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ABSTRACT

Approximate Dynamic Programming for Large
Scale Systems

Vijay V. Desai

Sequential decision making under uncertainty is at the heart of a wide variety of practical

problems. These problems can be cast as dynamic programs and the optimal value function can be

computed by solving Bellman’s equation. However, this approach is limited in its applicability. As

the number of state variables increases, the state space size grows exponentially, a phenomenon

known as the curse of dimensionality, rendering the standard dynamic programming approach

impractical.

An effective way of addressing curse of dimensionality is through parameterized value function

approximation. Such an approximation is determined by relatively small number of parameters

and serves as an estimate of the optimal value function. But in order for this approach to be

effective, we need Approximate Dynamic Programming (ADP) algorithms that can deliver ‘good’

approximation to the optimal value function and such an approximation can then be used to

derive policies for effective decision-making. From a practical standpoint, in order to assess the

effectiveness of such an approximation, there is also a need for methods that give a sense for the

suboptimality of a policy. This thesis is an attempt to address both these issues.

First, we introduce a new ADP algorithm based on linear programming, to compute value

function approximations. LP approaches to approximate DP have typically relied on a natural

‘projection’ of a well studied linear program for exact dynamic programming. Such programs

restrict attention to approximations that are lower bounds to the optimal cost-to-go function.

Our program – the ‘smoothed approximate linear program’ – is distinct from such approaches and

relaxes the restriction to lower bounding approximations in an appropriate fashion while remaining

computationally tractable. The resulting program enjoys strong approximation guarantees and is



shown to perform well in numerical experiments with the game of Tetris and queueing network

control problem.

Next, we consider optimal stopping problems with applications to pricing of high-dimensional

American options. We introduce the pathwise optimization (PO) method: a new convex op-

timization procedure to produce upper and lower bounds on the optimal value (the ‘price’) of

high-dimensional optimal stopping problems. The PO method builds on a dual characterization

of optimal stopping problems as optimization problems over the space of martingales, which we

dub the martingale duality approach. We demonstrate via numerical experiments that the PO

method produces upper bounds and lower bounds (via suboptimal exercise policies) of a qual-

ity comparable with state-of-the-art approaches. Further, we develop an approximation theory

relevant to martingale duality approaches in general and the PO method in particular.

Finally, we consider a broad class of MDPs and introduce a new tractable method for com-

puting bounds by consider information relaxation and introducing penalty. The method delivers

tight bounds by identifying the best penalty function among a parameterized class of penalty

functions. We implement our method on a high-dimensional financial application, namely, opti-

mal execution and demonstrate the practical value of the method vis-a-vis competing methods

available in the literature. In addition, we provide theory to show that bounds generated by our

method are provably tighter than some of the other available approaches.
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1

INTRODUCTION

We are interested in complex systems that evolve with time. The evolution of the system can

be influenced by the control applied, but is also subject to random disturbances. Associated

with the system is a cost that depends on the ‘state’ and the control applied. The goal is

to choose controls so that we minimize cost accumulated over the course of evolution of the

system. Given the broad nature of the setting, a large number of problems from diverse

areas like economics to business to engineering can be captured in this framework. However,

for most of these problems, calculating optimal control is impossible in the face of current

computing power limitations. The subject of this thesis is designing effective suboptimal

control for such systems.

1.1. Markov Decision Problem

In order to bring out ideas and motivate discussion, we present one of the simplest Markov

Decision Processes (MDPs). Consider a system characterized by finite state space X and

finite action space A that evolves over a discrete time horizon T = {0, 1, . . . , T}. At time t,

the controller observes the state of the system xt ∈ X and takes action at ∈ A and the cost

incurred is gt(xt, at). We depict this pictorially in Figure 1.1. The system probabilistically

transitions to the next state according to transition kernel P and the distribution over the

next state is given by Pat(xt, ·).

Define optimal value function J∗ : X ×T → R, where J∗(x, t) captures the minimum cost

incurred by starting from state x ∈ X at time t ∈ T and acting ‘optimally’ in the future.1
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System Controller

state xt ∈ X

action at ∈ Acost gt(xt, at)

disturbance

Figure 1.1 Markov Decision Problem

Then, J∗ satisfies the following Bellman’s equation:

(1.1) J∗(x, t) =


mina∈A {gt(x, a) +∑

x′∈X Pa(x, x′)J∗(x′, t+ 1)} if t < T

mina∈A gt(x, a) if t = T,

for all x ∈ X and t ∈ T . On the other hand, given optimal value function J∗, we can derive

optimal policy. Given optimal policy µ∗ : X × T → A, it satisfies

(1.2) µ∗(x, t) ∈ argmin
a∈A

gt(x, a) +
∑
x′∈X

Pa(x, x′)J∗(x′, t+ 1)

 ,
for all x ∈ X and t ∈ T .

For a finite state space problem as stated above, one can imagine creating a lookup table,

which given a state x ∈ X and time t ∈ T , returns the value J∗(x, t)1. This is referred to

as the lookup table representation of the value function. However, as the number of state

variables increases, the size of state space typically grows exponentially. This phenomenon

is referred to as the curse of dimensionality and renders dynamic programming intractable

in the face of problems of practical scale.

1.2. Motivating Applications

In order to gain appreciation for the kind of problems we have in mind, consider the following

applications.
1Computing and storing a lookup table is not the only approach. In certain very special cases, for

example, in the case of Linear Quadratic Control problem, one can guess the functional form of the optimal
value function and then very efficiently determine the function through recursion.
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1.2.1. Tetris

Tetris is a popular video game designed and developed by Alexey Pazhitnov in 1985. The

Tetris board, illustrated in Figure 1.2, consists of a two-dimensional grid of 20 rows and 10

columns. The game starts with an empty grid and pieces fall randomly one after another.

Each piece consists of four blocks and the player can impart any rotation and translation to

the piece. The pieces come in seven different shapes and the next piece to fall is chosen from

among these with equal probability. Whenever the pieces are placed such that there is an

entire horizontal row or line of contiguous blocks formed, a point is earned and the line gets

cleared. Once the board has enough blocks such that the incoming piece cannot be placed

for all translations and rotations, the game terminates. Hence the goal of the player is to

clear maximum number of lines before the board gets full.

Figure 1.2 Example of a Tetris board configuration.

Tetris can be considered as a Markov decision problem (Farias and Van Roy, 2006) with

the ‘state’ at a particular time encoding the current board configuration and the shape of

the next falling piece, while the ‘action’ determines the placement of the falling piece. Thus,

given a state and an action, the subsequent state is determined by the new configuration

of the board following placement, and the shape of a new falling piece that is selected
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uniformly at random. The objective of Tetris is to maximize reward, where, given a state

and an action, the per stage reward is defined to be the number of rows that are cleared

following the placement of the falling piece.

This MDP has the advantage of state space being finite, however, a crude estimate tell

us that the state space size is approximately 2200. Considering the staggering scale of the

problem, solving it via standard approach of Bellman’s equation, is a nonstarter.

1.2.2. Pricing of American Options

Financial derivatives are contracts whose payoff is contingent on the price of the underlying

stock, bond or commodities. A simple example of a derivative is a European option whose

payoff can be collected only on a predetermined exercise date. On the other hand, an

American option provides more flexibility by allowing the exercise date to be any time

during the lifetime of the contract.

These derivative securities have come to be fundamental financial products that are

traded (and hence need to be valued) in a wide variety of markets including equity, com-

modity, foreign exchange, etc. Moreover, there are billions of dollars worth options that are

held by various financial institutions who need to decide each day whether to exercise or

continue to hold the option. Hence there is need for fast computational methods, whose

solution time scales gracefully with the problem size.

Pricing of American options can be cast as a fundamental stochastic control problem,

namely, optimal stopping. Solving it would give us a decision rule for when to exercise the

option. Such a decision rule would have to be a function of the state i.e. all asset prices.

Suppose the payoff depends on n stocks that evolve according to Geometric Brownian Motion

(GBM), the decision rule is a function of Rn. For ‘small’ n, approaches using finite difference

and binomial method work well in practice, but when n is ‘large’, we have a high-dimensional

space, which renders these approaches impractical.
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1.3. Approximate Dynamic Programming

Intractable dynamic programs characterized by high-dimensional state space are a common

phenomenon and some examples were presented in Section 1.2. The classical approach of

solving Bellman’s equation is a nonstarter for such problems. An effective approach, for a

minimization dynamic program, would provide us with the following two things:

1. Policies/Upper Bounds. We are interested in policies that give us an easily imple-

mentable decision rule and in addition, by simulating such a policy, we can obtain an

estimate of the upperbound on the optimal objective function value.

2. Lower Bounds. We would also like to complement these upper bounds by computing

lower bounds to objective over all feasible policies. These lower bounds would give us

a sense for the suboptimality of the computed policy.

Over the course of this section, we will see that approximations to value functions, will

be key to computing policies/upper bounds and lower bounds on the objective value. We

begin with a discussion of approximations to value function.

1.3.1. Approximations to Value Function

Value function approximations address the curse of dimensionality through the use of pa-

rameterized function approximations. In particular, it is common to focus on linear parame-

terizations. Consider a collection of basis functions {φ1, . . . , φK} where each φi : X → R is a

real-valued function on the state space. ADP algorithms seek to find linear combinations of

the basis functions that provide good approximations to the optimal value function function.

In particular, we seek a vector of weights r ∈ T × RK so that

Jr(x, t) ,
K∑
i=1

φi(x)rt,i = Φrt(x) ≈ J∗(x, t).

Here, we define Φ , [φ1 φ2 . . . φK ] to be a matrix with columns consisting of the basis func-

tions. Given such an approximation, one can derive policies by using (1.2) and substituting
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the value function approximation instead of optimal value function. Thus, the corresponding

policy is given by

(1.3) µr(x, t) ∈ argmin
a∈A

gt(x, a) +
∑
x′∈X

Pa(x, x′)Φrt+1(x′)

 .
This approach is similar in spirit to statistical regression, where given a problem, the user

selects a set of functions, whose linear combination is used as a predictor for the output.

However, the key difference is, in the context of ADP, there is no training set with input-

output pairs.

An alternate interpretation is basis functions can be viewed as ‘features’ that given a

state, capture ‘relevant’ information for effective decision making. For example, in the case

of Tetris introduced in Section 1.2.1, one set of basis functions that has been commonly

employed was introduced by Bertsekas and Ioffe (1996). These basis functions essentially

capture the height of the ‘wall’, ‘jaggedness’ of the top of the wall, and the number of holes

in the wall; the features a human player might consider worth focussing on. Thus, we can

intuitively think of basis functions, as a way of incorporating our knowledge or intuition

about the ‘crucial’ features of the problem.

Another advantage of value function approximations is they are a compact representa-

tion and require very little storage. Typically, one would store the weights r and general

structure of the basis functions and value function approximations Φrt(x) are generated

only when needed. In contrast the optimal value function, generally requires a lookup table

representation and requires storage space on the order of state space size.

Given a basis function architecture, there a number of algorithms for computing a value

function approximation. We will introduce approximate linear programming method in the

following section.

1.3.2. Approximate Linear Programming

A dynamic program solution is characterized by value function and is the main objective of

computation. Although, value function is an arbitrary function defined on the state space, it
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can be characterized as the solution to (exact) linear program and this approach is credited to

Manne (1960). However, this linear program does not overcome the curse of dimensionality.

In particular, it is a program with as many variables as the state space size and atleast as

many constraints and hence could be a very large scale linear program.

Approximate Linear Program (ALP) reduces the number of variables in exact linear pro-

gram by focussing on linearly parameterized value function approximations. This approach

was introduced by Schweitzer and Seidmann (1985) and later analyzed by de Farias and

Van Roy (2003, 2004). de Farias and Van Roy (2003, 2004) introduce the constraint sam-

pling approach to obtain tractable dynamic programs and also establish approximation and

performance guarantees to demonstrate the soundness of this approach. From a practical

standpoint, ALP approach allows us to capitalize on linear programming, which is a mature

technology and there are a number of reliable commercial solvers.

A testament to the success of the ALP approach is the number of applications it has

seen in recent years in large scale dynamic optimization problems. Applications range from

scheduling in queueing networks (Moallemi et al., 2008; Morrison and Kumar, 1999; Veatch,

2005), revenue management (Adelman, 2007; Farias and Van Roy, 2007; Zhang and Adelman,

2008), portfolio management (Han, 2005), inventory problems (Adelman, 2004; Adelman

and Klabjan, 2009), and algorithms for solving stochastic games (Farias et al., 2011) among

others. Remarkably, in applications such as network revenue management, control policies

produced via the LP approach (namely, Adelman, 2007; Farias and Van Roy, 2007) are

competitive with ADP approaches that carefully exploit problem structure, such as, for

example, that of Topaloglu (2009).

ADP provides methods, for example ALP, to compute approximations to value functions.

In the context of a minimization dynamic program, simulating a policy yields upper bounds.

However, in order to assess the quality of these policies, we would require lower bounds on

the optimal objective.
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1.3.3. Dual Approach

A general approach to obtaining bounds is by considering relaxation of information process.

By allowing oneself to look into future, one would expect only to do better and hence obtain

bounds on the optimal value. Further, in the spirit of Lagrangian duality, we can also impose

penalty for this relaxation. This approach of obtaining lower bounds by using information

relaxation, while simultaneously introducing penalty for this relaxation, will be referred to

as the dual approach.

These methods originated in the context of American option pricing literature and have

become popular following the work of Rogers (2002), Haugh and Kogan (2004) and Andersen

and Broadie (2004). Generalization of this approach, to control problems other than optimal

stopping, have been studied by Rogers (2008) and Brown et al. (2010). Following their work,

these methods have seen applications in areas like portfolio optimization (Brown and Smith,

2010), valuation of natural gas storage (Lai et al., 2010a,b), among others.

While these methods have been applied successfully to demonstrate near optimality of

certain heuristics, one drawback is they require considerable amount of problem-specific work

in identifying the ‘right’ penalty functions. We address this issue by providing a generic

approach for computing the best penalty within a user specified parameterized family. We

introduce this approach first in the context of optimal stopping problems in Chapter 3 and

generalize this approach to MDPs in Chapter 4.

1.4. Organization of This Thesis

• Chapter 2. In this chapter, we present a novel linear program called the ‘smoothed ap-

proximate linear program’ for approximating the cost-to-go function in high-dimensional

stochastic control problems. We demonstrate bounds on the quality of approximation

to the optimal cost-to-go function afforded by our approach. These bounds are, in

general, no worse than those available for extant LP approaches, and for specific prob-

lem instances can be shown to be arbitrarily stronger. Second, experiments with our
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approach on a pair of challenging problems (the game of Tetris and a queueing network

control problem) show that the approach outperforms the existing LP approach by a

substantial margin.

• Chapter 3. In this chapter, we introduce the pathwise optimization (PO) method, a

new convex optimization procedure to produce upper and lower bounds on the optimal

value of a high-dimensional optimal stopping problem. The PO method builds on a

dual characterization of optimal stopping problems as optimization problems over the

space of martingales, which we dub the martingale duality approach. We demonstrate

via numerical experiments that the PO method produces upper and lower bounds

of a quality comparable with state-of-the-art approaches. Further, we develop an

approximation theory relevant to martingale duality approaches in general and the

PO method in particular. Finally, we compare the bounds produced by PO method

with other linear programming based ADP methods and in doing so show that the PO

method dominates those alternatives.

• Chapter 4 In this chapter, we generalize the pathwise method to a broader class of

MDPs. We propose a class of value function approximations, which can be used to

generate penalties that result in a tractable formulation. Given a parameterization of

this class, PO method provides a structured approach to determining the best penalty

within this class by solving a convex optimization problem. As an application of this

procedure, we consider the problem of optimal execution. In numerical experiments,

we observe that PO provides stronger bounds relative to the Brown and Smith (2010)

approach, with very little incremental computational burden. In theory, PO bounds

can be shown to dominate bounds obtained via ALP approach and semidefinite pro-

gramming based approach introduced by Wang and Boyd (2011).

• Chapter 5 In this chapter, we offer some concluding remarks, and discuss directions

for future work.



2

SMOOTHED APPROXIMATE LINEAR
PROGRAM

2.1. Introduction

Many dynamic optimization problems can be cast as Markov decision problems (MDPs) and

solved, in principle, via dynamic programming. Unfortunately, this approach is frequently

untenable due to the ‘curse of dimensionality’. Approximate dynamic programming (ADP)

is an approach which attempts to address this difficulty. ADP algorithms seek to compute

good approximations to the dynamic programming optimal cost-to-go function within the

span of some pre-specified set of basis functions.

ADP algorithms are typically motivated by exact algorithms for dynamic programming.

The approximate linear programming (ALP) method is one such approach, motivated by the

LP used for the computation of the optimal cost-to-go function. Introduced by Schweitzer

and Seidmann (1985) and analyzed and further developed by de Farias and Van Roy (2003,

2004), this approach is attractive for a number of reasons. First, the availability of efficient

solvers for linear programming makes the ALP approach easy to implement. Second, the

approach offers attractive theoretical guarantees. In particular, the quality of the approxi-

mation to the cost-to-go function produced by the ALP approach can be shown to compete,

in an appropriate sense, with the quality of the best possible approximation afforded by the

set of basis functions used. A testament to the success of the ALP approach is the number

of applications it has seen in recent years in large scale dynamic optimization problems.

10
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These applications range from the control of queueing networks to revenue management to

the solution of large scale stochastic games.

The optimization program employed in the ALP approach is in some sense the most

natural linear programming formulation for ADP. In particular, the ALP is identical to the

linear program used for exact computation of the optimal cost-to-go function, with further

constraints limiting solutions to the low-dimensional subspace spanned by the basis functions

used. The resulting LP implicitly restricts attention to approximations that are lower bounds

to the optimal cost-to-go function. The structure of this program appears crucial in estab-

lishing guarantees on the quality of approximations produced by the approach (de Farias and

Van Roy, 2003, 2004); these approximation guarantees were remarkable and a first for any

ADP method. That said, the restriction to lower bounds naturally leads one to ask whether

the program employed by the ALP approach is the ‘right’ math programming formulation

for ADP. In particular, it may be advantageous to consider a generalization of the ALP ap-

proach that relaxes the lower bound requirement so as to allow for a better approximation,

and, ultimately, better policy performance. Is there an alternative formulation that permits

better approximations to the cost-to-go function while remaining computationally tractable?

Motivated by this question, the present chapter introduces a new linear program for ADP we

call the ‘smoothed’ approximate linear program (or SALP). This program is a generalization

of the ALP method. We believe that the SALP represents a useful new math programming

formulation for ADP. In particular, we make the following contributions:

1. We are able to establish strong approximation and performance guarantees for ap-

proximations to the cost-to-go function produced by the SALP. Our analyses broadly

follow the approach of de Farias and Van Roy (2003, 2004) for the ALP. The resul-

tant guarantees are no worse than the corresponding guarantees for the ALP, and we

demonstrate that they can be substantially stronger in certain cases.

2. The number of constraints and variables in the SALP scale with the size of the MDP

state space. We nonetheless establish sample complexity bounds that demonstrate that

an appropriate ‘sampled’ SALP provides a good approximation to the SALP solution
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with a tractable number of sampled MDP states. Moreover, we identify structural

properties of the sampled SALP that can be exploited for fast optimization. Our

sample complexity results and these structural observations allow us to conclude that

the SALP scales similarly in computational complexity as existing LP formulations for

ADP.

3. We present computational studies demonstrating the efficacy of our approach in the

setting of two different challenging control problems. In the first study, we consider

the game of Tetris. Tetris is a notoriously difficult, ‘unstructured’ dynamic optimiza-

tion problem and has been used as a convenient testbed problem for numerous ADP

approaches. The ALP has been demonstrated to be competitive with other ADP ap-

proaches for Tetris, such as temporal difference learning or policy gradient methods

(see Farias and Van Roy, 2006). In detailed comparisons with the ALP, we show that

the SALP provides an order of magnitude improvement over controllers designed via

that approach for the game of Tetris. In the second computational study, we consider

the optimal control of a ‘criss-cross’ queueing network. this is a challenging network

control problem and a difficult test problem as witnessed by antecedent literature. Un-

der several distinct parameter regimes, we show here that the SALP adds substantial

value over the ALP approach.

In addition to these results, the SALP method has recently been considered in other

applications with favorable results: this includes work on a high-dimensional produc-

tion optimization problem in oil exploration (Wen et al., 2011), and work studying

large scale dynamic oligopoly models (Farias et al., 2011).

The literature on ADP algorithms is vast and we make no attempt to survey it here. Van

Roy (2002) or Bertsekas (2007, Chap. 6) provide good, brief overviews, while Bertsekas and

Tsitsiklis (1996) and Powell (2007) are encyclopedic references on the topic. The exact LP

for the solution of dynamic programs is attributed to Manne (1960). The ALP approach to

ADP was introduced by Schweitzer and Seidmann (1985) and de Farias and Van Roy (2003,
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2004). de Farias and Van Roy (2003) establish approximation guarantees for the ALP

approach. These guarantees are especially strong if the basis spans suitable ‘Lyapunov’-like

functions. The approach we present yields strong bounds if any such Lyapunov function

exists, whether or not it is spanned by the basis. de Farias and Van Roy (2006) introduce

a program for average cost approximate dynamic programming that resembles the SALP;

a critical difference is that their program requires the relative violation allowed across ALP

constraints be specified as input. Contemporaneous with the present work, Petrik and

Zilberstein (2009) propose a relaxed linear program for approximating the cost-to-go function

of a dynamic program. This linear program is similar to the SALP program (2.14) herein.

The crucial determinant of performance in either program is a certain choice of Lagrange

multipliers. Our work explicitly identifies such a choice, and for this choice, develops concrete

approximation guarantees that compare favorably with guarantees available for the ALP. In

addition, the choice of Lagrange multipliers identified also proves to be practically valuable

as is borne out by our experiments. In contrast, Petrik and Zilberstein (2009) stop short

of identifying this crucial input and thus provide neither approximation guarantees nor a

‘generic’ choice of multipliers for practical applications.

The remainder of this chapter is organized as follows: In Section 2.2, we formulate the

approximate dynamic programming setting and describe the ALP approach. The smoothed

ALP is developed as a relaxation of the ALP in Section 2.3. Section 2.4 provides a theoretical

analysis of the SALP, in terms of approximation and performance guarantees, as well as a

sample complexity bound. In Section 2.5, we describe the practical implementation of the

SALP method, illustrating how parameter choices can be made as well as how to efficiently

solve the resulting optimization program. Section 2.6 contains the computational study of the

game Tetris, while the computational study in Section 2.7 considers a queueing application.

2.2. Problem Formulation

Our setting is that of a discrete-time, discounted infinite-horizon, cost-minimizing MDP with

a finite state space X and finite action space A. At time t, given the current state xt and
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a choice of action at, a per-stage cost g(xt, at) is incurred. The subsequent state xt+1 is

determined according to the transition probability kernel Pat(xt, ·).

A stationary policy µ : X → A is a mapping that determines the choice of action at each

time as a function of the state. Given each initial state x0 = x, the expected discounted cost

(cost-to-go function) of the policy µ is given by

Jµ(x) , Eµ
[ ∞∑
t=0

αtg(xt, µ(xt))
∣∣∣∣∣ x0 = x

]
.

Here, α ∈ (0, 1) is the discount factor. The expectation is taken under the assumption that

actions are selected according to the policy µ. In other words, at each time t, at , µ(xt).

Denote by Pµ ∈ RX×X the transition probability matrix for the policy µ, whose (x, x′)th

entry is Pµ(x)(x, x′). Denote by gµ ∈ RX the vector whose xth entry is g(x, µ(x)). Then, the

cost-to-go function Jµ can be written in vector form as

Jµ =
∞∑
t=0

αtP t
µgµ.

Further, the cost-to-go function Jµ is the unique solution to the equation TµJ = J , where

the operator Tµ is defined by TµJ = gµ + αPµJ .

Our goal is to find an optimal stationary policy µ∗, that is, a policy that minimizes the

expected discounted cost from every state x. In particular,

µ∗(x) ∈ argmin
µ

Jµ(x), ∀ x ∈ X .

The Bellman operator T is defined component-wise according to

(TJ)(x) , min
a∈A

g(x, a) + α
∑
x′∈X

Pa(x, x′)J(x′), ∀ x ∈ X .

Bellman’s equation is then the fixed point equation

(2.1) TJ = J.

Standard results in dynamic programming establish that the optimal cost-to-go function J∗

is the unique solution to Bellman’s equation (see, for example, Bertsekas, 2007, Chap. 1).

Further, if µ∗ is a policy that is greedy with respect to J∗ (i.e., µ∗ satisfies TJ∗ = Tµ∗J
∗),

then µ∗ is an optimal policy.
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2.2.1. The Linear Programming Approach

A number of computational approaches are available for the solution of the Bellman equation.

One approach involves solving the optimization program:

(2.2)
maximize

J
ν>J

subject to J ≤ TJ.

Here, ν ∈ RX is a vector with positive components that are known as the state-relevance

weights. The above program is indeed an LP since for each state x, the constraint J(x) ≤

(TJ)(x) is equivalent to the set of |A| linear constraints

J(x) ≤ g(x, a) + α
∑
x′∈X

Pa(x, x′)J(x′), ∀ a ∈ A.

We refer to (2.2), which is credited to Manne (1960), as the exact LP. A simple argument,

included here for completeness, establishes that J∗ is the unique optimal solution: suppose

that a vector J is feasible for the exact LP (2.2). Since J ≤ TJ , monotonicity of the Bellman

operator implies that J ≤ T kJ , for any integer k ≥ 1. Since the Bellman operator T is a

contraction, T kJ must converge to the unique fixed point J∗ as k →∞. Thus, we have that

J ≤ J∗. Then, it is clear that every feasible point for (2.2) is a component-wise lower bound

to J∗. Since J∗ itself is feasible for (2.2), it must be that J∗ is the unique optimal solution

to the exact LP.

2.2.2. The Approximate Linear Program

In many problems, the size of the state space is enormous due to the curse of dimensionality.

In such cases, it may be prohibitive to store, much less compute, the optimal cost-to-go

function J∗. In approximate dynamic programming (ADP), the goal is to find tractable

approximations to the optimal cost-to-go function J∗, with the hope that they will lead to

good policies.

Specifically, consider a collection of basis functions {φ1, . . . , φK} where each φi : X → R

is a real-valued function on the state space. ADP algorithms seek to find linear combinations
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of the basis functions that provide good approximations to the optimal cost-to-go function.

In particular, we seek a vector of weights r ∈ RK so that

J∗(x) ≈ Jr(x) ,
K∑
i=1

φi(x)ri = Φr(x).

Here, we define Φ , [φ1 φ2 . . . φK ] to be a matrix with columns consisting of the basis

functions. Given a vector of weights r and the corresponding value function approximation

Φr, a policy µr is naturally defined as the ‘greedy’ policy with respect to Φr, i.e. as TµrΦr =

TΦr.

One way to obtain a set of weights is to solve the exact LP (2.2), but restricting to

the low-dimensional subspace of vectors spanned by the basis functions. This leads to the

approximate linear program (ALP), introduced by Schweitzer and Seidmann (1985), which

is defined by

(2.3)
maximize

r
ν>Φr

subject to Φr ≤ TΦr.

For the balance of the chapter, we will make the following assumption:

Assumption 1. Assume the ν is a probability distribution (ν ≥ 0, 1>ν = 1), and that the

constant function 1 is in the span of the basis functions Φ.

The geometric intuition behind the ALP is illustrated in Figure 2.1(a). Supposed that

rALP is a vector that is optimal for the ALP. Then the approximate value function ΦrALP will

lie on the subspace spanned by the columns of Φ, as illustrated by the orange line. ΦrALP

will also satisfy the constraints of the exact LP, illustrated by the dark gray region. By the

discussion in Section 2.2.1, this implies that ΦrALP ≤ J∗. In other words, the approximate

cost-to-go function is necessarily a point-wise lower bound to the true cost-to-go function in

the span of Φ.

One can thus interpret the ALP solution rALP equivalently as the optimal solution to the

program

(2.4)
minimize

r
‖J∗ − Φr‖1,ν

subject to Φr ≤ TΦr.
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Here, the weighted 1-norm in the objective is defined by

‖J∗ − Φr‖1,ν ,
∑
x∈X

ν(x)|J∗(x)− Φr(x)|.

This implies that the approximate LP will find the closest approximation (in the appropriate

norm) to the optimal cost-to-go function, out of all approximations satisfying the constraints

of the exact LP.

J = Φr

ΦrALP

J∗

ν
J(1)

J(2)

(a) ALP case.

J = Φr

ΦrSALP
J∗

ν
J(1)

J(2)

(b) SALP case.

Figure 2.1 A cartoon illustrating the feasible set and optimal solution for the ALP and
SALP, in the case of a two-state MDP. The axes correspond to the components of the value
function. A careful relaxation from the feasible set of the ALP to that of the SALP can yield
an improved approximation. It is easy to construct a concrete two state example with the
above features.

2.3. The Smoothed ALP

The J ≤ TJ constraints in the exact LP, which carry over to the ALP, impose a strong

restriction on the cost-to-go function approximation: in particular they restrict us to ap-

proximations that are lower bounds to J∗ at every point in the state space. In the case where

the state space is very large, and the number of basis functions is (relatively) small, it may
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be the case that constraints arising from rarely visited or pathological states are binding and

influence the optimal solution.

In many cases, the ultimate goal is not to find a lower bound on the optimal cost-to-

go function, but rather to find a good approximation. In these instances, it may be that

relaxing the constraints in the ALP, so as not to require a uniform lower bound, may allow

for better overall approximations to the optimal cost-to-go function. This is also illustrated

in Figure 2.1. Relaxing the feasible region of the ALP in Figure 2.1(a) to the light gray

region in Figure 2.1(b) would yield the point ΦrSALP as an optimal solution. The relaxation

in this case is clearly beneficial; it allows us to compute a better approximation to J∗ than

the point ΦrSALP.

Can we construct a fruitful relaxation of this sort in general? The smoothed approximate

linear program (SALP) is given by:

(2.5)

maximize
r,s

ν>Φr

subject to Φr ≤ TΦr + s,

π>s ≤ θ, s ≥ 0.

Here, a vector s ∈ RX of additional decision variables has been introduced. For each state x,

s(x) is a non-negative decision variable (a slack) that allows for violation of the corresponding

ALP constraint. The parameter θ ≥ 0 is a non-negative scalar. The parameter π ∈ RX is

a probability distribution known as the constraint violation distribution. The parameter θ

is thus a violation budget: the expected violation of the Φr ≤ TΦr constraint, under the

distribution π, must be less than θ.

The SALP can be alternatively written as

(2.6)
maximize

r
ν>Φr

subject to π>(Φr − TΦr)+ ≤ θ.

Here, given a vector J , J+(x) , max(J(x), 0) is defined to be the component-wise positive

part. Note that, when θ = 0, the SALP is equivalent to the ALP. When θ > 0, the SALP

replaces the ‘hard’ constraints of the ALP with ‘soft’ constraints in the form of a hinge-loss

function.
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The balance of the chapter is concerned with establishing that the SALP forms the basis

of a useful approximate dynamic programming algorithm in large scale problems:

• We identify a concrete choice of violation budget θ and an idealized constraint violation

distribution π for which the SALP provides a useful relaxation in that the optimal

solution can be a better approximation to the optimal cost-to-go function. This brings

the cartoon improvement in Figure 2.1 to fruition for general problems.

• We show that the SALP is tractable (i.e., it is well approximated by an appropriate

‘sampled’ version) and present computational experiments for a hard problem (Tetris)

illustrating an order of magnitude improvement over the ALP.

2.4. Analysis

This section is dedicated to a theoretical analysis of the SALP. The overarching objective

of this analysis is to provide some assurance of the soundness of the proposed approach. In

some instances, the bounds we provide will be directly comparable to bounds that have been

developed for the ALP method. As such, a relative consideration of the bounds in these

two cases can provide a theoretical comparison between the ALP and SALP methods. In

addition, our analysis will serve as a crucial guide to practical implementation of the SALP

as will be described in Section 2.5. In particular, the theoretical analysis presented here

provides intuition as to how to select parameters such as the state-relevance weights and the

constraint violation distribution. We note that all of our bounds are relative to a measure of

how well the approximation architecture employed is capable of approximating the optimal

cost-to-go function; it is unreasonable to expect non-trivial bounds that are independent of

the architecture used.

Our analysis will present three types of results:

• Approximation guarantees (Sections 2.4.2–2.4.4): We establish bounds on the distance

between approximations computed by the SALP and the optimal value function J∗,
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relative to the distance between the best possible approximation afforded by the cho-

sen basis functions and J∗. These guarantees will indicate that the SALP computes

approximations that are of comparable quality to the projection1 of J∗ on to the linear

span of Φ. We explicitly demonstrate our approximation guarantees in the context of

a simple, concrete queueing example, and show that they can be much stronger than

corresponding guarantees for the ALP.

• Performance bounds (Section 2.4.5): While it is desirable to approximate J∗ as closely

as possible, an important concern is the quality of the policies generated by acting

greedily according to such approximations, as measured by their performance. We

present bounds on the performance loss incurred, relative to the optimal policy, in

using an SALP approximation.

• Sample complexity results (Section 2.4.6): The SALP is a linear program with a large

number of constraints as well as variables. In practical implementations, one may

consider a ‘sampled’ version of this program that has a manageable number of variables

and constraints. We present sample complexity guarantees that establish bounds on

the number of samples required to produce a good approximation to the solution of

the SALP. These bounds scale linearly with the number of basis function K and are

independent of the size of the state space X .

2.4.1. Idealized Assumptions

Our analysis of the SALP in this section is predicated on the knowledge of an idealized

probability distribution over states. In particular, letting µ∗ be an optimal policy and Pµ∗

the associated transition matrix, we will require knowledge of the distribution πµ∗,ν given by

(2.7) π>µ∗,ν , (1− α)ν>(I − αPµ∗)−1 = (1− α)
∞∑
t=0

αtν>P t
µ∗ .

1 Note that it is intractable to directly compute the projection since J∗ is unknown.



CHAPTER 2. SMOOTHED APPROXIMATE LINEAR PROGRAM 21

Here, ν is an initial distribution over states satisfying Assumption 1. The distribution πµ∗,ν
may be interpreted as yielding the discounted expected frequency of visits to a given state

when the initial state is distributed according to ν and the system runs under the policy µ∗.

The distribution πµ∗,ν will be used as the SALP constraint violation distribution in order to

develop approximation bounds (Theorems 1–2) and a performance bound (Theorem 3), and

as a sampling distribution in our analysis of sample complexity (Theorem 4).

We note that assumptions such as knowledge of the idealized distribution described in

the preceding paragraph are not unusual in the analysis of ADP algorithms. In the case

of the ALP, one either assumes the the ability to solve a linear program with as many

constraints as there are states, or absent that, the ‘sampled’ ALP introduced by de Farias

and Van Roy (2004) requires access to states sampled according to precisely this distribution.

Theoretical analyses of other approaches to approximate DP such as approximate value

iteration and temporal difference learning similarly rely on the knowledge of specialized

sampling distributions that cannot be obtained tractably (see de Farias and Van Roy, 2000).

2.4.2. A Simple Approximation Guarantee

This section presents a first, simple approximation guarantee for the following specialization

of the SALP in (2.5),

(2.8)

maximize
r,s

ν>Φr

subject to Φr ≤ TΦr + s,

π>µ∗,νs ≤ θ, s ≥ 0.

Here, the constraint violation distribution is set to be πµ∗,ν .

Before we state our approximation guarantee, consider the following function:

(2.9)

`(r, θ) , minimize
s,γ

γ/(1− α)

subject to Φr ≤ TΦr + s+ γ1,

π>µ∗,νs ≤ θ, s ≥ 0.

We will denote by s(r, θ) the s component of the solution to (2.9). Armed with this definition,

we are now in a position to state our first, crude approximation guarantee:
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Theorem 1. Suppose that rSALP is an optimal solution to the SALP (2.8), and let r∗ satisfy

r∗ ∈ argmin
r

‖J∗ − Φr‖∞.

Then,

(2.10) ‖J∗ − ΦrSALP‖1,ν ≤ ‖J∗ − Φr∗‖∞ + `(r∗, θ) + 2θ
1− α.

As we will see shortly in the proof of Theorem 1, given a vector r of basis function weights

and a violation budget θ, the quantity `(r, θ) obtained by solving (2.9) defines the minimal

translation (in the direction of the constant vector 1) of r that yields a feasible solution for

(2.8). The above theorem allows us to interpret `(r∗, θ) + 2θ/(1 − α) as an upper bound

to the approximation error (in the ‖ · ‖1,ν norm) associated with the SALP solution rSALP,

relative to the error of the best approximation r∗ (in the ‖ · ‖∞ norm). Note that this upper

bound cannot be computed, in general, since r∗ is unknown.

Theorem 1 provides justification for the intuition, described in Section 2.3, that a relax-

ation of the feasible region of the ALP will result in better value function approximations.

To see this, first consider the following lemma (whose proof may be found in Appendix 2.8.1)

that characterizes the function `(r, θ):

Lemma 1. For any r ∈ RK and θ ≥ 0:

(i) `(r, θ) is a finite-valued, decreasing, piecewise linear, convex function of θ.

(ii)

`(r, θ) ≤ 1 + α

1− α‖J
∗ − Φr‖∞.

(iii) The right partial derivative of `(r, θ) with respect to θ satisfies

∂+

∂θ+ `(r, 0) = −
(1− α)

∑
x∈Ω(r)

πµ∗,ν(x)
−1

,

where

Ω(r) , argmax
{x∈X : πµ∗,ν(x)>0}

Φr(x)− TΦr(x).
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Then, we have the following corollary:

Corollary 1. Define USALP(θ) to be the upper bound in (2.10), i.e.,

USALP(θ) , ‖J∗ − Φr∗‖∞ + `(r∗, θ) + 2θ
1− α.

Then:

(i)

USALP(0) ≤ 2
1− α‖J

∗ − Φr∗‖∞.

(ii) The right partial derivative of USALP(θ) with respect to θ satisfies

d+

dθ+USALP(0) = 1
1− α

2−
 ∑
x∈Ω(r∗)

πµ∗,ν(x)
−1

 .
Proof. The result follows immediately from Parts (ii) and (iii) of Lemma 1. �

Suppose that θ = 0, in which case the SALP (2.8) is identical to the ALP (2.3), thus,

rSALP = rALP. Applying Part (i) of Corollary 1, we have, for the ALP, the approximation

error bound

(2.11) ‖J∗ − ΦrALP‖1,ν ≤
2

1− α‖J
∗ − Φr∗‖∞.

This is precisely Theorem 2 of de Farias and Van Roy (2003); we recover their approximation

guarantee for the ALP.

Now observe that, from Part (ii) of Corollary 1, if the set Ω(r∗) is of very small probability

according to the distribution πµ∗,ν , we expect that the upper bound USALP(θ) may decrease

rapidly as θ is increased from 0.2 In other words, if the Bellman error Φr∗(x) − TΦr∗(x)

produced by r∗ is maximized at states x that are collectively of very small probability, then

we expect to have a choice of θ > 0 for which USALP(θ) < USALP(0). In this case, the bound

(2.10) on the SALP solution will be an improvement over the bound (2.11) on the ALP

solution.

2Already if πµ∗,ν(Ω(r∗)) < 1/2 , then d+

dθ+USALP(0) < 0.



CHAPTER 2. SMOOTHED APPROXIMATE LINEAR PROGRAM 24

Before we present the proof of Theorem 1 we present an auxiliary claim that we will have

several opportunities to use. The proof can be found in Appendix 2.8.1.

Lemma 2. Suppose that the vectors J ∈ RX and s ∈ RX satisfy

J ≤ Tµ∗J + s.

Then,

J ≤ J∗ + ∆∗s,

where

∆∗ ,
∞∑
k=0

(αPµ∗)k = (I − αPµ∗)−1,

and Pµ∗ is the transition probability matrix corresponding to an optimal policy.

A feasible solution to the ALP is necessarily a lower bound to the optimal cost-to-go

function, J∗. This is no longer the case for the SALP; the above lemma characterizes the

extent to which this restriction is relaxed. In particular, if (r, s) is feasible for the SALP

(2.8), then,

Φr ≤ J∗ + ∆∗s.

We now proceed with the proof of Theorem 1:

Proof of Theorem 1. Define the weight vector r̃ ∈ Rm according to

Φr̃ = Φr∗ − `(r∗, θ)1.

Note that r̃ is well-defined since 1 ∈ span(Φ). Set s̃ = s(r∗, θ), the s-component of a solution

to the LP (2.9) with parameters r∗ and θ. We will demonstrate that (r̃, s̃) is feasible for

(2.8). Observe that, by the definition of the LP (2.9),

Φr∗ ≤ TΦr∗ + s̃+ (1− α)`(r∗, θ)1.

Then,

TΦr̃ = TΦr∗ − α`(r∗, θ)1

≥ Φr∗ − s̃− (1− α)`(r∗, θ)1− α`(r∗, θ)1

= Φr̃ − s̃.
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Now, let (rSALP, s̄) be a solution to the SALP (2.8). By Lemma 2,

‖J∗ − ΦrSALP‖1,ν ≤ ‖J∗ − ΦrSALP + ∆∗s̄‖1,ν + ‖∆∗s̄‖1,ν

= ν>(J∗ − ΦrSALP + ∆∗s̄) + ν>∆∗s̄

= ν>(J∗ − ΦrSALP) +
2π>µ∗,ν s̄
1− α

≤ ν>(J∗ − ΦrSALP) + 2θ
1− α.

(2.12)

Since (r̃, s̃) is feasible for (2.8), we have that

‖J∗ − ΦrSALP‖1,ν ≤ ν>(J∗ − Φr̃) + 2θ
1− α

= ν>(J∗ − Φr∗) + ν>(Φr∗ − Φr̃) + 2θ
1− α

= ν>(J∗ − Φr∗) + `(r∗, θ) + 2θ
1− α

≤ ‖J∗ − Φr∗‖∞ + `(r∗, θ) + 2θ
1− α,

(2.13)

as desired. �

While Theorem 1 reinforces the intuition (shown via Figure 2.1) that the SALP will

permit closer approximations to J∗ than the ALP, the bound leaves room for improvement:

1. The right hand side of our bound measures projection error, ‖J∗−Φr∗‖∞ in the ‖ · ‖∞
norm. Since it is unlikely that the basis functions Φ will provide a uniformly good

approximation over the entire state space, the right hand side of our bound could be

quite large.

2. As suggested by (2.4), the choice of state relevance weights can significantly influence

the solution. In particular, it allows us to choose regions of the state space where we

would like a better approximation of J∗. The right hand side of our bound, however,

is independent of ν.

3. Our guarantee does not suggest a concrete choice of the violation budget parameter θ.

The next section will present a substantially refined approximation bound, that will

address these issues.
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2.4.3. A Stronger Approximation Guarantee

With the intent of deriving stronger approximation guarantees, we begin this section by

introducing a ‘nicer’ measure of the quality of approximation afforded by Φ. In particular,

instead of measuring the approximation error J∗ −Φr∗ in the ‖ · ‖∞ norm as we did for our

previous bounds, we will use a weighted max norm defined according to:

‖J‖∞,1/ψ , max
x∈X

|J(x)|
ψ(x) .

Here, ψ : X → [1,∞) is a given ‘weighting’ function. The weighting function ψ allows us

to weight approximation error in a non-uniform fashion across the state space and in this

manner potentially ignore approximation quality in regions of the state space that are less

relevant. We define Ψ to be the set of all weighting functions, i.e.,

Ψ ,
{
ψ ∈ RX : ψ ≥ 1

}
.

Given a particular ψ ∈ Ψ, we define a scalar

β(ψ) , max
x,a

∑
x′ Pa(x, x′)ψ(x′)

ψ(x) .

Note that β(ψ) is an upper bound on the one-step expected value of ψ relative to the current

value when evaluated along a state trajectory under an arbitrary policy, i.e.,

E [ψ(xt+1) | xt = x, at = a] ≤ β(ψ)ψ(x), ∀ x ∈ X , a ∈ A.

When β(ψ) is small, then ψ(xt+1) is expected to be small relative to ψ(xt), hence β(ψ) can

be interpreted as a measure of system ‘stability’.

In addition to specifying the sampling distribution π, as we did in Section 2.4.2, we

will specify (implicitly) a particular choice of the violation budget θ. In particular, we will

consider solving the following SALP:

(2.14)
maximize

r,s
ν>Φr −

2π>µ∗,νs
1− α

subject to Φr ≤ TΦr + s, s ≥ 0.
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Note that (2.14) is a Lagrangian relaxation of (2.8). It is clear that (2.14) and (2.8) are

equivalent in the sense that there exists a specific choice of θ so any optimal solution to

(2.14) is an optimal solution to (2.8) (for a formal statement and proof of this fact see

Lemma 4 in Appendix 2.8.1). We then have:

Theorem 2. If rSALP is an optimal solution to (2.14), then

‖J∗ − ΦrSALP‖1,ν ≤ inf
r,ψ∈Ψ

‖J∗ − Φr‖∞,1/ψ
(
ν>ψ +

2(π>µ∗,νψ)(αβ(ψ) + 1)
1− α

)
.

Before presenting a proof for this approximation guarantee, it is worth placing the result

in context to understand its implications. For this, we recall a closely related result shown

by de Farias and Van Roy (2003) for the ALP. They demonstrate that a solution rALP to

the ALP (2.3) satisfies

(2.15) ‖J∗ − ΦrALP‖1,ν ≤ inf
r,ψ∈Ψ̄

‖J∗ − Φr‖∞,1/ψ
2ν>ψ

1− αβ(ψ) ,

where

Ψ̄ , {ψ ∈ Ψ : ψ ∈ span(Φ), αβ(ψ) < 1}.

Note that (2.15) provides a bound over a collection of weighting functions ψ that are within

the span of the basis Φ and satisfy a ‘Lyapunov’ condition β(ψ) < 1/α. Suppose that there is

a particular Lyapunov function ψ such that under the ‖·‖∞,1/ψ norm, J∗ is well approximated

by a function in the span of Ψ, i.e., infr ‖J∗ − Φr‖∞,1/ψ is small. In order for the left-hand

side of (2.15) also to be small and hence guarantee a small approximation error for the ALP,

it must be the case that ψ is contained in the basis. Hence, being able to select a basis

that spans suitable Lyapunov functions is viewed to be an important task in ensuring good

approximation guarantees for the ALP. This often requires a good deal of problem specific

analysis; de Farias and Van Roy (2003) identify appropriate ψ for several queueing models.

To contrast with the SALP, the guarantee we present holds over all possible ψ (including

those ψ that do not satisfy the Lyapunov condition β(ψ) < 1/α, and that are not necessarily

in the span of Φ). As we will see in Section 2.4.4, this difference can be significant.
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To provide another comparison, let us focus attention on a particular choice of ν, namely

ν = πµ∗ , π∗, the stationary distribution induced under an optimal policy µ∗. In this

case, restricting attention to the set of weighting functions Ψ̄ so as to make the two bounds

comparable, Theorem 2 guarantees that

‖J∗ − ΦrSALP‖1,ν ≤ inf
r,ψ∈Ψ̄

‖J∗ − Φr‖∞,1/ψ
(
π>∗ ψ + 2(π>∗ ψ)(αβ(ψ) + 1)

1− α

)

≤ inf
r,ψ∈Ψ̄

‖J∗ − Φr‖∞,1/ψ
5π>∗ ψ
1− α.

(2.16)

On the other hand, observing that β(ψ) ≥ 1 for all ψ ∈ Ψ, the right hand side for the ALP

bound (2.15) is at least

inf
r,ψ∈Ψ̄

‖J∗ − Φr‖∞,1/ψ
2π>∗ ψ
1− α.

Thus, the approximation guarantee of Theorem 2 is at most a constant factor of 5/2 worse

than the guarantee (2.15) for the ALP, and can be significantly better since it allows for the

consideration of weighting functions outside the span of the basis.

Proof of Theorem 2. Let r ∈ Rm and ψ ∈ Ψ be arbitrary. Define the vector s̃ ∈ RX

component-wise by

s̃(x) ,
(
(Φr)(x)− (TΦr)(x)

)+
.

Observe that (r, s̃) is feasible for (2.14). Furthermore,

π>µ∗,ν s̃ ≤ (π>µ∗,νψ)‖s̃‖∞,1/ψ ≤ (π>µ∗,νψ)‖TΦr − Φr‖∞,1/ψ.

Finally, note that

ν>(J∗ − Φr) ≤ (ν>ψ)‖J∗ − Φr‖∞,1/ψ.

Now, suppose that (rSALP, s̄) is an optimal solution to the SALP (2.14). We have from

the inequalities in (2.12) in the proof of Theorem 1 and the above observations,

‖J∗ − ΦrSALP‖1,ν ≤ ν>(J∗ − ΦrSALP) +
2π>µ∗,ν s̄
1− α

≤ ν>(J∗ − Φr) +
2π>µ∗,ν s̃
1− α

≤ (ν>ψ)‖J∗ − Φr‖∞,1/ψ + ‖TΦr − Φr‖∞,1/ψ
2π>µ∗,νψ
1− α .

(2.17)
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Since our choice of r and ψ were arbitrary, we have:

(2.18) ‖J∗ − ΦrSALP‖1,ν ≤ inf
r,ψ∈Ψ

(ν>ψ)‖J∗ − Φr‖∞,1/ψ + ‖TΦr − Φr‖∞,1/ψ
2π>µ∗,νψ
1− α .

We would like to relate the Bellman error term TΦr − Φr on the right hand side of (2.18)

to the approximation error J∗ − Φr. In order to do so, first note that, for any vectors

F1, F2 ∈ RA with a1 ∈ argmina F1(a) and a2 ∈ argmina F2(a),

min
a

F1(a)−min
a

F2(a) = F1(a1)− F2(a2) ≤ F1(a2)− F2(a2) ≤ max
a
|F1(a)− F2(a)| .

By swapping the roles of F1 and F2, it is easy to see that
∣∣∣∣min
a

F1(a)−min
a

F2(a)
∣∣∣∣ ≤ max

a
|F1(a)− F2(a)| .

Examining the definition of the Bellman operator T , this implies that, for any vectors J, J̄ ∈

RX and any x ∈ X ,

|TJ(x)− T J̄(x)| ≤ αmax
a

∑
x′∈X

Pa(x, x′)|J(x′)− J̄(x′)|.

Therefore,

‖TΦr − J∗‖∞,1/ψ ≤ αmax
x,a

∑
x′ Pa(x, x′)|Φr(x′)− J∗(x′)|

ψ(x)

≤ αmax
x,a

∑
x′ Pa(x, x′)ψ(x′) |Φr(x

′)−J∗(x′)|
ψ(x′)

ψ(x)

≤ αβ(ψ)‖J∗ − Φr‖∞,1/ψ.

Thus,

‖TΦr − Φr‖∞,1/ψ ≤ ‖TΦr − J∗‖∞,1/ψ + ‖J∗ − Φr‖∞,1/ψ

≤ ‖J∗ − Φr‖∞,1/ψ(1 + αβ(ψ)).
(2.19)

Combining (2.18) and (2.19), we get the desired result. �
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2.4.4. Approximation Guarantee: A Queueing Example

In this section, we will examine the strength of the approximation guarantee we have provided

for the SALP (Theorem 2) in a simple, concrete model studied in the context of the ALP

by de Farias and Van Roy (2003). In particular, we consider an autonomous queue whose

queue-length dynamics evolve over the state space X , {0, 1, . . . , N − 1} according to

xt+1 =


max(xt − 1, 0) w.p. 1− p,

min(xt + 1, N − 1) w.p. p.

Here, we assume that p ∈ (0, 1/2) and N ≥ 1 is the buffer size. For convenience so as to

avoid integrality issues, we will assume that N − 1 is a multiple of 4. For 0 < x < N − 1,

define the cost function g(x) , x2. As in de Farias and Van Roy (2003), we may and will

select g(0) and g(N − 1) so that J∗(x) = ρ2x
2 + ρ1x + ρ0 for constants ρ2 > 0, ρ1, and

ρ0 > 0 that depend only on p and the discount factor α. We take ν to be the steady-state

distribution over states of the resulting birth-death chain, i.e., for all x ∈ X ,

ν(x) = 1− q
1− qN qx, where q ,

p

1− p.

Note that since this system is uncontrolled, we have πµ∗,ν = ν.

Assume we have a constant basis function and a linear basis function, i.e., φ1(x) ,

1 and φ2(x) , x, for x ∈ X . Note that this is different than the example studied by

de Farias and Van Roy (2003), which assumed basis functions φ1(x) , 1 and φ2(x) , x2.

Nonetheless, the best possible approximation to J∗ within this architecture continues to have

an approximation error that is uniformly bounded in N . In particular, we have that

inf
r
‖J∗ − Φr‖1,ν ≤ ‖J∗ − (ρ0φ1 + ρ1φ2)‖1,ν = ρ2

1− q
1− qN

N−1∑
x=0

qxx2

≤ ρ2

∞∑
x=0

qxx2 = ρ2q

(1− q)3 .

We make two principal claims for this problem setting:

(a) Theorem 2 in fact shows that the SALP is guaranteed to find an approximation in the

span of the basis functions with an approximation error that is also uniformly bounded

in N .
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(b) We will see that the corresponding guarantee, (2.15), for the ALP (de Farias and Van

Roy, 2003, Theorem 4.2) can guarantee at best an approximation error that scales

linearly in N .

The broad idea used in establishing the above claims is as follows: For (a), we utilize

a (quadratic) Lyapunov function identified by de Farias and Van Roy (2003) for the very

problem here to produce an upper bound on the approximation guarantee we have devel-

oped for the SALP; we are careful to exclude this Lyapunov function from our basis. We

then consider the ALP with the same basis, and absent the ability to utilize the quadratic

Lyapunov function alluded to, show that the bound in de Farias and Van Roy (2003) must

scale at least linearly in N . We now present the details.

First, consider claim (a). To see the first claim, we consider the weighting function

ψ(x) , x2 + 2/(1− α), for x ∈ X . Notice that this weighting function is not in the span of

Φ but still permissible for the bound in Theorem 2. For this choice of ψ, we have

(2.20) inf
r
‖J∗ − Φr‖∞,1/ψ ≤ max

0≤x<N

ρ2x
2

x2 + 2/(1− α) ≤ ρ2.

Moreover, de Farias and Van Roy (2003) show that for this choice of ψ,

β(ψ) ≤ 1 + α

2α , ν>ψ ≤ 1− p
1− 2p

(
2

1− α + 2 p2

(1− 2p)2 + p

1− 2p

)
.(2.21)

Combining (2.20)–(2.21), Theorem 2, and, in particular, (2.16), yields the (uniform in N)

upper bound

‖J∗ − ΦrSALP‖1,ν ≤
5ρ2(1− p)

(1− α)(1− 2p)

(
2

1− α + 2 p2

(1− 2p)2 + p

1− 2p

)
.

The analysis of de Farias and Van Roy (2003) applies identically to the more complex settings

considered in that work (namely the controlled queue and queueing network considered there)

to yield uniform approximation guarantees for SALP approximations.

The following lemma, whose proof may be found in Appendix 2.8.1, demonstrates that

the right-hand side of (2.15) must increase linearly with N , establishing (b). The proof of

the lemma reveals that this behavior is driven primarily by the fact that the basis does not

span an appropriate weighting function ψ.
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Lemma 3. For the autonomous queue with basis functions φ1(x) , 1 and φ2(x) , x, if N is

sufficiently large, then

inf
r,ψ∈Ψ̄

2ν>ψ
1− αβ(ψ)‖J

∗ − Φr‖∞,1/ψ ≥
3ρ2q

32(1− q)(N − 1).

2.4.5. A Performance Bound

The analytical results provided in Sections 2.4.2 and 2.4.3 provide bounds on the quality

of the approximation provided by the SALP solution to J∗. In this section, we derive

performance bounds with the intent of understanding the increase in expected cost incurred

in using a control policy that is greedy with respect to the SALP approximation in lieu of

the optimal policy. In particular, we will momentarily present a result that will allow us to

interpret the objective of the SALP (2.14) as an upper bound on the performance loss of a

greedy policy with respect to the SALP solution.

To begin, we briefly introduce some relevant notation. For a given policy µ, we denote

∆µ ,
∞∑
k=0

(αPµ)k = (I − αPµ)−1.

Thus, ∆∗ = ∆µ∗ . Given a vector J ∈ RX , let µJ denote the greedy policy with respect to

J . That is, µJ satisfies TµJJ = TJ . Recall that the policy of interest to us will be µΦrSALP

for a solution rSALP to the SALP. Finally, for an arbitrary starting distribution over states

η, we define ν(η, J) to be the ‘discounted’ expected frequency of visits to each state under

the policy µJ , i.e.,

ν(η, J)> , (1− α)η>
∞∑
k=0

(αPµJ )k = (1− α)η>∆µJ .

We have the following upper bound on the increase in cost incurred by using µJ in place

of µ∗:

Theorem 3.

‖JµJ − J∗‖1,η ≤
1

1− α

(
ν(η, J)>(J∗ − J) + 2

1− απ
>
µ∗,ν(η,J)(J − TJ)+

)
.
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Theorem 3 applies to general approximations J and is not specific to approximations

produced by the SALP. Theorem 3 indicates that if J is close to J∗, so that (J − TJ)+

is also small, then the expected cost incurred in using a control policy that is greedy with

respect to J will be close to optimal. The bound indicates the impact of approximation

errors over differing parts of the state space on performance loss.

Suppose that (rSALP, s̄) is an optimal solution to the SALP (2.14). Then, examining the

proof of Theorem 2 and, in particular, (2.17), reveals that

ν>(J∗ − ΦrSALP) + 2
1− απ

>
µ∗,ν s̄

≤ inf
r,ψ∈Ψ

‖J∗ − Φr‖∞,1/ψ
(
ν>ψ +

2(π>µ∗,νψ)(αβ(ψ) + 1)
1− α

)
.

(2.22)

Assume that the state relevance weights ν in the SALP (2.14) satisfy

(2.23) ν = ν(η,ΦrSALP).

Then, combining Theorem 3 and (2.22) yields

(2.24)

‖JµΦrSALP
− J∗‖1,η ≤

1
1− α

(
inf
r,ψ∈Ψ

‖J∗ − Φr‖∞,1/ψ
(
ν>ψ +

2(π>µ∗,νψ)(αβ(ψ) + 1)
1− α

))
.

This bound directly relates the performance loss of the SALP policy to the ability of the basis

function architecture Φ to approximate J∗. Moreover, assuming (2.23), we can interpret the

SALP as minimizing the upper bound on performance loss given by Theorem 3.

Unfortunately, it is not clear how to make an a-priori choice of the state relevance weights

ν to satisfy (2.23), since the choice of ν determines the solution to the SALP rSALP; this

is essentially the situation one faces in performance analyses for approximate dynamic pro-

gramming algorithms such as approximate value iteration and temporal difference learning

(de Farias and Van Roy, 2000). Indeed, it is not clear that there exists a ν that solves the

fixed point equation (2.23). On the other hand, given a choice of ν so that ν ≈ ν(η,ΦrSALP),

in the sense of a bounded Radon-Nikodym derivative between the two distributions, then

the performance bound (2.24) will hold, inflated by the quantity

max
x∈X

ν(x)
ν(η,ΦrSALP)(x) .
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As suggested by de Farias and Van Roy (2003) in the ALP case, one possibility for finding

such a choice of state relevance weights is to iteratively re-solve the SALP, and at each time

using the policy from the prior iteration to generate state relevance weights for the next

iteration.

Proof of Theorem 3. Define s , (J − TJ)+. From Lemma 2, we know that

J ≤ J∗ + ∆∗s.

Using the fact that the operator Tµ∗ is monotonic, we can apply Tµ∗ to both sides to obtain

Tµ∗J ≤ Tµ∗(J∗ + ∆∗s) = gµ∗ + αPµ∗(J∗ + ∆∗s) = J∗ + αPµ∗∆∗s

= J∗ + αPµ∗(I − αPµ∗)−1s = J∗ + ∆∗s− s ≤ J∗ + ∆∗s,

so that

(2.25) TJ ≤ Tµ∗J ≤ J∗ + ∆∗s.

Then,

η>(JµJ − J) = η>
∞∑
k=0

αkP k
µJ

(gµJ + αPµJJ − J)

= η>∆µJ (TJ − J)

≤ η>∆µJ (J∗ − J + ∆∗s)

= 1
1− αν(η, J)>(J∗ − J + ∆∗s).

(2.26)

where the second equality is from the fact that gµJ +αPµJJ = TµJJ = TJ , and the inequality

follows from (2.25).

Further,

η>(J − J∗) ≤ η>∆∗s

≤ η>∆µJ∆∗s

= 1
1− αν(η, J)>∆∗s.

(2.27)

where the second inequality follows from the fact that ∆∗s ≥ 0 and ∆µJ = I +∑∞
k=1 α

kP k
µJ

.
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It follows from (2.26) and (2.27) that

η>(JµJ − J∗) = η>(JµJ − J) + η>(J − J∗)

≤ 1
1− αν(η, J)>(J∗ − J + 2∆∗s)

= 1
1− α

(
ν(η, J)>(J∗ − J) + 2

1− απ
>
µ∗,ν(η,J)s

)
,

which is the result. �

2.4.6. Sample Complexity

Our analysis thus far has assumed we have the ability to solve the SALP. The number of

constraints and variables in the SALP grows linearly with the size of the state space X .

Hence, this program will typically be intractable for problems of interest. One solution,

which we describe here, is to consider a sampled variation of the SALP, where states and

constraints are sampled rather than exhaustively considered. In this section, we will argue

that the solution to the SALP is well approximated by the solution to a tractable, sampled

variation.

In particular, let X̂ be a collection of S states drawn independently from the state space

X according to the distribution πµ∗,ν . Consider the following optimization program:

(2.28)

maximize
r,s

ν>Φr − 2
(1− α)S

∑
x∈X̂

s(x)

subject to Φr(x) ≤ TΦr(x) + s(x), ∀ x ∈ X̂ ,

s ≥ 0, r ∈ N .

Here, N ⊂ RK is a bounding set that restricts the magnitude of the sampled SALP solution,

we will discuss the role ofN shortly. Notice that (2.28) is a variation of (2.14), where only the

decision variables and constraints corresponding to the sampled subset of states are retained.

The resulting optimization program has K+S decision variables and S|A| linear constraints.

For a moderate number of samples S, this is easily solved. Even in scenarios where the size

of the action space A is large, it is frequently possible to rewrite (2.28) as a compact linear

program (Farias and Van Roy, 2007; Moallemi et al., 2008). The natural question, however,
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is whether the solution to the sampled SALP (2.28) is a good approximation to the solution

provided by the SALP (2.14), for a ‘tractable’ number of samples S.

Here, we answer this question in the affirmative. We will provide a sample complexity

bound that indicates that for a number of samples S that scales linearly with the dimension

of Φ, K, and that need not depend on the size of the state space, the solution to the sampled

SALP nearly satisfies, with high probability, the approximation guarantee presented for the

SALP solution in Theorem 2.

In order to establish a sample complexity result, we require control over the magnitude

of optimal solutions to the SALP (2.14). This control is provided by the bounding set N .

In particular, we will assume that N is large enough so that it contains an optimal solution

to the SALP (2.14), and we define the constant

(2.29) B , sup
r∈N
‖(Φr − TΦr)+‖∞.

This quantity is closely related to the diameter of the region N . Our main sample complexity

result can then be stated as follows:

Theorem 4. Under the conditions of Theorem 2, let rSALP be an optimal solution to the

SALP (2.14), and let r̂SALP be an optimal solution to the sampled SALP (2.28). Assume

that rSALP ∈ N . Further, given ε ∈ (0, B] and δ ∈ (0, 1/2], suppose that the number of

sampled states S satisfies

S ≥ 64B2

ε2

(
2(K + 2) log 16eB

ε
+ log 8

δ

)
.

Then, with probability at least 1− δ − 2−383δ128,

‖J∗ − Φr̂SALP‖1,ν ≤ inf
r∈N
ψ∈Ψ

‖J∗ − Φr‖∞,1/ψ
(
ν>ψ +

2(π>µ∗,νψ)(αβ(ψ) + 1)
1− α

)
+ 4ε

1− α.

The proof of Theorem 4 is based on bounding the pseudo-dimension of a certain class of

functions, and is provided in Appendix 2.8.2.

Theorem 4 establishes that the sampled SALP (2.28) provides a close approximation to

the solution of the SALP (2.14), in the sense that the approximation guarantee we established
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for the SALP in Theorem 2 is approximately valid for the solution to the sampled SALP,

with high probability. The theorem precisely specifies the number of samples required to

accomplish this task. This number depends linearly on the number of basis functions and

the diameter of the feasible region, but is otherwise independent of the size of the state space

for the MDP under consideration.

It is worth juxtaposing our sample complexity result with that available for the ALP (2.3).

Recall that the ALP has a large number of constraints but a small number of variables;3 the

SALP is thus, at least superficially, a significantly more complex program. Exploiting the

fact that the ALP has a small number of variables, de Farias and Van Roy (2004) establish

a sample complexity bound for a sampled version of the ALP analogous to the sampled

SALP (2.28). The number of samples required for this sampled ALP to produce a good

approximation to the ALP can be shown to depend on the same problem parameters we

have identified here, viz.: the constant B and the number of basis functions K. The sample

complexity in the ALP case is identical to the sample complexity bound established here, up

to constants and a linear dependence on the ratio B/ε. This is as opposed to the quadratic

dependence on B/ε of the sampled SALP. Although the two sample complexity bounds are

within polynomial terms of each other, one may rightfully worry abut the practical impli-

cations of an additional factor of B/ε in the required number of samples. In the numerical

study of Section 2.6, we will attempt to address this concern computationally.

Finally, note that the sampled SALP has K + S variables and S|A| linear constraints

whereas the sampled ALP has merely K variables and S|A| linear constraints. Nonetheless,

we will show in the Section 2.5.1 that the special structure of the Hessian associated with the

sampled SALP affords us a linear computational complexity dependence on S when applying

interior point methods.

An alternative sample complexity bound of a similar flavor can be developed using results

from the stochastic programming literature. The key idea is that the SALP (2.14) can be

3Since the ALP has a small number of variables, it may be possible to solve exactly the ALP without
resorting to constraint sampling by using a cutting-plane method or by applying column generation to the
dual problem. In general, this would require some form of problem-specific analysis. The SALP, on the other
hand, has many variables and constraints, and thus some form of sampling seems necessary.
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reformulated as the following convex stochastic programming problem:

(2.30) maximize
r∈N

Eν,πµ∗,ν
[
Φr(x0)− 2

1− α(Φr(x)− TΦr(x))+
]
,

where x0, x ∈ X have distributions ν and πµ∗,ν , respectively. Interpreting the sampled SALP

(2.28) as a sample average approximation of (2.30), a sample complexity bound can be

developed using the methodology of Shapiro et al. (2009, Chap. 5), for example. This proof

is simpler than the one presented here, but yields a cruder estimate that is not as easily

compared with those available for the ALP.

2.5. Practical Implementation

The analysis in Section 2.4 applies to certain ‘idealized’ SALP variants, as discussed in Sec-

tion 2.4.1. In particular, our main approximation guarantees focused on the linear program

(2.14), and the ‘sampled’ version on that program (2.28). (2.14) is equivalent to the SALP

(2.5) for a specialized choice of the violation budget θ and an idealized choice of the distri-

bution π, namely πµ∗,ν . As such (2.14) is not implementable: πµ∗,ν is not available and the

number of constraints and variables scales linearly with the size of X which will typically be

prohibitively large for interesting problems. The sampled variant of that program, (2.28),

requires access to the same idealized sampling distribution and the guarantees pertaining to

that program require knowledge of a bounding set for the optimal solution to (2.14), N . As

such, this program is not directly implementable either. Finally, the specialized choice of θ

implicit in both (2.14) and (2.28) may not yield the best policies.

Thus, the bounds in Section 2.4 do not apply directly in the practical settings we will

consider. Nonetheless, they do provide some insights that allow us to codify a recipe for a

practical and implementable variation that we discuss below.

Consider the following algorithm:

1. Sample S states independently from the state space X according to a sampling distri-

bution ρ. Denote the set of sampled states by X̂ .
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2. Perform a line search over increasing choices of θ ≥ 0. For each choice of θ,

(a) Solve the sampled SALP:

(2.31)

maximize
r,s

1
S

∑
x∈X̂

(Φr)(x)

subject to Φr(x) ≤ TΦr(x) + s(x), ∀ x ∈ X̂ ,
1
S

∑
x∈X̂

s(x) ≤ θ,

s ≥ 0.

(b) Evaluate the performance of the policy resulting from (2.31) via Monte Carlo

simulation.

3. Select the best of the evaluated policies over different choices of θ.

Note that our algorithm does not require the specific choice of the violation budget θ

implicit in the program (2.14), since we optimize with a line search so as to guarantee the

best possible choice of θ. Note that, in such a line search, the sampled SALP (2.31) can be

efficiently re-solved for increasing values of θ via a ‘warm-start’ procedure. Here, the optimal

solution of the sampled SALP given previous value of θ is used as a starting point for the

solver in a subsequent round of optimization. Using this method we observe that, in practice,

the total solution time for a series of sampled SALP instances that vary by their values of

θ grows sub-linearly with the number of instances. However, the policy for each solution

instance must be evaluated via Monte Carlo simulation, which may be a time-consuming

task.

Barring a line search, however, note that a reasonable choice of θ is implicitly suggested

by the SALP (2.14) considered in Section 2.4.3. Thus, alternatively, the line search in Steps 2

and 3 can be replaced with the solution of single LP as follows:
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2’. Solve the sampled SALP:

(2.32)

maximize
r,s

1
S

∑
x∈X̂

(Φr)(x)− 2
(1− α)S

∑
x∈X̂

s(x)

subject to Φr(x) ≤ TΦr(x) + s(x), ∀ x ∈ X̂ ,

s ≥ 0.

Note that the sampled SALP (2.32) is equivalent to (2.31) for a specific, implicitly determined

choice of θ (cf. Lemma 4 in Appendix 2.8.1). The programs (2.31) and (2.32) do not employ

a specialized choice of π, and the use of the bounding set N is omitted. In addition, (2.31)

does not require the specific choice of violation budget θ implicit in (2.14) and (2.28). As

such, our main approximation guarantees do not apply to these programs.

Our algorithm takes as inputs the following parameters:

• Φ, a collection of K basis functions.

• S, the number of states to sample. By sampling S states, we limit the number of

variables and constraints in the sampled SALP (2.31). Thus, by keeping S small, the

sampled SALP becomes tractable to solve numerically. On the other hand, the quality

of the approximation provided by the sampled SALP may suffer if S is chosen to be too

small. The sample complexity theory developed in Section 2.4.6 suggests that S can

be chosen to grow linearly with K, the size of the basis set. In particular, a reasonable

choice of S need not depend on the size of the underlying state space.

In practice, we choose S � K to be as large as possible subject to limits on the CPU

time and memory required to solve (2.31). In Section 2.5.1, we will discuss how the

program (2.31) can be solved efficiently via barrier methods for large choices of S.

Finally, note that a larger sample size can be used in the evaluation of the objective of

the sampled SALP (2.31) than in the construction of constraints. In other words, the

objective in (2.31) can be constructed from a set of states distinct from X̂ , since this

does not increase the size of the LP.
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• ρ, a sampling distribution on the state space X . The distribution ρ is used, via Monte

Carlo sampling, in place of both the distributions ν and π in the SALP (2.5).

Recall that the bounds in Theorems 1 and 2 provide approximation guarantees in a

ν-weighted 1-norm. This suggests that ν should be chosen to emphasize regions of

the state space where the quality of approximation is most important. The important

regions could be, for example, regions of the state space where the process spends

the most time under a baseline policy, and they could emphasized by setting ν to be

the stationary distribution induced by the baseline policy. Similarly, the theory in

Section 2.4 also suggests that the distribution π should be chosen to be the discounted

expected frequency of visits to each state given an initial distribution ν under the

optimal policy. Such a choice of distribution is clearly impossible to compute. In its

place, however, if ν is the stationary distribution under a baseline policy, it seems

reasonable to use the same distribution for π.

In practice, we choose ρ to be the stationary distribution under some baseline policy.

States are then sampled from ρ via Monte Carlo simulation of the baseline policy.

This baseline policy can correspond, for example, to a heuristic control policy for the

system. More sophisticated procedures such as ‘bootstrapping’ can also be considered

(Farias and Van Roy, 2006). Here, one starts with a heuristic policy to be used for

sampling states. Given the sampled states, the application of our algorithm will result

in a new control policy. The new control policy can then be used for state sampling in

a subsequent round of optimization, and the process can be repeated.

2.5.1. Efficient Linear Programming Solution

In this section, we will discuss the efficient solution of the sampled SALP (2.31) via linear

programming. Note that the discussion here applies to the variant (2.32) as well. To begin,
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note that (2.31) can be written explicitly in the form of a linear program as

(2.33)

maximize
r,s

c>r

subject to

A11 A12

0 d>


r
s

 ≤ b,

s ≥ 0.

Here, b ∈ RS|A|+1, c ∈ RK , and d ∈ RS are vectors, A11 ∈ RS|A|×K is a dense matrix, and

A12 ∈ RS|A|×S is a sparse matrix. This LP has K + S decision variables and S|A|+ 1 linear

constraints.

Typically, the number of sampled states S will be quite large. For example, in Section 2.6,

we will discuss an example where K = 22 and S = 300,000. The resulting LP has approxi-

mately 300,000 variables and 6,600,000 constraints. In such cases, with many variables and

many constraints, one might expect the LP to be difficult to solve. However, the sparsity

structure of the constraint matrix in (2.33) and, especially, that of the sub-matrix A12, allows

efficient optimization of this LP.

In particular, imagine solving the LP (2.33) with a barrier method. The computational

bottleneck of such a method is the inner Newton step to compute a central point (see, for

example, Boyd and Vandenberghe, 2004). This step involves the solution of a system of

linear equations of the form

(2.34) H

∆r

∆s

 = −g.

Here, g ∈ RK+S is a vector and H ∈ R(K+S)×(K+S) is the Hessian matrix of the barrier

function. Without exploiting the structure of the matrix H, this linear system can be solved

with O((K + S)3) floating point operations. For large values of S, this may be prohibitive.

Fortunately, the Hessian matrix H can be decomposed according to the block structure

H ,

H11 H12

H>12 H22

 ,
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where H11 ∈ RK×K , H12 ∈ RK×S, and H22 ∈ RS×S. In the case of the LP (2.33), it is not

difficult to see that the sparsity structure of the sub-matrix A12 ensures that the sub-matrix

H22 takes the form of a diagonal matrix plus a rank-one matrix. This allows the linear

system (2.34) to be solved with O(K2S +K3) floating point operations. This is linear in S,

the number of sampled states. Note that this is the same computational complexity as that

of an inner Newton step for the ALP, despite the fact that the SALP has more variables than

the ALP. This is because the added slack variables in the SALP are ‘local’ and effectively

do not contribute to the dimension of the problem.

2.6. Case Study: Tetris

Our interest in Tetris as a case study for the SALP algorithm is motivated by several facts.

First, theoretical results suggest that design of an optimal Tetris player is a difficult problem.

Brzustowski (1992) and Burgiel (1997) have shown that the game of Tetris has to end with

probability one, under all policies. They demonstrate a sequence of pieces, which leads

to termination state of game for all possible actions. Demaine et al. (2003) consider the

offline version of Tetris and provide computational complexity results for ‘optimally’ playing

Tetris. They show that when the sequence of pieces is known beforehand it is NP-complete to

maximize the number of cleared lines, minimize the maximum height of an occupied square,

or maximize the number of pieces placed before the game ends. This suggests that the online

version should be computationally difficult.

Second, Tetris represents precisely the kind of large and unstructured MDP for which it

is difficult to design heuristic controllers, and hence policies designed by ADP algorithms

are particularly relevant. Moreover, Tetris has been employed by a number of researchers as

a testbed problem. One of the important steps in applying these techniques is the choice of

basis functions. Fortunately, there is a fixed set of basis functions, to be described shortly,

which have been used by researchers while applying temporal-difference learning (Bertsekas

and Ioffe, 1996; Bertsekas and Tsitsiklis, 1996), policy gradient methods (Kakade, 2002), and
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approximate linear programming (Farias and Van Roy, 2006). Hence, application of SALP

to Tetris allows us to make a clear comparison to other ADP methods.

The SALP methodology described in Section 2.5 was applied as follows:

• MDP formulation. We used the formulation of Tetris as a Markov decision problem

of Farias and Van Roy (2006). Here, the ‘state’ at a particular time encodes the

current board configuration and the shape of the next falling piece, while the ‘action’

determines the placement of the falling piece. Thus, given a state and an action,

the subsequent state is determined by the new configuration of the board following

placement, and the shape of a new falling piece that is selected uniformly at random.

• Reward structure. The objective of Tetris is to maximize reward, where, given a state

and an action, the per stage reward is defined to be the number of rows that are cleared

following the placement of the falling piece.

Note that since every game of Tetris must ultimately end, Tetris is most naturally for-

mulated with the objective of maximizing the expected total number of rows cleared,

i.e., a maximum total reward formulation. Indeed, in the existing literature, per-

formance is reported in terms of total reward. In order to accommodate the SALP

setting, we will apply our methodology to a maximum discounted reward formulation

with a discount factor4 of α = 0.9. When evaluating the performance of resulting

policies, however, we will report both total reward (in order to allow comparison with

the literature) and discounted reward (to be consistent with the SALP objective).

• Basis functions. We employed the 22 basis functions originally introduced by Bert-

sekas and Ioffe (1996). Each basis function takes a Tetris board configuration as its

argument. The functions are as follows:

– Ten basis functions, φ0, . . . , φ9, mapping the state to the height hk of each of the

ten columns.
4The introduction of an artificial discount factor into an average cost problem is akin to analyzing a

perturbed problem with a limited time horizon, a common feature in many ADP schemes (e.g., de Farias
and Van Roy, 2006).
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– Nine basis functions, φ10, . . . , φ18, each mapping the state to the absolute differ-

ence between heights of successive columns: |hk+1 − hk|, k = 1, . . . , 9.

– One basis function, φ19, that maps state to the maximum column height: maxk hk

– One basis function, φ20, that maps state to the number of ’holes’ in the board.

– One basis function, φ21, that is equal to 1 in every state.

• State sampling. Given a sample size S, a collection X̂ ⊂ X of S states was sampled.

These samples were generated in an i.i.d. fashion from the stationary distribution of a

(rather poor) baseline policy.5 For each choice of sample size S, ten different collections

of S samples were generated.

• Optimization. Given the collection X̂ of sampled states, an increasing sequence of

choices of the violation budget θ ≥ 0 is considered. For each choice of θ, the optimiza-

tion program (2.31) was solved. Separately, the optimization program (2.32), which

implicitly defines a reasonable choice of θ, was also employed. The CPLEX 11.0.0

optimization package was used to solve the resulting linear programs.

• Policy evaluation. Given a vector of weights r̂, the performance of the corresponding

policy was evaluated using Monte Carlo simulation. We estimate the expected reward

of the policy µr̂ over a series of 3,000 games. The sequence of pieces in each of the

3,000 games was fixed across the evaluation of different policies in order to reduce the

Monte Carlo error in estimated performance differences.

Performance is measured in two ways. The total reward is computed as the expected

total number of lines eliminated in a single game. The discounted reward is computed

as the expected discounted number of lines eliminated. The discounted reward depends

on the initial state, and we sample the initial state from the sampling distribution, i.e.,

the stationary distribution of the baseline policy. This is consistent with the objective

of the sampled SALPs (2.31) or (2.32), that seek to optimize the expectation of the

value function under this same distribution.
5Our baseline policy had an expected total reward of 113 lines cleared.
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For each pair (S, θ), the resulting average performance (averaged over each of the 10

policies arising from the different sets of sampled states) in terms of expected total lines

cleared is shown in Figure 2.2. Note that the θ = 0 curve in Figure 2.2 corresponds to

the original ALP algorithm. Figure 2.2 provides experimental evidence for the intuition

expressed in Section 2.3 and the analytic result of Theorem 1: Relaxing the constraints

of the ALP even slightly, by allowing for a small slack budget, allows for better policy

performance. As the slack budget θ is increased from 0, performance dramatically improves.

At the peak value of θ = 0.0205, the SALP generates policies with performance that is an

order of magnitude better than ALP. Beyond this value, the performance of the SALP begins

to degrade, as shown by the θ = 0.041 curve. Hence, we did not explore larger values of θ.
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Figure 2.2 Expected total reward of the average SALP policy for different values of the
number of sampled states S and the violation budget θ. Values for θ were chosen in an
increasing fashion starting from 0, until the resulting average performance began to degrade.
The θ = θ∗ curve corresponds to the implicit choice of θ made by solving (2.32).
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As suggested in Section 2.5, instead of doing a line search over θ, one can consider

solving the sampled SALP (2.32), which implicitly makes a choice of θ. We denote this

implicit choice by θ = θ∗ in Figure 2.2. The results of solving (2.32) are given by the θ = θ∗

curve in Figure 2.2. We observe that, in our experiments, the results obtained by solving

(2.32) are quite similar to the best results obtained by doing a line search over choices of θ.

In fact, across these experiments, θ∗ is observed to be roughly constant as a function of the

sample size S, and approximately equal to 0.02. This is very close to the best values of θ

found via line search.

In order to allow a comparison of our results with those reported elsewhere in the lit-

erature, Table 2.1 summarizes the expected total reward of the best policies obtained by

various ADP algorithms. Note that all of these algorithms employ the same basis function

architecture. The ALP and SALP results are from our experiments, while the other results

are from the literature. Here, the reported ALP and SALP performance corresponds to that

of the best performing policy among all of policies computed for Figure 2.2. Note that the

best performance result of SALP is a factor of 2 better than the nearest competitors.

Algorithm Best Performance CPU Time
(Total Lines Cleared)

ALP 698.4 hours
TD-Learning (Bertsekas and Ioffe, 1996) 3,183 minutes

ALP with bootstrapping (Farias and Van Roy, 2006) 4,274 hours
TD-Learning (Bertsekas and Tsitsiklis, 1996) 4,471 minutes

Policy gradient (Kakade, 2002) 5,500 days
SALP 11,574 hours

Table 2.1: Comparison of the performance of the best policy found with various ADP
methods.

Note that significantly better policies are possible with this basis function architecture

than any of the ADP algorithms in Table 2.1 discover. Using a heuristic global optimiza-

tion method, Szita and Lőrincz (2006) report finding policies with a remarkable average

performance of 350,000. Their method is very computationally intensive, however, requiring
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one month of CPU time. In addition, the approach employs a number of rather arbitrary

Tetris specific ‘modifications’ that are ultimately seen to be critical to performance — in the

absence of these modifications, the method is unable to find a policy for Tetris that scores

above a few hundred points. More generally, global optimization methods typically require

significant trial and error and other problem specific experimentation in order to work well.

In Figure 2.3, we see the average performance for each (S, θ) pair measured as the ex-

pected discounted number of lines cleared, beginning from an initial configuration drawn

according to the stationary distribution of the baseline policy. At a high level, these results

are consistent with those reported in Figure 2.2. In particular, we see that according to this

alternative metric, relaxing the ALP constraints also yields an improvement in performance.

Note that the improvement under the discounted reward metric is less dramatic than under

the total reward metric. This is to be expected: under the discounted metric we implicitly

measure policy performance over a limited time horizon.

In Table 2.2, we see the effect of the choice of the discount factor α on the performance of

the ALP and SALP methods. Here, we show both the expected discounted reward and the

expected total reward, for different values of the discount factor α and the violation budget

θ. Here, the policies were constructed using S = 200,000 sampled states. We find that:

1. For all discount factors, the SALP dominates the ALP. The performance improvement

of the SALP relative to the ALP increases dramatically at high discount factors.

2. The absolute performance of both schemes degrades at high discount factors. This

is consistent with our approximation guarantees, which degrade as α → 1, as well as

prior theory that has been developed for the average cost ALP (de Farias and Van

Roy, 2006). However, observe that the ALP degradation is drastic (scores in single

digits) while the SALP degradation relatively mild (scores remain in the thousands).
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Figure 2.3 Expected discounted reward for the average SALP policy for different values of
the number of sampled states S and the violation budget θ. The reward is measured starting
from a random board configuration sampled from the stationary distribution of the baseline
policy. The θ = θ∗ curve corresponds to the implicit choice of θ made by solving (2.32).

2.7. Case Study: A Queueing Network

In this section, we study the application of SALP and ALP to control of queueing networks.

In particular, we consider a criss-cross queueing network, which has been considered exten-

sively in the literature (e.g., Harrison and Wein, 1989; Kushner and Martins, 1996; Martins

et al., 1996). Optimal control of a criss-cross network is a standard example of a challenging

network control problem, and has eluded attempts to find an analytical solution (Kumar

and Muthuraman, 2004).

The cross-cross queueing network consists of two servers and three queues connected

as shown in Figure 2.4. There are two classes of jobs in this system. The first class of

jobs takes a vertical path through the system, arriving to queue 1 according to a Poisson

process of rate λ1. The second class of jobs takes a horizontal path through the system,
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Violation Expected Total Reward Expected Discounted Reward
Budget Discount Factor α Discount Factor α

θ 0.9 0.95 0.99 0.999 0.9 0.95 0.99 0.999
0 (ALP) 169.1 367.9 240.0 1.9 2.150 5.454 30.410 1.870
0.00002 201.7 844.6 295.9 44.1 2.111 5.767 34.063 39.317
0.00008 308.5 1091.7 355.7 93.9 2.249 5.943 34.603 79.086
0.00032 380.2 1460.2 792.1 137.4 2.261 6.011 35.969 108.554
0.00128 1587.4 2750.4 752.1 189.0 2.351 6.055 36.032 138.329
0.00512 5023.9 4069.9 612.5 355.1 2.356 6.116 35.954 202.640
0.01024 5149.7 4607.7 1198.6 1342.5 2.281 6.115 36.472 318.532
0.02048 4664.6 3662.3 1844.6 2227.4 2.216 6.081 36.552 340.718
0.04096 4089.9 2959.7 1523.3 694.5 2.200 6.044 36.324 262.462
0.08192 3085.9 2236.8 901.7 360.5 2.192 5.975 35.772 200.861
0.32768 1601.6 855.4 357.5 145.4 2.247 5.613 34.025 112.427
θ∗ 4739.2 4473.7 663.5 138.7 2.213 6.114 35.827 109.341

Average θ∗ 0.0204 0.0062 0.0008 0.0003 0.0204 0.0062 0.0008 0.0003

Table 2.2: Expected discounted reward and expected total reward for different values of
the discount factor α and the violation budget θ. Here, the policies were constructed using
S = 200,000 sampled states. The last row reports average value of the implicit violation
budget θ∗ for different values of the discount factor α.

arriving at queue 2 according to a Poisson process of rate λ2. Server 1 can work on jobs

in either queue 1 or queue 2, with service times distributed exponentially with rate µ1 , 2

and µ2 , 2 respectively. Vertical jobs exit the system after service, while horizontal jobs

proceed to queue 3. There, they await service by server 2. The service times at server 2 are

exponentially distributed with rate µ3 , 1. Given a common arrival rate λ1 , λ2 , λ, by

analysis of the static planning LP (Harrison, 1988) associated with the network, it is straight

forward to derive that the load of the network takes the form

ρ = λ2

µ2
+ max

(
λ1

µ1
,
λ2

µ3

)
= 3

2λ.

The SALP and ALP methodologies were applied to this queueing network as follows:

• MDP formulation. The evolution of this queuing network is described by a continuous

time Markov chain with the state q ∈ Z3
+ corresponding to the queue lengths. Via a
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Figure 2.4 A criss-cross queueing network consisting of three queues and two servers. One
class of jobs arrives to the system at queue 1, and departs after service by server 1. The
second class of jobs arrives to the system at queue 2, and departs after sequential service
from server 1 followed by server 2.

standard uniformization construction (see, e.g., Moallemi et al., 2008, for an explicit

construction), we consider an equivalent discrete time formulation, where qt ∈ Z3
+ is

the vector of queue lengths after the tth event, for t ∈ {0, 1, . . .}. At each time, the

choice of action corresponds to an assignment of each server to an associated non-empty

queue, and idling is allowed.

• Reward structure. We seek find a control policy that optimizes the discounted infinite

horizon cost objective

minimize E
[ ∞∑
t=0

αtc>qt

]
.

Here, the vector c ∈ R3
+ denotes the holding costs associated with each queue, and α

is a discount factor.

• Basis functions. Four basis functions were used: the constant function, and, for each

queue, a linear function in the queue length.
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• State sampling. States were sampled from the stationary distribution of a policy

which acts greedily according to the value function surrogate6 V (q) , ‖q‖2
2. We use a

collection X̂ of S = 40,000 sampled states as input to SALP. The results are averaged

over 10 different collections of S samples.

• Optimization. The sampled states X̂ were used as input to optimization program

(2.31). For increasing choices of violation budget θ ≥ 0, the linear program was solved

to obtain policies. A policy corresponding to the implicit choice θ = θ∗ was obtained

by separately solving linear program (2.32). Our implementation used CPLEX 11.0.0

to solve the resulting linear programs.

• Policy evaluation. Given a value function approximation, the expected discounted

performance of the corresponding policy was evaluated by simulating 100 sample paths

starting from an empty state (q = 0). Each sample path was evaluated over 50,000,000

time steps to compute the discounted cost.

We first consider the case where the holding costs are given by the vector c , (1, 1, 3).

This corresponds to Case IIB as considered by Martins et al. (1996), and the associated

stochastic control problem is known to be challenging (Kumar and Muthuraman, 2004).

These particular parameter settings are difficult because of the fact the holding costs for

queue 3 are so much higher than those for queue 2. Hence, it may be optimal for server 1 to

idle even if there are jobs in queue 2 so as to keep jobs in the cheaper buffer. On the other

hand, too much idling at server 1 could lead to an empty queue 3, which would force idling

at server 2. Hence, the policy decision for server 1 also depends on the downstream queue

length.

In Table 2.3(a), we see the resulting performance of policies by solving SALP for various

values of θ and for the ALP (i.e., θ = 0). The results are shown for various levels of the

load ρ. Overall, we observe a significant reduction in cost by policies generated via SALP in

6This corresponds approximately to a ‘maximum pressure’ policy (Dai and Lin, 2005; Tassiulas and
Ephremides, 1992, 1993).
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comparison to ALP. Using a line search to find the optimal choice of θ yields an SALP policy

that results in a cost savings of 40% as compared to ALP. The policy corresponding to the

implicit choice of θ = θ∗, obtained by solving LP (2.32), produces a comparable savings of

30%.

In Table 2.3(b), we consider the case when the holding costs are given by the vector

c , (1, 1, 1). This is a considerably easier control problem, since there is no need for server 1

to idle. In this case, the SALP is still a significant improvement over the ALP, however the

magnitude of the improvement is smaller.

2.8. Proofs

In this section, we provide proofs for the results in the chapter.

2.8.1. Proofs for Sections 2.4.2–2.4.4

Lemma 1. For any r ∈ RK and θ ≥ 0:

(i) `(r, θ) is a finite-valued, decreasing, piecewise linear, convex function of θ.

(ii)

`(r, θ) ≤ 1 + α

1− α‖J
∗ − Φr‖∞.

(iii) The right partial derivative of `(r, θ) with respect to θ satisfies

∂+

∂θ+ `(r, 0) = −
(1− α)

∑
x∈Ω(r)

πµ∗,ν(x)
−1

,

where

Ω(r) , argmax
{x∈X : πµ∗,ν(x)>0}

Φr(x)− TΦr(x).
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(a) Expected discounted cost for varying values of the load ρ, with holding costs c = (1, 1, 3). The
last row reports the average value of the implicit violation budget, for different values of the load ρ.

Violation Budget Expected Discounted Cost
ρ = 0.98 ρ = 0.95 ρ = 0.90

θ Cost Normalized Cost Normalized Cost Normalized
0 (ALP) 560.0 1.00 542.8 1.00 514.3 1.00
0.0001 560.0 1.00 542.8 1.00 514.4 1.00
0.0010 559.7 1.00 542.5 1.00 514.2 1.00
0.0100 588.7 1.05 570.7 1.05 541.2 1.05
0.1000 584.3 1.04 566.9 1.04 538.1 1.05
1.0000 502.8 0.90 486.1 0.90 459.0 0.89
θ∗ 412.5 0.74 398.2 0.73 373.0 0.73

25.000 332.2 0.59 318.7 0.59 295.8 0.58
50.000 334.0 0.60 320.5 0.59 296.8 0.58
75.000 337.5 0.60 323.6 0.60 301.4 0.59
100.00 337.5 0.60 323.6 0.60 301.4 0.59

Average θ∗ 17.79 17.73 17.67

(b) Expected discounted cost for load ρ = 0.98, with holding costs c = (1, 1, 1).

Violation Budget Expected Discounted Cost
ρ = 0.98

θ Cost Normalized
0 (ALP) 334.5 1.00
0.0001 334.5 1.00
0.0010 381.1 1.14
0.0100 284.4 0.85
0.1000 237.9 0.71
1.0000 246.7 0.74
θ∗ 245.9 0.74

25.000 250.4 0.75
50.000 254.4 0.76
75.000 254.4 0.76
100.00 254.4 0.76

Average θ∗ 11.81

Table 2.3: Expected discounted cost for different values of the violation budget θ, load ρ,
and holding costs c. The expected discounted cost is also reported after normalization by
the performance of the corresponding ALP performance. Here, the expected discounted cost
is measured starting from an empty state.
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Proof. (i) Given any r, clearly γ , ‖Φr − TΦr‖∞, s , 0 is a feasible point for (2.9), so

`(r, θ) is feasible. To see that the LP is bounded, suppose (s, γ) is feasible. Then, for any

x ∈ X with πµ∗,ν(x) > 0,

γ ≥ Φr(x)− TΦr(x)− s(x) ≥ Φr(x)− TΦr(x)− θ/πµ∗,ν(x) > −∞.

Letting (γ1, s1) and (γ2, s2) represent optimal solutions for the LP (2.9) with parameters

(r, θ1) and (r, θ2) respectively, it is easy to see that ((γ1 +γ2)/2, (s1 +s2)/2) is feasible for the

LP with parameters (r, (θ1 + θ2)/2). It follows that `(r, (θ1 + θ2)/2) ≤ (`(r, θ1) + `(r, θ2))/2.

The remaining properties are simple to check.

(ii) Let ε , ‖J∗ − Φr‖∞. Then, since T is an α-contraction under the ‖ · ‖∞ norm,

‖TΦr − Φr‖∞ ≤ ‖J∗ − TΦr‖∞ + ‖J∗ − Φr‖∞ ≤ α‖J∗ − Φr‖∞ + ε = (1 + α)ε.

Since γ , ‖TΦr − Φr‖∞, s , 0 is feasible for (2.9), the result follows.

(iii) Fix r ∈ RK , and define

∆ , max
{x∈X : πµ∗,ν(x)>0}

(
Φr(x)− TΦr(x)

)
− max
{x∈X\Ω(r) : πµ∗,ν(x)>0}

(
Φr(x)− TΦr(x)

)
> 0.

Consider the program for `(r, δ). It is easy to verify that for δ ≥ 0 and sufficiently small,

viz. δ ≤ ∆∑
x∈Ω(r) πµ∗,ν(x), (s̄δ, γ̄δ) is an optimal solution to the program, where

s̄δ(x) ,


δ∑

x∈Ω(r) πµ∗,ν(x) if x ∈ Ω(r),

0 otherwise,

and

γ̄δ , γ0 −
δ∑

x∈Ω(r) πµ∗,ν(x) ,

so that

`(r, δ) = `(r, 0)− δ

(1− α)∑x∈Ω(r) πµ∗,ν(x) .

Thus,
`(r, δ)− `(r, 0)

δ
= −

(1− α)
∑

x∈Ω(r)
πµ∗,ν(x)

−1

.

Taking a limit as δ ↘ 0 yields the result. �
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Lemma 2. Suppose that the vectors J ∈ RX and s ∈ RX satisfy

J ≤ Tµ∗J + s.

Then,

J ≤ J∗ + ∆∗s,

where

∆∗ ,
∞∑
k=0

(αPµ∗)k = (I − αPµ∗)−1,

and Pµ∗ is the transition probability matrix corresponding to an optimal policy.

Proof. Note that the Tµ∗ , the Bellman operator corresponding to the optimal policy µ∗, is

monotonic and is a contraction. Then, repeatedly applying Tµ∗ to the inequality J ≤ Tµ∗J+s

and using the fact that T kµ∗J → J∗, we obtain

J ≤ J∗ +
∞∑
k=0

(αPµ∗)ks = J∗ + ∆∗s.

�

Lemma 3. For the autonomous queue with basis functions φ1(x) , 1 and φ2(x) , x, if N is

sufficiently large, then

inf
r,ψ∈Ψ̄

2ν>ψ
1− αβ(ψ)‖J

∗ − Φr‖∞,1/ψ ≥
3ρ2q

32(1− q)(N − 1).

Proof. We have:

inf
r,ψ∈Ψ̄

2ν>ψ
1− αβ(ψ)‖J

∗ − Φr‖∞,1/ψ ≥ inf
ψ∈Ψ̄

2ν>ψ
‖ψ‖∞

inf
r
‖J∗ − Φr‖∞.

We will produce lower bounds on the two infima on the right-hand side above. Observe that

inf
r
‖J∗ − Φr‖∞ = inf

r
max
x
|ρ2x

2 + ρ1x+ ρ0 − r1x− r0|

≥ inf
r

max
(

max
x
|ρ2x

2 + (ρ1 − r1)x| − |ρ0 − r0|, |ρ0 − r0|
)

= inf
r0

max
(

inf
r1

max
x
|ρ2x

2 + (ρ1 − r1)x| − |ρ0 − r0|, |ρ0 − r0|
)
,
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which follows from the triangle inequality and the fact that

max
x
|ρ2x

2 + ρ1x+ ρ0 − r1x− r0| ≥ |ρ0 − r0|.

Routine algebra verifies that

(2.35) inf
r1

max
x
|ρ2x

2 + (ρ1 − r1)x| ≥ 3
16ρ2(N − 1)2.

It thus follows that

inf
r
‖J∗ − Φr‖∞ ≥ inf

r0
max

(
3
16ρ2(N − 1)2 − |ρ0 − r0|, |ρ0 − r0|

)
≥ 3

32ρ2(N − 1)2.

We next note that any ψ ∈ Ψ̃ must satisfy ψ ∈ span(Φ) and ψ ≥ 1. Thus, ψ ∈ Ψ̃

must take the form ψ(x) = α1x + α0 with α0 ≥ 1 and α1 ≥ (1 − α0)/(N − 1). Thus,

‖ψ‖∞ = max(α1(N − 1) + α0, α0). Define κ(N) to be the expected queue length under the

distribution ν, i.e.,

κ(N) ,
N−1∑
x=0

ν(x)x = 1− q
1− qN

N−1∑
x=0

xqx = q

1− q

[
1−NqN−1(1− q)− qN

1− qN

]
,

so that ν>ψ = α1κ(N) + α0, Thus,

inf
ψ∈Ψ̃

2ν>ψ
‖ψ‖∞

inf
r
‖J∗ − Φr‖∞ ≥ 3

16ρ2 inf
α0≥1

α1≥
1−α0
N−1

α1κ(N) + α0

max(α1(N − 1) + α0, α0)(N − 1)2

When (1− α0)/(N − 1) ≤ α1 ≤ 0, we have

α1κ(N) + α0

max(α1(N − 1) + α0, α0)(N − 1)2 = α1κ(N) + α0

α0
(N − 1)2

≥ (1− α0)κ(N)/(N − 1) + α0

α0
(N − 1)2

≥
(

1− κ(N)
N − 1

)
(N − 1)2.

When α1 > 0, we have

α1κ(N) + α0

max(α1(N − 1) + α0, α0)(N − 1)2 = α1κ(N) + α0

α1(N − 1) + α0
(N − 1)2 ≥ (N − 1)κ(N),
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where the inequality follows from the fact that κ(N) ≤ N − 1 and α0 > 0. It then follows

that

inf
ψ∈Ψ̃

2ν>ψ
‖ψ‖∞

inf
r
‖J∗ − Φr‖∞ ≥ 3

16ρ2 min
(
κ(N)(N − 1),

(
1− κ(N)

N − 1

)
(N − 1)2

)
.

Now, observe that κ(N) is increasing in N . Also, by assumption, p < 1/2, so q < 1 and

thus κ(N) → q/(1 − q) as N → ∞. Then, for N sufficiently large, 1
2q/(1 − q) ≤ κ(N) ≤

q/(1− q). Therefore, for N sufficiently large,

inf
ψ∈Ψ̃

2ν>ψ
‖ψ‖∞

inf
r
‖J∗ − Φr‖∞ ≥

3ρ2q

32(1− q)(N − 1),

as desired. �

Lemma 4. For every λ ≥ 0, there exists a θ̂ ≥ 0 such that an optimal solution (r∗, s∗) to

(2.36)
maximize

r,s
ν>Φr − λπ>µ∗,νs

subject to Φr ≤ TΦr + s, s ≥ 0.

is also an optimal solution the SALP (2.8) with θ = θ̂.

Proof. Let θ̂ , π>µ∗,νs
∗. It is then clear that (r∗, s∗) is a feasible solution to (2.8) with θ = θ̂.

We claim that it is also an optimal solution. To see this, assume to the contrary that it is

not an optimal solution, and let (r̃, s̃) be an optimal solution to (2.8). It must then be that

π>µ∗,ν s̃ ≤ θ̂ = π>µ∗,νs
∗ and moreover, ν>Φr̃ > ν>Φr∗ so that

ν>Φr∗ − λπ>µ∗,νs∗ < ν>Φr̃ − λπ>µ∗,ν s̃.

This, in turn, contradicts the optimality of (r∗, s∗) for (2.36) and yields the result. �

2.8.2. Proof of Theorem 4

Our proof of Theorem 4 is based on uniformly bounding the rate of convergence of sample

averages of a certain class of functions. We begin with some definitions: consider a family
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F of functions from a set S to {0, 1}. Define the Vapnik-Chervonenkis (VC) dimension

dimVC(F) to be the cardinality d of the largest set {x1, x2, . . . , xd} ⊂ S satisfying:

∀ e ∈ {0, 1}d, ∃f ∈ F such that ∀ i, f(xi) = 1 iff ei = 1.

Now, let F be some set of real-valued functions mapping S to [0, B]. The pseudo-

dimension dimP (F) is the following generalization of VC dimension: for each function f ∈ F

and scalar c ∈ R, define a function g : S × R→ {0, 1} according to:

g(x, c) , I{f(x)−c≥0}.

Let G denote the set of all such functions. Then, we define dimP (F) , dimVC(G).

In order to prove Theorem 4, define the F to be the set of functions f : RK ×R→ [0, B],

where, for all x ∈ RK and y ∈ R,

f(y, z) , ζ
(
r>y + z

)
.

Here, ζ(t) , max (min(t, B), 0), and r ∈ RK is a vector that parameterizes f . We will show

that dimP (F) ≤ K + 2. We will use the following standard result from convex geometry:

Lemma 5 (Radon’s Lemma). A set A ⊂ Rm of m + 2 points can be partitioned into two

disjoint sets A1 and A2, such that the convex hulls of A1 and A2 intersect.

Lemma 6. dimP (F) ≤ K + 2

Proof. Assume, for the sake of contradiction, that dimP (F) > K + 2. It must be that there

exists a ‘shattered’ set{(
y(1), z(1), c(1)

)
,
(
y(2), z(2), c(2)

)
, . . . ,

(
y(K+3), z(K+3), c(K+3)

)}
⊂ RK × R× R,

such that, for all e ∈ {0, 1}K+3, there exists a vector re ∈ RK with

ζ
(
r>e y

(i) + z(i)
)
≥ c(i) iff ei = 1, ∀ 1 ≤ i ≤ K + 3.

Observe that we must have c(i) ∈ (0, B] for all i, since if c(i) ≤ 0 or c(i) > B, then no such

shattered set can be demonstrated. But if c(i) ∈ (0, B], for all r ∈ RK ,

ζ
(
r>y(i) + z(i)

)
≥ c(i) =⇒ r>e y

(i) ≥ c(i) − z(i),
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and

ζ
(
r>y(i) + z(i)

)
< c(i) =⇒ r>e y

(i) < c(i) − z(i).

For each 1 ≤ i ≤ K + 3, define x(i) ∈ RK+1 component-wise according to

x
(i)
j ,


y

(i)
j if j < K + 1,

c(i) − z(i) if j = K + 1.

Let A = {x(1), x(2), . . . , x(K+3)} ⊂ RK+1, and let A1 and A2 be subsets of A satisfying the

conditions of Radon’s lemma. Define a vector ẽ ∈ {0, 1}K+3 component-wise according to

ẽi , I{x(i)∈A1}.

Define the vector r̃ , rẽ. Then, we have

K∑
j=1

r̃jxj ≥ xK+1, ∀ x ∈ A1,

K∑
j=1

r̃jxj < xK+1, ∀ x ∈ A2.

Now, let x̄ ∈ RK+1 be a point contained in both the convex hull of A1 and the convex

hull of A2. Such a point must exist by Radon’s lemma. By virtue of being contained in the

convex hull of A1, we must have
K∑
j=1

r̃jx̄j ≥ x̄K+1.

Yet, by virtue of being contained in the convex hull of A2, we must have

K∑
j=1

r̃jx̄j < x̄K+1,

which is impossible. �

With the above pseudo-dimension estimate, we can establish the following lemma, which

provides a Chernoff bound for the uniform convergence of a certain class of functions:
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Lemma 7. Given a constant B > 0, define the function ζ : R→ [0, B] by

ζ(t) , max (min(t, B), 0) .

Consider a pair of random variables (Y, Z) ∈ RK × R. For each i = 1, . . . , n, let the pair(
Y (i), Z(i)

)
be an i.i.d. sample drawn according to the distribution of (Y, Z). Then, for all

ε ∈ (0, B],

P
(

sup
r∈RK

∣∣∣∣∣ 1n
n∑
i=1

ζ
(
r>Y (i) + Z(i)

)
− E

[
ζ
(
r>Y + Z

)]∣∣∣∣∣ > ε

)

≤ 8
(32eB

ε
log 32eB

ε

)K+2
exp

(
− ε2n

64B2

)
.

Moreover, given δ ∈ (0, 1), if

n ≥ 64B2

ε2

(
2(K + 2) log 16eB

ε
+ log 8

δ

)
,

then this probability is at most δ.

Proof. Given Lemma 6, this follows immediately from Corollary 2 of of Haussler (1992,

Section 4). �

We are now ready to prove Theorem 4.

Theorem 4. Under the conditions of Theorem 2, let rSALP be an optimal solution to the

SALP (2.14), and let r̂SALP be an optimal solution to the sampled SALP (2.28). Assume

that rSALP ∈ N . Further, given ε ∈ (0, B] and δ ∈ (0, 1/2], suppose that the number of

sampled states S satisfies

S ≥ 64B2

ε2

(
2(K + 2) log 16eB

ε
+ log 8

δ

)
.

Then, with probability at least 1− δ − 2−383δ128,

‖J∗ − Φr̂SALP‖1,ν ≤ inf
r∈N
ψ∈Ψ

‖J∗ − Φr‖∞,1/ψ
(
ν>ψ +

2(π>µ∗,νψ)(αβ(ψ) + 1)
1− α

)
+ 4ε

1− α.
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Proof. Define the vectors

ŝµ∗ , (Φr̂SALP − Tµ∗Φr̂SALP)+ , and ŝ , (Φr̂SALP − TΦr̂SALP)+ .

Note that ŝµ∗ ≤ ŝ. One has, via Lemma 2, that

Φr̂SALP − J∗ ≤ ∆∗ŝµ∗

Thus, as in the last set of inequalities in the proof of Theorem 1, we have

(2.37) ‖J∗ − Φr̂SALP‖1,ν ≤ ν>(J∗ − Φr̂SALP) +
2π>µ∗,ν ŝµ∗

1− α .

Now, let π̂µ∗,ν be the empirical measure induced by the collection of sampled states X̂ .

Given a state x ∈ X , define a vector Y (x) ∈ RK and a scalar Z(x) ∈ R according to

Y (x) , Φ(x)> − αPµ∗Φ(x)>, Z(x) , −g(x, µ∗(x)),

so that, for any vector of weights r ∈ N ,

(Φr(x)− Tµ∗Φr(x))+ = ζ
(
r>Y (x) + Z(x)

)
.

Then,

∣∣∣π̂>µ∗,ν ŝµ∗ − π>µ∗,ν ŝµ∗∣∣∣ ≤ sup
r∈N

∣∣∣∣∣∣ 1S
∑
x∈X̂

ζ
(
r>Y (x) + Z(x)

)
−
∑
x∈X

πµ∗,ν(x)ζ
(
r>Y (x) + Z(x)

)∣∣∣∣∣∣ .
Applying Lemma 7, we have that

(2.38) P
(∣∣∣π̂>µ∗,ν ŝµ∗ − π>µ∗,ν ŝµ∗∣∣∣ > ε

)
≤ δ.

Next, suppose (rSALP, s̄) is an optimal solution to the SALP (2.14). Then, with proba-

bility at least 1− δ,

ν>(J∗ − Φr̂SALP) +
2π>µ∗,ν ŝµ∗

1− α ≤ ν>(J∗ − Φr̂SALP) +
2π̂>µ∗,ν ŝµ∗

1− α + 2ε
1− α

≤ ν>(J∗ − Φr̂SALP) +
2π̂>µ∗,ν ŝ
1− α + 2ε

1− α

≤ ν>(J∗ − ΦrSALP) +
2π̂>µ∗,ν s̄
1− α + 2ε

1− α,

(2.39)
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where the first inequality follows from (2.38), and the final inequality follows from the opti-

mality of (r̂SALP, ŝ) for the sampled SALP (2.28).

Notice that, without loss of generality, we can assume that s̄(x) = (ΦrSALP(x)−TΦrSALP(x))+,

for each x ∈ X . Thus, 0 ≤ s̄(x) ≤ B. Further,

π̂>µ∗,ν s̄− π>µ∗,ν s̄ = 1
S

∑
x∈X̂

(
s̄(x)− π>µ∗,ν s̄

)
,

where the right-hand-side is of a sum of zero-mean bounded i.i.d. random variables. Applying

Hoeffding’s inequality,

P
(∣∣∣π̂>µ∗,ν s̄− π>µ∗,ν s̄∣∣∣ ≥ ε

)
≤ 2 exp

(
−2Sε2
B2

)
< 2−383δ128,

where final inequality follows from our choice of S. Combining this with (2.37) and (2.39),

with probability at least 1− δ − 2−383δ128, we have

‖J∗ − Φr̂SALP‖1,ν ≤ ν>(J∗ − ΦrSALP) +
2π̂>µ∗,ν s̄
1− α + 2ε

1− α

≤ ν>(J∗ − ΦrSALP) +
2π>µ∗,ν s̄
1− α + 4ε

1− α.

The result then follows from (2.17)–(2.19) in the proof of Theorem 2. �



3

PATHWISE METHOD FOR OPTIMAL
STOPPING PROBLEMS

3.1. Introduction

Consider the following optimal control problem: a Markov process evolves in discrete time

over the state space X . Denote this process by {xt, t ≥ 0}. The process is associated with a

state-dependent reward function g : X → R. Our goal is to solve the optimization problem

sup
τ

E
[
ατg(xτ ) | x0 = x

]
,

where the optimization is over stopping times τ adapted to the {xt} process, and α ∈ [0, 1)

is a discount factor. In other words, we wish to pick a stopping time that maximizes the ex-

pected discounted reward. Such optimal stopping problems arise in a myriad of applications,

most notably, in the pricing of financial derivatives.

In principle, the above stopping problem can be solved via the machinery of dynamic

programming. However, the applicability of the dynamic programming approach is typically

curtailed by the size of the state space X . In particular, in many applications of interest, X

is a high-dimensional space and thus intractably large.

Since high-dimensional stopping problems are important from a practical perspective, a

number of alternative approaches that contend with the so-called ‘curse of dimensionality’

have emerged. There are two broad classes of methods by which one can develop bounds on

the optimal value of a stopping problem, motivated essentially by distinct characterizations

of the optimal solution to the stopping problem:64
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• Lower Bounds / Approximate Dynamic Programming (ADP). The optimal control

is characterized by an optimal value function, which, in turn, is the unique solution

to the so-called Bellman equation. A natural goal is to attempt to approximate this

value function by finding ‘approximate’ solutions to the Bellman equation. This is

the central goal of ADP algorithms such as regression pricing methods of the type

pioneered by Carriere (1996), Longstaff and Schwartz (2001), and Tsitsiklis and Van

Roy (2001). Such an approximate solution can then be used to both define a control

policy and, via simulation of that (sub-optimal) policy, a lower bound on the optimal

value function.

• Upper Bounds / Martingale Duality. At a high level, this approach may be thought

of as relaxing the requirement of causality, while simultaneously introducing a penalty

for this relaxation. The appropriate penalty function is itself a stochastic process (a

martingale), and by selecting the ‘optimal’ martingale, one may in fact solve the original

stopping problem. In the context of stopping problems, part of this characterization

appears to date back at least to the work by Davis and Karatzas (1994), and this idea

was subsequently fully developed by Rogers (2002) and Haugh and Kogan (2004).

Not surprisingly, finding such an optimal martingale is no easier than solving the origi-

nal stopping problem. As such, the martingale duality approach consists of heuristically

selecting ‘good’ martingale penalty functions, using these to compute upper bounds

on the price (i.e., the optimal value of the stopping problem). Here, two techniques

are commonly employed. The first, which we will call a dual value function approach,

derives a martingale penalty function from an approximation to the optimal value func-

tion. Such an approximation will typically be generated, for example, along the course

of regression pricing procedures such as those described above. Alternatively, in what

we will call a dual policy approach, a martingale penalty function can be derived from

a heuristic control policy. This latter approach was proposed by Andersen and Broadie

(2004). A good control policy will typically also be generated using a regression pricing

procedure.
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A combination of these methods have come to represent the state-of-the-art in financial ap-

plications (see, e.g., Glasserman, 2004). There, practitioners typically use regression pricing

to derive optimal policies for the exercise of American and Bermudan options, and to derive

lower bounds on prices. The martingale duality approach is then applied in a complementary

fashion to generate upper bounds, using either the dual value function approach or the dual

policy approach. Take together, these methods provide a ‘confidence bound’ on the true

price. In this area, the development of such methodologies is thought to be worth consid-

erable financial value, and thus may represent the greatest practical success of approximate

dynamic programming.

In a nutshell, we introduce a new approach to solving high-dimensional stopping problems

that draws on techniques from both of the methodologies above, and ultimately unifies our

understanding of the two approaches. This new method is ultimately seen to be desirable

from the practical perspective of rapidly pricing high-dimensional financial derivatives. In

addition, we develop a theory that allows us to characterize the quality of the solutions

produced by the approaches above.

In greater detail, we make the following contributions:

• A New Algorithm. ADP algorithms systematically explore approximations to the

optimal value function within the span of some pre-defined set of basis functions. The

duality approach, on the other hand, relies on an ad-hoc specification of an appropriate

martingale penalty process. We introduce a new approach, which we call the pathwise

optimization (PO) method. The PO method systematizes the search for a good mar-

tingale penalty process. In particular, given a set of basis functions whose linear span

is expected to contain a good approximation to the optimal value function, we posit

a family of martingales. As it turns out, finding a martingale within this family that

produces the best possible upper bound to the value function is a convex optimization

problem. The PO method seeks to solve this problem. We show that this method has

several merits relative to extant schemes:

1. The PO method is a specific instance of the dual value function approach. By
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construction, however, the PO method produces an upper bound that is provably

tighter than any other dual value function approach that employs a value function

approximation contained in the span of the same basis function set. These latter

approximations are analogous to what is typically found using regression methods

of the type proposed by Longstaff and Schwartz (2001) and Tsitsiklis and Van Roy

(2001). We demonstrate this fact in numerical experiments, where we will show

that, given a fixed set of basis functions, the benefit of the PO method over the

dual value function approach in concert with regression pricing can be substantial.

We also see that the incremental computational overhead of the PO method over

the latter method is manageable.

2. We compare the PO method to upper bounds generated using the dual policy

approach in concert with policies derived from regression pricing. Given a fixed

set of basis functions, we will see in numerical experiments that the PO method

yields upper bounds that are comparable to but not as tight as those from the

latter approach. However, the PO method does so in a substantially shorter

amount of time, typically requiring a computational budget that is smaller by an

order of magnitude.

3. The aforementioned regression techniques are the mainstay for producing control

policies and lower bounds in financial applications. We illustrate that the PO

method yields a continuation value approximation that can subsequently be used

to derive control policies and lower bounds. In computational experiments, these

control policies and lower bounds are substantially superior to those produced by

regression methods.

In summary, the PO method is quite attractive from a practical perspective.

• Approximation Theory. We offer new guarantees on the quality of upper bounds of

martingale penalty approaches in general, as well as specific guarantees for the PO

method. We compare these guarantees favorably to guarantees developed for other
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ADP methods. Our guarantees characterize the structural properties of an optimal

stopping problem that are general determinants of performance for these techniques.

Specifically:

1. In an infinite horizon setting, we show that the quality of the upper bound pro-

duced by the generic martingale duality approach depends on three parameters:

the error in approximating the value function (measured in a root-mean-squared

error sense), the square root of the effective time horizon (as also observed by

Chen and Glasserman (2007)), and a certain measure of the ‘predictability’ of the

underlying Markov process. We believe that this latter parameter provides valu-

able insight on aspects of the underlying Markov process that make a particular

pricing problem easy or hard.

2. In an infinite horizon setting, we produce relative upper bound guarantees for the

PO method. In particular, we produce guarantees on the upper bound that scale

linearly with the approximation error corresponding to the best possible approx-

imation to the value function within the span of the basis functions employed in

the approach. Note that the latter approximation is typically not computable.

This result makes precise the intuition that the PO method produces good price

approximations if there exists some linear combination of the basis functions that

is able to describe the value function well.

3. Upper bounds produced by the PO methods can be directly compared to upper

bounds produced by linear programming-based ADP algorithms of the type in-

troduced by Schweitzer and Seidmann (1985), de Farias and Van Roy (2003), and

Desai et al. (2009). In particular, we demonstrate that the PO method produces

provably tighter upper bounds than the latter methods. While these methods

have achieved considerable success in a broad range of large scale dynamic opti-

mization problems, they are dominated by the PO method for optimal stopping

problems.
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ADP algorithms are usually based on an approximate approach for solving Bellman’s

equation. In the context of optimal stopping, methods have been proposed that are varia-

tions of approximate value iteration (Tsitsiklis and Van Roy, 1999; Yu and Bertsekas, 2007),

approximate policy iteration (Clément et al., 2002; Longstaff and Schwartz, 2001), and ap-

proximate linear programming (Borkar et al., 2009).

Martingale duality-based upper bounds for the pricing of American and Bermudan op-

tions, which rely on Doob’s decomposition to generate the penalty process, were introduced

by Rogers (2002) and Haugh and Kogan (2004). Rogers (2002) suggests the possibility of

determining a good penalty process by optimizing of linear combinations of martingales; our

method is a special case of this which uses a specific parametrization of candidate martingales

in terms of basis functions. Andersen and Broadie (2004) show how to compute martingale

penalties from rules and obtain upper bounds; practical improvements to these technique

were studied by Broadie and Cao (2008). An alternative ‘multiplicative’ approach to duality

was introduced by Jamshidian (2003). Its connections with martingale duality approach

were explored in Chen and Glasserman (2007), who also develop approximation guarantees

for martingale duality upper bounds. Belomestny et al. (2009) describe a variation of the

martingale duality procedure that does not require inner simulation. Rogers (2010) describes

a pure dual algorithm for pricing.

The remainder of the chapter is organized as follows: in Section 3.2, we formulate the

optimal stopping problem and illustrate the general martingale penalty approach. In Sec-

tion 3.3, we introduce our new algorithm, the PO method. Section 3.4 illustrates the benefits

of the PO method in a numerical case study of pricing high-dimensional financial derivatives.

In Section 3.5, we develop our theoretical results.

3.2. Formulation

Our framework will be that of an optimal stopping problem over a finite time horizon.

Specifically, consider a discrete-time Markov chain with state xt ∈ X at each time t ∈ T ,

{0, 1, . . . , d}. For simplicity, assume that the chain has a the state space X that is finite.



CHAPTER 3. PATHWISE METHOD FOR OPTIMAL STOPPING PROBLEMS 70

Denote by P the transition kernel of the chain. Without loss of generality, we will assume

that P is time-invariant. Let F , {Ft} be the natural filtration generated by the process

{xt}, i.e., for each time t, Ft , σ(x0, x1, . . . , xt).

Given a function g : X → R, we define the payoff of stopping when the state is xt as

g(xt). A stationary exercise policy µ , {µt, t ∈ T } is a collection of functions where each

µt : X → {STOP,CONTINUE} determines the choice of action at time t as a function of the

state xt. Without loss of generality, we will require that µd(x) = STOP for all x ∈ X , i.e.,

the process is always stopped at the final time d.

We are interested in finding a policy which maximizes the expected discounted payoff of

stopping. The value of a policy µ assuming one starts at state x in period t is given by

Jµt (x) , E
[
ατµ(t)−tg(xτµ(t))

∣∣∣ xt = x
]
,

where τµ(t) is the stopping time τµ(t) , min {s ≥ t : µ(xs) = STOP}. Our goal is to

find a policy µ that simultaneously maximizes the value function Jµt (x) for all t and x. The

existence of such an optimal policy is a standard fact. We will denote such an optimal policy

by µ∗ and the corresponding optimal value function by J∗.

In principle, J∗ may be computed via the following dynamic programming backward

recursion, for all x ∈ X and t ∈ T ,

(3.1) J∗t (x) ,


max

{
g(x), αE

[
J∗t+1(xt+1) | xt = x

] }
if t < d.

g(x) if t = d.

The corresponding optimal stopping policy µ∗ is ‘greedy’ with respect to J∗ and given by

(3.2) µ∗t (x) ,


CONTINUE if t < d and g(x) < αE[J∗t+1(xt+1) | xt = x],

STOP otherwise.

3.2.1. The Martingale Duality Approach

Let S be the space of real-valued functions on X , i.e., functions of state, and let P be the

space of real-valued functions on X × T , i.e., time-dependent functions of state. We begin
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by defining the martingale difference operator ∆. The operator ∆ maps a function V ∈ S

to the a function ∆V : X × X → R according to

(∆V )(x1, x0) , V (x1)− E[V (x1)|x0].

Given an arbitrary function J ∈ P , define the process

Mt ,
t∑

s=1
αs(∆Js)(xs, xs−1), ∀ t ∈ T .

where Js , J(·, s). Then, M is a martingale adapted to the filtration F . Hence, we view ∆

as a projection onto the space of martingale differences.

Next, we define for each t ∈ T , the martingale duality upper bound operator Ft : P → S

according to:

(FtJ)(x) , E
max
t≤s≤d

αs−tg(xs)−
s∑

p=t+1
αp−t∆Jp(xp, xp−1)

∣∣∣∣∣∣ xt = x

 .
Finally, we define J∗ ∈ P according to J∗(x, t) , J∗t (x). We are now ready to state the

following key lemma, due to Rogers (2002) and Haugh and Kogan (2004). A proof is provided

in Appendix 3.6 for completeness.

Lemma 8 (Martingale Duality).

(i) (Weak Duality) For any J ∈ P and all x ∈ X and t ∈ T , J∗t (x) ≤ FtJ(x).

(ii) (Strong Duality) For all x ∈ X and t ∈ T , J∗t (x) = FtJ
∗(x).

The above result may be succinctly stated as follows: For any t ∈ T , x ∈ X ,

(3.3) J∗t (x) = inf
J∈P

FtJ(x).

This is an alternative (and somewhat convoluted) characterization of the optimal value

function J∗. Its value, however, lies in the fact that any J ∈ P yields an upper bound, and

evaluating this upper bound for a given J is for all practical purposes not impacted by the

size of X . Indeed, extant approaches to using the above characterization to produce upper
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bounds on J∗ use, as surrogates for J , an approximation of the optimal value function J∗ (see,

e.g., Glasserman, 2004). This approximation can be derived over the course of a regression

pricing method of the type introduced by Longstaff and Schwartz (2001) or Tsitsiklis and Van

Roy (2001). We call this the dual value function approach. Alternatively, an approximating

value function corresponding to a sub-optimal policy (Andersen and Broadie, 2004) can be

used, where the policy is typically produced by a regression pricing method. We call this

the dual policy approach.

3.3. The Pathwise Optimization Method

Motivated by the (in general, intractable) optimization problem (3.3), we are led to consider

the following: what if one chose to optimize over functions J ∈ P̂ ⊂ P , where P̂ is compactly

parametrized and easy to optimize over? Motivated by ADP algorithms that seek approx-

imations to the optimal value function that are linear combinations of some set of basis

functions, we are led to the following parametrization: Assume we are given a collection of

K basis functions

Φ , {φ1, φ2, . . . , φK} ⊂ P .

Ideally these basis functions capture features of the state space or optimal value function

that are relevant for effective decision making, but frequently generic selections work well

(e.g., all monomials up to a fixed degree). We may then consider restricting attention to

functions that are linear combinations of elements of Φ, i.e., functions of the form

(Φr)t(x) ,
K∑
`=1

r`φ`(x, t), ∀ x ∈ X , t ∈ T .

Here, r ∈ RK is known as a weight vector. Denote this sub-space of P by P̂ and note that P̂

is compactly parameterized by K parameters (as opposed to P which is specified by |X ×T |

parameters in general). Setting the starting epoch to t = 0 for convenience, we may rewrite

the optimization problem (3.3) restricted to P̂ as:

(3.4) inf
r
F0Φr(x).
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We call this problem the pathwise optimization (PO) problem. The lemma below demon-

strates that (3.4) is, in fact, a convex optimization problem.

Lemma 9. For every t ∈ T and x ∈ X , the function r 7→ FtΦr(x) is convex in r.

Proof. Observe that, given a fixed (x, t) and as a function of r, FtΦr(x) is a non-negative

linear combination of a set of pointwise suprema of affine functions of r, and hence must be

convex as each of these operations preserves convexity. �

Before devising a practical approach to solving (3.4), let us reflect on what solving this

program accomplishes. We have devised a means to systematically and, anticipating the

developments in the sequel, practically, find a martingale penalty process within a certain

parametrized family of martingales. To appreciate the value of this approach, we note that it

is guaranteed, by construction, to produce tighter upper bounds on price than any dual value

function methods derived from value function approximations that are within the span of

the same basis function set. These latter approximations are analogous to what is typically

found using regression methods of the type proposed by Longstaff and Schwartz (2001) and

Tsitsiklis and Van Roy (2001).1

Now, from a practical perspective, the optimization problem (3.4) is an unconstrained

minimization of a convex function over a relatively low-dimensional space. Algorithmically,

the main challenge is evaluating the objective, which is the expectation of a functional

over paths in a high-dimensional space. We will demonstrate that this can be efficiently

approximated via sampling.

3.3.1. Solution via Sampling

Consider sampling S independent outer sample paths of the underlying Markov process

starting at some given state x0; denote path i by x(i) ,
{
x(i)
s , s ∈ T

}
for i = 1, 2, . . . , S. By

1Strictly speaking, the regression pricing approaches of Longstaff and Schwartz (2001) and Tsitsiklis and
Van Roy (2001) seek linearly parameterized approximations to the optimal continuation value function, as
is described in Section 3.4. However, the same ideas could easily be applied to find linearly parameterized
approximations to the optimal value function.
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the law of large numbers, we know that for a fixed r,

1
S

S∑
i=1

max
0≤s≤d

αsg(x(i)
s

)
−

s∑
p=1

αp∆(Φr)p
(
x(i)
p , x

(i)
p−1

) → F0Φr(x0), as T →∞.

This suggests a useful proxy for the objective in the optimization problem (3.4).

Before writing down a final, implementable optimization program, however, consider the

quantities that appear in the left-hand side of the expression above,

∆(Φr)p
(
x(i)
p , x

(i)
p−1

)
= (Φr)p(x(i)

p )− E
[
(Φr)p(xp)

∣∣∣ xp−1 = x
(i)
p−1

]
.

The expectation in the above expression may, in certain cases, be computed in closed form

(see, e.g., Belomestny et al., 2009; Glasserman and Yu, 2002). Here, we choose to instead re-

place the expectation by its empirical counterpart. In particular, we generate I independent

inner samples
{
x(i,j)
p , j = 1, . . . , I

}
, conditional on xp−1 = x

(i)
p−1. In other words, these inner

samples are generated according to the one-step transition distribution P
(
x

(i)
p−1, ·

)
. Then,

we employ the approximation

Ê
[
(Φr)p(xp)

∣∣∣x(i)
p−1

]
,

1
I

I∑
j=1

(Φr)p
(
x(i,j)
p

)
→ E

[
(Φr)p(xp) | xp−1 = x

(i)
p−1

]
, as I →∞.

Having thus replaced expectations by their empirical counterparts, we are ready to state a

general, implementable, sampled variant of the optimization problem (3.4):

(3.5)

minimize
r,u

1
S

S∑
i=1

ui

subject to ui +
s∑

p=1
αp
{

(Φr)p
(
x(i)
p

)
− Ê

[
(Φr)p(xp)

∣∣∣x(i)
p−1

]}
≥ αsg(x(i)

s ),

∀ 1 ≤ i ≤ S, 0 ≤ s ≤ d.

Denoting a solution to (3.5) by r̂PO, we propose, as an upper bound on J∗0 (x0), the quantity

F0Φr̂PO(x0). This latter quantity may also be estimated via the same sampling procedure.

However, in order to obtain an unbiased estimate of an upper bound, a second set of samples

must be generated that is independent of those used in solving (3.5).
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While we do not show it here, under suitable technical conditions one may establish that

as S and I grow large, the value of the solution to the above optimization problem approaches

the optimal value of the pathwise optimization problem (3.4).2 The optimization problem we

have proposed above is a linear program (LP) with K+S variables and S(d+1) constraints.

Since no two variables {ui, uj} with i 6= j appear in the same constraint, it is easy to see

that the Hessian corresponding to a logarithmic barrier function for the problem has block

arrow structure. Inverting this matrix will require O(K2S) floating point operations (see,

for example, Appendix C, page 675 Boyd and Vandenberghe, 2004). Consequently, one may

argue that the complexity of solving this LP via an interior point method essentially scales

linearly with S.

3.3.2. Lower Bounds and Policies

The PO method generates upper bounds on the performance of an optimal policy. We are

also interested in generating good stopping policies, which, in turn, will yield lower bounds on

optimal performance. Here, we describe a method that does so by computing a continuation

value approximation.

In particular, for 0 ≤ t < d and xt ∈ X , denote by C∗t (xt) the optimal continuation value,

or, the best value the can be achieved by any policy at time t and state xt that does not

immediately stop. Mathematically,

C∗t (xt) , αE
[
J∗t+1(xt+1)

∣∣∣xt] .
Note that the optimal policy µ∗ can be expressed succinctly in terms of C∗ via

(3.6) µ∗t (x) ,


CONTINUE if t < d and g(x) < C∗t (x),

STOP otherwise,

for all t ∈ T and x ∈ X . In other words, µ∗ decides to stop or not by acting greedily using

C∗ to assess the value of not stopping. Inspired by this, given a good approximation C̃ to
2This may be established via an appeal to a uniform law of large numbers such as Theorem 7.48 of

(Shapiro et al., 2009), under the assumption that the basis functions and reward function are bounded, and
that r is restricted to a compact set.
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the optimal continuation value, we can attempt to construct a good policy by replacing C∗

with C̃ in (3.6).

Now, given a solution to (3.5), r̂PO, we can generate generate upper bounds on con-

tinuation value and regress these against basis functions to generate a continuation value

approximation. In particular, it follows from Lemma 8 that

(3.7) C∗t (xt) ≤ E
 max
t+1≤s≤d

αs−tg(xs)−
s∑

p=t+2
αp−t∆(Φr̂PO)p(xp, xp−1)

∣∣∣∣∣∣ xt
 ,

for all 0 ≤ t < d and xt ∈ X . Thus, at time t along the ith sample path, a point estimate of

an upper bound on C∗t
(
x

(i)
t

)
is given by

c̄
(i)
t , max

t+1≤s≤d
αs−tgs

(
x(i)
s

)
−

s∑
p=t+2

αp−t
{

(Φr̂PO)p
(
x(i)
p

)
− Ê

[
(Φr̂PO)p(xp)

∣∣∣x(i)
p−1

]}
.

For each 0 ≤ t < d− 1, the values
{
c̄

(i)
t , 1 ≤ i ≤ S

}
can now be regressed against basis

functions to obtain a continuation value approximation. In particular, defining a set of K

basis functions of the state xt,

Ψt , {ψ1,t, ψ2,t, . . . , ψK,t} ⊂ S,

we can consider linear combinations of the form

(Ψtκt)(x) ,
K∑
`=1

κ`,tψ`,t(x), ∀ x ∈ X ,

where κt ∈ RK is a weight vector.3 The weight vectors {κt, 0 ≤ t < d} can be computed

efficiently in a recursive fashion as follows:

1. Iterate backward over times t = d− 1, d− 2, . . . , 0.

2. For each sample path 1 ≤ i ≤ S, we need to compute the continuation value estimate

c̄
(i)
t . If t = d− 1, this is simply

c̄
(i)
d−1 = αgd

(
x

(i)
d

)
.

3In our experimental work we used ψ`,t(·) = φi(·, t). In other words, we used the same basis function
architecture to approximate continuation values as were used for value functions.
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If t < d− 1, this can be computed recursively as

c̄
(i)
t = αmax

{
gt+1

(
x

(i)
t+1

)
, c̄

(i)
t+1 − α

(
(Φr̂PO)t+2

(
x

(i)
t+2

)
− Ê

[
(Φr̂PO)t+2(xt+2)

∣∣∣x(i)
t+1

])}
.

3. Compute the weight vector κt via the regression

κt ∈ argmin
κ

1
S

S∑
i=1

(
Ψtκ

(
x

(i)
t

)
− c̄(i)

t

)2
.

We may then use the sub-optimal policy that is greedy with respect to the continuation

value approximation given by Ψtκt, for each 0 ≤ t ≤ d− 1.

Observe that, at a high-level, our algorithm is reminiscent of the regression pricing ap-

proach of Longstaff and Schwartz (2001). Both methods proceed backward in time over a

collection of sample paths, regressing basis functions against point estimates of continuation

values. Longstaff and Schwartz (2001) use point estimates of lower bounds derived from sub-

optimal future policies. We, on the other had, use point estimates of upper bounds derived

from the PO linear program (3.5). As we shall see in Section 3.4, despite the similarities,

the PO-derived policy can offer significant improvements in practice.

3.4. Computational Results

In this section, we will illustrate the performance of the PO method versus a collection

of competitive benchmark algorithms in numerical experiments. We begin by defining the

benchmark algorithms in Section 3.4.1. In Section 3.4.2, we define the problem setting,

which is that of pricing a high-dimensional Bermudan option. Implementation details such

as the choice of basis functions and the state sampling parameters are given in Section 3.4.3.

Finally, the results are presented in Section 3.4.4.

3.4.1. Benchmark Methods

The landscape of techniques available for pricing high-dimensional options is rich; a good

overview of these is available from Glasserman (2004, Chapter 8). We consider the following
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benchmarks, representative of mainstream methods, for purposes of comparison with the PO

method:

• Lower Bound Benchmark. The line of work developed by Carriere (1996), Tsitsiklis

and Van Roy (2001), and Longstaff and Schwartz (2001) seeks to produce approxima-

tions to the optimal continuation value function. These approximations are typically

weighted combinations of pre-specified basis functions that are fit via a regression-

based methodology. The greedy policies with respect to these approximations yield

lower bounds on price.

We generate a continuation value approximation Ĉ using the Longstaff and Schwartz

(2001) (LS) method. Details are available from Glasserman (2004, Chapter 8, pg. 461).

We simulate the greedy policy with respect to this approximation to generate lower

bounds. We refer to this approach as LS-LB.

• Upper Bound Benchmarks. The martingale duality approach, originally proposed

for this task by Rogers (2002) and Haugh and Kogan (2004) is widely used for upper

bounds. Recall from Section 3.2.1 that a martingale for use in the duality approach is

computed using the optimal value function, and extant heuristics use surrogates that

approximate the optimal value function. We consider the following surrogates:

1. DVF-UB: This is a dual value function approach that derives a value function

approximation from the continuation value approximation of LS-LB regression

pricing procedure. In particular, given the LS-LB continuation value approxima-

tion, Ĉ, we generate a value function approximation V̂ according to

V̂t(x) , max{g(x), Ĉt(x)}, ∀ x ∈ X , t ∈ T .

This approach is described by Glasserman (2004, Section 8.7, pg. 473).

2. DP-UB: This is a dual policy approach that derives a value function approxima-

tion from the policy suggested by the LS-LB regression pricing procedure. In
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particular, let µ̂ denote the greedy policy derived from the LS-LB continuation

value approximation Ĉ, i.e., for all states x and times t,

µ̂t(x) ,


CONTINUE if t < d and g(x) < Ĉt(x),

STOP otherwise.

Define V µ̂
t (x) as the value of using the policy µ̂ starting at state x in time t.

The quantity V µ̂
t (x) can be computed via an inner Monte Carlo simulation over

paths that start at time t in state x. This can then be used as a value function

surrogate to derive a martingale for the duality approach. This approach was

introduced by Andersen and Broadie (2004) and a detailed description is available

from Glasserman (2004, Section 8.7, pg. 474–475).

The LS-LB, DVF-UB, and DP-UB methods described above will be compared with upper

bounds computed with the PO method (PO-UB) and their corresponding lower bounds (PO-

LB), as described in Section 3.3. Further implementation details for each of these techniques

will be provided in Section 3.4.3.

3.4.2. Problem Setting

Specifically, we consider a Bermudan option over a calendar time horizon T defined on multi-

ple assets. The option has a total of d exercise opportunities at calendar times {δ, 2δ, . . . , δd},

where δ , T/d. The payoff of the option corresponds to that of a call option on the maxi-

mum of n assets with an up-and-out barrier. We assume a Black-Scholes framework, where

risk-neutral asset price dynamics for each asset j are given by a geometric Brownian motion,

i.e., the price process
{
P j
s , s ∈ R+

}
follows the stochastic differential equation

(3.8) dP j
s = (r − ζj)P j

s ds+ σjP
j
s dW

j
s .

Here, r is the continuously compounded risk-free interest rate, ζj is the dividend rate of asset

j, σj is the volatility of asset j, W j
s is a standard Brownian motion, and the instantaneous

correlation of each pair W j
s and W j′

s is ρjj′ . Let {pt, 0 ≤ t ≤ d} be the discrete time process
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obtained by sampling Ps at intervals of length δ, i.e., pjt , P j
δt for each 0 ≤ t ≤ d. On the

discrete time scale indexed by t, the possible exercise times are given by T , {1, 2, . . . , d},

and the discount factor is given by α , e−rδ.

The option is ‘knocked out’ (and worthless) at time t if, at any of the times preceding and

including t, the maximum of the n asset prices exceeded the barrier B. We let yt ∈ {0, 1}

serve as an indicator that the option is knocked out at time t. In particular, yt = 1 if the

option has been knocked out at time t or at some time prior, and yt = 0 otherwise. The {yt}

process evolves according to

yt =


I{max1≤j≤n pj0≥B} if t = 0,

yt−1 ∨ I{max1≤j≤n pjt≥B} otherwise.

A state in the associated stopping problem4 is then given by the tuple x , (p, y) ∈ Rn×{0, 1},

and the payoff function is defined according to

g(x) ,
(

max
j

pi(x)−K
)+ (

1− y(x)
)
.

where y(x) and pj(x), respectively, are the knock-out indicator and the jth price coordinates

of the composite state x.

3.4.3. Implementation Details

Basis Functions. We use the following set of n+ 2 basis functions:

φ1(x, t) =
(
1− y(x)

)
,

φ2(x, t) = g(x),

φj+2(x, t) =
(
1− y(x)

)
pj(x), ∀ 1 ≤ j ≤ n.

Described succinctly, our basis function architecture consists of a constant function, the

payoff function, and linear functions of each asset price, where we have further ensured that

4Note that, as opposed to the setting of Section 3.2, the state space here is not finite. However, the
results discussed earlier can easily be extended to the present setting.
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each basis function takes the value zero in states where the option is knocked out. This

is because zero is known to be the exact value of the option in such states. Note that

many other basis functions are possible. For instance, the prices of barrier options on each

of the individual stocks seems like a particularly appropriate choice. We have chosen a

relatively generic basis architecture, however, in order to disentangle the study of the pricing

methodology from the goodness of a particular tailor-made architecture.

State Sampling. Both the PO method as well as the benchmark methods require sampling

states from the underlying Markov chain. In general, it may be possible to judiciously

choose the sampling parameters so as to, for example, optimize the accuracy of a method

given a fixed computational budget, and that such a good choice of parameters will likely

vary from method to method. We have not attempted such an optimization. Instead, we

have considered a setup with sampling parameters that generally follow those chosen by

Andersen and Broadie (2004). Briefly, the sampling parameters chosen are as follows:

• LS-LB: This approach requires sample paths of the underlying Markov process to run

the regression procedure. We used 200,000 sample paths for the regression. The greedy

policy with respect to the regressed continuation values was evaluated over 2,000,000

sample paths.

• PO-UB: In the notation of Section 3.3.1, we solved the LP (3.5) using S = 30,000

outer sample paths, and I = 500 next state inner samples for one-step expectation

computations. Given a solution, r̂PO, we evaluated F0Φr̂PO(x0) using a distinct set of

S = 30,000 outer sample paths, with I = 500 inner samples for one-step expectations.

• PO-LB: The policy here is constructed using computations entailed in the PO-UB

method. We evaluate this policy to compute the lower bound using the same set

of 2,000,000 sample paths used for the evaluation of LS-LB above.

• DVF-UB: As discussed earlier, a value function estimate V̂ is obtained from the con-

tinuation value estimates of the regression procedure used for LS-LB above. We then
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estimate the DVF-UB upper bound, F0V̂ (x0), using the same set of 30,000 sample paths

and one step samples in the evaluation of PO-UB above.

• DP-UB: As discussed earlier, this approach uses the value function approximation V µ̂.

We obtain continuation value estimates Ĉ via the regression computation for LS-LB.

We estimate the upper bound F0V
µ̂(x0) using 3,000 sample paths;5 we evaluate V µ̂ at

each point along these sample paths using 10,000 inner sample paths.

3.4.4. Results

In the numerical results that follow, the following common problem settings were used:6

• strike price: K = 100

• knock-out barrier price: B = 170

• time horizon T = 3 years

• risk-free rate: r = 5% (annualized)

• dividend rate: ζj = 0 (annualized)

• volatility: σj = 20% (annualized)

In Table 3.1, we see the upper and lower bounds produced by the PO approach and the

benchmark schemes described above. Here, we vary the number of assets n and the initial

price pj0 = p̄0 common to all assets. Standard errors are in parentheses. Similarly, Tables 3.2

and 3.3 show the upper and lower bounds computed as, respectively, the number of exercise

opportunities d and the common asset price correlation ρjj′ = ρ̄ is varied. We make the

following broad conclusions from these experimental results:

5Andersen and Broadie (2004) used 1,500 sample paths. We chose the larger number to obtain standard
errors comparable to the other approaches in the study.

6Note that while all the parameter choices here are symmetric across assets, and hence the assets are
identical in the problems we consider. However, this symmetry was not exploited in our implementations.
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• Lower Bound Quality. The PO-LB method provides substantially better exercise poli-

cies than does the LS-LB procedure and consequently tighter lower bounds. The

exercise policies provide an improvement of over 100 basis points in most of the exper-

iments; in some cases the gain was as much as 200 basis points.

• Upper Bound Quality. The DVF-UB upper bounds are the weakest while the DP-UB

upper bounds are typically the strongest. The gap between these two bounds was

typically on the order of 100 basis points. The upper bound produced via the PO-UB

method was of intermediate quality, but typically recovered approximately 60% of the

gap between the DVF-UB and DP-UB upper bounds.

Table 3.4 summarizes relative computational requirements of each method. Note that,

for the dual upper bound methods, we report the time to compute both upper and lower

bounds. This is for consistency, since for the DVF-UB and DP-UB methods, the LS-LB

continuation value estimate is required and must be computed first. The running times are

typically dominated by sampling requirements, and can be broken down as follows:

• LS-LB: The LS-LB method requires only the generation of outer sample paths and is

thus the fastest.

• LS-LB + DVF-UB: Along each outer sample path, the DVF-UB method requires gener-

ation of inner samples for the next state.

• PO-LB + PO-UB: For the PO-UB method, the structure of the LP (3.5) permits ex-

tremely efficient solution via an interior point method as discussed in Section 3.3.1; the

computation time is dominated by sampling rather than optimization. Qualitatively,

the sampling requirements for the PO-UB method are the same as that of DVF-UB:

next state inner samples are needed. However, in order to generate an unbiased es-

timate, the PO-UB method requires one set of sample paths for optimization, and a

second set of sample paths for evaluation of the upper bound estimate. Hence, PO-UB

takes about twice the computational time of DVF-UB.



CHAPTER 3. PATHWISE METHOD FOR OPTIMAL STOPPING PROBLEMS 84

(a) Upper and lower bounds, with standard errors.

p̄0 LS-LB S.E. PO-LB S.E. DP-UB S.E. PO-UB S.E. DVF-UB S.E.

n = 4 assets

90 32.754 (0.005) 33.011 (0.011) 34.989 (0.014) 35.117 (0.026) 35.251 (0.013)
100 40.797 (0.003) 41.541 (0.009) 43.587 (0.016) 43.853 (0.027) 44.017 (0.011)
110 46.929 (0.003) 48.169 (0.004) 49.909 (0.016) 50.184 (0.017) 50.479 (0.008)

n = 8 assets

90 43.223 (0.005) 44.113 (0.009) 45.847 (0.016) 46.157 (0.037) 46.311 (0.015)
100 49.090 (0.004) 50.252 (0.006) 51.814 (0.023) 52.053 (0.027) 52.406 (0.014)
110 52.519 (0.005) 53.488 (0.007) 54.890 (0.020) 55.064 (0.019) 55.513 (0.005)

n = 16 assets

90 49.887 (0.003) 50.885 (0.006) 52.316 (0.020) 52.541 (0.010) 52.850 (0.011)
100 52.879 (0.001) 53.638 (0.004) 54.883 (0.020) 55.094 (0.016) 55.450 (0.013)
110 54.620 (0.002) 55.146 (0.003) 56.201 (0.009) 56.421 (0.016) 56.752 (0.007)

(b) Relative values of bounds.

p̄0
(PO-LB)− (LS-LB)

LS-LB
(PO-UB)− (DP-UB)

LS-LB
(DVF-UB)− (PO-UB)

LS-LB
n = 4 assets

90 0.78% 0.39% 0.41%
100 1.82% 0.65% 0.40%
110 2.64% 0.59% 0.63%

n = 8 assets

90 2.06% 0.72% 0.36%
100 2.37% 0.49% 0.72%
110 1.85% 0.33% 0.86%

n = 16 assets

90 2.00% 0.45% 0.62%
100 1.43% 0.40% 0.67%
110 0.96% 0.40% 0.61%

Table 3.1: A comparison of the lower and upper bound estimates of the PO and bench-
marking methods, as a function of the common initial asset price pj0 = p̄0 and the number
of assets n. For each algorithm, the mean and standard error (over 10 independent trials)
is reported. The number of exercise opportunities was d = 54 and the common correlation
was ρjj′ = ρ̄ = 0.
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(a) Upper and lower bounds, with standard errors.

n LS-LB S.E. PO-LB S.E. DP-UB S.E. PO-UB S.E. DVF-UB S.E.

d = 36 exercise opportunities

4 40.315 (0.004) 41.073 (0.008) 42.723 (0.016) 43.006 (0.021) 43.199 (0.009)
8 48.283 (0.004) 49.114 (0.006) 50.425 (0.019) 50.721 (0.027) 51.011 (0.008)

16 51.835 (0.003) 52.289 (0.004) 53.231 (0.009) 53.517 (0.020) 53.741 (0.006)

d = 54 exercise opportunities

4 40.797 (0.003) 41.541 (0.009) 43.587 (0.016) 43.853 (0.027) 44.017 (0.011)
8 49.090 (0.004) 50.252 (0.006) 51.814 (0.023) 52.053 (0.027) 52.406 (0.014)

16 52.879 (0.001) 53.638 (0.004) 54.883 (0.020) 55.094 (0.016) 55.450 (0.013)

d = 81 exercise opportunities

4 41.229 (0.004) 41.644 (0.017) 44.264 (0.023) 44.511 (0.030) 44.662 (0.006)
8 49.788 (0.003) 51.249 (0.004) 52.978 (0.018) 53.178 (0.027) 53.523 (0.013)

16 53.699 (0.003) 54.825 (0.005) 56.398 (0.024) 56.464 (0.007) 56.948 (0.008)

(b) Relative values of bounds.

n
(PO-LB)− (LS-LB)

LS-LB
(PO-UB)− (DP-UB)

LS-LB
(DVF-UB)− (PO-UB)

LS-LB
d = 36 exercise opportunities

4 1.88% 0.70% 0.48%
8 1.72% 0.61% 0.60%

16 0.88% 0.55% 0.43%

d = 54 exercise opportunities

4 1.82% 0.65% 0.40%
8 2.37% 0.49% 0.72%

16 1.43% 0.40% 0.67%

d = 81 exercise opportunities

4 1.01% 0.60% 0.37%
8 2.93% 0.40% 0.69%

16 2.10% 0.12% 0.90%

Table 3.2: A comparison of the lower and upper bound estimates of the PO and bench-
marking methods, as a function of the number of exercise opportunities d and the number
of assets n. For each algorithm, the mean and standard error (over 10 independent trials)
is reported. The common initial asset price was pj0 = p̄0 = 100 and the common correlation
was ρjj′ = ρ̄ = 0.
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(a) Upper and lower bounds, with standard errors.

n LS-LB S.E. PO-LB S.E. DP-UB S.E. PO-UB S.E. DVF-UB S.E.

ρ̄ = −0.05 correlation

4 41.649 (0.004) 42.443 (0.009) 44.402 (0.023) 44.644 (0.019) 44.846 (0.013)
8 50.077 (0.005) 51.136 (0.005) 52.581 (0.031) 52.799 (0.018) 53.163 (0.011)

16 53.478 (0.004) 54.076 (0.004) 55.146 (0.013) 55.360 (0.010) 55.708 (0.010)

ρ̄ = 0 correlation

4 40.797 (0.003) 41.541 (0.009) 43.587 (0.016) 43.853 (0.027) 44.017 (0.011)
8 49.090 (0.004) 50.252 (0.006) 51.814 (0.023) 52.053 (0.027) 52.406 (0.014)

16 52.879 (0.001) 53.638 (0.004) 54.883 (0.020) 55.094 (0.016) 55.450 (0.013)

ρ̄ = 0.1 correlation

4 39.180 (0.006) 39.859 (0.011) 42.001 (0.037) 42.187 (0.029) 42.425 (0.010)
8 47.117 (0.005) 48.371 (0.005) 50.139 (0.029) 50.362 (0.035) 50.700 (0.014)

16 51.414 (0.005) 52.498 (0.008) 54.141 (0.032) 54.217 (0.018) 54.654 (0.010)

(b) Relative values of bounds.

n
(PO-LB)− (LS-LB)

LS-LB
(PO-UB)− (DP-UB)

LS-LB
(DVF-UB)− (PO-UB)

LS-LB
ρ̄ = −0.05 correlation

4 1.91% 0.58% 0.49%
8 2.11% 0.44% 0.73%

16 1.12% 0.40% 0.65%

ρ̄ = 0 correlation

4 1.82% 0.65% 0.40%
8 2.37% 0.49% 0.72%

16 1.43% 0.40% 0.67%

ρ̄ = 0.1 correlation

4 1.73% 0.48% 0.61%
8 2.66% 0.47% 0.72%

16 2.11% 0.15% 0.85%

Table 3.3: A comparison of the lower and upper bound estimates of the PO and bench-
marking methods, as a function of the common correlation ρjj′ = ρ̄ and the number of assets
n. For each algorithm, the mean and standard error (over 10 independent trials) is reported.
The common initial price was pj0 = p̄0 = 100 and the number of exercise opportunities was
d = 54.
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method time (normalized)
LS-LB (lower bound only) 1.0

LS-LB + DVF-UB (upper and lower bounds) 3.6
PO-LB + PO-UB (upper and lower bounds) 6.8
LS-LB + DP-UB (upper and lower bounds) 51.7

Table 3.4: Relative time values for different algorithms for the stopping problem setting of
Table 3.1 with n = 16 assets. Here, all times are normalized relative to that required for
the computation of the LS-LB lower-bound . All computations were single-threaded and
performed on an Intel Xeon E5620 2.40 GHz CPU with 64 GB RAM. The PO-UB linear
program was solved with IBM ILOG CPLEX 12.1.0 optimization software.

• LS-LB + DP-UB: The inner simulation requirements for DP-UB, on the other hand,

result in that method requiring an order of magnitude more time than either of the

other upper bound approaches. This is because along each outer sample path, inner

samples not just for one time step, but for an entire trajectory until the option is

knocked-out or exercised.

To summarize, these experiments demonstrate the two primary merits to using the PO

method to produce upper and lower bounds:

1. The PO-UB method produces upper bounds that are superior to the DVF-UB method,

and, in many cases, of comparable quality to the state-of-the-art DP-UB method. How-

ever, the PO-UB method requires an order of magnitude less computational effort than

the DP-UB approach, and is highly practical.

2. The PO-LB method produces substantially superior exercise policies relative to the

LS-LB method. These policies are effectively a by-product of the upper bound compu-

tation.

3.5. Theory

In this section, we will seek to provide theoretical guarantees for the martingale penalty

approach in general as well as specific guarantees for the PO method.
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Note that our setting here will be that of an optimal stopping problem that is discounted,

stationary, and has an infinite horizon. This will yield us considerably simpler notation and

easier statement of results, and is also consistent with other theoretical literature on ADP for

optimal stopping problems (e.g., Tsitsiklis and Van Roy, 1999; Van Roy, 2010). Many of our

results have finite horizon, non-stationary analogues, however, and we view intuition derived

from the stationary setting as carrying over to the non-stationary setting. Our stationary

setting is introduced in Section 3.5.1.

Our first class of theoretical results are approximation guarantees. These guarantee the

quality of an upper bound derived from the martingale duality approach, relative to error

in approximating the value function. A crucial parameter for our bounds measures the

‘predictability’ of a Markov chain; this is introduced in Section 3.5.2. In Section 3.5.3, we

develop an approximation guarantee that applies generically to martingale duality upper

bounds, and discuss the structural properties of optimal stopping problems that impact this

bound. In Section 3.5.4, we develop a relative guarantee that is specific to the PO method;

this guarantees the quality of the PO upper bound relative to the best approximation of the

true value function within the span of the basis functions. In Section 3.5.5, we compare our

guarantees to similar guarantees that have been developed for ADP lower bounds.

Our second class of theoretical results are comparison bounds, developed in Section 3.5.6.

Here, we compare the upper bounds arising to the PO approach to other upper bounds which

have been developed using ADP techniques based in linear programming. In this case, the

upper bounds can be compared on a problem instance by problem instance basis, and we

show that the PO method dominates the alternatives.

3.5.1. Preliminaries

Consider a discrete-time Markov chain with state xt ∈ X at each time t ∈ {0, 1, . . .}. Assume

the chain has a the state space X that is finite. Denote by P the transition kernel of the

chain. Assume that the chain is ergodic (i.e., aperiodic and irreducible), with stationary

distribution π. Without loss of generality, assume that π(x) > 0 for every state x. Let
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F , {Ft} be the natural filtration generated by the process {xt}, i.e., for each time t,

Ft , σ(x0, x1, . . . , xt).

Given a function g : X → R, we define the payoff of stopping when the state is xt as g(xt).

We are interested in maximizing the expected discounted payoff of stopping. In particular,

given an initial state x ∈ X , define the optimal value function

J∗(x) , sup
τ

E
[
ατg(xτ ) | x0 = x

]
.

Here, the supremum is taken over all F -adapted stopping times τ , and α ∈ [0, 1) is the

discount factor.

We will define P to be the set of real-valued functions of the state space,7 i.e., if J ∈ P ,

then J : X → R. We will abuse notation to also consider the transition kernel as a one-step

expectation operator P : P → P , defined by

(PJ)(x) , E
[
J(xt+1) | xt = x

]
, ∀ x ∈ X .

Given a function J ∈ P , define the Bellman operator T : P → P by

(TJ)(x) , max
{
g(x), αPJ(x)

}
, ∀ x ∈ X .

Observe that the optimal value function is the unique fixed point TJ∗ = J∗.

In order to define the pathwise optimization approach in this setting, we first define the

martingale difference operator ∆. The operator ∆ maps a function J ∈ P to a function

∆J : X × X → R, where

∆J(xt, xt−1) , J(xt)− PJ(xt−1), ∀ xt−1, xt ∈ X .

Observe that, for any J , the process {∆J(xt, xt−1), t ≥ 1} is a martingale difference sequence.

Now, for each J , the martingale duality upper bound operator F : P → P is given by

(FJ)(x) , E
[

sup
s≥0

αsg(xs)−
s∑
t=1

αt∆J(xt, xt−1)
∣∣∣∣∣ x0 = x

]
, ∀ x ∈ X .

The following lemma establishes that the the F operator yields dual upper bounds to the

original problem, the proof follows along the lines of Lemma 8 and is omitted:
7Note that earlier we defined P to be the set of real-valued functions of state and time. In the stationary

infinite horizon setting, it suffices to consider only functions of state.
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Lemma 10 (Infinite Horizon Martingale Duality).

(i) (Weak Duality) For any function J ∈ P and all x ∈ X , J∗(x) ≤ FJ(x).

(ii) (Strong Duality) For all x ∈ X , J∗(x) = FJ∗(x).

In order to find a good upper bound, we begin with collection of K basis functions

Φ , {φ1, φ2, . . . , φK} ⊂ P .

Given a weight vector r ∈ RK , define the function Φr ∈ P as the linear combination

(Φr)(x) ,
k∑
`=1

r`φ`(x), ∀ x ∈ X .

We will seek to find functions within the span of the basis Φ which yields the tightest average

upper bound. In other words, we will see to solve the optimization problem

(3.9) minimize
r

Eπ
[
FΦr(x0)

]
.

As before, this optimization problem is an unconstrained minimization of a convex function.

3.5.2. Predictability

Our approximation guarantees incorporate a notion of predictability of the underlying Markov

chain, which we will define in this section. First, we begin with some notation. For functions

J, J ′ ∈ P , define the inner product

〈J, J ′〉π , Eπ [J(x0)J ′(x0)] .

Here, Eπ denotes that the expectation is taken with x0 distributed according to the stationary

distribution π. Similarly, define the norms

‖J‖p,π ,
(

Eπ
[
|J(x0)|p

])1/p

, ∀ p ∈ {1, 2}, ‖J‖∞ , sup
x∈X
|J(x)|,

and define Varπ(J) to be the variance of J(x) under the distribution π, i.e.,

Varπ(J) , Eπ
[(
J(x0)− Eπ [J(x0)]

)2
]
.
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Now, recall that P is the transition kernel of the Markov chain, that we also interpret as

a one-step expectation operator. Define P ∗ to be the adjoint of P with respect to the inner

product 〈·, ·〉π. P ∗ can be written explicitly according to

P ∗(y, x) , π(x)P (x, y)
π(y) , ∀ x, y ∈ X .

Note that P ∗ is the time-reversal of P ; it corresponds to the transition kernel of the Markov

chain running backwards in time.

The following quantity will be important for our analysis:

λ(P ) ,
√
ρ(I − P ∗P ).

Here, ρ(·) is the spectral radius. We make the following elementary observations regarding

λ(P ), the proof of which is deferred until Appendix 3.6:

Lemma 11.

(i) 0 ≤ λ(P ) ≤ 1.

(ii) If P is reversible, i.e., if P = P ∗, then

λ(P ) =
√
ρ(I − P 2) ≤

√
2ρ(I − P ).

In order to interpret λ(P ), first note that Part (i) of Lemma 11 guarantees that this

quantity is bounded. Now, observe that the matrix P ∗P , known as a multiplicative re-

versiblization (Fill, 1991), is also a stochastic matrix, corresponding to a transition one step

backward in time in the original Markov chain, followed by an independent step forward in

time. Suppose for the moment that the Markov chain is reversible, i.e., that P = P ∗. Then,

by Part (ii) of Lemma 11, λ(P ) will be small when I ≈ P , or, the state xt+1 at time t+ 1 in

the Markov chain is approximated well by the current state xt. In other words, the Markov

chain is closer to a deterministic process. Motivated by this intuition, we will call Markov

chains where λ(P ) ≈ 0 predictable.8

8The spectral analysis of I−P ∗P is also important in the study of mixing times, or, the rate of convergence
of a Markov chain to stationarity. In that context, one is typically concerned with the smallest non-zero
eigenvalue (see, e.g., Montenegro and Tetali, 2006); informally, if this is large, the chain is said to be fast
mixing. In the present context, we are interested in the largest eigenvalue, which is small in the case of a
predictable chain. Thus, our predictable chains necessarily mix slowly.
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Predictability is important because it provides a bound on the operator norm of the

martingale difference operator ∆. When a Markov chain is predictable, it may be possible to

approximate a particular martingale difference, say ∆J∗, by some other martingale difference,

say ∆J , even if J∗ is not particularly well approximated by J . This is captured in the

following lemma:

Lemma 12. Given a functions J, J ′ ∈ P, define a distance between the martingale differences

∆J , ∆J ′ by

‖∆J −∆J ′‖2,π ,
√

Eπ
[
|∆J(x1, x0)−∆J ′(x1, x0)|2

]
.

Then,

‖∆J −∆J ′‖2,π ≤ λ(P )
√

Varπ(J − J ′).

Proof. Set W , J − J ′, and observe that since π is an invariant distribution,

‖∆W‖2
2,π = Eπ

[(
W (x1)− E[W (x1)|x0]

)2
]

= Eπ
[
W (x1)2 −

(
E[W (x1)|x0]

)2
]

= Eπ
[
W (x0)2 −

(
E[W (x1)|x0]

)2
]

= 〈W,W 〉π − 〈PW,PW 〉π

= 〈W,W 〉π − 〈W,P ∗PW 〉π = 〈W, (I − P ∗P )W 〉π ≤ ρ(I − P ∗P ) ‖W‖2
2,π.

Now, note that the operator ∆ is invariant to constant shifts, i.e., ∆(W +γ1) = ∆W , where

γ is a scalar and 1 ∈ P is the constant function evaluating to 1 in every state. Then, define

µW , Eπ[W (x0)] to be the mean of W . We have that

‖∆W‖2
2,π =

∥∥∥∆(W − µW1
)∥∥∥2

2,π
≤ ρ(I − P ∗P ) ‖W − µW1‖2

2,π = ρ(I − P ∗P ) Varπ(W ).

The result follows. �

One class of predictable Markov chains occurs when the calendar time scale between

successive stopping opportunities is small:

Example 1 (Sampled State Dynamics). Suppose that the Markov chain {xt} takes the

form xt = ztδ for all integers t ≥ 0, where δ > 0 and {zs ∈ X , s ∈ R+} is a continuous

time Markov chain with generator Q. In other words, {xt} are discrete time samples of an
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underlying continuous time chain over time scales of length δ. In this case, the transition

probabilities take the form P = eQδ and P ∗ = eQ
∗δ. As δ → 0,

λ(P ) =
√
ρ (I − eQ∗δeQδ) =

√
δρ(Q∗ +Q) + o

(√
δ
)
→ 0.

3.5.3. Upper Bound Guarantees

Lemma 10 establishes that, given a function J ∈ P , FJ is an upper bound on J∗, and

that if J = J∗, this upper bound is tight. Hence, it seems reasonable to pick J to be a

good approximation of the optimal value function J∗. In this section, we seek to make this

intuition precise. In particular, we will provide a guarantee on the quality of the upper

bound, that is, a bound on the distance between FJ and J∗, as a function of the quality

of the value function approximation J and other structural features of the optimal stopping

problem.

The following lemma is provides the key result for our guarantee. It characterizes the

difference between two upper bounds FJ and FJ ′ that arise from two different value function

approximations J, J ′ ∈ P . The proof is deferred until Appendix 3.6.

Lemma 13. For any pair of functions J, J ′ ∈ P,

‖FJ − FJ ′‖2,π ≤
R(α)α√

1− α
λ(P )

√
Varπ(J − J ′),

where R : [0, 1)→
[
1,
√

5/2
]

is a bounded function given by

R(α) , min
{

1√
1− α

,
2√

1 + α

}
.

Taking J ′ = J∗ in Lemma 13, we immediately have the following:

Theorem 5. For any function J ∈ P,

‖FJ − J∗‖2,π ≤
R(α)α√

1− α
λ(P )

√
Varπ(J − J∗).
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Theorem 5 provides a guarantee on the upper bound FJ arising from an arbitrary func-

tion J . It is reminiscent of the upper bound guarantee of Chen and Glasserman (2007). In

the present (discounted and infinite horizon) context, their upper bound guarantee can be

stated as

(3.10) ‖FJ − J∗‖∞ ≤
4α√

1− α2
‖J − J∗‖∞.

It what follows, we will compare these two bounds, as well identify the structural features of

the optimal stopping problem and the function J that lead to a tight upper bound FJ . In

particular, notice that the right-hand side of the guarantee in Theorem 5 can be decomposed

into three distinct components:

• Value Function Approximation Quality. Theorem 5 guarantees that the closer the

value function approximation J is to J∗, the tighter the upper bound FJ will be.

Importantly, the distance between J and J∗ is measured in terms of the standard

deviation of their difference. Under this metric, the relative importance of accurately

approximating J∗ in two different states is commensurate to their relative probabilities.

On the other hand, the guarantee (3.10) requires a uniformly good approximation of

J∗. In a large state space, this can be challenging.

• Time Horizon. Theorem 5 has dependence on the discount factor α. In typical

examples, α ≈ 1, and hence we are most interested in this regime.

One way to interpret α is as defining an effective time horizon. To be precise, consider

an undiscounted stopping problem with the same state dynamics and reward function,

but with a random finite horizon that is geometrically distributed with parameter α.

We assume that the random time horizon is unknown to the decision maker, and that if

the process is not stopped before the end of this time horizon, the reward is zero. This

undiscounted, random but finite horizon formulation is mathematically equivalent to

our discounted, infinite horizon problem. Hence, we define the effective time horizon

Teff to be the expected length of the random finite time horizon, or

Teff ,
1

1− α.
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The guarantee of Theorem 5 is O(
√

Teff), i.e., it grows as the square root of the effective

time horizon. This matches (3.10), as well as the original finite horizon bound of Chen

and Glasserman (2007).

• Predictability. Theorem 5 isolates the dynamics of the Markov chain through the

λ(P ) term; if λ(P ) is small, then the upper bound FJ will be tight. In other words, all

else being equal, chains that are more predictable yield better upper bounds. In some

sense, optimal stopping problems on predictable Markov chains are closer to determin-

istic problems to begin with, hence less care is needed in relaxing non-anticipativity

constraints.

The dependence of Theorem 5 on predictability can be interpreted in the sampled state

dynamics of Example 1. In this case, we assume that the transition probabilities of the

Markov chain take the form P = eQδ, where Q is the generator for a continuous time

Markov chain and δ > 0 is the calender time between successive stopping opportunities.

In this setting, it is natural that the discount factor also scale as a function of the time

interval δ, taking the form α = e−rδ, where r > 0 is a continuously compounded interest

rate. Then, as δ → 0,

R(α)α√
1− α

λ(P ) =
√

2ρ(Q∗ +Q)
r

+ o(1).

In this way, the pre-multiplying constants on the right-hand side of Theorem 5 remain

bounded as the number of stopping opportunities is increased. This is not the case for

(3.10).

3.5.4. Pathwise Optimization Approximation Guarantee

The result of Section 3.5.3 provides a guarantee on the upper bounds produced by the

martingale duality approach given an arbitrary value function approximation J as input.

When the value function approximation J arises from the PO method, we have the following

result:
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Theorem 6. Suppose that rPO is an optimal solution for (3.9). Then,

‖FΦrPO − J∗‖1,π ≤
R(α)α√

1− α
λ(P ) min

r

√
Varπ(Φr − J∗).

Proof. Observe that, for any r ∈ RK , by the optimality of rPO and Lemma 10,

‖FΦrPO − J∗‖1,π = Eπ [FΦrPO(x0)− J∗(x0)] ≤ Eπ [FΦr(x0)− J∗(x0)] = ‖FΦr − J∗‖1,π.

Since π is a probability distribution, ‖ · ‖1,π ≤ ‖ · ‖2,π, thus, applying Theorem 5,

‖FΦrPO − J∗‖1,π ≤ ‖FΦr − J∗‖2,π ≤
R(α)α√

1− α
λ(P )

√
Varπ(Φr − J∗).

The result follows after minimizing the right-hand side over r. �

In order to compare Theorems 5 and 6, observe that Theorem 5 provides a guarantee

that is a function of the distance between the value function approximation J and the

optimal value function J∗. Theorem 6, on the other hand, provides a guarantee relative to

the distance between the best possible approximation given the basis functions Φ and the

optimal value function J∗. Note that it is not possible, in general, to directly compute this

best approximation, which is the projection of J∗ on to the subspace spanned by Φ, since

J∗ is unknown to begin with.

3.5.5. Comparison to Lower Bound Guarantees

It is instructive to compare the guarantees provided on upper bounds by Theorems 5 and

6 to guarantees that can be obtained on lower bounds derived from ADP methods. In

general, the ADP approach to lower bounds involve identifying approximations to the optimal

continuation value function C∗, which is related to the optimal value function J∗ via

C∗(x) = αE[J∗(xt+1) | xt = x], J∗(x) = max {g(x), C∗(x)}, ∀ x ∈ X .

Given the optimal continuation function C∗, an optimal policy is defined via

µ∗(x) ,


CONTINUE if g(x) < C∗(x),

STOP otherwise.
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In other words, µ∗ stops when g(x) ≥ C∗(x).

Similarly, given an approximate continuation value function C, we can define the policy

µ(x) ,


CONTINUE if g(x) < C(x),

STOP otherwise.

The value function Jµ for this policy can be estimated via Monte Carlo simulation. Since J∗

is the optimal value function, we have that Jµ(x) ≤ J∗(x) for every state x. In other words,

Jµ is a lower bound to J∗.

Analogous to Theorem 5, Tsitsiklis and Van Roy (1999) establish that

(3.11) ‖J∗ − Jµ‖2,π ≤
1

1− α‖C − C
∗‖2,π.

Given a set of basis functions Φ, there are a number of ways to select a weight vector r

so that the linear function Φr can be used as an approximate continuation value function.

Methods based on approximate value iteration are distinguished by the availability of theo-

retical guarantees. Indeed, Van Roy (2010) establishes a result analogous to Theorem 6 for

approximate value iteration, that

(3.12) ‖J∗ − Jµ‖1,π ≤ ‖J∗ − Jµ‖2,π ≤
L∗

1− α min
r
‖Φr − C∗‖2,π ,

where L∗ ≈ 2.17.

Comparing (3.11)–(3.12) to Theorems 5 and 6, we see broad similarities: both sets of

results provide guarantees on the quality of the lower (resp., upper) bounds produced, as a

function of the quality of approximation of C∗ (resp., J∗). There are key differences, however.

Defining the effective time horizon Teff , (1− α)−1 as in Section 3.5.3, the pre-multiplying

constants in the lower bound guarantees are O(Teff), while the corresponding terms in our

upper bound guarantees are O(
√

Teff). Further, Van Roy (2010) establishes that, for any

ADP algorithm, a guarantee of the form (3.12) that applies over all problem instances must

be linear in the effective time horizon. In this way, the upper bound guarantees of Theorems 5

and 6 have better dependence on the effective time horizon than is possible for lower bounds,

independent of the choice of ADP algorithm. Further, the upper bound guarantees highlight
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the importance of a structural property of the Markov chain, namely, predictability. There

is no analogous term in the lower bound guarantees.

3.5.6. Comparison to Linear Programming Methods

We can compare upper bounds derived from the pathwise method directly to upper bounds

derived from two other approximate dynamic programming techniques.

First, we consider the approximate linear programming (ALP) approach. In our dis-

counted, infinite horizon optimal stopping setting, the ALP approach involves finding a value

function approximation within the span of the basis by solving the optimization program

(3.13)
minimize

r
Ec
[
Φr(x0)

]
subject to Φr(x) ≥ g(x), ∀ x ∈ X ,

Φr(x) ≥ αE [Φr(xt+1) | xt = x] , ∀ x ∈ X .

Here, c is a positive probability distribution over the state space know as the state-relevance

distribution, it is natural (but not necessary) to take c = π. Note that (3.13) is a linear

program, and that, for each state x, the pair of linear constraints in (3.13) are equivalent to

the Bellman inequality Φr(x) ≥ TΦr(x). Denote the set of feasible r by CALP ⊂ RK .

As we shall see momentarily, if r ∈ CALP is feasible for ALP (3.13), then Φr is a pointwise

upper bound to the optimal value function J∗. The following theorem establishes that the

martingale duality upper bound FΦr is at least as good:

Theorem 7. Suppose r ∈ CALP is feasible for the ALP (3.13). Then, for all x ∈ X ,

J∗(x) ≤ FΦr(x) ≤ Φr(x).

Proof. Using Lemma 10 and the definition of the constraint set CALP,

J∗(x) ≤ FΦr(x) = E
[

sup
s≥0

αsg(xs)−
s∑
t=1

αt
(
Φr(xt)− E[Φr(xt) | xt−1]

) ∣∣∣∣∣ x0 = x

]

= E
[

sup
s≥0

αs
(
g(xs)− Φr(xs)

)
+ Φr(x0) +

s−1∑
t=0

αt
(
αE[Φr(xt+1) | xt]− Φr(xt)

) ∣∣∣∣∣ x0 = x

]

= Φr(x).

�
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We can interpret the ALP (3.13) as finding an upper bound in the set {Φr, r ∈ CALP}

that is smallest on average, as measured according to the state-relevance distribution c.

Alternatively, consider solving the pathwise optimization problem

(3.14) minimize
r

Ec [FΦr(x0)] .

Theorem 7 implies that the resulting martingale duality upper bound will be, on average, at

least as good. In this way, the PO method dominates ALP.

Similarly, the smoothed approximate linear programming (SALP) has been recently intro-

duced by Desai et al. (2009). In our present context, this seeks to solve the linear program

(3.15)

minimize
r,s

Eπ
[
Φr(x0) + 1

1− αs(x0)
]

subject to Φr(x) + s(x) ≥ g(x), ∀ x ∈ X ,

Φr(x) + s(x) ≥ αE [Φr(xt+1) | xt = x] , ∀ x ∈ X ,

s(x) ≥ 0, ∀ x ∈ X .

Observe that (3.15) is a relaxation of (3.13) when c = π, that is formed by introducing

a vector of slack variables s ∈ RX . Desai et al. (2009) argue that this relaxation yields

a number of theoretical benefits relative to the ALP, and demonstrate superior practical

performance in a computational study.

The following lemma allows us to interpret the SALP as an unconstrained convex mini-

mization problem:

Lemma 14. Given J ∈ P, define the operator FSALP : P → P by

(FSALPJ)(x) , E
[
J(x0) +

∞∑
t=0

αt
(
TJ(xt)− J(xt)

)+
∣∣∣∣∣ x0 = x

]
, ∀ x ∈ X .

Then, the SALP (3.15) is equivalent to the convex optimization problem

(3.16) minimize
r

Eπ
[
FSALPΦr(x0)

]
.
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Proof. Suppose (r, s) is feasible for the SALP (3.15). Then,

Eπ
[
Φr(x0) + 1

1− αs(x0)
]
≥ Eπ

[
Φr(x0) + 1

1− α
(
TΦr(x0)− Φr(x0)

)+
]

= Eπ
[
Φr(x0) +

∞∑
t=0

αt
(
TΦr(xt)− Φr(xt)

)+
]

= Eπ
[
FSALPΦr(x0)

]
,

(3.17)

where we use the constraints of (3.15) and the fact that π is the stationary distribution.

Hence, r achieves at least the same objective value in (3.16). Conversely, for any r, define

s , (TΦr − Φr)+ component-wise. Then, (r, s) is feasible for (3.15), and (3.17) holds with

equality. Thus, (r, s) achieves same objective value in (3.15) as r in (3.16). �

The following theorem shows that the FSALP operator also yields dual upper bounds to

the optimal value function, analogous to the F operator in the pathwise method. Critically,

however, the upper bounds of the pathwise method pointwise dominate that of the SALP,

which in turn pointwise dominate that of the ALP.

Theorem 8. For an arbitrary weight vector r ∈ RK,

J∗(x) ≤ FΦr(x) ≤ FSALPΦr(x), ∀ x ∈ X .

In addition, if r ∈ CALP, i.e., r is feasible for the ALP (3.13), then

J∗(x) ≤ FΦr(x) ≤ FSALPΦr(x) ≤ Φr(x), ∀ x ∈ X .

Proof. Given a weight vector r ∈ RK , by Lemma 10,

J∗(x) ≤ FΦr(x) = E
[

sup
s≥0

αsg(xs)−
s∑
t=1

αt
(
Φr(xt)− E[Φr(xt) | xt−1]

) ∣∣∣∣∣ x0 = x

]

= E
[

sup
s≥0

αs
(
g(xs)− Φr(xs)

)
+ Φr(x0) +

s−1∑
t=0

αt
(
αE[Φr(xt+1) | xt]− Φr(xt)

) ∣∣∣∣∣ x0 = x

]

≤ E
[

sup
s≥0

αs
(
g(xs)− Φr(xs)

)+
+ Φr(x0) +

s−1∑
t=0

αt
(
αE[Φr(xt+1) | xt]− Φr(xt)

)+
∣∣∣∣∣ x0 = x

]

≤ E
[

sup
s≥0

Φr(x0) +
s∑
t=0

αt
(
TΦr(xt)− Φr(xt)

)+
∣∣∣∣∣ x0 = x

]
= FSALPΦr(x),

which completes the first part of the result. If r ∈ CALP, it immediately follows that

FSALPΦr(x) ≤ Φr(x). �
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In the context of the ALP and SALP optimization problems (3.13) and (3.15), Theorem 8

yields that that

minimize
r

Eπ
[
FΦr(x0)

]
≤ minimize

r
Eπ
[
FSALPΦr(x0)

]
≤ minimize

r∈CALP
Eπ
[
Φr(x0)

]
.

In other words, given a fixed set of basis functions, the PO method yields an upper bound

that is on average at least as tight as that of the SALP method, which in turn yields an

upper bound that is on average at least as tight at that of the ALP method.

3.6. Proofs

Lemma 8 (Martingale Duality).

(i) (Weak Duality) For any J ∈ P and all x ∈ X and t ∈ T , J∗t (x) ≤ FtJ(x).

(ii) (Strong Duality) For all x ∈ X and t ∈ T , J∗(x)t = FtJ
∗(x).

Proof. (i) Note that

J∗t (xt) = sup
τt

E
[
ατt−tg(xτt)

∣∣∣ xt](3.18)

= sup
τt

E
ατt−tg(xτt)−

τt∑
p=t+1

αp−t(∆J)(xp, xp−1)

∣∣∣∣∣∣ xt
(3.19)

≤ E
max
t≤s≤d

αs−tg(xs)−
s∑

p=t+1
αp−t(∆J)(xp, xp−1)

∣∣∣∣∣∣ xt
 .(3.20)

Here, in (3.18), τt is a stopping time that takes values in the set {t, t + 1, . . . , d}. (3.19)

follows from the optimal sampling theorem for martingales. (3.20) follows from the fact that

stopping times are non-anticipatory, and hence the objective value can only be increased by

allowing policies with access to the entire sample path.
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(ii) From (i) we know that FtJ∗(xt) ≥ J∗t (xt). To see the opposite inequality,

FtJ
∗(xt) = E

max
t≤s≤d

αs−tg(xs)−
s∑

p=t+1
αp−t (∆J∗)(xp, xp−1)

∣∣∣∣∣∣ xt


= E
max
t≤s≤d

αs−tg(xs)−
s∑

p=t+1
αp−t

(
J∗p (xp)− E[J∗p (xp)|xp−1]

) ∣∣∣∣∣∣ xt


= E
max
t≤s≤d

αs−tg(xs)− αs−tJ∗s (xs) + J∗t (xt)

+
s∑

p=t+1
αp−t−1

(
αE[J∗p (xp)|xp−1]− J∗p−1(xp−1)

) ∣∣∣∣∣∣ xt


≤ J∗t (xt)

The last inequality follows from the Bellman equation (3.1). �

Lemma 11.

(i) 0 ≤ λ(P ) ≤ 1.

(ii) If P is reversible, i.e., if P = P ∗, then

λ(P ) =
√
ρ(I − P 2) ≤

√
2ρ(I − P ).

Proof. (i) Observe that I − P ∗P is self-adjoint, and hence must have real eigenvalues. Let

σmin and σmax be the smallest and largest eigenvalues, respectively. By the Courant-Fischer

variational characterization of eigenvalues,

σmax = sup
J∈P, ‖J‖2,π=1

〈J, (I − P ∗P )J〉π = sup
J∈P, ‖J‖2,π=1

〈J, J〉π − 〈J, P ∗PJ〉π

= 1− inf
J∈P, ‖J‖2,π=1

〈PJ, PJ〉π = 1− inf
J∈P, ‖J‖2,π=1

‖PJ‖2
2,π ≤ 1.

(3.21)

Similarly,

(3.22) σmin = inf
J∈P, ‖J‖2,π=1

〈J, (I − P ∗P )J〉π = 1− sup
J∈P, ‖J‖2,π=1

‖PJ‖2,π.

Now, by Jensen’s inequality and the fact that π is the stationary distribution of P ,

‖PJ‖2
2,π = Eπ

[
(E [J(x1)|x0])2

]
≤ Eπ

[
J(x1)2

]
= ‖J‖2

2,π.
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That is, P is a non-expansive under the ‖ · ‖2,π norm. Combining this fact with (3.21)–

(3.22), we have that 0 ≤ σmin ≤ σmax ≤ 1. Since ρ(I − P ∗P ) = max
(
|σmin|, |σmax|

)
, the

result follows.

(ii), suppose that ζ1 ≤ ζ2 ≤ · · · ≤ ζ|X | are the eigenvalues of the self-adjoint matrix P .

By the same arguments as in (i), 0 ≤ ζi ≤ 1 for each i. Then,

ρ(I − P 2) = max
i

1− ζ2
i = max

i
(1− ζi)(1 + ζi) ≤ max

i
2(1− ζi) = 2ρ(I − P ).

�

Lemma 13. For any pair of functions J, J ′ ∈ P,

‖FJ − FJ ′‖2,π ≤
R(α)α√

1− α
λ(P )

√
Varπ(J − J ′),

where R : [0, 1)→
[
1,
√

5/2
]

is a bounded function given by

R(α) , min
{

1√
1− α

,
2√

1 + α

}
.

Proof. First, observe that if y, y′ ∈ R∞ are two infinite sequences of real numbers,

sups y(s)− sups y′(s) ≤ sups |y(s)− y′(s)|.

We can apply this fact to the pathwise maximization in the F operator to obtain that, for

all x0 ∈ X ,

FJ(x0)− FJ ′(x0) ≤ E
[

sup
s≥0

∣∣∣∣∣
s∑
t=1

αt (∆J(xt, xt−1)−∆J ′(xt, xt−1))
∣∣∣∣∣
∣∣∣∣∣ x0

]
.

By symmetry,

|FJ(x0)− FJ ′(x0)| ≤ E
[

sup
s≥0

∣∣∣∣∣
s∑
t=1

αt (∆J(xt, xt−1)−∆J ′(xt, xt−1))
∣∣∣∣∣
∣∣∣∣∣ x0

]
.

Using Jensen’s inequality,

|FJ(x0)− FJ ′(x0)|2 ≤ E
sup
s≥0

∣∣∣∣∣
s∑
t=1

αt (∆J(xt, xt−1)−∆J ′(xt, xt−1))
∣∣∣∣∣
2
∣∣∣∣∣∣ x0


≤ E

( ∞∑
t=1

αt |∆J(xt, xt−1)−∆J ′(xt, xt−1)|
)2

∣∣∣∣∣∣ x0

 .
(3.23)



CHAPTER 3. PATHWISE METHOD FOR OPTIMAL STOPPING PROBLEMS 104

Taking an expectation over x0 and again applying Jensen’s inequality,

‖FJ − FJ ′‖2
2,π ≤

(
α

1− α

)2
Eπ

(1− α
α

∞∑
t=1

αt |∆J(xt, xt−1)−∆J ′(xt, xt−1)|
)2


≤
(

α

1− α

)2
Eπ
[

1− α
α

∞∑
t=1

αt |∆J(xt, xt−1)−∆J ′(xt, xt−1)|2
]

=
(

α

1− α

)2
‖∆J −∆J ′‖2

2,π .

(3.24)

Here, the norm in the final equality is defined in Lemma 12, and we have used the fact that

π is the stationary distribution.

On the other hand, following Chen and Glasserman (2007), Doob’s maximal quadratic

inequality and the orthogonality of martingale differences imply that, for every time T ≥ 1,

Eπ

 sup
0≤s≤T

∣∣∣∣∣
s∑
t=1

αt (∆J(xt, xt−1)−∆J ′(xt, xt−1))
∣∣∣∣∣
2


≤ 4Eπ

∣∣∣∣∣
T∑
t=1

αt (∆J(xt, xt−1)−∆J ′(xt, xt−1))
∣∣∣∣∣
2 

≤ 4Eπ
[
T∑
t=1

α2t |∆J(xt, xt−1)−∆J ′(xt, xt−1)|2
]

= 4α2 1− α2T−1

1− α2 ‖∆J −∆J ′‖2
2,π .

Using the monotone convergence theorem to take the limit as T → ∞ and comparing with

(3.23), we have that

(3.25) ‖FJ − FJ ′‖2
2,π ≤

4α2

1− α2 ‖∆J −∆J ′‖2
2,π .

Combining the upper bounds of (3.24) and (3.25), we have that

(3.26) ‖FJ − FJ ′‖2,π ≤
R(α)α√

1− α
‖∆J −∆J ′‖2,π .

Applying Lemma 12, the result follows. �



4

PATHWISE METHOD FOR LINEAR
CONVEX SYSTEMS

4.1. Introduction

Markov decision processes (MDPs) are a general framework for modeling sequential decision

problems under uncertainity. A number of problems encountered in the areas from economics

to business to engineering can be cast as a dynamic program. However, for many problems of

interest, the size of state space is typically exponential in the dimension of state space. This

phenomenon is referred to as the curse of dimensionality as it renders dynamic programming

via standard approach intractable.

An effective way to address the curse of dimensionality is through the use of value function

approximations. Consider a collection of real-valued functions of the state space, referred

to as the basis functions. One can represent a value function approximation as a linear

combination of these basis functions and such a parameterized form, involving relatively few

parameters, provides a compact representation of the approximation. Using Approximate

Dynamic Programming (ADP) techniques (see, for example, Bertsekas and Tsitsiklis, 1996;

de Farias and Van Roy, 2003, 2004; Powell, 2007) one can tune the parameters to obtain

‘good’ approximation to the optimal value function. By standard dynamic programming

results, we can use such an approximation to obtain policies, which are generally speaking

suboptimal. We will couch our results in the context of a minimization dynamic program

and in this setting, simulating a suboptimal policy provides us upper bounds on the optimal

solution. 105
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The upper bounds can be complemented by computing lower bounds, in order to get a

sense for the suboptimality of the policy. A general approach to obtaining lower bounds is

by considering relaxation of information process and allowing oneself to look into future. In

a minimization dynamic program, one would expect only to do better by looking into the

future and hence obtain lower bounds. Further, in the spirit of Lagrangian duality, we can

also impose penalty for this relaxation. This approach of obtaining lower bounds by using

information relaxation, while simultaneously introducing penalty for this relaxation, will be

referred to as the dual approach. In this approach, the lower bounds are typically evaluated

using Monte Carlo simulation and this involves generating sample paths of the underlying

randomness and solving a deterministic optimization program, referred to as inner problem,

for each sample path. The average of the optimal objective values of the inner problem,

computed for each sample path, provides an estimate of the lower bound.

These methods originated in the context of American option pricing literature and have

become popular following the work of Rogers (2002), Haugh and Kogan (2004) and Andersen

and Broadie (2004). Generalization of this approach, to control problems other than optimal

stopping, have been studied by Rogers (2008) and Brown et al. (2010). Following their work,

these methods have seen applications in areas like portfolio optimization (Brown and Smith,

2010), valuation of natural gas storage (Lai et al., 2010a,b), among others.

A crucial input to duality based methods is the choice of the penalty function and intu-

itively speaking, the penalty nullifies the benefit that the policies may derive from prescience.

Computing the optimal penalty, in general, may not be easier than solving the original MDP.

However, this approach inspires heuristic selection of ‘good’ penalty functions. The choice

of these penalties is guided by atleast two concerns: (a) the lower bounds evaluated via

simulation should be tight (b) the inner problem obtained after information relaxation and

introduction of penalty, should be tractable. Observe that these two concerns are at odds.

On the one hand, we would prefer ‘rich’ penalty functions, in order to obtain tight lower

bounds. But on the other, this needs to be balanced by the requirement to have a tractable

inner problem. In certain cases, for example optimal stopping problem, the inner problem
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is tractable on account of special structure available in the problem. However, in general,

inner problem is a determinstic dynamic program subject to curse of dimensionality.

In application of dual methods, the penalty function is typically obtained from an approx-

imation to value function, which in turn is obtained using other methods. In the context of

American option pricing, the value function approximation is obtained by using ADP meth-

ods designed to obtain exercise policies. For more discussion see Section 8.7 of Glasserman

(2004). In certain other cases, for example Brown and Smith (2010), application of these

techniques can be quite specialized to the problem at hand. They consider dynamic portfolio

optimization with transaction costs and demonstrate the effectiveness of certain heuristics

by computing complementary bounds using dual method. The penalty function for the dual

method is obtained from the value function associated with a simpler model, namely fric-

tionless model. However, a direct application of the value function results in an intractable

inner problem and hence the authors consider linearization of the value function along a

heuristic strategy. Thus, application of these approaches have relied on other methods to

obtain penalty function and might require considerable amount work to keep the overall

approach tractable.

The present chapter, in summary, considers a broad class of MDPs and introduces a

new tractable method for computing dual bounds. The method delivers tight bounds by

identifying the best penalty function amongst a parameterized class of penalty functions.

We implement our method on a high-dimensional financial application, namely, optimal

execution and demonstrate the practical value of the method vis-a-vis competing methods

available in the literature. In addition, we provide theory to show that the bounds generated

by our method are provably tighter than some of the other available approaches, including

approximate linear programming (ALP).

In greater detail, we make the following contributions:

• New Methodology. Computation of bounds via dual methods has been somewhat

adhoc. We introduce a new method, which we call pathwise optimization (PO). We
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propose a class of value function approximations that results in a tractable dual op-

timization problem. Given a parameterization of this class, PO method provides a

structured approach to determining the best penalty within this class by solving a

convex optimization problem.

• Application: Optimal Execution. We consider the application of PO to a high-

dimensional problem that arises in the area of optimal trade execution. Brown and

Smith (2010) considered the application of dual methods to portfolio optimization

problem and their method can be applied in the context of our problem. Our method

results in bounds that are provably stronger than the Brown and Smith (2010) bounds.

In numerical experiments, we observe that PO provides much stronger bounds relative

to the Brown and Smith (2010) approach with very little incremental computational

burden.

• Theory. Lower bounds produced by the PO method can be directly compared to the

bounds produced by linear programming based ADP algorithms of the type introduced

by Schweitzer and Seidmann (1985) and de Farias and Van Roy (2003) and shown to

result in provably tighter bounds. Wang and Boyd (2011) introduce a semidefinite

programming based method to compute bounds and PO method dominates this alter-

native.

Duality based upper bounds for the pricing of American and Bermudan options, which

rely on Doob’s decomposition to generate the penalty process, were introduced by Rogers

(2002) and Haugh and Kogan (2004). Andersen and Broadie (2004) show how to compute

martingale penalties from rules and obtain upper bounds. Desai et al. (2010) provide a

structured approach to identifying the best penalty within a parameterized family for opti-

mal stopping problems. An alternative ‘multiplicative’ approach to duality was introduced

by Jamshidian (2003) and its connections with ‘additive’ duality approach were explored in

Chen and Glasserman (2007). Generalizations of the duality approach to control problems

other than optimal stopping have been studied by Rogers (2008) and Brown et al. (2010).
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Further, Brown et al. (2010) consider a broader class of information relaxations than causal-

ity. Applications of these methods were considered in portfolio optimal (Brown and Smith,

2010) and valuation of natural gas storage (Lai et al., 2010a,b), among others. Haugh and

Lim (2011) provide a comparison of different penalties, including the ones introduced by

Brown and Smith (2010), in the context of Linear Quadratic Controller problem.

The remainder of the chapter is organized as follows: in Section 4.2, we formulate the

pathwise optimization problem and illustrate the general martingale penalty approach. In

Section 4.3, we introduce our methodology, the PO method. Section 4.4 illustrates the

benefits of the PO method in a numerical case study of optimal execution. In Section 4.5,

we develop our theoretical results.

4.2. Formulation

Consider a finite horizon Markov decision process (MDP) with state xt ∈ Rm+` at each time

t ∈ T , {0, 1, . . . , T}. We assume that the state decomposes according to xt = (yt, zt),

where yt ∈ Rm and zt ∈ R`. We assume that the process {yt} evolves according to the

dynamics

(4.1) yt+1 = Atyt +Btzt + Ctut + εt+1,

for all 0 ≤ t < T . Here, ut ∈ Rn is the control input applied at time t, and εt ∈ Rm is a zero

mean IID process with covariance matrix Wt , E[εtε>t ]. Thus, at each time t, the dynamics

of yt are linear and governed by the matrices At ∈ Rm×m, Bt ∈ Rm×`, and Ct ∈ Rm×n.

We will refer to yt as the endogenous state since it’s dynamics are affected by the choice of

control ut. On the other hand, we call zt that evolves independent of the control ut applied,

as an exogenous state and is given by dynamics of the form

(4.2) zt+1 = f(zt, ηt+1), ∀ 0 ≤ t < T,

where ηt are IID random variables. Thus, our system evolves according to:
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Assumption 2. (Quasi-linear dynamics)

yt+1 = Atyt +Btzt + Ctut + εt+1,

zt+1 = f(zt, ηt+1), ∀ 0 ≤ t < T,

where εt and ηt are sources of randomness.

Let F , {Ft} be the natural filtration generated by the exogenous process zt and noise

term εt. Define xt , (x0, x1, . . . , xt), ut , (u0, u1, . . . , ut), yt , (y0, y1, . . . , yt) and zt ,

(z0, z1, . . . , zt). We define our cost function on domain D , R(m+`)×(T+1) × Rn×(T+1). Given

a measurable function g : D → R, we define the cost incurred over path xT and decision

variables uT as g(xT ,uT ). We make the following assumption:

Assumption 3. (Convex functionals of path)

Cost function g : D → R is measurable and jointly convex in (yT ,uT ).

We allow for imposition of convex constraints on the control, i.e., given a convex set

K ⊆ Rn×(T+1), we can impose the constraint uT ∈ K. The control of the system is given by

sequence of policy denoted by µT = (µ0, . . . , µT ). Define the set of feasible nonanticipative

policies AF , {µT : µT ∈ K a.s. and is adapted to filtration F}. We are interested in the

following optimization problem:

(4.3) inf
µT∈AF

E [g(xT ,µT )] .

Thus, our framework allows for very general dynamics, cost functions that are convex

functionals of the path, and imposition of convex constraints on the controls. A large number

of applications from the areas such as portfolio optimization, inventory control, revenue

management, etc, can be readily addressed in this setup.

Pathwise method, to be described in Section 4.3, uses Assumptions 2 and 3 to ensure

tractability of the approach. However, in the interest of ease of exposition and without loss

of generality, we assume the cost function is separable across time for the rest of the chapter.

Assumption 4. (Separable cost and constraints)
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1. Cost function g is separable across time and is given by

g(xT ,uT ) =
T∑
t=0

gt(xt, ut),

where for all t = 0, . . . , T , gt : Rm+`×Rn → R is a measurable function of state xt and

decision variable ut and is jointly convex in (yt, ut).

2. Constraint on the control K is separable across time and takes the form K = U0 ×

U1 . . .×UT , where for all t = 0, . . . , T , Ut ⊆ Rn is a convex set constraining the action

ut.

Thus, our optimization problem (4.3) can now be stated as

(4.4) inf
µT∈AF

E
[
T∑
t=0

gt(xt, µt)
]
.

The policy µs at time s such that µs ∈ Us a.s. will be referred to as feasible policy. Let

AF
t , {(µt, . . . , µT ) : µs is Fs −measurable and feasible for all s = t, . . . , T}. We now define

the optimal cost-to-go-functions or value functions, for all x ∈ Rm+` and t ∈ T , as

(4.5) J∗t (x) = inf
(µt,...,µT )∈AF

t

E
[
T∑
s=t

gs(xs, µs)|xt = x

]
.

In order to ensure our problem is well defined, we assume following technical conditions:

Assumption 5. (Technical conditions)

1. E[|gt(xt, µt)|] < ∞ for policies µs that are Fs−measurable and feasible for all s =

0, . . . , t

2. J∗t (x) > −∞ for all x ∈ Rm+` and t ∈ T

3. J∗t (·) is measurable for t ∈ T

4. E[|J∗t (xt)|] <∞ for policies µs that are Fs−measurable and feasible for all s = 0, . . . , t−

1
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Using Propostion 8.2 from Bertsekas and Shreve (1996), the optimal value functions will

satisfy the Bellman’s equation:

(4.6) J∗t (x) =


infut∈Ut

{
gt(x, ut) + E

[
J∗t+1(xt+1)

∣∣∣xt = x, ut
]}

if t < T,

infuT∈UT gT (x, uT ) if t = T.

In the following section, we introduce the dual formulation of the optimization prob-

lem (4.4) by using the so-called martingale duality approach. This approach relaxes the

non-anticipativity constraint, while simultaneously introducing penalty for this relaxation

and the dual problem is essentially choosing the ‘optimal’ penalty to solve the original prob-

lem (4.4).

4.2.1. The Martingale Duality Approach

Let S be the space of real-valued measurable functions defined on state space Rm+l. Let

P be the space of real-valued functions on Rm+l × T , such that for J ∈ P , for all t ∈ T ,

Jt , J(·, t) is measurable and E[|Jt(xt)|] < ∞ for all measurable sequence of policies such

that µs ∈ Us a.s. for s = 0, . . . , t − 1. Let us begin with defining the martingale difference

operator ∆ that maps S to the space of real valued functions on Rm+l×Rm+l×Rn according

to

(∆Jt)(xt, xt−1, ut−1) , Jt(xt)− E[Jt(xt)|xt−1, ut−1].

We will abuse the notation slightly and write (∆Jt)(xt, xt−1, ut−1) as ∆Jt(xt, xt−1, ut−1).

We are interested in computing lower bounds by considering a perfect information relax-

ation. Towards this end, define the set of all feasible controls A as a collection of measurable

sequences uT such that uT ∈ K. Next, we define the martingale duality operator F : P → S

according to:

(FJ)(x) , E
[

inf
uT∈A

g0(x0, u0) +
T∑
t=1

gt(xt, ut)−∆Jt(xt, xt−1, ut−1)
∣∣∣∣∣x0 = x

]
,

where Jt , J(·, t).
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Given a sample path ω = ({z0}, {ε1, z1}, . . . , {εT−1, zT−1}, {εT , zT}), the deterministic

optimization problem inside the expectation is a minimization over ut, t ∈ T , subject to

dynamics of the system and will be referred to as the inner optimization problem. Or,

viewing the dynamics as a set of constraints, the inner optimization problem can be stated

as

(4.7)

infuT ,yT g0(x0, u0) +
T∑
t=1

gt(xt, ut)−∆Jt(xt, xt−1, ut−1)

subject to yt+1 = Atyt +Btzt + Ctut + εt+1, 0 ≤ t ≤ T − 1,

ut ∈ Ut, 0 ≤ t ≤ T.

We are now ready to state key proposition that shows martingale duality operator F can be

used to generate lower bounds.

Proposition 1.

(i) (Weak Duality) For any J ∈ P and all x ∈ X , FJ(x) ≤ J∗0 (x).

(ii) (Strong Duality) For all x ∈ X , J∗0 (x) = FJ∗(x).

Proof. (i)

J∗0 (x) = inf
µT∈AF

E
[

T∑
t=0

gt(xt, µt)
∣∣∣∣∣ x0 = x

]
,

(a)= inf
µT∈AF

E
[

T∑
t=0

gt(xt, µt) −
T∑
t=1

∆Jt(xt, xt−1, µt−1)
∣∣∣∣∣ x0 = x

]
,

= inf
µT∈AF

E
[
g0(x0, µ0) +

T∑
t=1

gt(xt, µt)−∆Jt(xt, xt−1, µt−1)
∣∣∣∣∣ x0 = x

]
,

(b)
≥ E

[
inf

uT∈A
g0(x0, u0) +

T∑
t=1

gt(xt, ut)−∆Jt(xt, xt−1, ut−1)
∣∣∣∣∣ x0 = x

]
,

= FJ(x).

Inequality (a) follows from the fact that martingale differences have zero mean and (b)

holds because it allows for policies that look at entire sample path.
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(ii) From weak duality we have J∗0 (x) ≥ FJ∗(x). We show that J∗0 (x) ≤ FJ∗(x) to establish

the result.

FJ∗(x) = E
[

inf
uT∈A

g0(x0, u0) +
T∑
t=1

gt(xt, ut)− J∗t (xt) + E[J∗t (xt)|xt−1, ut−1]
∣∣∣∣∣ x0 = x

]
,

= E
 inf

uT∈A
J∗0 (x0) +

T−1∑
t=0

(
gt(xt, ut) + E[J∗t+1(xt+1)|xt, ut]− J∗t (xt)

)

+ gT (xT , uT )− J∗T (xT )

∣∣∣∣∣∣ x0 = x

,
≥ J∗0 (x)

The last inequality follows from the fact that J∗ satisfies (4.6). �

This result allows us to define the dual problem as

(4.8) sup
J∈P

FJ(x).

Solving the optimization problem (4.8), in general, might be intractable because P is a very

high-dimensional space and it is not clear how to optimize over it. In addition, observe

that given a J ∈ P , even evaluating FJ(x) can be computationally challenging. A general

approach to evaluate FJ(x) is via Monte Carlo simulation, where we generate a number of

sample paths, solve the inner optimization problem on each path and the sample average

of optimal objective function values gives us an estimate of the upper bound. However, the

inner optimization problem in general is a deterministic dynamic program subject to curse

of dimensionality and can be a bottleneck of the procedure. In the following sections we

address these challenges.

4.3. The Pathwise Optimization Method

Motivated by the challenges associated with solving program (4.8), we introduce a class

of value function approximations that will not only result in a tractable inner optimization

problem but will also enable us to identify the ‘best’ approximation that results in the tightest
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possible lower bounds. Towards this end, consider following class of quadratic functions

C , {J ∈ P : Jt(xt) = y>t Γtyt + βt(zt)>yt + αt(zt), for some Γt, αt, and βt, ∀ t ∈ T }.

The following result guarantees the tractablility of inner optimization problem:

Theorem 9. For all J ∈ C, the inner problem is a convex optimization problem.

Proof. Given a sample path ω = ({z0}, {ε1, z1}, . . . , {εT−1, zT−1}, {εT , zT}), the inner opti-

mization problem is

(4.9)

minimize
uT ,yT

g0(x0, u0) +
T∑
t=1

gt(xt, ut)−∆Jt(xt, xt−1, ut−1)

subject to yt+1 = Atyt +Btzt + Ctut + εt+1, 0 ≤ t ≤ T − 1,

ut ∈ Ut, 0 ≤ t ≤ T.

For J ∈ C, after some algebra, we can write the martingale difference as

∆Jt(xt, xt−1, ut−1) = 2ε>t Γtwt−1 + βt(zt)>yt − E
[
βt(zt)>|xt−1

]
wt−1

+ ε>t Γtεt − E
[
ε>t Γtεt

]
+ αt(zt)− E [αt(zt)|xt−1] , ∀ 1 ≤ t ≤ T,

(4.10)

where wt = Atyt + Btzt + Ctut. Notice that for fixed values of Γt, βt(zt) and αt(zt), the

expression is linear in wt−1 and yt. Since both yt and wt−1 are linear in ut−1 and gt(yt, zt, ut)

is jointly convex in (yt, ut), the inner problem is minimization of a convex function subject

to linear dynamics constraints and can be solved efficiently. �

Given a J ∈ C, Theorem 9 guarantees that we can solve the inner problem efficiently and

by repeatedly solving the inner problem over different sample paths, we can estimate the

lower bound FJ(x). However, for this procedure to be of practical value, we need a method

for identifying J ∈ C that would yield tight bounds. Ideally, we would like to solve

sup
J∈C

FJ(x),

but C involves arbitrary functions of exogenous variable zt and it is unclear how to optimize

over it. In the spirit of ADP algorithms, we introduce a basis function architecture with K

basis functions:

Φ , {φ1, φ2, . . . , φK},
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where φi : R` → R, 1 ≤ i ≤ K are functions of the exogenous state variable zt. At each time

t ∈ T , a matrix Rt ∈ RK×m, vector rt ∈ RK and symmetric matrix Γt ∈ Rm×m, determines

the quadratic function y>t Γtyt + Φ(zt)Rtyt + Φ(zt)rt. Denote the collection of coefficients by

κ = {Γt, Rt, rt : t ∈ T } and the corresponding value function

Jκt (xt) = y>t Γtyt + Φ(zt)Rtyt + Φ(zt)rt, ∀ 1 ≤ t ≤ T.

Applying the martingale difference operator, we obtain

∆Jκt (xt, xt−1, ut−1) = (2ε>t Γt + ∆Φ(zt, zt−1)Rt)(At−1yt−1 +Bt−1zt−1 + Ct−1ut−1)

+ ∆Φ(zt, zt−1)rt + Φ(zt)Rtεt + ε>t Γtεt − E
[
ε>t Γtεt

]
, ∀ 1 ≤ t ≤ T,

where ∆Φ(zt, zt−1) = Φ(zt) − E[Φ(zt)|zt−1]. Note, a number of terms in this expression are

mean zero terms and do not interact with decision variables and can be safely ignored. Thus,

given a collection of coefficients κ, the corresponding lower bound is given by

FJκ(x) = E
 inf

uT∈A

T−1∑
t=0

(
gt(xt, ut)−

(
2ε>t+1Γt+1 + ∆Φ(zt+1, zt)Rt+1

)
(Atyt + Ctut)

)

+ gT (xT , uT )

∣∣∣∣∣∣x0 = x

.

(4.11)

We propose to obtain the tightest possible lower bound, afforded by the chosen basis func-

tions, by solving the problem:

(4.12) sup
κ
FJκ(x).

Theorem 10 establishes that this is infact a concave optimization problem.

Theorem 10. FJκ(x) is concave in κ.

Proof. Referring to equation (4.11), we observe that FJκ(x) is expectation over an inner

optimization problem. Since optimal objective of inner optimization problem is a concave

function in κ, we conclude FJκ(x) is concave in κ. �
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Optimization problem defined by (4.12) is a concave program in relatively small num-

ber of variables and the main challenge is objective function is expectation over an inner

optimization problem. We provide two practical methods for solving this problem in the

following section.

4.3.1. Computational Methods

We view the problem as a stochastic optimization problem and consider two sampling based

approaches for solving it. The first method is based on the idea of stochastic gradient descent.

Starting from an initial solution, one can use a step-size rule to move in the direction of the

gradient. The main advantages of this method are that it is online and we can handle large

problems with low a memory requirement.

The second approach uses a sample average to approximate the objective function. Using

duality the inner problem is expressed as a maximization problem, thus enabling us to provide

a convex optimization program to generate lower bounds. This approach allows us to use

readily available convex optimization solvers to solve problems efficiently.

Stochastic Supergradient Method

Stochastic supergradient method is a simple approach that works with the first-order infor-

mation, namely the supergradient. It works with unbiased estimates of the supergradient,

which can be computed efficiently and under properly chosen step-size rule is guaranteed

to converge. This approach can be used even for nondifferentiable functions and hence is

broad in its applicability relative to second-order methods that require computation of the

Hessian.

The choice of step-size is an important input to supergradient algorithms. Let the step-

size at kth iterate be denoted by αk. Typically one uses step-sizes that are square summable

but not summable, i.e.

αk ≥ 0,
∞∑
k=1

α2
k <∞,

∞∑
k=1

αk =∞
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(Bertsekas and Tsitsiklis, 1996). In our implementation, we used a step-size rule of the form

(4.13) αk = A

B + k
,

where the parameters A and B can be chosen to optimize practical performance.

The method starts with an initial guess for the solution. Given a current guess κ =

{Γt, Rt, rt, t ∈ T } and sample path ω = ({z0}, {ε1, z1}, . . . , {εT−1, zT−1}, {εT , zT}), we can

define the optimal objective of inner optimization problem as

(4.14)

H(κ, ω) ,

minuT ,yT

T−1∑
t=0

(
gt(xt, ut)−

(
2ε>t+1Γt+1 + ∆Φ(zt+1, zt)Rt+1

)
(Atyt + Ctut)

)
+ gT (xT , uT )

s.t. yt+1 = Atyt +Btzt + Ctut + εt+1, 0 ≤ t ≤ T − 1,

ut ∈ Ut, 0 ≤ t ≤ T,

and y∗t (ω), u∗t (ω) be an optimal solution. Using this definition, our problem can be rewritten

as

sup
κ
FJκ(x) = sup

κ
E [H(κ, ω) |x0 = x] .

In solving this problem, we are interested in the supergradient of H(κ, ω) and the following

lemma helps us in that direction.

Lemma 15. Assume Ut is a compact set for t = 0, . . . , T . Supergradient of H(κ, ω) with

respect to Γt and Rt is given by

H(κ, ω)Γt = −2εt
(
At−1y

∗
t−1(ω) + Ct−1u

∗
t−1(ω)

)>
H(κ, ω)Rt = −∆Φ(zt, zt−1)>

(
At−1y

∗
t−1(ω) + Ct−1u

∗
t−1(ω)

)>
, ∀ 1 ≤ t ≤ T.(4.15)

Proof. We first introduce some notation. Let the objective of inner optimization problem

(4.14) be denoted by Q(κ,uT ,yT , ω) and the feasible region by Z(ω). The collection of all

optimal solutions to (4.14) be

Ω(κ, ω) , argmin
(uT ,yT )∈Z(ω)

Q(κ,uT ,yT , ω).
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For simplicity, assume κ′ and κ′′ be such that they differ only in Γt component. Then, we

would like to show

H(κ′, ω) ≤ H(κ′′, ω) +H(κ′, ω)Γt · (Γ′t − Γ′′t ),

where H(κ′, ω)Γt · (Γ′t − Γ′′t ) = ∑m
i=1

∑m
j=1H(κ′, ω)Γt(i, j)(Γ′t − Γ′′t )(i, j).

By Danskin’s theorem (see Proposition B.25 in Bertsekas, 1995), the directional deriva-

tive, denoted by H ′(κ, ω;κ′ − κ′′), of H(κ, ω) in the direction κ′ − κ′′ is given by

H ′(κ, ω;κ′ − κ′′) = min
(uT ,yT )∈Ω(κ,ω)

Q′(κ,uT ,yT , ω;κ′ − κ′′)

≤ Q′(κ,u∗T ,y∗T , ω;κ′ − κ′′)

= H(κ′, ω)Γt · (Γ′t − Γ′′t ),

where u∗T ,y∗T is an optimal solution to (4.14). By letting all the components Γt, Rt for all

t = 1, . . . , T vary, we obtain the desired result. �

We solve I independently sampled inner problems, compute the supergradient for each

problem and use a sample average of the supergradients as an approximation to supergradient

of FJκ(x). We update our guess for the solution by taking a step in the direction of estimated

gradient, according to the chosen step-size rule. Our approach is summarized in Algorithm 1.

The supergradient method is broad in its applicability and can be used to solve large

convex optimization problems. Nonetheless, the performance of the algorithm is subject to

choice of the initial guess for solution, parameters N and I and more importantly, step-size

rule. In particular, if we pick a step-size that is small, then it will take a long time to get to

the neighborhood of the optimal solution. On the other hand, if we picked a large step-size

rule, then it would oscillate before converging. From a practical standpoint, effort is required

to tune these parameters for efficient computation. The approach introduced in the next

section addresses these concerns by introducing a convex optimization formulation.

Sample Average Approximation Method

The challenge in solving formulation (4.12) is that the objective function is an expectation

of a random variable that is concave function of the decision variables. This suggests using
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1: Step-size rule:
αk = A

B + k

where k is step number.
2: Set N to be iteration limit.
3: Set I to be number of samples used to estimate gradient.
4: For 1 ≤ t ≤ T , set Γt, Rt to initial values.
5: for k ← 1, N do
6: for i← 1, I do
7: Generate a sample path ωi = ({z(i)

0 }, {ε
(i)
1 , z

(i)
1 }, . . . , {ε

(i)
T , z

(i)
T }).

8: Solve the inner problem (4.14).
9: Set H(κ, ωi)Γt and H(κ, ωi)Rt for 1 ≤ t ≤ T according to (4.15).

10: end for
11: Compute the sample average of the gradients

ḠΓt = 1
I

I∑
i=1

H(κ, ωi)Γt , ḠRt = 1
I

I∑
i=1

H(κ, ωi)Rt , ∀ 1 ≤ t ≤ T.

12: Update Rt ← Rt + αkḠRt and Γt ← Γt + αkḠΓt , for all 1 ≤ t ≤ T .
13: end for

Algorithm 1: Supergradient algorithm

a sample average to approximate the objective function. Before we develop the method, we

introduce Lemma 16 to obtain an alternate representation for FJκ. The idea is to convert

the inner problem from a minimization problem to a maximization problem by using duality

ideas and introduce the conjugate function g∗t : Rm×Rl×Rn → R of the stage cost gt defined

as

g∗t (γt, zt, µt) , sup
yt,ut

{
γ>t yt + µ>t ut − gt(yt, zt, ut)

}
.

Lemma 16.

FJκ(x) = E
[

sup
λ0,...,λT−1

T−1∑
t=0

λ>t (Btzt + εt+1)−
T∑
t=0

g∗t (γt, zt, µt)
]
,
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where

µ>t ,


(
2ε>t+1Γt+1 + ∆Φ(zt+1, zt)Rt+1 − λ>t

)
Ct 0 ≤ t ≤ T − 1

0 t = T,

γ>t ,



(
2ε>1 Γ1 + ∆Φ(z1, z0)R1 − λ>0

)
A0 t = 0(

2ε>t+1Γt+1 + ∆Φ(zt+1, zt)Rt+1 − λ>t
)
At + λ>t−1 1 ≤ t ≤ T − 1

λ>T−1 t = T,

and g∗t is conjugate function of gt.

Proof. Given a sample path ω = ({z0}, {ε1, z1}, . . . , {εT−1, zT−1}, {εT , zT}), the inner opti-

mization problem is

minimize
ut,yt,t∈T

T−1∑
t=0

(
gt(xt, ut)−

(
2ε>t+1Γt+1 + ∆Φ(zt+1, zt)Rt+1

)
(Atyt + Ctut)

)
+ gT (xT , uT )

subject to yt+1 = Atyt +Btzt + Ctut + εt+1, 0 ≤ t ≤ T − 1.

Dualizing the constraints, the above problem is equivalent to

sup
λ0,...,λT−1

inf
ut,yt,t∈T


T−1∑
t=0

(
gt(xt, ut)−

(
2ε>t+1Γt+1 + ∆Φ(zt+1, zt)Rt+1

)
(Atyt + Ctut)

)
+ gT (xT , uT )

+
T−1∑
t=0

λ>t (Atyt +Btzt + Ctut + εt+1 − yt+1)

.
After some algebra, we can rewrite it as

(4.16) sup
λ0,...,λT−1

{
T−1∑
t=0

λ>t (Btzt + εt+1) + inf
ut,yt,t∈T

T∑
t=0

(
gt(yt, zt, ut)− γ>t yt − µ>t ut

)}
,

where µt and γt are as defined in the statement of the Lemma. Substituting conjugate

function of gt(yt, zt, ut) in (4.16), we can write inner problem as

(4.17) sup
λ0,...,λT−1

{
T−1∑
t=0

λ>t (Btzt + εt+1)−
T∑
t=0

g∗t (γt, zt, µt)
}
.

The desired result follows immediately from above expression. �
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Consider S independent outer sample paths ωi = ({z(i)
0 }, {ε

(i)
1 , z

(i)
1 }, . . . , {ε

(i)
T , z

(i)
T }) for i =

1, 2, . . . , S. Define Ê to be empirical expectation with respect to the S sampled paths. Using

sample average as an approximation to objective function in (4.12) and the representation

of FJκ from Lemma 16, we are ready to state an implementable version of the optimization

problem:

(4.18) max
κ

Ê
[
maximize
λ0,...,λT−1

T−1∑
t=0

λ>t (Btzt + εt+1)−
T∑
t=0

g∗t (γt, zt, µt)
]
,

where

µ>t ,


(
2ε>t+1Γt+1 + ∆Φ(zt+1, zt)Rt+1 − λ>t

)
Ct 0 ≤ t ≤ T − 1

0 t = T,

γ>t ,



(
2ε>1 Γ1 + ∆Φ(z1, z0)R1 − λ>0

)
A0 t = 0(

2ε>t+1Γt+1 + ∆Φ(zt+1, zt)Rt+1 − λ>t
)
At + λ>t−1 1 ≤ t ≤ T − 1

λ>T−1 t = T,

and g∗t is conjugate function of gt. Observe that in order to compute µt and γt along a sample

path, we need to be able to evaluate the martingale difference ∆Φ(zt+1, zt). In general, these

can be computed by one-step inner sampling, however, in many applications like the one

illustrated in Section 4.4, these can be computed explicitly and hence only the outer sample

paths need to be generated.

Computation of Unbiased Upper Bound

We have introduced two computational approaches for solving optimization problem (4.12).

Using either of these methods we obtain an approximation κ̂ to the true minimizer κ∗. We

propose as an upper bound on J∗0 (x0), the quantity FJ κ̂(x0). The latter quantity may be

estimated via a sampling procedure as follows.

1. Generate a second set of samples that is independent of those used in obtaining κ̂.
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2. An unbiased estimate of the upper bound FJ κ̂(x0) is given by

Ê
[
maximize
λ0,...,λT−1

T−1∑
t=0

λ>t (Btzt + εt+1)−
T∑
t=0

g∗t (γt, zt, µt)
]
,

where Ê is the empirical expectation over second set of samples.

To summarize, we have presented two computational approaches to find an approximation

to the optimum solution of (4.12). Given such a solution, we can compute unbiased upper

bounds on optimal objective function value J∗0 (x0). We are ready to present a case study of

these methods.

4.4. Case Study: Optimal Execution Problem

As an application of pathwise method we consider the problem of optimal execution. Con-

sider a brokerage firm interested in liquidating a portfolio of securities on behalf of an in-

vestor. Due to the fiduciary role of the brokerage firm, only selling of the stock is allowed. In

order to reduce transaction costs, the execution desk would like to time its orders to benefit

from the short-term predictability in the stock prices. The execution literature is focused on

this problem, see, for example, Heston et al. (2010).

We consider a model with short term return predictability presented in Moallemi and

Sağlam (2011), describe the benchmark methods and then apply pathwise approach to the

execution problem. We close the section with a numerical study, using the parameters

described in Moallemi and Sağlam (2011) and compare pathwise bounds with benchmark

methods including Brown and Smith (2010) bounds.

4.4.1. Problem Setting

We consider a setting where the economy consists of n different stocks. A trading desk is

interested in liquidating a portfolio of assets c ∈ Rn
+. The trading takes place over a discrete

horizon t = 1, . . . , T . The price of the assets at time t be pt ∈ Rn and returns earned by

holding a unit of each of the securities over time period (t, t+1] be denoted by rt+1 , pt+1−pt.
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The returns evolve according to a factor model rt+1 = Bft+εt+1, where ft denotes the factor

values of L different factors at time t, matrix B ∈ Rn×L is the factor loadings and εt+1 ∈ Rn

is the zero mean noise with variance Vart(εt+1) = Σ. The factors themselves evolve according

to a mean reverting process given by ft+1 = (I − Θ)ft + εt+1, where Θ ∈ RL×L is matrix

of mean-reversion coefficients for the factors and εt+1 is a mean zero noise with variance

Vart(εt+1) = Ξ. This is a standard model, see, for example, Garleanu and Pedersen (2008).

Let F , {Ft} be the natural filtration generated by the exogenous process εt+1 and noise

term εt+1.

The control problem associated with liquidating a portfolio is to decide how to sell the

stock in order to benefit from the short term predictability of the returns. At time t, we

observe the amount of unsold stock yt−1, the factors ft, and decide the amount of stock

to sell ut. The holdings at time t is yt = yt−1 − ut. We define our state at time t to be

xt , (yt−1, ft). The proceeds from the liquidation of the stock, wealth wT , is then given by

wT = ∑T
t=1 p

>
t ut. In terms of returns and portfolio holdings we can rewrite terminal wealth

as wT = p>1 y0 + ∑T
t=2 r

>
t yt−1, where y0, p1 are constants unaffected by our decision. Using

the return evolution equation, rt+1 = Bft + εt+1, we can rewrite terminal wealth as

wT = p>1 y0 + +
T−1∑
t=1

y>t (Bft + εt+1).

Observe that εt’s are mean zero and do not matter in expectation. We assume that the costs

associated with trading are quadratic and are of the form 1
2u
>
t Λut. Let the trading policy

be given by µT = (µ1, . . . , µT ). In order to maximize the net expected wealth after paying

for the transaction costs, the decision maker solves the following optimization problem1:

maximize
µT∈AF

E
[
T∑
t=1

(
y>t Bft −

1
2µ
>
t Λµt

)]

subject to yt = yt−1 − µt, ∀ t = 1, . . . , T

µt ≥ 0, yt ≥ 0, ∀ t = 1, . . . , T

y0 = c, yT = 0,

(4.19)

1 Note that constraints on the controls are not strictly separable as was assumed in our formulation.
However, this assumption was introduced for the sake of ease of exposition and can be generalized to handle
joint constraints.
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where AF is collection of processes adapted to filtration F. Observe that the nonnegativity

constraints makes sure that the stock is sold via a pure sell algorithm.

4.4.2. Benchmark Methods

We consider the following benchmarks, representative of mainstream methods, for purposes

of comparison with pathwise methods.

• Perfect Hindsight Bounds. Given the realization of factors f1, . . . , fT over the entire

horizon, we can compute the perfect hindsight bound, referred to as PH-UB, by solving

the perfect information relaxation of the problem (4.19), which is equivalent to solving

a deterministic quadratic program. By repeating this procedure over a number of

sample paths, we obtain our estimate of PH-UB.

• Linear Quadratic Control Bounds. Our optimal execution problem (4.19) can be

interpreted as a constrained linear quadratic control problem (LQC). In particular,

if we relax the nonnegativity constraints: ut ≥ 0, yt ≥ 0, ∀ t = 1, . . . , T , then our

problem is equivalent to LQC. For more discussion refer to Garleanu and Pedersen

(2008).

The value function of LQC are known in closed form, they can be used to obtain upper

bounds on the execution problem and will be referred as LQC-UB. The value function

in the LQC problem, by the standard results in the literature, is of the form

(4.20) JLQC
t (yt−1, ft) = −1

2y
>
t−1A

t
yyyt−1 + y>t−1A

t
yfft + 1

2f
>
t A

t
ffft + 1

2mt,

and coefficients satisfy the following recursion:

Atff = (B + At+1
yf (I −Θ))>

(
Λ + At+1

yy

)−1
(B + At+1

yf (I −Θ)) + (I −Θ)At+1
ff (I −Θ)

Atyf = Λ(Λ + At+1
yy )−1

(
B + At+1

yf (I −Θ)
)

Atyy = −Λ
(
Λ + At+1

yy

)−1
Λ + Λ

mt = tr(At+1
ff Ξ) +mt+1.
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Using the boundary condition,

ATyy = Λ, ATyf = Zeros(n,K), ATff = Zeros(K,K), mT = 0,

we can determine the value function at all times. The optimal objective function of

starting in state (c, f1) is given by JLQC
1 (c, f1) = −1

2c
>A1

yyc+c>A1
yff1+ 1

2f
>
1 A

1
fff1+ 1

2m1.

Assuming initial factor f1 ∼ N(0,Ξ0),

E[JLQC
1 (y0, f1)] = −1

2c
>A1

yyc+ 1
2tr(A1

ffΞ0) + 1
2m1.

Bounds computed using the above expression will be referred to as LQC-UB.

• Dual Value Function Upper Bounds.

Brown and Smith (2010) study dynamic portfolio optimization with transaction costs

and consider information relaxations to obtain bounds. They introduce value function

approximation based penalties. In our problem setting, it is natural to use LQC value

function to generate penalties. More discussion about this approach is available in

Haugh and Lim (2011). Using the functional form of LQC value function (4.20) and

applying the martingale difference operator, we obtain

∆JLQC
t (xt, xt−1) , JLQC

t (yt−1, ft)− E
[
JLQC
t (yt−1, ft)

∣∣∣ yt−2, ft−1
]

= 2ε>t Atff (I − Φ)ft−1 + ε>t A
t
ffεt − E[ε>t Atffεt] + y>t−1A

t
yfεt

Note that the first three terms in the expression above are mean zero and do not

interact with decision variables; therefore they can be dropped. Thus, we obtain the

following penalty

πDVF-UB =
T∑
t=2

y>t−1A
t
yfεt,

where εt is the factor noise. Observe that this penalty is linear in the factors and in

our framework, as will become clear in the Section 4.4.3, one can think of this penalty

as resulting from a basis function architecture that consists of terms linear in factors.

We will refer to the bounds computed using the above defined penalty as DVF-UB.
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4.4.3. Implementation Details

Basis Functions. We consider a basis function architecture that is linear in the factors i.e.

Φ(ft) = [ft,1, . . . , ft,L]

where L is the number of factors in our model. Note that many other basis functions are

possible, for instance, we can consider polynomials of the factors. Our choice was motivated

by the fact that this allows us to directly compare our bounds with DVF-UB. Given Φ, our

value function surrogate is

Jκt (yt−1, ft) = y>t−1Γtyt−1 + Φ(ft)Rtyt−1(4.21)

Inner Problem. Applying martingale difference operator to the value function surrogate

(4.21), after some algebra, we obtain

∆Jκt (xt, xt−1) = y>t−1Rtεt,

where εt is the noise in the factor process. Hence the martingale penalty for our problem

is ∑T
t=2 ∆Jκt (xt, xt−1) = ∑T

t=2 y
>
t−1Rtεt. Given a sample path ω = ({f1}, {ε2}, . . . , {εT}), we

would like to solve the following deterministic inner optimization problem

maximize
yt,ut

T−1∑
t=1

y>t (Bft −Rt+1εt+1)− 1
2

T∑
t=1

u>t Λut

subject to yt = yt−1 − ut, ∀ t = 1, . . . , T

ut ≥ 0, yt ≥ 0, ∀ t = 1, . . . , T

y0 = c, yT = 0.

(4.22)

We used CPLEX 12.1.0 to solve the quadratic program.

Stochastic Subgradient2 Method. Given a sample path ω = ({f1}, {ε2}, . . . , {εT}), we

can solve formulation (4.22) to compute an optimal solution y∗t (ω), u∗t (ω) and the unbiased

estimate of the subgradient is given by

GRt(ω) = −y∗t−1(ω)ε>t (ω), ∀ 2 ≤ t ≤ T.

2 Note that our outer problem is minimization of a convex function and hence we work with the subgra-
dient instead of supergradient.
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Sample Average Approximation Method. The inner optimization problem (4.22) can be

written as a minimization program using duality.

Lemma 17. Inner optimization problem 4.22 is equivalent to

min
ν,ηt≥0

ν>c+ 1
2

T∑
t=1

(
t−1∑
s=1

(Bfs −Rs+1εs+1)> + η>t − ν>
)

Λ−1
(
t−1∑
s=1

(Bfs −Rs+1εs+1) + ηt − ν
)(4.23)

Proof. Consider the formulation (4.22). Substitute yt = ∑T
s=t+1 us for all t = 1, . . . , T .

Dualize the constraint c = ∑T
t=1 ut, using dual variable ν, and the constraints ut ≥ 0, using

dual variable ηt, we obtain:

minimize
ν,ηt≥0

max
ut

ν>c+
T∑
t=1

u>t

(
t−1∑
s=1

(Bfs −Rs+1εs+1) + ηt − ν
)
− 1

2

T∑
t=1

u>t Λut.

Maximization with respect to ut, yields u∗t = Λ−1
(∑t−1

s=1(Bfs −Rs+1εs+1) + ηt − ν
)

for 1 ≤

t ≤ T . Substituting u∗t we obtain desired conclusion. �

Thus, our convex optimization problem can be written as,

min
Rt

Ê
[

min
ν,ηt≥0

ν>c+ 1
2

T∑
t=1

(
t−1∑
s=1

(Bfs −Rs+1εs+1)> + η>t − ν>
)

Λ−1
(
t−1∑
s=1

(Bfs −Rs+1εs+1) + ηt − ν
)]

where Ê is expectation with respect to empirical distribution over S independently generated

sample paths ωi = ({f (i)
1 }, {ε

(i)
2 }, . . . , {ε

(i)
T }) for i = 1, . . . , S.

4.4.4. Results

We make use the experiment setup described in Moallemi and Sağlam (2011). Consider a

block of c = 100 stocks of AAPL that need to be liquidated over a short trading horizon.

There is an opportunity to trade every 5 minutes. Using ‘momentum’ and ‘value’ type signal,

they construct a factor model with L = 2 return predicting factors. Using the stock data

of AAPL from January 4, 2010 and January 5, 2010, the following model was estimated via

pooled regression.
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• Factor loadings: B = [0.3375 − 0.0720].

• Variance of noise in returns: Σ = 0.0428.

• Returns: rt+1 = 0.0726 + 0.3375f1,t − 0.0720f2,t + εt+1, where εt ∼ N(0,Σ).

• Transaction cost matrix assumed proportional to variance of return noise Σ, i.e. Λ =

λΣ, where λ = 0.5.

• Matrix of mean reversion coefficients:

Θ =

0.0353 0

0 0.7146

 .
• Factor model:

∆f1,t+1 = −0.0353f1,t + ε1,t

∆f2,t+1 = −0.7146f2,t + ε2,t,

where εt ∼ N(0,Ξ) and

Ξ =

0.0378 0

0 0.0947


• Initial factor f1 sampled from the stationary distribution. Thus, f1 ∼ N(0,Ξ0), where

Ξ0 =
∞∑
t=0

(I −Θ)tΞ(I −Θ)t =

0.0412 0

0 1.3655


We solve the pathwise problem (4.12) using the stochastic subgradient approach described

in Section 4.3.1. In our implementation we made the following parameter choices:

• Step-size rule: A = 1 and B = 0.

• Outer iteration limit N = 1, 000.

• Number of samples used to estimate gradient I = 100.
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We used 1, 000, 000 sample paths to estimate unbiased pathwise upper bound and benchmark

bounds with reasonably small standard errors.

Table 4.1 reports upper bounds on the optimal value generated by pathwise method and

the benchmark algorithms. We compare the algorithms under three different parameter

settings: (a), referred to as base case, uses parameters described above, (b) uses the base

case parameters with variance of factor noise scaled up by a factor of 5 and transaction costs

scaled down by a factor of 10 and the last case (c) uses base case parameters with variance

of factor noise scaled up by a factor of 10 and transaction cost scaled down by a factor of

100. For each case we consider the values of T = 12, 30, 60, 120, 240. It is clear that among

the benchmark methods, DVF-UB is the tightest. Observe, that pathwise upper bound (will

be referred to as PATHWISE-UB) is consistently better than DVF-UB.

Table 4.1 (d) compares PATHWISE-UB with DVF-UB. We observe that PATHWISE-UB

shows greater improvement over DVF-UB, when the number of time periods, T , increases.

Further, as the variance of factor noise increases and transaction costs are reduced, we

observe PATHWISE-UB offers more benefit over DVF-UB. Typically, PATHWISE-UB offers

an improvement of about 5% over DVF-UB. In terms of computation time, PATHWISE-UB

takes slightly longer time than DVF-UB. However, it is more by only about 10%, a very

manageable increase in computational burden.

Moallemi and Sağlam (2011) obtain a lower bound, by simulating a policy, for the base

case with T = 12. Their lower bound is 6.12 with a standard error of 0.224. Our upper

bound for this case, shown in Table 4.1 (a), is 6.46 with a standard error of 0.04. This

suggests that the upper bounds obtained by PATHWISE-UB can be fairly tight.

4.5. Theory

We compare bounds obtained using pathwise method to upper bounds derived from other

approximate dynamic programming based methods.
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(a) Performance and computation times of algorithms for base case parameters itemized at the beginning of
Section 4.4.4

Pathwise UB DVF-UB PH-UB LQC-UB
T Tcomp. Mean S.E. Tsim. Mean S.E Tsim. Mean S.E Tsim. Value
12 21 6.46 0.04 195 6.48 0.04 187 8.48 0.05 199 12.59
30 27 56.32 0.10 259 57.52 0.09 254 65.48 0.12 251 236.5545
60 39 121.18 0.16 356 126.05 0.14 350 147.45 0.21 358 1.25E+03
120 64 212.38 0.21 573 222.29 0.18 580 281.94 0.35 575 5.14E+03
240 119 322.53 0.26 1066 333.57 0.21 1044 490.04 0.54 1065 1.64E+04

(b) Performance and computation times of algorithms for base case parameters with variance of factor noise
scaled up by a factor of 5 and transaction cost scaled down by factor of 10.

Pathwise UB DVF-UB PH-UB LQC-UB
T Tcomp. Mean S.E. Tsim. Mean S.E Tsim. Mean S.E Tsim. Value
12 20 75.49 0.11 193 76.96 0.10 190 80.24 0.12 197 1.07E+03
30 29 186.01 0.23 258 194.51 0.21 257 204.46 0.27 268 1.20E+04
60 40 333.32 0.37 375 354.51 0.30 357 384.69 0.48 381 6.26E+04
120 65 543.56 0.50 588 578.64 0.40 596 681.74 0.79 581 2.57E+05
240 120 798.68 0.60 1082 835.87 0.48 1073 1143.55 1.21 1107 8.21E+05

(c) Performance and computation times of algorithms for base case parameters with variance of factor noise scaled
up by a factor of 10 and transaction cost scaled down by factor of 100.

Pathwise UB DVF-UB PH-UB LQC-UB
T Tcomp. Mean S.E. Tsim. Mean S.E Tsim. Mean S.E Tsim. Value
12 20 118.57 0.15 206 120.73 0.14 191 125.01 0.17 194 2.15E+04
30 27 275.00 0.33 275 287.23 0.29 264 300.39 0.39 249 2.40E+05
60 44 483.70 0.52 484 513.82 0.43 347 554.98 0.68 352 1.25E+06
120 69 781.54 0.71 605 831.10 0.56 606 974.75 1.11 569 5.14E+06
240 128 1143.26 0.85 1053 1195.10 0.68 1067 1627.53 1.71 1120 1.64E+07

(d) Comparison of PATHWISE-UB with DVF-
UB across above three cases.

T Case (a) Case (b) Case (c)
12 0.40% 1.94% 1.83%
30 2.13% 4.57% 4.45%
60 4.01% 6.36% 6.23%
120 4.67% 6.45% 6.34%
240 3.42% 4.66% 4.53%

Table 4.1: Comparison of bounds by Pathwise method with benchmark algorithms and the
computation times. T refers to the number of trading opportunities. Tcomp. and Tsim. refer
to computation and simulation time, respectively.
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First, we consider the approximate linear programming (ALP) approach. For our opti-

mization problem (4.4), the Bellman operator T : P → P can be defined as

(4.24) (TJ)t(x) =


minu {gt(x, u) + E[Jt+1(xt+1)|xt = x, u]} if t < T,

minu gT (x, u) if t = T.

The optimal solution J∗ to the problem (4.4) can be characterized as a fixed point to the

Bellman’s equation: TJ = J . Consider the basis function architecture Ψ = {ψ1, . . . , ψK},

where ψi ∈ P , ∀ 1 ≤ i ≤ K. We are interested in computing r ∈ RK so that

J∗t (x) ≈ Jrt (x) ,
K∑
i=1

ψi(x, t)ri = Ψrt(x)

We are ready to state the ALP for our problem:

(4.25)
maximize

r
Ψr0(x)

subject to Ψr(x) ≤ TΨr(x) ∀ x ∈ Rm+`

Denote the set of feasible r in (4.25) by CALP. Notice that the number of constraints is

infinite and it is not clear if we can solve this program in general. However, based on

this idea, tractable programs have been introduced for certain special cases (see, Wang and

Boyd, 2011). The following result shows that the bounds generated by PO based approach

are provably tighter than the ALP based bounds.

Theorem 11. Suppose r ∈ CALP is feasible for the ALP (4.25). Then, for all x ∈ Rm+`,

Ψr0(x) ≤ FΨr(x) ≤ J∗0 (x).

Proof. By weak duality, we have

J∗0 (x) ≥ FΨr(x)

= E
[

inf
uT∈A

g0(x0, u0) +
T∑
t=1

(
gt(xt, ut)− (Ψrt(xt)− E[Ψrt(xt)|xt−1, ut−1])

)∣∣∣∣∣x0 = x

]

≥ E
 inf

uT∈A
Ψr0(x0) +

T∑
t=1

(
gt(xt, ut) + E[Ψrt+1(xt+1)|xt, ut]−Ψrt(xt)

)

+ gT (xT , uT )−ΨrT (xT )

∣∣∣∣∣∣ x0 = x


≥ Ψr0(x).
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The last inequality follows (a) Ψrt(x) ≤ minut {gt(x, ut) + E[Ψrt+1(xt+1)|xt = x, ut]} for 0 ≤

t ≤ T − 1, and (b) ΨrT (xT ) ≤ minuT gT (xT , uT ). �

Thus, we can interpret the ALP as finding the tightest possible lower bound Ψr0(x) for

r ∈ CALP and by Theorem 11 the PO bounds are pointwise tighter than ALP.

Next, we compare PO based bounds with the bounds introduced by Wang and Boyd

(2011). Their dynamics in our framework can be written as yt+1 = Atyt + Ctut + εt+1, 0 ≤

t ≤ T − 1. Notice that they do not allow for exogenous zt. They consider a cost function

that is separable across time and the stage cost at time t is gt : Rm × Rn → R ∪ {∞} is a

function of the current state yt and the control ut and is not required to be convex. Given

these dynamics and cost function, the optimization problem can be written as

(4.26) J∗0 (y) = minimize
u0,...,uT

E
[

T∑
t=0

gt(yt, ut)
∣∣∣∣∣ y0 = y

]
,

where the decisions u0, . . . , uT are nonanticipative. Their method relies on following obser-

vations:

1. Suppose stage cost gt(yt, ut) is quadratic (but not necessarily convex), then lower

bounds on the optimal objective value can be constructed by solving ALP (4.25).

In particular, for a quadratic value function approximation, the Bellman inequality

can be written as an LMI and hence can be solved efficiently.

2. For a general stage cost (i.e., not necessarily convex), if we are able to find a quadratic

stage cost function that are lower bounds to the actual stage cost, then using ALP

approach lower bounds on the optimal objective value can be generated.

For certain types of stage cost and constraints on controls, the above two steps can be

automated so that tightest possible bounds afforded by the above outlined approach can be

computed. We can establish the following result about pathwise method.

Theorem 12. The lower bounds generated by the pathwise method are tighter than the bounds

generated by Wang and Boyd (2011) approach.
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Proof. Let the quadratic functions identified by Wang and Boyd (2011) procedure be `t(yt, ut)

for all t ∈ T and the value function approximation be J `t (y) = y>P̃ty + 2p̃>t y + c̃t for all

t ∈ T . Then, `t(yt, ut) ≤ gt(yt, ut) for all yt ∈ Rm, ut ∈ Rn and 0 ≤ t ≤ T .

J `0(y)
(a)
≤ FJ `(y)

= E
[

inf
u0,...,uT

`0(y0, u0) +
T∑
t=1

`t(yt, ut)−∆J `t (yt, yt−1, ut−1)
∣∣∣∣∣ y0 = y

]
(b)
≤ E

[
inf

u0,...,uT
g0(y0, u0) +

T∑
t=1

gt(yt, ut)−∆J `t (yt, yt−1, ut−1)
∣∣∣∣∣ y0 = y

]
(c)
≤ sup

κ
FJκ(y),

(a) follows by Theorem 11 (b) is true because (`0, . . . , `T ) are lower bounds on the stage

cost and (c) holds because J ` is in the span of the parametric value functions determined by

κ = {Pt, pt, ct,∀t ∈ T }. �
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CONCLUSION

Approximate Dynamic Programming is a growing field that holds a lot of potential in ad-

dressing large scale stochastic dynamic programs. On the one hand, it provides techniques

for generating suboptimal policies for complex problems in sequential decision making under

uncertainty. On the other, in the recent years, dual approaches provide a framework that

can be used to quantify the suboptimality. In this thesis, we have sought to further our

understanding in both these aspects.

The ALP approach to approximate DP is interesting at the outset for two reasons. First,

it gives us the ability to leverage commercial linear programming software to solve large

ADP problems, and second, the ability to prove rigorous approximation guarantees and

performance bounds. We asked whether the formulation considered in the ALP approach

was the ideal formulation. In particular, we asked whether certain restrictions imposed on

approximations produced by the approach can be relaxed in a tractable fashion and whether

such a relaxation has a beneficial impact on the quality of the approximation produced. We

have answered both of these questions in the affirmative.

Further, we focused on a general method for computing bounds, namely, martingale

duality approach. This approach, referred to as pathwise method, was developed in Chapter 3

in the context of optimal stopping problems and later generalized to MDPs in Chapter 4.

Pathwise methods provides a structured procedure for obtaining tightest possible bounds

afforded by the chosen basis functions. These methods, together with the methods for

generating suboptimal policy, like the SALP, can provide ‘confidence’ bounds for the true

optimal solution. 135
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There are a number of directions that merit further investigation. We highlight some

below:

• Online Method for SALP. SALP may be written as an unconstrained stochastic

optimization problem given by (2.30). Such problems suggest natural online update

rules for the weights r, based on stochastic gradient methods, yielding ‘data-driven’

ADP methods. The menagerie of online ADP algorithms available at present are

effectively iterative methods for solving a projected version of Bellman’s equation.

TD-learning is a good representative of this type of approach and, as can be seen

from Table 2.1, is not among the highest performing algorithms in our computational

study. An online update rule that effectively solves the SALP promises policies that

will perform on par with the SALP solution, while at the same time retaining the

benefits of an online ADP algorithm.

• Bootstrapping. In our implementation of the SALP procedure, we start with a base-

line policy. The sampled SALP is obtained by sampling states from the stationary

distribution of the baseline policy. Suppose that the policies resulting from solution

to SALP are superior to the baseline policy. Then, it is natural to consider sampling

a new set of states from the improved policy. This procedure can repeated iteratively

to obtain better policies over the course of iterations. Understanding the dynamics of

such a ‘bootstrapping’ procedure can lead to iterative refinement of the policies.

• Policy Generation. The dual approach to solving stochastic dynamic programs, as dis-

cussed in Chapters 3 and 4, allows us to generate bounds. However, in practice, along

with bounds we are interested in policies. In the case of optimal stopping problem,

policy was obtained by regressing upper bounds on continuation value. It is natural to

ask whether a more direct method is possible — for instance, the greedy policy with

respect to the value function surrogate. This appears to be a non-trivial question. In

particular, it is not hard to see that if the constant function were a basis function,

then the pathwise method cannot identify a unique optimal coefficient for this basis
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function. On the other hand, if one chose to use a policy that were greedy with respect

to value function surrogate, it is clear that the coefficient corresponding to this basis

function can dramatically alter the nature of the policy.
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