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ABSTRACT

Towards more robust and efficient methods for the
calculation of Protein-Ligand binding affinities

Lingle Wang

Biological processes often depend on protein-ligand binding events, so that accurate pre-

diction of protein-ligand binding affinities is of central importance in structural based drug

design. Although many techniques exist for calculating protein-ligand binding affinities,

ranging from techniques that should be accurate in principle, such as free energy per-

turbation (FEP) theory, to relatively simple approximations based on empirically derived

scoring functions, the counterbalancing demands of speed and accuracy have left us with no

completely satisfactory solution thus far. This thesis will be focused on the methodology

development towards more robust and reliable Protein-Ligand binding affinity calculation.

In Part I, we will present the WaterMap method, which will bridge the gap between the

efficiency of empirical scoring functions and the accuracy of rigorous FEP methods. Unlike

most other methods with the main focus on the direct interaction between the protein and

the ligand, the WaterMap method we developed considers the explicit driving force from the

solvent, in which several individual water molecules in the binding pocket play an active role

in the binding process. We demonstrate that protein may adopt active site geometries that

will destabilize the water molecules in the binding pocket through hydrophobic enclosure

and/or correlated hydrogen bonds, and displacement of these water molecules by ligand

groups complementary to protein surface will provide the driving force for ligand binding.

In some extreme cases, the interactions are so unfavorable for water molecules that a void

is formed in the binding pocket of protein. Our method also considers the contribution

from occupation of ligand atoms in the dry regions of binding pocket, which in some cases

provides the driving force for ligand binding.

FEP provides an in-principle rigorous method to calculate protein-ligand binding affini-



ties within the limitations of the potential energy model and it may have a potentially

large impact on structure based drug design projects especially during late stage lead op-

timization when productive decisions about compound modification are made . However,

converging explicit solvent simulations to the desired precision is far from trivial, espe-

cially when there are large structural reorganizations in the protein or in the ligand upon

the formation of the binding complex or upon the alchemical transformation from one lig-

and to another. In these cases, there can be large energy barriers separating the different

conformations and the ligand or the protein may remain kinetically trapped in the starting

configuration for a very long time during brute-force FEP/MD simulations. The incomplete

sampling of the configuration space results in the computed binding free energies being de-

pendent on the starting protein or ligand configurations, thus giving rise to the well known

quasi-nonergodicity problem in FEP.

In Part II, we will present a new protocol called FEP/REST, which combines the re-

cently developed enhanced sampling technique REST (Replica Exchange with Solute Tem-

pering) into normal FEP to solve the sampling problem in brute force FEP calculation.

The computational cost of this method is comparable with normal FEP, and it can be very

easily generalized to more complicated systems of pharmaceutical interest. We apply this

method to two modifications of protein-ligand complexes which lead to significant confor-

mational changes, the first in the protein and the second in the ligand. The new approach

is shown to facilitate sampling in these challenging cases where high free energy barriers

separate the initial and final conformations, and leads to superior convergence of the free

energy as demonstrated both by consistency of the results (independence from the starting

conformation) and agreement with experimental binding affinity data.

Part III focus on two topics towards the foundational understanding of hydrophobic

interactions and electrostatic interactions. To be specific, the nonadditivity effect of hy-

drophobic interactions in model enclosures is studied in Chapter 9, and the competition

between hydrophobic interaction and electrostatic interaction between a hydrophobe and

model enclosure is studied in Chapter 10. The approximations in popular implicit solvent

models, like the surface area model in hydrophobic interaction, and the quadratic depen-

dence of electrostatic interaction on the magnitude of charge are investigated.



Six of the Chapters (Chapter 2-4, Chapter 6, and Chapter 9-10) have been published,

and the other one (Chapter 7) has been accepted for publication and currently is in press.

Each Part begins with its own introduction. Each chapter also contains its own abstract

and introduction, and focus on one specific topic. They all share the common theme, that

is to develop more robust and reliable methods to calculate protein-ligand binding affinities.

The conclusions and discussions about future research directions are presented in Part IV.
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Development of WaterMap method



CHAPTER 1. INTRODUCTION OF WATERMAP METHOD 2

Chapter 1

Introduction of WaterMap method

Water is unique among liquids for its biological significance and it plays an important role

in the protein ligand binding process. It is widely believed that displacement of water

molecules in the binding pocket of protein is a principal source of binding free energy. Wa-

ter molecules in the binding pocket of protein are often entropically unfavorable due to the

orientational and positional restrains imposed by the protein residues, or they are energeti-

cally unfavorable due to the breaking of hydrogen bonds when surrounded by hydrophobic

groups of the protein. In both cases, they are free energetically unfavorable compared

to those in bulk solution, and displacement of these free energetically unfavorable water

molecules by ligand groups complementary to the protein surface will provide the driving

force for ligand binding.

It has been demonstrated that there are two special regions in the binding pocket of

the protein where the water molecules are extremely unfavorable, and empirical scoring

functions will underestimate the ligand binding affinity when these water molecules are dis-

placed. The first motif is called hydrophobic enclosure, where the water molecules are sur-

rounded on multiple sides by hydrophobic protein side chains. It this case, water molecules

will lose hydrogen bonds compared to bulk solution, and they are energetically very unfa-

vorable. The second motif is called correlated hydrogen bonds, where water molecules in

the binding pocket need to make several hydrogen bonds with the protein residues, and

they are entropically very unfavorable compared to bulk solution.

The WaterMap method is designed to characterize the contribution of water displace-
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ment to the protein ligand binding affinity. The WaterMap method for computing the free

energy contribution of the ligand displacing the active site solvent molecules begins with the

assumption the equilibrium properties of the hydration of the apo-receptor active site can

be discerned from a converged explicitly solvated classical MD simulation of the protein.

The positions of all water molecules that enter the protein active site during this dynamics

simulation are recorded and clustered into high occupancy 1 Å radius spheres, which we

denoted as the “hydration sites” of the active site cavity. Using methods borrowed from

inhomogeneous solvation theory, the average system interaction energies, and excess en-

tropies for the water in each hydration site are computed. The average system interaction

energies of the water in the various hydration sites can be readily extracted from the dy-

namics simulation, and the excess entropies are calculated from a truncated expansion of

the entropy in terms of solvent orientational and spatial correlation functions. Comparing

the system interaction energy of water in a hydration site with that of water in the bulk

fluid lets us estimate the enthalpic cost transferring the solvent in the hydration site from

the protein active site to the bulk. The excess entropies calculated with this method may

be used similarly. These calculations allow us to create a hydration thermodynamics map

for a given receptor.

The thermodynamics of water in the binding pocket of protein can be used to estimate

the free energy contribution of a ligand displacing water from the protein active site by

noting that (1) if the ligand sterically overlaps with a given hydration site in its bound

conformation, then it displaces water from that hydration site; and, (2) the higher the

excess chemical potential of the solvent in a given hydration site, the more favorable its

evacuation to the bulk fluid will be. With these assumptions in mind, a simple “displaced

solvent functional” was formulated that attempts to correctly evaluate this contribution to

the binding affinity by computing the transfer free energy of the solvent evacuated from the

hydration sites by the ligand. The functional itself is

∆Gbind =
∑

lig,hs

∆Ghs

(

1 − |rlig − rhs|
RCO

)

Θ (RCO − |rlig − rhs|) (1.1)

where ∆Gbind is the predicted binding free energy of the ligand evacuating the solvent

from the active site, Rco is the distance cutoff for a ligand atom beginning to displace
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a hydration site, ∆Ghs is the computed free energy of transferring the solvent in a given

hydration site from the active site to the bulk fluid, and Θ(x) is the Heaviside step function.

The contribution from each hydration site was capped, such that it would never contribute

more than ∆Ghs to ∆Gbind no matter how many ligand atoms were in close proximity to

it.

In Chapter 2 of this section, the inhomogeneous solvation theory (IST) is introduced,

and an efficient method to calculate the entropy of water in different environments is in-

troduced, which facilitates faster convergence and greater accuracy. In Chapter 3 of this

section, the WaterMap method is applied to a number of model hydrophobic enclosures,

and the WaterMap predicted binding affinities are compared with high accuracy free energy

perturbation (FEP) results. The high correlation between the results using WaterMap and

EFP indicates that WaterMap is a very useful model to characterize the contribution from

water displacement to the binding affinity and a large amount of the binding affinity comes

from the water displacement. In addition, the physical-chemical basis and the key approx-

imation of WaterMap method are clarified, which facilitates an understanding of when the

technique is expected to succeed and fail.

The hydrogen sites identified by WaterMap method usually correspond to the structured

water molecules in the X-ray crystallography, and WaterMap only takes into consideration

the contribution from the high solvent occupation regions in the binding pocket. In some

extreme cases, a portion of the receptor active site is so unfavorable for water molecules

that a void or a dry region is formed in the binding pocket. In Chapter 4 of this section,

we demonstrate that the presence of dry regions has a nontrivial effect on ligand binding

affinity if the ligand places atoms in these regions, and an additional term attributable to

occupation of the dry regions by ligand atoms is introduced. The combination of these two

terms has been shown to be more predictive in relative ligand binding affinity calculation

for a set of congeneric ligands binding to MUP receptor which has a dry region in the

binding pocket. This represents an important addition to the WaterMap method, and

the combination of WaterMap with the cavity term will characterize the contribution from

both wet and dry region in the binding pocket to ligand binding affinity. In addition, the

molecular recognition between the dry region in the binding pocket and the hydrophobic
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groups of the ligand occur on many different kinds of proteins, and we suggest that it may

represent a general motif for molecular recognition.
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Chapter 2

Thermodynamic properties of

liquid water: an application of a

nonparametric approach to

computing the entropy of a neat

fluid

Abstract

Due to its fundamental importance to molecular biology, great interest has continued to

persist in developing novel techniques to efficiently characterize the thermodynamic and

structural features of liquid water. A particularly fruitful approach, first applied to liquid

water by Lazaridis and Karplus, is to use molecular dynamics or Monte Carlo simulations

to collect the required statistics to integrate the inhomogeneous solvation theory equations

for the solvation enthalpy and entropy. We here suggest several technical improvements to

this approach, which may facilitate faster convergence and greater accuracy. In particular,

we devise a nonparametric k’th nearest neighbors (NN) based approach to estimate the

water-water correlation entropy, and suggest an alternative factorization of the water-water
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correlation function that appears to more robustly describe the correlation entropy of the

neat fluid. It appears that the NN method offers several advantages over the more common

histogram based approaches, including much faster convergence for a given amount of sim-

ulation data; an intuitive error bound that may be readily formulated without resorting to

block averaging or bootstrapping; and the absence of empirically tuned parameters, which

may bias the results in an uncontrolled fashion.

2.1 Introduction

Water is unique among liquids for its biological significance. It plays an active role in

the formation of the structures of proteins, lipid bilayers, and nucleic acids in vivo, both

through direct hydrogen bonding interactions with these biomolecules, and also through

indirect interactions, where the unique hydrogen-bonded structure of liquid water is known

to drive hydrophobic assembly [1]. It has been suggested that a robust characterization of

the thermodynamic properties and structure of water solvating the active site of a protein

is essential to rationalize the various binding affinities of small molecules that will displace

that solvent to bind to the protein active site[2; 3].

As such, great interest has continued to persist in developing novel techniques to ef-

ficiently characterize the thermodynamic and structural features of liquid water in dif-

ferent environments. A particularly fruitful approach, first applied to liquid water by

Lazaridis and Karplus[4; 5; 6], used molecular dynamics or Monte Carlo simulations to

collect the required statistics to integrate the inhomogeneous solvation theory (IST) equa-

tions for the solvation enthalpy and entropy. In this theory, the solvation enthalpy is

determined from an analysis of the change in the solute-solvent and solvent-solvent in-

teraction energy terms, and the solvation entropy is computed from an expansion of the

entropy in terms of increasingly higher order solute-solvent correlation functions[4]. This

approach has been used to characterize the thermodynamics and structure of neat water[6],

hydration of small hydrophobes[4], and the hydration of the active sites of proteins[7;

8]. Recently, it has also been extended to allow for the rapid computation of the relative

binding affinities of a set of congeneric ligands with a given protein, via a semi-empirical
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displaced-solvent functional[2].

Due to the increasing interest in applying this technique to water[9; 10; 11; 12] in var-

ious environments, we have chosen to reexamine the factorization and correlation function

integration scheme originally suggested by Lazaridis and Karplus[6] for bulk water and later

adopted by others[13]. We have found that several technical improvements in this scheme

are possible, which may facilitate faster convergence and greater accuracy than the more

typical expressions. In this paper, we (1) devise a nonparametric k’th nearest neighbors

(NN) [14] based approach to estimate the water-water correlation entropy, in lieu of the

more common histogram based approaches; and (2) suggest an alternative factorization for

the water-water correlation function that appears to more robustly describe the water-water

correlation entropy of the neat fluid. To our knowledge, this is the first application of the

NN method to compute the entropy of a neat fluid. It appears that the NN method offers

several advantages over the more common histogram based approaches, including (1) much

faster convergence for a given amount of simulation data, especially when the correlation

function is highly structured; (2) an intuitive error bound may be readily formulated without

resorting to block averaging or bootstrapping techniques, which may be problematic to ap-

ply to estimators of the entropy; and (3) the absence of empirically tuned parameters, such

as the histogram bin width, which may bias the results in an unpredictable fashion. Our

alternative factorization of the water-water correlation function explicitly includes correla-

tions between the water-dipole-vector-intermolecular-axis angle with the angle of rotation

of the water molecule about its dipole vector. This contribution, although neglected by

others[6], has been found in our work to increase the agreement of results obtained by the

entropy expansion with those obtained by less approximate methods, such as free energy

perturbation theory. We also extensively compare the solvation entropies obtained from

the truncated entropy expansion to those obtained from a finite difference analysis of free

energy perturbation theory results. This comparison allows us to characterize the errors

in both precision and accuracy associated with the NN method of integrating the entropy

expansion presented here.

Our primary interest in developing this technique was to later adapt the method to

study the solvation of solutes; thus, we were interested in determining realistic estimates of
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the convergence of the technique when the isotropic symmetry of the fluid was not present.

As such, when extracting the solvent configurations to compute the pair correlation function

(PCF), we chose to use only the configurations of a distinguished solvent molecule with the

rest of the system, instead of collecting statistics from all pairs of solvent molecules. Such

a protocol allows for an interrogation of the relative convergence properties of the various

methods that might be obscured by the additional statistics offered by taking advantage of

the symmetry of the system.

2.2 Methods

2.2.1 The Entropy expression of a neat fluid

First derived by Green[15], and later by Raveché[16] and Wallace[17], the entropy of a

fluid can be expressed as a sum of integrals over multi-particle correlation functions. For a

molecular fluid[5], the expression is

s = sid + se = sid − 1

2!
k

ρ

Ω2

∫

[g(2) ln(g(2)) − g(2) + 1]drdω2

− 1

3!
k

ρ2

Ω3

∫

[g(3) ln(δg(3)) − g(3) + 3g(2)g(2) − 3g(2) + 1]dr1dr2dω3 − · · · (2.1)

where, sid is the entropy of an ideal gas with the same density and temperature as the

fluid, se is the excess entropy of the fluid over that of the ideal gas, k is the Boltzmann’s

constant, and ρ is the number density, ω denotes the orientational variables of one molecule,

Ω is the total volume of the orientational space (For nonlinear molecule like water, Ω is 8π2),

g(2) is the pair correlation function, g(3) is the triplet correlation function, and δg(3) is the

deviation of g(3) from the superposition approximation. In practice, it is very difficult or

even impossible to converge the three-particle and higher order correlation terms. However,

it has been established that, for most fluids, the largest contribution to the excess entropy

comes from the two-particle correlation term[6], and the error induced by neglecting the

higher order terms of the expansion may often be safely ignored.

Following the work of Lazaridis and Karplus[6], we evaluate the two-particle excess en-

tropy of liquid water by separating the two-particle term into translational and orientational
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components by factorization:

g(r, ω2) = g(r)g(ω2|r) (2.2)

s(2)
e = s

(2)
trans + s

(2)
orient (2.3)

s
(2)
trans = −1

2
kρ

∫

[g(r) ln g(r) − g(r) + 1]dr (2.4)

s
(2)
orient =

1

2
kρ

∫

g(r)Sorient(r)dr (2.5)

Sorient = − 1

Ω2

∫

J(ω2)g(ω2|r) ln g(ω2|r)dω2 (2.6)

where r is the Oxygen-Oxygen distance of two water molecules, ω2 are the angles that define

the relative orientation of the two water molecules, J(ω2) is the Jacobian of the angular

variables, g(r, ω2) is the pair correlation function, and g(ω2|r) is the conditional-angular pair

correlation function in the typical Bayesian notion. (Note that g(r, ω2) is identical to g(2) as

it appears in equation 2.1.) We denote the relative orientation of the two water molecules

by the five angles[6] [θ1, θ2, φ, χ1, χ2], where θ1, θ2 are the angles between the intermolecular

axis and the dipole vector of each molecule, φ describes the relative dihedral rotation of

the dipole vector around the intermolecular axis, and χ1, χ2 describe the rotation of each

molecule around its dipole vector. In the following discussion, we denote the entropy defined

by formula 2.6 the orientational Shannon entropy[18], and denote the entropy defined by

formula 2.5 the orientational excess entropy.

In line with prior work [6], we calculated the orientational Shannon entropy as defined

by formula 2.6 for three different ranges of r: (0 < r ≤ 2.7), (2.7 < r ≤ 3.3), and (3.3 < r ≤
5.6), which correspond to the various peaks and troughs in the radial distribution function.

In this way, the orientational excess entropy is related to Shannon entropy by :

sorient =
1

2
NikSorient i=1,2,3 (2.7)

where Ni is the average number of water molecules in the i-th shell.
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2.2.2 Factorization of the orientational pair correlation function using

generalized Kirkwood superposition approximation

The orientational pair correlation function (PCF) of water is a function of five angles, which

is very difficult to converge from currently accessible molecular dynamics simulation time

scales. The idea of factorization is to approximate the higher dimensional probability density

function by the product of its lower dimensional marginal probability density functions.

The generalized Kirkwood superposition approximation (GKSA)[19; 20; 21], allows an m-

dimensional distribution to be estimated using corresponding m-1-dimensional distributions:

ρ(x1, x2, · · · , xm) =







































































∏

cm
m−1

ρm−1 · · ·
∏

cm
2

ρ2

∏

cm
m−2

ρm−2 · · ·
∏

cm
1

ρ1

m is odd

∏

cm
m−1

ρm−1 · · ·
∏

cm
1

ρ1

∏

cm
m−2

ρm−2 · · ·
∏

cm
2

ρ2

m is even

(2.8)

where ρm−k represents a specific probability density function of m − k dimensionality, and

cm
m−k indicates all possible combinations of m−k groupings from the set of m total variables.

Reiss[20] and Singer[21] have demonstrated that the GKSA is the optimal approximation

of an n-particle distribution for n ≥ 3 from a variational point of view, and it has been

applied in numerous settings[22; 23].

From the results of our simulations, and as indicated by Lazaridis and Karplus[6], the

distribution has no structure along angle φ, i.e. g(φ) is close to 1 over the range of φ, and

has no correlation with other angles. Thus, we approximated the 5 dimensional PCF by:

g(θ1, θ2, φ, χ1, χ2) = g(θ1, θ2, χ1, χ2)g(φ) (2.9)

Note that for any properly defined orientational PCF g(x1, x2 · · · xN ),

1

Ω[x1,x2···xn]

∫

J(x1, x2 · · · xn)g(x1, x2 · · · xn)dx1dx2 · · · dxn = 1 (2.10)

where

Ω[x1,x2···xn] =

∫

J(x1, x2 · · · xn)dx1dx2 · · · dxn (2.11)
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i.e., Ω[x1,x2···xn] is the integral of the Jacobian J(x1, x2 · · · xn) over angular variables x1, x2 · · · xn.

Therefore, g(x1, x2 · · · xn) is proportional to ρ(x1, x2 · · · xn) with proportional coefficient

Ω[x1,x2···xn]. Via application of the GKSA (formula 2.8), it follows

g(θ1, θ2, χ1, χ2) =
g(θ1, θ2)g(θ1, χ1)g(θ1, χ2)g(θ2, χ1)g(θ2, χ2)g(χ1, χ2)

g2(θ1)g2(θ2)g2(χ1)g2(χ2)
(2.12)

Note that this factorization differs from that introduced by Karplus and Lazaridis[6] by the

explicit inclusion of g(θ1, χ1) and g(θ2, χ2) terms. Taking this approximation of g(x1, x2 · · · xn)

into the argument of the logarithm of formula 2.6 we find

Sorient = − 1

Ω2

∫

J(ω2)g(ω2|r) ln g(ω2|r)dω2 (2.13)

= −
∑

C4
2

1

Ω[x1,x2]

∫

J(x1, x2)g(x1, x2) ln g(x1, x2)dx1dx2

+2
∑

C4
1

1

Ω[x]

∫

J(x)g(x) ln g(x)dx (2.14)

=
∑

C4
2

S[x1,x2] − 2
∑

C4
1

S[x] (2.15)

where x1, x2 is any combination of two variables from the [θ1, θ2, χ1, χ2] set, x is any variable

from the [θ1, θ2, χ1, χ2] set, J(x1, x2) is the Jacobian of the corresponding two variables,

and J(x) is the Jacobian corresponding to variable x, Ω[x1,x2] is the total accessible angular

volume of variables x1, x2, and Ω[x] is the total accessible angular volume of variable x,

S[x1,x2] is the Shannon entropy of angular variables x1 and x2, and S[x] is the Shannon

entropy of angular variable x.

We note that an ambiguity seems to exist in the literature as to how to properly apply

an approximation of the type suggested in equation 2.12 to equation 2.6. We have adopted

here to apply the approximation only to the logarithm of equation 2.6 (as was done in

the original derivation of equation 2.1), which allows result 2.15 to be interpreted through

the language of information theory [24]. An alternate approach, that has been adopted by

others, has been to apply approximation 2.12 to both occurrences of the PCF in equation

2.6, taking care to renormalize the factorization of the PCF introduced in equation 2.12

so that meaningful results will still be obtained. Interestingly, the results of these two

approaches do not numerically agree, which may not be obvious from cursory inspection.
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We leave this proof as an exercise for the reader, which can be readily shown for instance

from a correlated multidimensional Gaussian distribution.

2.2.3 The k’th nearest-neighbor method

The NN method[14] gives an asymptotically unbiased estimate of an integral of the form:

I = −
∫

ρ(x1, x2, · · · , xs) ln ρ(x1, x2, · · · , xs)dx1dx2 · · · dxs (2.16)

where ρ(x1, x2, · · · , xs) is the probability density function. Given a reasonable estimation

of probability density function f(xi), the value of integral can be approximated as

I ≈ − 1

n

n
∑

i=1

ln f(xi) (2.17)

which follows from xi being sampled from the true distribution ρ(xi). The NN method of

nonparametrically estimating f(xi) at a point xi = (xi
1, x

i
2 · · · , xi

s) is [25]

f(xi) =
k

n

1

Vs(Ri,k)
(2.18)

Vs(Ri,k) =
πs/2Rs

i,k

Γ(1
2s + 1)

(2.19)

where n is the number of data points in the sample, Vs(Ri,k) is the volume of an s-

dimensional sphere with radius Ri,k, and Ri,k is the Euclidean distance between the point

xi and its k-th nearest neighbor in the sample. This approximation amounts to assuming

that the distance between neighboring sampled points in configuration space will be small

where the probability density function is large, and vice versa. So this integration may be

estimated as

I ≈ − 1

n

n
∑

i=1

ln f(xi) =
1

n

n
∑

i=1

ln
nπs/2Rs

i,k

kΓ(1
2s + 1)

(2.20)

However, the estimate in equation 2.20 is systematically biased [14] and will deviate from

the correct result in the limit of large n by Lk−1 − ln k − γ, where Lj =
∑j

i=1
1
i and

γ = 0.5772 · · · is Euler’s constant. By subtracting the bias Lk−1 − ln k − γ, the modified

unbiased estimate is formulated as

I ≈ s

n

n
∑

i=1

ln Ri,k + ln
nπs/2

Γ(1
2s + 1)

− Lk−1 + γ (2.21)
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Now our goal is to modify our expressions for the Shannon entropies into a form that

is amenable to a k’th NN evaluation of the integral. The expression of the two-dimensional

orientational Shannon entropy has the form of

S[x1,x2] = − 1

Ω[x1,x2]

∫

J(x1, x2)g(x1, x2) ln g(x1, x2)dx1dx2 (2.22)

where J(x1, x2) is the Jacobian associated with x1 and x2. Here, for χ1 and χ2 the Jacobian

is 1, but for θ1 and θ2 the Jacobian is sin θ1 and sin θ2. However, by a change of variables

from θ to t = π
2 (cos θ + 1), the Jacobian for t becomes 1, and the total angular volume is π

for one dimensional distribution and π2 for two dimensional distributions. Then, g(x1, x2)

is proportional to ρ(x1, x2) in equation 2.16, with proportional coefficient π2. Following the

NN method, the statistically unbiased estimation of the one and two-dimensional orienta-

tional Shannon entropies may now be approximated as

H
[x]
k (n) =

1

n

n
∑

i=1

ln Ri,k + ln
nπ1/2

Γ(1
2 + 1)Ω[x]

− Lk−1 + γ (2.23)

H
[x1,x2]
k (n) =

2

n

n
∑

i=1

ln Ri,k + ln
nπ1

Γ(1
2 × 2 + 1)Ω[x1,x2]

− Lk−1 + γ (2.24)

where H
[x]
k (n) is the k’th NN estimate of the Shannon entropy of random variable x from

a sampling of n data points and H
[x1,x2]
k (n) is the k’th NN estimate of the joint Shannon

entropy of random variables x1, x2 from a sampling of n data points. Thus, we are now

equipped to apply the NN method of estimating the entropy to liquid state problems. We

also note that to compute the NN distances, we made use of the ANN code[26], which

utilizes the k-d tree algorithm[27] for obtaining the k-th NN distances Ri,k between sample

points as necessary.

2.2.4 Error analysis of the k’th nearest neighbor method

It has been shown through an analysis of the limiting distribution[14] that the variance of

the k-th NN estimate of the entropy Hk(n) is

V ar[Hk(n)] =
Qk + V ar[ln f(x)]

n
(2.25)

where f(x) is the probability density function and Qk =
∑∞

j=k
1
j2 . Formally, this result

follows from using the Poisson approximation of the binomial distribution to characterize
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the fluctuations of Hk(n) in the large n limit (please see ref. [14] for details). Since

Hk(n) is asymptotically unbiased[14], the asymptotic mean square error of the estimate is

of the order given by equation 2.25. Typically, the true value H(n) will be estimated by

computing Hk(n) for several values of k, typically 1 to 5. Since the analytical form of the

variance is known, we may combine these estimates by a weighted averaging procedure, i.e.

H(n) =
∑

wkHk(n). For independent variables with the same average, the weight which

minimizes the variance of the estimate of the average is a weight proportional to the inverse

of the variance of the variable (see the appendix A for details), i.e.,

wk =
1/(Qk + V ar[lnf(x)])

∑m
i=1 1/(Qk + V ar[lnf(x)])

for k = 1, 2 · · ·m (2.26)

where wk is the ideal weight of Hk(n) when averaging H(n). Such calculations may also

be readily extended to compute the standard deviation of such an estimate (appendix A).

Interestingly, two well defined limits exist here: (1) if V ar[ln f(x)] is small, then the proper

weighting will be

wk =
1/Qk

∑m
k=1 1/Qk

for k = 1, 2 · · ·m (2.27)

and, (2) if V ar[ln f(x)] is large, then the proper weighting will be a flat function which will

lead to a simple arithmetic average. Therefore, the best possible estimate of H(n) from m

estimates of Hk(n) will always be bound by these two limiting averages. Further, if these

two limiting averages converge in the given sampling, it is highly probable the estimate of

H(n) is also converged. We also note here that an intuitive sense of which regime best fits

the given data can be discerned by inspecting the relative noise in plots of the m Hk(n)

estimates as a function of n (where n is the amount of simulation time in this application). If

the H1(n) estimate noticeably suffers greater fluctuations than the other estimates, then the

V ar[ln f(x)] term must be small, since the Q1 component is dominating relative variances of

the estimates. However, if the m Hk(n) estimates all appear graphically to have fluctuations

of a similar magnitude, then the V ar[ln f(x)] term must be large, and the simple arithmetic

average is more appropriate. Such inspection of our data revealed V ar[ln f(x)] to be small.

As such, the weighted average determined by application of eqn 2.27 was taken in this work

as our best possible estimate of H(n).
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2.2.5 Calculation of the excess energy, enthalpy, and free energy

The excess molar energy of a fluid is simply

∆E =
1

2

ρ

Ω2

∫

g(r, ω2)u(r, ω2)drdω2 (2.28)

where u(r, ω2) is the interaction energy between two molecules with distance r and orien-

tation determined by ω2. This quantity is straight forward to extract from the simulation,

as it is merely one half of the interaction energy between the water molecule of interest

with the rest of the system. The molar excess enthalpy can be obtained by approximating

the ∆(PV ) term. For the liquid phase, the PV term may be safely neglected, and for the

gas phase, we may use the ideal gas equation of state PV = NkT to derive an excellent

approximation to the PV term analytically. Combined with the excess entropy, we find the

excess free energy of the fluid may be expressed as

∆G = ∆E + ∆(PV ) − Tse (2.29)

as is typical.

2.2.6 The finite-difference method of entropy calculation

In order to generate reference data to examine the accuracy of the k’th NN method of

evaluating the entropy expansion, we pursued a finite difference analysis of the solvation

free energy, as computed from free energy perturbation theory (FEP). The finite-difference

(FD) method of computing an entropy from FEP data proceeds by first noting that the

entropy is the temperature derivative of the free energy, and then attempting to accurately

estimate this slope [28], ie

− ∆S(T ) =

〈

∂∆G

∂T

〉

P

=
∆G(T + ∆T ) − ∆G(T − ∆T )

2∆T
(2.30)

This method relies on the assumption that the heat capacity of the system is independent of

temperature in the range [T −∆T , T + ∆T ][29]. This assumption appears to be valid near

room temperature with ∆T even as large as 50K[28]. Here, we use the Bennett acceptance

ratio[30] method to calculate the excess free energy of liquid water at T = 298 ± 20K, and

then use FD to calculate the excess entropy at T = 298K. The datails of this method are
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included in the appendix A. This data allows for independent validation of the NN approach

and the approximations therein.

2.2.7 Details of the simulation

Dynamics trajectories were generated using the Desmond molecular dynamics program

[31]. A 25 Å cubic box of the TIP4P[32] water model was first equilibrated to 298K and 1

atm with Nose-Hoover[33; 34] temperature and Martyna-Tobias-Klein[35] pressure controls,

followed by 30 ns NVT dynamics simulation with a Nose-Hoover[33; 34] temperature control.

In order to integrate the equations of motion of the system, the RESPA[36] integrator was

used, where the integration step was 2 fs for the bonded and the nonbonded-near interactions

and 6 fs for the nonbonded-far interactions. Configurations were collected every 1.002 ps.

The cut-off distance was 9 Å for the Van der Waals interaction, and the particle-mesh

Ewald[37] method was used to model the electrostatic interactions. Similar simulations

were performed for the SPC[38], SPC/E[39], TIP3P[32] and TIP4P-Ew[40] water models.

When extracting the solvent configurations to compute the PCF, we chose to only use

the configurations of a distinguished solvent molecule with the rest of the system, instead of

collecting statistics from all pairs of solvent molecules. Our primary interest in developing

this technique was to later adapt the method to study the solvation of solutes; thus, we were

interested in determining realistic estimates of the convergence of the technique when the

isotropic symmetry of the fluid was not present. Such a protocol allows for an interrogation

of the relative convergence properties of the various methods that might be obscured by the

additional statistics offered by taking advantage of the symmetry of the system.

2.3 Results and discussion

2.3.1 The Shannon entropies

The NN estimates of the two dimensional orientational Shannon entropies S[t1,t2] of the

TIP3P water model for the three shells are given in figures 2.1, 2.2, and 2.3. The results

reported in these figures were generally representative of those results obtained for the other

models. We see from the figures that the weighted average estimate of all the Shannon
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entropies are converged over the course of the simulations. The results of all the one and

two dimensional orientational Shannon entropies for each of the three shells for all the

water models studied are given in Table 2.1. By application of formula 2.4 and 2.7, we

computed the translational excess entropies and orientational excess entropies for all the

water models studied. All the final results are shown in 2.2. From the table, we see that for

the TIP4P model the excess entropy result from the NN method −13.67e.u. is very close to

experimental value −14.1e.u. We also note excellent agreement between the excess entropies

computed here and those derived from cell theory[41]. The agreement for the TIP3P and

SPC models was slightly diminished compared with the other models, for reasons that will

be explained later.

2.3.2 Convergence properties

We extensively compared the commonly employed histogram method to compute the ori-

entational Shannon entropy to the NN method weighted average (2.4, 2.5, and 2.6). We

see clearly that the NN method weighted average converges much faster than histogram

method for shells 1 and 2. For shell 3, both methods give similar results. This is easily un-

derstood: for the first and second shells, the water molecules are highly correlated, and the

histogram results will have a strong dependency on the bin size used to do the integration;

however, for the third shell, there is little correlation, so the histogram method has similar

convergence properties compared to the NN method.

Figures 2.7, 2.8, 2.9, 2.10, 2.11 depict the total orientational excess entropies as a func-

tion of simulation time from the various histogram estimates and the NN weighted average

estimate. For all the models studied, the 10◦ histogram estimate (which is most commonly

used currently [6; 10]) gave results closest to the NN estimate. However, for a bin size of

20◦, the entropy result is biased away from the correct result, and for bin sizes of 5◦ and

2.5◦, much longer simulation time would be needed to converge the results. Since ideal bin

size is problem specific, it cannot be deduced unless other reference data is already known.

Thus, the absence of such a parametric bias in the NN method is a notable advantage of

the technique.
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2.3.3 Error analysis

As described in the methods section, we calculated the variance associated with the weighted

average of the NN estimates for each of the one and two dimensional Shannon entropies.

Since the NN estimate is asymptotically unbiased, the error of the estimate is also given

by the variance. We calculated the error based on the weighted average, which assumes

V ar ln f(x) is 0. However, even in the extreme cases where V ar ln f(x) goes to infinity

and the five NN estimates contribute equally to the average, the variance of the arithmetic

average only differs slightly from weighted average, and they are within the error bar of each

other, strongly indicating the convergence of these calculations ( Figures 2.12 and 2.13).

2.3.4 The radial dependence of orientational Shannon entropy

We calculated the orientational Shannon entropies in three radial regions, assuming the

orientational distribution would be independent of r in each sub-region. To validate this

approximation, we calculated the orientational Shannon entropies at different intervals of

r from 2.5 to 4.0 Å. Typical Shannon entropies S[t1,t2] at different value of r are shown in

Figure 2.14.

We see from the figure that the Shannon entropy increases as the distance between the

two water molecules r increases, and goes to zero when r is sufficiently large. Additionally,

the change of the Shannon entropy with respect to r is smooth in the respective first and

second hydration shells. Because of the slow variation of the orientational Shannon entropy

with respect to r, the sum of the orientational excess entropy at each interval will differ

from the sum of the orientational excess entropy of the three shells only by at most 0.5e.u.,

which is within statistical uncertainty of the calculation. Thus, this approximation was not

a large source of error in these calculations.

2.3.5 Inclusion of g(θ1, χ1) in the factorization

The factorization of the PCF used here differs from the more common formulation[6] by

the explicit inclusion of g(θ1, χ1) and g(θ2, χ2). The distribution functions g(θ1) ∗ g(χ1)

and g(θ1, χ1) for the TIP4P model are shown on Figures 2.15 and 2.16. Careful inspection

of these figures suggests that g(θ1, χ1) differs from g(θ1)g(χ1) quantitatively, which is sup-
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ported by the two dimensional Shannon entropy S[θ1,χ1] differing significantly from the sum

of S[θ1] and S[χ1]. For example, for the TIP4P model the first shell Shannon entropy of

S[θ1,χ1] is -1.21, while S[θ1] is -0.34 and S[χ1] is -0.29. This result indicated a non-negligible

correlation between χ1 and θ1, which suggested that the explicit inclusion of g(θ1, χ1) and

g(θ2, χ2) in our factorization would lead to greater quantitative precision. This also explains

why our excess entropy result for the TIP4P model (−13.67e.u.) is about 1.5e.u. more neg-

ative than the previously reported value (−12.2e.u.)[6], which is in better agreement with

both the FD estimate of the entropy of the model and the experimental estimate of liquid

water.

2.3.6 Comparison of free energy results

From these simulations, we computed the excess molar energies and excess free energies

of the various water models. The results of these calculations for all models studied are

listed in table 2.3 along side the relevant literature values. The excess free energies we

have obtained here show excellent agreement (within 0.5 kcal/mol uniformly) with the high

precision FEP results obtained by Shirts et. al.[42]. Interestingly, the TIP4P model gives

results closest to the experimental quantities.

The SPC/E, TIP4P, and TIP4P-Ew models all give free energy results somewhat closer

to the Shirts[42] results than the other models. This may not be accidental. In our calcu-

lations, the higher order multi-particle correlation entropies were ignored. There is some

literature precedence expecting these higher order contributions to the excess entropy to

vanish at the temperature of solid-liquid phase transition[43; 44]. Recently, Saija has shown

that for the TIP4P model, the temperature of maximum density (TMD) coincides with the

temperature where higher order contributions to the entropy should vanish[13]. Studies of

temperature dependence of the densities of the different water models studied here[45] have

shown that the TMD of the TIP4P model occurred at 258K, the TMD of the SCP/E model

occurred at 235K[46], the TMD of the TIP4P-Ew model occurred at 272K[40], and the

density of the SPC and TIP3P models increases monotonically as temperature decreases

in the range [220, 370][45]. This indicates, for the TIP3P and SPC models, multi-particle

correlation entropy may contribute more to the total entropy than for the other models,
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which may be why our quantitative accuracy for them is somewhat diminished. However,

the molecular detail afforded by this technique in yielding both a value of the entropy and a

physical interpretation of its meaning, in terms of the fluid structure implied by the shape

of the PCF, gives it a comparative advantage over techniques such as FEP, which will gen-

erally only yield a value of the entropy without any additional molecular understanding of

the system.

2.3.7 Entropy calculation from FD method

We calculated the excess free energy of water at temperature 298 ± 20K with the Bennett

acceptance ratio[30] method, and obtained entropies at 298K by the FD formula. The

results are presented in Table 2.4. The excess entropies computed from the FD method

are consistently larger in magnitude than those computed from the NN method, consistent

with us neglecting the contributions from the higher order terms of the expansion.

As in the proceeding section, the NN and FD excess entropies of the SPC/E water are in

very close agreement; however, the agreement of the NN and FD entropies of the SPC and

TIP3P models is much poorer. We again expect the reason for this discrepancy to be due

to the TMD of the SPC/E model being close to the range of temperatures treated in this

study, while the TMDs of the SPC and TIP3P models fall well outside this range. Thus,

the higher order terms of the entropy expansion are expected to make larger contributions

to the excess entropies for the SPC and TIP3P models versus the contribution made to the

excess entropy of the SPC/E water.

2.4 Conclusion

Our results indicate that the NN method of computing entropies in the liquid state offers

several compelling advantages over the more common histogram approaches, including (1)

much faster convergence for a given amount of simulation data; (2) an intuitive error bound

for the uncertainty of the calculation without resorting to block averaging or bootstrap-

ping techniques, which may be problematic to apply to estimators of the entropy; and (3)

not relying on empirically tuned parameters, such as the histogram bin width, which may
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bias the results in an unpredictable fashion. We also found that inspection of the limiting

behaviours of V ar ln f(x) may be used to both analyze the convergence of the given cal-

culation, and develop the best possible estimate of the entropy given a set of calculated

Hk(n). Although we also found that a judicious choice of the histogram bin width may

mitigate these advantages, such a choice is difficult to make without prior knowledge of the

properties of the limiting distribution, which may not be available when new problems are

investigated.

Our alternative factorization of the water-water correlation function, which explicitly

included correlations between the angle formed by the water dipole vector and the inter-

molecular axis with the angle of rotation of the water molecule about its dipole vector, was

found to increase the agreement of results obtained by the entropy expansion with those

obtained by less approximate methods, such as FEP and the FD benchmark calculations.

This result suggests that this contribution should not be ignored in future studies of the

excess entropy of liquid water and other fluids.
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water models S[t1,t2] S[t1,χ1] S[t1,χ2] S[χ1,χ2] S[t1] S[χ1]

TIP4P -1.33 -1.21 -1.15 -1.02 -0.34 -0.29

SPC -1.67 -1.28 -1.24 -0.89 -0.50 -0.27

Shell1 TIP3P -1.65 -1.16 -1.14 -0.74 -0.47 -0.23

SPC/E -1.70 -1.32 -1.29 -0.94 -0.51 -0.29

TIP4P-Ew -1.44 -1.29 -1.23 -1.05 -0.39 -0.30

TIP4P -0.59 -0.44 -0.46 -0.38 -0.10 -0.10

SPC -0.69 -0.42 -0.46 -0.30 -0.11 -0.09

Shell2 TIP3P -0.60 -0.29 -0.34 -0.18 -0.09 -0.06

SPC/E -0.71 -0.46 -0.50 -0.33 -0.13 -0.10

TIP4P-Ew -0.68 -0.51 -0.53 -0.38 -0.12 -0.12

TIP4P -0.010 -0.007 -0.002 -0.003 -0.001 -0.000

SPC -0.014 -0.007 -0.005 -0.001 -0.002 -0.000

Shell3 TIP3P -0.015 -0.003 -0.003 -0.001 -0.002 -0.000

SPC/E -0.013 -0.007 -0.005 -0.003 -0.001 -0.000

TIP4P-Ew -0.012 -0.007 -0.004 -0.001 -0.001 -0.000

Note: t = π
2 (cos(θ) + 1), all these entropies are unitless.

Table 2.1: Orientational Shannon entropies of the five water models

EXP TIP4P TIP3P SPC SPC/E TIP4P-Ew

s
(2)
trans – -3.15(3.14a) -2.99 -2.99 -3.19 -3.33

s
(2)
orient – -10.52(9.10a) -8.58 -10.20 -11.53 -11.76

s
(2)
ex – -13.67(−12.2a) -11.57 -13.19 -14.72 -15.09

sex −14.05b −14.32c −13.36c −14.01c −14.79c −14.99c

Entropies in cal/mol K (e.u.).

adata from Lazaridis [6]

bdata from Wagner [47]

cdata from Henchman by cell theory [41]

Table 2.2: Comparison of entropy results from the NN method and cell theory
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water models TIP4P TIP3P SPC SPC/E TIP4P-Ew

excess energy -9.85 -9.49 -9.90 -11.08 -10.91

excess enthalpy -10.43 -10.07 -10.48 -11.66(−10.48a) -11.49(−10.45b)

excess enthalpy* -10.41 -10.09 -10.47 -11.69(−10.51a) -11.61(−10.57b)

excess entropy from NN -13.67 -11.57 -13.19 -14.72 -15.09

excess entropy** -14.43 -13.39 -14.46 -15.57 -15.53

excess free energy from NN -6.36 -6.63 -6.55 -7.27(−6.09a) -7.00(−5.96b)

excess free energy* -6.11 -6.10 -6.16 -7.05(−5.87a) -6.98(−5.94b)

excess free energy from exp -6.33

excess enthalpy from exp -10.52

Energies in kcal/mol, entropies in cal/mol K (e.u.)

* results from Shirts[42]

** results from Shirts[42] by extracting enthalpy from free energy

aInclude polarization correction [39]

bInclude polarization correction [40]

Table 2.3: Results for the energy, enthalpy, and entropy of liquid water from various methods
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water models TIP4P TIP3P SPC SPC/E TIP4P-Ew

excess free energy at 278K -6.35** -6.21(−6.24a) -6.36(−6.39a) -7.19(−7.23a) –

excess free energy at 298K -6.03** -5.95 –6.06 -6.89 –

excess free energy at 318K -5.73** -5.71(−5.69a) -5.80(−5.78a) -6.66(−6.62a) –

excess entropy from FD -15.2** -13.8(±0.8b) -15.2(±0.8b) -15.3(±0.8b) –

excess entropy from NN -13.67 -11.57 -13.19 -14.72 -15.09

excess entropy from FEP* -14.43 -13.39 -14.46 -15.57 -15.53

Energies in kcal/mol, entropies in cal/mol K (e.u.)

** results from Franz Saija[13]

* results from Shirts[42] by extracting enthalpy from free energy

a results in parentheses includes constant pressure correction(appendix A)

b indicates the error associated with the entropy

Table 2.4: Entropy results from FD method and comparison with other methods
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Figure 2.1: The first shell orientational Shannon entropy S[t1,t2] for the TIP3P model as

a function of the number of data points (labeled on the horizontal axis in front of ”/”

in units of 1000) and the corresponding simulation time (labeled on the horizontal axis in

parentheses) using the NN method. The weighted average estimate and the associated error

bar were also depicted.
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Figure 2.2: The second shell orientational Shannon entropy S[t1,t2] for the TIP3P model

as a function of the number of data points (labeled on the horizontal axis in front of ”/”

in units of 10000) and the corresponding simulation time (labeled on the horizontal axis

in parentheses) using the NN method. The weighted average estimate and the associated

error bar were also depicted.
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Figure 2.3: The third shell orientational Shannon entropy S[t1,t2] for the TIP3P model as

a function of the number of data points (labeled on the horizontal axis in front of ”/” in

units of 100000) and the corresponding simulation time (labeled on the horizontal axis in

parentheses) using the NN method. The weighted average estimate and the associated error

bar were also depicted.
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Figure 2.4: The first shell orientational Shannon entropy S[t1,t2] for the TIP3P model as

a function of the number of data points (labeled on the horizontal axis in front of ”/” in

units of 1000) and the corresponding simulation time (labeled on the horizontal axis in

parentheses) using histogram method. The weighted average of the NN estimates and the

associated error bar were also depicted.
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Figure 2.5: The second shell orientational Shannon entropy S[t1,t2] for the TIP3P model as

a function of the number of data points (labeled on the horizontal axis in front of ”/” in

units of 10000) and the corresponding simulation time (labeled on the horizontal axis in

parentheses) using histogram method. The weighted average of the NN estimates and the

associated error bar were also depicted.
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Figure 2.6: The third shell orientational Shannon entropy S[t1,t2] for the TIP3P model as

a function of the number of data points (labeled on the horizontal axis in front of ”/” in

units of 100000) and the corresponding simulation time (labeled on the horizontal axis in

parentheses) using histogram method. The weighted average of the NN estimates and the

associated error bar were also depicted.
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Figure 2.7: Total orientational excess entropy as a function of simulation time from the NN

method and histogram method with different bin width for the TIP3P model.



CHAPTER 2. THERMODYNAMIC PROPERTIES OF LIQUID WATER: AN
APPLICATION OF A NONPARAMETRIC APPROACH TO COMPUTING THE
ENTROPY OF A NEAT FLUID 33

0 5 10 15 20 25 30
simulation time (ns)

-18

-16

-14

-12

-10

s or
ie

nt
   

   
 /C

al
.m

ol-1
.K

-1

20
o
 histogram

10
o
 histogram

5
o
 histogram

2.5
o
 histogram

weighted average from nn

Figure 2.8: Total orientational excess entropy as a function of simulation time from the NN

method and histogram method with different bin width for the SPC model.
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Figure 2.9: Total orientational excess entropy as a function of simulation time from the NN

method and histogram method with different bin width for the SPC/E model.
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Figure 2.10: Total orientational excess entropy as a function of simulation time from the

NN method and histogram method with different bin width for the TIP4P model.
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Figure 2.11: Total orientational excess entropy as a function of simulation time from the

NN method and histogram method with different bin width for the TIP4P-Ew model.
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Figure 2.12: Comparison between the arithmetic average and the weighted average of the

NN estimates for the first shell Shannon entropy S[t1,t2] for the TIP3P model. They are

within the error bar of each other.
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Figure 2.13: Comparison between the arithmetic average and the weighted average of the

NN estimates for the second shell Shannon entropy S[t1,t2] for the TIP3P model. They are

within the error bar of each other.
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Figure 2.14: Orientational Shannon entropy S[t1,t2] as a function of r for the various water

models.
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Figure 2.15: Products of one dimensional marginal distribution function g(θ1) ∗ g(χ1) for

the TIP4P model in the first shell.
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Figure 2.16: Two dimensional marginal distribution function g(θ1, χ1) for the TIP4P model

in the first shell.
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Chapter 3

A displaced-solvent functional

analysis of model hydrophobic

enclosures

Abstract

Calculation of protein-ligand binding affinities continues to be a hotbed of research. Al-

though many techniques for computing protein-ligand binding affinities have been introduced–

ranging from computationally very expensive approaches, such as free energy perturbation

(FEP) theory; to more approximate techniques, such as empirically derived scoring func-

tions, which, although computationally efficient, lack a clear theoretical basis–there re-

mains pressing need for more robust approaches. A recently introduced technique, the

displaced-solvent functional (DSF) method, was developed to bridge the gap between the

high accuracy of FEP and the computational efficiency of empirically derived scoring func-

tions. In order to develop a set of reference data to test the DSF theory for calculating

absolute protein-ligand binding affinities, we have pursued FEP theory calculations of the

binding free energies of a methane ligand with 13 different model hydrophobic enclosures

of varying hydrophobicity. The binding free energies of the methane ligand with the vari-

ous hydrophobic enclosures were then recomputed by DSF theory and compared with the
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FEP reference data. We find that the DSF theory, which relies on no empirically tuned

parameters, shows excellent quantitative agreement with the FEP. We also explored the

ability of buried solvent accessible surface area and buried molecular surface area models

to describe the relevant physics, and find the buried molecular surface area model to offer

superior performance over this dataset.

3.1 Introduction

Calculation of relative and absolute protein-ligand binding affinities continues to be an active

hotbed of research in the field of computational biophysics.[48; 49; 50; 51] Although many

techniques for computing protein-ligand binding affinities have been introduced–ranging

from computationally very expensive ab initio approaches, such as free energy perturbation

(FEP) theory; to more approximate techniques, such as empirically derived scoring func-

tions, which, although computationally efficient, lack a clear theoretical basis–there remains

a pressing need for more robust approaches. A recently introduced technique, the displaced-

solvent functional (DSF) method was developed to bridge the gap between the high accuracy

of FEP and the computational efficiency of empirically derived scoring functions.[2] This

technique proceeds by first using explicitly solvated molecular dynamics simulations of a

protein conformation which is complementary to a given ligand series (or, in some cases, a

protein-ligand complex which can be used to build the remaining members of the series) to

map out the approximate thermodynamic properties of water molecules solvating various

regions of the protein active site; second, constructing a DSF to compactly represent this

information; and third, computing the relative binding affinities of congeneric ligands for

the given receptor by correlating the relative binding affinities of the congeneric ligands

with the excess chemical potential of the solvent that is evacuated from the active site by

the binding of the ligand.

This method has shown great promise in a number of pharmaceutically relevant ap-

plications such as accurately describing the relative binding thermodynamics of proteases,

kinases, PDZ domain, and GPCR inhibitors; elucidating the role of hydration in kinase

binding specificity; and offering novel qualitative insights into PCSK9-peptide binding
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kinetics.[2; 3; 52; 53; 54; 55; 56; 57] However, despite the wide range successful applications

of the technique to describe and explain experimental binding data, the physical-chemical

basis of the DSF method has not yet been fully clarified. In this Chapter, the DSF approach

is derived from first principles and the physical-chemical basis of the technique is clarified.

Further, this derivation elucidates the key approximations of the method, which facilitates

an understanding of when the technique is expected to succeed and fail. In order to de-

velop a set of reference data to test the DSF theory for calculating absolute protein-ligand

binding affinities, we have pursued FEP theory calculations of the binding free energies of

a methane ligand with 13 different types of model hydrophobic enclosures of varying hy-

drophobicity. The binding free energies of the methane ligand with the various hydrophobic

enclosures were then recomputed by the DSF theory presented herein and the results of the

calculations were compared with the FEP reference data. We find that the DSF theory

predictions, which rely on no empirically tuned parameters, show excellent quantitative

agreement with the FEP results (root-mean-square error of 0.40 kcal/mol and an R2 value

of 0.95). Thus, DSF theory may offer, for systems that satisfy the necessary approxima-

tions, a method of calculating absolute binding affinities with FEP-like accuracy at only

a small fraction of the computational expense. A further point is that the DSF approach

can be unambiguously converged with current hardware capabilities, whereas convergence

becomes quite challenging for FEP and related methods when applied to complex problems

like protein-ligand binding (as opposed to the model systems studied in this paper).

3.2 Methods

3.2.1 Derivation of the displaced solvent functional approach to comput-

ing protein ligand binding free energies

It is well known that the binding free energy of a small molecule for its cognate protein

receptor can be computed as

∆Go
bind = −RT ln

[

Co

8π2

∫

e−[(U(rPL)+W (rPL))/RT ]drPL
∫

e−[(U(rP )+W (rP ))/RT ]drP

∫

e−[(U(rL)+W (rL))/RT ]drL

]

(3.1)

where the subscript P represents the protein in the unbound state, the subscript L
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represents the ligand in the unbound state, the subscript PL represents the protein and

ligand in their bound state, R is the gas constant, Co is the standard concentration, U is

the interaction energy term, and W represents the solvation free energy terms.[48] From

this expression one can readily derive

∆Go
bind = 〈UPL〉PL − 〈UP 〉P − 〈UL〉L

+ 〈WPL〉PL − 〈WP 〉P − 〈WL〉L − T∆So
config (3.2)

where the brackets (〈〉) imply Boltzmann weighted averages over the specified ensemble,

the changes of the configurational entropies of the protein and the ligand after binding

have been grouped in a single term (−TSo
config), and the terms related to the change in

the interaction energies (U) and solvation free energies (W) of the protein and the ligand

are enumerated explicitly. We note here that the −TSo
config term may be made arbitrarily

small in equation 3.2 by first computing the free energy of restraining internal and relative

degrees of freedom of the protein and the ligand to some appropriately chosen reference

state by FEP, thermodynamics integration, or any other suitable ab initio approach, and

then computing the binding free energy of the protein and ligand after these restraints have

been removed.[58; 59]

Equation 3.2, although complete, has poor convergence properties since it is a series of

very large terms that sum to a very small number. Thus, each individual term must be

computed to very high accuracy and precision. This may in practice be more difficult than

sampling Equation 3.1 directly, for example by FEP. However, we have made a series of

observations in our recent work[2; 3] that suggest a path to improve the convergence of this

expression.

The first observation is that the protein-ligand interaction energy (UPL) can be expanded

into an intra-protein term, a protein-ligand interaction term, and an intra-ligand term:

〈UPL〉 = 〈UP 〉PL + 〈UP−L〉PL + 〈UL〉PL (3.3)

where the first term (UP ) is the intra-protein interaction energy, the second term (UP−L)

is the protein-ligand interaction energy, and the third term (UL) is the intra-ligand interac-
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tion energy. Therefore,

∆Go
bind = 〈UP 〉PL + 〈UP−L〉PL + 〈UL〉PL − 〈UP 〉P − 〈UL〉L

+ 〈WPL〉PL − 〈WP 〉P − 〈WL〉L − T∆So
config (3.4)

We will assume in this work that the loss of conformational entropy of the protein and

ligand is compensated by the ligand and the strain energy incurred by the protein and

ligand upon binding. For example a ligand with freely rotatable bonds binding to a protein

will generally induce little protein strain energy, but will lose a great deal of conformational

entropy upon binding. Conversely, a highly rigid ligand, which will avoid such entropic

penalties, will likely require substantial induced fit of the protein, which will in turn increase

the strain energy of the protein upon binding. Posed formally, this argument suggests

〈UP 〉PL + 〈UL〉PL − 〈UP 〉P − 〈UL〉L − T∆So
config ≈ 0 (3.5)

In turn, equation 3.4 may be rewritten as

∆Go
bind ≈ 〈UP−L〉PL + 〈WPL〉PL − 〈WP 〉P − 〈WL〉L

+ δstrn

[

〈UP 〉PL + 〈UL〉PL − 〈UP 〉P − 〈UL〉L − T∆So
config

]

(3.6)

where switching function δstrn allows equation 3.6 to be exact for δstrn = 1, and ap-

proximately correct for δstrn = 0. Equation 3.6 may be recognized as equivalent to the

MM-GBSA method, where the protein and ligand strain energies and the change in the

configurational entropy are neglected when δstrn = 0, although various formulations have

emerged in the literature.[60; 61; 62] Note, the δstrn = 0 approximation will be exactly

satisfied by the model enclosure studied herein, but is expected to apply generally to any

series of congeneric ligands binding to a given protein receptor. The reason we expect the

δstrn = 0 approximation to be a reasonable approach to treating a series of congeneric

ligands is that small modification of the ligand scaffold can be loosely understood to ei-

ther make the scaffold slightly more or slightly less rigid, thereby changing the associated

entropic cost of the protein binding the ligand. Those modification that make the ligand

more rigid will lead to a less unfavorable binding entropy, but will also likely increase the
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protein strain energy, since the protein must now deform to accommodate a more rigid ob-

ject. Conversely, small modifications which increase the flexibility of the ligand will reduce

the protein strain energy, since less deformation of the protein active site will be required

upon binding the ligand, but will increase the entropic penalty of the binding process. It is

this hypothesized general compensation of the strain energy with the loss of conformational

entropy that should lead to the general applicability of the δstrn = 0 approximate form of

Equation 3.6 to congeneric series.

The next series of approximations requires us to restrict our investigations to comple-

mentary ligands–ie, ligands that form hydrogen bonds with the protein receptor where ap-

propriate, hydrophobic contacts otherwise, and sterically “fit” within the accessible volume

of the active site of the receptor. Such ligands will form interactions with the surrounding

protein similar to the interactions the ligand made with the bulk solvent–i,e hydrogen bonds

where appropriate and van der Waals contacts otherwise, be they with the protein active

site or with the solvating water. With this in mind, we may rewrite the solvation free energy

terms as

∆ 〈WPL〉P,L;PL = 〈WPL〉PL − 〈WP 〉P − 〈WL〉L
= ∆ 〈WPL〉cav

P,L;PL + ∆ 〈WPL〉chrg
P,L;PL (3.7)

where ∆ 〈WPL〉P,L;PL is the difference in the solvation free energy of the free ligand

and protein versus the complex, ∆ 〈WPL〉cav
P,L;PL is the free energy of growing the repulsive

core of the ligand in the bulk versus within the protein active site, and ∆ 〈WPL〉chrg
P,L;PL is

the difference in the free energy of charging the ligand-solvent dispersion and electrostatic

interactions in the bulk versus within the protein active site. Such a separation of the

charging and cavitation terms is common in FEP studies of protein-ligand binding.[63;

64]

With the introduction of this notation, we find

∆Go
bind ≈ 〈UP−L〉PL + 〈WPL〉cav

P,L;PL + 〈WPL〉chrg
P,L;PL

+ δstrn

[

〈UP 〉PL + 〈UL〉PL − 〈UP 〉P − 〈UL〉L − T∆So
config

]

(3.8)
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We now introduce a rather aggressive approximation

〈UP−L〉PL ≈ −∆ 〈WPL〉chrg
P,L;PL + δsie

[

〈UP−L〉PL + ∆ 〈WPL〉chrg
P,L;PL

]

(3.9)

where an exact result is obtained for δsie = 1, but an approximate result is generated for

δsie = 0. The rationale for this approximation can be explained as followed: ∆ 〈WPL〉chrg
P,L;PL

is the free energy difference in turning on the attractive and electronic interaction between

the ligand and the solvent in bulk water versus in the active site of protein (see Figure 3.1),

which is the interaction between the ligand and the solvent that would be excluded by the

protein (depicted by dashed line in figure 3.1); 〈UP−L〉PL is the interaction energy between

the ligand and the protein in the complex (right). For complementary ligands binding

to the protein receptor, the two terms would be expected to be similar in magnitude:

(1) for polar ligands that make strong interactions with the protein receptor such as a

salt bridge, the interaction of the ligands with water would also be strong; (2) for apolar

ligands that make weak dispersion interactions with the protein, the interactions between

the ligands and water would also be weak. We note the approximation described in equation

3.9 as “aggressive” in the sense that it would be expected to be generally false for an

arbitrary ligand binding to an arbitrary receptor. Thus, by employing the approximation

described by equation 3.9, we would only expect the following treatment to well describe

ligands that satisfy the underlying assumptions, ie, the ligand form hydrogen bonds where

appropriate and hydrophobic contacts otherwise. However, with the above caveat notes, we

may approximate the binding free energy as

∆Go
bind ≈ 〈WPL〉cav

P,L;PL + δsie

[

〈UP−L〉PL + ∆ 〈WPL〉chrg
P,L;PL

]

+ δstrn

[

〈UP 〉PL + 〈UL〉PL − 〈UP 〉P − 〈UL〉L − T∆So
config

]

(3.10)

where our identified approximate equivalence between the relative protein-ligand direct

interaction energy and the solvation-charging free energies has been explicitly noted in

the grouping of the terms. Equation 3.10 suggests that the binding free energy may be

approximated by computing the relative free energies of forming a cavity isosteric to the

ligand in the protein active site, versus forming the same cavity in the bulk fluid.

Our remaining task is to develop a computationally efficient procedure to approximate

the 〈WPL〉cav
P,L;PL term. This term corresponds to the difference in the free energy of growing
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the repulsive ligand cavity within the protein active site versus growing the ligand cavity

in the bulk, or equivalently dragging the ligand cavity from the bulk through the volume

of the system into the active site of the protein. The 〈WPL〉cav
P,L;PL term may be exactly

expanded as

〈WPL〉cav
P,L;PL =

(

GPLcav

IST − GP
IST

)

−
(

GLcav

IST − G
H2O(l)

IST

)

= ∆GP,PLcav

IST − ∆G
H2O(l),Lcav

IST = ∆∆GLcav

IST (3.11)

where GX
IST is the inhomogenous solvation theory (IST) [4] integral over the system

designated by superscript X, ie

GX
IST = EIST − TSX

IST

EX
IST =

(

EK + Esw + Eww
)X

=
3

2
NwkT + ρ

∫

gX
sw(r)uX

sw(r)dr +
ρ2

2

∫

gX
ww(r1, r2)uX

ww(r1, r2)dr1dr2

SX
IST =

(

Sid + S(1) + S(2) · · ·
)X

=

[

5

2
Nwk − kN2 ln(ρκ3)

]

− kρ

∫

gX
sw(r) ln gX

sw(r)dr (3.12)

−1

2
kρ2

∫

gX
sww(r1, r2)

[

ln δgX
swww(r1, r2) − δgX

sww(r1, r2) + 1
]

dr1dr2 · · ·

δgX
sww(r1, r2) =

gX
sww(r1, r2)

gX
sw(r1)gX

sw(r2)

where gsw, gww, and gsww are the solute-water, water-water, and solute-water-water

correlation functions; usw and uww are the solute-water and water-water interaction energy

terms; r is the solvent degrees of freedom of system X; ρ is the density of the bulk fluid,

and k is the Boltzmann constant.

Another simplification can be made by noting that the IST integrals appearing in equa-

tion 3.12 can be decomposed into two contributions: the contribution coming from the

integral over the space of ligand cavity and the contribution coming from the integral over

the rest of the space. So the ∆GIST integrals appearing in equation 3.11 (be they in the

bulk fluid or the protein active site) can also be decomposed into the corresponding two

contributions: (1) the solvation free energies of Nw water molecules that were formerly

solvating the protein active site and are evacuated into solution by the growth of the ligand

cavity (∆GIST,Nw,solv) (which comes from the integral over the ligand cavity part) (2) the
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contribution from the solvent located at the L cavity surface (∆GIST,surf) (which comes

from the integral over the rest of the space) This decomposition of the total IST integrals

into ∆GIST,surf and ∆GIST,Nw,solv terms may be clarified by inspecting the graphical de-

piction of the decomposition to be found in figure 3.2. It is also worth noting that in this

notation ∆G
H2O(l),Lcav

IST = ∆G
H2O(l),Lcav

IST,surf exactly, since the water is evacuated from a bulk en-

vironment to a bulk environment by the growth of the ligand cavity (ie, ∆G
H2O(l),Lcav

IST,Nw,solv = 0

strictly). Therefore,

∆∆GLcav

IST =
(

∆GP,PLcav

IST,surf + ∆GP,PLcav

IST,Nw,solv

)

− ∆G
H2O(l),Lcav

IST,surf

=
(

∆GP,PLcav

IST,surf − ∆G
H2O(l),Lcav

IST,surf

)

− ∆GP,PLcav

IST,Nw,solv (3.13)

= ∆∆GLcav

IST,surf + ∆GP,PLcav

IST,Nw,solv

where the “surf” term is the difference in the free energetic cost of the fluid reorganizing

its configuration around the surface of the ligand cavity when the cavity is bound to the

protein versus free in solution, and the “Nw, solv” term corresponds to the difference in

the local IST integral free energy of the Nw water occupying the active site of the protein

versus the IST integral free energy of the same Nw water molecules in the bulk fluid. Our

final approximation is to assume that for small ligands that are expected to displace only

one or a few water molecules deep within the protein active site, the “Nw solv” term should

dominate this expression. Therefore, our final approximation to the binding free energy of

the complex is

∆Go
bind ≈ ∆GP,PLcav

IST,Nw,solv + δsurf∆∆GLcav

IST,surf + δsie

[

〈UP−L〉PL + ∆ 〈WPL〉chrg
P,L;PL

]

+ δstrn

[

〈UP 〉PL + 〈UL〉PL − 〈UP 〉P − 〈UL〉L − T∆So
config

]

(3.14)

where difference in the IST “surf” integrals are approximated as negligible when δsurf is set

to zero. Thus, our remaining task is to develop a numerical estimate the “Nw, solv” term.

Interestingly, a possible candidate estimator of ∆GP,PLcav

IST,Nw,solv was previously introduced

in reference [2], although its connection to the more rigorous expressions for computing

protein-ligand binding affinities was not fully understood at the time of its introduction.
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In the so called, displaced-solvent functional (DSF) approach, the local values of the IST

integrals are computed for regions of high solvent occupancy in the active site, denoted by

hydration sites. Note, that the volume of each hydration site is chosen such that the number

of hydration sites will correspond to the Nw water molecules that are evacuated from the

protein active site to the bulk fluid upon the binding of the ligand. This estimator itself was

based on the following assumptions: (1) if atoms of a ligand overlapped with a hydration

site, they displace the water from that site; and (2) the less energetically or entropically

favorable the expelled solvent, the more favorable its contributions to the binding free

energy. Thus, the relative binding free energy of the ligand is approximated as

∆GP,PLcav

IST,Nw,solv ≈ ∆GDSF
bind =

∑

lig,hs

(Ebulk − Ehs)Θ(Rco − |rlig − rhs|)

+ T
∑

lig,hs

Se
hs

(

1 − |rlig − rhs|
Rco

)

Θ(Rco − |rlig − rhs|)

=
∑

lig,hs

∆Ghs

(

1 − |rlig − rhs|
Rco

)

Θ(Rco − |rlig − rhs|) (3.15)

where ∆GDSF
bind is the predicted binding free energy of the ligand, Rco is the distance cutoff

for a ligand atom beginning to displace a hydration site, Ehs is the system-interaction energy

of water in a given hydration site, Se
hs was the excess entropy of water in a given hydration

site, ∆Ghs is the computed free energy of transferring the solvent in a given hydration

site from the active site to the bulk fluid, and Θ is the Heaviside step function. We also

capped the contribution from each hydration site, such that it would never contribute more

than ∆Ghs to ∆GDSF
bind no matter how many ligand atoms were in close proximity to it.

The value Rco might be considered a free parameter. However, an approximate value was

adopted by noting that the radius of a carbon atom and a water oxygen atom are both

approximately 1.4 Å, thus suggesting contact distances between a water oxygen atom and

a ligand carbon atom less than 0.8*(1.4 Å+1.4 Å)=2.24 Å are statistically improbable due

to the stiffness of the Van der Waals potential. From the preceding approximate theory we

infer that this approach should yield quantitatively accurate predictions of protein-ligand

binding free energies versus the FEP reference data when the ligand is complementary to

the protein active site and the reorganization entropies and energies of the protein and the
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ligand are small compared to the other terms contributing to binding.

Here however, the preceding theory also suggests an alternative but related approach to

adapting the DSF method to compute the binding free energy of a united atom methane

molecule to a model hydrophobic enclosure. Here since the united atom methane molecule

is itself simply a sphere that will occupy a known position in the binding site, we may

simply collect statistics from the water molecules observed to occupy the volume that will

be later occupied by the binding methane. Thus, clustering is unnecessary. From this data

the energetic and entropic properties of the solvating water can be readily obtained via an

application of inhomogeneous solvation theory. Lastly, it would in principle be possible to

approximate the binding free energy of the methane molecule via the one evacuated-site-one-

evacuated-water approximation introduced in reference [2]. However, we may also identify

an approximate scaling that makes use of the known volume of the methane particle. In

particular, if the methane particle is assumed to have a van der Waals radius of 1.865 Å,

then the expectation value of the number of water molecules expected to exist within that

volume is

Neff = ρbulk

(

4

3
πR3

methane

)

≈ 0.85 (3.16)

where Neff is the effective number of water molecules expected to be displaced by the

bound methane assuming the entire system remains at bulk density, ρbulk is the density of

liquid water, and Rmethane is the Van der Waals radius of the methane particle. Clearly,

the number density of water in the active site depends on the environment of the specific

enclosure, and in general would be different from bulk. However, the effective volume that

is displaced by the binding methane is also different for different enclosures. Taking the

situation of methane between two hydrophobic plates for example, considering the solvent-

excluded volume consisting of the inward-facing surface of the probe ball with radius 1.4Å

(size of water), in the bulk water the volume displaced by methane is just the van der Waals

volume of methane, but the four corners are also excluded by the methane in between the

two plates (see figure 3.3). It is well known that the number density of water in the

hydrophobicly enclosed region is smaller than bulk water because of dewetting. Thus the

more enclosed the enclosures are, the smaller the number density of water in the active

site, and the larger the effective volume displaced by the methane. These two competing
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factors make the approximation introduced in equation 3.16 to be appropriate for all the

enclosures. In principle, the exact number of excluded water molecules could be identified

by the difference in the average number of water molecules surrounding the enclosure in the

presence and absence of the bound methane, but this might require excellent statistics to

converge.

To numerically test the validity of the preceding theory, we have constructed a series

of model hydrophobic enclosures, as depicted in figure 3.4, and computed the binding free

energy of a methane ligand for these hydrophobic enclosures both with FEP theory and the

proposed DSF theory. The binding free energies of methane for the described enclosures,

as computed by FEP, lie over a 5 kcal/mol range, which would correspond to 4 orders

of magnitude of binding affinity. Thus, the ability to accurately predict such free energy

differences would be expected to have great utility in a drug-design setting.

A final important point, not relevant to the present model systems but relevant when

considering realistic problems such as protein-ligand binding, is the necessity in such real

problems for integrating over the solute coordinates. For example, fluctuations of the

protein-ligand complex at room temperature can be significant, and in principle this af-

fects the water structure in the active site. In our DSF approach to date, we have employed

a single “representative” structure for the protein structure (by harmonically restraining the

coordinates to a target structure during the DSF molecular dynamics simulation) rather

than allowing the solute phase space to be fully explored. For the model hydrophobic

enclosures, there is no issue with averaging over solute configurations because the model

enclosures are specified as rigid from the beginning.

In the context of our DSF methodology, the interesting question is how good an ap-

proximation the harmonically restrained simulation is to the fully fluctuating solute when

estimating the free energy changes resulting from solvent displacement by the ligand. A

heuristic argument that the approximation is reasonable if it is assumed that, for relatively

modest fluctuations of the complex (as opposed to major conformational changes), the sol-

vation in the active site “follows” the solute atoms in essence an adiabatic approximation

in which the solvation structure readjusts quickly to typical excursions of solute atoms from

the central configuration. If this is in fact the case, then the free energy of displacement of
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a given water molecule at all accessible solute configurations can be approximated by the

displacement free energy at the central configuration. This is not a rigorous or controlled

approximation, but it appears to work reasonably well based on a range of examples that

we have investigated to date. We do not consider this point further in the present paper,

as our focus is on a series of rigid solutes; however, in future work, explicit investigation of

this hypothesis, based on computing DSFs for different solute configurations and comparing

them, will be pursued.

3.2.2 Simulation details

3.2.2.1 DSF analysis

To generate the data required to apply the DSF method of computing protein-ligand bind-

ing free energies to the model hydrophobic enclosures, each of the thirteen hydrophobic

enclosures depicted in figure 3.4 were subjected to explicitly solvated molecular dynamics

with the Desmond molecular dynamics program.[31] The Maestro System Builder[65] util-

ity was used to insert each enclosure into a cubic water box with a 10 Å buffer. The SPC

water model[38] was used to describe the solvent, and the united atom methane molecules

that formed the “atoms” of the enclosures were uniformly represented with σ = 3.73Å and

ǫ = 0.294 kcal/mol Lennard Jones parameters. The atoms of the enclosures were con-

strained to their initial positions throughout their dynamics, and only the solvent degrees

of freedom were sampled. The energy of the system was minimized, and then equilibrated

to 298 K and 1 atm with Nose-Hoover[33; 34] temperature and Martyna-Tobias-Klein[35]

pressure controls over 500 ps of molecular dynamics. A cutoff distance of 9 Å was used to

model the Lennard Jones interactions, and the particle-mesh Ewald method[37] was used to

model the electrostatic interactions. Following the equilibration, a 20 ns production molec-

ular dynamics simulation was used to obtain statistics of the water solvating the enclosures,

and configurations of the system were collected every 1.002 ps.

Following the previously developed approach,[2; 3] the position the ligand would occupy

in the enclosures was used to define the active site volume. Here, a 1 Å cutoff distance

from the center of where the ligand center would be was used to define the solvent volume

of interest. A water molecule was identified to be in the active site when its oxygen lay



CHAPTER 3. A DISPLACED-SOLVENT FUNCTIONAL ANALYSIS OF MODEL
HYDROPHOBIC ENCLOSURES 55

within the sphere, and otherwise not. For each solvent molecule identified in this volume, we

computed the system-interaction energy of the solvent molecule (ie, the interaction energy of

the solvent molecule with the rest of the system), and recorded its orientation and position.

From this data, we computed the average system-interaction energy of solvent occupying

this volume, and the excess entropy of this solvent from an expansion of the entropy in

terms of translational and orientational correlation functions.

The calculation of excess entropies of water in the hydration sites was processed in a two-

step manner: (1) introduce an intermediate reference state with the same average number

density as the hydration site we are studying but a flat translational and orientational

distribution, and calculate the excess entropy of the hydrogen site water with respect to

this intermediate reference state due to the local ordering of water in the hydration site

(2) determine the entropy difference between the intermediate reference state and the bulk

water that is due to the difference of number density. The entropy difference between

water in the hydration site and the intermediate state was calculated through the integral

introduced in equation 3.12, with gsw(r) defined with respect to the intermediate reference

state number density. In order to integrate this entropy expansion, we adopted a k-th

nearest neighbors approach as introduced in reference.[66]

To characterize the orientation of waters in the hydration site, we built the coordinate

system such that the center of the hydration site was taken to be the origin, the z axis was

perpendicular to the plate (take enclosure F, for example), and a second methane not lying

on the z axis was arbitrarily chosen to define the direction of the x axis. The orientation

of water in the hydration site was defined by six variables, [r, θ, φ, χθ , χφ, χσ], where [r, θ, φ]

are the typical spherical coordinates which define the position of the oxygen atom, and

[χθ, χφ, χσ] are the three angles which define the orientation of the water around its oxygen

(see figure 3.5). To clarify, [χθ, χφ] are similar to the typical spherical coordinate angles

[θ, φ] which define the orientation of the dipole vector of water, and χσ defines the rotation

of hydrogen around the dipole vector. For enclosures with rotational symmetry about the z

axis, the distribution along φ angle is flat by symmetry, so we only need five angles to define

the orientation of water. The calculation of the entropy difference is performed through the
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following equation:

S1 = −k
1

V Ω

∫

J(r, θ, φ, χθ , χφ, χσ)g(r, θ, φ, χθ , χφ, χσ) ln g(r, θ, φ, χθ , χφ, χσ)drdθdφdχθdχφdχσ

(3.17)

where g(r, θ, φ, χθ , χφ, χσ) is the solute water pair correlation function (PCF), and

J(r, θ, φ, χθ, χφ, χσ) is the Jacobian associated with these variables. Here g(r, θ, φ, χθ, χφ, χσ)

has the property that

1

V Ω

∫

J(r, θ, φ, χθ, χφ, χσ)g(r, θ, φ, χθ , χφ, χσ)drdθdφdχθdχφdχσ = 1 (3.18)

where V is the volume of the sphere and Ω is the total angular volume over angular

variables [χθ, χφ, χσ], ie

Ω =

∫

J(χθ, χφ, χσ)g(χθ, χφ, χσ)dχθdχφdχσ (3.19)

In line with reference[66] (Chapter 1) we approximate the total pair correlation func-

tion (PCF) through generalized Kirkwood superposition approximation (GKSA),[21] which

allowed the entropy to be approximated by the summation and subtraction of one- and

two-dimensional entropies, and calculated the one- and two-dimensional entropies through

NN method.

The entropy difference between the reference state and bulk water can be simply calcu-

lated by recognizing the entropy expression for homogeneous ideal-gas:

Sid =
3

2
− k ln(ρΛ3) (3.20)

where Λ is the thermal wavelength. So the excess entropy of the second step is simply:

S2 = −k ln

(

ρref

ρbulk

)

(3.21)

where ρref , ρbulk are the number density of the reference state and bulk water respectively.

The total excess entropy is the sum of S1 and S2 as defined by equation 3.17 and 3.21.

3.2.2.2 FEP analysis

The dynamics simulation used to perform the FEP analysis of the binding free energy of the

methane ligand to the model hydrophobic enclosures were run under identical simulation
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protocols as the DSF analysis. The ligand was turned on inside the model enclosures over

9 lambda windows with λ = [0, 0.125, 0.25, 0.375, 0.50, 0.625, 0.75, 0.875, 1], where λ is the

coupling parameter to turn on/off the interaction between the methane and the rest of the

system with initial state and final state correspond to λ = 0 and λ = 1 respectively. At dif-

ferent λ windows, we performed molecular dynamics simulations, and calculated the energy

difference between neighboring λ values for each configuration saved. In these simulations,

the soft-core interactions were used for the Lenard-Jones potential.[67] Bennett acceptance

ratio method[30] were then used to calculate the free energy difference between neighboring

states. The sum of the free energy differences between neighboring states gave the solva-

tion free energy of methane in question. The same procedure was followed to calculate the

solvation free energy of methane in bulk water. The difference between the two solvation

free energy gave the binding free energy to bring a methane from infinitely far to inside the

hydrophobic enclosure. (We can also interpret the binding free energy as the potential of

mean force between the methane and the enclosure.)

3.2.2.3 Buried surface area analysis

The solvent accessible surface area (SASA) and molecular surface area (MSA, or Connolly

surface) of each enclosure with and without the bound methane was computed with the

Connolly molecular surface package,[68] as was the SASA and MSA of the methane particle

by itself. From this data the buried solvent accessible surface area upon methane-enclosure

complexation was determined. The Lennard Jones interaction energy of the methane par-

ticle with the model enclosure was similarly computed. The buried surface area times the

surface tension would give the solvent induced interaction energy, and together with the

direct Lennard-Jones interaction energy, the total binding energy of methane with differ-

ent enclosures can be calculated, as routinely estimated in various empirical methods to

estimate the contribution of the nonpolar term to the binding energy.
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3.3 Results

The binding free energies of methane for the model hydrophobic enclosures, as measured

by FEP, are reported in table 3.1. It is found that the range of binding free energies of the

methane ligand for the model enclosures is nearly 5 kcal/mol. Also reported in table 3.1 are

the system-interaction energies and excess entropies of the water displaced by the methane

ligand, the buried surface area upon complexation, (both SASA and MSA), the change

of the Lennard Jones interaction energy between the methane particle and the enclosure

upon complexation, the DSF prediction of the binding free energy of the complex, and the

scaled DSF prediction that makes use of the scaling coefficient deduced from first principles

in section 3.2. The R2 value, mean-absolute-error (MAE) and the root-mean-square-error

(RMSE) between the various predictions with the FEP-reference date are also listed in the

last few rows of the table. Note here that the surface tension coefficients for the buried

surface area/molecular mechanics predictions (Both SASA and MSA) were explicitly tuned

to minimize the MAE of the predictions. Such explicit tuning yields significantly better

results than could reasonably be expected to be obtained if such methods were employed

with fixed coefficients across realistically variable data sets.

The DSF predictions show very high correlation with the FEP reference data, as in-

dicated by the R2 value of 0.95, (which can also be seen in figure 3.6) where the buried

surface area/Lennard Jones interaction predictions show reduced correlations, as indicated

by R2 values of 0.92 for MSA/MM and 0.76 for SASA/MM respectively. The DSF method

also allows for the decomposition of the binding free energy prediction into separate en-

thalpic and entropic components. Inspection of the data reported in table 3.1 indicates

that the DSF predictions are dominated by the enthalpic contribution to the binding affin-

ity, which by itself manifests a R2 value of 0.94 versus the FEP reference data. Detailed

analysis of these data indicates that, except for the first three systems, the binding of the

methane molecule to these hydrophobic enclosures is mainly an enthalpy driven event,

which is consistent with our knowledge about large length scale hydrophobicity.[1; 69;

70] Recent calorimetry data obtained for Major Mouse Urinary Protein by Homans et

al,[71] appear to indicate such enthalpy driven hydrophobic binding events are witnessed in

vivo, as well.



CHAPTER 3. A DISPLACED-SOLVENT FUNCTIONAL ANALYSIS OF MODEL
HYDROPHOBIC ENCLOSURES 59

The inspection of the trajectory indicates the atomistic basis of the enthalpy driven ef-

fect is that water molecules that solvate such enclosures are forced to break hydrogen bonds.

The effect is most obvious for hydrophobic enclosures L and M, where the solvent suffers a

7 kcal/mol reduction in system-interaction energy when occupying these enclosures, while

almost no reduction in excess entropy versus bulk water. Conversely, the methane dimer-

ization free energy described by methane binding to “enclosure” A is dominated by the

entropic contribution, again consistent with entropy driven small length scale hydropho-

bic effect. This finding is analogous to the well characterized length scale dependence

of the hydrophobic effect, while small hydrophobes are found to induce entropic ordering

of the solvent, large hydrophobes are found to break water-water hydrogen bonds.[1; 69;

70] The enclosures L and M can thus be understood as manifesting extreme large-length

scale hydrophobic character from the perspective of the solvating water.

Figure 3.6 plots the correlation of the DSF binding free energies versus the FEP reference

data with and without the derived scaling coefficient deduced from the size of the methane

ligand itself. As can be seen from the figure, both sets of predictions track the FEP reference

data quite well. However, the scaled predictions have greater quantitative agreement with

the FEP, which may be quantified by the mean-absolute error (MAE) and root-mean-square

error (RMSE) metrics. Here the scaled predictions are found to have a MAE of 0.36 kcal/mol

and a RMSE of 0.40 kcal/mol, while the unscaled predictions have a MAE of 0.66 kcal/mol

and a RMSE of 0.84 kcal/mol. Thus, the deduced scaling coefficient appears to increase

the quantitative accuracy of the approach, in line with the expectation of the theoretical

analysis.

We also investigated to what extent a combined buried surface area/Lennard-Jones

interaction energy model might be able to reproduce the binding affinities. Tuning the

model to minimize the MAE of the fit, we obtained an optimal surface tension coefficient

of γ = 0.011kcal/mol ∗ Å2 for SASA and 0.044 kcal/mol ∗ Å2 for MSA for these enclosures,

which is somewhat smaller than the reported literature values.[72] These predictions versus

the FEP reference data are reported in figure 3.7. It is found that MSA/MM performed

much better compared with SASA/MM, which is indicated by much higher R2 value, and

smaller MAE and RMSE values. (Data listed in last 3 rows in table 3.1.) However, both of
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them performed less well than the DSF predictions with the scaling coefficient correction,

and much worse results would be expected with such an model in general, as noted above,

since it would not benefit from explicit fitting to the reference data.

The better performance of MSA/MM versus SASA/MM is due to the better character-

ization of MSA for the topology of enclosures J, K, L, M. SASA/MM predicts enclosure

J to be most hydrophobic, which corresponds to a methane molecule binding between two

hydrophobic plates, because large swaths of formerly SASA on the faces of the plates are

buried by the presence of the methane ligand for enclosure J, while for enclosures K, L, and

M several methane molecules already lie between the plates in the absence of the binding

ligand and thus some of the surface area that would be buried by the binding methane is

already buried by the other particles. However, MSA can better characterize the curvature

of these enclosures and predict the right order of binding affinity.

3.4 Conclusion

Calculations suggest that the DSF method of computing protein-ligand binding affinities

may offer near-FEP accuracy at a substantially reduced computational expense for systems

that satisfy the requisite approximations and should offer greater quantitative accuracy

than competing implicit solvent methodologies. Further, the clear connection between the

DSF method and more rigorous statistical mechanical expressions may offer a rational path

to systematically improve the accuracy and rigor of the method by progressive inclusion of

those counter-balancing terms currently approximated to exactly cancel. This previously

opaque connection to the underlying theory facilitated the derivation of a scaling coefficient

that was seen to increase the quality of the predictions of the method versus the FEP

reference data. Lastly, the molecular detail afforded by the technique may offer insight into

protein-ligand binding processes, such as highlighting the importance of the enthalpy in the

binding of methane to such model enclosures, which may have been difficult to discern from

only FEP or implicit modeling.
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Table 3.1: The binding thermodynamics of methane for the various model hydrophobic

enclosures as computed from DSF theory and FEP theory. Ehs was the hydration site system

interaction energy, Se
hs was the hydration site solute-water correlation entropy, ∆SASA was

the buried solvent accessible surface area using a 1.4 Å radius probe, ∆ELJ was the Lennard

Jones interaction energy of the bound methane with the rest of the enclosure, ∆GDSF
bind

was the predicted binding free energy of the methane molecule for the model enclosure

as computed from DSF theory, N(Neff ) was scaling coefficient derived by determining

the expectation value of the number of water molecules occupying a volume in the bulk

fluid equal to the volume of the methane probe molecule, and ∆GFEP
bind was the predicted

binding free energy of the methane molecule for the model enclosure as computed from FEP

theory. Note that the standard deviation of the Ehs values reported below were found to

be uniformly less than 0.4 kcal/mol (as obtained from block averaging), and the standard

errors of the ∆GFEP
bind values were uniformly less than 0.02 kcal/mol.

Model En-

closure

Ehs

(kcal/mol)

Se
hs

(kcal/mol*K)

∆SASA

(Å2)

∆MSA

(Å2)

ELJ

(kcal/mol)

∆GDSF
bind

(kcal/mol)

N · ∆GDSF
bind

(kcal/mol)

∆GF EP
bind

(kcal/mol)

bulk -19.8 0 0 0 0 0 0 0

A -19.6 -1.2 -59.45 -3.84 0 -0.5 -0.46 -0.61

B -18.9 -2.0 -118.9 -7.67 0 -1.5 -1.28 -1.15

C -19.2 -1.8 -98.21 -10.49 0 -1.1 -0.97 -1.41

D -18.7 -1.2 -91.32 -13.51 -1.41 -1.5 -1.26 -1.66

E -17.7 -2.3 -151.15 -17.35 -1.41 -2.8 -2.39 -2.17

F -17.3 -1.5 -117.52 -24.06 -1.41 -2.9 -2.5 -2.63

G -16.0 -3.0 -156.39 -30.7 -1.41 -4.7 -4.00 -3.41

H -15.6 -1.2 -132.41 -37.35 -1.41 -4.6 -3.92 -3.43

I -15.6 -1.8 -143.71 -34.6 -1.41 -4.8 -4.05 -3.47

J -17.8 -2.6 -182.65 -27.02 -2.82 -2.8 -2.41 -2.86

K -15.5 -2.1 -175.59 -44.27 -2.82 -4.9 -4.17 -4.59

L -13.0 0.3 -166.61 -64.21 -2.82 -6.8 -5.74 -5.24

M -13.3 -0.1 -168.52 -61.51 -2.82 -6.6 -5.6 -5.45

R2 0.94 0.16 0.76(a) 0.92(b) 0.73 0.95 0.95 N/A

MAE 0.61 N/A 0.54(a) 0.47(b) 1.41 0.66 0.36 N/A

RMSE 0.75 N/A 0.74(a) 0.58(b) 1.63 0.85 0.40 N/A

Note: (a): these values correspond to the correlation between the buried SASA/LJ inter-

action with optimized surfacetension coefficient (γ = 0.044kcal/mol ∗ Å2) and the FEP

reference data.

(b):these values correspond to the correlation between the buried MSA/LJ interaction with

optimized surface tension coefficient (γ = 0.011kcal/mol ∗ Å2) and the FEP reference data.
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Figure 3.1: Cartoon depicting the relationship between ∆ 〈WPL〉chrg
P,L;PL and 〈UP−L〉PL.

∆ 〈WPL〉chrg
P,L;PL is the free energy difference in turning on the attractive and electronic

interaction between the ligand and the solvent in the bulk water (left) versus in the active

site of protein (right), which is the interaction between the ligand and the solvent that

would be excluded by the protein (depicted by dashed line on the left). 〈UP−L〉PL is

the interaction energy between the ligand and the protein in the complex (right). For

complementary ligands binding to the protein receptor, the two terms would be expected

to be of similar magnitude.
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Figure 3.2: Cartoon depicting the spatial decomposition of the IST integral equations intro-

duced in equations 3.11 to 3.14. The net “surf” term is the difference in the free energetic

cost of the fluid reorganizing its configuration around the surface of the ligand cavity when

the cavity is bound to the protein versus free in solution, and the net “Nw solv” term corre-

sponds to the difference in the local IST integral free energy of the Nw water occupying the

active site of the protein versus the IST integral free energy of the same Nw water molecules

in the bulk fluid.
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Figure 3.3: The effective volume displaced by a methane in the bulk (a) and in between two

hydrophobic plates(b). The blue particle denotes a methane, and a dashed circle denotes

a probe solvent molecular. The volume displaced by a methane in the bulk is just the van

der Waals volume of the methane, but in between the two plates, the four corners are also

displaced by the methane due to the finite volume of the probe ball.
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Figure 3.4: The 13 model hydrophobic enclosures are here depicted in gray. The location of

the methane molecule when bound to the respective hydrophobic enclosures is here depicted

in green. The geometry of the plate is depicted at the right bottom of this figure. The

distance between the neighboring particles in the plate is 3.2 Å, and the distance between

the two plates is 7.46 Å. All the others particles are at contact distance with linear (B, I

and M) and triangle (C, G, H and L) geometries.
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Figure 3.5: The coordinate system to characterize the position and orientation of water

inside the hydration site. The z axis is perpendicular to the model hydrophobic plate, and

the x axis is such defined that the other methane lie on the x axis. [r, θ, φ] are the typical

spherical coordinates which define the position of the oxygen atom, and [χθ, χφ, χσ] are

three angles which define the orientation of the water around its oxygen.
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Figure 3.6: The correlation of the of the DSF predictions of the methane-enclosure binding

free energies with the FEP reference data.
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Figure 3.7: The correlation of buried surface area/molecular mechanics predictions of

the methane-enclosure binding free energies with the FEP reference data. The water

SASA surface tension coefficient (0.011kcal/mol ∗ Å2) and MSA surface tension coefficient

(0.044kcal/mol ∗ Å2) were tuned to minimize the absolute average error of the predictions

with respect to the reference data.
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Chapter 4

Protein-Ligand binding:

Contributions from wet and dry

regions of the binding pocket

Abstract

Biological processes often depend on protein-ligand binding events, yet accurate calcula-

tion of the associated energetics remains as a significant challenge of central importance

to structure-based drug design. Recently, we have proposed that the displacement of un-

favorable waters by the ligand, replacing them with groups complementary to the protein

surface, is the principal driving force for protein-ligand binding, and we have introduced the

WaterMap method to account this effect. However, in spite of the adage “Nature abhors

vacuum”, one can occasionally observe situations in which a portion of the receptor active

site is so unfavorable for water molecules that a void is formed there. In this Chapter, we

demonstrate that the presence of dry regions in the receptor has a nontrivial effect on ligand

binding affinity, and suggest that such regions may represent a general motif for molecu-

lar recognition between the dry region in the receptor and the hydrophobic groups in the

ligands. With the introduction of a term attributable to the occupation of the dry regions

by ligand atoms, combined with the WaterMap calculation, we obtain excellent agreement
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with experiment for the prediction of relative binding affinities for a number of congeneric

ligand series binding to the MUP receptor. In addition, WaterMap when combined with the

cavity contribution is more predictive than at least one specific implementation (described

in ref. [2]) of the popular MM-GBSA approach to binding affinity calculation.

4.1 Introduction

The calculation of protein-ligand binding affinities is a central goal of computational struc-

ture based drug design methodologies. Many different approaches, ranging from rapid em-

pirical scoring functions to rigorous free energy perturbation methods, have been employed.[48;

49; 51] At present, however, there is no method that is fully satisfactory from the point of

view of both the expected accuracy and reliability, and the required computing resources.

In the first two chapters, we have introduced a new approach to estimating relative free

energies of binding of a series of congeneric ligands, based on their measured displacement of

quasi-localized water molecules with unfavorable free energies in the receptor active site.[3;

2] We refer to this approach as WaterMap. Molecular dynamics simulations are used to

generate the positions of the relevant water sites, and inhomogeneous solvation theory is

employed to estimate free energies of displacement of the various waters as compared to

bulk solvent. Successful prediction of the relative binding free energies of a set of congeneric

pairs of Factor Xa ligands, without the use of any adjustable parameters, was achieved, with

a correlation coefficient considerably superior to an widely used alternative, the MM-GBSA

approach which employed a continuum description of solvent.[2; 73] A number of other

applications have recently appeared, all of which yield encouraging results with regard to

the efficacy of relative ligand binding affinity predictions.[53; 54; 56]

Displacement of unfavorable waters by the ligand, replacing them with groups comple-

mentary to the protein surface, has been established as a principal driving force for protein-

ligand binding in many systems, including a significant fraction of receptors of pharmaceu-

tical interest.[74] However, one can also occasionally observe situations in which a portion

of the receptor active site is so unfavorable for water molecules that a void is formed, i.e.

in the molecular dynamics runs which generated the WaterMap, regions could be identified
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where occupancy of water molecules was observed to be below a specified threshold. A

number of proteins exhibiting a dry region in the binding pocket were discussed in ref. [75]

The presence of dry regions would be expected to have a nontrivial effect on ligand

binding affinity, if the ligand places atoms in these regions (as would be highly favorable

in terms of free energy if the ligand groups are complementary to the protein surface in

the appropriate region). In the present paper, we investigate this issue quantitatively by

obtaining from the literature a number of ligand series for ligands which bind to several

proteins with dry regions, and developing a methodology to combine the WaterMap free

energy difference with an additional term attributable to occupation by ligand atoms of the

dry regions. Using a very simple model with essentially no adjustable parameters, excellent

agreement with experiment is obtained, as compared to results derived from a WaterMap-

only calculations, which fails to yield a plausible correlation of the theoretical predictions

with experiment. The term for the dry region is straightforward to implement, and we

expect to employ it routinely in future studies of binding affinity using this general type of

approach.

In what follows, we describe the new methodology, and compare results for a number

of ligand series for the combined method and WaterMap alone. In the Conclusion, we

summarize our results and suggest future research directions.

4.2 Results and Discussions

We analyzed the hydration properties of the unliganded binding pockets for several holo-

proteins, including the mouse major urinary protein (MUP, PDB ID 1znk),[76] the bovine

apo-glycolipid transfer protein (GLTP, PDB ID 1wbe),[77] and the secretin pilot protein

(PDB ID 1y9l),[78] and identified both the high occupancy hydration sites using the Wa-

terMap program[3; 2] and the low occupancy cavity regions using the protocol described

in the methods section. Fig. 4.1 displays the high occupancy hydration sites and the dry

regions in the active site of MUP. As opposed to most proteins with well hydrated active

sites, the active site of MUP is poorly hydrated, as indicated by a large dry region and

only two active site water molecules, which is consistent with previous discussions.[79; 71;
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80]

There are several ligands which bind to MUP.[76; 81; 82; 83] As indicated by X-ray

diffraction data, MUP is rather rigid, and the structure remains essentially unchanged upon

binding to these different ligands.[76] By superposition of each protein-ligand complex to

the “apo” structure of the protein and accounting for the contribution to the binding affinity

through displacing the active site solvent, which is the standard protocol of the WaterMap

calculation, we get the WaterMap predicted binding affinity for each ligand. Fig. 4.2

plots the WaterMap predicted binding affinities versus the experimental results (circles in

Fig. 4.2) for the ligands with experimental binding affinity data available from literature.

The ligands are divided into four groups (indicated by four different colors in figure 4.2)

based on their structure similarity and binding mode. The ligands in each group share the

same scaffold and binding mode based on their PDB structures, and their experimental

binding affinity data are from the same publication, and derived using the same method.

(For the 2-sec-butyl-4,5-dihydrothiqazole (SBT) series of ligands, PDB structure is only

available for SBT-MUP complex; all the other structures in that group were obtained by

removing the appropriate carbon atoms from ligand SBT.[83]) We see from Fig. 4.2 that,

while WaterMap can explain the binding affinity difference between ligand PE9 and ligand

HE2 (blue circles in Fig. 4.2), it can not explain the binding affinity differences among

the other groups of ligands (red, green, and black circles in Fig. 4.2). To be specific,

WaterMap predicts ligand HE4 to have zero binding affinity (because the ligand displaces

none of active site solvents), which is much lower than the other two ligands OC9 and

F09 in that group, while experimentally their binding affinity difference is much smaller.

In addition, WaterMap predicts that the binding affinities for ligands OC9 and F09 are

the same, while experimentally ligand F09 is 3.2 kJ/mol more favorable than ligand OC9.

Similar difficiencies are observed for ligands IBMP and IPMP, as well as for all the ligands

in the SBT series.

While the WaterMap calculation takes into consideration the binding affinity gain from

ligand atoms displacing the energetically and entropically unfavorable hydration sites, the

ligand atoms located in the dry region are not scored. It is well known that the solvation

free energy of the ligand has two contributions: the free energy to create the cavity via
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displacement of solvent, and the free energy to turn on the interactions between the ligand

and the rest of the system.[84] While it engenders a large free energy penalty to create a

cavity in bulk water in order to solvate the ligand, the free energy to create the cavity in

the active site of the protein is almost zero if it is dry there. So the ligand gains much

binding affinity if it is located in the dry region of active site, which we call the cavity

contribution. We use the scoring function described in the methods section to take this

effect into consideration. The physical basis of the method is that the free energy difference

of “growing” one ligand heavy atom inside the active site of the protein versus that in bulk

water is the gain in binding affinity from that atom.

Adding together the WaterMap contribution and the cavity contribution described above

for each ligand, the overall predicted binding affinities versus experimental results are dis-

played in Fig. 4.2 (crosses in Fig. 4.2). It is quite obvious that after taking the cavity

contribution into consideration, the binding affinity differences among different ligands in

each group (indicated with different colors) are correctly predicted. For comparison, the

MM-GBSA predictions for the binding affinities of these ligands were also calculated, and

the WaterMap combined with cavity predictions works much better than MM-GBSA pre-

dictions for all four congeneric groups (see Fig 4.3). (The WaterMap and cavity contribution

to the binding affinities and the MM-GBSA predictions are given in Table4.1) If we fit the

predicted results against the experimental data among each group with a line, the slopes

of the lines for the four groups are of similar magnitude, but the intercepts are different.

This behavior is expected. The different intercepts among the groups indicate the different

strain and conformational energy and entropy changes upon protein-ligand complexation

for different ligand scaffolds, which are not taken into account in this analysis and which is

also part of the reason the predicted binding affinities much larger in magnitude than the

experimental ones. The fact that we only take into account the favorable effects in binding

either from water displacement or from favorable ligand-cavity interaction, but not the un-

favorable effects such as loss of conformational entropy and part of the desolvation penalty

also makes the predicted binding affinities much larger than experimental results. However,

the ability of the current analysis method in rank-ordering a series of congeneric ligands

makes it useful and important in lead optimization. This is clearly demonstrated in Fig.
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4.4 where the predictions of the relative binding affinities among congeneric ligand pairs for

the three methods versus experimental data are plotted, and the WaterMap combined with

cavity predictions work much better than WaterMap alone and MM-GBSA method.

As an example of how the WaterMap and cavity contributions complement each other

to rank-order a pair of congeneric ligands, Fig. 4.5 displays the structures of ligand HE4

(colored green) and ligand OC9 (colored blue) in the binding pocket of MUP. While ligand

OC9 displaces one of the two principal hydration waters (red spheres in Fig. 4.5), ligand

HE4 does not have any overlap with the two hydration waters. This is consistent with

experimental results that one more ordered water molecule is present within the binding

pocket of HE4-MUP complex.[76] And this is the reason why the WaterMap calculation

predicts zero binding affinity for ligand HE4 and -44.3KJ/mol for ligand OC9, while exper-

imentally ligand OC9 is only 3.1 KJ/mol more favorable than ligand HE4. However, most

of the atoms of ligand HE4 are located in the dry region (white networks in Fig. 4.5), which

leads to a more favorable cavity contribution to the binding affinity for ligand HE4 than

for ligand OC9 (-78.6KJ/mol for HE4 versus -49.1KJ/mol for OC9). So the overall binding

affinity difference predicted agrees well with experimental data.

Fig. 4.6 (a) displays the structures of ligand OC9 (colored blue) and ligand F09 (colored

green) in the binding pocket of MUP. Both ligands have similar structure in the hydration

water part of the pocket, so the WaterMap calculation predicts their binding affinities to

be the same. However, experimentally ligand F09 is 3.2 KJ/mol more favorable than ligand

OC9.[76] Looking at their structures in the dry region, it is quite clear that ligand F09

has one more atom located in the dry region, which leads to the more favorable binding of

ligand F09 than ligand OC9. Similar behavior is observed for ligand IBMP and ligand IPMP

(Fig. 4.6 (b)): one more atom of ligand IBMP in the dry region leads to the more favorable

binding of ligand IBMP as compared to ligand IPMP. The binding affinity difference among

the SBT series of ligands are all due to the cavity contributions.

The molecular recognition between the dry region in the binding pocket and the hy-

drophobic groups in the ligands is not unique for MUP. Fig. 4.7 provides another two

examples where ligands with hydrophobic groups bind to the dry region of MUP receptor.

In a previous work, Siebert and Hummer also observed a strong correlation between the



CHAPTER 4. PROTEIN-LIGAND BINDING: CONTRIBUTIONS FROM WET AND
DRY REGIONS OF THE BINDING POCKET 75

location of conserved nonpolar groups of ligands and the low water occupancy regions in the

binding surface of the IQN17 peptide, a soluble analogue of the N-peptide coiled coil.[85]

Fig. 4.8 displays the active sites of GLTP and the secretin pilot protein. In both cases,

there is a large dry region in the binding pocket and a large portion of the hydrophobic

groups of the ligand is located in that dry region, consistent with previous studies.[75] So

the dry region in the receptor and the hydrophobic groups in the ligands may represent a

general motif for molecular recognition. For GLTP, the ligand is a alkane chain and the

whole binding pocket is dry except the entrance. There are no principal hydration sites

identified by the WaterMap calculation for this system. For secretin pilot protein, the tail

of the ligand is a carboxylic group, and only the middle part of the binding pocket is dry.

There are two principal hydration waters near the entrance of the pocket identified by the

WaterMap calculation.

4.3 Conclusion

We have augmented our WaterMap scoring function for computing free energy differences

between congeneric ligands with a new term which models the free energy gain from ligand

atoms occupying dry regions of the receptor. The results of the new scoring function

are highly satisfactory for the data sets that we have examined, and require no adjustable

parameters. Hence, our expectation is that this model will prove successful in other systems

where dry regions exist.

This paper represents an initial effort to improve the core functionality embodied in the

current WaterMap scoring function. There are clearly other augmentations that need to be

made before the method can robustly handle a wide variety of test cases, most prominently

an approach to treating protein-ligand interactions, particularly when these are not fully

complementary, is required. Our objective is to systematically add new functionality, build-

ing on the success of the core approach, and render the method increasingly more accurate

and reliable, while retaining the favorable computational properties that characterize the

current methodology.
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4.4 Systems and Simulations

The starting structures for the mouse major urinary protein (MUP), the bovine apo-

glycolipid transfer protein (GLTP) and the secretin pilot protein are taken from PDB with

PDB ID 1znk, 1wbe, 1y9l respectively.[76; 77; 78] All the nonprotein molecules were then

removed and protein preparation wizard[86] was used to modify the structures of the pro-

teins for simulation. Protonation states were assigned assuming the systems are at pH

7.0. The proteins without the ligands, which we refer to the “apo” proteins, were inserted

into water boxes using Maestro,[65] and water molecules that sterically overlapped with the

proteins were removed. The size of each system was chosen to accommodate a minimum

of 10 Å of water between the protein surface and the box walls. Counter ions were added

to maintain electric neutrality. The systems were then relaxed and equilibrated for a series

of minimizations and short molecular dynamics simulations using the standard relaxation

protocol in Desmond.[31] To ensure equilibration between water in the binding pocket and

bulk water, grand canonical Monte Carlo method is used to sample both the number of wa-

ter molecules in the pocket and their positions using the solvate-pocket utility in Desmond

during equilibration.[31]

The production simulations were done in NPT ensemble with a constant temperature

of 300K and 1 atmospheric pressure.[33; 34; 35] The OPLS-AA force field was used for the

protein, and the TIP4P water model[32] was used for the solvent, with a cut-off of 9 Å

for Lennard-Jones interactions and a Particle-Mesh Ewald for electrostatic interactions.[37]

During the simulation the protein heavy atoms were harmonically restrained to their initial

positions. Data were taken from 10 ns production simulations for MUP and 2ns for GLTP

and secretin pilot protein. Running the simulation for longer time does not change the

results.

4.5 Methods

Our analytical effort focused on the hydration properties of the active sites of the “apo”

proteins. The active site was defined as the region within 10 Å of where the ligand heavy

atom would be but not closer than 2.8 Å to any heavy atom of the protein. We refer to this
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region in the following as the binding pocket.

4.5.1 WaterMap calculation

The high occupancy principal hydration sites inside the binding pocket were identified

and their associated enthalpy and entropy were calculated using the WaterMap program

developed in our group.[3; 2] To be specific, water molecules inside the binding pocket

were clustered into high occupancy hydration sites each of which is a sphere of 1 Å radius,

and the enthalpy and entropy for each principal hydration site water were calculated using

the inhomogeneous solvation theory.[4] Details of the implementation of the method are

discussed in ref.[2].

4.5.2 Cavity calculation

The binding pocket is covered by a 3D grid with 1 Å spacing in each dimension. For each

frame during the simulation, the positions of water oxygen atoms inside the binding pocket

were recorded. If any water oxygen atom is closer than 3.3 Å to a grid point, that grid point

is regarded as being occupied; otherwise the grid point is regarded as being unoccupied.

In general one would have to have chosen different radii for different atom types, but here

we constrained the heavy atoms of the protein so that only water molecules can enter into

the cavities. Note here that, there may be more than one water molecule simultaneously

occupying the same grid point, and that a given water molecule may simultaneously occupy

several grid points. The probability, P0, for a grid point to be unoccupied is calculated and

if it is ≥ 0.5 the cavity is considered to be dry. In fact, from the simulation, grid points

which are identified as dry are found to be physically close to each other, and we draw a

white line between neighboring dry grid and in this way identify the dry region displayed

in the corresponding figures.

Note that, in bulk water there are on average 4.6 water molecules in a spherical volume

of radius 3.3 Å, and the probability of this cavity being unoccupied by water is P0 ≈ 10−4.

Here, 3.3 Å is the size of the united atom methane. Both the hydration free energy of a

methane particle and the potential of mean force (PMF) between two methane particles in

neat water can be understood from information theory with a cavity of 3.3 Å radius.[87]
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Thus grid points in the binding pocket of the protein with P0 ≥ 0.5 are clearly dry.

4.5.3 Protein-ligand binding affinity analysis

The binding affinity of each ligand to the protein receptor is decomposed into the WaterMap

contribution and the cavity contribution. We conducted a structure alignment between the

holo-protein-ligand complex from the PDB structure and the “apo” protein simulated. The

WaterMap contribution was calculated through the displaced solvent functional introduced

in ref.[2] Ligand heavy atoms close to the principal hydration sites were assigned a score,

depending on the distance from the heavy atom to the hydration site and free energy

difference between water in that hydration site and bulk water. Details of the Functional

is in ref.[2]

For the cavity contribution, the probability, P0, to observe an empty spherical region

with radius 3.3 Å centered on each ligand heavy atom was calculated. If the probability of

the cavity being unoccupied by water is greater than 0.5, the binding affinity gain for the

ligand atom occupying that dry cavity is

∆G = −kT ln(P0) − 2.36 (kcal/mol) (4.1)

Here P0 is the probability of the cavity being unoccupied, and −kT ln(P0) is the free

energy to create a cavity of radius 3.3 Å inside the active site, and 2.36 kcal/mol is the

solvation free energy of methane. As mentioned above, the free energy to “grow” a ligand

heavy atom inside the binding pocket is the sum of the free energy to create a cavity and the

free energy to turn on the interactions between that atom and the rest of the system. If the

atom is in the dry region, and if the atom is nonpolar (from the simulation we found that all

the ligand heavy atoms located in the dry region are nonpolar), then the free energy to turn

on the interactions between that atom and the rest of the system is almost zero. (Lennard-

Jones interactions are short ranged, and there are no surrounding water molecules if it is in

the dry region.) So the two terms in Eq. (4.1) are approximately the free energy to “grow”

a ligand heavy atom inside the binding pocket and that in bulk water, and their difference

gives the contribution to the binding affinity from that atom. Here, we assume that the size

of each ligand heavy atom is comparable to the size of a united atom methane. The total



CHAPTER 4. PROTEIN-LIGAND BINDING: CONTRIBUTIONS FROM WET AND
DRY REGIONS OF THE BINDING POCKET 79

cavity contribution is a summation over all ligand heavy atoms located in the dry region.

Note that some of the ligand heavy atoms may have partially overlapped cavities. We treat

them as independent of each other, which is equivalent to assuming pairwise additivity.[84]

The error for this approximation is relatively small, because they overlap both in the active

site and in bulk water, and there is a large cancellation for the effects. Even in the extreme

case, where the cavity for a ligand heavy atom is fully overlapping with existing cavities,

the free energy to create that additional cavity, which is 0 in this case, is not quite different

from −kT ln(0.5) = 0.4 kcal/mol, the maximum free energy to create that cavity in the dry

region, and the error in the real case is much smaller than this number.
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Figure 4.1: The principal hydration sites and the dry region in the binding pocket of MUP.

The two principal hydration site waters are displayed in red sphere, and the dry region

is displayed by white dots connected with white lines. The side chains surrounding the

binding pocket are also displayed. A large region of the binding pocket is dry.
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Figure 4.2: The WaterMap and WaterMap+cavity predictions for the binding affinities

of different ligands to the MUP receptor versus the experimental data. The WaterMap

predictions are displayed as circles, and WaterMap+cavity predictions are displayed as

crosses. The ligands belonging to different groups are indicated by different colors. While

the WaterMap predictions fail to rank-order most of the congeneric series of ligands, Wa-

terMap+cavity predictions correctly rank-order all the congeneric ligands in each group.
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Figure 4.3: The Watermap, Watermap+cavity and MM-GBSA predictions for the bind-

ing affinities of different ligands to the MUP receptor versus the experimental data. The

Watermap predictions are displayed as circles, Watermap+cavity predictions are displayed

as crosses, and MM-GBSA predictions are displayed as rectangles . The ligands belonging

to different groups are indicated by different colors. While the Watermap and MM-GBSA

predictions fail to rank-order most of the congeneric ligands, Watermap+cavity predictions

correctly rank-order all the congeneric ligands in each group.
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Figure 4.4: The WaterMap, WaterMap+cavity and MM-GBSA predictions for the relative

binding affinities among congeneric ligand pairs against experimental data. The WaterMap

combined with cavity contribution predictions work much better than the other two meth-

ods, indicated by a much stronger correlation, and small intercept.
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Figure 4.5: Ligands HE4 (green) and OC9 (blue) in the binding pocket of MUP. Ligand

OC9 displaces one of the principal hydration water, while ligand HE4 does not. So the

WaterMap predicted binding affinity for ligand OC9 is much more favorable than for ligand

HE4, much larger than the experimentally measured binding affinity difference. However,

a large portion of ligand HE4 is located in the dry region, so the cavity contribution is

more favorable for ligand HE4. Combined with WaterMap and cavity contribution, the

experimentally measured binding affinity difference can be easily explained.
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Figure 4.6: (a) Ligands OC9 (blue) and F09 (green) in the binding pocket of MUP. They

have similar structure in the principal hydration site, so the WaterMap predicts their binding

affinities are the same. However, ligand F09 has one more atom located in the dry region,

which leads to the stronger binding of ligand F09 than ligand OC9, verified by experimental

data. (b) Ligand IBMP (green) and IPMP (blue) in the binding pocket of MUP. Ligand

IBMP has one more atom located in the dry region of the pocket, leading to stronger binding

of IBMP than IPMP.
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Figure 4.7: Ligands LTL (red) and TZL (blue) binding to the MUP receptor. Large portions

of the ligand atoms are located in the dry cavity region.



CHAPTER 4. PROTEIN-LIGAND BINDING: CONTRIBUTIONS FROM WET AND
DRY REGIONS OF THE BINDING POCKET 87

Figure 4.8: The binding pockets of the secretin pilot protein (upper) and GLTP (below).

In both cases, there is a large dry region in the binding pocket and a large portion of the

hydrophobic groups of the ligands are located in that dry region. For GLTP, the ligand is

a alkane chain and the whole binding pocket is dry except the entrance. For secretin pilot

protein, the tail of the ligand is a carboxylic group, and only the middle part of the binding

pocket is dry. There are two principal hydration waters near the entrance of the pocket

identified by the WaterMap calculation.
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Table 4.1: Watermap and cavity contributions to the binding affinities for different ligands

binding to MUP receptor

Binding affinities PE9 HE2 HE4 OC9 F09 IBMP IPMP SBT PT IPT ET MT

Exp -23.1 -28.3 -32.5 -35.6 -38.8 -38.5 -33.9 -35.3 -34.3 -32.6 -29.2 -24.2

WaterMap -44.4 -70.7 0.0 -44.4 -44.4 -59.0 -54.8 0.0 0.0 0.0 0.0 0.0

Cavity -28.8 -19.7 -78.6 -49.1 -59.0 -58.9 -49.1 -87.4 -77.6 -77.6 -67.8 -58.8

Total -73.2 -90.4 -78.6 -93.5 -103.4 -117.9 -103.9 -87.4 -77.6 -77.6 -67.8 -58.8

MM-GBSA -96.2 -106.9 -83.1 -68.4 -112.3 -56.1 -90.0 -88.0 -84.4 -77.2 -70.3 -71.3

Note1: Free energies in kJ/mol. For ligand PE9, the PDB structure (PDB ID 1ZND)

contains two ligands (with two binding modes). However, experimental ITC data indicate

a binding stoichiometry of approximately 1 for PE9,[76] so only the binding mode with

stronger binding affinity was analyzed. The predicted binding affinities for the two binding

modes agree with experimental data.

Note 2: Ligands PE9 and HE2 bind in a similar orientation whereas ligands HE4, OC9,

and F09 bind in an alternate orientation. So they are considered as two groups.[76]

Note 3: For SBT series of ligands, PDB structures are only available for SBT/MUP complex,

and structures of other ligands were obtained by removing the appropriate carbon atoms

from SBT.



89

Part II

Development of FEP/REST



CHAPTER 5. INTRODUCTION OF THE FEP/REST METHOD 90

Chapter 5

Introduction of the FEP/REST

method

In the late stage drug design projects, when important decisions about how to modify and

refine the lead molecule is made, highly accurate and reliable binding affinity results are

required, and explicit solvent model free energy perturbation (FEP) molecular dynamics

simulation represents one of the most rigorous methods to calculate Protein-Ligand binding

affinities. In spite of the potentially large impact FEP may have on drug design projects,

practical applications in an industrial context have been limited over the past decade. High

accuracy and reliability in the methodology are required for developing FEP into a true en-

gineering platform for drug candidate optimization, but neither has yet been demonstrated

by existing implementations.

Two types of challenges stand in the way of applying FEP into real drug design projects.

Firstly, converging explicit solvent simulations to the desired precision is far from trivial,

even with the immense computing power that is currently available using low cost multipro-

cessor clusters or cloud computing platforms of various types. This problem is more severe

when the protein or the ligands adopt different conformations upon alchemical transition

from one ligand to another or upon the protein-ligand binding process, and there are large

energy barriers separating the relevant conformations. In these cases, the protein or the

ligands may remain kinetically trapped in the starting conformation for a long time during
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brute force MD simulation, and the calculated binding affinities are dependent on the start-

ing conformation to do the simulation, giving rise to the well known quasi-nonergodicity

problem in FEP. Secondly, errors in the potential energy models must be reduced to the

point where they lead to errors in a converged calculation that are smaller than the desired

errors in relative binding affinities compared to experiment, typically on the order of 0.5

kcal/mole. At the present stage, it is more imperative to solve the sampling problem in

FEP, since before the precision of the free energy results is promised, it is impossible to

study and improve the accuracy of the force field.

Our strategy to solve the sampling problem in FEP simulation is to combine enhanced

sampling technique with normal FEP. The general method to get enhanced sampling is

temperature replica exchange method (TREM). In TREM, a number of replicas are started

simultaneously each on a different temperature, and attempts to exchange configuration

between neighboring replicas are made during regular intervals of the simulation. If the

temperature of the highest level replica is high enough that it can sample different regions

of phase space, through replica exchange the lower level replica can also sample different

regions of phase space. However, the number of replicas required in normal TREM is very

large, (proportional to
√

f , where f is the number of degrees of freedom of the whole system)

which limits the application of TREM to large systems like protein ligand binding.

In this section, a new efficient enhanced sampling technique is introduced, and it was

combined with normal FEP to solve the sampling problem in brute force FEP simulation.

In Chapter 6, the details of the proposed enhanced sampling method called REST2 are

presented, and the connections with previous enhanced sampling methods, and the reasons

why it is more efficient are discussed. In REST2, we separate the simulation system into

two regions, the “hot” region, (the region we are interested in, usually including the ligands

and protein residues surrounding the binding pocket) and the “cold” region. We scale the

Hamiltonian of the system in such a way that the effective temperature of the “hot“ region

is increased and the effective temperature of the “cold” region is at temperature T0 for all

replicas. In this way, a small number of replicas are sufficient to maintain a good exchange

efficiency. Example application of REST2 on two protein systems, trpcage and β-hairpin,

problematic for previous version of enhanced sampling method, demonstrated the efficiency
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of REST2 on sampling the different conformations of the protein.

In Chapter 7, we combine the enhanced sampling technique introduced in Chapter 6

with normal FEP to solve the sampling problem in FEP. Previous efforts trying to combine

enhanced sampling into FEP require 2-d replica exchange protocol, one in Hamiltonian axis

like normal FEP, the other in the “boosting potential” axis, where the boosting potential

will cancel the potential of mean force (PMF) along the slow degree of freedom to get

enhanced sampling. This method requires a large number of replicas and requires the

prior known knowledge of the slow degree of freedom. In the FEP/REST method we

designed here, the enhanced sampling technique REST2 is combined with normal FEP

through one dimensional replica exchange protocol. In this way, the computational expense

of FEP/REST is comparable with normal FEP, and it can be easily used in real Protein-

Ligand binding problems of medicinal interest where nothing is known about the slow

degree of freedom. Application of FEP/REST on two modifications, the T4L/L99A and

the Thrombin systems, both leading to large structural reorganizations, one in the protein

and the other in the ligands, demonstrates the superior convergence of the free energy as

indicated both by consistency of the results (independence from the starting conformation)

and agreement with experimental binding affinity data.



CHAPTER 6. REPLICA EXCHANGE WITH SOLUTE SCALING: A MORE
EFFICIENT VERSION OF REPLICA EXCHANGE WITH SOLUTE TEMPERING 93

Chapter 6

Replica Exchange with Solute

Scaling: A more efficient version of

Replica Exchange with Solute

Tempering

Abstract

A small change in the Hamiltonian scaling in replica exchange with solute Tempering

(REST) is found to improve its sampling efficiency greatly especially for the sampling of

aqueous protein solutions in which there are large scale solute conformation changes. Like

the original REST (REST1), the new version (which we call REST2) also bypasses the poor

scaling with system size of the standard temperature replica exchange method (TREM),

reducing the number of replicas (parallel processes) from what must be used in TREM. This

reduction is accomplished by deforming the Hamiltonian function for each replica in such a

way that the acceptance probability for the exchange of replica configurations does not de-

pend on the number of explicit water molecules in the system. For proof of concept, REST2

is compared with TREM and with REST1 for the folding of the trpcage and β-hairpin in

water. The comparisons confirm that REST2 greatly reduces the number of CPUs required
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by regular replica exchange and greatly increases the sampling efficiency over REST1. This

method reduces the CPU time required for calculating thermodynamic averages and for the

ab initio folding of proteins in explicit water.

6.1 Introduction

Sampling the conformational space of complex biophysical systems, such as proteins, re-

mains a significant challenge, because the barriers separating the local energy minima are

usually much higher than kBT , leading to kinetic “trapping” for long periods of time and

quasi-ergodicity in the simulations. The Temperature Replica Exchange Method (TREM)

has attracted attention recently as a means for overcoming the problem of quasi-ergodicity.[88;

89; 90; 91; 92; 93] However, the number of replicas required to get efficient sampling in nor-

mal TREM scales as
√

f , where f is the number of degrees of freedom of the whole system,

which often limits the applicability of TREM for large systems. To overcome this problem,

we recently devised the method “Replica Exchange with Solute Tempering” (REST1),[94]

in which only the solute biomolecule is effectively heated up while the solvent remains cold

in higher temperature replicas, so that the number of the replicas required is much reduced.

It has been shown that the required number of replicas in REST1 scales as
√

fp, where fp

is the number of degrees of freedom of the solute, and the speedup versus the TREM, in

terms of converging to the correct underlying distribution, is O(
√

(f/fp) for small solutes

like alanine dipeptide.[94] However, when applying REST1 to large systems involving large

conformational changes, like the trpcage and β hairpin, it was found that REST1 can be

less efficient than TREM.[95] For example, we observed that the lower temperature replicas

stayed in the folded structure, the higher temperature replicas stayed in the extended struc-

ture, and the exchange between those two conformations was very low.[95] Moors et. al.[96]

and Terakawa et. al. [97] independently modified our REST1 scaling factor for Epw so that

approach could be easily run in GROMACS. Moors et. al. included only part of the protein

in the “hot region”, keeping the rest of it “cold” and called their method “Replica Exchange

with Flexible Tempering” (REFT). Interestingly, they observed an improved sampling ef-

ficiency in sampling a particular reaction coordinate involving the opening and closing of
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the binding pocket in T4 Lysozyme and suggested that the improved sampling efficiency for

their method over REST1 occurred because in REST1 all of the protein degrees of freedom

contribute to the acceptance probability for replica exchange whereas in REFT only those

degrees of freedom involved in the opening and closing of the pocket contribute. Thus the

acceptance probability for replica exchange is larger in REFT than in REST1. As we shall

see, this is not the only reason for the observed improvement.

In this paper we use the modified scaling of the Hamiltonians suggested by Moors

et. al.[96] and Terakawa et. al. [97] instead of the original scaling of our REST1, to

see if it samples the folded and unfolded conformations of proteins more efficiently than

REST1, although all of the protein degrees of freedom are allowed to be hot in this study.

For simplicity we call REST with this new scaling REST2. Application of REST2 to the

trpcage and the β-hairpin systems, the same systems that were problematic when sampled

by REST1, indicates that REST2 is much more efficient than REST1 in sampling the

conformational space of large systems undergoing large conformation changes. In what

follows, we will present the scaling, its connection with our original scaling of REST1, and

the results for the trpcage and β-hairpin systems for REST1, REST2, and TREM. We will

also discuss the reasons for the improvement found with REST2.

6.2 Methodology

In REST1, the total interaction energy of the system was decomposed into three compo-

nents: the protein intra-molecular energy, Epp; the interaction energy between the protein

and water, Epw; and the self interaction energy between water molecules, Eww. Replicas

running at different temperatures then evolve through different Hamiltonians involving rel-

ative scalings of these three components. To be specific, the replica running at temperature

Tm has the following potential energy:

EREST1
m (X) = Epp(X) +

β0 + βm

2βm
Epw(X) +

β0

βm
Eww(X). (6.1)

Here, X represents the configuration of the whole system, βm = 1/kBTm and T0 is the

temperature that we are interested in. The potential for replica running at T0 reduces to

the normal potential.
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Imposing the detailed balance condition, the acceptance ratio for the exchange between

two replicas m and n depends on the following energy difference:

∆mn(REST1) = (βm − βn)[(Epp(Xn) +
1

2
Epw(Xn)) − (Epp(Xm) +

1

2
Epw(Xm))]. (6.2)

Note that the water self interaction energy, Eww, does not appear in the acceptance ratio

formula, and this is the reason why only a relatively small number of replicas are sufficient

to achieve good exchange probabilities in REST1.

In REST1, both the potential energy and the temperature are different for different

replicas. According to the law of corresponding states, the thermodynamic properties of a

system with potential energy Em at temperature Tm, are the same as those for a system

with potential energy (T0/Tm)Em at temperature T0. So instead of using different potential

energies and different temperatures for different replicas, we can run all the replicas at

the same temperature albeit on different potential energy surfaces using the Hamiltonian

Replica Exchange Method (H-REM).[98; 99] To be specific, in REST2, all of the replicas are

run at the same temperature T0, but the potential energy for replica m is scaled differently,

EREST2
m (X) =

βm

β0
Epp(X) +

√

βm

β0
Epw(X) + Eww(X). (6.3)

In REST1, enhanced sampling of the protein conformations is achieved by increasing the

temperature of the protein, but between attempted exchanges with neighboring replicas,

replica m moves on the full intramolecular protein potential energy surface with high energy

barriers, although the other energy terms are scaled. In REST2, enhanced sampling is

achieved through scaling the intra-molecular potential energy of the protein by (βm/β0), a

number smaller than 1, so that the barriers separating different conformations are lowered.

Thus between attempted replica exchanges replica m moves on a modified potential surface

where the barriers in the intra protein force field are reduced by the scaling. We call REST

with this new scaling “Replica Exchange with Solute Scaling” (REST2). Thus REST1 and

REST2 arrive at the final distribution at temperature T0 by different but rigorously correct

routes. The acceptance criteria for replica exchanges are different in REST1 and REST2

but the Hamiltonians for the MD trajectories are also different in such a way that the

long time sampling at T0 should converge to the same ensemble for REST1 and REST2,
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albeit with different rates of convergence for the two methods. In REST2, the differences

between different replicas are the different scaling factors used, but to make connections

with REST1 we will keep using the term “temperature” for replica m which means the

effective temperature of the protein with the unscaled potential energy.

Note that the scaling factor used in REST2 for the interaction energy between the solute

and water for replica m is
√

(βm/β0), which is different from (β0 +βm)/2β0 used in REST1

(Eq. (6.1)). The interaction energy in Eq. (6.3) can be easily achieved by scaling the bonded

interaction energy terms, the Lennard-Jones ǫ parameters, and the charges of the solute

atoms by (βm/β0), (βm/β0), and
√

(βm/β0) respectively, and the scaling factor for the Epw

term,
√

(βm/β0), follows naturally from standard combination rules for LJ interactions.

This minor change of the scaling factor for Epw term, suggested in the original REST paper

but not appreciated at that time, proves to be important for the better performance of the

REST2. In addition, we find that scaling the bond stretch and bond angle terms does not

help the sampling, so in practice only the dihedral angle terms in the bonded interaction of

the solute are scaled and this makes the transition between different conformations of the

solute faster.

Another consequence of the different scaling factors used for the Epw term in REST1

and REST2 is the different acceptance ratio formulas in these two methods. It is easy to

show by imposing detailed balance condition that the acceptance ratio for exchange between

replicas m and n in REST2 is determined by:

∆mn(REST2) = (βm−βn)

[

(Epp(Xn) − Epp(Xm)) +

√
β0√

βm +
√

βn
(Epw(Xn) − Epw(Xm))

]

.

(6.4)

For replica m, the exchanges to neighboring replicas m − 1 and m + 1, are determined by

the fluctuation of Epp +
√

β0/(
√

βm +
√

βm−1)Epw and Epp +
√

β0/(
√

βm +
√

βm+1)Epw

respectively. Thus for discussion purposes, but not in the simulations, the fluctuation of

Epp + (1/2)
√

(β0/βm)Epw can be thought to determine the acceptance ratios for exchanges

of the replica at temperature Tm to neighboring replicas because, to a good approximation,

βm−1 ≈ βm ≈ βm+1. Note then that the difference in the acceptance ratio formulas between

REST1 and REST2 lies in the replacement of the factor 1/2 by the factor 1/2
√

(β0/βm)

multiplying the term Epw. This difference is also partly responsible for the improvement of
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REST2 over REST1 due to an approximate cancellation of Epp and the scaled Epw in the

acceptance probability or equivalently in ∆nm of REST2 but not in REST1, as we shall see.

6.3 Results and Discussion

Using REST2, we simulated the trpcage system with DESMOND [31] using 10 replicas with

effective temperatures of the solute at 300K, 322K, 345K, 368K, 394K, 423K, 455K, 491K,

529K, 572K. The OPLSAA force field[100] was used for the protein and the Tip4p model[32]

was used for water. All the replicas were started from the ‘native’ NMR structure (PDB

ID 1L2Y)[101] and the simulation lasted for 20ns. Conformations of the protein were saved

every 0.5ps, and exchange of configurations between neighboring replicas are attempted

every 2ps with an average acceptance ratio of about 30%.

Four representative temperature trajectories for the trpcage replicas started at 300K,

368K, 455K and 572K in the folded state are displayed in figure 6.1. It can be seen that

the temperature trajectory for each replica visits all of the temperatures many times, even

during the first 5ns of the simulation, and all of the replicas visit any given temperature

many times during the simulation. This is a good indication of the efficiency of the sampling.

By comparison, none of the temperature trajectories using REST1 were able to visit all of

the temperatures during a 5ns simulation for the same system (see Fig. 6b in ref. [95]). In

REST2 the time interval for attempted exchange was 2ps while in the REST1 simulation

0.4ps was used. We expect that even more rapid diffusion in temperature space could be

achieved if shorter time intervals between attempted exchanges were used in REST2.

In the REST1 simulations, it was observed that only the folded structures were sampled

at the lower temperatures while the folded structures were rarely sampled at higher tem-

peratures like 572K after an initial equilibration phase (see Fig. 7a in ref.[95]). The REST2

simulation of the protein heavy atom deviation (RMSD) from the native structure is dis-

played in figure 6.2 for replicas with effective temperature of the protein at 300K, 423K, and

572K. It is clear that both the folded structure and the unfolded structures are sampled at

300K even in the first 5ns simulation (inset of figure 6.2). At the intermediate temperature

(423K) the folded and unfolded structures are sampled with almost equal probability, and
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the unfolded structures dominate at high temperature (572K). But unlike in REST1, the

folded structures are also sampled at 572K after the initial equilibration phase.

The β-hairpin system is likewise more efficiently sampled by REST2. For the same

number of replicas and the same temperature levels used in REST1[95], the temperature

trajectories for three representative replicas, initially at low (T = 310K), intermediate (T =

419K), and high (T = 684K) temperatures, are shown in figure 6.3a. We also determined

the protein heavy atom RMSD versus time at each of the above temperatures when replicas

visited those temperatures which are shown in figure 6.3b. With a time interval of 2ps

for attempted exchange, each replica is able to visit all the temperatures within 5ns and

both the folded and unfolded structures are sampled at low and high temperatures. By

comparison, using REST1, none of the replicas were able to visit all the temperatures (See

Fig 3b in reference, [95]) whereas the low temperature replicas stayed folded and the high

temperature replicas stayed unfolded after the initial stage (See Fig 4 in reference. [95])

Thus REST2 is clearly superior to REST1 for both the trpcage and the β-hairpin.

The different scaling factors used for the Epw term in REST1 and REST2 are respon-

sible for the improvement of REST2 over REST1 as expected from the discussion given

in the previous section. Consider the constant temperature molecular dynamics trajectory

between attempted replica exchanges. In REST1, the scaling factor for the Epw term was

(β0 + βm)/2βm. In the limit when Tm → ∞, REST1 will effectively sample the distri-

bution exp(−β0(Epw/2 + Eww)). Since the unfolded structure has more favorable solute

water interactions than the folded structure, replicas at higher temperature will sample the

unfolded structure with dominating probability in REST1, and this was indeed observed in

REST1 simulations for the trpcage as well as for the β-hairpin.[95] In REST1, the replicas

at high temperatures can not sample the whole conformational space efficiently and replicas

at high and low temperatures sample completely different regions of conformation space.

This is one of the reasons for the observed inefficient sampling in REST1. By comparison,

in REST2, we use a scaling factor
√

βm/β0 for the Epw term. In the limit when Tm → ∞,

REST2 will effectively sample the distribution exp(−β0Eww). So both the folded and un-

folded structures are sampled efficiently during the trajectories between attempted replica

exchanges for the higher temperature replicas in REST2, and this is one of the reasons for
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why REST2 is more efficient than REST1. This is shown in fig. 6.4, where it can be seen

that in a constant temperature MD simulation using the scaled Hamiltonian of REST2 at

high temperature the heavy atom RMSD for the β-hairpin fluctuates from the native struc-

ture from values close to 2.5Å to 5Å and back again, whereas in fig. 4 in ref[95] it stayed

above 4Å after short times.

Fig. 6.5 displays the relation between the intra-molecular potential energy of the trpcage

system, Epp, and the interaction energy between the trpcage and water, Epw, for replicas

with different effective temperatures of the protein in REST2. At each temperature, there

is a strong anti-correlation between those two terms. This is easy to understand: the more

extended the structure is, the less favorable the intra-molecular potential energy of the

protein, and the more favorable the interaction energy between the protein and water (which

scales with the surface area of the protein). With increasing temperature, the probability for

the unfolded structure gets larger, and the intra-molecular potential energy of the protein

gets less negative. For the interaction energy between the protein and water, there are two

counterbalancing effects. On the one hand, the higher the temperature, the more favorable

the unfolded structure, and the more favorable the interaction between water and protein.

On the other hand, every single component of the potential energy would increase with

increasing temperature because of the generalized equi-partition theorem. This is exactly

what we observe in fig. 6.5: with increasing temperature, the Epp term get less negative

while the Epw term increases very slowly because of the compensation of the two effects

mentioned above. This is clearly demonstrated in figure 6.6a and figure 6.6b, where the

distribution of Epp and Epw are displayed for replicas at different temperatures. At 394K,

both Epp and Epw are binomially distributed with the folded and unfolded structures almost

equal probability. Below 394K, the folded structure dominates and above 394K the unfolded

structure dominates. This is the reason why replicas running below 394K and above 394K

were not able to exchange efficiently in REST1. [95] While Epp increases monotonically with

increasing temperature, the behavior of Epw is more complicated. Below 394K, the center

of the distribution for Epw gets less negative, but the distribution gets boarder in the left

tail of the distribution because of the increased probability of extended structures. Above

394K, Epw increases with temperature because of the equipartition theorem.
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The absence of a compensating term Eww in the replica exchange probability of REST1

was suggested in our previous paper[95] to explain the observed better performance of

TREM for the exchange between folded and unfolded structures where there is a big dif-

ference in the energies of these two states,[95] but in the AppendixB we show why we now

think that this is not the reason for this difference. Actually the compensation or lack

of compensation between Epp and the scaled Epw is more important than the loss of any

compensation between Eww and Epp.

In REST1, it is the fluctuation of (Epp+(1/2)Epw) that determines the acceptance ratio.

While the two terms can compensate each other to some extent, they both tend to increase

with increasing temperature of the solute. By comparison, in REST2, it is the fluctuation of

Epp + (1/2)
√

(β0/βm)Epw that determines the acceptance ratio. Since
√

(β0/βm) increases

with increasing temperature of the solute, it will compensate the decrease of the magnitude

of Epw. (The Epw term is negative, and the magnitude of it decreases with increasing tem-

perature.) Fig. 6.6(c) displays the distribution of (1/2)
√

β0/βm)Epw for replicas at different

temperatures. It is quite clear that the factor
√

β0/βm perfectly compensates the increase

of Epw. Below 394K, the distribution is centered at about −380kcal/mol corresponding

to the folded structure; above 394K, the distribution is centered at about −495kcal/mol

corresponding to the unfolded structure. At 394K, the folded and unfolded structures are

almost equally distributed. With increasing temperature, the probability of the unfolded

structure increases and the probability of folded structure decreases. The difference in the

Epp term between the folded and unfolded structures is compensated by the difference in

(1/2)
√

β0/βm)Epw term, which makes the distribution of Epp + (1/2)
√

β0/βm)Epw have

sufficient overlap for neighboring replicas. (Figure 6.6d) The approximate cancellation of

the contributions Epp and Epw in REST2 and their smaller cancellation in REST1 makes

the acceptance ratio for replica exchange larger in REST2 than in REST1, and this is part

of the reason for the more efficient sampling in REST2 than in REST1. For the trpcage

system studied here, with the same number of replicas and the same temperature levels,

we obtained an average acceptance ratio for REST2 of 30%, while in REST1 only 20% was

obtained. In addition the more frequent barrier crossings in the the MD trajectories of

REST2 than in REST1 contributes considerably to the better efficiency of REST2.
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As mentioned, the rate of convergence of REST1 (relative to TREM) to the correct un-

derlying distribution was shown to scale as O(
√

(f/fp) for small solutes like alanine dipep-

tide; however, for systems involving large conformation changes, REST1 fails to achieve this

expected speed up.[94] The results presented in the above sections clearly demonstrate that

REST2 is much more efficient than REST1 for sampling systems with large conformational

change, but does REST2 do better compared to TREM for these problematic systems?

To answer this question, we simulated the trpcage system starting from an almost fully

extended configuration using both TREM and REST2. As before, 10 replicas were used for

REST2, and 48 replicas were needed in TREM to maintain an appropriate acceptance ratio.

It should be noted that the replica exchange ratio for TREM is 10% whereas for REST2 it

is 30% so that we could have used fewer replicas in REST2 to get the same exchange ratio

as in TREM. Within 2ns simulations, none of the replicas in TREM were able to visit all

the temperatures while in REST2 all 10 replicas were able to visit all of the the tempera-

tures, indicating that REST2 is much more efficient in diffusing through temperature space

than TREM. The distribution of intramolecular energy of the trpcage for the lowest level

replica calculated from TREM and REST2 are shown in fig. 6.7. For trajectories of the

same length, REST2 samples a broader region in conformation space than TREM, and in

addition the cpu cost of generating equal length trajectories is greater for TREM than for

REST2 (see the appendix B).

6.4 Conclusion

We find that Replica Exchange with Solute Scaling (REST2) more efficiently samples the

conformation space than REST1. We used a different scaling factor for the interaction

energy between the protein and water, Epw, than we used in REST1. Application of REST2

to the trpcage and β-hairpin systems results in an improvement over REST1 in sampling

large systems involving large conformational energy changes. The better efficiency of REST2

over REST1 arises because there is a greater cancellation between the scaled terms Epp

and Epw in REST2 than in REST1. This gives rise to REST2’s larger replica exchange

probability than REST1’s, and also to its better sampling between replica exchanges at
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high temperature, as we now discuss. For example, for T0 = 300K and Tm = 600K, the

deformed potential for REST2 is E
(REST2)
m = 0.5Epp + 0.71Epw + Eww, but it is run at

T0 = 300K; whereas for REST1 it is E
(REST1)
m = Epp + 1.5Epw + 2Eww but it is run at

Tm = 600K. The exponents in the Boltzmann factors for these two cases, are

β0E
REST2
m = βm[Epp + 1.41Epw + 2.0Eww],

and

βmE(REST1)
m = βm[Epp + 1.5Epw + 2.0Eww].

The only difference between these is due to the different scaling factors of the Epw term,

which for T0 = 300K and Tmax = 600K, is (1/2)(β0 + βm)/βm = 1.5 vs
√

β0/βm ≈ 1.41.

We have seen in Fig. 6.5 that the Epw term is usually much larger in magnitude than

the Epp term, so a small change in the scaling factor of the Epw term leads to better

sampling efficiencies for the high temperature MD between replica exchanges for REST2

than REST1. For the trpcage and β-hairpin systems studied here, in REST2 both folded

and unfolded conformations are sampled at higher temperature replicas whereas in REST1

only the unfolded conformational space of the solute are sampled at higher temperature

replicas. Because of the larger replica exchange probability and because of better constant

temperature sampling these folded and unfolded conformations filter down to the replica

at the temperature of interest, T0. In addition, since all the replicas are running at the

same temperature in REST2, there is no need to rescale the velocity during exchange

process which will save some computer time and makes it easier to implement in various

MD programs. We also found REST2 to be more efficient in sampling the trpcage than

TREM, because of the much smaller number of replicas and faster cpu times required to

generate the MD trajectories in REST2 compared to TREM. In addition, the lowest level

replica was found to explore a larger region of energy space for REST2 than for TREM for

the same MD trajectory lengths for each replica. Thus, REST2 speeds up the sampling of

the trpcage, by at least a factor of 9.6 over TREM.

We believe that REST2 should be used for investigating large protein-water systems es-

pecially when there are large conformation energy changes in the protein. The improvement

comes from: (a) the larger replica exchange probabilities and concomitantly the smaller
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number of replicas that can be used, and (b) the more efficient MD sampling of the confor-

mational states between replica exchanges on the upper replica potential energy surfaces.



CHAPTER 6. REPLICA EXCHANGE WITH SOLUTE SCALING: A MORE
EFFICIENT VERSION OF REPLICA EXCHANGE WITH SOLUTE TEMPERING 105

0 5000 10000 15000 20000
time (ps)b

300

350

400

450

500

550

600

T
 (

K
)

0 5000 10000 15000 20000
time (ps)d

300

350

400

450

500

550

600

T
 (

K
)

0 5000 10000 15000 20000
time (ps)a

300

350

400

450

500

550

600

T
 (

K
)

0 5000 10000 15000 20000
time (ps)c

300

350

400

450

500

550

600

T
 (

K
)

Figure 6.1: Temperature trajectories of four representative replicas with the effective tem-

perature of the protein started at 300K (a), 368K (b), 455K (c), and 572K (d) for the trpcage

system starting from the native structure. It should be noted that the temperatures referred

to are the effective temperatures of the protein which arrises from the scaling of the force

field parameters of the protein, while the actual simulation is done at temperature T0.
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Figure 6.2: Protein heavy atom RMS deviation from the native structure as a function

of simulation time for replicas with different effective temperatures of the protein for the

trpcage system. Inset of the figure highlights the RMSD for replica at effective temperature

300K in the first 5ns simulation.
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Figure 6.3: a. The temperature trajectories for three representative replicas with the ef-

fective temperature of the protein initially at low (T = 310K), intermediate (T = 419K),

and high (T = 684K) temperatures for the β-hairpin system. b. The protein heavy atom

RMSD versus time at each of the above temperatures when replicas visit those tempera-

tures. (Black, T = 310K; Red, T = 419K; Green, T = 684K)
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Figure 6.4: The heavy atom RMSD from the native structure of the β-hairpin as a func-

tion of simulation time with the effective temperature of the protein at 600K using the

scaled Hamiltonian of REST2 without attempted replica exchanges. Both RMSD > 4Å

and < 4Å are sampled, by comparison in REST1 only RMSD > 4Å are sampled at high

temperatures.(Fig. 4 of reference [95])
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Figure 6.5: Anti-correlation between the intra-molecular potential energy of the protein and

the interaction energy between the protein and water for replicas with different effective

temperatures of the protein for the trpcage system.
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Figure 6.6: a. The distribution of intra-molecular potential energy of the protein for replicas

with different effective temperatures of the protein. b. The distribution of interaction energy

between protein and water for replicas with different effective temperatures of the protein.

c. Distribution of (1/2)
√

β0/βmEpw for replicas with different effective temperatures of

the protein. d. Distribution of Epp + (1/2)
√

β0/βmEpw for replicas with different effective

temperatures of the protein.
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est temperature replica using TREM and REST2 starting from an almost fully extended

structure.
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Chapter 7

On achieving high accuracy and

reliability in the calculation of

relative protein-ligand binding

affinities

Abstract

We apply a new free energy perturbation simulation method, FEP/REST, to two modifica-

tions of protein-ligand complexes which lead to significant conformational changes, the first

in the protein and the second in the ligand. The new approach is shown to facilitate sam-

pling in these challenging cases where high free energy barriers separate the initial and final

conformations, and leads to superior convergence of the free energy as demonstrated both

by consistency of the results (independence from the starting conformation) and agreement

with experimental binding affinity data. The second case, consisting of two neutral throm-

bin ligands which are taken from a recent medicinal chemistry program for this interesting

pharmaceutical target, is of particular significance in that it demonstrates that good results

can be obtained for large, complex ligands, as opposed to relatively simple model systems.

To achieve quantitative agreement with experiment in the thrombin case, a next generation
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force field, OPLS 2.0, is required, which provides superior charges and torsional parameters

as compared to earlier alternatives.

7.1 Introduction

Biological processes often depend on protein-ligand binding so that accurate prediction of

protein-ligand binding affinities is of central importance in structural based drug design.[49;

102; 103; 104] Among the existing methods used to calculate these binding affinities in ex-

plicit solvent, free energy perturbation (FEP) simulations provides one of the most rigorous

simulation methods. Usually FEP is applied in the lead optimization stage of structure

based drug design, and is used to rank-order a series of congeneric ligands in order to

choose the most potent ones for further investigation.[49; 102; 103; 104]

Despite the potentially large impact that FEP could have on structure based drug de-

sign projects, practical applications in an industrial context have been limited over the

past decade. High accuracy and reliability in the methodology are required to make pro-

ductive decisions about compound modification during late stage lead optimization, but

neither has yet been demonstrated by existing implementations. Two types of challenges

stand in the way of developing FEP into a true engineering platform for drug candidate

optimization. Firstly, converging explicit solvent simulations to the desired precision is

far from trivial, even with the immense computing power that is currently available us-

ing low cost multiprocessor clusters or cloud computing platforms of various types. Sec-

ondly, errors in the potential energy models must be reduced to the point where they

lead to errors in a converged calculation that are smaller than the desired errors in rel-

ative binding affinities compared to experiment, typically on the order of 0.5 kcal/mole.

While the present article focuses primarily upon a new algorithm design to address the

sampling challenge, we also provide an example, taken from the recent medicinal chem-

istry literature, illustrating that existing energy models, while substantially improved over

the past 20 years via extensive effort in a number of research groups[105; 106; 100; 107;

108], require further refinement if the demanding target accuracy specified above is to be

achieved.
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FEP provides an in-principle rigorous method to calculate protein-ligand binding affini-

ties within the limitations of the potential energy model as long as the simulation time is

long enough that all the important regions in phase space are sampled. In practice, however,

problems arise when there are large structural reorganizations in the protein or in the ligand

upon the formation of the binding complex or upon the alchemical transformation from one

ligand to another.[49; 103; 104] In these cases, there can be large energy barriers separating

the different conformations and the ligand or the protein may remain kinetically trapped in

the starting configuration for a very long time during brute-force FEP/MD simulations. The

incomplete sampling of the configuration space results in the computed binding free energies

being dependent on the starting protein or ligand configurations, thus giving rise to the well

known quasi-nonergodicity problem in FEP. The slow structural reorganizations, even at a

single side chain level,[58; 109] or some key solvent molecules in the binding pocket,[110; 3;

111] can affect the calculated binding affinities to a significant degree.

Recently, many groups have made efforts to reduce or eliminate the quasi-nonergodicity

problem in FEP. In 2007, Mobley et al. proposed the “confine-and-release protocol”,[58]

using umbrella sampling to calculate the potential of mean force (PMF) along the prior

known slow degree of freedom. However, this method requires prior knowledge of the slow

degrees of freedom, making it difficult to use for more complicated real systems. In 2010,

the Roux group designed the 2-dimensional replica exchange method (REM) to compute

absolute binding free energies of ligands,[109] with one REM on the Hamiltonian space for

alchemical transformation, and the other REM on the sidechains surrounding the binding

pocket which were assumed to include all the slow degrees of freedom without prior knowl-

edge. However, the number of parallel replicas required in this method is very large, and it

is nontrivial to apply this method to the case where the slow degrees of freedom are on the

ligands.

In this article, we introduce a very efficient protocol called FEP/REST, which com-

bines the recently developed enhanced sampling method REST (Replica Exchange with

Solute Tempering)[94; 112; 96] into normal FEP to deal with the structural reorgani-

zation problem and use it to calculate relative protein-ligand binding affinities in some

troublesome cases. The method assumes that the slow degrees of freedom are located



CHAPTER 7. ON ACHIEVING HIGH ACCURACY AND RELIABILITY IN THE
CALCULATION OF RELATIVE PROTEIN-LIGAND BINDING AFFINITIES 113

within a close neighborhood of the bound ligand without prior knowledge. The compu-

tational cost of this method is comparable with normal FEP, and it can be very eas-

ily generalized to more complicated systems of pharmaceutical interest. We apply this

method on two systems; (a) the L99A mutant of the T4 Lysozyme (T4L/L99A),[113;

114] a popular model system with an engineered nonpolar binding pocket where the struc-

tural reorganization happens in the protein, and (b)Thrombin (Factor IIa),[115; 116; 117]

an important drug target in the coagulation cascade where the structural reorganization

happens in the ligand. (See Fig. 7.1) In both cases, the relative binding affinities calculated

using FEP/REST agree with experiment within the error bars independent of starting con-

formation of the protein or the ligand, while normal FEP fails to characterize the effects

of structural reorganization and thus gives incorrect free energies. In the latter case, we

show that use of an upgraded force field model is essential in achieving the accuracy targets

delineated above.

7.2 Results

Upon alchemical transformation from one ligand to another, structural reorganization might

occur in the protein or in the ligand. In this article, we study two systems, the T4L/L99A

and Thrombin, using both normal FEP method and the FEP/REST protocol as described in

the methods section. Many aromatic molecules can bind to the nonpolar binding pocket of

T4L/L99A and experimental binding affinity data are available for comparison.[114] Despite

the rigidity of the protein and the simplicity of the nonpolar pocket, accurate prediction

of the relative binding affinities for the ligands has proved challenging for methods ranging

from rapid virtual screening and MM-GBSA to more rigorous FEP methods.[118; 119; 103;

104] The difficulty arises from the key residue Val111 surrounding the binding pocket: in

the binding complex of small ligands like benzene and toluene, the Val111 stays in the

“trans” conformation as in the apoprotein; in the binding complex of larger ligands like p-

xylene and o-xylene, the Val111 changes its rotameric states from the “trans” conformation

(χ ≈ −180) to the “gauche” conformation (χ ≈ −60),(Fig. 7.1a) which is usually called an

induced fit effect.[113; 58; 109] Thrombin, a serine protease, is a very important drug target
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in the coagulation cascade for many thromboembolic diseases such as deep vein thrombosis,

myocardial infarction, and pulmonary embolism.[117; 115; 116] With the discovery of a

neutral P1 substitute of the native substrates, a new generation of more potent inhibitors

were designed with high levels of bio-availability and good pharmacokinetic properties,

among which CDA and CDB are representative.[117; 115] In the binding complexes of

CDA and CDB, the structures of the protein are essentially the same. However, with the

addition of a methyl group on the P1 pyridine ring next to the fluorine atom, the ring

flips.[117] This is shown in Fig. 7.1b where the two binding complexes are superimposed.

While the fluorine atom on the P1 pyridine ring is pointing out of the S1 pocket in ligand

CDA (denoted as “F-out” conformation), it is pointing into the S1 pocket in ligand CDB

(denoted as “F-in” conformation). Both the reorienting of Val111 and the flipping of the

pyridine ring are sufficiently slow that they are trapped in the initial conformation on the

time scale of typical FEP simulation.

The estimated relative binding affinities of p-xylene with respect to benzene binding to

T4L/L99A calculated using normal FEP, lambda hopping FEP (replica exchange between

neighboring lambda windows),[109; 120] and FEP/REST starting from different conforma-

tions of the protein (“trans” vs. “gauche” of Val111) are given in Table 7.1. With a 2ns

simulation, the normal FEP predicted relative binding affinities depend on the starting

conformation and neither of them is within the error bars to the experimental result.[114]

Starting from the “trans” conformation, the predicted binding affinity is more positive than

experimental result (0.95 vs. 0.52 kcal/mol); starting from the “gauche” conformation, the

predicted binding affinity is less positive than experimental result (0.30 vs. 0.52 kcal/mol).

Using lambda hopping, the predicted binding affinities are a little closer to the experimen-

tal value than normal FEP, but a similar discrepancy as with normal FEP was found. By

comparison, the estimated binding affinities determined by FEP/REST for the same 2ns

simulation time are independent of the starting conformations, and are very close to the

experimental result.

The side chain dihedral angle of Val111 (N-CA-CB-CG1) for the initial lambda window

(binding complex of benzene) and the final lambda window (binding complex of p-xylene) as

a function of simulation time starting from the “trans” conformation using normal FEP and
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FEP/REST are given in Fig. 7.2. It is clear that, starting from the “trans” conformation,

the Val111 was trapped in that conformation during a 2ns simulation in normal FEP. By

comparison, using FEP/REST, for the same 2ns simulation time the Val111 was able to

make many transitions between the different rotameric states , and while the initial state

favors the “trans” conformation, the final state favors the “gauche” conformation after

a short equilibration time, in agreement with experimental results.[113] Similar kinetic

trapping in normal FEP and enhanced sampling in FEP/REST are observed starting from

the “gauche” conformation of Val111.

We determined the probabilities for the initial and final states being in the “trans,”

“gauche+,” and “gauche-” conformations, and calculated the free energy to confine the

binding complex in each of these conformations using FEP/REST. For the binding com-

plex of benzene (initial state), the probability of the “trans” conformation is 0.6, of the

“gauche+” conformation is 0.4, but because the free energy of the remaining “gauche-”

conformation is very high, its probability is very close to 0. For the binding complex of

p-xylene (final state) the probability of the “gauche” conformation is 0.75 and of the “trans”

conformation is 0.24, in agreement with previous results using umbrella sampling (0.76, 0.23,

0.002) or 2 dimensional replica exchange with a boosting potential (0.73, 0.16, 0.11).[58;

109] In normal FEP calculations, the protein was found to be “virtually” confined in the

starting “trans” or “gauche” conformation, and we can correct their free energies by adding

the “confine and release” free energies for each conformation according to the confine and re-

lease protocol proposed by Mobley et al.[58]. We thus add (0.90+0.30-0.85=0.35 kcal/mol)

for the “trans” conformation, and (0.30+0.54-0.17=0.67 kcal/mol) for the “gauche” confor-

mation, finding that the corrected results fall within the error bars of experimental value.

This validates that the error of normal FEP is due to incomplete sampling of conformational

space.

We used the FEP and FEP/REST protocols to calculate the relative binding affinity of

ligands CDB and CDA to Thrombin, using the OPLS 2005 force field for the ligands,[100;

108] starting from different conformations of the ligand (denoted by “F-in” or “F-out”

respectively). The results from 3ns simulations are given in table 7.2. The structures

of the ligands are much more complicated than the T4L/L99A case, and the error bars
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for these free energy results are larger. Similar to the T4L/L99A system, the calculated

binding affinities using normal FEP depend on the starting conformation of the ligands,

and neither of them comes close to the experimental value.[117] Using FEP/REST, the

calculated binding affinities are within error bars of each other, independent of the starting

conformation. From the simulated trajectories, we observed that the P1 pyridine ring

was trapped in the starting conformation using normal FEP, while it flipped many times

using FEP/REST, indicating the efficiency of enhanced sampling. However, none of these

calculated free energies are within error bars of the experimental value.

Upon closer investigation of the FEP/REST simulated trajectories using the OPLS 2005

force field for the ligands, we found another important conformation of the ligand different

from the two conformations identified in the crystal structures. The correct binding pose of

ligand CDA from the crystal structure and the erroneous conformation from the simulation

are given in Fig 7.3. In the correct binding pose, the P3 pyridine ring of the ligand is in the

S3 pocket of the protein while in the erroneous conformation the P3 pyridine ring moves

out of the S3 pocket pointing into solvent. The S3 pocket is a hydrophobic pocket and the

P3 pyridine ring binds to the S3 pocket through hydrophobic interaction and edge-to-face

σ−π interaction between P3 aryl group and Trp215.[117] However, in the OPLS 2005 force

field, there are large partial charges on the atoms of the pyridine ring (as large as -0.68 on

the nitrogen atom), so the P3 pyridine ring incorrectly prefers to point into solvent. (See

Table C.1 in AppendixC) In addition, the distribution of the dihedral angle involved in

the flipping of P1 pyridine ring (N-C-C-C labeled in Fig. 7.1) also has an erroneous state

which might be due to the incorrect dihedral angle terms in the OPLS 2005 force field (See

Fig. C.2 in AppendixC). These investigations point out the deficiency of the OPLS 2005

force field and lead us to use an improved version of force field for the ligands, OPLS 2.0,

which assigns the partial charges and the bonded interaction terms through high accuracy

quantum mechanics calculation. The major differences between the OPLS 2005 and OPLS

2.0 force fields are the different partial charges on the atoms of the pyridine ring and the

different torsional angle terms. (See detailed comparison in AppendixC)

The calculated relative binding affinities using the OPLS 2.0 force field for the ligands

from normal FEP and FEP/REST are given in table 7.3. Significantly improved results are
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obtained compared with those obtained from the OPLS 2005 force field. Using normal FEP,

the calculated binding affinities depend on the starting conformation, with an error of about

0.6 kcal/mol compared with experimental result starting from the “F-out” conformation. By

comparison, the FEP/REST predicted results are within the error bar of the experimental

value independent of the starting conformation of the ligand. The dihedral angle involved

in the flipping of the pyridine ring ( N-C-C-C labeled in Fig. 7.1) as a function of simulation

time for the initial and final states using normal FEP and FEP/REST starting from the

“F-out” conformation (χ ≈ −100) are given in Fig. 7.4 a and 7.4 b. It is clear that the ligand

was trapped in that conformation using normal FEP while it flipped between the “F-out”

(χ ≈ −100) and “F-in” (χ ≈ 90) conformations many times after an initial equilibration

time using FEP/REST. A similar enhanced sampling effect was observed using FEP/REST

starting from the “F-in” conformation.

The flipping of the pyridine ring in the Thrombin system occurs more slowly than

the transitions between rotameric states in the T4L/L99A system, and more intermediate

lambda windows were needed to help converge its free energy, thus it takes a much longer

time to equilibrate the two “F-in” and “F-out” conformations. To shorten the simulation

time to get close to equilibrium, we performed two additional FEP/REST simulations; (a)

one with the first half of the lambda windows starting from “F-in” conformation and the

last half of the lambda windows starting from “F-out” conformation (denoted as “F-in/out”

in table 7.3), and (b) the other with an inverted starting conformation for each lambda

window (denoted as “F-out/in”). The calculated relative binding affinities from these two

simulations (table 7.3) are within the error bar of the experimental result independent of

whether starting conformations (a) or (b) are used. The dihedral angle involved in the

flipping of the pyridine ring is given as a function of simulation time for the initial and

final lambda windows in Fig. 7.4c. Indeed, the time required to get close to equilibrium was

much shorter than what was found from a single conformation for each lambda window and,

importantly, higher precision results were obtained. Thus when the binding poses for the

two ligands are known apriori, it will be more efficient to start the FEP/REST simulation

with each lambda window starting from different conformations.

It should be pointed out that the final equilibrium distribution and the free energy are
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independent of the starting conformation for each replica as long as there are a sufficient

number of conformational transitions in the middle lambda window in FEP/REST. Using

different starting conformations for different replicas, as opposed to the same starting con-

formations, can shorten the simulation time for getting close to equilibrium within the same

error bars. This is because the time scale for a transition from one conformation to another

in MD is much longer than the time scale for the exchange of two conformations between

neighboring replicas. We note that the time required to truly equilibrate is the same for

any starting configuration except if we started with the equilibrium distribution. The fact

that the calculated free energies using different replica starting conformations (“F-in”, “F-

out”, “F-in/out”, “F-out/in”) are within the error bars of each other indicates that a 3ns

simulation time is sufficiently long enough to equilibrate the generalized ensemble in this

case.1

In the FEP/REST simulations, we also calculated the probabilities for the initial and fi-

nal states being in the two conformations (“F-in” vs “F-out”) which is displayed in Fig. 7.4d.

For the final state (binding complex of CDB), the “F-in” conformation is the major con-

formation, in agreement with the experimental crystal structure; however, for the initial

state (binding complex of CDA), the two conformations have almost equal probability in

contrast to the experimental crystal structure where it was found to be in the “F-out”

conformation. This discrepancy might be due to the different physical conditions in exper-

iment (crystal) and in simulation (in solution). To confirm this argument, we performed

another two FEP/REST simulations with the protein heavy atoms harmonically restrained

to the initial position (corresponding to the crystal structure) starting from different ligand

conformations for each lambda window. The trajectories from these simulations confirm

that the “F-out” conformation is a major conformation for the initial state and the “F-in”

conformation is a major conformation for the final state when the protein heavy atoms are

restrained (see Fig. 7.5), validating the hypothesis that the solution environment may shift

1 For example, in two state kinetics, the deviation of the concentration of reactant (or product) from

its equilibrium concentration decays as δc(t) = δc(0) exp(−t/τ ), where τ is the relaxation time. Thus all

choices of the initial deviation decay on the same time scale, but the smaller δc(0) is, the less time it will

take to reach δc = 0 within the specified error bar.
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the relative population of the two conformations from what is found in the solid. Interest-

ingly, the calculated relative binding affinities from the two simulations with protein heavy

atoms restrained (Table 7.3) converge to the same value but different from experimental

result by about 0.8 kal/mol, indicating a 0.8 kcal/mol difference in protein restrain free

energy for the two binding complexes.

7.3 Discussions and Conclusions

The results reported comprise only a few test cases. However, the performance of the algo-

rithm is encouraging with regard to overcoming problems due to significant configurational

changes, in either the protein or ligand, upon ligand modification. The REST methodology

in both examples facilitates rapid interconversion between the phase space region separated

by barriers in normal FEP, at a relatively low computational cost and without the require-

ment of prior knowledge of the slow degrees of freedom. If these properties are shown to

hold for a larger, diverse set of test cases, this will represent a significant advance in the

convergence of FEP simulations. Other groups have succeeded in the T4L/L99A case, but

as pointed out above, at a substantially higher computational cost. The thrombin exam-

ple is no longer a toy problem, but represents the sort of modification made on a routine

basis on complex ligands in late stage drug discovery projects. The striking success of

FEP/REST in this case offers hope that it will be applicable, in its current form, to real

world problems as well as model systems. The efficient sampling of FEP/REST allows us

to observe that one is free to play with the Hamiltonian of intermediate states in FEP as

long as the correct physical states are achieved at the end-points. It is also worth noting

that both the 2-dimensional replica exchange method[109] and FEP/REST in their current

forms enhance the sampling only of the localized region around the ligands, which might

not be sufficient for treating delocalized conformational changes (allosteric regulation). A

possible procedure to treat this problem is the following: (1) include a larger “hot” region

in a first round FEP/REST simulation, and find those key residues responsible for the al-

losteric regulation; (2) run a second round FEP/REST just including those key residues in

the “hot” region.
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Three other points are worthy of discussion. Firstly, the improved results obtained

with OPLS 2.0, as opposed to OPLS 2005, were achieved without any specific parameter

adjustment based on the experimental FEP data. Rather, much more extensive fitting

to basic quantum mechanical data for charges and torsional parameters yields a superior

force field which can be expected to display similarly enhanced results for other ligands

and receptors. Preliminary results in which statistical measures of errors in conformational

energies for OPLS 2.0 as compared not only to OPLS 2005, but also to alternative force

fields like MMFF, support this suggestion.[121] For ligands relevant to medicinal chemistry

efforts, it is likely that improvements in both sampling and the potential energy model are

needed to approach agreement with high quality experimental data on a routine basis.

Secondly, our results suggest that FEP/REST methods can be substantially improved

in efficiency and reliability if the endpoints of the calculation (i.e, the co-crystallized struc-

tures that would be obtained experimentally for the two ligands) are known. Often, one

endpoint is available from experiment (the lead compound which is being modified in the

lead optimization process). The other endpoint can then be generated via conformational

search calculations using induced fit docking (IFD) algorithms[122], which are typically

much less expensive than the FEP simulation itself. In some challenging cases the IFD

calculation will generate a small number (typically 2-3) alternatives for the endpoint; here,

FEP/REST can be used to select between these alternatives with improved accuracy, while

at the same time using the truncated list of alternatives to reduce FEP/REST calculation

time, and focus FEP/REST sampling on relevant phase space regions.

Finally, the differences between results obtained with crystal packing as compared to

free solution, to our knowledge the first to rigorously explore this issue, are of significant

interest, although a large data set will have to be investigated to draw firm conclusions.

One would not expect crystal packing to lead to very large changes in structure or bind-

ing affinity in an active site cavity (which typically is recessed and hence has few direct

contacts with neighboring protein molecules of the crystal) except in unusual cases, and

our results are consistent with this intuition. However, a nontrivial effect, big enough to

be relevant to the potency targets in drug discovery projects, is observable, and the better

agreement of the solution calculation with experiment (performed in solution) confirms that
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the computational estimation of the effect is likely to be a good estimate.

7.4 Methods

7.4.1 FEP/REST

The incomplete sampling of configurational space in normal FEP results from the large

energy barriers separating the relevant conformational states. Our strategy to solve the

quasi-nonergodicity problem is to combine enhanced sampling techniques into FEP.

Recently, our group proposed Replica Exchange with Solute Tempering (REST) in

which, through Hamiltonian scaling, only a small region of interest of the system is ef-

fectively “heated up” while the rest of the system stays “cold.”[94] In this way, a small

number of replicas are sufficient to maintain the sampling efficiency, in contrast to the large

number of replicas needed in the usual temperature replica exchange. Here, we are using a

more recently developed version of REST (called REST2) where the effective temperature

of the hot region is achieved at the Hamiltonian level through scaling the potential energy

terms of the hot region.[112]

In FEP/REST, along the alchemical transformation from the initial lambda window to

the final lambda window, the effective temperature of the “hot region” (the region we are

interested in, usually including the ligand and the protein residues surrounding the binding

pocket) is gradually increased from T0 for the initial lambda window to Th for the middle

lambda window, and then gradually decreased from Th for the middle lambda window back

to T0 for the final lambda window. The effective temperature of the hot region is achieved

by scaling the Hamiltonian, and exchange of configurations between neighboring lambda

windows is attempted using the Hamiltonian Replica Exchange Method (HREM).[98] (All

of the replicas are run at the same temperature, and the velocities and kinetic energies

of all of the atoms whose interactions are scaled remain always in contact with a single

heat bath at this same temperature.) In this way, enhanced sampling is achieved through

the increased effective temperature of the hot region at intermediate lambda windows,[112]

and through replica exchange the initial and final lambda windows can sample the different

conformations. The effective temperature for the initial and final states is at T0, which
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is the temperature we are interested in, and the sum of free energy difference between all

neighboring lambda windows gives the relative binding affinity between the two ligands.

The intermediate accessory states not only help to bridge the different phase space regions

for the initial and final states as in normal FEP, but also helps the sampling of different

conformational states through the increased temperature of the hot region. This method

does not require prior knowledge of the slow degrees of freedom and can be easily applied

to complicated real systems of medicinal interest.

7.4.2 Details of the simulations

In FEP/REST, in addition to the different energy terms introduced in alchemical transfor-

mation in normal FEP, the different effective temperatures of the “hot region” in REST

will make the free energy difference between neighboring lambda windows larger, and the

precision of the free energy results might be reduced. This is the price paid to get en-

hanced sampling. The larger the hot region, and the higher the effective temperature of the

hot region, the stronger the enhanced sampling effect, but the error bars in the resulting

calculated free energy energies between neighboring lambda windows are also increased.

So a proper choice of the hot region and effective temperature profile reflects a trade off

between the precision of free energy results and the efficiency of the enhanced sampling;

consequently the “hot region” should be as small as possible but still be able to sample

structural reorganization effects. In the two systems studied in this article, we know the

slow degrees of freedom, so only the residue Val111 or the P1 pyridine ring was included in

the hot region. In general, if there is no prior knowledge about the slow degrees of freedom,

a proper choice of hot region would include the ligand and the protein residues surrounding

the ligand because usually the structural reorganization involves the ligand and the protein

residues surrounding the binding pocket.

The free energy difference, ∆F , between neighboring lambda windows depends on the

distribution functions P0(∆E) and P1(∆E) of energy differences (∆E) in forward and back-

ward sampling respectively,[123] through,

P1(∆E) = P0(∆E) exp−β(∆E−∆F ) . (7.1)

The two distributions are equal for the specific energy difference ∆E = ∆F , and the
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accuracy of the free energy ∆F depends on the overlap of the two distributions.[123] At the

same time, it is easy to show by imposing detailed balance condition that the acceptance

ratio for attempted replica exchanges between neighboring lambda windows also depends

on the energy difference from forward and backward sampling:[95]

∆01 = β(E1(X0) + E0(X1) − E1(X1) − E0(X0)) (7.2)

= β(∆E(X0) − ∆E(X1)). (7.3)

Here, X0 and X1 are the configurations sampled in the forward and backward directions,

and E0 and E1 are the potential energy functions for the two states. So both the accuracy

of the free energy result and the efficiency of the enhanced sampling are maximized when

neighboring lambda windows have regions of overlap in potential energy distribution, and

an optimal alchemical lambda schedule and effective temperature schedule will generate

equal acceptance ratios for all neighboring lambda windows.

All simulations were done using the Desmond program.[31] The starting structures for

the simulations were taken from crystal structures with PDBIDs 181L (Val111 “trans”) and

187L (Val111 “gauche”) for T4L/L99A,[113] and with PDBIDs 1MU6 (“F-out” conforma-

tion) and 1MU8 (“F-in” conformation) for Thrombin.[117] The structures of the proteins

were modified using protein preparation wizard [86] and the protonation states were as-

signed assuming the systems are at pH 7.0. The OPLS 2005 force field[100; 108] was used

for the protein and the Tip4p water model[32] was used for the solvent. Both the OPLS

2005 and the OPLS 2.0 force fields were used for ligands CDA and CDB, and the OPLS 2005

force field was used for benzene and p-xylene. Simulations lasted for 2ns for the T4L/L99A

complexes, 3ns for the Thrombin complexes and 5ns for ligands in pure solvent.

A dual topology ideal gas molecule end state method was used to define the mutation

path, which facilitates the sampling through the double tunneling mechanism.[120] The elec-

trostatic interactions unique to the initial ligand were turned off before the Lennard Jones

(LJ) interactions, and the LJ interactions unique to the final ligand were turned on followed

by the electrostatic interactions. The core of the LJ interactions is made softer to avoid

the singularities and instabilities in the simulation.[67] The mutation path is symmetric, so

mutation from either direction will give identical free energy result. To get more efficient
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enhanced sampling, the fluorine atom on the P1 pyridine ring was mutated to an identical

atom, so that the effective volume of P1 pyridine ring was made smaller in the middle

lambda window and the transition between the two conformations was faster. The lambda

values, the scaling factors for the “hot” region, and the free energy difference between all

neighboring lambda windows for the two systems are given in Table. 7.4 and 7.5.

In the two systems we studied, with a total number of 16 lambda windows and highest

effective temperature of 1200K for the T4L/L99A system, and a total number of 23 lambda

windows and highest effective temperature of 1784K for the Thrombin system, and a time

interval of 1ps between attempted exchanges among neighboring replicas, we obtained an

average acceptance ratio of 0.54 for T4L/L99A system and 0.59 for the Thrombin system.

The energy difference between neighboring λ windows for each configuration was calculated,

and only data generated after the equilibration stage were used to calculate the free energy

through the Bennett acceptance ratio method[30]. The error was calculated using block

averages with a 500ps bin width.

The bonded interactions involving the dummy atoms are treated differently in this

article to avoid singularities and instabilities, with the details given in the Appendix D.

This problem is not appreciated in the literature on FEP.
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Table 7.1: Predicted relative binding affinities of p-xylene to T4L/L99A compared with

benzene using various methods

Starting conformation method ∆G in complex ∆∆G

FEP -3.31±0.10 0.95±0.15

trans λ-hopping −3.36 ± 0.10 0.90±0.15

FEP/REST −3.78 ± 0.10 0.48±0.15

FEP −3.96 ± 0.10 0.30 ± 0.15

gauche λ-hopping −3.83 ± 0.10 0.43± 0.15

FEP/REST −3.77 ± 0.1 0.49± 0.15

exp 0.52± 0.09

Free energies in kcal/mol; ∆G in solvent is −4.26 ± 0.05 kcal/mol.

Table 7.2: Predicted relative binding affinities of ligand CDB to Thrombin compared with

ligand CDA using OPLS 2005 force field for the ligands

Starting conformation method ∆G in complex ∆∆G

FEP 2.04±0.20 -0.14±0.30
F-out

FEP/REST 0.50±0.20 -1.68±0.30

FEP 0.32±0.20 -1.86±0.30
F-in

FEP/REST 0.70±0.20 -1.48±0.30

exp -0.85

Free energies in kcal/mol; ∆G in solvent is 2.18±0.10 kcal/mol. “F-in”/“F-out” means the

fluorine atoms on the P1 pyridine ring pointing into or out of the P1 pocket of Thrombin.
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Table 7.3: Predicted relative binding affinities of ligand CDB to Thrombin compared with

ligand CDA using OPLS 2.0 force field for the ligands

Starting conformation method ∆G in complex ∆∆G

FEP 1.09±0.20 -0.21±0.30
F-out

FEP/REST 0.18±0.20 -1.12±0.30

FEP 0.07±0.20 -1.23±0.30
F-in

FEP/REST 0.27±0.20 -1.03±0.30

F-in/out FEP/REST 0.30±0.15 -1.00±0.25

F-out/in FEP/REST 0.52±0.15 -0.78±0.25

F-in/out FEP/REST(res) 1.22±0.10 -0.08±0.20

F-out/in FEP/REST(res) 1.44±0.10 0.14±0.20

exp -0.85

Free energies in kcal/mol; ∆G in solvent is 1.30±0.10 kcal/mol. “F-in/out” means the first

half lambda windows start from the conformation with the fluorine atoms on the P1 pyridine

ring pointing into the P1 pocket of Thrombin and the last half lambda windows start from

the conformation with the fluorine atoms on the P1 pyridine ring pointing out of the P1

pocket. The reversed starting conformations were used for “F-out/in.” “FEP/REST(res)”

means FEP/REST simulation with the protein heavy atoms harmonically restrained to the

initial position (corresponding to the crystal structure).
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Table 7.4: Lambda values, scaling factors and free energy difference between neighboring

lambda windows for T4L/L99A system

λ 0 1 2 3 4 5 6 7

bondedA 1.0 0.933 0.867 0.8 0.733 0.667 0.6 0.533

bondedB 0.0 0.067 0.133 0.2 0.267 0.333 0.4 0.467

chargeA 1.0 0.75 0.5 0.25 0.0 0.0 0.0 0.0

chargeB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

vdwA 1.0 1.0 1.0 1.0 1.0 0.857 0.714 0.571

vdwB 0.0 0.0 0.0 0.0 0.0 0.143 0.286 0.429

scaling 1.00 0.8464 0.7056 0.5776 0.4624 0.3721 0.3025 0.25

∆GFEP -2.4997 -2.5577 -2.6721 -2.7345 -0.7043 0.3626 0.8722 0.2075

∆GFEP/REST 1.6669 1.6307 1.5967 1.5675 3.0860 3.6672 3.4928 -0.0463

λ 8 9 10 11 12 13 14 15

bondedA 0.467 0.4 0.333 0.267 0.2 0.133 0.067 0.0

bondedB 0.533 0.6 0.667 0.733 0.8 0.867 0.933 1.0

chargeA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

chargeB 0.0 0.0 0.0 0.0 0.25 0.5 0.75 1.0

vdwA 0.429 0.286 0.143 0.0 0.0 0.0 0.0 0.0

vdwB 0.571 0.714 0.857 1.0 1.0 1.0 1.0 1.0

scaling 0.25 0.3025 0.3721 0.4624 0.5776 0.7056 0.8464 1.00

∆GFEP -0.5328 -0.9243 -1.1963 2.4196 2.3307 2.2174 2.0848

∆GFEP/REST -3.3633 -4.2287 -4.9902 -1.9003 -1.9433 -1.9780 -2.0394
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Table 7.5: Lambda values, scaling factors and free energy difference between neighbor

lambda windows for Thrombin system

λ 0 1 2 3 4 5 6 7 8 9 10 11

bondedA 1.00 0.95 0.91 0.86 0.82 0.77 0.73 0.68 0.63 0.59 0.54 0.50

bondedB 0.00 0.05 0.09 0.14 0.18 0.23 0.27 0.32 0.37 0.41 0.46 0.50

chargeA 1.00 0.75 0.50 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

chargeB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

vdwA 1.00 1.00 1.00 1.00 1.00 0.68 0.46 0.33 0.25 0.19 0.12 0.00

vdwB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

scaling 1.00 0.9216 0.8464 0.7569 0.6724 0.5776 0.49 0.4096 0.3364 0.2704 0.2116 0.1681

∆GFEP 2.5092 2.2140 1.9203 1.6569 0.1517 -0.3940-0.3947-0.2190-0.1103-0.0743 0.0912 -0.3519

∆GFEP/REST 1.3099 0.7003-1.1062-0.5334-1.7920-1.9750-1.9259-1.7625-1.6065-1.4625-1.0676 0.9690

λ 12 13 14 15 16 17 18 19 20 21 22

bondedA 0.46 0.41 0.37 0.32 0.27 0.23 0.18 0.14 0.09 0.05 0.00

bondedB 0.54 0.59 0.63 0.68 0.73 0.77 0.82 0.86 0.91 0.95 1.00

chargeA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

chargeB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.50 0.75 1.00

vdwA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

vdwB 0.12 0.19 0.25 0.33 0.46 0.68 1.00 1.00 1.00 1.00 1.00

scaling 0.2116 0.2704 0.3364 0.4096 0.49 0.5776 0.6724 0.7569 0.8464 0.9216 1.00

∆GFEP -0.04130.0475 0.0895 0.1379 -0.0907-1.2740-0.0423-0.8294-1.5706-2.4305

∆GFEP/REST 1.4394 1.6101 1.7749 1.8948 1.6985 0.8331 1.5105 0.8022 -0.3918-1.8040
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Figure 7.1: a. The nonpolar binding pocket of T4L/L99A with p-xylene bound. The key

residue Val111 and p-xylene are displayed in VDW mode. The structures of the two ligands,

benzene and p-xylene, for the relative binding affinity calculation are given on the right.

b. The binding pocket of Thrombin with the ligands CDA and CDB superimposed. With

the addition of the methyl group on the P1 pyridine ring of ligand CDB, the ring flips. In

the binding complex of Thrombin/CDA, the Fluorine atom on the P1 pyridine points out

of the S1 pocket (”F-out” conformation), while the fluorine atom points into the S1 pocket

(“F-in” conformation) in the Thrombin/CDB binding complex. The structures of the two

ligands CDA and CDB for relative binding affinity calculation are given on the right with

the dihedral involved in the flipping of the P1 pyridine ring (N-C-C-C) indicated by an

arrow.
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Figure 7.2: The Val111 side chain dihedral angle (N-CA-CB-CG1) as a function of simu-

lation time for the initial and final lambda windows. Initial lambda window corresponds

to the T4L/L99A/benzene binding complex, and the final lambda window corresponds to

the T4L/L99A/p-xylene binding complex. a. Results from normal FEP simulation start-

ing from the “trans” conformation . The Val111 was trapped in the “trans” conformation

through the 2ns simulation time. b. Results from FEP/REST simulation starting from

the “trans” conformation. After a short equilibration time, the Val111 transits between

the “trans” and “gauche” conformation with a dominating “gauche” conformation for the

final state and a dominating “trans” conformation for the initial state, in agreement with

experiment. Similar enhanced sampling was observed using FEP/REST starting from the

“gauche” conformation.
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Figure 7.3: The correct binding pose from the crystal structure (left) and the erroneous

conformation (right) observed in simulation using the OPLS 2005 force field for the ligands.

In the correct binding pose, the P3 pyridine ring points into the S3 pocket of Thrombin while

the P3 pyridine ring moves out of the S3 pocket and points into solvent in the erroneous

conformation.
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Figure 7.4: The distribution of the dihedral angle involved in the flipping of P1 pyridine

ring (N-C-C-C labeled in Fig. 7.1) for the initial and final lambda windows using OPLS

2.0 force field for the ligands. a. The dihedral angle as a function of simulation time using

normal FEP starting from the “F-out” conformation(χ ≈ −100). The ligands were trapped

in that conformation through the 3ns simulation time. b. The dihedral angle as a function

of simulation time using FEP/REST starting from the “F-out” conformation (χ ≈ −100).

After the equilibration stage, the pyridine ring transits between the “F-in”(χ ≈ 90) and

“F-out”(χ ≈ −100) conformations. c. The dihedral angle as a function of simulation time

using FEP/REST with the first half lambda windows starting from “F-out” conformation

and the last half lambda windows starting from “F-in” conformation. The equilibration

time was much shorter compared with b. d. The distribution of the two conformations

for the initial and final states. The binding complex of Thrombin/CDB (λ = 1) favors

the “F-in” (χ ≈ 90) conformation in agreement with crystal structure, while the binding

complex of Thrombin/CDA (λ = 0) has almost equal probability for the two conformations.

This slight discrepancy with experimental crystal structure might be due to the different

physical conditions in simulation and in experiment (in solution vs. in crystal).
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Figure 7.5: The distribution of the dihedral involved in the flipping of P1 pyridine ring

from a FEP/REST simulation with the protein heavy atoms harmonically restrained to the

initial position.
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Figure 7.6: 1-dimensional replica exchange protocol combining REST into FEP. Each box

represents a lambda window with the input parameters given by λ, the thermodynamic

coupling parameter, and T , the effective temperature of the hot region. The double arrow

symbols indicate attempts to exchange configurations between neighboring replicas.
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Chapter 8

Introduction of hydrophobic

interactions and electrostatic

interactions

In the previous two sections, I have introduced several techniques to calculate protein-ligand

binding affinities. In the protein-ligand binding process, usually there is no covalent bond

forming or breaking, and all that is involved is the hydrophobic interaction and electrostatic

interaction. In this section, I will present some investigations towards the foundational un-

derstanding of hydrophobic interaction and electrostatic interaction. To be specific, the

nonadditivity effect in hydrophobic interactions and the competition of hydrophobic inter-

action and electrostatic interaction between a hydrophobic particle and model enclosures

are discussed.

In the WaterMap method, when a ligand displaces two hydration site water molecules,

the binding affinity contribution of displacing the two water molecules is assumed to be the

sum of the contribution from displacing each water molecule separately. In other words, we

assume that the effect of displacing multiple water molecules is pairwise additive. Similarly,

in the cavity contribution term, if several atoms of the ligand are located in the dry region

of the binding pocket, we also assume the effect is pairwise additive. In general, pairwise ad-

ditivity assumes that the potential of the mean force (PMF) holding a cluster of N particles
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together is equal to the sum of pairwise interaction free energies (or pair pmfs). In Chapter

9, The binding affinities between a united-atom methane and various model hydrophobic

enclosures were studied through high accuracy free energy perturbation methods (FEP)

and the nonadditivity of the hydrophobic interaction in these systems, measured by the de-

viation of its binding affinity from that predicted by the pairwise additivity approximation,

is investigated. Many of the implicit solvent models attempt to account for hydrophobicity

in terms of nonpolar surface exposure to water, among which solvent accessible surface

area (SASA) and molecular-surface-area (or Connolly surface area, MSA) models are the

most popular. We investigated how well these implicit solvent models can characterize the

nonadditivity effect and found that implicit solvent models based on the molecular surface

area (MSA) performed much better, not only in predicting binding affinities, but also in

predicting the non-additivity effects, compared with models based on the solvent accessible

surface area (SASA), suggesting that MSA is a better descriptor of the curvature of the

solutes.

In popular implicit solvent models, like MMPBSA or MMGBSA, the solvent is treated

as a dielectric media, and the free energy to turn on the charge on solute atoms is quadrat-

ically dependent on the magnitude of the charge of the solute. In Chapter 10, we studied

the binding between a united atom methane and model hydrophobic plates with different

charge densities and different charge patterns on the plates. From this study, we observed

that the binding affinity is reduced when the plates are charged, and with increased charge

density, the plates can change from “hydrophobic like” (pulling the particle into the in-

terplate region) to “hydrophilic like” (ejecting the particle out of the interplate region),

demonstrating the competition between hydrophobic and electrostatic interactions. In ad-

dition, the electrostatic contribution to the binding affinity is quadratically dependent on

the magnitude of the charge for symmetric systems, but linear and cubic terms also make

a contribution for asymmetric systems. We explain these results by statistical perturbation

theory and show when and why implicit solvent models fail.
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Chapter 9

Hydrophobic interactions in model

enclosures from small to large

length scales: nonadditivity in

explicit and implicit solvent

models.

Abstract

The binding affinities between a united-atom methane and various model hydrophobic en-

closures were studied through high accuracy free energy perturbation methods (FEP). We

investigated the non-additivity of the hydrophobic interaction in these systems, measured by

the deviation of its binding affinity from that predicted by the pairwise additivity approxi-

mation. While only small non-additivity effects were previously reported in the interactions

in methane trimers, we found large cooperative effects (as large as -1.14 kcal mol−1 or ap-

proximately a 25% increase in the binding affinity) and anti-cooperative effects (as large as

0.45 kcal mol−1) for these model enclosed systems. Decomposition of the total potential

of mean force (PMF) into increasing orders of multi-body interactions indicates that the
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contributions of the higher order multi-body interactions can be either positive or nega-

tive in different systems, and increasing the order of multi-body interactions considered did

not necessarily improve the accuracy. A general correlation between the sign of the non-

additivity effect and the curvature of the solute molecular surface was observed. We found

that implicit solvent models based on the molecular surface area (MSA) performed much

better, not only in predicting binding affinities, but also in predicting the non-additivity

effects, compared with models based on the solvent accessible surface area (SASA), sug-

gesting that MSA is a a better descriptor of the curvature of the solutes. We also show

how the non-additivity contribution changes as the hydrophobicity of the plate is decreased

from the dewetting regime to the wetting regime.

9.1 Introduction

The hydrophobic interaction (HI) plays a very important role in the formation and stability

of many self-assembled aggregates and biological structures,[1] and is considered to be the

driving force for protein folding.[124; 125] A fundamental understanding of HI is crucial

to the study of many important biological phenomena, such as protein folding, micelle

formation, protein-ligand binding.

An important question concerning the protein folding problem is whether hydrophobic

associations are pairwise additive, cooperative, or anti-cooperative.[126; 127] In other words,

is the potential of mean force (PMF) holding a cluster of n hydrophobic particles together

equal to the sum of pairwise interaction free energies (or pair pmfs), or is it more negative

(cooperative) or more positive (anti-cooperative) than what is predicted by the pairwise

additivity approximation.

Nemethy and Scheraga[128] found that the hydrophobic interactions between more than

two solute particles can not be expressed as a sum of pairwise solute-solute interactions.

Palma also observed the non-additivity of solvent induced potential of mean force for hy-

drophobic particle solutions by molecular dynamics simulation.[129] In 1997, Rank and

Baker[130] studied the three methane molecules in an isosceles triangle geometry with two

methane molecules at contact distance forming a fixed base, and they found that the three-
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body PMF was anti-cooperative for distance up to 6.5 Å. The conclusions of this work were

not reliable, however, because the error associated with the baseline of the PMF was of the

same order as the non-additive term itself. After that, Chan [131; 126] and Scheraga[132;

133; 134] performed studies of methane trimers using the weighted histogram analysis

method (WHAM) and the test particle insertion method respectively, and found contra-

dictory results. After exchange of comments between these two groups,[135; 136; 137;

138] they found that the disagreement came from the assignment of the baseline for the

PMFs. Comparing these two methods Scherage[139] stated that methane dimer seemed to

be the largest system that can be treated by the test particle insertion method. The effect

of size, pressure, temperature, and salts on the non-additivity of the three particle system

was also investigated.[140; 141; 142; 143] Recently, cooperative effects on the association of

four methane molecules were also investigated by Scheraga’s group.[144]

In this paper, we used the FEP method to study the binding affinities between a

united-atom methane and various model hydrophobic enclosures. The binding affinities

were compared with the predictions of the pairwise additivity approximation to access

the non-additive contributions to the hydrophobic interactions in these systems. Two dif-

ferent empirical models were also used to predict the binding affinity and non-additivity

effect, and comparisons were made with the FEP reference data. We found that the molec-

ular surface area (MSA, or Connolly surface area) model performed much better than

solvent accessible surface area (SASA) model both for the prediction of binding affini-

ties and the nonadditivity effects, which is consistent with previous findings[130; 132; 133;

126]. Detailed analysis of these two models indicates that there is problem intrinsic to

the SASA model, which can not predict the cooperative effects. Decomposition of the to-

tal PMF into increasing orders of multi-body interactions indicated that the higher order

multi-body interactions can be either positive or negative, and increasing the order of the

multi-body interactions considered did not necessarily improve the accuracy.
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9.2 Definition of cooperative and anti-cooperative effects

In general, for a solution with n solute particles forming a cluster, the potential of mean

force (PMF), W (1, 2, . . . , n), is related to the n-particle correlation function g(n)(1, 2, . . . , n)

by the following definition:[145]

g(n)(1, 2, . . . , n) = e−βW (1,2,...,n), (9.1)

where β−1 = kBT , kB is Boltzmann’s constant, and T is the temperature. W (1, 2, . . . , n)

is a short-hand notation for W (r1, r2, . . . , rn), where ri denotes the position of the i-th

particle, and it corresponds to the free energy to bring the n particles from infinitely far

apart to the current configuration.

The n-particle PMF can be decomposed into single-body, pairwise and multi-body con-

tributions:

W (1, 2, . . . , n) = F (1, 2, . . . , n) −
n

∑

i=1

F (i) (9.2)

=
∑

i<j

δF (i, j) +
∑

i<j<k

δF (i, j, k) + · · · + δF (1, 2, . . . , n)

= W2 + W3 + · · · + Wn (9.3)

Where F (1, 2, . . . , n) is the hydration free energy for the specified configuration of the solute

particles, F (i) is the hydration free energy of solute article i in an infinitely dilute solution,

δF (i, j) is the same as the normalized two-body PMF W (i, j), and δF (i, j, . . . ) corresponds

to subsequent higher order multi-body interactions. W2 is the sum of pairwise contributions,

and Wm is the sum of m-body interactions. Truncating the series to n-body term leads to

the Generalized Kirkwood Superposition Approximation (GKSA) to the n-th order.[19;

20] Specifically, the hypothesized pairwise additivity of PMF is obtained by truncating the

series at the pairwise term. In clusters this approximation neglects shielding effects where

a third particle could shield a pair from other particles and from the solvent.

For the three-particle case, pairwise additivity is equivalent to the Kirkwood superpo-

sition approximation,[146; 147; 148] and δF (i, j, k) measures the non-additive part of the

three body interactions. Cooperativity is defined when δF (i, j, k) is negative, meaning the

free energy between the third particle and the remaining two particles is more negative
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and the configuration is more favorable than pairwise additivity predicts, and similarly,

anti-cooperativity is defined when δF (i, j, k) is positive, meaning the free energy between

the third particle and the remaining two particles is more positive and the configuration is

less favorable than pairwise additivity predicts. For the n-particle case, if the interaction

between a specific particle and the remaining n-1 particles is equal to the sum of the pair-

wise interactions between that specific particle with each of the other n-1 particles, and if

this condition holds for each of the n particles, the total n-body PMF will be equal to the

sum of pairwise interactions. So we further generalize the cooperative and anti-cooperative

concepts to the n-particle case: when the interaction energy between one specific particle

and the remaining n − 1 particles is more negative than the sum of pairwise free energies

between the specific particle and each particle in the remaining n − 1 cluster, we term it

“cooperative”; “anti-cooperative” is similarly defined. In other words, if we label the spe-

cific particle as n, and introduce the notation δW (1, 2, . . . , n− 1; n), which is the sum of all

higher than two body interactions involving particle n,

δW (1, 2, . . . , n − 1; n) = F (1, 2, . . . , n) − F (1, 2, . . . , n − 1) − F (n)

−
n−1
∑

i=1

δF (i, n) (9.4)

=
∑

i<j≤n−1

δF (i, j, n) +
∑

i<j<k≤n−1

δF (i, j, k, n)

+ · · · + δF (1, 2, . . . , n − 1, n) (9.5)

then, cooperativity or anti-cooperativity is defined when δW (1, 2, . . . , n − 1; n) is negative

or positive, respectively. In Eq. (9.4), the term, F (1, 2, . . . , n) − F (1, 2, . . . , n − 1) − F (n),

gives the interaction energy between particle n and the remaining n − 1 particles, and the

term,
∑n−1

i=1 δF (i, n), gives the sum of pairwise interactions between particle n and each of

the other n− 1 particles. The difference between these two terms provides a measure of the

non-additive contribution to the interaction.

9.3 Simulation details

In this paper, molecular dynamics simulations were performed using the DESMOND program[31]

to study the binding affinities between a united-atom methane and 13 model hydrophobic
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enclosures depicted in figure 9.1. The geometry of the model hydrophobic plate in these

systems is displayed in the bottom right of figure 9.1. It consists of 19 single-layer atoms

arranged in a triangular lattice with a bond length of 3.2 Å. For systems consisting of two

plates, the two plates were parallel and in-registry with separation distance of D = 7.46Å.

The LJ atoms forming the enclosures were uniformly represented with Lennard Jones pa-

rameters σ = 3.73 Å and ǫ = 0.294 kcal/mol, which are the same as the united-atom

methane parameters used in these simulations.[149] The inserted methane particle (dis-

played in green in figure 9.1) was placed at the contact distance (d = 3.73 Å) with the

other atoms and plate(s) forming the enclosures. In order to study the non-additivity of

hydrophobic interactions between the insertion methane and the enclosures, another 10 sys-

tems corresponding to the subsystems of the 13 model enclosures (depicted in figure 9.2,

and named after the corresponding system in figure 9.1 by adding a “prime”) were also

studied. The binding affinities for the other four systems in figure 9.2 [G′′, H′′, I′′, K′′] were

calculated through a thermodynamic cycle by combining the binding affinities calculated

for related systems. For example, the binding affinity for system G′′ was calculated by

combination of binding affinities calculated for systems G′, G and E.

The free energy perturbation (FEP) method was used to determine the binding affini-

ties between the inserted methane and each of the enclosures. The Maestro System Builder

utility [65] was used to insert each enclosure into a cubic water box with a 10 Å buffer.

The SPC water model[38] was used to describe the solvent. The atoms of the enclo-

sures were constrained to their initial positions throughout the dynamics, and only the

solvent degrees of freedom were sampled. The united-atom methane was “turned on”

inside the model enclosures over 9 lambda windows with λ=[0, 0.125, 0.25, 0.375, 0.50,

0.625, 0.75, 0.875, 1], where λ is the coupling parameter to turn on/off the LJ interaction

between the methane and the rest of the system with initial state and final state corre-

spond to λ = 0 and λ = 1 respectively. In these simulations, the core of the LJ potential

is made softer[67] as λ → 0 to avoid singularities and numerical instabilities. For each

of the λ windows, molecular dynamics simulations were performed. The energy of the

system was minimized, and then equilibrated to 298 K and 1 atm with Nose-Hoover[33;

34] temperature and Martyna-Tobias-Klein[35] pressure controls over 100 ps of molecular
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dynamics. A cutoff distance of 9 Å was used to model the Lennard Jones interactions, and

the particle-mesh Ewald method[37] was used to model the electrostatic interactions. Fol-

lowing the equilibration, a 20 ns production molecular dynamics simulation was performed

and configurations of the system were collected every 1.002 ps. The energy difference be-

tween neighboring λ windows for each configuration saved was calculated and the Bennett

acceptance ratio method[30] was used to calculate the free energy difference between neigh-

boring states. The sum of the free energy difference between neighboring states gave the

solvation free energy of methane in the enclosures. The same procedure was followed to

calculate the solvation free energy of methane in bulk water. The difference between the

two solvation free energies gave the binding free energy to bring a methane from infinitely

far to inside the hydrophobic enclosure, which is the potential of mean force (PMF) between

the methane and the enclosure. The error associated with these binding affinities was of

the order of ±0.02kcal.mol−1.

9.3.1 Implicit solvent model calculations

Due to the large computational cost of running explicit solvent model simulations, in protein

folding or protein-ligand binding problems, one is often forced to use implicit solvent models

to reduce the computational cost. Many of the implicit solvent models attempt to account

for hydrophobicity in terms of nonpolar surface exposure to water,[150] among which solvent

accessible surface area(SASA)[151] and molecular-surface-area (or Connolly surface area,

MSA)[152] models are the most popular. The solvent accessible surface (SAS) is traced out

by the probe sphere center as it rolls over the solute, and the molecular surface (MS) is the

surface traced by the inward-facing surface of the probe sphere.

In this paper, the SASA and MSA of each enclosure, both with and without the bound

methane, were computed with the Connolly molecular surface package,[68] as was the SASA

and MSA of the methane particle by itself. From this data the buried surface area upon

methane-enclosure complexation was determined. The direct Lennard Jones interaction

energy upon the binding of methane to each enclosure was similarly computed. The buried

surface area times the surface tension is often used to approximate the solvent induced

potential of mean force. Together with the direct Lennard Jones interaction energy, the
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total binding affinity between the methane and each enclosure can then be calculated, as

has been done in many empirical methods for calculating binding affinities.

In addition, to investigate whether these two implicit solvent models can predict the

non-additivity of the hydrophobic effect, the predicted pairwise additive buried surface area

upon methane binding to each enclosure was also calculated. The deviation of the actual

buried surface area from the pairwise additivity predicted allowed us to estimate the non-

additive part of hydrophobic interactions based on these models.

9.4 Results and discussion

The binding free energies between methane and the model hydrophobic enclosures, as mea-

sured by FEP, are reported in table 9.1. It is found that the range of binding free energies

of the methane for the model enclosures is nearly 5 kcal.mol−1. Also reported in table 9.1

are the pairwise additivity predicted binding affinity upon complexation, the buried surface

area upon complexation, (both SASA and MSA), the pairwise additivity predicted buried

surface area upon complexation, and the deviation between corresponding terms which gives

the non-additive contributions.

9.4.1 Comparison for different implicit solvent models in predicting the

binding affinity

From the data presented in table 9.1, we can determine how well the buried surface

area/molecular mechanics model predicts the binding affinity. Tuning the surface tension

coefficient to minimize the mean-average-error (MAE) of fit with FEP reference data, we

obtained an optimal surface tension coefficient of γ = 0.00763 kcal mol−1Å−2 for the SASA

and γ = 0.03767 kcal mol−1Å−2 for the MSA models of these enclosures. For comparison,

the surface tension for SASA determined by fitting to experimental solvation free energy for

linear or branched alkanes by Honig[153] was 0.005 kcal mol−1Å−2, whereas the macroscopic

water-alkanes surface tension was 0.070 kcal mol−1 Å−2. Since there are no overlaps between

the inserted methane and the enclosures, the buried van der Waals area is zero for all these

systems. So the van der Waals surface model would just predict the binding affinity to be
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the direct LJ interaction energy. The predicted binding affinities versus the FEP reference

data were reported in figure 9.3. From this figure we see that, for the most part, the MSA

model performed better than the SASA model. This is indicated by a higher R2 value (0.89

vs 0.76) and smaller MAE (0.40 vs 0.57), which is consistent with previous findings.[130;

126; 132; 133] Both of these models performed much better than the van der Waals surface

area model, which has R2 = 0.70 and MAE= 0.94. The SASA based model cannot differ-

entiate the hydrophobicity between systems [J, K, K′, K′′, L, L′, M, and M′] (predicting a

similar binding affinities of about -4.1 kcal/mol) nor between systems [D, E, F, F′, G, G′,

G′′, H, H′, H′′, I, I′, and I′′] (predicting a similar binding affinities of about -2.2 kcal/mol),

while the MSA model performed much better for these systems and predicted the right

order of hydrophobicity among these systems to some extent.

The SASA model found enclosures J and K′ in which a methane molecule is bound

between two hydrophobic plates to be the most hydrophobic of all the systems [J, K, K′,

K′′, L, L′, M, M′]. The buried SASAs for these two systems, upon methane complexation,

were the largest because large swaths of formerly accessible surface area on the faces of the

plates are buried by the presence of the binding methane. For the other enclosures, several

methane molecules already lie between the plates in the absence of the binding methane

so that part of the surface area buried by the binding methane was already buried by the

other particles. For the extreme cases of systems L and M, which are most hydrophobic, the

SASA model strongly underestimates the binding affinity, because the buried SASAs are

smaller for these two systems than in systems J and K′. On the other hand, the MSA model

to some extent predicts the right order of binding affinity among these systems. A similar

analysis of systems [D, E, F, F′, G, G′, G′′, H, H′, H′′, I, I′, I′′], yields similar conclusions.

9.4.2 Comparison of MSA and SASA model predictions of the non-additivity

effect

The non-additive contributions to the binding affinities of methane to all of the enclosures

are listed in table 9.1. We see from the table that while only small non-additive effects (±0.2

kcal/mol) were observed for the methane trimers by the Chan and Scheraga groups,[144;

134; 126; 131] large cooperative effects (as large as −1.14 kcal/mol for system L′) and
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anti-cooperative effects (as large as 0.45 kcal/mol for system J) were observed for these

systems.

The data shown in table 9.1 allows us to phenomenologically identify a connection

between the sign of the non-additivity effect and the curvature of molecular surface. To

wit, for all the enclosures that exhibit an anti-cooperative effect, the molecular surfaces of

the enclosures were convex without any concave or saddle parts, whereas for all enclosures

that exhibit a cooperative effect, the molecular surfaces had concave or saddle parts, and

the methane binds close to the saddle or concave part of the surface.

Consider systems E and G for example. The molecular surface of enclosure E has no

concave part, and the binding affinity of methane is anti-cooperative, (less favored than

pairwise additivity predicted). In the presence of another methane in enclosure G, the

molecular surface has a saddle part, and when the methane binds to this saddle part, it

shows a cooperative effect. Similar analyses can be done on systems J and K, K′ and M′,

K′ and K′′. Systems I′, H′, and F have the same enclosure whose molecular surface exhibits

a saddle region, but the inserted methane binds at different locations of the enclosure.

Comparing the methane binding affinities for these systems, we found that as the methane

moves closer and closer to the saddle part (from systems I′ to H′ to F), the binding affinity

gets more and more favorable (from -1.74 kcal/mol to -1.97 kcal/mol to -2.63 kcal/mol), and

the cooperative effect changes from relatively weak (-0.05 kcal/mol for system I′) to strong

(-0.51 kcal/mol and -0.37 kcal/mol for systems H′ and F, respectively). Similar analysis can

be done for systems M′, L′, and K.

The cooperative effects in systems H′ and L′ were found to be stronger than for systems

F and K respectively. This might seem to be at odds with intuition because systems F and

K are more compact than systems H′ and L′ respectively. This is not surprising though:

the distance between the two methane molecules in systems H′ and L′ corresponds to the

de-solvation barrier on the PMF curve of two methanes molecules in bulk water. In the

presence of the plate(s), the de-solvation barrier between the two methanes may not exist,

so that the binding affinities might be much more favorable than would be predicted by the

pairwise additivity approximation.

In addition to the data for the non-additive contribution to the changes of SASA and
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MSA, we can investigate whether either of these implicit solvent models can predict the

non-additivity in the hydrophobic interactions. Multiplying the non-additive part of the

changes in MSA and SASA in methane complexation by the surface tension coefficient

obtained in the previous section, we can determine the MSA and SASA predicted non-

additive contributions to the hydrophobic interactions. Figure 9.4 depicts the relationship

between the SASA/MSA predicted non-additive contributions and the FEP results of the

non-additive hydrophobic effects. It can be seen that the MSA predicted results have a

strong correlation with the FEP results while SASA predicted results anti-correlate with

the FEP results.

At first glance at figure 9.4, it might seem that MSA anti-correlates with SASA, in

contradiction to our common understanding of these models. To better understand this

“strange” behavior, the non-additive contribution of SASA and MSA for a model methane

trimer system was investigated. With the two methanes kept at their contact distance,

the position of the third methane can be specified by two coordinates (θ, d). (See the top

right corner of figure 9.5). Figure 9.5 shows the predictions of the non-additive part of

hydrophobic interactions given by calculating the changes in the MSA and the SASA each

multiplied respectively by their corresponding surface tension coefficients (as in the previous

section) as a function of the distance d when θ = 0. Actually, this figure is representative

of what we found for all of the angles θ. (See figure 9 of ref. [126]) We see from this figure

that for d = 3.23 Å, which corresponds to the configuration where the third methane is

in contact with the other two methanes, the predictions of MSA and SASA have opposite

signs. For all of the systems studied in this paper, the binding methane is in contact with

the other methane(s) and/or plate(s) in the enclosures, thus it is not surprising to find the

anti-correlation between MSA and SASA predictions observed in figure 9.4.

In addition, it can be seen from figure 9.5 that while the MSA model can predict additive,

anti-cooperative, and cooperative effects, the SASA model only predict additive and anti-

cooperative effects. This conclusion seems to be generally valid. In the SASA model, the

surface considered is formed from overlapping spheres, each of whose radii is the sum of the

corresponding atomic van der Waals radii plus the radius of water.[151] The buried surface

area between a sphere and a cluster of spheres, when the cluster of spheres has no overlaps,
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is always equal to the sum of buried surface areas between the sphere and each individual

sphere in the cluster, and smaller than this when the cluster of spheres has overlaps. This

means that the SASA model can never predict cooperative effects. However, in the MSA

model, the surface is traced by the inward-facing surface of the probe sphere,[152] and it

has the potential to predict all of the non-additivity effects. This partially explains why

the MSA based model performs better than the SASA based model both for the binding

affinity and for the non-additivity effects.(See Figure 9.6)

It should be noted from figure 9.4 that while the MSA model successfully predicts how

the non-additivity effects correlate with the FEP results, there were a few outliers. We will

interpret these outliers case by case.

In system M′, the region between the plates is enclosed on four different sides by hy-

drophobic moieties. This causes the density of water in the enclosed region to be much

smaller than in bulk (one fourth of bulk value), close to a hydrophobic dewetting condition.

Part of the time there was one water molecule in the enclosed region and part of time it

was empty, indicating an interface different from the normal nonpolar solute/liquid water

interface. It is well known that in hydrophobic dewetting there is a strong driving force

to bring the hydrophobic particles together,[1] which explains the strong cooperative effect

observed in system M′.

For systems H′ and L′, as previously mentioned, the distance between the two methane

molecules corresponds to the de-solvation barrier on the PMF curve of two methane molecules

in bulk water, and in the presence of the plate(s), the de-solvation barrier may not exist

at all. Because of the barriers in the pair potential of mean force, the pairwise additivity

approximation predicts that this configuration will be very unfavorable, but the full calcu-

lation shows that in fact they are not unfavorable. In fact, the binding affinities in these

particular configurations are much more favorable than would be predicted by assuming

pairwise additivity. This may be the reason for the strong cooperative effects observed for

these systems. In addition, the dewetting argument discussed in connection with systems

M′ also applies to system L′, which further validates the strong cooperative effect observed

for system L′.

To investigate the reason for the strong anti-cooperative effects observed in systems J
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and K′, we analyzed the structure of water between the two plates and found that, at the

surface of one hydrophobic plate (system D), water breaks one hydrogen bond on average,

which caused the average interaction energy between water at the surface and the rest

of the system to be higher than that in bulk water by 1.12 kcal/mol. However, between

two hydrophobic plates (system J), water breaks less than two hydrogen bonds on average

because of its flexibility in making hydrogen bonds. This is supported by the fact that

the average interaction energy between water molecules located between the two plates

and the rest of the system is higher than in bulk water by only 2.05 kcal/mol, less than

twice 1.12 kcal/mol (2 × 1.12 = 2.24) expected from doubling the effect of one plate. It

is well known that the hydrophobic effect for large scale systems is enthalpy driven,[1;

154] because of broken of hydrogen bonds at the surface of hydrophobic plates. A large

contribution of the methane-enclosure binding affinity comes from de-solvation of solvent

between the plates.[155] The anti-cooperative effect observed for systems J and K′ may be

due to the the fact that the excess of the interaction energy of water located between two

hydrophobic plates (system J) over that of bulk water is found to be smaller than twice the

value of the water at one hydrophobic plate (system D).

9.4.3 Non-additivity effect at wetting-dewetting transition

In the previous sections, we have shown how the non-additivity effects of methane binding

affinities in enclosures with different topologies correlate with the MSA measurements. It is

well known that the hydrophobicity of the enclosures depends not only on the topologies but

also on the LJ parameters for atoms making up the enclosures.[1] So it will be interesting

to study how the non-additivity effects depend on the LJ parameters for particles making

up the enclosure. In this section, we will explore this effect by changing the LJ ǫ parameter

for particles making up the plates for one representative enclosure, enclosure J.

Figure 9.7 depicts how the binding affinities of methane in enclosure J (∆GJ ) and in

enclosure D (∆GD) changes as a function of the LJ ǫ parameter for particles making up

the plate(s) from FEP simulations. The pairwise additivity predicted binding affinities for

enclosure J, which is two times that for enclosure D, are also depicted in the figure. As can be

seen from this figure, while the binding affinities for enclosure D decreases (or alternatively
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the free energy becomes more positive) monotonically with increasing value of ǫ, the binding

affinities for enclosure J first increases (the free energy becomes more negative) and then

decreases, and the non-additivity effect goes from slightly anti-cooperative at very low ǫ

region (smaller than 0.06 kcal/mol), to cooperative at intermediate ǫ region (between 0.06

and 0.23 kcal/mol), back to anti-cooperative at high ǫ region (higher than 0.23 kcal/mol).

The solvation free energy of methane in the enclosure can be decomposed into two

components: the free energy to create a cavity with the size of methane in the enclosure

and the free energy to turn on the attractive part of interactions between methane and

the rest of the system. For enclosure D, when increasing the ǫ parameter, the free energy

to create the cavity will become more unfavorable because the solvent will become denser

at the surface of the plate; however, the free energy to turn on the attractive part of

interactions between methane and the plate will become more favorable with increasing

value of ǫ. These two factors having opposite effects, but the first component dominates,

so the overall binding affinity will decrease slightly. For enclosure J, at low value of ǫ,

the region between the plates dewets, so the free energy to create the cavity is almost

zero and changes slightly with increasing value of ǫ, but the free energy to turn on the

attractive interactions between the methane and the plates becomes more negative, so the

binding affinity will increase in this dewetting region. The critical value of ǫ corresponding

to the wetting-dewetting transition is ǫ ≈ 0.15kcal/mol. At this point, the probability for

observing a dry inter-plate region is 50%. For ǫ larger than this, the free energy to create

the cavity grows rapidly with increasing value of ǫ, becoming the dominant effect, so that

the overall binding affinity decreases rapidly with increasing value of ǫ. At the critical value

of ǫ, that is at the wetting-dewetting transition, there is a large cooperative non-additive

effect on the binding of the methane between the plates. With increasing values of ǫ, the

two plates affect the density fluctuation of solvent by more than twice what one plate does,

and the slope of the binding affinity versus ǫ is therefore much larger for enclosure J than

that for enclosure D. For sufficiently large ǫ there is a large anti-cooperative deviation from

additivity. At ǫ = 0.23, these two effects balance each other, so the free energy is additive

at this point. The ǫ value for system J studied in the previous section is ǫ = 0.294kcal/mol,

which is higher than 0.23, so we observed an anti-cooperative effect there. As ǫ is decreased
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below the critical value of ǫ, the binding affinity increases for enclosure D and decreases for

enclosure J and becomes anti-cooperative in this very low ǫ region.

9.4.4 Higher order multi-body interactions

In the previous section, we investigated the non-additive effects manifested when methane

is inserted into different model enclosures. For systems consisting of three components, the

non-additive effect corresponds to three-body interactions; for systems consisting of more

than three components, the non-additive effect is the summation of all higher-than two-

body interactions involving the insertion methane, corresponding to δW (1, 2, . . . , n − 1; n),

defined in Eq.(9.5). We now investigate the contributions beyond three body interactions

defined recursively in Eq.(9.3).

Table 9.2 lists the total PMF, the two-body contribution to the PMF, W2, the three-

body contribution to the PMF, W3, and the subsequent higher order contributions for all

the systems consisting of more than three components. The deviations found by truncating

the series up to order n, ∆Wn, equivalent to the GKSA approximation to n-th order, is

also listed in the table. (For example, ∆W2 = W (1, 2, . . . , n) − W2.) From this table, we

see that the error arising from truncation of the total PMF at the pairwise term can be

as large as 1.43kcal/mol (system L), indicating the importance of non-additivity effects in

these systems. In addition, the higher order multi-body contributions can be either positive

or negative, suggesting that hydrophobic interactions can be quite complex.

Figure 9.8 and 9.9 gives the deviations of the PMF predicted by the GKSA from the

total PMF, when the latter is truncated to order n, as a function of n. For most of the

cases, the higher the order of multi-body interactions considered, the smaller the magnitude

of the error (systems G, H, I, L′, L, M). However, this is not generally true since for systems

K and M′, inclusion of the three-body interactions increases the error.

9.5 Conclusion

In this Chapter, the binding affinities between a united-atom methane and various model

hydrophobic enclosures were determined using high accuracy FEP molecular dynamics sim-
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ulations. Comparisons were made between the binding affinities from FEP and predictions

based on assuming pairwise additivity, and through this it was possible to investigate the

non-additive contributions of the hydrophobic interactions. Small non-additivity effects

were found in the methane trimer systems by the Chan and Scheraga groups,[144; 134; 126;

131] but we find large cooperative effects (as large as -1.14 kcal/mol) and anti-cooperative

effects (as large as 0.45 kcal/mol) for our relatively larger systems. Although approxima-

tions based on pairwise additivity of PMF have been used to study the transition state of

protein folding[156] and the force-extention behavior of protein,[157] simulations done in

this Chapter indicate that higher order correlations may be very important in real biolog-

ical systems such as protein folding, protein-ligand binding and other relevant fields. This

should not be surprising since the Kirkwood superposition approximation fails in dense

simple fluids.

Phenomenologically, the sign of the non-additive contributions to the binding affinities

of methane in the enclosures was found to be correlated with the curvature of the enclosures.

To be specific, anti-cooperative effects were observed only in enclosures whose molecular

surfaces were convex without any concave or saddle part, and cooperative effect were ob-

served in enclosures whose molecular surfaces having concave or saddle parts, in which

case the methane was found to bind close to the saddle or concave part of the surface.

Such observations might be useful for further development of models to incorporate the

non-additivity effect.

We also investigated whether two kinds of implicit solvent models are consistent with the

observed binding affinities and non-additivity effects. In these models the solvent induced

free energy for particle insertion was computed from the product of a “surface tension”

and the area of the buried surface upon methane complexation. The area of the buried

surface was computed by using the solvent accessible surface area (SASA) and by using the

molecular surface area (MSA) as described in the text. We found that the MSA based model

performed much better than the SASA based model in predicting the binding affinities,

an observation consistent with previous findings.[130; 126; 132; 133] In addition, the SASA

based model always predicts non-additive effects which anti-correlate with the FEP reference

data, whereas the MSA based model performed reasonably well in predicting the non-
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additive effects, except for a few outliers which were explained in the text. Further analysis

indicated that the MSA based model predicts all cooperative and anti-cooperative non-

additivity effects, and the SASA based model exhibits an intrinsic problem in that it can

never predict cooperative effects. Furthermore, because of the correlation we observed

between the non-additive contributions and the curvature of molecular surface in the MSA

based model, we believe that the MSA based model is a far better descriptor of the curvature

of simple solutes than the SASA based model.

The non-additivity effect depends not only on the topology but also on the LJ parameters

for atoms making up the enclosure. By changing the LJ ǫ parameter for atoms making up

the plates for enclosure J, we observed a wetting-dewetting transition in the inter-plate

region, and the non-additivity effect changes from anti-cooperative in the low ǫ region, to

cooperative in the intermediate ǫ region, and then to anti-cooperative again in the higher

ǫ region. This complicated re-entrant behavior of the non-additivity effect results from

the competition between the two factors contributing to the solvation free energy: the free

energy to create the cavity and the the free energy to turn on the attractive interactions

between the solute and the rest of the system. While the first factor dominates in the higher

ǫ region (wetting region), the second factor dominates in the lower ǫ region (dewetting

region).

The decomposition of the PMF for cluster formation can be expressed as a sum of

increasing orders of multi-body interactions. We found that the multi-body correlations

can be either negative or positive, implying that the hydrophobic interaction will depend

on the topology of the surfaces enclosing the particle. In addition, increasing the order

of multi-body interactions included can usually improve the accuracy, but this was not

generally true.



CHAPTER 9. HYDROPHOBIC INTERACTIONS IN MODEL ENCLOSURES FROM
SMALL TO LARGE LENGTH SCALES: NONADDITIVITY IN EXPLICIT AND
IMPLICIT SOLVENT MODELS. 154

Table 9.1: The binding thermodynamics of methane for the various model hydrophobic

enclosures.

∆GFEP ∆G2 ∆∆G ∆SASA ∆SASA2 ∆∆SASA ∆MSA ∆MSA2 ∆∆MSA sign

A -0.60 - - -57.44 - - -4.15 - - -

B′ -0.06 - - 0.00 - - 0.00 - - -

C′ 0.18 - - -25.75 - - 3.54 - - -

D -1.66 - - -89.09 - - -14.44 - - -

E′ -0.06 - - 0.00 - - 0.00 - - -

F′ -1.64 - - -88.54 - - -14.16 - - -

B -1.15 -1.21 0.06 -114.88 -114.88 0.00 -8.29 -8.29 0.00 anti

E -2.17 -2.26 0.09 -146.53 -146.53 0.00 -18.58 -18.58 0.00 anti

G′ -1.44 -1.46 0.02 -114.29 -114.29 0.00 -10.61 -10.61 0.00 anti

J -2.86 -3.31 0.45 -178.17 -178.17 0.00 -28.87 -28.87 0.00 anti

K′ -2.83 -3.27 0.44 -177.08 -177.08 0.00 -28.31 -28.31 0.00 anti

C -1.41 -1.21 -0.20 -95.61 -114.88 19.27 -11.46 -8.29 -3.16 coop

F -2.63 -2.26 -0.37 -115.03 -146.53 31.50 -25.14 -18.58 -6.56 coop

G -3.41 -2.86 -0.54 -153.20 -203.97 50.77 -24.48 -14.76 -9.72 coop

G′′ -2.68 -2.06 -0.62 -120.96 -171.73 50.77 -24.48 -14.76 -9.72 coop

H -3.44 -2.86 -0.57 -129.81 -203.97 74.15 -38.00 -22.73 -15.27 coop

H′ -1.97 -1.46 -0.51 -101.36 -114.29 14.16 -13.01 -10.61 -2.40 coop

H′′ -2.77 -2.06 -0.71 -116.14 -171.73 55.59 -25.88 -14.76 -11.12 coop

I -3.47 -2.86 -0.60 -140.97 -203.97 63.00 -35.84 -22.73 -13.11 coop

I′ -1.74 -1.69 -0.05 -88.54 -88.54 0.00 -14.16 -14.16 0.00 coop

I′′ -2.57 -2.29 -0.28 -114.49 -145.98 31.49 -24.86 -18.31 -6.55 coop

K -4.59 -3.92 -0.67 -172.62 -235.61 62.99 -46.13 -33.46 -13.11 coop

K′′ -4.56 -3.77 -0.68 -171.53 -234.52 62.99 -45.57 -32.46 -13.11 coop

L -5.24 -4.52 -0.72 -164.01 -293.05 129.04 -64.10 -37.17 -26.93 coop

L′ -4.23 -3.09 -1.14 -176.97 -202.83 25.86 -29.57 -24.77 -4.80 coop

M -5.45 -4.52 -0.94 -167.06 -293.05 125.99 -63.39 -37.17 -26.22 coop

M′ -3.80 -3.33 -0.48 -177.09 -177.09 0.00 -28.32 -28.32 0.00 coop

∆GFEP denotes the binding free energies from FEP, (free energy perturbation) ∆G2 de-

notes the predicted binding affinities by assuming pairwise additivity, and ∆∆G denotes

the deviation of pairwise additivity predicted binding affinities from the corresponding FEP

results (Which corresponds to non-additivity of hydrophobic interactions defined by for-

mula 9.5). ∆SASA denotes the change of SASA (solvent accessible surface area) upon

methane binding, the ∆SASA2 denotes the pairwise-additive contribution to the change



CHAPTER 9. HYDROPHOBIC INTERACTIONS IN MODEL ENCLOSURES FROM
SMALL TO LARGE LENGTH SCALES: NONADDITIVITY IN EXPLICIT AND
IMPLICIT SOLVENT MODELS. 155

Table 9.2: Multi-body PMF (potential of mean force) calculated from FEP, (free energy

perturbation) and the contribution from two-, three-, four-, five-body interactions.

Systems W W2 ∆W2 W3 ∆W3 W4 ∆W4 W5 ∆W5

G -4.90 -4.37 -0.52-0.47-0.06-0.06 0.00 - -

H -7.04 -5.95 -1.08-1.46 0.38 0.38 0.00 - -

I -6.85 -6.19 -0.65-0.74 0.09 0.09 0.00 - -

K -7.42 -7.19 -0.24 0.14 -0.37-0.37 0.00 - -

L′ -7.07 -6.36 -0.71-0.14-0.56-0.56 0.00 - -

M′ -6.64 -6.60 -0.04 0.78 -0.82-0.82 0.00 - -

L -12.31-10.88-1.43-1.40-0.03-0.53 0.51 0.51 0.00

M -12.09-11.12-0.98-0.21-0.73-1.39 0.63 0.63 0.00

The PMF between two plates was set to zero when D = 7.46Å, which corresponded to the

configuration for all the systems including two plates. The choice of base line for the PMF

between the two plates does not affect the multi-body contributions.

Free energies in kcal.mol−1.
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Figure 9.1: The 13 model systems studied. The hydrophobic enclosures were depicted in

gray. The location of the methane molecule when bound to the respective hydrophobic

enclosure was depicted in black. The geometry of the hydrophobic plate was depicted in

the right bottom of the figure.
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Figure 9.2: The 14 model systems corresponding to subsystems depicted in figure 7.1. The

black particle in each system denote the methane that will bind to the enclosure which was

depicted in gray, and the small white particle denote a pseudo-particle that specified the

position of the binding methane for the corresponding system in figure 7.1. (The binding

affinity for system G′′, H′′, I′′ and K′′ were calculated through thermodynamic cycles by

combination of the binding affinities calculated for related systems.)
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Figure 9.3: Buried surface area/molecular mechanics prediction of methane-enclosure bind-

ing affinities. The surface tension coefficients were chosen to minimize the MAE (mean

average error) between the predicted and FEP results for the binding affinities. Predic-

tions based on MSA (molecular surface area) model performed better than those based

on SASA (solvent accessible surface area) model, indicated by a higher R2 value (0.89 vs

0.76) and smaller MAE (0.40 vs 0.57). Both of these models performed much better than

predictions based on the van der Waals surface model which takes into account the direct

LJ interaction (giving R2 = 0.70, and MEA = 0.94 kcal/mol). SASA can not differentiate

the hydrophobicity among systems [J, K, K′, K′′, L, L′,M,M′] (predicting a similar binding

affinity of about -4.1 kcal/mol) nor among systems [D, E, F, F′, G, G′, G′′, H, H′, H′′, I, I′,

I′′] (predicting a similar binding affinity of about -2.2 kcal/mol), while MSA based model

performed much better for these systems and predicted the right order of hydrophobicity

among these systems to some extent.
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Figure 9.4: Relationship between the surface area models predicted non-additivity of hy-

drophobic effects and the corresponding FEP results. There is a strong correlation between

MSA (molecular surface area) predictions and FEP results, but the SASA (solvent accessible

surface area) predicted results anti-correlate with the FEP results.
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Figure 9.5: The MSA/SASA (molecular surface area/solvent accessible surface area) pre-

dicted non-additivity effects of hydrophobic interactions (non-additive part of the change

in MSA and SASA multiplied by the corresponding surface tension coefficient) for methane

trimer system as a function of the distance d for the configuration depicted in the top

right corner when θ = 0. The distance corresponding to the configuration where the third

methane is in contact with the remaining two were indicated by the dotted line labeled

“cn”.
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Figure 9.6: In the SASA model (upper), the surface considered is formed from overlapping

spheres, each of whose radii is the sum of the corresponding atomic van der Waals radii plus

the radius of water.[151] The buried surface area between a sphere and a cluster of spheres,

when the cluster of spheres has no overlaps, is always equal to the sum of buried surface

areas between the sphere and each individual sphere in the cluster (left), and smaller than

this when the cluster of spheres has overlaps (right). This means that the SASA model

can never predict cooperative effects. However, in the MSA model (lower), the surface is

traced by the inward-facing surface of the probe sphere. The buried surface area between

a third particle and the remaining two particles in MSA model, is additive when the third

particle has no overlap with the remaining two particles (left), and can be larger or smaller

than pairwise additivity predicted buried surfaces (right) depending on the geometry of the

three particles.
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Figure 9.7: The methane enclosure binding affinities for enclosure D and J as a function

of the LJ ǫ parameter for atoms making up the plate(s). The binding affinity increases

monotonically for enclosure D with increasing value of ǫ, while it decreases at the lower

ǫ region and increases at higher ǫ region for enclosure J. The non-additivity effect for

enclosure J goes from anti-cooperative in the lower ǫ region, (smaller than 0.06 kcal/mol),

to cooperative in the intermediate ǫ region, (between 0.06 and 0.23 kcal/mol), and then to

anti-cooperative again in the higher ǫ region (larger than 0.23 kcal/mol).
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Figure 9.8: The deviation of GKSA (generalized Kirkwood superposition approximation)

predicted PMF (potential of mean force) from the total PMF by truncating the total PMF

to the second-, third-, and fourth- order as a function of the order.
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Figure 9.9: The deviation of GKSA (generalized Kirkwood superposition approximation)

predicted PMF (potential of mean force) from the total PMF by truncating the total PMF

to the second-, third-, fourth- and fifth- order as a function of the order.
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Chapter 10

Competition of electrostatic and

hydrophobic interactions between

small hydrophobes and model

enclosures

Abstract

The binding affinity between a probe hydrophobic particle and model hydrophobic plates

with different charge (or dipole) densities in water was investigated through molecular

dynamics simulations free-energy perturbation calculations. We observed a reduced binding

affinity when the plates are charged, in agreement with previous findings. With increased

charge density, the plates can change from “hydrophobic like” (pulling the particle into the

interplate region) to “hydrophilic like” (ejecting the particle out of the interplate region),

demonstrating the competition between hydrophobic and electrostatic interactions. The

reduction of the binding affinity is quadratically dependent on the magnitude of the charge

for symmetric systems, but linear and cubic terms also make a contribution for asymmetric

systems. Statistical perturbation theory explains these results and shows when and why

implicit solvent models fail.



CHAPTER 10. COMPETITION BETWEEN ELECTROSTATIC AND
HYDROPHOBIC INTERACTIONS 166

10.1 Introduction

Hydrophobic interactions give rise to solvent induced attractions between nonpolar particles

when solvated in water. They play an important role in protein folding, protein ligand

binding, and micelle formation.[125; 124; 1] While great efforts have been made by many

groups to study the interactions between pure hydrophobic particles or plates, from small

to large length scales,[154] relatively less effort has been made to understand the effect

of electric charge on the hydrophobic interactions. Yet, most bio-molecular solutes, such

as proteins, carry partial charge. It is of interest to further study how the solute-solvent

electrostatic interactions affect the binding free energies of nonpolar particles in charged

hydrophobic enclosures.

There has been recent work looking at the structure and compressibiliby of water at

hydrophobic/hydrophilic interfaces[158], connecting the hydrophobicity of the surface with

the solute binding affinity; heterogeneous surfaces with mixed hydrophobic and hydrophilic

patches were also studied.[159] However, all these studies were concerned with one surface,

and the structure and dynamics of water in enclosed systems, where water are surrounded

on multiple sides by hydrophobic or hydrophilic moieties, a key motif in many important

pretein receptors for its molecular recognition, have not been studied. In this study we

investigate in quantitative detail the effects of enclosure on a model system containing both

hydrophobic and hydrophilic components. The model system work is complementary to our

investigation of protein active sites which has had significant impact on the drug discovery

community.[3]

It is well known that when two sufficiently large hydrophobic plates are closer than

a critical distance, the interplate region dewets.[160; 161; 162; 154] And in such hetero-

geneous environments, there is a sensitive coupling of hydrophobicity to the changes in

local geometry, dispersion, and electrostatic interactions.[1] Recently, Hansen et al.[163]

observed a strong reduction of the critical distance for dewetting between two nanoscale

solutes when they were charged, and the effective hydrophobic interactions between the

solutes were also reduced. In addition, the reduction of the interactions is sensitive to

the charge pattern on the solutes, and there is a significant asymmetry between anionic

and cationic solute pairs.[164] The asymmetry between cationic and anionic solvation free
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energy is a well known fact which has been investigated by many groups.[165; 166; 167;

168; 169; 170; 171] Recently, by studying the electric field dependence of the density and

polarization density of water between two graphite-like plates,[172] Rasaiah and coworkers

found that applying the electric field decreases the density of the water between the plates,

contrary to Hansen’s conclusions, and to bulk fluid electrostriction. Rossky et. al. also

observed an enhanced hydrophobicity of silica surfaces when the charges on Si and O are

inverted compared to that of a fictitious neutral silica surface.[173] Thus, surface polarity is

important and sometimes acts in unexpected ways. In addition, Zangi and coworkers [174]

have studied the effect of cosolute ions on the potential of mean force (PMF) between two

hydrophobic plates, and they found that, for cosolute ions with charge density higher than

0.90, the PMF between the plates will increase; and for cosolute ions with charge density

lower than 0.90, the PMF will decrease.

In this paper, we study the binding affinities between a probe hydrophobic particle and

model hydrophobic plates through molecular dynamics simulations, and by placing charges

or dipoles on the plates, we investigate electrostatically induced interactions between the

probe particle and the plate. The plate-water interaction is such that there is no dewetting

between the two plates as in the above studies. We find that, for small charges, the binding

free energy is negative, indicating the plates remain hydrophobic; however, for large charges,

the binding free energy is positive. Thus, as expected, the electrostatic interaction between

the charges on the plates and the solvent can drive the plates from being hydrophobic to

being hydrophilic.

We also find that the binding affinity of the small particle depends quadratically on

the magnitude of the charge (or dipole) on parallel symmetric plates, that is plates with

the same sized ions (or dipoles). This is not surprising. The electrostatic contribution to

binding affinity between the probe particle and the plates is the difference of electrostatic

contribution to the solvation free energy for systems with and without the probe particle.

Thus, implicit solvent models such as GB or PB also predict a quadratic dependence on

the magnitude of charge.[175; 176; 177; 178] However, for plates with different sized ions,

the linear and cubic charge (or dipole) dependent terms make small contributions to the

solvation free energy, which is contrary to the implicit solvent model predictions.[177] All of
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the observed effects can be explained by statistical perturbation theory using results from

explicit solvent models, but not implicit solvent models.

10.2 Details of simulation

We performed molecular dynamics simulations using the DESMOND program [31] to study

the binding affinities between a united-atom methane and two hydrophobic plates. The

geometry of the model hydrophobic plate is displayed in figure 10.1a. It consists of 19 single-

layer “atoms” arranged in a triangular lattice with a bond length of 3.2 Å. In two plate

systems, the plates are parallel and in-registry with a separation distance of D = 7.46 Å.

(which is two times the LJ σ parameter of methane, so the methane can just fit in between

the plates.) The plate atoms forming the enclosures all have Lennard Jones parameters

σ = 3.73 Å and ǫ = 0.294 kcal/mol, which are the same as the united-atom methane

parameters used in these simulations.[149] The inserted methane particle (displayed in green

in figure 10.1) is placed at the center of the two plates. Then we place opposite charges on

the two center atoms of the two plates, or two dipoles pointing in opposite directions, to see

how electrostatic perturbation of water affects the binding affinities. The two oppositely

charged atoms can be the same size or of different sizes. The plates with the same sized

ions (or dipoles) are designated a symmetric system, whereas the plates with different sized

ions is designated an asymmetric system.

The free energy perturbation (FEP) method was used to determine the binding affinities

between the inserted methane and the two plates. We used the Maestro System Builder

utility [65] to insert each system into a cubic water box with a 10 Å buffer. The water

molecules interact through the SPC model.[38] In these simulations, the atoms of the plates

were constrained to their initial positions, and only the solvent degrees of freedom were

sampled. The united-atom methane was “turned on” inside the two plates over 9 lambda

windows with λ=[0, 0.125, 0.25, 0.375, 0.50, 0.625, 0.75, 0.875, 1], where λ is the coupling

parameter to turn on/off the LJ interaction between the methane and the rest of the system

with initial state and final state correspond to λ = 0 and λ = 1 respectively. The core

of the LJ potential for methane is made softer[67] as λ → 0 to avoid singularities and
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numerical instabilities for FEP simulation. For each of the λ windows, molecular dynamics

simulations were performed. The energy of the system was minimized, and then equilibrated

to 298 K and 1 atm with Nose-Hoover[33; 34] temperature and Martyna-Tobias-Klein[35]

pressure controls over 100 ps of molecular dynamics. A cutoff distance of 9 Å was used to

model the Lennard Jones interactions, and the particle-mesh Ewald method[37] was used to

model the electrostatic interactions. Following equilibration, a 20 ns production molecular

dynamics simulation was performed and configurations of the system were collected every

1.002 ps. The energy difference between neighboring λ windows for each configuration saved

was calculated and the Bennett acceptance ratio method[30] was used to calculate the free

energy difference between neighboring states. The sum of the free energy differences between

neighboring states gives the solvation free energy of methane in the enclosure between the

plates. The same procedure was followed to calculate the solvation free energy of methane

in bulk water. The difference between the two solvation free energies gives the binding

affinity between the methane and the two plates. The error associated with these binding

affinities is of order ±0.02 kcal/mol.

As indicated in the thermodynamic cycle in figure 10.1, the electrostatic contribution to

the binding affinity ∆F2−∆F1, is equal to ∆F4−∆F3, which is the free energy difference of

charging the plates in water with and without the inserted methane. In order to investigate

the electrostatic contribution to the binding affinities as a function of charge, we did addi-

tional FEP simulations to turn on the electrostatic interaction between the plates and the

rest of the system for systems with and without the inserted methane. The FEP protocols

were similar to that used for the calculation of the solvation free energy of methane, but here

we used 16 lambda windows with λ=[0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.15, 0.20, 0.30, 0.40,

0.50, 0.60, 0.70, 0.80, 0.90, 1.00], and 6ns of data collection for each lambda window, where

λ is the coupling parameter to turn on the electrostatic interaction between the charges on

the plates and the rest of the system.
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10.3 Results and discussion

10.3.1 Binding affinity results

The free energy results for each process with unit charge on corresponding atoms are de-

picted on the thermodynamic cycles in figure 10.1. The free energy changes along dif-

ferent paths of each half cycle only differed by 0.1 kcal/mol, indicating the high accu-

racy and precision of these free energy results. We see clearly that without charges or

dipoles on the hydrophobic plates, there is a strong thermodynamic driving force to pull

the methane into the region between the plates (∆F = −2.865 kcal/mol ); however, if

we put charges or dipoles on the plates, the methane is ejected from the enclosed re-

gion (∆F > 10kcal/mol). This agrees with previous findings for the reduction of the

hydrophobic interaction between two hydrophobic particles when they are charged.[163;

164] By putting charges or dipoles on the hydrophobic plates, the plates change from “hy-

drophobic like” (methane absorption) to “hydrophilic like” (methane ejection). It also

indicates that even small hydrophilic patches on hydrophobic surface can have a strong

effect on the hydrophobicity of the surface, which was observed in previous studies.[159]

This behavior is expected: without charges or dipoles on the plates, water molecules can

not make hydrogen bonds with the plates, so they would prefer to be away from the region

between the plates to make hydrogen bonds with other water molecules, and methane would

be driven into the region between the plates because it can neither make hydrogen bonds

with water nor with the plates. However, if there are sufficiently large charges or dipoles

on the plates, water molecules can make hydrogen bonds with the plates, or at least have

an attractive polar interaction with the plates, so that it would be favorable for them to be

there over the methane, and methane would be ejected from that region.

The binding affinity difference (∆F2 − ∆F1), as mentioned before, arises from the free

energy difference of charging the plates with and without the inserted methane (∆F4−∆F3).

This is also equal to the difference of the electrostatic contributions to the solvation free

energy for the two systems, because the direct electrostatic interactions in solutes for the

two systems are the same. It is well known that the more the ions are exposed to water,

the more the electrostatic interaction contributes to the solvation free energy.[176] The ions
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on the plates are more exposed to water without the inserted methane, so ∆F3 is more

negative than ∆F4, which provides another perspective for understanding the transition

from “methane absorption” to “methane ejection” due to putting charges or dipoles on the

hydrophobic plates.

10.3.2 Dependence of the binding affinity (Solvation free energy) on the

magnitude of charge

To investigate quantitatively how the magnitude of charges or dipoles affects the hydropho-

bic or hydrophilic properties of the plates, we calculated the binding affinities of systems

with different charge densities on the charged or polar atoms of the plates. (Here the radius

of the atoms are fixed and only the magnitudes of the charges are varied.) Figure 10.2

depicts the relationship between the free energies of charging the plates for the two systems

(corresponding to ∆F3 and ∆F4 in part b of figure 10.1) and the magnitude of the charge on

the atoms, q, and also q2 (Inset of the figure). We see clearly from this figure that the free

energy of charging the electrostatic interactions for these two systems are proportional to

the square of the magnitude of the charge on the atoms (or the charge density). From these

data, we determine the methane-plates binding affinities as a function of the magnitude of

the charge. Clearly, the binding affinity should also have a quadratic dependence on the

magnitude of the charge. Figure 10.3 shows the methane-plates binding affinity as a function

of q2, and can be perfectly fit by a straight line. If we define the plates to be hydrophobic

or hydrophilic by the sign of binding affinity, negative binding affinity corresponding to hy-

drophobic and positive binding affinity corresponding to hydrophilic, then in the low charge

region (q < 0.37), the plates are hydrophobic, and in the high charge region (q > 0.37), the

plates are hydrophilic. The crossover point occurs at about q ≈ 0.37 (q2 ≈ 0.137), where

the plates change from being hydrophobic to being hydrophilic. Interestingly, Zangi et.[174]

have studied the effect of cosolute ions on the PMF between two hydrophobic plates, and

they found that for cosolute with a charge density of 0.90, the PMF was the same as that

in pure water, and lower charge density cosolute will decrease the hydrophobic interaction

between the plates, and higher charge density cosolute will increase the hydrophobic in-

teraction. However, both the trend and the crossover point charge density observed here
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is different. This is not surprising: in their studies many ions were dissolved in solvent,

while here one ion was placed on one hydrophobic plate and one oppositely charged ion is

placed on the other hydrophobic plate. Also the size of the plates and LJ parameters for

atoms making up the plates are different, so dewetting occurred in their systems but not

here. For hydrophobicity as defined here, the crossover point charge density will depend

on the LJ parameters for atoms making up the plates, and the size of the plates, but the

trend should be the same. Similar results were observed for systems with dipoles on the

two plates,(results not shown) only the slope was different.

People familiar with implicit solvent models such as PB or GB,[177; 178; 175; 176] would

not be surprised by the quadratic dependence of the solvation free energy on the magnitude

of charge. In these models, the electrostatic potential or the induced surface charge is

proportional to the magnitude of the charge on the solute, so the electrostatic contribution

to the solvation free energy is proportional the square of the magnitude of the charge.[177;

178; 175; 176] The direct electrostatic interactions are trivially proportional to the square

of the magnitude of the charge. So the free energy of charging the plates, which is the

sum of the two terms, should also have a quadratic dependence on the magnitude of the

charge. However, the constant dielectric approximation in such models is clearly not a good

approximation for these systems. Figure 10.4 depicts the projection of the orientation of

water molecules in the region between the two plates from 10000 frames with unit charge

on the corresponding atoms of plates. Clearly, water molecules are highly structured in this

region, and they tend to make hydrogen bonds with the two charged atoms on the plates,

so the constant dielectric approximation does not apply here. Although different dielectric

constants can be assigned for different regions of the solution when solving the PB equation,

it is generally difficult to assign these parameters without prior knowledge of the structure

of solvent, and this technique is usually used only for the solute region. In the next section,

we will explain this effect by a theory based on explicit solvent models, and the quadratic

dependence of the solvation free energy on the magnitude of charge for such systems comes

naturally from this theory.
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10.4 Theoretical derivation for electrostatic contribution to

the solvation free energy

For a solute molecule composed of NA atoms solvated in Ns solvent molecules, the total

interaction energy of the systems is:

U(rA, rs, ǫ) = UA(rA) + Us(rs) +

NA
∑

i

Ns
∑

s

unp(ri, rs) + ǫ

NA
∑

i

Ns
∑

s

up(ri, rs) (10.1)

= UA(rA) + Us(rs) + Unp
As + ǫUp

As (10.2)

where UA is the intramolecular interactions of the solute and Us is the intra- and inter-

molecular interactions between the Ns solvents molecules, the first summation term on the

right hand side is the nonpolar interactions between the solute and the solvent, and the last

term on the right hand side is the polar (or electrostatic) interactions between the solute

with charge scaled by a scaling parameter ǫ and the solvent. Through thermodynamic

perturbation theory, the electrostatic contribution to the solvation free energy of the solute

with charge scaled by ǫ can be expressed as:

β∆Fp = − ln < e−βǫUp
As >0 (10.3)

where β−1 = kBT , kB is the Boltzmann constant, and < · · · >0 means the ensemble

average of the mechanical properties over unperturbed state where there is no electrostatic

interaction between the solute and the solvent. Here, to make the derivation neater, the

solute is kept fixed, and only the solvent degrees of freedom are integrated over. Expanding

Eq. 10.3 in powers of ǫ we get the electrostatic solvation free energy in powers of the

magnitude of charge on the solute,

∆Fp = ǫ < Up
As >0 −β

2
ǫ2 < (Up

As− < Up
As >0)2 >0 +

β2

6
ǫ3 < (Up

As− < Up
As >0)3 >0 + · · ·

(10.4)

This result is similar to what Hummer et al.[170; 171] get in their studies of ion hydra-

tion, except that in their studies the overall charge of the system is not zero, so the finite

size effect had to be included explicitly.

Let us now analyze the coefficients of the linear and quadratic terms. The linear term is

the average of the electrostatic interaction between the fixed solute and the solvent over the
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unperturbed configurations of the solvent (ǫ = 0). For neutral solute molecules, there exists

excellent cancellation between interactions from positively charged atoms on solute and

interactions from negatively charged atoms on solutes, so the coefficient of the linear term

should be small. For symmetric systems like the symmetric parallel plates we studied, this

linear term should be exactly zero. For systems with only a single charge, the linear term will

be non-negligible and of opposite signs for cations and anions. This explains the asymmetry

between cations and anions both for the solvation free energy [165; 166; 167; 168; 169; 170;

171] and for the reduction of the PMF.[163; 164] The quadratic term is proportional to the

variance of distribution of Up
As, which is nonzero, so the coefficient should be a large negative

number, which makes sense because the electrostatic solvation free energy is negative for

almost all systems studied up till now, and for implicit solvent models such as PB or GB.[177;

178; 175; 176] In addition, the coefficient for the second order term is symmetric with respect

to charge inversion, which also is consistent with PB or GB predictions. (In other words,

if the sign of the charge on the solute was reversed, the coefficient of this term does not

change.) The coefficient of the cubic term also depends on the symmetry of the system:

for symmetric systems, the distribution of Up
As should also be symmetric, so the cubic term

is exactly zero; however, this term is nonzero for asymmetric systems. Again there exists

excellent cancellation in the cubic dependence term, so it should also be small.

Furthermore, since Up
As, the electrostatic interaction between the solute and the solvent,

is long ranged and is the sum of many terms, the distribution function of Up
As is expected to

be approximately a Gaussian distribution function according to the central limit theorem.

So only the first few lower order terms in Eq.10.4 make non negligible contributions to the

electrostatic solvation free energy. In addition, according to our analysis, the coefficients of

the linear and cubic dependence terms are small, so the quadratic dependence term is the

dominating contribution.

Comparing the final results of this theory and the implicit solvent models, it is clear that

PB or GB models only predict the quadratic dependent term, which is the most important

term as predicted from the theory above. This may be the reason why PB or GB models

generally give good results for electrostatic solvation free energies, even though the constant

dielectric picture is clearly not true for these systems. In the next section, we will present
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some further evidence that the PB or GB models does not give even qualitatively correct

predictions for asymmetric systems.

10.5 Further evidence to validate the theory

The four systems studied are all symmetric systems, so the linear and cubic terms should

be exactly zero as predicted by theory and indeed FEP gives quadratic dependence of the

solvation free energy on the magnitude of charge. In addition, there should also be nonzero

linear and cubic terms, if the system is asymmetric, although the magnitude of these terms

may be small. For this reason we simulated two plates one with a sodium ion and the

other with a chloride ion (parameters for these ions are from ref.[179]) placed on the each

center atom on the plates respectively. (Part d of figure 10.1) Now the solute is asymmetric

with respect to the size of the ions because the sodium and chloride ions have different LJ

parameters.

The free energies for each step of the thermodynamic cycle are given in part d of figure

10.1, and the electrostatic contributions to the solvation free energy in the absence of the

inserted methane is given as a function of the magnitude of charge in the left side of figure

10.5. Overall, the quadratic functional still characterizes the trend, but not as well as those

for the equal sized ions in the above four systems, and deviations of the fitted curve from

FEP data are observed for medium and large charges. If the linear term is included in the

fit, the overall performance of the fitting gets better, but there are still large deviations in

the small charge region.(See inset of figure 10.5) Only if both linear and cubic terms are

included does the fit become excellent over the whole charge range. This observation agrees

with the theory: both the linear and cubic terms depend on the symmetry of the system,

so they both make contributions to the solvation free energy for asymmetric systems. But

overall, the quadratic term is still most important, the coefficient of this term being much

larger from those of the linear and cubic terms.

The theory shows that if the charge on the solute were reversed, the sign of the coefficient

for the linear term should also be reversed. So another model system was studied where

the charge on the sodium and chloride ions were reversed. (reversed sodium chloride ion
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system) The electrostatic contribution to the solvation free energy as a function of the

magnitude of the charge is shown on the right side of figure 10.5 for this system. Similar to

the sodium chloride ion system, both linear and cubic terms contribute to the solvation free

energy. More importantly, the coefficients of both the linear and the quadratic terms were

of similar magnitude as the sodium chloride system, but the sign of the linear term was

reversed, which agrees well with what the theory predicts. The exact coefficient of the cubic

term, should also be of the same magnitude but opposite sign upon charge reversal, just

like the linear terms. However, because the cubic term only makes small contributions and

we can often ignore the terms of higher order, O(q4), in the fitting, but then the coefficients

of the cubic terms we obtain from the fitting will have the same sign and will be different

in magnitude for charge reversal. This discrepancy points to a deficiency of fitting with

polynomials. In addition for asymmetric systems if the fitting is done without the cubic

term the observed deviations of the fitted curve from the FEP data in the small charge

region is also caused by similar deficiencies of this approach to curve fitting to polynomials

in the charge.

Interestingly, implicit solvent models such as PB or GB incorrectly predict identical

electrostatic contributions to the solvation free energy for systems with reversed charge

distributions, whereas the perturbation theory correctly predicts it. In our situation, the

electrostatic contributions to the solvation free energy for the two systems studied with

reversed charge distribution were found to be different (-106 kcal/mol vs. -129 kcal/mol

for unit charge), which is in agreement with previous findings of the asymmetry between

anionic and cationic solutes.[165; 166; 167; 168; 169; 163; 164; 170; 171] In addition, the sign

of the linear term for these two systems is correctly predicted by the perturbation theory. It

is well known that water will break one hydrogen bond at the surface of large hydrophobic

plates pointing one of its hydrogen atoms towards the plates.[1; 154] Since the sodium ion

is smaller than the chloride ion, hydrogens pointing to the uncharged sodium atom get

closer to it than to the uncharged chloride atom in the uncharged state (ǫ = 0 state).

So the interactions between the positive charge on the sodium ion and the unperturbed

solvent (ǫ = 0 state) is larger in magnitude than that for chloride ion, which will result in a

overall positive linear term for the sodium chloride ion system and negative linear term for
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the reversed sodium chloride ion systems. In contrast, the PB or GB models will always

predict a negative electrostatic solvation free energy. However, perturbation theory and

FEP simulations show that if the coefficient of the linear term is positive, the electrostatic

solvation free energy will be positive in the low charge region. To test whether this is

true, additional simulations were performed for the two systems with a reversed charge

distribution at small charge [0-0.1]. The electrostatic contribution to the solvation free

energy as a function of the magnitude of charge is shown in figure 10.6. From this figure,

we can see clearly that the linear term is important for this region, and the electrostatic

solvation free energy is positive in the small charge region for the sodium chloride ion system,

which further validates the theory presented here.

10.6 conclusions

We have studied the binding affinity between a probe hydrophobic particle and model hy-

drophobic plates with different charge (or dipole) densities. We found that the binding

affinity of the probe particle is strongly decreased by putting charges (or dipoles) on the

plates, which agrees with previous observations of the reduction in hydrophobic interaction

between two solutes when they were charged.[163] The plates can be either hydrophobic or

hydrophilic depending on the charge density of the ions on the plates: in the low charge

density regime, the effective free energy of binding of the probe particle in the plate enclo-

sure is negative, and the plates manifest hydrophobic property by pulling the hydrophobic

particle into the enclosure; in the high charge density regime, the effective binding free en-

ergy is positive, and the plates manifest a hydrophilic property by ejecting the hydrophobic

particle out of the enclosure between the plates. The effect of charge on the hydrophobicity

of the plates is opposed to the effect of cosolute ions on the PMF between hydrophobic

plates studied by Zangi et al,[174] because in the latter case the low charge ions can form

a double layer around the plates and act as a surfactant.

Quantitatively, the observed reduction of binding affinity is quadratically dependent on

the magnitude of charge (or dipole) on the plates. Although implicit solvent models such

as PB or GB can predict the quadratic dependence, the constant dielectric approximation
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in such implicit solvent models is clearly not valid in the simulated systems. However,

from perturbation theory, which does not assume a constant dielectric approximation, the

quadratic charge dependence of the solvation free energy for symmetric systems can easily

be explained. The quadratic charge dependence of the solvation free energy results from

the cancellation of the interactions of the positively and negatively charged atoms on the

plates with the solvent molecules. However, for asymmetric plates, the two interactions

mentioned above do not cancel exactly, so the theory predicts small linear and cubic terms

with charge, which we confirmed by explicit solvent FEP simulations. But implicit solvent

models can not predict such effects.

In addition, we found that the electrostatic contribution to the solvation free energy

is different for asymmetric systems with reversed charge distribution, in agreement with

previous observations of the asymmetry between anion and cation pairs,[165; 166; 167; 168;

169; 163; 164; 170; 171] also not predicted by implicit solvent models. This reversed charge

effect is easily explained and predicted by perturbation theory. In addition, we observed

a small positive value of the electrostatic contribution to the solvation free energy in the

low charge density regime for the sodium chloride plates, as predicted by perturbation

theory but not by the implicit solvent models. All of these observations give evidences that

perturbation theory provide a guide for understanding the electrostatic contributions to

solvation free energy of complicated solutes.

The inability of current implicit solvent models to predict linear and cubic in charge

terms in the solvation free energy, the asymmetry between positive and negative ions, and

the possible positive electrostatic solvation free energies at low charge, indicates some defi-

ciencies of these models. It has also been shown that the effective solute-solvent interface

in these implicit solvent models can vary according to the local electrostatic and dispersion

potentials.[180; 181] Recently, there have been some attempts to couple nonpolar and polar

solvation free energies into implicit solvent models.[182; 183] The theory and observations in

this paper might be helpful for further development of implicit solvent models to incorporate

such effects.



CHAPTER 10. COMPETITION BETWEEN ELECTROSTATIC AND
HYDROPHOBIC INTERACTIONS 179

Figure 10.1: Thermodynamic cycles connecting methane-plates binding affinities and the

free energies of charging the plates in water. The gray particles represent the LJ atoms

forming the enclosure, the red particles represent negatively charged ions, blue particles

represent positively charged ions and green particles represent united-atom methane which

will bind to the enclosures. a) the configuration of the plate; b) thermodynamic cycle

depicting the effect of charges on the methane-plates binding affinity; c) thermodynamic

cycle depicting the effect of dipoles on the methane-plates binding affinity; d)the same

process as that in part b, but the center ions were replaced by sodium and chloride ions

respectively. The free energy changes for each step of the thermodynamic cycle were given

in units of kcal/mol.
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Figure 10.2: Free energy of charging the plates in water with and without the inserted

methane as a function of the magnitude of charge, q, and the square of the magnitude of

charge, q2 (inset of the figure). Perfect quadratic dependence of the free energy on the

magnitude of charge were displayed by these systems.
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Figure 10.3: Methane-plates binding affinity as a function of the square of the magnitude of

charge, q2. At low charge density, the binding affinity is negative, displaying hydrophobic

property of the plates; however, at high charge density, the binding affinity is positive,

displaying hydrophilic property of the plates.
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Figure 10.4: Projection of configurations of water between the two plates with two opposite

unit charges on the center atoms of the plates from 16000 frames. Water is highly structured

in this region, which clearly breaks the constant dielectric assumption of implicit solvent

models.
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Figure 10.5: Electrostatic contributions to the solvation free energies as a function of the

magnitude of charge for sodium chloride ions system (left) and the reversed sodium chloride

ion systems (right). Insets of the figures depicts the same curves in the small charge region.

Deviations from quadratic dependence appear for these systems. Linear and cubic terms

also contribute to the electrostatic solvation free energy. The linear term coefficients for

these two systems are approximately of the same magnitude but opposite sign.
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Figure 10.6: Electrostatic contributions to the solvation free energies as a function of the

magnitude of charge for sodium chloride ions systems (left) and the reversed sodium chloride

ion systems (right) in the small charge region. It is quite clear that the linear terms are

important in this region. The electrostatic solvation free energy is positive at very small

charge region for the sodium chloride ion system, which PB or GB models fail to predict.

Again, the linear term coefficients are approximately of the same magnitude but opposite

sign.
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Chapter 11

Conclusions and future research

directions

In this thesis, we have presented a few methods towards more robust and efficient calcu-

lation of Protein-Ligand binding affinities. To be specific, the WaterMap method, which

focuses on the role of each individual water molecule in the binding pocket of protein to

the binding affinity, and the more rigorous free energy perturbation (FEP) method, have

been introduced, developed, and discussed. The accuracies and precisions associated with

these methods are different so as the computational expenses. They are used in different

stages of structural based drug design projects. In what follows, we will briefly summarize

the main features of each method, and suggest future research directions.

We have shown that the proteins may adopt active site geometries that will destabilize

the water molecules through hydrophobic enclosure and/or correlated hydrogen bonds. In

the extreme cases, if the interactions for water molecules are very unfavorable, a void might

be formed in the binding pocket. Displacement of these energetically and/or entropically

unfavorable water molecules by ligand, and/or occupation of ligand atoms in the dry region

of the binding pocket will provide the driven force for Protein-Ligand binding. The Wa-

terMap method and the cavity contribution term consider the explicit driving force from

the solvent. Through inhomogeneous solvation theory (ISM), the enthalpy and entropy of

each individual water molecule in the binding pocket are calculated, and the free energy
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difference between water in the binding pocket and that in bulk will give the contribution

to the binding affinity when the water is displaced by ligand in the binding process. The

semi-localized water molecules identified by WaterMap will provide rich physical insights

in drug design. In addition to the numerical agreement with experiment for the relative

binding affinity prediction, the WaterMap calculation provides a vivid picture about the

thermodynamics of water in the binding pocket of protein, which can actively guide drug

design projects. The cavity contribution term calculates the free energy difference to solvate

a ligand heavy atom in the dry region of the protein binding pocket and that in bulk water,

which gives the contribution to the binding affinity from the dry regions of binding pocket.

For proteins with dry regions in the binding pocket, it is necessary to combine the Wa-

terMap calculation with the cavity contribution term, providing a whole complete picture

for contributions from both wet and dry regions of the binding pocket. Those calculations

also allow us to suggest a general molecular recognition motif between the dry regions in the

binding pocket and hydrophobic groups in the ligand. Calculations based on the WaterMap

and the cavity term methods on many different proteins, some of which are of medicinal

interest, have shown great success, and we expect these models will prove successful in more

systems and will actively guide drug design projects.

The WaterMap method and the cavity contribution term only characterize the con-

tribution from the displacement of solvent to the binding affinity. There are other terms

which will contribute to the binding affinity, like the protein-ligand direct interaction en-

ergy, the protein and/or ligand strain energy, and the entropy change associated with the

protein-ligand association. But for congeneric ligands, those other terms will approximately

contribute equally to the binding affinty, so the WaterMap and the cavity contribution term

are used to rank order the relative binding affinities between congeneric ligands. Clearly,

there are many other augmentations that need to be made before the method can be used

to robustly handle a wide variety of cases, particularly when the protein and ligand are not

complementary, and the ligands are not congeneric. Here, we suggest the following research

directions to further develop the WaterMap method:

(1) The MM/GBSA or the linear interaction energy (LIE) model assess the Protein-

Ligand binding affinity by treating the solvent as a dielectric media or by approximating
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the free energy as a linear combination of the average interaction energies through a short

molecular dynamics simulation of the Protein-Ligand complex. These methods are compu-

tationally much cheaper than the WaterMap calculation, and they include all the important

terms to the binding affinity. So one possible research direction is to combine the WaterMap

calculation with these methods, replacing the corresponding terms which are calculated with

large errors in these methods by the WaterMap contribution and keeping the other terms.

Recently, there are some effects to combine the WaterMap method with MM/GBSA, and

encouraging results are obtained.[184] It might be possible and even easier to combine Wa-

terMap with LIE model, since the direct interaction between the protein and the ligand can

be easily estimated by the LIE model, which is missing in WaterMap calculation.

(2) It is known that the protein or the ligand strain free energy is another source of

contribution to the binding affinity, and sometimes they affect the binding affinity in a

nontrivial way. For example, in Chapter 7, we have shown that the protein strain free

energies for the two binding complexes, Thrombin/CDA and Thrombin/CDB, differ by

about 0.8 kcal/mol although the structures of the proteins are essentially the same. However,

the protein and/or the ligand strain free energy is missed in both the WaterMap calculation

and the MM/GBSA or LIE methods. For the WaterMap method to be able to robustly rank

order the relative binding affinities among a wider sets of ligands and proteins, it is necessary

to develop a method to estimate the protein and the ligand strain free energy. The well

known method to estimate the configurational entropy of the macromolecule is the quasi-

harmonic approximation, using multidimensional Gaussian distribution to approximate the

configurational distribution of the macromolecule.[185] It is possible to use similar kind of

technique to approximate the strain free energy of the protein or the ligand.

(3) The WaterMap method estimates the binding affinity based on the free energy

difference between water in the binding pocket of protein and that in bulk, so to get a

robust estimate of the binding affinity, the potential energy models of the water are critical.

Recently, there is some evidence in the literature that whether a water molecule is present

or absent in the binding pocket depends on the potential energy models of water used in

the simulation.[186] So it is quite possible that the free energy calculated using WaterMap

will be different using different models for water. Thus it is necessary to identify a potential
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energy model for water that works best for the WaterMap calculation.

Free energy perturbation (FEP) simulations provide one of the most accurate simulation

techniques to calculate the Protein-Ligand binding affinities, and it has a potentially large

impact on drug design projects, especially in late stage lead optimization cycle. We have

shown that the current implementations of FEP simulation methods can be substantially

improved in sampling efficiency when the enhanced sampling method is incorporated. We

have developed a new enhanced sampling technique called REST (replica exchange with so-

lute tempering), and successfully combined it with an efficient schedule for lambda-hopping

FEP ( which we call FEP/REST) to solve the sampling problem in brute force FEP sim-

ulation. To be specific, by scaling the Hamiltonian of a specific region of interest in the

system by a factor smaller than one and run all the replicas on the same temperature using

Hamiltonian replica exchange method (HREM), a small number of replicas are sufficient

to maintain a large exchange acceptance ratio, and enhanced sampling is achieved through

the increased effective temperature of the “hot” region. We have shown that the improved

version of REST ( which we call REST2) also bypasses the poor scaling with system size

of normal TREM (temperature replica exchange method), and it is more efficient than the

original REST for sampling systems with large conformational changes. The FEP/REST

method doesn’t require the prior known slow degrees of the freedom of the system, and

superior convergence of the free energy are demonstrated both by consistency of the results

(independence from the starting conformation) and agreement with experimental binding

affinity data. We have shown in two cases that the FEP/REST facilitates the sampling of

different conformations separated by large energy barriers, one in the protein and the other

in the ligand. We expect that this method will demonstrate its ability in a wider set of

proteins where the energy barrier separating the relative conformations is large enough to

cause sampling problem using brute force FEP.

The FEP/REST protocal provides an efficient way to calculate the relative binding

affinity between two ligands and treat local structural reorganization effect. If the energy

barriers separating the different conformational states are very high, a very long equilibra-

tion time is required to equilibrate the generalized ensemble and to converge the free energy

calculation. In addition, to rank order the relative binding affinity between a set of N lig-



CHAPTER 11. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 190

and molecules, we need as least N-1 simulations, which is computationally very expensive.

Here, we suggest possible research directions to further develop the FEP/REST method to

overcome these limitations:

(1) In the current implementation of FEP/REST, the “hot” region include the ligands

and protein residues surrounding the binding pocket, assuming that the slow degrees of free-

dom are within this region. It is sufficient to treat localized conformational reorganization

during alchemical transformation from one ligand to another, but might not be sufficient

for treating delocalized conformational changes (allosteric regulation). A possible proce-

dure to treat this problem is the following: (a) include a larger hot region in a first round

FEP/REST simulation, and find those key residues responsible for the allosteric regulation;

(b) run a second round FEP/REST just including those key residues in the hot region.

(2) In the Thrombin case shown in Chapter 7, the time required to equilibrate between

the two conformations of the ligands is relatively long (about 1.5 ns). For more complicated

systems, longer equilibration time might be required. Recently, there is some efforts in the

literature to reweigh the configurations sampled in a simulation (not necessarily Boltzmann

distribution) to a Boltzmann distribution.[187] With this kind of technique, we can do two

short FEP/REST simulations starting from different conformations and then combine the

trajectories and reweigh each configuration sampled to estimate the free energy difference.

In this way, we don’t need to fully equilibrate the generalized ensemble to estimate the free

energy.

(3) In the current form of FEP/REST simulation, from each simulation, we can only

get the relative binding affinity between two ligands. So a total number of N-1 simulations

are required to rank order a set of N ligands. In future implementations of FEP/REST,

we can set up the mutation path in such a way that all FEP/REST simulations for a set

of ligands binding to the same receptor share a common immediate state, and the relative

binding affinity is compared to a common immediate state.[188] (A-O-B, C-O-D,... relative

binding affinity is compared with a common immediate state O) In this way, from one

FEP/REST simulation, we can get relative binding affinities of the two ligands (initial and

final states) compared to a common immediate state, and a total number of N/2 simulations

are sufficient to rank order a set of N ligands.
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In summary, while the WaterMap method and the FEP/REST method have demon-

strated many important advantages compared with previous existing methods to calculate

Protein-Ligand binding affinities, and represent significant breakthrough in this field, a lot

of problems remain to be solved before these techniques be robustly and routinely applied

in everyday structural based drug design projects.
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Appendix A

Error analysis in NN method and

Constant pressure correction

A.1 V ar[ln f(x)] for some special cases

A.1.1 Gaussian distribution

Assume the probability distribution is a Gaussian distribution with average u and variance

σ2, N(u, σ2). That is

f(x) =
1√
2πσ

exp(−(x − u)2

2σ2
) (A.1)

then

ln f(x) = −(x − u)2

2σ2
− ln(

√
2πσ) (A.2)

V ar[ln f(x)] =
V ar[(x − u)2]

4σ4
(A.3)

=
1

4σ4
[E(x − u)4 − (E(x − u)2)2] (A.4)

=
1

4σ4
(3σ4 − (σ2)2) (A.5)

=
1

2
(A.6)

So for Gaussian distribution function, the term V ar[ln f(x)] is a constant 1
2 .
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A.1.2 exponential distribution

Assume the probability distribution is an exponential distribution with parameter λ

f(x) =







λ exp(−λx) x ≥ 0

0 x ≤ 0
(A.7)

then

ln f(x) = −λx + ln λ (A.8)

V ar[ln f(x)] = (λ2)V ar[x] (A.9)

= 1 (A.10)

So for exponential distribution function, the term V ar[ln f(x)] is a constant 1.

A.1.3 exponential distribution in a finite range

Assume the probability is non-zero only in the range [0, α], (which is the case for real

systems) and the distribution is exponential in this range. That is

f(x) =







b exp(−ax) x ∈ [0, α]

0 x /∈ [0, α]
(A.11)

where b is a normalization factor, which is equal to ( a
1−exp(−αa)). Using the same procedure

as above, we got the variance of ln f(x):

V ar[ln f(x)] =
1

1 − exp(−αa)
[2 − exp(−αa)((αa)2 + 2αa + 2)]

− 1

(1 − exp(−αa))2
[1 − exp(−αa)(αa + 1)]2 (A.12)

So the variance is in the range [0, 1], and increases as αa increases. When αa goes to infinity,

V ar[ln f(x)] goes to 1, which is the case discussed in the previous section.

A.1.4 linear distribution in a finite range

Assume the distribution is a linear function in the range [0, α], and zero otherwise. That is

f(x) =







ax x ∈ [0, α]

0 x /∈ [0, α]
(A.13)
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where a = 2
α2 is a normalization factor. Using the same trick, we get

E[ln f(x)] = ln
2

α
− 1

2
(A.14)

E[(ln f(x))2] = (ln
2

α
)2 − ln

2

α
+

1

2
(A.15)

V ar[ln f(x)] =
1

4
(A.16)

So the variance is a constant 1
4 for linear distributions with f(x) = 0 at one of the boundary.

It is easy to show that for linear distributions in the range [0, α] with nonzero probability

at the boundary point, (f(x) 6= 0 at the boundary points) the variance of ln f(x) is in the

range [0, 1
4 ].

A.2 Determination of most proper weights

Given that x1, x2, · · · , xn are independent variables with the same average u but different

variance v1, v2, · · · , vn, we may define x̄ =
∑n

i=1 wixi, with constraint
∑n

i=1 wi = 1. We

may find the weights wi such that the variance of x̄ is minimized:

V ar[x̄] =

n
∑

i=1

(wi)
2vi (A.17)

Using Lagrange multipliers we find:

wi =
1
vi

∑n
i=1

1
vi

(A.18)

and

V ar[x̄] =
1

∑n
i=1

1
vi

(A.19)

E[

n
∑

i=1

wi(xi − x̄)2] = E[

n
∑

i=1

wi((xi − u) − (x̄ − u))2] (A.20)

= E[

n
∑

i=1

wi((xi − u)2 − 2(x1 − u)(x̄ − u) + (x̄ − u)2)] (A.21)

= E[
n

∑

i=1

wi(xi − u)2] − 2E[
n

∑

i=1

wi(xi − u)(x̄ − u)]

+E[

n
∑

i=1

wi(x̄ − u)2] (A.22)
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By application of equation A.18 and
∑n

i=1 wi = 1, we find:

E[

n
∑

i=1

wi(xi − x̄)2] =
n − 1

∑n
i=1

1
vi

(A.23)

Thus we can approximate the variance of the weighted average by the estimator:

V =
1

n − 1

n
∑

i=1

wi(xi − x̄)2 (A.24)

A.3 Constant pressure correction to ∆Gsim for the FD en-

tropy

In the FEP simulations, we turned on/off the interaction between one distinguished water

molecule with the rest of the system at constant temperature T and constant pressure P0,

over the series of several λ windows. The solvation free energy of the distinguished water

molecule corresponds to the difference in the chemical potential µ between two phases: (1)

the liquid phase, and (2) the ideal gas phase with the same temperature and number density

as the liquid.[189] Ergo,

∆Gsim(T ) = −kT ln
∆̃(λ = 1)

∆̃(λ = 0)
= µl(N,P0, T ) − µg(N,P ∗, T ) (A.25)

where P ∗ is the pressure of the ideal gas with the same temperature T and number density

as the simulated liquid at pressure P0, and ∆̃ is the isobaric-isothermal partition function

of the system specified by lambda. (For details, please see reference [189].)

The heat capacity of the ideal gas at constant pressure P ∗ is trivially constant with

respect to temperature, and we may well approximate the heat capacity of liquid water to

also be constant under constant pressure P0 over the temperature range studied here. Then

it follows

∆G(T ) = ∆H(T ) − T∆S(T ) (A.26)

∆H(T ± ∆T ) = ∆H(T ) ± ∆CP ∆T (A.27)

∆S(T ± ∆T ) = ∆S(T ) + ∆CP ln
T ± ∆T

T
(A.28)

∆S(T ) ≈ −∆G(T + ∆T ) − ∆G(T − ∆T )

2∆T
(A.29)
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which are the typical equations of the finite difference method of computing the thermody-

namic entropy. In these equations, all the ∆ quantities correspond to the difference of the

thermodynamic quantities between the liquid phase at P0 and the ideal gas phase at P ∗.

In similar simulations run at pressure P0 but temperatures T ±∆T we analogously find

∆Gsim(T − ∆T ) = µl(N,P0, T − ∆T ) − µg(N,P1, T − ∆T ) (A.30)

∆Gsim(T + ∆T ) = µl(N,P0, T + ∆T ) − µg(N,P2, T + ∆T ) (A.31)

where P1 and P2 correspond to the ideal gas pressure with the same temperature and number

density as the simulated liquids. Note that the ∆G values obtained from simulation differ

from those occurring in equation A.29 because the reference gas phase free energies differ,

and thus we must explicitly correct for this difference in reference state. By adding a

correction term ∆Gcorr(T ±∆T ) to the simulated free energy, we were able to use equation

A.29 to calculate the entropy at temperature T , where:

∆Gcorr(T − ∆T ) = µg(N,P1, T − ∆T ) − µg(N,P ∗, T − ∆T )

= k(T − ∆T ) ln
P1

P ∗
(A.32)

∆Gcorr(T + ∆T ) = µg(N,P2, T + ∆T ) − µg(N,P ∗, T + ∆T )

= k(T + ∆T ) ln
P2

P ∗
(A.33)

and

∆S(T ) = −∆Gsim(T + ∆T ) + ∆Gcorr(T + ∆T ) − ∆Gsim(T − ∆T ) − ∆Gcorr(T − ∆T )

2∆T
(A.34)

These corrections, although small in magnitude, were systematically of opposite sign

at temperatures T ± ∆T because the thermal expansion coefficient of liquid water differs

from the thermal expansion coefficient of the ideal gas. As a result, failure to apply these

corrections will lead to a non-negligible systematical bias in the FD-FEP entropy.

The thermodynamic cycle indicating the whole process, including correction terms, is

depicted in A.1. Note that in the cycle depicted in A.1, we must compute the correction

terms at temperatures T ± ∆T in order to compute the slope of ∆G with respect to T , ie
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∆Gcorr

∆G
∆Gsim

∆Gcorr

∆G ∆Gsim
∆Gsim

= ∆G

T − ∆T, P1

ideal gas
T − ∆T, P ∗

ideal gas
T, P ∗

ideal gas
T + ∆T, P ∗

ideal gas
T + ∆T, P2

ideal gas

T − ∆T, P0

liquid
T, P0

liquid
T + ∆T, P0

liquid

Figure A.1: Thermodynamic cycle depicting the constant pressure corrections to ∆Gsim at

temperatures T ± ∆T when computing the slope of ∆Gsim with respect to T .

the entropy associated with the solvation free energy of transfering the water molecule from

the gas phase to the liquid phase at temperature T .
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Appendix B

Comparison between REST and

TREM

B.1 Can TREM be more efficient than REST1?

In a previous paper we noted that REST1 can sometimes be less efficient than TREM

in systems in which there are large conformational energy changes between folded and

unfolded structures. We attributed this to the absence of Eww in the REST1 acceptance

ratio formula, (Eq. (6.2)), a term that might be able to compensate for the large differences

of (Epp +(1/2)Epw) between the folded and unfolded conformations.[95] On further analysis

it appears that this may not be the reason for this behavior of REST1 in these systems. On

the one hand, the acceptance ratio for an exchange from a folded structure to an unfolded

structure is much lower in REST1 than in normal TREM if ∆(Epp+(1/2)Epw) is much larger

than ∆(Epp + Epw + Eww) between the folded and unfolded structures. (The acceptance

ratio in normal TREM depends on ∆(Epp + Epw + Eww)) On the other hand, the unfolded

structure is sampled with much larger probability in REST1 than in normal TREM at

higher temperatures. This is expected because the potential energy for water is scaled in

REST1 making the unfolded structure more favorable. If high temperature replicas sample

the whole conformation space efficiently, both unfolded and folded structures should be

observed. Detailed balance then shows that the unfolding and folding rates at T0 for TREM

and REST1 will be identical and the correct distribution at T0 should be maintained for
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TREM and REST1. So the absence of Eww is not responsible for the inefficient sampling of

REST versus TREM as was thought previously. The problem is that in REST1 the replicas

at higher temperatures sample the unfolded structure with dominating probability and the

overlap of conformation space for replicas at lower and higher temperatures is very small.

This is not a problem in REST2 where there is a smaller scaling factor of the Epw term.

B.2 Why REST2 is more efficient than TREM.

There are two important factors that make REST2 more efficient than TREM. Firstly,

TREM uses far more replicas than REST2. Secondly, the higher temperature trajectories

in TREM are much slower with respect to cpu time than in REST2. This occurs because

in the higher levels the atoms in TREM move much faster than in the higher levels of

REST2, thus requiring that, for the same skin thickness, its nearest neighbor list must

be updated much more frequently (or alternatively, for fixed update frequency, the skin

thickness must be increased). In either case the TREM trajectory requires longer cpu

times. Because replica exchange is attempted at a constant time interval, the speed in

TREM is limited by the longer cpu times for the high temperature replicas. For example,

for benchmark MD trajectories of the same duration run for the trpcage at 600K and at

300K, using DESMOND, the 300K trajectory requires half the cpu time that the 600K

trajectory requires. Thus we save a factor of 48/10 from the smaller number of replicas and

a factor of 2 for each trajectory (from the above difference in cpu times for trajectories of

the same length) for a total speed up of at least 4.8*2=9.6 of REST2 over TERM for the

trpcage. Although TREM and REST2 are rigorous sampling methods, TREM will converge

much more slowly in cpu time than REST2.
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Appendix C

Comparison between OPLS 2005

and OPLS 2.0 force fields for

ligands CDA and CDB

C.1 Charge distributions on the Pyridine ring

The charge distributions on atoms of the P3 pyridine ring for ligand CDA from the two

force fields with the atom numbers labeled as in Fig. C.1 are given in Table. C.1. It is

clear that in the OPLS 2005 force field, the magnitude of the charges on the atoms of the

P3 pyridine ring are very large, making it very polar and favoring its pointing into a polar

solvent like water, while the OPLS 2.0 force field correctly assigns the charges on these

atoms and the correct binding pose was sampled. Similar differences of charge distributions

on the P1 pyridine ring and on ligand CDB were found for these two force fields.
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Figure C.1: The atom numbering on the P3 pyridine ring for ligand CDA

Table C.1: Charge distributions on atoms of the P3 pyridine ring for ligand CDA for two

force fields.

Atom numberOPLS 2.0OPLS 2005

N1 -0.431 -0.678

C2 0.045 0.370

C3 -0.138 -0.447

C4 -0.091 0.227

C5 -0.164 -0.447

C6 0.089 0.473
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C.2 The distribution of dihedral angle involved in the flip-

ping of the P1 pyridine ring

The distribution of the dihedral angle involved in the flipping of the P1 pyridine ring (N-C-

C-C labeled in Fig 1 in text) determined from a REST simulation of the Thrombin/CDA

complex using the OPLS 2005 force field for the CDA where the “hot region” is taken to

include the ligand and the 10 residues surrounding the binding pocket is given in Fig. C.2.

Two conformations corresponding to the crystal structure are found and an erroneous ad-

ditional state with even larger probability was observed in the simulation. This erroneous

state might be due to deficiencies in the force field for the ligand. This is validated from

the distribution of the dihedral angle for ligand CDA in gas phase simulations using OPLS

2005 force field (See Fig. C.3), where the intrinsic potential energy of the ligand favors the

erroneous state. This erroneous state does not appear in the simulation using the OPLS

2.0 force field for the ligand, and then the correct binding pose was sampled.
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Figure C.2: The distribution of dihedral angle involved in the flipping of P1 pyridine ring

(N-C-C-C labeled in Fig1 in text) for Thrombin/CDA complex using OPLS 2005 force field

for the ligand.
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Figure C.3: The distribution of dihedral angle involved in the flipping of P1 pyridine ring

(N-C-C-C labeled in Fig1 in text) for ligand CDA in gas phase using OPLS 2005 force field.
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Appendix D

How to Treat bonded interactions

in FEP simulation

The bonded interactions connecting the dummy atoms were treated differently from the

default method in Desmond.[190] In this section, we give the details about how the bonded

interactions involving the dummy atoms are treated in FEP/REST to avoid singularities

and instabilities. As mentioned in the paper, this is a problem often not appreciated in the

literature on FEP.

In the dual topology FEP method, depending on whether the bonded interactions be-

tween the dummy atoms and the rest of the mixed molecule are scaled or not, there are

two different methods: “the ideal gas atom end state” method (scaled) and “the ideal

gas molecule end state” method (non-scaled). In the ideal gas atom end state method,

the dummy atom does not have any bonded interactions with the rest of the molecule and

would move freely in the whole simulation volume, making the sampling very difficult. Thus

most programs, including Desmond, use the ideal gas molecule end state method, in which

the dummy atoms are bonded with the rest of the molecule. However, if there are more

than one bonded stretch or bonded angle or bonded dihedral angle interactions between a

dummy atom and the rest of the molecule, the distributions sampled for the mixed molecule

(molecule with the dummy atoms) will be different from the molecule without the dummy

atoms.[190] So in Desmond, only one bonded stretch, bonded angle and bonded dihedral
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angle interactions involving a dummy atom are kept while all the other bonded interactions

are scaled to zero at the end state.[190] In this way, the contributions of the dummy atoms

to the free energies in the binding complex and in pure solvent will be identical and conse-

quently the relative binding affinity will be independent of the dummy atoms. This follows

because the relative binding affinity is equal to the difference of these two free energies. For

most systems, this method works well, but for some systems, like the sets of ligands studied

in this article, it will cause serious problems in the FEP simulation, which is explained in

what follows.

Fig. D.1a displays how the structure of the mixed molecule is mutated from a benzene

molecule to a p-xylene molecule. The two dummy hydrogen atoms which are mutated to

the methyl groups all have two bonded angle and bonded dihedral angle interactions with

the rest of the molecule. Take the dummy hydrogen atom numbered 6 in Fig. D.1a as an

example. It has two bonded angle and bonded dihedral angle interactions with the rest of

the molecule (θ1, θ2, φ1, φ2 labeled in Fig. D.1a). If all these bonded interactions are kept

in the end state, the distribution of the angle formed by atoms numbered 2, 3, and 4 for

the mixed molecule with the dummy atom will be different from the distribution of the

real molecule without the dummy atom. So in the default setup of Desmond, only one

bonded angle and one bonded dihedral angle interaction involving the dummy hydrogen

atom (θ1, φ1) is kept in the end state, and the others (θ2, φ2) are scaled to zero. The energy

difference (U1 − U0) (where U1 is the potential energy in the previous lambda window and

U0 is the potential energy in the end state lambda window) sampled in the end state lambda

window using Desmond’s default setting is given in Fig. D.2. Clearly, the energy difference

fluctuate about three different values (approximately -0.5, 21, and 40 kal/mol respectively).

From the simulated trajectories, we observed that the two dummy hydrogen atoms were

located at the correct positions in the initial stage (Fig. D.1a), then one of them moved to

the position which almost overlapped with a carbon atom on the ring (Fig. D.1b), and at the

end the other hydrogen atom moved to the position which almost overlapped with another

carbon atom on the ring (Fig. D.1c). These three configurations for the mixed molecule are

located in the potential energy minima for the end state where only one bonded angle and

one bonded dihedral angle interaction are kept (θ1, φ1) for the dummy hydrogen atoms (the
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Figure D.1: The structure of the mixed molecule to mutate from benzene to p-xylene.

Three different configurations are sampled in the end state when only one bonded angle

and bonded dihedral angle interactions are kept for the dummy hydrogen atoms.
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Figure D.2: The energy difference between the previous lambda window and the end state

lambda window sampled by the end state lambda window for mutation from benzene to

p-xylene when only one bonded angle and bonded dihedral angle interactions involving the

dummy hydrogen atoms are kept in the end state.
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default setup of Desmond). In the previous lambda window, however, when all the bonded

interactions involving the dummy atoms (including θ2, φ2) are slowly turned on, the last

two configurations ( b and c) have large bonded angle interactions (also 1-4 pair interactions

) leading to instabilities for the free energy calculation. This is the reason for large jumps

in the energy difference profile displayed in Fig. D.2 and the three distinct values of energy

difference correspond to these three configurations. (In extreme cases, when either dummy

atom is located at the same position as the carbon atom on the ring, the 1-4 pair interaction

will cause a singularity in the free energy calculation.)

To avoid instabilities and singularities in the free energy calculations caused by the

bonded interactions involving dummy atoms, we treated these bonded interactions in the

end state differently in this article. We choose to keep all of the bonded stretch and bonded

angle interactions involving the dummy atoms in the end state. For the dihedral angle

interactions, only one bonded dihedral angle interaction involving a dummy atom is kept

while the other dihedral angle interactions are scaled to zero in the end state. Take the

dummy hydrogen atom numbered 6 in Fig. D.1 for example. We include two bonded angle

terms (θ1, θ2) and one bonded dihedral angle term (φ1) in the end state, while the other

bonded dihedral angle term (φ2) is scaled to 0 in the end state. Thus in the end state

configurations b and c in Fig. D.1 are located in the high energy region in phase space, and

thus will not be sampled. In this way, the instability and singularity problems encountered

for the bonded interactions in FEP are eliminated. Although the distributions sampled for

the “mixed molecule” (molecule including the dummy atoms) might be a bit different from

the distributions for the molecule without the dummy atoms, the error introduced in this

treatment is negligible because the fluctuations of bond angle are very small for the two sets

of ligands studied in this article. In addition, the error in the relative binding affinity, which

is the difference between the free energies in the binding complex and in free solvent, will

be very small, because there is an excellent cancellation of errors in these two free energies.
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Appendix E

Structures of ligands studied in

Chapter 4

PE9:1ZND HE2:1ZNE



APPENDIX E. STRUCTURES OF LIGANDS STUDIED IN CHAPTER 4 232

HE4:1ZNG OC9:1ZNH

F09:1ZNG
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IBMP:1QY1(PRZ) IPMP:1QY2(IPZ)

LTL:1I05(HMN) TZL:1I06(SBT)
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