAPKKKQ 
 
*Note: The Gly and Ala are positions -2 and -1, respectively, and Met is #1, Ala is #1, and Lys is 
#2. These extra residues were introduced due to the cloning strategy employed. The Met is 
position 1 and Lys is position 2 in wild-type E. coli IF3. 
 
5.2.2.2 IF3 purification 
 
Purification of His6-tagged IF3 is very similar to the procedure followed for His6-tagged IF1 

purification with the exception that IF3 is cleaned up by cation exchange chromatography, not gel 

filtration chromatography. See Fei et al. for additional procedural details [4]. A typical protein yield 

for IF3 purification is 1 mg L-1. 

 
IF3 Buffers 
 
*Note: Chill buffers prior to use.  Do not add BME, EDTA, or Imidazole until the day of use. Adjust 
the pH of the final solution to 7.5. 

Lysis and Equilibration Buffer   
10 mM Tris-HCl, pH4 C=7.5      
60 mM NH4Cl       
10 mM MgCl2       
5 mM BME        
0.1 mM PMSF       
10 mM Imidazole       
 
Wash Buffer      
20 mM Tris-HCl, pH4 C=7.5      
10 mM MgCl2       
5 mM BME        
0.1 mM PMSF       
0.5 mM EDTA       
30 mM Imidazole       
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Elution Buffer       
20 mM Tris-HCl, pH4 C=7.5      
10 mM MgCl2       
5 mM BME        
0.1 mM PMSF       
0.5 mM EDTA       
250 mM Imidazole       
 
5X Tev Protease Buffer     
100 mL Tris-HCl, pH4 C=7.5     
1 M NaCl        
0.5% Triton-X       
10 mM BME        
 
IF3 Storage Buffer 
10 mM Tris-Acetate 
50 mM KCl 
10 mM Mg-Acetate 
6 mM BME 
50% glycerol 
 
2X TMNDN 70 (A)        
80 mM Tris-HCl, pH4C = 7.5     
60 mM NaCl        
10 mM MgCl2       
80 mM NH4Cl       
2 mM BME 
 
1X TMNDN 70 (B)       
40 mM Tris-HCl       
750 mM NaCl       
40 mM NH4Cl       
5 mM MgCl2        
2 mM BME 
 
IF3 HIC Buffer A 
1 M (NH4)2SO4 
100 mM Na2HPO4 
pH to 7.0 with HCl 
 
IF3 HIC Buffer B 
100 mM Na2HPO4 
pH to 7.0 with HCl 
 
Labeling Buffer 
100 mM Tris-OAc, pHr.t.=7.0 
50 mM KCl 
 
IF3 Cell Growth and Harvesting 
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 Grow fresh 5 mL overnight cultures of BL21(DE3)-pProEx-IF3 (MME Strain #1) in TB Growth 
Media containing 100 g/mL carbenicillin at 37C and 250 rpm shaking.  *Note: the cell strain 
is very important.  IF3 does not overexpress well in DH5 cells, while overexpression is 
robust in BL21 cells. 
 

 Use the 5 mL culture to inoculate 1 L of TB Growth Media containing 100 g/mL carbenicillin 
at 37C and 250 rpm shaking. 

 
 Induce overexpression by adding 1 mM (final) IPTG when cells reach an OD600 of 0.5-0.8.  

(Prior to inducing, store a 1 mL aliquot of –IPTG cells) 
 
 Grow for 3-4 hours post induction at 37C and 250 rpm shaking. 
 
 Harvest cells with 500 mL bottles by centrifuging at 5500 rpm in a JL-10 rotor for 15 minutes.  

(Prior to spinning, store a 1 ml aliquot of +IPTG cells) 
 
 Resuspend cells in 20 mL Lysis and Equilibration buffer per 1 L of culture.  Either store 

suspension at -20C or proceed to lysis step. 
 
 Run a Tris-Tricine gel to check +/- IPTG cell samples for induction. 
 
IF3 Purification 

**All steps from here on are done at 4C or on ice.** 

 Thaw IF3 cell suspension on ice. 
 

 Lyze cells by French Press.  Four passes through press with dropwise elution.  1200 gauge. 
 
 Centrifuge lysate in polypropylene centrifuge tubes for 30 minutes at 20,000xg in a JL-17 

rotor.  After this, there should be a clear supernatant and substantial pellet in the tube.  
Carefully decant supernatant into a Falcon tube.  Save a 20 l sample of both the pellet and 
supernatant to check for IF3 localization. 

 
Ni-NTA Column Equilibration 

 Pour 1-2 mL Qiagen Ni-NTA resin into a disposable column 

 Equilibrate the media with 50 ml Lysis and Equilibration Buffer 

First Ni column 

 Batch-bind His6-tagged IF3 to the Ni-NTA resin by adding the cleared lysate to the resin and 
resuspending the resin by pipetting or agitated inversions.  Transfer the resin-lysate mixture 
to a Falcon tube and place it on either the rotator or rocker for 30 minutes. 
 

 Transfer mixture back to the disposable column and collect all the flow thru. 
 
 Wash column with 25-50 ml Lysis and Equilibration Buffer.  Collect flow thru. 

 
Wash 
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 Wash column with 25 ml of Wash Buffer – collect flow thru into 2 tubes. 
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Elution 

 Elute the IF3 with ~25-30 ml Elution Buffer. Collect the eluate in 2-3 ml fractions in small 
Falcon tubes. Analyze each fraction as well as the cell pellet, lysate supernatant, column 
binding flow through, equilibration wash flow through, both wash flow throughs, and all the 
eluate fractions by a Tris-Tricine gel. 

 
Dialysis and Concentration 

 Pool relevant fractions and pipet into 3,500 mwco dialysis tubing (Spectrum Laboratories) 
that has been rinsed with ddH2O.  Place in 1.5 L of 1x Tev Protease Buffer containing fresh 
BME.  Stir overnight at 4C. 
 

 Transfer to fresh buffer (1.5 L of 1x Tev Protease Buffer).  Save a 20 l fraction as a (–)Tev 
sample for gel analysis. 

 
 Add 1 mL Tev Protease to the dialysis bag.  Allow the cleavage reaction to proceed overnight 

with stirring at 4C. 
 
 Check for cleavage completion (*Note: Allow 24 hours to pass before terminating TEV 

cleavage) by running a tris-tricine gel of +/- Tev samples.  Cleavage is complete when >90% 
of the protein is cleaved as determined by gel analysis (see Figure 5.6) 

 

Removal of Tev Protease and His6-Tags 

 Transfer IF3 from the dialysis tubing to a 50 mL Falcon tube. 
 

 Equilibrate 1-2 mL Ni-NTA resin with wash buffer 
 
 Pour the IF3 over the resin and collect one tube. Add 1 column volume of wash buffer to the 

resin after all protein has eluted. Collect this in the same tube as the protein. 
 
 Check the protein concentration using the Bradford method. 

 

Final Purification Step: Cation Exchange Column (HiTrap SP HP) 

 Instead of spin concentrating IF3, use the Superloop on the FPLC to inject the entire sample 
(30-40 mL). 

 
 Wash the superloop three times with 20 ml ddH2O.  Flow rate = 2 ml/min.  Pressure alarm = 2 

MPa. 
 
 MME method: if3frac 
 

Details: 
 Column: HiTrap SP HP 

1 CV = 5 CV 
Flow rate: 0.7 mL/min 

 Pressure limit: 0.30 MPa 
 Monitor absorbance at: 280, 260, 230 nm 
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 Column equilibration: 5 CV 
 Wash out unbound sample with 3 CV 
 Linear gradient: 0  100% TMNDN 70 Buffer B over 20 CV 
 Gradient delay: 2.0 mL 
 Clean after elution with 5 CV 

 
 Buffers:  1x TMNDN 70 A and B (see “IF3 Buffers”) 
 Rinse and fill line B with buffer B so that when the gradient switches from 100% A to A & B, 

the line contains B. 
o Position: LOAD 
o Column Position: 1Bypass 
o Outlet Valve: Waste 
o Gradient: 100% B 
o Pressure Alarm: 0.3 MPa 
o Flow: 0.5 ml/min for ~10 ml 

 Collect fractions.  IF3 elutes at ~120 mL (see Figure 5.5).   
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Figure 5.5 Cation exchange column purification of IF3. Representative cation exchange 
(HiTrap SP HP) chromatogram of IF3-R41C final purification. Gradient: 0-100% TMNDN Buffer B 
over 20 CV. Pure IF3 elutes at ~125 mL. 
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Figure 5.6 Purification of IF3 mutants. Tris-tricine gel analysis of four IF3 point mutants (R41C, E45C, 
E62C, and C66S) before removal of the His6-tag by TEV cleavage (“-Tev”), and after the second Ni-NTA 
column and cation exchange column (“final”). The units on the protein ladder (“marker”) are kDa. 
 
5.2.2.3 IF3 mutagenesis 
 

Table 5.4 Primers for IF3 mutagenesis
IF3.C66S.A 5’-GCCGAGCCGCCGGTTAGTCGTATAATGGA-3’ 
IF3.C66S.B 5’-TCCATTATACGACTAACCGGCGGCTCGGC-3’ 
IF3.R41C.A 5’-GCTTGGTATTGTGAGTCTGTGCGAAGCTCTGGAGAAAGCAG-3’ 
IF3.R41C.B 5’-CTGCTTTCTCCAGAGCTTCGCACAGACTCACAATACCAAGC-3’ 
IF3.E45C.A 5’-GAGTCTGAGAGAAGCTCTGTGCAAAGCAGAAGAAGCCGGAG-3’ 
IF3.E45C.B 5’-CTCCGGCTTCTTCTGCTTTGCACAGAGCTTCTCTCAGACTC-3’ 
IF3.E62C.A 5’-GATCAGCCCTAACGCCTGCCCGCCGGTTTGTCGTA-3’ 
IF3.E62C.B 5’-TACGACAAACCGGCGGGCAGGCGTTAGGGCTGATC-3’ 
IF3.C66A.A 5’-CTAACGCCGAGCCGCCGGTTGCTCGTATAATGGA-3’ 
IF3.C66A.B 5’-TCCATTATACGAGCAACCGGCGGCTCGGCGTTAG-3’ 
IF3.Q23C.A 5’-CAATGGCGAAATTCGCGCCTGCGAAGTTCGCTTAACAGGTC-3’ 
IF3.Q23C.B 5’-GACCTGTTAAGCGAACTTCGCAGGCGCGAATTTCGCCATTG-3’ 
IF3.L30C.A 5’-GGAAGTTCGCTTAACAGGTTGCGAAGGCGAGCAGCTTGGTA-3’ 
IF3.L30C.B 5’-TACCAAGCTGCTCGCCTTCGCAACCTGTTAAGCGAACTTCC-3’ 
IF3.S39C.A 5’-AGCAGCTTGGTATTGTGTGTCTGAGAGAAGCTCTG-3’ 
IF3.S39C.B 5’-CAGAGCTTCTCTCAGACACACAATACCAAGCTGCT-3’ 
IF3.S58C.A 5’-GACTTAGTCGAGATCTGCCCTAACGCCGAGC-3’ 
IF3.S58C.B 5’-GCTCGGCGTTAGGGCAGATCTCGACTAAGTC-3’ 

 
5.2.2.4 IF3 labeling with maleimide-conjugated Cy3 or Cy5 
 
Buffer exchange IF3 into Labeling Buffer and add 10-fold molar excess of TCEP, followed by 20-

fold molar excess of Cy3- or Cy5-maleimide. The dye should be dissolved in enough anhydrous 

DMSO so that the final reaction contains 5% DMSO. Allow the reaction to proceed for 1 hr at r.t. 
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followed by overnight at 4C. Quench the reaction by addition of BME. Bring the volume up to 1.5 

mL by addition of an appropriate amount of labeling buffer. Remove unreacted dye by extensive 

dialysis into IF3 HIC Buffer A using a 10,000 MWCO 0.5-3 mL capacity slide-a-lyzer cassette 

(Pierce Biotechnology). 

5.2.2.5 Purification of IF3(Cy3-Cy5) with hydrophobic interaction chromatography 
 
After removing unreacted free dye by extensive dialysis, centrifuge the IF3(Cy3-Cy5) sample at 

14,000 x g for 5 min to pellet any aggregated protein. Then inject the sample onto the HIC column 

and elute the labeled protein species with a 0-100% HIC buffer B gradient over 16 CV. This 

labeling strategy produces a number of labeled products, including singly and doubly labeled IF3 

(see Figure 2.3A). The identity of the doubly labeled, IF3(Cy3-Cy5) species can be verified by 

MALDI-TOF mass spectrometry (see section 5.2.2.6 and Figure A1). See Figure 2.2B for a 

representative HIC chromatogram. 

 
5.2.2.6 Trypsin digestion and MALDI-TOF Mass Spectrometry analysis of IF3(Cy3-Cy5) 

The presence of two IF3(Cy3-Cy5) peaks on the HIC chromatogram (Fig. 2.2B) suggested that 

each peak may represent a uniquely labeled sample (i.e. (1) IF3(C66S/S39C-Cy3/K98C-Cy5) or 

(2) IF3(C66S/S39C-Cy5/K98C-Cy3)). The identities of the two IF3(Cy3-Cy5) samples (peaks 1 

and 2) were verified by trypsin digestion of IF3(Cy3-Cy5), followed by matrix assisted laser 

desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. The linker region of IF3 has 

previously been shown to be highly susceptible to trypsin digestion, making this an effective 

means to separate the two, similarly-sized globular domains for m.s. analysis [10]. Trypsin 

digestion and MALDI-TOF mass spectrometry analysis were performed by Dr. Mary Ann 

Gawinowicz at the Columbia University Medical Center’s Protein Core Facility. The mass spectra 

are found in Appendix A. 
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Sample preparation: IF3(Cy3-Cy5) samples from HIC peaks 1 and 2 (Fig. 2.2B) were buffer 

exchanged into IF3 Storage Buffer (without glycerol) (section 5.2.2.2) and concentrated with a 

10,000 MWCO Microcon spin column (Millipore). 

Trypsin digestion of IF3(Cy3-Cy5):  Trypsin digestion was carried out by diluting 1 L 

(approximately 2 g) of the protein solution with 10 L 25 mM Tris, pH 8.5. Then 0.08 mg of 

trypsin (modified sequencing grade, Roche Applied Science) was added to this solution in 8 mL 

25 mM Tris, pH 8.5 and heated overnight at 32ºC. The digestion solution was desalted using a 

Millipore C18 ZipTip and the eluted peptides were dried completely in a Speed-Vac concentrator.  

Sample preparation for MALDI-TOF analysis: The dried peptides were re-dissolved in 3 L matrix 

solution prepared as follows: A 10 mg/mL solution of -cyano-4-hydroxycinnamic acid was 

prepared in 50% acetonitrile/0.1% TFA and two internal standards added, angiotensin and ACTH 

(7-38) peptide, so that the final concentrations were 193 fmol/mL and 340 fmol/mL, respectively. 

The peptide/matrix solution was spotted onto a MALDI target plate and allowed to air-dry. 

MALDI-TOF analysis: The digest was analyzed on an Applied Biosystems Voyager DE-PRO in 

the linear mode with the following settings: Accelerating voltage 21000; Grid voltage 95%; Guide 

wire voltage 0.050%; Delay time 200 nsec; Laser power 1800-2000. The resulting average 

masses were smoothed using 19-point Gaussian smoothing, then manually calibrated using the 

two internal standards. 

This m.s. work confirmed that peaks 1 and 2 are both mixtures of (1) IF3(C66S/S39C-Cy3/K98C-

Cy5) and (2) IF3(C66S/S39C-Cy5/K98C-Cy3) (Figure A1). All smFRET data was collected using 

IF3(Cy3-Cy5) from peak 1, though use of IF3(Cy3-Cy5) from peak 2 gave very similar results 

(Figure 2.3B). 
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5.3  Toeprinting biochemical activity assay 
 
The activities of ribosomes, fMet-tRNAfMet, and the IFs are tested using a well-established primer-

extension inhibition, or “toeprinting” assay [11, 12]. Initiation reactions are carried out on an 

mRNA that has been preannealed with a 5’[32P]-labeled DNA primer. Subsequent reverse 

transcription of the primer-annealed, initiated mRNA is strongly blocked when the reverse 

transcriptase encounters an mRNA-bound ribosome, thereby producing a 5’[32P]-labeled cDNA of 

defined length, or “toeprint.” Analysis of the cDNA products on a 9% sequencing PAGE gel 

reports the position of the ribosome on the mRNA with single-nucleotide resolution. The assay for 

each IF is distinct, and the ones for IF1 and IF3 are described in the following sections and also in 

Fei et al. [4]. 

5.3.1  Toeprinting primer labeling 
 
Thaw a sample of frozen -32P-ATP (PerkinElmer Life and Analytical Sciences, 1 mCi/mL) at r.t. 
for at least 15 minutes. 
 
Then mix: 
70 pmol gp32.toe.2 primer (TATTGCCATTCAGTTTAG) (Integrated DNA Technologies) 
42 pmol -32P-ATP (6000 Ci mmol-1, PerkinElmer) 
14 U T4 polynucleotide kinase (New England Biolabs) 
final volume of 1x T4 polynucleotide kinase buffer (New England Biolabs) 
 
Incubate for 30 min. at 37C, then 10 min. at 75C to inactivate the T4 polynucleotide kinase. 

Remove unincorporated -32P-ATP by gel filtration through a G-25 Sephadex spin column (GE 

Healthcare). 

5.3.2  Primer annealing to mRNA 
 
Mix: 
4 L 32P-labeled primer 
100 pmol RG13 mRNA (a.k.a mRNA #4; See Table 2.1 for sequence) 
Bring to 40 L with 25 mM Tris-OAc pHr.t.=7.0 
 
Heat at 90C in a dry block heater for 1.5 min, then cool to r.t. by moving the heat block to 
benchtop. Store at -20C. 
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5.3.3  Preparation of 9% denaturing PAGE sequencing gel 
 
9% sequencing gel solution 
100 mL 10x TBE 
225 mL 40% 19:1 acrylamide:bis-acrylamide (Calbiochem) 
420.5 g urea 
Add nanopure water to 1 L. Then filter through a 0.45 m (minimum) filter. Store under Al foil. 
 
10% Ammonium persulfate, 5 mL 
0.5 g Ammonium persulfate 
Add water to 5 mL 
Aliquot and store at -20C 
 
1% Dye solution, 10 mL 
0.1 g xylene cyanol 
0.1 g bromophenol blue 
10 mL 1x TAE 
 
Formamide loading buffer, 10 mL 
900 L Dye solution 
9.1 mL formamide 
Store at 4C for up to three months 
 
10x TBE, 1 L 
108 g Tris base 
55 g boric acid 
40 mL 0.5 M EDTA, pH 8.0 
 
50x TAE, 1 L 
242 g Tris Base 
57.1 mL glacial acetic acid 
37.2 g Na2EDTA2H2O 
bring volume to 1 L with nanopure water and adjust the pH to 8.5 
 
Prepare the gel plates (20 x 45 cm x 4.8 mm, and 20 x 43 cm x 4.8 mm) by washing with soap 

and water the night before, then soaking in a base bath (~1 M KOH) overnight. Before use, rinse 

with water and ethanol and place in a fume hood for drying. Place the plates horizontally on top of 

two pipet tip boxes with bench paper underneath. Silanize each plate by pipeting 2 x 500 L 

Sigmacote (Sigma) onto the interface side of each plate. Wipe down with a KimWipe. Add 0.4 

mm spacers, then top plate. Clamp together with six binder clips. Then, mix 60 mL 9% 

sequencing gel solution, 45 L tetramethylethylenediamine (TEMED), and 200 L ammonium 

persulfate (APS) in a 250 mL beaker. Swirl to mix. Use 60 mL syringe to deliver to plates, being 

careful not to introduce bubbles. Lastly, add comb and allow to polymerize for ~1 hour. 
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Gel running and imaging 

Assemble gel box (Owl) and secure the gel plates using binder clamps. Be sure to insert 

cushions into the gaps at the top of the plates to prevent the top running buffer from leaking. Add 

metal plate to back of gel and secure with binder clamps. Prepare 1 L of 1x TBE buffer for top 

and bottom chambers. Mark the locations of each well with a marker and then remove the comb. 

Pre-run gel for 1 hour at 55 W, then load 5 L samples with flat gel loading pipet tips and run gel 

at constant power of 55 W for ~1.5 hours or until 2nd dye front has reached the 2/3 point on the 

gel. Transfer the gel to Whatman filter paper (3 MM Chr; 0.34 mm) and place in gel dryer. Add dry 

ice and ethanol to condenser trap and open the dryer to vacuum. Dry at 55C for 2 hours under 

vacuum before storing on a storage phosphor screen (GE Healthcare) overnight. Scan the 

phosphorimage screen with a STORM PhosphorImager and then erase the screen under 

fluorescent light. Analyze the data in ImageQuant, following the specific criteria specified in 

sections 5.3.4 (IF1 activity) or 5.3.5 (IF3 activity). 

5.3.4  IF1 toeprinting activity assay 
 
The IF1 assay tests the ability of IF1 to enhance the formation of a correctly initiated 70S IC in the 

presence of IF2 and IF3 [12]. Each initiation reaction is prepared as follows: 

Mix the following: 
12 pmol 30S subunits 
12 pmol 50S subunits 
Incubate at 37C for 15 minutes.  
 
Then add: 
12 pmol IF3 
48 pmol IF2 
48 pmol IF1 
35 nmol GTP 
Incubate at 37C for 10 minutes, then r.t.  
 
Next add: 
2.4 L Primer annealing reaction 
Incubate at 37C for 10 minutes, then add: 
 
35 pmol fMet-tRNAfMet 
35 pmol tRNAPhe 
Incubate at 37C for 10 minutes, then on ice for 10 minutes.  
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Place initiation reactions on ice until ready for use in primer-extension reactions. 

Toeprinting Mix 
Prepare 10x dNTP mix by mixing together equal volumes (20 L each) of each NTP (Promega). 
 
Prepare sequencing polymix: 
 100 L 5x polymix 
 5 L 1 M Mg(OAc)2 
 0.21 L 14.3 M BME 
 
Mix: 
50 nmol ATP 
20 nmol dATP 
20 nmol dGTP 
20 nmol dCTP 
20 nmol dTTP 
sequencing polymix to a final concentration of 1x 
 
Add 15 L of the Toeprinting Mix and 10 units of AMV Reverse Transcriptase (RT) (Promega) to 

each initiation reaction and incubate at 37C for 15 minutes. Phenol extract the reaction mixture 

once, and then chloroform extract the mixture once. 

Add: 
2.5 L 3 M NaOAc, pH 5.2 
82.5 L 100% r.t. ethanol 
 
Incubate at r.t. for 10 minutes, followed by centrifugation at 14,000 rpm for 10 minutes. Wash the 

pellet with 70% ethanol. Centrifuge for 10 min. at 14,000 rpm. Resuspend pellet in 5 L 

Denaturing PAGE loading buffer, heat at 95C for 3 min., and load onto a 9% denaturing, 

sequencing PAGE gel (see section 5.4.3). For the IF1 toeprinting assay, the intensity of the +15 

toeprint band should show a ~3-fold enhancement in the presence versus the absence of IF1, 

indicating more efficient 70S IC formation. Calculate the relative toeprint intensity as: 

  
Relative toeprint =  

+15 Toeprint

Full length +  +15 Toeprint
 

See Figure 4.3 for a representative example of a toeprinting gel to test IF1’s activity. 

 
5.3.5  IF3 toeprinting activity assay 
 
The IF3 toeprinting activity assay measures IF3’s ability to promote selection of tRNAfMet over 

tRNAPhe on 30S-mRNA complexes, in the absence of IF1 and IF2 [4, 12, 13]. Reactions were 
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performed as described in Fet et al. [4], Hartz et al. [12], and Maar et al. [13]. Briefly, 2 pmol 30S 

subunits, 0.05 M 32P-primer-annealed T7 gp32 mRNA, 20 pmol tRNAfMet, and 200 pmol tRNAPhe 

(both tRNAs were not aminoacylated) were incubated in Tris-polymix buffer (5 mM Mg2+) for 10 

minutes at 37C. Varying concentrations of IF3 were added to the reaction mixtures and they 

were then incubated for 10 minutes at 37C, followed by 10 minutes on ice. Reverse transcription 

was initiated by adding 31.3 nmol ATP, 15.6 nmol each of dGTP, dATP, dCTP, and dTTP, and 15 

U AMV reverse transcriptase (Promega or NEB) and incubating for 15 minutes at 37C. The 

cDNA was purified by phenol and chloroform extractions, and then precipitated with sodium 

acetate and ethanol. The cDNA products were resuspended in Gel Loading Buffer (see section 

5.4.3) and run on a 9% Denaturing PAGE gel for 1.5 hours (see section 5.4.3). The gel was dried 

and exposed to a PhosphorImager screen (GE Life Sciences). The screen was scanned with a 

Storm PhosphorImager (Molecular Devices) and analysis was performed with Image Quant 

(Molecular Dynamics). 

 

The total phosphor intensity at the +15 (tRNAfMet) and +18 (tRNAPhe) bands was quantified using 

equally sized regions and the ratio of the intensities within these regions (18/(15+18)) was used 

as an indication of the shift from tRNAPhe (UUC) to tRNAfMet (AUG) selection as the concentration 

of IF3 was increased. Specifically, the increase in tRNAfMet selectivity upon increasing IF3 

concentration was defined as follows: 

%Selectivity of tRNAfMet over tRNAPhe = 

 

1 -  
UUC

AUG








lane x


UUC

AUG








()IF3























 x 100 

 
In addition to testing wild-type IF3, unlabeled IF3(C66S/S39C/K98C), and IF3(Cy3-Cy5), the 

singly-labeled variants IF3(C66S/S39C)-Cy3 and IF3(C66S/K98C)-Cy5 were tested for their 

ability to select tRNAfMet over tRNAPhe. Gradual loss in activity was seen upon introduction of one, 

and then two, fluorophores. Full activity was achieved under increased IF3 concentrations. See 

Figure 2.5B and C for examples of typical IF3 toeprinting gels. 
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5.4 TIRFM-based fMet-(Cy3)tRNAfMet dissociation assay 
 
This assay probes IF3’s ability to destabilize tRNAs, specifically fMet-(Cy3)tRNAfMet, in the 

presence of IF1 [14]. Complexes were prepared with 1.8 M biotinylated-mRNA, 0.6 M 30S 

subunits, 0.9 M IF1, 0.9 M IF3 (when included), and 0.6 M fMet-(Cy3)tRNAfMet. The 

complexes were incubated at 37C for ten minutes, aliquoted, flash frozen, and stored at -80C 

until use. To quantify the extent of fMet-(Cy3)tRNAfMet dissociation, complexes were diluted to 

300 pM, keeping IF1 and IF3 (when included) in solution at 0.9 M.  After incubating the 

complexes on the slide surface for 5 minutes, unbound molecules were washed out with a buffer 

containing 0.9 M IF1, 0.9 M IF3, enzymatic oxygen scavengers, and triplet state quenchers in 

low-salt Tris-polymix buffer (see section 5.5.1).  The first of fourteen movies was collected ten 

minutes after sample immobilization.  Movies were collected at a frame rate of 10 frames per sec 

for 100 frames.  The data were analyzed by summing the maximum intensity of each frame and 

then setting a lower threshold of 3500 arbitrary units.  Regions larger than 4 pixels (2 x 2 binning) 

were composed of multiple dyes and discarded in all datasets.  The two highest and the two 

lowest total region counts from all fourteen movies were discarded as outliers and the average 

and standard deviation of the remaining ten movies was taken.  Raw counts were converted to 

“% bound” by normalizing the (+)IF3 data to the (-)IF3 data and assuming “100% bound” for the (-

)IF3 complexes. See Figure 2.4. The activity of IF3(C66S/S39C/K98C) and IF3(Cy5-Cy5) (here 

doubly labeled with Cy5 due to the use of fMet-(Cy3)tRNAfMet) is within error of wild-type IF3. 

Wild-type IF3 generally shows ~15% of the total number of fMet-(Cy3)tRNAfMet-bound 30S ICs 

bound in the absence of IF3 (e.g. 45 molecules vs. 300 molecules). 

5.5  smFRET imaging using TIRF microscopy 
 
5.5.1  Oxygen scavenging system and triplet state quenchers 
 
The oxygen scavenging system for single-molecule fluorescence work was optimized for the 

IF3(Cy3-Cy5) signal based on the following references: [15-17]. The system used previously (1% 
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-D-glucose, 55 U/mL glucose oxidase, 365 U/mL catalase) was inadequate for the IF3(Cy3-Cy5) 

smFRET signal, allowing for only 1-2 seconds of observation time before fluorophore 

photobleaching. I modified my concentrations to those reported by Selvin and Ha: 165 U/mL 

glucose oxidase, and 2170 U/mL catalase. 

 
80x stocks 
13,200 U/mL glucose oxidase 
173,600 U/mL catalase 
 
Our laboratory stocks of glucose oxidase and catalase are 5,000 U/mL and 200,000 U/mL, 

respectively. These are prepared as follows: 

Glucose oxidase (GOD) is Type VII-S from Aspergillus niger (Sigma; G-7016). 10,000 U is 0.055 

g. Catalase (CAT) is from bovine liver (Sigma; C-40). CAT is typically 9,360,000 U/g solid and is 

purchased in 100 mg (936,000 U) bottles. 98% 1,3,5,7-cyclooctatetraene (COT) (Aldrich) is a 

liquid at r.t. with molarity of 8.7 M. 99.5% 3-nitrobenzyl alcohol (NBA) (Fluka) is barely solid at r.t. 

but it becomes a liquid at 37C. Therefore, incubate NBA at 37C immediately before preparing 

the 1000x stock. Its molarity is 8.4 M. 

GOD/CAT Storage buffer: 
50 mM Tris-OAc, pHr.t.=7.0 
50 mM KCl 
500 mM BME 
50% glycerol 
 
500 L 5 U/L GOD 
0.014 g 181,500 U/g GOD 
487 L GODCAT Storage buffer 
 
500 L 200 U/L CAT 
0.011 g 9,360,000 U/g CAT 
489 L GODCAT Storage buffer 
 
*Note: Do not vortex GOD or CAT stocks. Simply pipet up and down, being careful not to 

introduce bubbles into the solution. Let the solutions sit at 4C overnight. Once fully dissolved, 

centrifuge the solutions for 5 min. at 14,000 rpm and r.t. Transfer the top 75-80% of the 

supernatants into new tubes. 

To prepare 80x stocks: 
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Mix: 7.92 L 5 U/L glucose oxidase 
 2.61 L 200 U/L catalase 
 
Dilute the 80x stock to 1x in a buffer containing 1% -D-glucose for smFRET work. 
 
1000x COT/NBA stock solution (1 M each) 
115 L 8.7 M COT 
119 L 8.4 M NBA 
766 L Ethanol 
 
Dilute the 1000x stock to 1x for smFRET experiments. The imaging buffer should contain GOD, 

CAT, COT, and NBA. 

 
5.5.2 5x Low salt Tris-polymix 
 
Mix: 
50 mM Tris-OAc (pH25C = 7.0) 
100 mM KCl 
5 mM NH4OAc 
0.5 mM Ca(OAc)2 
0.5 mM EDTA 
5 mM putrescine-HCl 
1 mM spermidine 
5% -D-glucose 
 
*Note: filter salts before addition of polyamines. Store 1 mL aliquots at -20C. 
 
5.5.3  Passivation of microfluidic flowcells 
 
This protocol was developed by Prof. Ruben Gonzalez at Stanford University and is based on a 

protocol developed by T. Ha and co-workers in the S. Chu research group. 

Chemicals 
1 M KOH (EMD) 
30% Hydrogen peroxide (J.T. Baker) 
100% (200 proof) Ethanol (Decon) 
Spectroscopic grade acetone (J.T. Baker) 
Vectabond silanization reagent (Vector Laboratories; SP-1800; 7 mL) 
PEG reagents (PEG-Succinimidyl Valerate; 5,000 m.w.) (Laysan Bio., Inc.) 

Biotin-PEG-SVA-5000-100mg 
mPEG-SVA-5000-1g 

100 mM Potassium borate, pH 8.4 (prepare 100 mM KHBO4 and then pH to 8.4 with Boric acid) 
 
Equipment 
10 quartz slides from G. Finkenbeiner 
12 coverslips (24 x 30 mm) (VWR; No. 1½, 48404-466) 
1 1 L plastic graduated cylinder 
1 250 mL plastic graduated cylinder 
2 5 mL glass graduated pipets 
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1 Propane torch 
1 scissor-type forceps for holding quartz slides 
1 tweezers for holding coverslips 
4 drill bits (Starlite Industries) 
2 polypropylene slide staining rack (Electron Microscopy Sciences; 70321-10) 
3 porcelain coverslip staining racks (Thomas Scientific 8542E40) 
4 large (500 mL) plastic containers for dipping slides (Nalgene) 
4 small (250 mL) plastic containers for dipping coverslips (Nalgene) 
 
Drill holes 

Using acrylic jig, drill 10 holes in each quartz slide. Drill all holes slowly, with the drill tip 

submerged in water on the surface. Approximately 30 holes (3 slides) can be drilled with each 

diamond tip drill bit. Remove slide after drilling and rinse thoroughly with nanopure water to 

remove quartz dust residue. Store in water overnight. 

 
Wash all glassware, porcelainware and plasticware 
 
Bleach all glassware, porcelainware, and plasticware to be used with a 100 mM KOH / 5% H2O2 
solution. 
 
Mix: 
100 mL 1M KOH 
166 mL H2O2 
bring volume to 1 L with nanopure water 
 
Fill all containers and lids with bleach solution and allow to sit for >30 min. Then, rinse thoroughly 

with nanopure water and air dry overnight. 

 
Degrease 

Place slides in plastic holder in a large plastic container. Fill container with 100% ethanol and 

sonicate for 15 min. Rinse completely with nanopure water. Do the same for coverslips using 

porcelain rack and small container. 

 
Activate 

Place slides in plastic holder in a large plastic container. Fill container with 1M KOH and sonicate 

for 15 min. Treat coverslips identically using a porcelain holder and a small plastic container. After 
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sonication, rinse the slides and coverslips 5x with nanopure water. Fill containers with nanopure 

water and sonicate slides and coverslips for 5 min. 

 
Flame 

Use a KimWipe to soak up excess water from edges of the slides and coverslips. Then flame the 

degreased and activated slides and coverslips with a propane torch. Four slow passes for each 

side of the slide with the slide ~1 inch from metal opening on the propane torch and three quick 

passes for each side of the coverslip to avoid warping. Place slides in plastic holder and 

coverslips in dry porcelain rack to cool. 

 
Silanize 

Place slides in plastic holder in a large plastic container and fill the container with 250 mL 

acetone. Place the coverslips in a porcelain holder in a small plastic container and fill the 

container with 140 mL acetone. Using a glass pipet, add 4.5 mL Vectabond to the 250 mL 

acetone in the large plastic container (final Vectabond concentration of 1.8%). Slowly stir the 

slides in the acetone/Vectabond solution (do not mix by dipping slide holder in and out of the 

acetone/Vectabond solution). Allow the Vectabond reaction to proceed for 2 min. Quench the 

reaction by transferring the rack to a fresh container with 50% acetone/50% nanopure water. 

Slowly stir the slides in the acetone/water solution for 2 min. Decant acetone/water solution and 

replace with nanopure water. Rinse 3x with nanopure water. Slowly stir the slides in the nanopure 

water for 2 min. Allow the slides to sit in nanopure water for 10 min. and then air dry. 

 
Repeat the above silanization reaction with the coverslips. Using a glass pipet, add 2.5 mL fresh 

Vectabond to the 140 mL acetone in the small plastic container with the coverslips (final 

Vectabond concentration of 1.8%). Slowly stir the slides in the acetone/Vectabond solution (do 

not mix by dipping slide holder in and out of the acetone/Vectabond solution). Allow the 

Vectabond reaction to proceed for 2 min. Quench the reaction by transferring the rack to a fresh 

container with 50% acetone/50% nanopure water. Slowly stir the coverslips in the acetone/water 
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solution for 2 min. Decant the acetone/water solution and replace with nanopure water. Rinse 3x 

with nanopure water. Slowly stir the coverslips in the nanopure water. Allow the coverslips to sit in 

nanopure water for 10 min. and then air dry. 

 
First PEG derivatization 

Take PEG reagents out of the freezer and warm rapidly to room temperature. Place slides flat 

with only the upper and lower edges touching the flat surface. Use a large Eppendorf rack with 

tape along the top and bottom. Make sure the “blown-out” side of the drilled holes is facing up—

this is the side you will PEG. Weigh out 60 mg of mPEG-SVA and 10 mg Biotin-PEG-SVA-5000 

for 10 slides. Dissolve biotin-PEG in 1 mL ice-cold nanopure water. Vortex thoroughly and add 60 

L to the mPEG-SVA. Add 600 L of ice-cold 100 mM potassium borate, pH 8.4 to this mixture. 

Vortex ~10 sec, centrifuge for ~30 sec to pellet any insoluble material and rapidly pipet 60 L of 

this mixture onto the center of each quartz slide. Place a coverslip on top of each quartz slide by 

carefully laying it down edgewise so as to not trap any air bubbles in the space between the 

quartz slide and the coverslip. Pipet 60 L of this mixture onto one of the extra coverslips and 

place the other coverslip on top (this gives you two extra coverslips in case of breakage). 

Incubate 1 hr at r.t. in the dark (a drawer works well). Before separating the coverslips from the 

quartz slides, label each slide and coverslip at the lower right hand corner with a marker so that 

you can tell which sides of the slide and coverslip were treated with PEG. Carefully remove the 

coverslip from the slides. Leave the quartz slides PEG side facing up toward you on the taped 

Eppendorf rack and place the coverslips on a dry porcelain coverslip staining rack. 

 
Second PEG derivatization 

Dissolve a second aliquot of mPEG-SVA in 660 L of ice-cold 100 mM potassium borate, pH 8.4 

and pipet another 60 L onto the center of each quartz slide. Replace the coverslip on top of 

each quartz slide by carefully laying it down edgewise so as to not trap any air bubbles in the 

space between the quartz slide and the coverslip. Make sure that both the quartz slides and 
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coverslips are reassembled such that the sides treated with PEG during the first PEG 

derivatization are treated a second time. Incubate 1 hr at r.t. in the dark. Carefully remove the 

coverslip from the slides. If separation is difficult, briefly dip the slide/coverslip in water before 

separating. Rinse slides and coverslips continuously with nanopure water for 5-10 min.  

 
Dry 

Air dry the slides in a large plastic container and coverslips in a small plastic container overnight 

before assembling flowcell. 

 
Flowcell assembly 

See Figure 1.17A for depiction of an assembled flowcell. Cut thin (~2 mm) strips of double sided 

tape (3M; ½” x 250”) using a razor blade, and trim the strips so they are ~1 mm long. Adhere six 

strips of tape to a PEG derivatized slide as depicted in Figure 1.17A. Place a glass cover slip on 

top, PEG slide toward the slide. Using a PCR tube, firmly but gently press the cover slip onto the 

tape to seal each flowcell chamber. Then seal the sides of the flowcell with epoxy (Devcon). Each 

of the five flowcells on the slide should now be leak-proof. Samples can be delivered to each 

flowcell through the drilled holes using a P200 pipet, and collected from the other hole in the 

flowcell. 

5.5.4 Sample delivery to microfluidic flowcells 
 
Buffers and reagents 
 
TP50 buffer 
10 mM Tris-OAc, pHr.t.=7.0 
50 mM KCl 
 
DNA duplex (100 M) 
DNA oligo sequences:  

DNA A: CGT TTA CAC GTG GGG TCC CAA GCA CGC GGC TAC TAG ATC ACG GCT CAG CT 
DNA B: AGC TGA GCC GTG ATC TAG TAG CCG CGT GCT TGG GAC CCC ACG TGT AAA CG 

Preparation instructions 
 Make 1 mM solutions of DNA A and DNA B. (e.g. 128 nmol DNA + 128 L nanopure 
water) 
 120 L 1 mM DNA A 
 120 L 1 mM DNA B 
 12 L 1 M Tris-OAc (pHr.t.=7.0) 
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 Nanopure water to 1.2 mL 
 
 Then, heat at 95C for 2 min. in a dry heat block and then move to a benchtop to cool. 
 Once the solution reaches 70C, add 30 L of 2 M KCl.  
 Cool to r.t. and store at -20C. 
 
Block 
10 M Ultrapure BSA (Ambion, cat. #AM2616, 50 mg/mL) 
10 M DNA duplex 
Dilute with TP50 buffer 
 
Strep & Block 
1 M Streptavidin (Invitrogen, 5 mg, S888) 
10 M BSA 
10 M DNA duplex 
Dilute with TP50 buffer 
 
For sample delivery to microfluidic flowcell, add the following using a P200 pipet: 
200 L TP50 buffer 
25 L Block (incubate for 5 min) 
25 L Strep & Block (incubate for 5 min) 
200 L TP50 buffer 
200 L Low-salt polymix buffer 
25 L sample (incubate for 5 min) 
100 L Low-salt polymix buffer containing GOD/CAT, and COT/NBA 
 
30S initiation complex assembly 
 
The following components are added in the order and at the concentrations listed: 
 
  Biotin-mRNA   0.6 M 
  fMet-tRNAfMet   0.9 M 
  IF1    0.9 M 
  IF2    0.9 M 
  IF3(Cy3-Cy5)   0.6 M 
  GTP    1 mM 
  Low-salt polymix  1x 
  30S subunits   0.6 M 
 
The mixture is then incubated at 37C for 10 minutes. 0.5 L aliquots are prepared, flash frozen 

with liquid N2, and stored at -80C until use. 

5.5.5 Data acquisition 
 
Turn on green and red lasers 30 minutes before use. Add 2 drops of nanopure water to the 

microscope objective and secure the microfluidic flowcell to the microscope stage using the stage 

clips. Center the flowcell of interest over the objective. Add one drop of oil to the prism base, 
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place over the flowcell and tighten. Focus the microscope using the eyepiece first, then using 

MetaMorph. 

 

Data collection 

A good strategy for determining the presence and location of Cy5 (acceptor) fluorophores is to 

directly excite Cy5 with a red (643 nm) laser for the first frame of each movie, followed by 

continuous green (532 nm) laser direct excitation of Cy3 and excitation of Cy5 through FRET for 

the remainder of the movie. A journal should be written in MetaMorph (Molecular Devices) that 

switches illumination from red to green at the second frame of the movie. Following acquisition of 

each movie, stack the single, red laser-illuminated Cy5 frame on top of the green laser-

illuminated frames by following these steps: 

To focus the FOV: 

 Acquire 

  Acquire 

   Show Live 

Standard camera settings  

Acquire  Acquire …  Special 

Setting Value 
Digitizer 10 MHz (EM Gain) 
Gain Gain 2 (2x) 
EM Gain 3500 
Camera Shutter Always Open 
Clear Mode Clear PRE Sequence 
Clear Count 2 
Frame to Average 1 
Trigger Mode Normal (Timed) 
Live Trigger Mode Normal (Timed) 
Show Focus Indicator Box Unchecked 
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Acquire  Acquire … Main window 

Setting Value 
Exposure Time 100 ms 
Binning 2 
Live Bin 2 
Use Active Region Created Region 

 

To collect a movie  

 Acquire 

  Stream Acquisition 

  -- Adjust the number of frames to the appropriate number (usually 600 to 1200) 

   Acquire 

To add a frame to a movie 

 Stack 

  Add Plane 

  -- Adjust the source and resultant stack accordingly 

 
5.6 smFRET data processing and analysis 
 
*Note: This data analysis protocol was used for the analysis of IF3(Cy3-Cy5) data. 

Open movie file (Stack file .stk) in MetaMorph. Scroll to the beginning of the movie and follow 

these steps to split the image into Cy3 and Cy5 channels: 

 Display 

  Split view 

   Align 

   Region size: 

   Height: 256 pixels Width: 127 pixels 

H Shift V Shift 

   W1: A B 

   W2: X Y 
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    ‘A’, ‘B’, ‘X’, and ‘Y’ are values determined during DualView alignment. 
The Height and Width parameters may also vary, depending on the DualView alignment.  

   Split 

   Source image: All planes 

Destination: Separate images 

  Apply 

  Close 

Cy3 (green) channel is labeled W1, and Cy5 (red) channel is labeled W2. 

Scroll to the beginning of the W2 movie. On the left, locate the “Threshold” button, then click 

“Auto Threshold for Light Objects.” Depending on whether or not the auto-threshold seems 

adequate by eye, the threshold can be adjusted manually using “Threshold Image.” Then adjust 

the “Low” value accordingly. To determine if the threshold is adequate, compare the thresholded 

image with the second frame of the Cy3 movie. There should be approximately the same number 

of spots in both the Cy3 and Cy5 FOVs. If not, adjust the threshold manually.   

 Regions 

  Create Regions Around Objects 

 Regions 

  Transfer Regions 

   Source Image: W2 

      Destination Image: W1 

   OK 

Click on the W1 window. 

 Apps 

  Graph Intensities 

   Measure From:  Stack 

   OK 

   Begin 

Right click on graph 



181 

Chapter 5 – Materials and Methods 

 

  Show Graph Data 

Copy data to Excel 

Excel can only merge 116 data sets at a time, so it is necessary to break data sets containing 

more than 116 molecules into separate spreadsheets (not worksheets) 

Crtl + C = copy 

Sheet 1 = Cy3 data 

Repeat procedure for Cy5 data. 

Sheet 2 = Cy5 data 

Merge the two sets of data with the macro: 

 Crtl + Q 

Graph all fluorescence trajectories using the macro: 

 Crtl + G 

Save Excel spreadsheets and data in same folder: 

 Example: One1.xls 

5.6.1  Selection of smFRET trajectories 
 
5.6.1.1  Selection of smFRET trajectories using Microsoft Excel 
 
Each trajectory needs to be visually inspected and either discarded or saved for further analysis.  

The selection criteria are as follows: 

1. Anticorrelation of Cy3 and Cy5 intensities, as determined by visual inspection. 

2. Single-step photobleaching, as determined by visual inspection. 

The data from those traces that meet these criteria should be copied and pasted into a new 

spreadsheet and saved appropriately. 

After saving Excel file, convert to .dat file to open in Matlab.  

Delete the top row of all data (the row indicating the region identifier). Also, format the data to 

have two decimal places: 
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 Format cells 

  Number 

   Decimal Places: 2 

To save: 

 File 

  file.dat (Be sure to add this extension) 

   Save as type: Text (Tab delimited) 

In the warning windows which appear upon saving, click ‘OK’  and then ‘Yes’. When exiting Excel, 

do not save changes to the file. 

5.6.1.2  Selection of smFRET trajectories using Matlab 
 
Obtain a copy of FDAP v1.7, which contains all the Matlab scripts necessary for data processing, 

as well as a manual written by Pallav Kosuri, a former Gonzalez group rotation student. All scripts 

described in the following pages can be found in Appendix E. Copy the script “LoadTraces” and 

paste it into the folder containing all .dat data. 

 

Open Matlab and change the current directory to the folder containing the .dat files and the 

LoadTraces script. The following example assumes each file was saved as ‘red1.dat’ ‘red2.dat’ 

etc. 

 
Load traces into Matlab: 
 
>> X=LoadTraces(‘red’,2); 
 
 where X is a variable, ‘red’ is the name of the experiment, and 2 is the number of ‘red’ 
files. 
 
Now set the current directory to the FDAP v1.7 folder. 
 
Separate the Cy3 and Cy5 trajectories: 
 
>> [cy31,cy51]=separateCy(X); 
 



183 

Chapter 5 – Materials and Methods 

 

Plot the traces: 
 
>> plotTraces(cy31,cy51); 
 
Now, individually inspect each trajectory and note which trajectories should be omitted from 

further analysis steps. These trajectories will make up a vector in the J-filter step. Also take note 

of those trajectories that do not show photobleaching before the end of the trajectory. These 

trajectories will be included in the baseline correction step of data processing. 

 
>> J = [A,B,C,D, … ]; 
 
Where A,B,C,D, … are the labels (the number above each graph) of each bad trajectory. 
 
Apply the J-filter to purify out any unwanted FRET trajectories: 
>> [cy32,cy52]=J_Filter(cy31,cy51,J); 
 
Baseline correction: 
>> [cy33,cy53]=correctBaseline_end(cy32,cy52,[X,Y,Z]); 
 
Where X,Y,Z are the trajectories which do not show photobleaching. Note that the 

correctBaseline_end script can be modified according to the experimentally determined 

bleedthrough coefficient. For all work done in this thesis, the bleedthrough coefficient used was 

0.0700. 

 
Plot FRET trajectories: 
>> plotFRETtraces(cy33,cy53); 
 
Plot time evolution of population FRET histogram: 
>> plotTimeFRET(cy33(2:401,:),cy53(2:401,:),24,2,10); 
 

This is based on: plotTimeFRET(cy3x,cy5x,FRETbins,Tbinsize,cutoffT), where FRETbins are the 

number of bins in the FRET dimension (default: 24), Tbinsize is the number of datapoints in the 

time averaged over (default: 9) and cutoffT is the cutoff in the time dimension (in seconds). The 

first frame is omitted from the plot by using: cy33(2:401,:), where 401 is the total number of 

frames and 2 is the first frame to appear in the histogram. 

Plot a 1D population FRET histogram: 
>> FH=plotFRET(cy33(2:401,:),cy53(2:401,:),30); 
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This is based on: FH=plotFRET(cy3x,cy5x,bins), where bins is the number of bins in the 

histogram. The histogram data is stored in the variable FH as a two-row matrix with x-values in 

the first row and y-values in the second row. 

To transpose the FH data from two rows into two columns: 
 
>> FH=FH’; 
 
Save the processed FRET data using: 
 
>> saveTraces(cy33,cy53,’<filename.dat>’);  
 
*It is important to include .dat in the filename when saving the data set. 
 
5.6.2  Fitting a population FRET histogram with Gaussian distributions in Origin 
 
In order to fit a 1D population FRET histogram with Gaussian distributions, copy and paste the 

contents of the FH variable (see above) into two columns in OriginPro 8 (Origin Lab). Highlight 

these columns. 

 Plot 
  Columns/Bars 
   Column 
 Analysis 
  Fitting 
   Fit Multi-peaks 
 
5.6.3  smFRET trajectory idealization 
 
 See the vbFRET manual (http://vbfret.sourceforge.net/) for detailed directions on the use 

of the program. To open vbFRET, set the current directory to the ‘vbFRET gui’ folder. In the 

command window, type: 

>> vbFRET; 

 In the vbFRET window, open a .dat file through File  Load Data. Then select one or 

many .dat files in the loadData window.  

Photobleaching removal 

Traces  Remove Photobleaching 

Photobleaching Identification Method  1D FRET 

Truncate data when FRET exceeds 1 or 0 by more than  0.1 
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Truncate an extra  2 time steps 

Minimum trace length  10 

Click ‘Remove Photobleaching’ button 

Analysis Settings 

Number of FRET states possible: 

 Min: 1 Max: 5 

 Fitting attempts per trace: 10 

 Analyze Data 

Following trace fitting, save the data: 

File  Save Data 

  Save Idealized Traces 

  Save as concatenated text file (.dat) 

This will be the ‘PATH’ file that can be imported into Matlab for dwell time analysis (section 5.6.4). 

To determine the number of states sampled in each trajectory, visually inspect each idealized 

trajectory. Ignore transitions that occur between 0.05 FRET or less. 

 
5.6.4 Dwell time analysis 
 
 The following protocol was followed to determine the 30S subunit binding and 

dissociation rate constants for IF1(Cy5). It is adapted from protocols developed by Drs. Jingyi Fei 

and Jiangning Wang [1, 18]. 

 Set the current directory in Matlab to the “lifetime” folder within the hammy scripts folder 

of the FDAP 1.7 folder. 

To plot an idealized 1D FRET histogram: 

>> X=linspace(-0.2, 1.2, 30); 

Drag PATH data (saved in vbFRET) into the command window, and open using: 

>> H=hist(PATH DATA(:,2),X); 

>> H=H’;  
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Then, open and fit the data in Origin. 
 
Now set the current directory in Matlab to the “lifetime analysis_W&L” folder. These scripts were 

written by Dr. Jiangning Wang. 

To extract the dwell times spent in each zero or non-zero FRET state: 
 
>> dwellData = getRawDwell(pathData); 
 
First, remove the first and last dwells with: 
 
>> dwellData_s1 = purifyRawDwell(dwellData); 
 
Then, remove single data point transitions with: 
 
>> dwellData_s2 = purifyOnOffDwell(dwellData_s1); 
 
Separate the zero from non-zero FRET data points using a cutoff threshold of 0.2. If there are 

transitions between two non-zero FRET states, these will be combined. 

>> [ts,N]=getDecay(dwellData_s2,[-0.25,0.2,0.2,1.2],time cutoff); 
>> [ts,N]=getDecay(dwellData_s2,[0.2,1.2,-0.25,0.2],time cutoff); 
 
For a ‘time cutoff’, I use 200 sec. 
 
The data are automatically saved in a folder with the name decaycurvedata.dat. To obtain the 

lifetimes of each state, open “decaycurvedata.dat” in Excel, and copy the data to Origin. Fit the 

data with an exponential decay curve to extract the lifetimes. 
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Appendix A 

 

 
Figure A1.  MALDI-TOF mass spectrometry analysis of trypsin digested IF3(Cy3-Cy5). Samples from 
HIC purification (top) peak 1, and (bottom) peak 2 (See Figure 2.2). See section 2.3.9 for a description of 
the experiment, and 5.2.2.6 for detailed materials and methods. 
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Figure A2. MALDI-TOF mass spectrometry analysis of wild-type E. coli IF3. The peak at 20,764.61 m/z 
is wild-type IF3 (expected m.w. of Gly + Ala + IF3 = 20,763.1 Da). The peaks at 8,476.78 and 16,952.56 are 
the singly- and doubly-ionized forms of myoglobin, the internal standard. 

 

Figure A3. MALDI-TOF mass spectrometry analysis of IF1-Q10C(Cy3). The peak at 9107.46 m/z 
corresponds to IF1-Q10C(Cy3). The peak at 8353.87 is unlabeled IF1-Q10C, and 8476.78 is the doubly-
ionized form of myoglobin, the internal standard. 
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Appendix B 

 

 
Figure B1 smFRET results are reproducible on a day-to-day basis. Three independent data sets were 
collected for the eight 30S initiation complexes investigated. Each blue bin represents the average 
normalized population at that FRET value from three data sets, and the error bars represent the standard 
deviation from these measurements. Bin size = 0.047 FRET. The histograms were fit with Gaussian 
distributions (black lines). The cartoons above each population histogram represent the contents of each 
initiation complex. 
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Appendix C 

Interactions between IF3 and the 30S subunit 

Ribosomal 
proteins or 

rRNA 
residues 

Method REF Notes 

S1, S11, S12, 
S13, S19, S21 

Crosslinking: N,N’-p-
phenylenedimaleimide or 
dimethylsuberimidate 

[1] Was not possible to distinguish 
between proteins directly cross-linked 
to IF3 and those indirectly cross-
linked through the mediation of one or 
more other proteins. 
S1, S11, S12, S13, S19, S21 are 
near the binding site of IF3. 

S12 Crosslinking: DMS [2]  
S7 Tartaryl diazide [3]  
S4, S7, S12, 
S13, S14, S19 

Inhibition of IF3 binding by pre-
incubation of 30S subunits with 
antibodies against S4, S7, S12, S13, 
S14, S19 

[4]  

S7, S11, S12, 
S18, S21 

Direct Near-UV (>285 nm) irradiation 
(crosslinking)  

[5] The r-proteins were identified by 
immunochemical techniques 

S1, S2, S3, 
S11, S12, S13, 
S18, S21 

Photochemical crosslinking: 
FMN 
p-nitrobenzylmaleimide (PNBM) 

[6] See note #1 

S11, S13, S19 Crosslinking [3H]NEM IF3 to 30S 
proteins by reaction with 
dimethylsuberimidate 

[7] Suggests that IF3 bridges the head 
and platform of the 30S, making 
contact with both sites on the side of 
the 30S facing the 50S subunit 

S7, S11, S13, 
S19 

Direct cross-linking with 2-
iminothiolane 

[8] “this study shows unambiguously the 
direct cross-linking of S7, S11, and 
S19 to IF3 and adds S13 as a direct 
cross-link” 

16S rRNA: 
major site in 
the central 
domain: 819-
859 
minor site near 
the 3’ end: 
1506-1529 

Cross-linking by 
transdiamminedichloroplatinum(II) 

[9] “we unambiguously identified two 
distinct RNA regions cross-linked to 
the factor” 

G791 Mutagenesis (G791A), resulted in 
subunit association defect and 10-
fold loss in IF3 affinity for 30S 

[10] G791 is universally conserved. 
Nucleotides in the region of residue 
790 in 16S rRNA are involved in 
subunit association. It is possible that 
IF3 controls subunit association by 
altering the accessibility of the 790 
loop in free 30S subunits 

A792 Mutagenesis (A792C), lost the ability 
to bind IF3 

[11] Note #2 

G700, G703, 
G791 

Protection from attack by kethoxal [12] The binding of IF3 causes virtually 
complete protection of G700 and 
G703, and partial protection of G791, 
from kethoxal attack…these results 
suggest that IF3 makes direct contact 
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with the region of 16S rRNA that 
includes positions 700 to 703, but that 
protection of the 790 region is either 
indirect or due to close proximity (but 
not direct contact) with the factor. 
Note #3 

G1487 Significant enhancement of the 
reactivity of G1487 toward kethoxal 

[12]  

G1530 Mutagenesis (G1530A). Loss of IF3 
binding. 

[13]  

A1531 Mutagenesis (A1531G). Loss of IF3 
binding. 

[13]  

 

#1. “It is, however, surprising that a total of seven proteins (S1, S2, S3, S11, S12, S18, and S21) 
are found crosslinked to IF3 in our studies with PNBM-IF3 and the previous work with PDM, since 
the chemical selectivity of the maleimido group should insure that in both of these studies 
crosslinking to IF3 will occur principally or exclusively via its unique cysteine residue 
(Cys66)”…this result could be used to argue that IF3 can bind to 30S subunits in more than one 
relative orientation, due either to multiple 30S conformations (reflecting perhaps 30S 
heterogeneity), multiple IF3 conformations, or the presence of more than one IF3 binding sites 
per 30S subunit (binding to such sites would have to be mutually exclusive, since IF3 binds to 
30S subunits with 1:1 stoichiometry.” 

#2. In Laughrea and Tam…”together with the results of Tapprich et al. (1989) and Santer et al. 
(1990), our data suggests that hairpin 24 promotes IF3 binding through allosteric effects rather 
than direct interaction.” 

#3. The 700 and 790 regions of 16S rRNA have been implicated in subunit association by 
chemical protection. Thus, binding of IF3 to these sites could compete for their interactions with 
the 50S subunit. 

#3 (cont). “IF3 has been localized to the central domain of 16S rRNA by crosslinking (Ehresmann 
et al.), site-directed mutagenesis (Tapprich et al., 1989), and protection from chemical and 
enzymatic probes (Muralikrishna & Wickstrom) 

 

IF3 Residues involved in interactions with the 30S subunit 

Residue Perturbation Results REF
Tyr109 Labeled in vitro with 125I by 

lactoperoxidase or chloramine T 
 

Loss of binding [14] 

Tyr76 Labeled in vitro with 125I by 
lactoperoxidase or chloramine T 
 

Does not result in loss of biological activity [14] 

Tyr71 Labeled in vitro with 125I by 
lactoperoxidase or chloramine T 

Does not impair the 30S binding of IF3 but 
prevents the functional interaction of the 
factor with the 30S subunit  
(test: capacity to promote the dissociation of 
ternary complexes of poly(U)-N-AcPhe-
tRNA-30S ribosomal subunits 
 

[14] 

Lys112 Site-specific chemical modification Essential for ribosome binding  [15] 



193 

Appendices 

 

with pyridoxal phosphate (PLP) at 
lysine residues. “In many instances, 
this reaction proved to be selective 
for those Lys residues displaying 
affinity for negatively charged 
phosphate groups.” 
 
The presence of Lys112 in the 
ribosomal-binding site of IF3 is further 
supported by the fact that 2 residues 
away from it, there is a tyrosine 
residue (Tyr109) which displays 
essentially similar properties. 

(Lys shows affinity for negatively charged 
phosphate groups) 
Note: Lys 2, 5, 99, 112, & 166 were 
modified. Only Lys112 is important (major 
cause for loss of IF3 binding). “concerning 
the other lysines, it seems unlikely that a 
role in binding to 30S ribosomes is played 
by Lys99, since this residue is hardly 
protected by the 30S ribosomal subunits and 
its extensive modification does not interfere 
with IF3 activity” 

Tyr107 Y107F, Y107L Required for 30S binding, fMet-tRNA-mRNA 
proofreading 

[16] 

Lys110 K110R, K110L  Required for 30S binding, fMet-tRNA-mRNA 
proofreading 
(Lys110 is more important than Tyr107 for 
binding) 

[16] 

A42T 
G71D 
D106N 
L111F 
R116C 
M172I 
P176L 

Unable to normally discriminate 
against several non-canonical 
initiation codons such as AUU and 
ACG 

 [17] 

G71 G71D – ribosome binding affinity 
only marginally affected 

NTD mutant probably directly affects the 
proofreading activity of IF3, although a final 
proof requires more direct evidence 

[17] 

D106 D106N – increased IF3 affinity for 
the 30S 

Y107L and K110L (other studies) are also 
located in this region, thereby demonstrating 
that this solvent-exposed side of the helix is 
critical for ribosome-binding. 

[17] 

R116 R116C  (cont from D106) For both K110 and R116, 
the most likely explanation is an electrostatic 
effect, as both these basic residues could 
promote contacts with the acidic rRNA. Note 
#1 

[17] 

Glu134Lys Defect in the fidelity function of IF3  [18] 
P176 P176L shows a decreased affinity 

for the 30S 
 [17] 

Asp106 
Gln108 
Lys110 
Arg112 
Leu114 
Ile115 

Helix H3 (CTD) residues involved in 
binding to the 30S (NMR titration) 

 [19] 

Leu145 
Asn146 
Lys149 
Leu155 

Helix H4 (CTD) residues involved in 
binding to the 30S (NMR titration) 

 [19] 

Arg99 
Gly101 
Thr102 
Asp103 
Gly105 

Loop L6 residues involved in binding 
to the 30S (NMR titration) 

  

Phe130 Loop L7 residues involved in binding   
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His137 to the 30S (NMR titration) 
Thr163 
Lys164 
Glu166 

Loop L8 residues involved in binding 
to the 30S (NMR titration) 

 

Thr127 Beta strand B7 residues involved in 
binding to the 30S (NMR titration) 

 

Gln169 
Ile171 
Val173 
Leu174 
Ala175 

Beta strand B9 residues involved in 
binding to the 30S (NMR titration) 

 

Glu8 
Ala10 

N-terminal tail of NTD residues 
involved in binding to the 30S (NMR 
titration) 

 

Asn16 
Gly17 

Beta strand B1 (NTD) residues 
involved in binding to the 30S (NMR 
titration) 

 

Asp52 
Ile56 

Beta strand B4 (NTD) residues 
involved in binding to the 30S (NMR 
titration) 

 

Cys65 Beta strand B5 (NTD) residues 
involved in binding to the 30S (NMR 
titration) 

 

Glu18 
Gln22 

Loop (L1) connecting B1 and B2 
(NTD) residues involved in binding 
to the 30S (NMR titration) 

 

Lys72 
Phe73 

C-terminal helix  

Ser78 Start of linker  
 

#1. D106N…the dramatic change in the ribosome-binding properties of the D106N variant is 
striking. It is not the result of a structural rearrangement, as an NMR analysis of the structure of 
the corresponding protein shows that it is unaffected by the mutation. This aspartate residue is 
one of the eight strictly conserved residues in IF3 (N16, I19, A46, D52, L53, D106, G132 and 
P176) out of which only two are solvent-exposed. This suggests that D106 plays a key role in 
specific RNA recognition. 
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Appendix D 

Bacterial strain collection 

No.* Strain Plasmid Resistance Remarks 
1 BL21(DE3)-IF3 pProEX-HTb Amp Dated: 20 Dec 07 
2 BL21(DE3)-IF1 pProEX-HTb Amp Dated: 21 Jul 08 
3 16S A h6 mt SQ pKK3535 Amp/Cam † hp1 insertion.  
4 16S A h6 mt DH5 pKK3535 Amp † hp1 insertion. Sequence 

confirmed. 
5 16S B h33a SQ380 pKK3535 Amp †   
6 16S B h33a DH5 pKK3535 Amp †  
7 16S C h44 mt SQ380 pKK3535 Amp † hp5 insertion.  
8 16S C h44 mt DH5 pKK3535 Amp † hp5 insertion. Sequence 

confirmed. 
9 16S D h39 mt SQ380 pKK3535 Amp/Cam † hp1 insertion. 

10 16S D h39 mt DH5 pKK3535 Amp † hp1 insertion. Sequence 
confirmed. 

11 16S F h10 mt SQ380 pKK3535 Amp † hp5 insertion. 
12 16S F h10 mt DH5 pKK3535 Amp † hp5 insertion. Sequence 

confirmed. 
13 BL21(DE3)-IF3-C66S pProEX-HTb Amp  
14 BL21(DE3)-IF3-R41C pProEX-HTb Amp  
15 BL21(DE3)-IF3-E45C pProEX-HTb Amp  
16 BL21(DE3)-IF3-E62C pProEX-HTb Amp  
17 BL21(DE3)-IF3-C66S-K98C pProEX-HTb Amp Dated: 01 Sept 08 
18 BL21(DE3)-IF3-C66S-M143C pProEX-HTb Amp Dated: 01 Sept 08 
19 BL21(DE3)-IF3-M143C-C66A pProEX-HTb Amp  
20 BL21(DE3)-IF3-K98C-C66A pProEX-HTb Amp  
21 BL21(DE3)-IF1-Q10C pProEX-HTb Amp Dated: 09 Apr 07 
22 DH5-IF1(RG21 strain) pRS3559 Amp Dated 30 May 07; See 

Ruben’s Strains 
23 BL21(DE3)-IF3-Q23C pProEX-HTb Amp  
24 BL21(DE3)-IF3-L30C pProEX-HTb Amp  
25 BL21(DE3)-IF3-S39C pProEX-HTb Amp  
26 BL21(DE3)-IF3-S58C pProEX-HTb Amp  
27 BL21(DE3)-IF3-C66S-S39C pProEX-HTb Amp  
28 BL21(DE3)-IF3-C66S-S58C pProEX-HTb Amp  
29 BL21(DE3)-IF3-C66S-K98C-S39C pProEX-HTb Amp  
30 BL21(DE3)-IF3-C66S-K98C-L30C pProEX-HTb Amp  
31 BL21(DE3)-IF3-C66S-K98C-S58C pProEX-HTb Amp  
32 Avi-tag His-tag IF3-C66S-K98C in BL21 pProEX-HTb Amp Prepared by Dr. Armando del 

Rio** 
33 Avi-tag His-tag IF3-C66S-S39C in BL21 pProEX-HTb Amp Prepared by Dr. Armando del 

Rio** 
34 Avi-tag His-tag IF3-C66S-S39C-K98C in

BL21 
pProEX-HTb Amp Prepared by Dr. Armando del 

Rio** 
35 KLF 1085 wt SQZ10 containing p278 pKF207 Amp From K. Fredrick (D. Qin); 

See Ref. [1] 
36 KLF 1106 SQZ10 containing p278 A790G pKF207 Amp From K. Fredrick (D. Qin); 

See Ref. [1] 
37 KLF 1104 SQZ10 containing p278 G1338A pKF207 Amp From K. Fredrick (D. Qin); 

See Ref. [1] 
38 BL21(DE3)-IF3-C66S-S39C-K98C-Y75N  pProEX-HTb Amp Prepared by Anthony Testa 
39 BL21(DE3)-RRF pProEX-HTb Amp Plasmid from S. Sternberg 

plasmid #76 
40 B105 C1G A72C pUC13  MetY mutant from Jingyi; See 

Refs. [2, 3] 
41 B105 G32A C40T pUC13  MetY mutant from Jingyi; See 

Refs. [2, 3] 
42 B105 A11C T25G pUC13  MetY mutant from Jingyi; See 
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Refs. [2, 3] 

*Location in marked freezer box 

†16S rRNA extension mutants from the Puglisi lab. See Ref. [4]. I have only sequenced the 
plasmids from the DH5 strains, not the Squires strains. 

**A His tag is on the N terminus and an Avi tag on the C terminus. All the mutants are in pProEX 
HTb, inserted between EheI and HindIII restriction sites. There is a linker between the C terminal 
of IF3 and the Avi tag sequence (15 AA): A G T P G A P T G I G T D Y D. The avi tag is: M S G L 
N D I F E A Q K I E W H E D T. Then, there is a 26 AA between the last AA in IF3 and the K in 
the Avi sequence that binds the biotin. 
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Appendix E 

FRET Data Analysis Package (FDAP) v1.7 Matlab scripts 

The following FDAP v.1.7 scripts were written by Mr. Pallav Kosuri. 

E1. loadTraces.m 

    %Loads traces from multiple files with filenames formatted as 
"<filename>#.dat", 
    %where # is the index number. The traces are returned as columns in 
a 
    %matrix with the first row as a label formatted as: "<file#>*1000 + 
<trace#>" 
  
function traces = loadTraces(filename, no) 
     
        %one file 
    if nargin == 1 
        newTraces=load([filename '.dat']); 
        ms=size(newTraces); 
            %create labels as [1 1 2 2 3 3 ...] 
        labels=1:ms(2)/2; 
        labels=[labels; labels]; 
        labels=labels(:)'; 
            %insert labels as the first row 
        newTraces=[labels; newTraces]; 
        traces=newTraces; 
  
        %multiple files 
    elseif nargin == 2 
     
            %first file 
        i=1; 
        reading_file=i 
        newTraces=load([filename int2str(i) '.dat']); 
        ms=size(newTraces); 
            %create labels as [1 1 2 2 3 3 ...] 
        labels=i*1000+(1:ms(2)/2); 
        labels=[labels; labels]; 
        labels=labels(:)'; 
            %insert labels as the first row 
        newTraces=[labels; newTraces]; 
        traces=newTraces; 
     
     
            %if more than one file 
        if no > 1 
            for i = 2:no 
                reading_file=i 
                newTraces=load([filename int2str(i) '.dat']); 
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                ms=size(newTraces); 
                    %create labels as [1 1 2 2 3 3 ...] 
                labels=i*1000+(1:ms(2)/2); 
                labels=[labels; labels]; 
                labels=labels(:)'; 
                    %insert labels as the first row 
                newTraces=[labels; newTraces]; 
             
                traces=[traces newTraces]; 
            end 
        end 
    end 
     
    ms=size(traces); 
    number_of_traces=ms(2)/2 
 

E2. separateCy.m 

function [cy3, cy5] = separateCy(in) 
  
    ms=size(in); 
    for i = (1:ms(2)/2) 
        cy3(:,i)=in(:,i*2-1); 
        cy5(:,i)=in(:,i*2); 
    end 
     
    traces=ms(2)/2 
 

E3. P_filter.m 

    %takes the cy3 and cy5 traces as arguments and  
    %returns the filtered traces - only the traces 
    %with P-values lower than or equal to the cutoff are kept. 
    %Also plots a histogram. The counting shows which  
    %trace is currently analyzed. 
  
function [cy3, cy5, P] = P_Filter(cy3, cy5) 
  
    [C, P, mPl]=evalTraces(cy3, cy5); 
     
    CUTOFF=0.5 
     
    disp('Applying filter...') 
     
    labels=cy3(1,:); 
  
        %selective filter 
    n=0; 
   % j=1 
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    for i = 1:length(P) 
        if P(i) > CUTOFF 
       %     cy3d(:, j)=cy3(:, i); 
        %    cy5d(:, j)=cy5(:, i); 
            [cy3, cy5]=removeTrace(cy3, cy5, labels(i)); 
            n=n+1; 
        %    j=j+1; 
        end 
    end 
     
        %display results 
    total=length(P) 
    discarded=n 
    kept=total-discarded 
     
    plotP(P); 
 

E4. plotTraces.m 

function plotTraces(cy3, cy5, len1, len2) 
     
    [cy3, cy5, labels]=removeLabels(cy3, cy5); 
  
    ms=size(cy3); 
    cols=ms(2); 
    rows=ms(1); 
     
        %no photobleach specified 
    if nargin==2  
        j=1; 
        while j <= cols 
            figure; 
            for n = 1:9 
                subplot(3,3,n); 
                plot(cy3(:,j), 'g'), hold on, plot(cy5(:,j), 'r'); 
                axis([0 rows -200 4000]); 
                title(labels(j)); 
                j=j+1; 
                if j > cols, break, end 
            end 
        end 
     
        %1 photobleach event specified 
    elseif nargin==3 
        tLength=0; 
             
            %remove labels 
        ms1=size(len1); 
        if ms1(1) == 2 
            ind=len1(1,:); 



202 

Appendices 

 

            for i = 1:length(ind) 
                tLength(i)=len1(2,find(labels==ind(i))); 
            end 
        else 
            tLength=len1; 
        end 
         
            %plot traces 
        j=1; 
        while j <= cols 
            figure; 
            for n = 1:9 
                subplot(3,3,n); 
                plot(cy3(:,j), 'g'), hold on, plot(cy5(:,j), 'r'); 
                title(labels(j)); 
                v=axis; 
                plot([tLength(j) tLength(j)], [v(3) v(4)], '--') 
                j=j+1; 
                if j > cols, break, end 
            end 
        end 
         
        %2 photobleach events specified 
    elseif nargin==4 
        tLength1=0; 
        tLength2=0; 
         
            %remove labels 
        ms1=size(len1); 
        if ms1(1) == 2 
            ind=len1(1,:); 
            for i = 1:length(ind) 
                tLength1(i)=len1(2,find(labels==ind(i))); 
            end 
        else 
            tLength1=len1; 
        end 
        ms2=size(len2); 
        if ms2(1) == 2 
            ind=len2(1,:); 
            for i = 1:length(ind) 
                tLength2(i)=len2(2,find(labels==ind(i))); 
            end 
        else 
            tLength2=len2; 
        end 
         
            %plot traces 
        j=1; 
        while j <= cols 
            figure; 
            for n = 1:9 
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                subplot(3,3,n); 
                plot(cy3(:,j), 'g'), hold on, plot(cy5(:,j), 'r'); 
                title(labels(j)); 
                v=axis; 
                plot([tLength1(j) tLength1(j)], [v(3) v(4)], '--b') 
                plot([tLength2(j) tLength2(j)], [v(3) v(4)], '--k') 
                j=j+1; 
                if j > cols, break, end 
            end 
        end 
    end 
     
    [cy3, cy5]=addLabels(cy3, cy5, labels); 
 

E5. J_filter.m 

    %takes the cy3 and cy5 traces as well as a vector with the 
    %J-selections (bad traces) as arguments and returns the filtered 
traces 
  
function [cy3, cy5] = J_Filter(cy3, cy5, J) 
  
    ms=size(cy3); 
     
        %selective filter 
    for i = 1:length(J) 
        [cy3, cy5]=removeTrace(cy3, cy5, J(i)); 
    end 
     
        %display results 
    ms2=size(cy3); 
    total=ms(2) 
    discarded=ms(2)-ms2(2) 
    kept=total-discarded 
 

E6. S_Filter.m 

    %filters out the traces with a Cy3 photobleach event before "minL" 
    %datapoints. 
  
function [cy3, cy5] = S_Filter(cy3, cy5, minL) 
     
        %correct for the 4 datapoints kept after photobleaching 
    minL=minL+4; 
  
        %detect Cy3 photobleach times 
    [cy3d, cy5d]=deleteCy3photobleach(cy3, cy5); 
    [cy3d, cy5d, labels]=removeLabels(cy3d, cy5d); 
    d3t=traceLength(cy3d); 
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        %selective filter 
    n=0; 
    for i = 1:length(d3t) 
        if d3t(i) < minL 
            [cy3, cy5]=removeTrace(cy3, cy5, labels(i)); 
            n=n+1;     
        end 
    end 
             
        %display results 
    total=length(d3t) 
    discarded=n 
    kept=total-discarded 
 

E7. correctBaseline.m 

function [cy3, cy5] = correctBaseline(cy3, cy5) 
     
    BLEED_COEF = 0.07 
  
    [cy3, cy5, labels]=removeLabels(cy3, cy5); 
     
    X = linspace(600, 3000, 400); 
     
    H3 = hist(cy3(:), X); 
        %truncation correction 
    H3(length(H3))=H3(length(H3)-1); 
    figure, bar(X, H3), title('Cy3 Intensity Histogram'); 
     
        %Cy3 baseline correction 
    Cy3_Baseline = X(find(H3==max(H3))) 
    cy3 = cy3 - Cy3_Baseline;     
    
        %Cy5 bleedthrough correction 
    cy5 = cy5 - BLEED_COEF*cy3; 
    
    H5 = hist(cy5(:), X); 
        %truncation correction 
    H5(length(H5))=H5(length(H5)-1); 
    figure, bar(X, H5), title('Cy5 Intensity Histogram'); 
         
        %Cy5 baseline correction 
    Cy5_Baseline = X(find(H5==max(H5))) 
    cy5 = cy5 - Cy5_Baseline;     
     
    [cy3, cy5]=addLabels(cy3, cy5, labels); 
 

E8. correctBaseline_end.m 
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%the argument noBleach is a list of all the traces that do not show 
%photobleaching 
  
function [cy3, cy5] = correctBaseline_end(cy3, cy5, noBleach) 
     
        %AVER specifies how many datapoints at the end of the trace 
that 
        %are averaged to get the baseline. 
    BLEED_COEF = 0.07 
    AVER = 10 
     
    [cy3, cy5, labels]=removeLabels(cy3, cy5); 
     
    ms = size(cy3); 
     
        %individually correct all traces that show photobleaching 
    for i = 1:ms(2) 
        if find(noBleach==labels(i)) 
            cy3_baseline(i)=0; 
            cy5_baseline(i)=0; 
        else 
            disp(labels(i)) 
             
            cy3_baseline(i) = mean(cy3((ms(1)-AVER):ms(1), i)); 
            cy3(:, i) = cy3(:, i) - cy3_baseline(i); 
             
            cy5(:, i) = cy5(:, i) - BLEED_COEF*cy3(:, i); 
            cy5_baseline(i) = mean(cy5((ms(1)-AVER):ms(1), i)); 
            cy5(:, i) = cy5(:, i) - cy5_baseline(i); 
        end 
    end 
     
        %correct all non-photobleaching traces using an average 
    cy3_average = 
mean(cy3_baseline)*length(cy3_baseline)/(length(cy3_baseline)-
length(noBleach)); 
    cy5_average = 
mean(cy5_baseline)*length(cy5_baseline)/(length(cy5_baseline)-
length(noBleach)); 
    no = find(cy3_baseline == 0); 
    cy3(:, no) = cy3(:, no) - cy3_average; 
    cy5(:, no) = cy5(:, no)-BLEED_COEF*cy3(:, no)- cy5_average; 
    cy3_baseline 
    [cy3, cy5]=addLabels(cy3, cy5, labels); 
     
%    base_list = [labels; cy3_baseline; cy5_baseline]; 
 

E9. saveTraces.m 

function saveTraces(cy3, cy5, filen) 
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    merged=mergeCy(cy3, cy5); 
    save(filen, 'merged',  '-ASCII'); 
 

E10. plotFRET.m 

    %calculates FRET and plots a histogram with 'n' bins. 
    %returns the histogram data as a two-row matrix  
    %with x-values in row 1 and y-values in row 2 
  
function FH = plotFRET(cy3, cy5, n) 
     
    [cy3, cy5]=deleteCy3photobleach(cy3, cy5); 
    F=getFRET(cy3, cy5); 
  
    X=linspace(-0.2,1.2,n); 
    H=hist(F(:),X); 
        %normalize 
    H=H/max(H); 
    figure, bar(X, H, 'k'); 
    axis([-0.2 1.2 0 max(H)*1.05]); 
    xlabel('FRET'); 
    ylabel('normalized frequency'); 
    title('FRET histogram') 
     
    FH=[X; H]; 
 

E11. plotTimeFRET.m 

    %Generates and plots a 2D histogram of the FRET time evolution. 
    %'FRETbins' and 'Tbins' are the number of bins in each dimension. 
    %cutoffT is the cutoff time in datapoints. If no cutoff time is 
given, 
    %no cutoff is applied. 
  
function [T, Y, H] = plotTimeFRET(cy3, cy5, FRETbins, Tbinsize, 
cutoffT) 
  
        %Exposure time = 50 ms 
    FPS = 10; 
     
        %Minimum/maximum count shown 
    MINCOUNT = 1; 
    MAXCOUNT = 16; 
    RESOLUTION = 800; 
  
        %calculate FRET 
    F = getFRET(cy3, cy5); 
    ms=size(F); 
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        %generate the histogram 
    T = (Tbinsize:Tbinsize:ms(1))'/FPS; 
    Y = linspace(-0.2, 1.2, FRETbins)'; 
    H = getTimeFRET(F, FRETbins, Tbinsize); 
     
        %apply cutoff in time dimension 
    if nargin == 5 
        cutoffT = cutoffT*FPS; 
        T = T(1:min(floor(cutoffT/Tbinsize), ms(1))); 
        H = H(:, 1:min(floor(cutoffT/Tbinsize), ms(1))); 
    end 
     
    TI = linspace(min(T), max(T), RESOLUTION); 
    YI = linspace(-0.2, 1.2, RESOLUTION); 
    HI = interp2(T', Y, H, TI', YI, 'cubic'); 
  
        %plot figure 
    figure, pcolor(TI', YI, HI);  
    colormap([1 1 0.8; ones(15, 3); JET]); 
    hold on 
     
    MAXCOUNT = max(max(H))*13.2; 
     
        %minimum intensity: MINCOUNT 
        %minimum intensity: MAXCOUNT 
    caxis([MINCOUNT MAXCOUNT]); 
    axis([min(T) max(T) min(Y) max(Y)]); 
     
        %plot contour lines 
    %contour(T, Y, H, (MINCOUNT:1:MAXCOUNT)) 
      
    colorbar; shading interp; axis tight square; 
     
        %add labels 
    xlabel('T (seconds)') ; ylabel('FRET') ; title('FRET Time Evolution 
Histogram') ; 
     
        %set tick marks between data points 
    %set(gca,'XTick',([2*T(1):2*(T(2)-T(1)):max(T)] + T(1)/2)) 
    %set(gca,'XTickLabel',T) 
 

Dwell time analysis: “lifetime analysis_W&L” scripts 

These scripts were written by Dr. Jiangning Wang. 

E12. getRawDwell.m 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 
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% group and stack the data into the form [ fileno(i)  FRET(i) FRET(i+1) 
n ] 
% remove the first and last dwell states in each trace. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function dwellData = getRawDwell(pathData) 
     
    fileno = pathData(:, 1); 
    FRET = pathData(:, 2); 
     
        %transition no 
    t = 1; 
        %frame no in current transition 
    n = 1; 
    for (i=(1:(length(FRET)-1))) 
         
            %new file 
        if diff(fileno(i:i+1)) 
            %dwellData(t, :) = [fileno(i) FRET(i) NaN n]; 
            %t = t + 1; 
            n = 1; 
            continue;          % skip the last dwell state of each 
trace without saving them, equals to remove the last dwell state 
        end 
  
            %transition 
        if diff(FRET(i:i+1)) 
            dwellData(t, :) = [fileno(i) FRET(i) FRET(i + 1) n]; 
            t = t + 1; 
            n = 1;         
            %no transition 
        else 
            n = n + 1; 
        end 
    end 
     
    rows = [2:t-1]; 
     
    for k=2:t-1 
       if dwellData(k-1,1)<dwellData(k,1)  % remove the first dwell 
state of each trace 
           rows = removeEntry(rows, k); 
       end  
    end 
     
    dwellData = dwellData(rows', :); 
     
E13. purifyRawDwell.m 

% purify traces by deleting or combining single datapoint transtions. 
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function dwellData = purifyRawDwell(dwellData) 
     
    filecol = dwellData(:,1); 
    sizedw = size(dwellData); 
    filemax = dwellData(sizedw(1),1);      % max file number 
     
    minorind = zeros(1,1);  % record the rows to be deleted 
     
    for i=1:filemax 
        datascope = find(filecol==i); 
        if length(datascope)==1 & dwellData(datascope, 4)==1 
            minorind = [minorind; datascope]; 
        elseif length(datascope)>=2 
            singlefile = dwellData(datascope, :);   % singlefile = a 
specific file 
            for j=1:length(datascope) 
                tempind = datascope(j); 
                if dwellData(tempind,4) == 1        % single datapoint 
transition 
                    if j == 1                       % if the single 
datapoint transition is at the beginning of the trace, add it to the 
following state 
                        minorind = [minorind; datascope(j)]; 
                        dwellData(tempind,4) = -1; 
                        dwellData(datascope(j+1),4) = 
dwellData(datascope(j+1),4)+1; 
                    elseif j == length(datascope)   % if the single 
datapoint transition is at the beginning of the trace, add it to the 
previous state 
                        minorind = [minorind; datascope(j)]; 
                        dwellData(tempind,4) = -1; 
                        k = j-1; 
                        while dwellData(datascope(k),4)<0 
                            k = k-1; 
                        end 
                        dwellData(datascope(k),4) = 
dwellData(datascope(k),4)+1;  
                    else                            % if the single 
point transition is in the middle, add it to the closer state of the 
two sides.  
                        minorind = [minorind; datascope(j)]; 
                        dwellData(tempind,4) = -1; 
                        diffpre = abs(dwellData(datascope(j-1),2)-
dwellData(datascope(j),2)); 
                        diffpos = abs(dwellData(datascope(j),2)-
dwellData(datascope(j+1),2)); 
                        if diffpre <= diffpos  
                            k = j-1; 
                            while dwellData(datascope(k),4)<0 
                                k = k-1; 
                            end 
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                            dwellData(datascope(k),4) = 
dwellData(datascope(k),4)+1; 
                            dwellData(datascope(k),3) = 
dwellData(datascope(j),3); 
                        else 
                            k = j+1; 
                            while dwellData(datascope(k),4)<0 & 
k<length(datascope) 
                                k = k+1; 
                            end 
                            dwellData(datascope(k),4) = 
dwellData(datascope(k),4)+1; 
                            m = j-1; 
                            while dwellData(datascope(m),4)<0  
                                m = m-1; 
                            end 
                            dwellData(datascope(m),3) = 
dwellData(datascope(k),2); 
                        end 
                    end 
                end 
            end 
        end 
    end 
     
    rows = [1: sizedw(1)]; 
    minorlen = length(minorind); 
    minorind = minorind(2:minorlen, 1); 
    for k = minorind.' 
        rows = removeEntry(rows, k); 
    end 
     
    dwellData = dwellData(rows', :); 
 

E.14. purifyOnOffDwell.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% combine all the successive high and low FRET states(defined by the 
threshold) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function dwellData = purifyOnOffDwell(dwellData, Filter) 
     
    if nargin==2  
        KEY = Filter;  
    else  
        KEY = 0.20; 
    end 
     
    dwellData = dwellData(:,[2,3,4]); 
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    sizedw = size(dwellData); 
    selind = 1;   
     
    for t = 1:sizedw(1)-1  
        if dwellData(t,1)>KEY  
            if dwellData(t,2)>KEY && dwellData(t+1,1)>KEY 
                selind = [selind; t]; 
                dwellData(t+1,3) = dwellData(t,3)+dwellData(t+1,3); 
            end 
        else  
            if dwellData(t,2)<=KEY && dwellData(t+1,1)<=KEY  
                selind = [selind; t];  
                dwellData(t+1,3) = dwellData(t,3)+dwellData(t+1,3); 
            end  
        end 
    end 
     
    lensel = length(selind); 
    if selind(2)==1  
        selind = selind(2:lensel); 
    end 
     
    mergeind = selind; 
    lenmerg = length(mergeind); 
     
    rowind = [1:sizedw(1)]; 
    for k = 1:lenmerg 
        rowind = removeEntry(rowind, mergeind(k)); 
    end 
    dwellData = dwellData(rowind, :); 
     
    % There's basicly no use for the following code which removes the 
row with 'NAN' 
     
    newsize = size(dwellData); 
    nanind = 0; 
    for i=1:newsize(1) 
        if isnan(dwellData(i,2))  
                nanind = [nanind; i]; 
        end 
    end 
     
    newlen = length(nanind); 
    nanind = nanind(2:newlen); 
    newrowind = [1:newsize(1)]; 
     
    for k = 1:newlen-1 
        newrowind = removeEntry(newrowind, nanind(k)); 
    end 
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    dwellData = dwellData(newrowind, :); 
     
E.15. getDecay.m 

function [ts, N] = getDecay(dwellData, bounds, cutoff_t) 
     
    start_low = bounds(1); 
    start_high = bounds(2); 
    end_low = bounds(3); 
    end_high = bounds(4); 
     
    selection = find(dwellData(:,1) > start_low & dwellData(:,1) < 
start_high & dwellData(:,2) > end_low & dwellData(:,2) < end_high); 
    maxT = max(dwellData(selection,3)); 
    t = 1:min((maxT-1), cutoff_t/0.1); 
    ts = t*0.1; 
    for i = t 
        N(i) = length(find(dwellData(selection, 3) > t(i))); 
    end 
     
    figure, plot(ts, N, '.') 
    title(['Decay curve for state bounded by: start=[' 
num2str(start_low) ', ' num2str(start_high) '], end=[' num2str(end_low) 
', ' num2str(end_high) ']']) 
    ylabel('Population') 
    xlabel('t (s)') 
    DC=[ts;N].' 
    save('decaycurvedata.dat', '-ascii', 'DC'); 
 

Dwell time analysis: FDAP v1.7 “lifetime” scripts 

These script was written by Mr. Pallav Kosuri. 

E.16. plotTDP.m 

    %type: 
    %caxis([3500 7000]) 
    %to set the color limits 
  
function [X, Y, Z] = plotTDP(dwellData, res) 
     
        %size of gaussians in TDP 
    VAR = 0.00075 
     
    RESOLUTION = 800; 
     
    X = linspace(-0.2, 1.2, res)'; 
    Y = X'; 
  
        %remove NaN transitions 
    n = 1; 
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    ms = size(dwellData); 
    while n <= ms(1) 
        if isnan(dwellData(n, 2)) 
            if n == 1 
                dwellData = dwellData(2:ms(1), :); 
            elseif n == ms(1) 
                dwellData = dwellData(1:(n-1), :); 
                break; 
            else 
                dwellData = [dwellData(1:(n-1), :); 
dwellData((n+1):ms(1), :)]; 
            end 
            ms = size(dwellData); 
        else 
            n = n + 1; 
        end 
    end 
     
        %start and stop vectors 
    start = dwellData(:, 1); 
    stop = dwellData(:, 2); 
     
    size(start) 
     
        %build TDP function 
    for j = (1:res) 
        for i = (1:res) 
            Z(j, i) = sum((1/(2*pi*VAR))*exp(-((X(i) - start).^2 + 
(Y(j) - stop).^2)/(2*VAR))); 
        end 
    end 
     
    %figure, pcolor(X, Y, Z), colormap([0 0 0; JET]), shading flat, 
axis square tight 
     
        %interpolate 
    XI = linspace(-0.2, 1.2, RESOLUTION); 
    ZI = interp2(X, Y, Z, XI', XI, 'cubic'); 
    figure, pcolor(XI', XI, ZI), colormap([1 1 1; JET]), shading flat, 
axis square tight 
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