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ABSTRACT 

Schematic Effects on Probability Problem Solving 

S. Sonia Gugga 

Three studies examined context effects on solving probability problems.  Variants of 

word problems were written with cover stories which differed with respect to social or 

temporal schemas, while maintaining formal problem structure and solution procedure.  In the 

first of these studies it was shown that problems depicting schemas in which randomness was 

inappropriate or unexpected for the social situation were solved less often than problems 

depicting schemas in which randomness was appropriate.  Another set of two studies examined 

temporal and causal schemas, in which the convention is that events are considered in forward 

direction.  Pairs of conditional probability (CP) problems were written depicting events E1 and 

E2, such that E1 either occurs before E2 or causes E2.  Problems were defined with respect to the 

order of events expressed in CPs, so that P(E2| E1) represents the CP in schema-consistent, intact 

order by considering the occurrence of E1 before E2, while P(E1|E2) represents CP in schema-

inconsistent, inverted order.  Introductory statistics students had greater difficulty encoding CP 

for events in schema-inconsistent order than CP of events in conventional deterministic order. 

The differential effects of schematic context on solving probability problems identify 

specific conditions and sources of bias in human reasoning under uncertainty.  In addition, these 

biases may be influential when evaluating empirical findings in a manner similar to that 

demonstrated in this paper experimentally, and may have implications for how social scientists 

are trained in research methodology. 
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CHAPTER I: INTRODUCTION 

With respect to educational and social policy, renewed emphasis on evidence-based 

practice and the assessment of student learning has highlighted the importance of nuanced 

understanding of statistical inference for social scientists, educators, and policymakers (Gal, 

2005; Milton, 2006; Slavin, 2004, 2008).  There has been debate as to the quality of statistical 

training for social scientists, in that it has been criticized for its overreliance on narrow 

methodologies as well as inadequately preparing both producers and consumers of research 

literature (Henson, Hull, & Williams, 2010; Olani, Harskamp, Hoekstra, & van der Werf, 2010; 

Pallas, 2001; Slavin, 2004).  With respect to consumers of scientific literature, a basic 

understanding of the process of statistical inference is central to evaluating the validity and 

scope of social science research (Neath, 2010; Paris & Luo, 2010; Slavin, 2003, 2004, 2008; 

Sloane, 2008) which may significantly affect how empirical evidence is implicated in major 

policy decisions, such as the use of students' standardized test scores to evaluate teacher 

effectiveness. 

A major body of work into statistical reasoning has illustrated that individuals often 

disregard statistically prescribed processes, employing heuristics and biases which often 

produce invalid inferences (see Barbey & Sloman, 2007; Cohen, 1981; Gigerenzer & Hoffrage, 

2007; Kahneman & Tversky, 1979; Krynski & Tenenbaum, 2007; Nisbett, Krantz, Jepson, & 

Kunda, 1993; Stanovich, Toplak, & West, 2008; and Tversky & Kahneman, 1974, 1980 for 

extensive treatments of the debate).  It would be difficult to be optimistic about the efficacy of 

policy enacted from faulty inferences, and while many of the aforementioned studies 

demonstrate the persistence of biases in both the statistically naïve and individuals with 

extensive statistical training, another body of work exhibits particular contexts which may 
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improve performance on judgments under uncertainty.   Improvement has been affected by 

training, expression of likelihood in frequency formats, or by expressing real-world application 

to contexts in which individuals are more likely to reason probabilistically with respect to 

causal or social schemas (Fox & Levav, 2004; Gigerenzer & Hoffrage, 1995, 2007; Girotto & 

Gonzalez, 2007; Krynski & Tenenbaum, 2007). 

In cognition research, the concept of schema is often invoked to describe a hierarchically 

structured unit of knowledge.  Through experience, individuals form schemas consisting of 

elements and the relationships among them.  Schemas serve to reduce a wealth of phenomena 

into meaningful, manageable units, producing categories that ultimately aid in long-term 

memory (Bower, Black, & Turner, 1979; Marshall, 1993; Nisbett, et al., 1993; Schank & Abelson, 

1977).  The novice-expert distinction in problem-solving research is often delineated by experts’ 

recognition of appropriate schemas depending on deep formal problem structure.  For novice 

problem-solvers, it has been shown that the surface features of a problem may provide cues to an 

inappropriate formal solution schema (Anderson & Thompson, 1989; Gick & Holyoak, 1980; 

Reusser, 1988; Ross, 1984, 1989). 

A mathematical word problem's cover story is its real-world context and semantic 

content, considered surface features, in that they are usually not intended to affect a problem's 

technical difficulty or formal solution processes.  When a cover story relates to social 

interactions, however, pragmatic reasoning schemas may be invoked in the mind of the problem 

solver.  Generally, “pragmatic reasoning schemas” embody the rules and relationships of real-

world social situations, abstracted and classified (Cheng & Holyoak, 1985; Cheng, Holyoak, 

Nisbett, & Oliver, 1993; Cheng & Nisbett, 1993).  The difficulty many problem-solvers face in 

correctly solving conditional reasoning if-then problems posed in the abstract has been shown to 
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be alleviated by placing the problem within a pragmatic, deontic context, such as permission, 

obligation, cheating, or cost-benefit paradigms (Cheng & Holyoak, 1985; Cosmides, 1989).   

Problems in the earliest phases of a course in probability theory generally deal with 

randomizing devices – balls in urns, shuffled decks of cards, flipped coins, or rolled dice.  Their 

stochasticity is apparent: many people are already familiar with them through games of chance.  

Social science students new to the field of statistical inference often have difficulty transferring 

probabilistic principles from games of chance to human behavior, in which the randomness of 

the problem situation is less apparent (Agnoli & Krantz, 1989; Fong, Krantz, & Nisbett, 1993; 

Howell & Burnett, 1978; Teigen & Keren, 2007)  While if-then problems in a pragmatic social 

context are easier to solve than abstract versions, work in the field has shown that, in 

probability problem solving, replacing randomizing devices with anthropomorphic context 

tends to increase the difficulty of the problem rather than alleviate it (Bassok, Wu, & Olseth, 

1995; Falk & Lann, 2008).  It may be that individuals have more difficulty reasoning 

probabilistically about people in social contexts rather than about non-human entities due to 

the implicit causal (rather than stochastic) schemas that people's beliefs or action are caused by 

certain internal traits or intention (Schwartz & Goldman, 1996; Windschitl & Wells, 1998).  

With respect to training in the social sciences, however, it is necessary to understand that 

human behavior can have a stochastic component of variability.   

The claim made here is that problem solving in probability is particularly affected by 

domain-specific biases in probabilistic reasoning.  It is worth noting that this paper is not 

intended to enforce or dispute the heuristics and biases view that human judgment under 

uncertainty is broadly flawed and does not conform to what is considered rational in light of 
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formal statistical rules.   Rather, the studies described in this paper will illustrate particular 

circumstances in which heuristics and biases may be differentially exhibited during probability 

problem solving, with respect to the schemas depicted in those problems’ cover stories.  The 

studies will be discussed in terms of frameworks constructed to describe probabilistic reasoning 

processes uniquely.   

One of the frameworks describes discrepancies between formal quantitative 

probabilistic assessments (Type 2) and on-the-fly, qualitative probabilistic judgments (Type 1), 

and has led to a theory of dual-systems representations for probability judgments (Evans & 

Frankish, 2008; Fox & Levav, 2004; Sloman, 1996; Sloman & Rips, 1998; Smith & Collins, 2009; 

Stanovich, et al., 2008; Tversky & Kahneman, 1983; Windschitl & Krizan, 2005; Windschitl & 

Wells, 1998).  While the two processes have been well-differentiated, it remains to be 

determined how they may interact in probability problem solving contexts.  Individuals have 

been shown to have a strong bias toward Type 1 processes for evaluating social behavior or 

characteristics: people generally have difficulty understanding social behavior in strictly 

probabilistic terms.  It may be that the interaction of the two processes depends on the details of 

the schematic representation of the elements of the problem.  The effect of adjustments on 

schematic elements of items has not yet been studied in a probability problem solving context. 

Within these theoretical frameworks, experimentally manipulating pragmatic schemas 

within isomorphic probability problems (while controlling for formal solution schema) would 

yield insights into how pragmatic schemas affect the difficulty of solving probability problems.  

The implications of this theoretical framework was explored using a mix of classroom 

experiments, conducted in introductory probability and statistics courses in a graduate school 
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of education, and laboratory experiments conducted online.  It was thought that including 

participants from populations other than that of students in social sciences would inform the 

generalizability of results and allow for comparisons with previous findings.  The research 

program had several phases, each aimed at understanding particular schematic representations. 

The first of the real-world schemas that was addressed used probability problems 

involving real-world situations in which a “first-come, first-served” schema was replaced by 

random ordering.  Subjects' performance on these problems was compared with performance on 

problems in which randomness is an inherent aspect of the social situation described in the 

cover story.  With respect to real-world context, it was expected that performance would differ 

on problems in which randomness was imposed compared to problems in which randomness 

was endemic.  Randomness would be expected in situations in which people are selected by 

lottery or draw items blindly from a container.   

Another pair of studies addressed the direction of temporality and causation, examining 

whether inverting the temporal direction of a schema would affect the difficulty of a conditional 

probability problem.  It was hypothesized that it would be easier for individuals to reason 

forwards regarding temporal or causal events given the deterministic nature of causal and, by 

extension, temporal schemas (Cheng & Nisbett, 1993; Tversky & Kahneman, 1980).  In other 

words, it would be easier for subjects to calculate the conditional probability of an event given 

the probability of events preceding it versus calculating the probability of an event given the 

probability of events occurring later.  Similarly, it was expected that problems asking for the 

conditional probability of an effect given the probability of its cause(s) would be easier than 

problems asking for the probability of a cause given the probability of its effect(s).  It was 

supposed that inverting the direction of determination should introduce an additional level of 
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difficulty to the problem.  It was also expected that the perceived causal strength between 

events would mediate the effect.  In addition, I intend to illustrate how schematic effects on 

probability problem solving may inform instruction on statistical inference and the evaluation of 

scientific data. 

The experiments discussed yield insights into how probability problems are categorized 

and solved, what effects these pragmatic schemas have on problem-solving success, and how 

they may inform peculiarities about probabilistic reasoning in general.  
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CHAPTER II: LITERATURE REVIEW 

A fairly influential body of research in cognition has demonstrated that human judgment 

under uncertainly falls somewhere on the spectrum between vulnerable to biases and not rational 

(Agnoli & Krantz, 1989; Bar-Hillel & Falk, 1982; Cosmides & Tooby, 1996; Falk, 1989; 

Kahneman & Tversky, 1979; Mackie, 1981; Nisbett, et al., 1993; Rips, 1994; Stanovich, et al., 2008; 

Tversky & Kahneman, 1974, 1980).  Many of these studies have utilized tasks which elicit 

qualitative probabilistic judgments or attributions, rather than the formal statistical processes 

which define the prescriptive standard of rationality.  Conversely, another vein of research 

disputes the validity of the broad indictment of probabilistic reasoning by addressing the 

disconnect between expecting probabilistic judgments on experimental tasks that do not 

demand formal processes (Windschitl & Krizan, 2005), raising theoretical objections to the 

interpretation of results (Cohen, 1981), or illustrating conditions in which performance on 

statistical reasoning tasks may be improved through changes to context (Fong, et al., 1993; Fox 

& Levav, 2004; Gigerenzer & Hoffrage, 1995, 2007; Krynski & Tenenbaum, 2007; Schurr & Erev, 

2007; Windschitl & Wells, 1998).  A number of more recent studies have utilized quantitative 

problem-solving tasks, illustrating differential effects on computational problem solving 

(Fantino & Stolarz, 2007; Fox & Levav, 2004; Gigerenzer & Hoffrage, 1995; Krynski & 

Tenenbaum, 2007; Martin & Bassok, 2005; Villejoubert & Mandel, 2002; Wright & Murphy, 

1984). 

Computational models of mathematical problem solving define the methods by which 

people solve problems using methods other than direct linear application of formal, prescribed 

rules.  Computational models often describe how problem solving is affected by schematic 

representations of a word problem's context (Sweller, 1988; Vosniadou, 1989; Windschitl & 



   8 

 

Wells, 1998).  Broadly speaking, in cognitive research, the wealth of phenomena in the world are 

organized into schemas, in which units of information are abstracted and defined along with the 

relationships among them (Holyoak & Thagard, 1989; Sweller, 1988).  With respect to problem 

solving, a schema serves as a structuring framework, defining elements such as problem type 

with associated solution procedures (Cheng & Holyoak, 1985; Cheng, et al., 1993; Chi, Feltovich, 

& Glaser, 1981; Chi, Glaser, & Rees, 1982; Gick & Holyoak, 1980; Hinsley, Hayes, & Simon, 1977; 

Marshall, 1993; Newell & Simon, 1972; Nisbett, 1993; Pólya, 1941, 1954a, 2004; Rips, 1994; Ross, 

1989; Sweller, 1988).  Marshall (1993) further defined the elements of a problem schema as 

consisting of feature elements, constraints, planning, and execution.  The utility of a schema is 

primarily to aid long-term memory, as the elements of a schema are stored such that retrieval of 

one element will make its associated elements more salient.  Studies of the distinction between 

expert and novice approaches to problem solving have yielded insights into how schematic 

representation of problems change with increased experience.  Notably, novices tend to focus on 

contextual cues with respect to categorizing problems, creating schemas based on cover story.   

Experts more readily categorize problems based on schemas defined by domain-specific rules or 

solution procedure.  This distinction has been demonstrated with problems in the domain of 

physics (Chi, et al., 1981; Chi, et al., 1982; Larkin, Heller, & Greeno, 1980; Larkin, McDermott, 

Simon, & Simon, 1980; Larkin & Simon, 1987), as well as algebra (Gick & Holyoak, 1980; 

Hinsley, et al., 1977).  Experts’ categorization of problems by their deep structure facilitates 

problem solving by the schematic association of problem type and solution procedure, through 

what is characterized as schema induction (Gick & Holyoak, 1980).  Schema induction describes 

the process by which identification of a problem’s type based on structural elements cues a 
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correct solution procedure; identifying problem type based on spurious elements may cue an 

incorrect solution procedure and produce an incorrect answer. 

Computational models of problem solving explain many of the processes that novice 

problem solvers engage when approaching a novel problem, including the effect of problem 

context (Martin & Bassok, 2005; Reusser, 1988; Ross, 1989).  This has been studied extensively 

with respect to the four-card if-then conditional reasoning task proposed in abstract by Wason 

(1968), i.e., the selection task.  In the selection task, individuals are asked to verify a logical 

implication rule expressed in "if p, then q" form.  A number of investigators have shown that 

placing the problem within a pragmatic context, as summarized in Table 1, significantly 

increases the proportion of problem solvers who correctly solve the problem.  Investigators, 

however, have differing explanations for these effects, since the selection task is usually 

expressed in terms of deontic systems (i.e., those defining norms of necessity and obligation) 

Table 1  
Expression of the Selection Task Rule in Abstract and Deontic Contexts 

Context Rule 

Abstract 
If there is a square on one side of  the card, then there is a red scribble on the  

other side  (Wason, 1968). 

Permission 
If a customer is drinking an alcoholic beverage, then he or she must be over 

twenty-one (Cheng, Holyoak, Nisbett, & Oliver, 1993). 

Obligation 
If one works for the armed forces, then one must vote in the elections (Cheng, et 

al., 1993). 

Private Exchange 
If you give me your ostrich eggshell, then I’ll give you duiker meat (Cosmides, 

1989). 

Cost-benefit If you spend over £100, then you will receive a free gift (Rips, 1994). 
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(Cosmides, 1989; Rips,  1994).  Cheng and Holyoak (1985) cite the effect of pragmatic schemas, 

noting that there are context-dependent schematic representations of permission and obligation 

paradigms which are engaged in those contexts.  Cosmides, rather than credit the concept of 

pragmatic schema, attributes the effect to the evolutionary salience of obeying or violating social 

contracts for individuals’ enhanced performance on these problems.   

A number of the pragmatic schemas applied to the selection task have been studied 

within the context of event schemas, or scripts, by which individual events are categorized into 

generalized structures.  Shank and Abelson (1977) illustrated that within a restaurant script 

there are several expected events, including being seated at a table, ordering from a menu, being 

served food, eating, and paying the bill.  Scripts are shared natural categories similar to those for 

objects; 73% of individuals sampled independently cited each of the events previously 

mentioned when asked to list the events that occur during a restaurant visit.  These categories 

also play a role in what is recalled about an experience.  Individuals are more likely to recall 

script elements rather than details which are not classified by script elements (Bower, Black, & 

Turner, 1979).  Calling upon an element of a script in word problems facilitates recall of related 

elements of that script, similar to the process of schema induction described by Gick and 

Holyoak for problem type and problem solution (1980).  If the context of a word problem recalls 

an established script, the salience of that script may in part affect performance on the problem. 

In probability problem solving, however, pragmatic context has not been shown to 

alleviate item difficulty.  Randomness is often a necessary factor in probability problems, and 

individuals readily understand randomness with respect to games of chance.  Problems 

involving cards, dice, or balls in urns do not require special consideration with respect to 

stochasticity (Fong, et al., 1993; Howell & Burnett, 1978; Teigen & Keren, 2007).  When these 
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same problems are expressed in a human or social context, however, problem solving is often 

impeded.  For example, with respect to the much studied three-card (i.e., “Monty’s dilemma”) 

problem, correct performance on the problem in its original context was impeded when it was 

expressed with pairs of people replacing the sides of a card, particularly when those people were 

individualized and named (Falk & Lann, 2008; Fox & Levav, 2004).  There have been a number 

of studies illustrating that individuals have difficulty applying notions of randomness in social 

judgments (Agnoli & Krantz, 1989; Lehman, Lempert, & Nisbett, 1993; Nisbett, Fong, Lehman, 

& Cheng, 1987; Windschitl & Wells, 1998).  Given instruction in the application of the law of 

large numbers, study participants have been shown to more readily apply the principle to 

judgments regarding athletic skill or job performance rather than friendliness or honesty 

(Nisbett, et al., 1993).  Individuals generally have difficulty differentiating between cause and 

chance when reasoning about people probabilistically, often making what has been termed a 

covariance assumption: rather than attributing human behavior to chance, people tend to assume 

that behaviors or opinions are determined exclusively by internal factors (Schwartz & 

Goldman, 1996).  Reasoning probabilistically about people can be complicated by considering 

intent, which is not the case when reasoning about cards or dice (Howell & Burnett, 1978; 

Nisbett, et al., 1987).  

The implicit confounding of the attribution of both cause and chance factors on an 

outcome may offer insights as to why problem solving in probability is not regularly facilitated 

by social-pragmatic context.  Probability is particularly affected by domain-specific biases that 

do not affect performance on if-then implication tasks.  Research in this field has documented 

discrepancies between formal quantitative probabilistic assessments and on-the-fly, qualitative 

probabilistic judgments, leading to a generalized theory of dual-systems representations for 
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probability judgments.  These two processes have been contrasted in terms of extensional versus 

intuitive (Tversky & Kahneman, 1983); rational versus experiential (Epstein, Pacini, Denes-Raj, & 

Heier, 1996); or rule-based versus associative (Sloman, 1996), among others.  For the purposes of 

this paper, extensional, rational, and rule-based processes will be referred to as Type 2 and 

intuitive, experiential, and associative processes will be referred to as Type 1, as summarized by 

Evans and Frankish (2008, see also Stanovich, Toplak, & West, 2008).  Type 2 processes engage 

the formal procedures prescribed by probability theory.  Type 1 processes engage the heuristics 

that have been defined by how they do not adhere to formal probability theory, such as base-rate 

neglect, the conjunction fallacy, and availability bias (Tversky & Kahneman, 1974, 1980, 1983).  

For individuals with the appropriate training, Type 2 processes are dominant in situations 

requiring quantitative judgments and non-social context.  For these same individuals, Type 1 

processes are usually engaged when reasoning about social situations, indicating the persistence 

of these heuristics in certain contexts. 

While the two processes have been well-differentiated, it remains to be determined how 

they may interact in probability problem solving contexts.  Namely, how may the heuristics 

employed in Type 1 probability judgments affect formal calculations requiring Type 2 processes?  

Some research has indicated that, with respect to social judgments, Type 1 reasoning biases can 

be superseded by the introduction of a quantifiable metric of comparison, which seems to cue 

formal Type 2 processes (Nisbett, et al., 1993).  Stanovich et al. (2008) term this process Type 2 

override, the process of suppressing Type 1 processes by separating the abstract formal schema 

from the individual problem schema.  The formal schema becomes a simulation representation of 

the problem space which can then be manipulated using formal solution processes.  Often the 
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recognition that a formal schema is applicable is facilitated by a randomness cue, which serves 

to introduce a stochastic component onto a situation in which it is not otherwise salient.  For 

example, the well-established restaurant script has been experimentally altered with the detail 

that an individual orders from an unreadable restaurant menu by dropping a pencil on the menu 

and requesting the item on which it lands (Fong, et al., 1993).  Type 2 override in probability 

problems with social context may be facilitated by a randomness cue or by demand 

characteristics of the item, which indicate that a formal quantitative assessment of 

mathematical probability is required over and above a quick judgment (Nisbett, et al., 1993). 

Models of problem solving have defined problem solving processes as sets of required 

skills or knowledge types as well as sequential sets of phases.  Some of these are more relevant as 

to when Type 2 override may be engaged.  Mayer (1992) included semantic knowledge, knowledge 

of the world, and schematic knowledge, knowledge of problem type, in a set of knowledge types 

necessary for problem solving.  These definitions parallel the Type 1-Type 2 distinction 

previously described.  Reusser (1996, see also Zahner & Corter, 2010) proposed a five-stage 

model of mathematical problem solving, with stage three being the phase during which the 

situation model of the problem is translated into formal mathematical representations.  In the 

example given above, it is during this phase of problem solving that the randomness cue of 

dropping the pencil on the menu included in the situational model of the problem would be 

formalized in its mathematical solution.  With respect to dual-systems representations theory, 

Type 1 processes would typically be activated when considering real-world pragmatic schemata, 

Type 2 processes activated when considering formal solution schema, and both processes 

interact when negotiating an individual problem schema.  When the surface content of a 

problem reflects an established pragmatic schema, the ease with which specific elements of a 
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problem map onto the formal solution schema can be affected by the degree to which the 

problem context adheres to or deviates from the relevant real-world schema (Bassok, et al., 1995; 

Falk & Lann, 2008; Martin & Bassok, 2005).  If so, then probability problem solving can be 

viewed as a three-way coordination and mapping process, associating real-world knowledge 

through pragmatic schemas to individual problem schemas to formal schemas.  To date, these 

processes have been studied with respect to general application of the law of large numbers or 

sampling methodology in a qualitative context.  The effects of these adjustments have not yet 

been studied in a probability problem solving context. 
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CHAPTER III:  STUDY 1 

Statement of the Problem  

Study 1 examines if probability problem solving is affected by whether randomness is 

appropriate to the pragmatic schema of an item's cover story.  It was expected that Type 1 and 

Type 2 processes would play a larger or smaller role in problem solving depending on the 

context of the problem's cover story.  Previous studies (Bassok, et al., 1995; Falk & Lann, 2008; 

Howell & Burnett, 1978; Schwartz & Goldman, 1996; Windschitl & Wells, 1998) have 

demonstrated that people have greater difficulty reasoning statistically about social situations or 

human behavior than about simple randomizing devices or abstract entities.  Much of the work 

in this area used tasks which do not require mathematical or formal quantitative solutions, 

while a few more recent studies have illustrated context effects using quantitative problem-

solving tasks as well.  Study 1 was designed to examine whether Type 1 reasoning interacts with 

Type 2 solution processes on a formally isometric permutation problem expressed through 

different cover stories.   

Cover stories for a probability problem were written depicting schemas in which 

individuals expect an element of randomness as well as those in which the social script dictates 

that a non-random ordering should be applied.  Cover stories in the randomness-appropriate-schema 

(RA) condition depicted randomizing devices such as cards or dice, as well as social situations 

in which random selection is consistent with the script, such as lotteries.   

Cover stories in the randomness-inappropriate-schema (RI) condition depict situations in 

which some identifiable non-arbitrary criterion of ordering is an essential element of the script.  

Specifically, the first-come, first-served (1C1S) line-waiting paradigm is an important aspect of 
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many service-related schemas, including the much studied restaurant script (Shank & Abelson, 

1977).  The 1C1S script element defines a sequence of events so that, among people waiting for 

some service, the first to arrive will be the first served, and so forth, in the order of arrival.  In 

experimental cover stories depicting this type of scenario, the expected 1C1S ordering is 

replaced with random ordering, which is inconsistent with the expected script.  By imposing the 

social schema onto a probability problem schema in which random assignment is required, 

individuals’ performance on the problem was expected to be altered.  With respect to Cheng 

and Holyoak’s pragmatic schema theory (1985), the problem would be rendered more difficult, 

as adding stochasticity to the problem schema would increase the conceptual distance between 

the problem context and the pragmatic schema.  Conversely, should the addition of stochasticity 

highlight the violation of the 1C1S rule, as Cosmides’s theory of social contract (1989) would 

predict, performance on the problem may be enhanced.  According to this view, individuals’ 

native sensitivity to cheating increases the salience of randomness in the inappropriate situation 

and may induce Type 2 override.   

Additional Conditions 

Variants of each primary randomness condition were designed to examine whether 

specific elements of a problem schema would affect performance on the item.   It was expected 

that within randomness-appropriate (RA) items, cover stories depicting randomizing devices 

would be solved more frequently than items depicting social schemas.  This condition sought to 

support the idea illustrated by Bassok and colleagues (1996) in which, using a common 

probability item involving permutations, a probability item in which computers were randomly 

assigned to secretaries was easier to solve than items in which secretaries were randomly 
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assigned to computers, even though each cover story described a situation in which randomness 

was expected. Changing the subject of the probability item from objects to people did not 

radically alter the script of the problem cover story but affected its difficulty.  To investigate this 

effect in Study 1, two types of RA problems were written with cover stories depicting either (a) 

randomizing devices or (b) randomizing people in social settings.  The items using randomizing 

devices depicted games of chance such as cards or drawing numbered balls.  The RA items with 

individuals in place of devices depicted social situations similar to a lottery, such as a Secret Santa 

gift exchange, in which people select gifts at random from a bag. 

The additional condition applied to RI items examined whether a randomness cue might 

induce Type 2 override and alleviate the difficulty of a probability problem.  As mentioned 

above, in a series of studies investigating the salience of random components of variance in 

“everyday” reasoning, Fong et al, (1986) imposed randomness on a situation in which it is 

unexpected.  When ordering a meal in a restaurant, people order food according to some 

criterion, whether it be calories, food allergy, or personal taste.  In their variation of the task, 

however, Fong et al. describe a cover story in which a man is in Japan on business and must 

order a meal from a menu in a language which he cannot read.  The businessman selects a meal 

randomly by ordering the item on which his pencil falls.  The man enjoys his meal and repeats 

the procedure at the restaurant another evening, yet is disappointed in his second meal.  Fong, et 

al.'s subjects who read this version of the story more often attributed the businessman’s 

disappointment to stochastic factors, relative to subjects who read a story in which the standard 

restaurant script was followed.  It was thought that the randomness cue highlighted the element 

of stochasticity, facilitating participants’ attributing variance in meal enjoyment to chance 

factors.  In addition, it has been shown that individuals are resistant to attributing variation to 
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"pure" randomness alone, preferring to attribute unexpected outcomes to unknown causal 

determinants (Krynski & Tenenbaum, 2007; Luhmann & Ahn, 2005).  In addition, individuals 

prefer to bet on known odds of success of 50/50, rather than unknown, possibly better odds 

(Heath & Tversky, 1991).  In Study 1, the secondary condition within randomness inappropriate 

(RI) items tested this effect with cover stories written either (c) with a cue or (d) without a cue 

explaining why random assignment was imposed.  Cover stories in each secondary RI condition 

were identical except that one set of items included an explanation for why random selection 

has replaced 1C1S order.  The explanation provides a causal determinant in the problem's cover 

story and functions as the randomness cue.  It was hypothesized that the explanation would 

decrease the conceptual distance between the problem schema and social schema, facilitating 

solution of the problem. 

Method 

Participants 

Volunteers for Study 1 participated via the Amazon Mechanical Turk (AMT) platform, 

which is an online labor market in which individuals are recruited for surveys as well as tasks 

which are difficult for computers and cannot be automated, such as image recognition and 

filtering for adult content (Buhrmester, Kwang, & Gosling, 2011; Mason & Suri, 2012).  All AMT 

users must be over age 18 according to the terms of that website, although we excluded data for 

six individuals who reported their age less than 18 years.  Participants were further limited to 

those subjects with a proportion of accepted submissions of AMT tasks above 95% to exclude 

users ‘fishing’ for remuneration without reasonably expected effort.  This resulted in 394 
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participants (Table 2).  The AMT website is in English, so all participants were expected to have 

been proficient in English to a degree, regardless of native language. 

Materials 

Cover stories were written to present a single formal probability problem in different 

contexts.  The formal problem involved finding the likelihood of a single possible permutation of 

events.  Two cover stories were written for each of the four conditions, resulting in eight 

parallel, formally isometric probability items (Table 3).  

Procedure 

 Study 1 was administered online as an AMT Human Intelligence Task (HIT).  A HIT is a 

short task for which workers get paid a small amount.  The bulk of the tasks on AMT cannot be 

automated, that is, they entail activities on which humans outperform computers. 

Amazon Mechanical Turk workers browse or search for HITs by keyword.  Keywords 

defined for this task included probability thinking, word problems, math problem solving, and opinions.  

Clicking on the HIT title, "Solve a probability problem" took the AMT participant to a screen 

describing the task.  The instructions informed potential participants that they would be 

completing an introductory probability problem and suggested to have a pen, paper, and 

calculator at hand.  Users clicked a button labeled “Accept HIT”, upon which task appeared 

onscreen in a frame (Figure 1). 

The AMT algorithm allowed each of the eight probability problems to be presented randomly to 

participants.  The HIT containing these items appeared online between March and



Table 2

Study 1: Descriptive Statistics on the Total Sample and by Condition

Total Randomizing 
Devices

Social Schema 
Consistent

Social Schema 
Inconsistent, 

with Explanation

Social Schema 
Inconsistent, 

without 
Explanation

N (% 
Total) 394 99 (25.1%) 98 (24.9%) 99 (25.1%) 98 (24.9%)

Age (years) M (SD) 28.4 (9.1) 27.6 (8.7) 29.7 (9.3) 28.0 (9.6) 28.4 (8.7)

Gender N (%)

Male 270 (68.5%) 73 (73.7%) 67 (67.7%) 64 (65.3%) 66 (67.3%)
Female 115 (29.2%) 23 (23.2%) 31 (31.3%) 31 (31.6%) 30 (30.6%)

Not reported 9 (2.3%) 3 (3.0%) 1 (1.0%) 3 (3.1%) 2 (2.0%)

Region/Language N (%)

English-speaking countries 275 (69.8%) 62 (62.6%) 75 (75.8%) 73 (74.5%) 65 (66.3%)
European, Spanish-speaking countries 46 (11.7%) 16 (16.2%) 8 (8.1%) 9 (9.2%) 13 (13.3%)

Asian countries 73 (18.5%) 21 (21.1%) 16 (16.3%) 16 (16.3%) 20 (20.4%)

Time on task (minutes) M (SD) 3.47 (2.6) 3.61 (2.6) 3.61 (2.2) 3.44 (2.4) 3.24 (2.3)

Note:  Statistical tests indicated no statistical differences among condition on these variables.

RANDOMNESS APPROPRIATE RANDOMNESS INAPPROPRIATE

20
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April 2011. Participants entered an answer in a text box below the item and had the 

option of commenting on their solution.  Below these text boxes, a list of relevant probability 

formulas (Figure A1) was presented, followed by some demographic items.  The "Submit" button 

followed the demographic items. 

Another procedure in addition to the "95% acceptance" rule was implemented to regulate 

quality of the data by limiting only one response per AMT worker.  AMT allowed each HIT to be 

accepted or rejected before participants were paid.  At any point while the HIT was active, 

investigators were able to download a file with participants’ response data and anonymous  

Table 3 

Study 1: Test Items by Condition 

RANDOMNESS APPROPRIATE 

Randomizing devices 

Eight cards numbered one through eight are shuffled. They are then dealt one at a time. What is 

the probability they are dealt in increasing numerical order? 

A special pool table at the pool hall has only eight balls numbered one through eight. To play, a 

customer inserts $2.00 and the balls are released into a tray in the side of the table. What is the 

probability that they appear in increasing numerical order? 

Social schema - consistent 

Day-use lockers at the gym are assigned randomly by selecting keys from a bowl.  The bowl 

contains keys numbered one though eight.  What is the probability that the eight locker keys get 

assigned in increasing numerical order? 

Eight 'Secret Santa' gifts of different value are in a bag.  What is the probability that the gifts are 

randomly selected in order from most to least expensive? 
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identifiers, select which submissions to accept, and upload the file back to AMT.  The HIT 

instructions explicitly stated that only one HIT per worker ID would be accepted, yet several 

participants submitted multiple HITs.  In these cases only the first HIT submitted was accepted 

and the rejected tasks were returned to the item pool.  An additional constraint limited this 

occurrence: Participants’ worker IDs were compiled in a list and a rule applied so those workers' 

with IDs in the list were prohibited from further participation.  This method helped minimize 

the frequency of rejected HITs. Each participant was paid 50 cents for an accepted HIT. 

Table 3 (continued) 

Study 1: Test Items by Condition 

RANDOMNESS INAPPROPRIATE 

Social schema - inconsistent:  1C1S replaced with random order, with explanation 

Eight people are waiting in line to be served at the post office.  There is a fire alarm and the post 

office is evacuated.  It was a false alarm, but now the eight people cannot reassemble the line 

and must be served in random order.  What is the probability that they are served in the original 

order of the line? 

Eight parties are waiting for tables at a restaurant.  The restaurant computer has crashed, losing 

the waiting list.  Parties must now be seated in random order.  What is the probability that the 

parties are seated in the original order in which they arrived? 

Social schema - inconsistent:  1C1S replaced with random order, without explanation 

Eight people have arrived at the post office, but are served in random order.  What is the 

probability that they are served in the order of their arrival? 

Eight parties have arrived and are waiting for tables at a restaurant, but are seated in random 

order. What is the probability that the parties are seated in the order in which they arrived? 

Note: '1C1S' = First-come, first-served 
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Analyses 

Preliminary analyses indicated that there were no differences in proportion correct 

between pairs of items within each of the four conditions, so observations for both items within 

each condition were combined into a single group.  Due to the diversity in the sample, region 

was included as a control in analyses to account for possibility of cultural or linguistic effects 

(see Table 2).  Participants had been asked in which country or countries they were educated; 

these answers were then coded to group participants into three regions: English-speaking 

countries, Asia, and the rest of the world.  The groups are defined in Table A1 in Appendix A.  

Other covariates considered included gender, age, field of study, and a variable in which AMT 

had automatically collected data on the time spent on each HIT in seconds.  Preliminary 

analyses on these control variables showed mean time on task differed significantly among 

Figure 1
Study 1: Presentation of Each Probability Item on the Amazon Mechanical Turk Website
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region groups.  Other variables did not correlate with answering an item correctly and were not 

included in further analyses. 

A Generalized Linear Modeling (GZLM) procedure, SPSS GENLIN, was used to model 

these data according to a binary distribution with logit (i.e., log-odds) link.  This procedure is 

statistically more robust than procedures such as logistic regression in that GZLM does not 

require that the response data are distributed normally for valid results.  Parameter estimates 

can be transformed and interpreted as odds ratios:  the odds of solving an item correctly, given a 

condition, over the odds of solving the item given the reference condition, holding all other 

independent variables at fixed values.  Measures of model fit were estimated using likelihood 

ratio chi-square statistics (X2
LR).  Definitions of the primary research question, along with three 

secondary research questions, may be found in Table 4. 
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Table 4 

Study 1: Research Questions Expressed Through Contrast-Coded Variables for Statistical Analyses  

Primary condition Secondary condition ST1 ST2 ST3 ST4 

RANDOMNESS 
APPROPRIATE 

Randomizing Devices C - - C 

Social Schema Consistent C C - R 

RANDOMNESS 
INAPPROPRIATE 

Social Schema 
Inconsistent, with 

Explanation 
R R C - 

Social Schema 
Inconsistent, without 

Explanation 
R R R - 

Note: 'R' = reference group; 'C' = comparison group; '-' = not included in analysis 

Primary research question:     
ST1 Is performance on randomness appropriate items better than performance on 

randomness inappropriate items? 

Secondary research questions:     
ST2 Is performance on items in which the cover story depicts a social schema 

consistent with random assignment better than on items in which a 'first-come, first-

serve' (1C1S) schema is replaced with random assignement? 

ST3 Within the randomness inappropriate condition, does an explanation for why 1C1S 

is replaced with random assignment improve performance? 

ST4 Within the randomness appropriate condition, are probability items depicting 

randomizing devices easier to solve than items depicting social situations in which 

random assignment is expected? 
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Results 

Overall, 59.4% of participants correctly solved the problem.  Solution rates by condition 

are listed in Table 5.  Results by detailed region are presented in Table A2 in Appendix A.  

Four contrast-coded variables were used to test the primary research question and three 

secondary questions.  These questions and the groups compared with respect to each question 

are listed in Table 4.  Each research question (RQ) was expressed through a single degree-of-

freedom contrast-coded variable.  The primary RQ, as well as each secondary RQ, was tested 

separately in GZLM analyses both with and without covariate region.   

Results from GZLM analyses are summarized in Tables 6 through 9, including results 

from tests of model fit and parameter estimates for each predictor and covariate.  The primary 

research question (ST1) compared performance on randomness-appropriate (RA) items versus  

Table 5  

Study 1: Proportion Correct for Total and by Condition  

Primary condition Secondary condition n (%) correct all N 

RANDOMNESS 
APPROPRIATE Randomizing Devices 66 (66.7) 99 

 Social Schema Consistent 63 (63.6) 98 

RANDOMNESS 
INAPPROPRIATE 

Social Schema Inconsistent, with 
Explanation 53 (54.1) 99 

 Social Schema Inconsistent, without 
Explanation 52 (53.1) 98 

 TOTAL N 234 (59.4) 394 



randomness-inappropriate (RI) items (see Table 6).  In an ST1-only model, the model fit the data 

significantly better than an intercept-only model, X2
LR (1, N = 394) = 5.70, p < .017.  The odds ratio 

for RA items versus RI items was 1.64 (p < .017). 

 The model including ST1 and the variables for region fit the data significantly better 

than the ST1-only model, X2
LR (3, N = 394) = 25.39, p < .001.  Controlling for region effects, the 

odds ratio for the RA versus RI condition was 1.67 (p < .018).  Odds ratios for region, controlling 

Table 6 

Study 1: Results From Generalized Linear Model Analyses: Primary Research Question (N = 394)      

  Oddsa B X2
LR df p Model 

X2
LR df p 

Model:  Randomness 
            5.70 1 .017 

ST1: Random appropriate versus 
Random inappropriate 1.64 0.50 5.70 1 .017    

Model:  Randomness with Covariates 
        25.39 3 .001 

ST1: Random appropriate versus 
Random inappropriate 1.67 0.51 5.56 1 .018    

Regionb 14.42 2 .001 
Asia versus English-speaking 0.45 -0.80 .004 

Europe and Latin America versus 
English-speaking 2.02 0.70   .068    

Model:  Covariate only 
        19.40   .001 

Region 19.40 .001 
Asia versus English-speaking 0.45 -0.80 .003 

Europe and Latin America versus 
English-speaking 2.66 0.98   .013    

                 
aOdds are calculated with respect to reference groups defined in Table 4

 bReference group = English-speaking countries
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for condition, were 0.45 (p < .004) for participants from Asia vs. English-speaking countries and 

2.02 (p < .068) for participants from the rest of the world relative to English-speaking countries.  

The effect of randomness as an expected or unexpected characteristic of the schema of a 

probability item’s cover story was statistically significant, controlling for regional differences.  

Analyses addressing the sensitivity of the effect of ST1 to region are presented in Appendix A. 

Tables 7 - 9 summarize results from GZLM analyses on the secondary research questions 

ST2 – ST4, respectively.  None of the tests related to the secondary research questions were 

significant with or without controlling for region effects.  

 

Table 7 

Study 1: Results From Generalized Linear Model Analyses: Additional Research Questions (N = 295) 

  Oddsa B X2
LR df p Model 

X2
LR df p 

Model:  Social Schema Consistency 
          2.74 1 .098 

ST2: Social schema-consistent 
versus schema-inconsistent 1.52 0.042 2.74 1 .098    

Model:  Social Schema Consistency with Covariates 
            14.52 3 .002 

ST2: Social schema-consistent 
versus schema-inconsistent 1.53 0.43 2.74 1 .098    

Regionb 11.78 2 .003 
Asia versus English-speaking 0.39 -0.95 .003 

Europe and Latin America versus 
English-speaking 1.61 0.48   .261    

                  
aOdds are calculated with respect to reference groups defined in Table 4 

bReference group = English-speaking countries 
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Table 8 

Study 1: Results From Generalized Linear Model Analyses: Additional Research Questions (N = 196) 

  Oddsa B X2
LR df p Model 

X2
LR df p 

Model:  Explanation 
          0.02 1 .886 

ST3: Schema-inconsistent with explanation 
versus without explanation 1.04 0.12 0.02 1 .886    

Model:  Explanation with Covariates 
           12.22 3 .007 

ST3: Schema-inconsistent with explanation 
versus without explanation 1.00 0 0 1 .998    

Regionb 12.20 2 .002 
Asia versus English-speaking 0.27 -1.31 .001 

Europe and Latin America versus 
English-speaking 1.23 0.21   .663    

aOdds are calculated with respect to reference groups defined in Table 4
 bReference group = English-speaking countries

 

Table 9 

Study 1: Results From Generalized Linear Model Analyses: Additional Research Questions ( N = 198) 

  Oddsa B X2
LR df p Model 

X2
LR df p 

Model:  Social Context 
        0.20 1 .655 

ST4: Random devices versus 
Social schema-consistent 1.14 0.13 0.20 1 .665    

Model:  Social Context with Covariates 
         15.79 3 .001 

ST4: Random devices versus 
Social schema-consistent 1.04 0.04 0.02 1 .902    

Regionb 15.59 2 .001 
Asia versus English-speaking 0.70 -0.36 .332 

Europe and Latin America versus 
English-speaking 13.53 2.61   .012    

aOdds are calculated with respect to reference groups defined in Table 4
 bReference group = English-speaking countries
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Discussion 

The effect of randomness as an expected or unexpected characteristic of the schema of a 

probability item’s cover story was statistically significant.  Participants receiving RA items were 

1.67 times more likely to solve the problem correctly than participants receiving RI items, 

accounting for regional differences.  Regional comparisons, controlling for condition, indicated 

that participants from Asia were less than half as likely as participants from English-speaking 

countries to solve the same type of item, while there was no significant difference between the 

likelihood of participants from the rest of the world and participants from English-speaking 

countries to solve the same type of problem.   

These results indicate that there is an added level of difficulty when solving a probability 

item in which the cover story depicts a situation contrived so that the expected order of events 

is replaced with random ordering.  With respect to social contracts (Cosmides, 1989), replacing 

1C1S order with random selection should have invoked an innate sensitivity to cheating and 

facilitated application of randomness.  The data in this study do not support this interpretation. 

Participants performed significantly better on items in which randomness was expected, 

lending support to Cheng and Holyoak's (1985) pragmatic schema theory.  Specifically, the line-

waiting, first-come first-served (1C1S) convention may be considered a deontic relation; in those 

terms, the 1C1S convention may be expressed as "If I arrive before you, then I will be served 

before you."  Removing this element increases the distance between the probability problem 

schema and the social schema.  This distance may further reduce the likelihood of schema 

induction, the process by which identifying an appropriate formal solution schema is affected by 

the strength of its association with the problem schema (Gick & Holyoak, 1980). 
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Analyses on secondary research questions did not illustrate any significant differences.  

The first of these, ST2 (Table 7), indicated that there was no significant difference between 

performance on social-schema items with respect to whether randomness was appropriate or 

not to the schema.  The test on ST3 (Table 8) sought to reflect that within the RA condition, it 

was thought that performance on items depicting randomizing devices would be better than on 

items depicting social situations.  The data in Study 1 did not illustrate this phenomenon.  With 

respect to the RI secondary condition, ST4 (Table 9), the data did not indicate an effect of a 

randomness cue.  Based on previous studies, it was thought that including an explanation for the 

replacement of 1C1S ordering with random selection would make the stochasticity in the 

problem more apparent and improve performance on those items.  The Study 1 task required 

calculations and differed from those in which a randomness cue was shown to be effective, 

which required only qualitative interpretations of the phenomenon (Fong et al., 1986). 

For both RA and RI items, it may be that the relative computational simplicity of the 

formal problem structure did not provide opportunity to demonstrate some hypothesized 

effects.  With respect to the additional conditions within each set of RA and RI probability 

problems, participants were not asked to provide any interpretation of results.  It is possible 

that further contextual details, beyond whether or not randomness was appropriate, would have 

affected performance at a more nuanced level than the task demanded, as has been demonstrated 

by others (Fong, et al., 1993; Howell & Burnett, 1978; Schwartz & Goldman, 1996; Windschitl & 

Wells, 1998).  This may reflect the distinction between Type 1 and Type 2 processes.  Requiring 

calculation has been shown to induce Type 2 override, which may have obscured any meaningful 

distinction in perceived stochasticity between RA problems depicting objects and those 

depicting social situations as well as rendered the randomness cue in RI items unnecessary. 
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CHAPTER IV:  STUDY 2 

Statement of the Problem 

With respect to temporal and causal schemas, it is the convention to reason forwards, 

considering earlier events before those that happen later, and causes before effects, a preference 

which has been shown to affect the perception of the strength of a causal relationship (Cheng, et 

al., 1993; Tversky & Kahneman, 1980).  In addition, when given a choice, individuals prefer to 

wager on the outcomes of events that have yet to happen rather than unknown outcomes of past 

events (Brun & Teigen, 1990; Fischhoff, 1975, 1976; Rothbart & Snyder, 1970; Wright, 1982).  

Probability problems addressing conditional probability can be constructed using the same 

formal problem structure with respect to the likelihood of events in either anterograde or 

retrograde order.  Comparing the difficulty of problems differing in this respect, controlling for 

other factors, is a particularly apt way to address this issue.  It would be expected that both 

convention and preference for prediction over postdiction may affect problem difficulty with 

respect to the order of events as depicted in a problem schema.  Specifically, a problem asking 

for the likelihood of a cause given the likelihood of an effect would be more difficult than a 

problem asking for the likelihood of an effect given a cause.  A similar effect should also be found 

between earlier and later events.  In sum, inverting the direction of chronology of events should 

introduce an additional level of difficulty to a problem despite equivalent computations.   

The difficulty introduced by inverting the order of events may be affected by a common 

error with respect to conditional probability, termed the fallacy of the transposed conditional or the 

inverse fallacy, in which P(A|B) is expressed as P(B|A) (Bar-Hillel & Falk, 1982; Batanero, Henry, 

& Parzysz, 2005; Diaconis & Freedman, 1981; Díaz & Fuente, 2007; Krynski & Tenenbaum, 
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2007; Mackie, 1981; Neath, 2010; Tversky & Kahneman, 1980; Villejoubert & Mandel, 2002).  

Among these discussions there has been speculation of conditions in which this fallacy is more 

or less likely to occur, but little evidence demonstrating the phenomenon systematically within 

judgment under uncertainty.  

In Study 2, items were constructed to test whether the order of events affects errors in 

expressing conditional probability, in turn making an item more difficult to solve.  Consider two 

events, A and B.  Given P(A), P(B), and P(A and B), it is possible to solve for either P(A|B) or 

P(B|A) using the same formula and calculations.  If in the cover story of the problem, A occurs 

before B or causes B, the conditional probability P(B|A) reflects a schema-consistent, intact order 

of events.  The conditional probability P(A|B), on the other hand, represents those events in an 

order inconsistent with a temporal schema.  The events are considered with respect to an 

inverted order: the conditional probability demands consideration of an event's occurrence in 

light of an event which is described as happening later.   

In Study 2 temporally-ordered events were depicted in probability problems with a 

cover story involving catching an express or local bus (Event A) and arriving on time to an 

appointment (Event B).  These problems required Bayes’s formula for a correct solution.  Causal 

events were depicted in problems with a cover story involving a physical state (cause) and a 

disease (effect).  Specifically, causal items involved the relationship between obesity (Event A) 

and Type 2 diabetes (Event B).  Causal problems involved calculating a conditional probability 

from joint and simple probabilities. 
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Method 

Participants 

Two cohorts participated in Study 2.  One cohort of participants (N = 19) was recruited 

from classes in probability and statistics from a graduate school in the social sciences.  They 

were paid $5 for their participation.   They were predominantly female, n = 13 (68.4%).  To 

contrast these participants with the cohort in Study 1, they were asked whether they were AMT 

workers.  All but four participants reported that they had never heard of AMT (79.0%). 

Another cohort of participants (N = 59) consisted of all students enrolled in two sections 

of an introductory probability and statistical inference course administered online during the 

Summer 2011 term. 

Materials 

Test items are listed in Table 10 by condition.  Each set of items is formally isomorphic, 

requiring the same mathematical solution. The pair of causal items contained the same 

information and required the application of the same formula.  Differences in the cover story 

between items are highlighted in the table here for clarity; test materials were not formatted 

thusly.  Order-intact (NT) items ask for a solution calculating the conditional probability of a 

later event (arriving on time) given an earlier event (catching an express bus) or the probability 

of an effect (having diabetes) given a cause (being obese).  Order-inverted (NV) items ask for a 

solution calculating the conditional probability of an earlier event (catching an express bus) 
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given a later event (arriving on time) or the probability of a cause (being obese) given an effect 

(having diabetes). 

Table 10 

Study 2: Test Items by Condition 

Temporal items 

Order Intact (forward direction) 

You are waiting to meet your friend.  He phones saying that he is getting on the next bus.  From 

experience you know that the probability that he arrives on time is 25%.  When he arrives on time, it is 90% 

likely that he took an express bus.  When he arrives late, it is 65% likely that he took an express bus.  He 

took an express bus.  What is the likelihood that he arrives on time? 

Order Inverted (backward direction) 

You are waiting to meet your friend.  He phones saying that he is getting on the next bus.  From 

experience you know that the probability of getting an express bus is 25%.  On an express bus, he is 90% 

likely to arrive on time.  On a local bus, he is 65% likely to be on time.  He arrived on time.  What is the 

likelihood that he took an express bus? 

Causal items 

Order Intact (forward direction) 

There is some evidence that obesity causes Type 2 diabetes.  About 25% of the United States 

adult population is obese.  8% of the US adult population have Type 2 diabetes.  5% of the population are 

obese and have Type 2 diabetes.  A randomly selected adult is obese.  What is the probability that this 

person has Type 2 diabetes? 

Order Inverted (backward direction) 

There is some evidence that obesity causes Type 2 diabetes.  About 25% of the United States 

adult population is obese.  8% of the US adult population have Type 2 diabetes.  5% of the population are 

obese and have Type 2 diabetes.  A randomly selected adult has Type 2 diabetes.  What is the probability 

that this person is obese? 
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Participants recruited in person received test items in a six-page packet in which they were 

provided with space to write out solutions.  An introductory page was followed by three pages 

with one probability item per page.  Questions were balanced so that each participant received 

one NT item and one NV item.  A “distractor” item from Study 1 was presented between the two 

Study 2 items.  The fifth page in the packet included demographic questions assessing age, race, 

gender, countries of education, and field of study.  The remainder of the page was allocated for 

comments.  The last page of the packet was a sheet of probability formulas (Figure A1). 

Participants in the online course were administered test items within a required five-

item quiz.  Quizzes were required periodically in this course and students had experience 

completing them in the online distance-learning environment. Each item was followed by a 

space into which the student was asked to type the solution as well as show work.  Examples of 

student work can be seen in Figures 3 and 4 on pages 44 - 45.  The temporal item was third and 

the causal item fifth in the quiz.  As with the in-person cohort, each student received one NT 

and one NV item.  

Procedure 

In-person volunteers 

Participants were recruited from statistics courses during the Spring and Summer 2011 

terms.  At the beginning of a class meeting, students were told that an experimenter would 

arrive ten minutes before the end of the class to recruit volunteers.  At the end of class, the 

experimenter described the general nature of the study, remuneration, and its purpose as 

dissertation research.  Volunteers remained after class, signed consent forms, and were given 
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test packets randomly.  There was no specific time limit, and students took between 15 and 25 

minutes on the task.  Participants submitted their packets individually when done, were paid, 

and thanked effusively.  Twelve students were willing to participate but unable to stay after 

class.  These students left their email addresses and were later contacted to schedule individual 

meetings.  Six of these students completed the task in the library and were similarly paid and 

thanked. 

Online students 

In the online courses, the quizzes with Study 2 items were posted in the course distance 

learning platform in June 2011.  Students in the online courses were given a period of 45 minutes 

to complete and submit the quiz.  Students received instructions to show work and were 

prohibited from collaborating.  These participants were required to enter supporting formulae 

for their answers; they did not enter an answer alone. 

A course teaching assistant (TA) copied each student’s quiz into a word document, 

removing all identifying information, which was provided to investigators.  Quizzes were graded 

for correct solution by both the TA and an investigator.  

 Analyses 

Variables of interest 

There were two dependent variables (DVs) for each item.  First, each solution was 

scored to indicate whether a student had solved for the correct mathematical answer, allowing 

for rounding error. 
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Second, written or typed work was coded to indicate whether a participant had formally 

symbolized conditional probability (CP) correctly.  Formalizing CP correctly is a necessary yet 

not sufficient condition in solving these test items and the most relevant step with respect to the 

experimental manipulation.  A student needed to express the relevant CP in the correct order 

either explicitly, e.g., “P(A|B) = .90”, or use the value of the CP in its appropriate position within 

a formula.  For example, if the student used the formula P(A|B) = P(A and B) / P(B), the values 

used must reflect the correct events.  If the problem text asked for P(A|B) but the student used 

values expressing P(A and B) / P(A), which equals P(B|A), the CP was coded as incorrect.  

In some written protocols it was possible to infer that a student correctly identified CP 

from a tree diagram (see Figure 2).  In the example in Figure 2, the structure of the tree indicates 

that the student is expressing the given CPs in the proper order, while numeric values given in 

the problem text are assigned to the correct branches.  In such cases CP was coded as correct.  

Figure 2 

Study 2: A Tree Diagram Drawn by a Participant in the Temporal Inverted Condition 
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A few participants did not show work on the items but reported a correct solution.  In 

these cases coding CP was scored as correct.  As previously stated, coding CP correctly is a 

necessary step in solving these items, so a correct answer implied that CP was coded in the 

correct order.  In written protocols showing work, there was only one case in which a student 

coded CP incorrectly and arrived at a correct answer.  Acknowledging that case as rare, it was 

considered reasonable to use this rule. 

The primary independent variable of interest was order of events, either NT or NV.  

Interrater reliability 

To estimate the interrater reliability (IRR) of the scheme coding both mathematical 

solution and formal expression of CP, a third of the online quizzes were coded by a second 

investigator with considerable experience with statistics instruction but not otherwise affiliated 

with the study.  Agreement was measured using Cohen’s kappa (k). 

Experimental analyses 

Proportion correct was calculated for each item for both in-person and online cohorts.  

Proportion correct on coding CP was also calculated for both cohorts.   

The procedure and samples for each of the two Study 2 cohorts were not similar enough 

to justify combining their data.  Binary logit GZLM analyses were performed on data from the 

online cohort only due to the small size of the in-person sample.  These analyses used the same 

methodology as described for Study 1 but with no covariates. 
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Error analyses 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A set of post-hoc analyses examined the frequency of several well-documented types of 

errors in probability problem solving.  Errors in formalizing CP were classified into one of three 

common types: transposed conditional, in which P(E1|E2) was expressed as P(E2| E1); compound 

substitution, in which P(E1 and E2) was mistaken for P(E1| E2), and simple substitution, in which 

P(E1) or P(E2) was substituted for P(E1| E2).  Previous research has shown that these are the most 

common errors in understanding conditional probability (Bar-Hillel & Falk, 1982; Falk, 1986; 

Krynski & Tenenbaum, 2007; Mackie, 1981; Neath, 2010; Villejoubert & Mandel, 2002), 

although not all errors observed in the data could be classified into one of these categories.  

Figures 3 and 4 (pages 44 - 45) illustrate examples of CP expressions coded correctly and by 

common error.  

 

Results 

Interrater reliability 

Interrater reliability was measured using Cohen's kappa.  For temporal (bus) items 

agreement on solving the problem was k = .88, p < .001 and for coding CP, k = .79,  p < .001.  For 

causal (diabetes) items, IRR on correct solution was perfect, k = 1; IRR on coding CP was k = .89,  

p < .001.  Agreement was considered good to very good. 
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Experimental analyses 

Proportion correct for both solution and expression of CP for each condition are 

summarized in Table 11 by cohort.  There were no significant differences between performance 

on items by condition for the in-person cohort.  Correlations among the four DV are reported in 

Appendix B. 

 

Table 11 

Study 2:  Performance on Items by Cohort and Condition 

In-Person (N = 19)        

Temporal order Intact Inverted Total 
n per group (%) 9 (47.4) 10 (52.6) 

Solving the problem n (%) correct 4 (33.3) 1 (10.0) 4 (21.0) 
Coding conditional probability n (%) correct 6 (66.7) 8 (80.0) 14 (73.7) 

Causal order Intact Inverted Total 
n per group (%) 9 (47.4) 10 (52.6) 

Solving the problem n (%) correct 4 (44.4) 4 (40.0) 8 (42.1) 
Coding conditional probability n (%) correct 4 (44.4) 5 (50.0) 9 (47.3) 

Online (N = 59)         

Temporal order Intact Inverted Total 
n per group (%) 31 (52.5) 28 (47.5) 

Solving the problem n (%) correct 5 (16.1) 7 (25.0) 12 (20.3) 
Coding conditional probability n (%) correct 16 (51.6) 24 (85.7) 40 (67.8) 

Causal order Intact Inverted Total 
n per group (%) 31 (52.5) 28 (47.5) 

Solving the problem n (%) correct 21 (67.7) 14 (50.0) 35 (59.3) 
Coding conditional probability n (%) correct 23 (74.2) 21 (75.0) 44 (74.6) 
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Results from binary logit GZLM analyses on the online data are summarized in Table 12.  

Of models testing the four DVs examined in Study 2, only the model estimating likelihood of 

formalizing CP for the temporal items fit the data significantly better than the intercept-only 

model, X2
 LR (2, N = 59) = 8.24, p < .004.  The odds ratio for the effect of intact order relative to 

inverted order is 0.17 (p < .008). 

Error analyses 

Errors by cohort and condition are reported in Table 13.  There were no significant 

differences in the number of errors between conditions for either temporal or causal items for 

the in-person cohort.  For the online cohort, the group asked to solve for a CP in intact order 

produced more transposed conditional and compound substitution errors in expressing CP than 

the group asked to solve for CP in inverted order, but statistical tests were not significant.  The 

directionality of the results will be further addressed in the Discussion.  

Table 12 

Study 2: Results From Generalized Linear Model Analyses – Online Cohort Only 

   
N = 59 Oddsa B X2

LR df p 
Temporal order 

Solving the problem 1.73 0.55 0.72 1 .401 
Coding conditional probability 5.62 1.73 8.24 1 .004 

Causal order 
Solving the problem 2.10 0.74 1.93 1 .165 

Coding conditional probability 0.96 -0.04 0.01 1 .943 
aReference group = inverted



Table 13

Study 2: Distribution of Prototypical Encoding Errors by Cohort and Condition

In-Person (N  = 19)

Temporal Items Intact Inverted Total Errors
n errors per condition (% error type) 2 (40.0) 3 (60.0) 5

Transposed Conditional 1 (50.0) 1 (33.3) 2 (40.0)
Compound Substitution 0 1 (33.3) 1 (20.0)

Simple Substitution 0 0 0
Unclassified 1 (50.0) 1 (33.3) 2 (40.0)

Causal Items Intact Inverted Total Errors

n errors per condition (% error type) 4 (44.4) 5 (55.6) 9
Transposed Conditional 1 (25.0) 3 (80.0) 5 (55.6)
Compound Substitution 3 (75.0) 1 (20.0) 4 (44.4)

Simple Substitution 0 0 0
Unclassified 0 0 0

Online (N  = 59)

Temporal Items Intact Inverted Total Errors
n errors per condition (% error type) 18 (85.7) 3 (14.7) 21

Transposed Conditional 5 (27.8) 0 5 (23.8)
Compound Substitution 6 (33.3) 0 6 (28.6)

Simple Substitution 1 (5.6) 1 (33.3) 2 (9.5)
Unclassified 6 (33.3) 2 (66.7) 8 (38.1)

Causal Items Intact Inverted Total Errors
n errors per condition (% error type) 7 (46.7) 8 (53.3) 15

Transposed Conditional 1 (14.3) 2 (25.0) 3 (20.0)
Compound Substitution 3 (42.9) 1 (12.5) 4 (26.7)

Simple Substitution 0 0 0
Unclassified 3 (42.9) 5 (62.5) 8 (53.3)
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Figure 3

Study 2: Solutions and Prototypical Errors to Temporal Items from Online Cohort.

Temporal item: intact order

You are waiting to meet your friend.  He phones saying that he is getting on the next bus.  The probability that he 
arrives on time is 25%.  When he arrives on time, it is 90% likely that he took an express bus.  When he arrives 
late, it is 65% likely that he took an express bus.  He took an express bus.  What is the likelihood (probability) that 
he arrives on time?

Correct solution
P(Express) = P(OT and Express) + P(Late and Express)
=(.25)(.90) + (.75)(.65) = .225 + .4875
= .7125 is probability of taking an express bus
So P(OT|Express) = P(OT and Express) / P(Express)
0.315789474
= . 316 is the probability that he is on time given he took an express bus.

Transposed Conditional and Simple Substitution Errors
P(OT) = .25  P(L) = .75
P(OT/EX) = .90 [Should be P(EX|OT) ]
P(L/EX) = .65  [Should be P(EX|L )]
P(OT) = ?
P(OT n EX) = P(OT)P(OT/EX) = (.25)(.90) = .225
P(L n EX) = P(L)P(L/EX) = (.75)(.65) = .4875
P (OT) = late/not late and also express bus = .4875 + .225 = .7125  [Has solved for P(E )]

Temporal item: inverse order

You are waiting to meet your friend.  He phones saying that he is getting on the next bus.  The probability of 
getting an express bus is 25%.  On an express bus, he is 90% likely to arrive on time.  On a local bus, he is 65% 
likely to be on time.  He arrives on time.  What is the likelihood (probability) that he took an express bus? 

Correct solution
Let E = Express Bus Let OT = On time Let L = Local Bus
Using Bayes Rule:
P(E|OT) = P(OT|E)*p(E) / P(OT)
P(OT) = P(OT and E) + P(OT and L)
P(OT) = P(OT|E)p(E) + P(OT|L)*p(L)
P(OT) = (.9)*(.25) + (.65)*(.75) = .7125
So  (.9)*(.25) / (.7125) = .3158

Simple Substitution Error
The probability of being on time when taking express: (0.25)(0.9)=0.225, and the probability of being on time 
when taking local: (0.75)(0.65)=0.4875. When adding all these probabilities, the likelihood of being on time is 
(0.225)+(0.4875)=0.7125.
Hence, the probability of taking express bus is 71.25%  [Student solved for P(E )]

Compound Substitution Error
Probability of express bus (A) given arrival on time (B).   
P(A^B)=P(A and B)/P(B)
P(A^B)=P(.90)/P(.25)
P(A^B)=                 [Student assigned value of P(B|A) to P(A and B) ]

Note: Explanatory comments are in brackets
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Figure 4

Study 2: Solutions and Prototypical Errors to Causal Items from Online Cohort

Causal item: intact order

There is some evidence that obesity causes Type 2 diabetes.  About 25% of the United States adult 
population is obese.  8% of the US adult population have Type 2 diabetes.  5% of the population are 
obese and have Type 2 diabetes.  A randomly selected adult is obese.  What the probability that this 
person has Type 2 diabetes?

Correct solution:
Define:
P(obese)=P(O)=0.25,
P(type 2 diabetes)=P(2D)=0.08,
Also it is given that:
P(O and 2D)=0.05.
Then, P(2D, given O)=P(O and 2D)/P(O)=0.05/0.25=0.2

Transposed Conditional Error
0.5/0.8=0.625 [P(O and D)/P(D) = P(O|D), rather than P(D|O )]

Compound Substitution Error
0.25 * 0.05 = 0.0125  [P(O)P(D|O) = P(O and D) ]

Causal item: inverse order

There is some evidence that obesity causes Type 2 diabetes.  About 25% of the United States adult 
population is obese.  8% of the US adult population have Type 2 diabetes.  5% of the population are 
obese and have Type 2 diabetes.  A randomly selected adult has Type 2 diabetes.  What the 
probability that this person is obese?

Correct solution:
P(O) = .25
P(Type2) = .08
P(O^Type2) = .05 = P(O|Type2)*P(Type2)
P(O|Type2) = .05/.08 = .625

Transposed Conditional Error
let P(OB) = the probability that someone is obese = 25%
P(T2)= the probability that someone has type 2 = 8%
P(OB and T2)= 5%
P(T2 | OB ) = P (T2 and OB)/ P (OB)
P(T2|OB)   = 5% /25%
            = .2  [Should have solved for P(OB|T2) ]

Compound Substitution Error
5%   [5% is given as P(Obese and T2 Diabetes) ]

2D', 'T2', and 'D' = 'having diabetes'.  'O' and 'OB' = 'obese'.
Note: Explanatory comments are in brackets
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Discussion 

Order impacted the likelihood of formalizing conditional probability for the temporal 

items but not causal items.  No significant differences were found in the likelihood of solving 

test items with cover stories depicting events of intact or inverted order for both causal and 

temporal items.   

The proportion of students solving the items correctly was too low for meaningful 

analyses comparing solution on the temporal items specifically.  Application of Bayes’s rule is on 

the more difficult end of the spectrum of skills required to solve introductory probability 

problems (Bar-Hillel & Falk, 1982; Díaz & Fuente, 2007) and may have produced a floor effect, 

preventing the data from varying enough for analysis.   

Results for Study 2, where significant, were not as originally expected.  It was believed 

that a test item requiring a solution in which the temporal order of events is inverted would be 

more difficult than an item with events in intact temporal order.  Analyses indicated that the 

odds ratio for correctly formalizing CP on an intact-order item versus an inverted-order item is 

0.087.  This result indicates that an individual is 0.1 times as likely to formalize CP correctly for 

an intact-order item than for an inverted item.  In other words, the inverted-order items are 11.5 

times as likely than intact-order items to have CP expressed correctly.  

Although they were not included in GZLM analyses, examination of written protocols 

was useful to explain the direction of this result.  The conditional probability expressed in the 

last line of the problem text is only one of three conditional probabilities defined in the temporal 

items, the other two being given.  For items asking for a solution of the CP of intact-order 

events, the given CPs reflect inverted-order events.  “Inverted-order” items, on the other hand, 
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included given CPs reflecting events in intact order.  Since when solving any word problem an 

individual must translate the text of the problem into formal mathematical notation, the 

direction of given CPs may be of greater relevance to performance on the item than the direction 

of the CP to be solved (Pólya, 1954a, 2004).   

Examining written protocols of the 19 in-person participants also revealed that nine 

subjects sketched a table or tree; two in the NV condition (in which the CPs given were intact) 

and seven in the NT condition (given CPs depicted events in inverted order).  So, perhaps the 

increased difficulty of encoding events in inverted order encouraged participants to use 

graphical devices (see Zahner & Corter, 2010).  Further, of the participants using graphical 

devices to encode the CP events in inverted order, five used trees and two used contingency 

tables.  All but one encoded CP correctly; this participant used a table, which has been shown to 

obscure rather than facilitate working with CP (Díaz & Fuente, 2007; Gras & Totohasina, 

1995). 

These results indicated that, to investigate the effect of temporal order on a problem's 

difficulty, Study 2 hypotheses must be revised and the conditions of the study revisited with 

items classified according to the direction of given CPs rather than the direction of the CP to be 

solved.  Significant reworking of items was required to examine the effect of order as expressed 

in our revised hypothesis as well as to more appropriately reflect the abilities of novice statistics 

students. 
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CHAPTER V: STUDY 3 

Statement of the Problem  

The proportion of students correctly identifying the temporal and causal items in Study 

2 as asking to solve for a conditional was startlingly low.  To control for this, all items were 

revised to make conditional probability within the problems more salient.  Further, examining 

problem-solving procedures from Study 2 indicated that the order of given conditional 

probabilities (CP), rather than the direction of CPs to be solved, was more relevant.  This is the 

case in items asking to solve for temporal or causal order intact.  We expect that for these 

revised items it would be more difficult to encode CP when given CPs are expressed with order 

intact than when expressed with order inverted. 

Two further issues arose from Study 2.  The difficulty that novice statistics students have 

in solving problems requiring Bayes’s rule introduced challenges outside of the scope of this 

research and may have obscured order effects.  The pair of temporal problems for Study 3 used 

the same cover story as those in Study 2, and was edited so that participants were still required 

to encode CP, but solve for the probability of a simple event.  Bayes’s rule was not required for 

correct solution.  The other issue encountered in Study 2 concerned the relative perceived 

strength of the causal relationship between the events depicted in the cover story for the causal 

problems in Study 2, as has been shown to affect problem solving (Krynski & Tenenbaum, 2007; 

Tversky & Kahneman, 1980; Windschitl & Wells, 1998).  Specifically, it was thought that the 

causal relationship between obesity and Type 2 diabetes may not have enough schematic 

salience to induce order effects.  For Study 3, cover stories were constructed to depict events 

with greater perceived causal strength to the population of interest, novice students of 
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probability and statistics.  The cover stories for causal items in Study 3 depicted the events of 

studying for an exam and passing the exam.  These items asked participants to calculate a 

conditional probability given probabilities for joint and compound events.  

Method 

Participants 

Participants were all students enrolled in one of four introductory courses in probability 

and statistical inference during the Fall 2011 term at a graduate school of social sciences.  Two 

instructors taught these courses; there were 54 students in one instructor’s sections and 69 

students in the other’s.  All four sections were taught in person. 

Materials 

Test items were presented to students as part of an in-class quiz.  For one instructor’s 

quizzes, the temporal item was presented first and the causal item third on a three-item quiz.  

The three items were presented on a single sheet of paper.  In the other instructor's sections, the 

temporal item was presented fourth and the causal item second in a four-item quiz.   Each item 

on this quiz was presented on a separate sheet of paper.  Table 14 includes the test items by 

condition, with differences between pairs of items highlighted for clarity here only.  Items 

presented to students were not formatted as such. 



Table 14 

Study 3: Test Items by Condition 

TEMPORAL ITEMS 

Order Intact (forward direction) 
You are waiting to meet your friend, who is coming from work.   He phones saying he will get on the 

next bus. From experience you know that if he catches an express bus his chances of being on time 

are 90%, but if he catches a local bus his chances of being on time are 65%.  You also know that 

60% of the buses that stop by his work are locals, thus he has a 60% chance of catching a local bus 

today.  What is the probability that he arrives on time? 

Order Inverted (backward direction) 
You are waiting to meet your friend, who is coming from work.  He phones saying he will get on the 

next bus.  From experience you know that when he arrives on time, 90% of the time he has caught 

an express bus, but when he arrives late, 65% of the time he has caught an express bus. You also 

know from experience that he is late 60% of the time, thus you figure that he has a 60% chance of 

being late today.  What is the probability that he catches an express bus? 

CAUSAL ITEMS 

Order Intact (forward direction) 

At a journalism school, a professional ethics exam is given to all students at the end of their first year. 

Extensive research has established that the probability that a student studies specifically for this 

exam is 70%.  The overall proportion of students who pass the exam is 92%.   Exactly 66% of the 

students will study for the exam and pass it.  If we know that a student has studied specifically for the 

exam, what is the probability that the student FAILS? 

Order Inverted (backward direction) 

At a journalism school, a professional ethics exam is given to all students at the end of their first year. 

Extensive research has established that the probability that a student studies specifically for this 

exam is 70%.  The overall proportion of students who pass the exam is 92%.   Exactly 66% of the 

students will study for the exam and pass it. If we know that a student has passed the exam, what is 

the probability that the student DID NOT study specifically for it? 
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Procedure 

Both instructors gave the quizzes during the fourth week of the course, after covering the 

topic of conditional probability.  Quizzes were administered during the last 30 minutes of each 

one hour, 40 minute session.  Students were permitted to use notes and a calculator. 

Course TAs scanned completed quizzes into files, removing all identifying information.  

There was variation by course TA in grading the quizzes so all items were scored and coded by 

an investigator.  A subset of approximately 30% of participants' data was also coded by the same 

independent rater as in Study 2, using the same interrater reliability procedures. 

Analyses 

Variables of interest 

The dependent variables (DV) of interest are the same as in Study 2, using the same 

coding criteria.  Each item was scored to indicate whether a student had come to the correct 

mathematical solution and whether the student had encoded conditional probability correctly. 

The primary independent variable (IV) of interest is order of given events, intact-order 

(NT) or inverted-order (NV).  Instructor was also included as a covariate, since items were 

presented differently on each quiz and the two instructors differed significantly in years of 

teaching experience. 
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Interrater reliability 

Interrater reliability was calculated using Cohen’s kappa (k) for both problem solution 

and encoding CP. 

Experimental analyses 

Proportion of correct solution and encoding CP was calculated and are reported in Table 

15.  No statistical tests were applied to these simple proportions. 

Binary logit generalized linear model analyses (GZLM) were performed to yield 

statistical tests of both overall model fit as well as parameter estimates for order effects, 

controlling for instructor.  These analyses used the same methodology as described for Studies 1 

and 2. 

Error analyses 

Errors in formally expressing CP were further coded into one of the common types of 

mistakes defined for Study 2.  The items for Study 3 required different calculations than Study 2, 

so it was not expected that the same types of errors would necessarily be represented in these 

data.  

Errors by condition were analyzed using GZLM, with one exception discussed below.  

Analyses were used to compare likelihood of making each type of error, controlling for 

instructor.  Statistical analyses on common error types included only the subset of participants 

who coded CP incorrectly.   
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Results 

Interrater reliability 

Interrater reliability was acceptable for each DV in each set of items.  For problem 

solution in temporal items, kappa = 1.00 (p < .001); for encoding CP, kappa = .56 (p < .005).  For 

causal items, agreement in coding problem solution is k = 1.00 (p < .001); agreement in coding CP 

correct is k = .49 (p < .012).   

Experimental analyses 

Proportion correct by condition is summarized in Table 15.  Overall, more participants 

coded CP correctly for each item type than solved the item correctly.  Correlations among the 

two DVs for both types of item are included in Appendix C.  

 

Table 15 

Study 3:  Performance on Items by Condition     

Temporal items Intact Inverted Total 

n per condition (% correct) 55 (44.7) 68 (55.3) 123 

Solving the problem 32 (58.2) 35 (52.5) 67 (54.5) 

Coding conditional probability 41 (74.5) 39 (57.4) 80 (65.0) 

       

Causal items Intact Inverted Total 

n per condition (% correct) 67 (54.9) 55 (45.1) 122 

Solving the problem 17 (25.4) 11 (20.0) 28 (23.0) 

Coding conditional probability 43 (64.2) 19 (34.5) 62 (50.8) 
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Results from generalized linear model analyses are summarized in Table 16.   There were 

no significant differences between groups in proportion solving temporal or causal items 

correctly.  For temporal items, the model using  order and instructor to predict formalizing CP 

correctly fit significantly better than an intercept-only model, X2
 LR (2, N = 123) = 9.16, p < .010.  

Controlling for instructor effect, temporal order significantly predicted coding CP correctly, X2
 

LR (1, N = 123) = 6.02, p < .014.  Parameter estimates indicated that the odds of formalizing CP for 

order intact relative to order inverted is 2.67 (p < .017).  The effect of instructor was not 

significant controlling for temporal order.  

Table 16 

Study 3:  Results From Generalized Linear Model Analyses 

Temporal items                 

N = 123 Oddsa B X2
LR df p 

Model   
X2

LR df p 

DV = Solving the problem           7.47 2 .126 

Temporal Order 1.31 0.27 0.52 1 .472 

Instructor 0.48 -0.74 3.93 1 .048 

DV = Coding conditional probability          9.16 2 .010 

Temporal Order 2.66 0.98 6.02 1 .014 

Instructor 2.31 0.84 4.47 1 .034 

                
Causal items 

N = 122 Odds B X2
LR df p 

Model   
X2

LR df p 

DV = Solving the problem          5.65 2 .059 

Causal Order 1.63 0.49 1.21 1 .272 

Instructor 2.45 0.89 3.90 1 .048 

DV = Coding conditional probability          17.08 2 .001 

Causal Order 3.70 1.31 11.71 1 .001 

Instructor 2.17 0.78 3.98 1 .046 

 aReference group = inverted 
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For causal items, the model including order and instructor predict expressing CP 

correctly also fit significantly better than an intercept-only model, X2
 LR (2, N = 122) = 17.08,  p < 

.001.  Controlling for instructor effect, causal order significantly predicted coding CP correctly, 

X2
 LR (1, N = 122) =11.71,  p < .001.  The odds of expressing CP correctly for order intact items is 3.70 

(p < .001) relative to order inverted items.  Controlling for causal order, the effect of instructor 

was not significant.  

Error analyses 

Types of errors by condition are summarized in Table 17.  Simple probability substitution 

for conditional errors did not occur in Study 3, most likely since the problems were redesigned 

to require different calculation procedures.  Statistical tests were conducted on observations 

with incorrect CP encoding only.  

Table 17 

Study 3: Distribution of Prototypical Encoding Errors by Condition 

Temporal Items Intact Inverted Total Errors 

n errors per condition ( error type) 14 (32.6) 29 (67.4) 43 (35.0) 

Transposed Conditional 0 (0) 15 (51.7) 15 (34.9) 

Compound Substitution 1 (7.1)) 2 (6.9) 3 (7.0) 

Unclassified 13 (92.9) 12 (41.4) 25 (58.1) 

       

Causal Items Intact Inverted Total Errors 

n errors per condition ( error type) 23 (39.7) 35 (60.3) 58 (49.2) 

Transposed Conditional 2 (8.7) 11 (31.4) 13 (22.4) 

Compound Substitution 14 (60.9) 9 (25.7) 23 (39.7) 

Unclassified 7 (30.4) 15 (42.9) 22 (37.9) 
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No participants in the NT condition made the transposed conditional errors.  GZLM 

could not be used to analyze these data as zero-cells yield complete separation in the data and 

unreliable estimates.  Statistical significance of a chi-square test was therefore evaluated using 

Fisher's exact test, X2 (1, N = 43) = 11.12, p < .001. 

Analyses on transposed conditional errors in causal items controlled for effect of 

instructor using GZLM.  Although more transposed conditionals occurred in the causal inverted 

group, the difference was significant only at the p < .10 level, X2
 LR (1 , N = 58) = 4.81, p < .057 .  

Students in the NT condition were significantly more likely to commit joint substitution errors, 

X2
 LR (1 , N = 58) = 6.66, p < .010, with an odds ratio of 4.3.  Figures 5 and 6 include examples of 

transposed conditional errors for both temporal and causal items. 

Figure 5 

Study 3: Example of Reverse Error in Temporal Inverse Item 
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Discussion 

The rationale behind Study 3 was to demonstrate the effects of temporal and causal order 

on encoding conditional probability.  Revising the hypotheses from Study 2 highlighted that 

order affected encoding CPs which were given in a probability problem, rather than the order of 

the CP to solve. 

Temporal order significantly affected encoding CP.  The odds ratio for encoding CP 

correctly in temporal items was 2.66, indicating that, controlling for instructor, a student 

receiving an NT item was 2.66 times as likely to encode conditional probability correctly than a 

student receiving an NV item.  Further, of students who did not encode CP correctly for 

temporal items, only students receiving NV items transposed the order of events.  Order effects 

were also demonstrated in the causal items.   

Participants were more than three times as likely to encode CP correctly for NT items 

than for NV items, controlling for instructor.  Error analyses using GZLM indicated that a  

Figure 6 

Study 3: Example of Reverse Error in Causal Inverse Item 
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 marginally significant proportion of students made the transposed conditional error in the NV 

condition, controlling for instructor.    

 The results from these error analyses indicate that there may be schema-specific effects 

related to temporal and causal order.  Recall that that the likelihood of committing a compound 

probability error in causal items was significantly more likely in the NT condition.  Since types 

of errors coded were mutually exclusive, it makes sense that in absence of making a transposed 

conditional error, students erring in encoding CP may be more likely to make another systematic 

error.  Compound substitution errors are fairly common when interpreting conditional 

probability, and these data do not necessarily indicate that mistaking compound for conditional 

probability is specifically affected by temporal or causal order.  In other words, error analyses 

may demonstrate that transposed conditional errors are sensitive to order effect, while 

compound probability errors are not specific to order effect.   

Study 3 findings support a phenomenon demonstrated by Tversky and Kahneman 

(1980).  It was shown that, in cases in which P(A) = P(B), and P(A|B) = P(B|A), individuals were 

more likely to judge P(B|A) as greater than P(A|B) if they believed that A was a cause of B.  The 

results of Study 3 demonstrated that, possibly as a result of the strength of causal direction, 

students exhibited a preference for expressing conditional probability preserving forward 

direction of cause to effect that was not demonstrated with respect to the events depicted in the 

Study 2 items. 
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 CHAPTER VI:  GENERAL DISCUSSION 

Summary 

Results from the three studies described in this paper support the idea that there are 

differential schematic effects on probability problem solving.  Probability problems were 

written with cover stories depicting objects (e.g., randomizing devices) as well as social 

situations, keeping the formal problem structure and solution processes consistent between 

conditions.  Systematically altering the schema depicted in a probability problem's cover story 

was shown to affect the difficulty of the item as well as the type of errors.  This effect was 

demonstrated with respect to social schemas (Study 1) as well as temporal and causal schemas 

(Studies 2 and 3) for a variety of participants.   

Specifically, Study 1 illustrated that when randomness is unexpected in a social schema, 

individuals were less likely to correctly solve a probability problem relative to problems in 

which randomness was appropriate to the schema depicted.  An individual was more than one-

and-a-half times as likely to correctly solve a problem in which randomness was appropriate to 

the problem schema.  Our results did not support that it would be easier to solve a randomness-

appropriate item if it depicted objects rather than people in a lottery-type situation.  For 

situations in which random ordering was not appropriate, having an explanation for imposing 

randomness did not affect formal probability calculations. 

Schematic effects were also shown with respect to temporal and causal direction in 

Studies 2 and 3.  Results from Study 2 specified that, in solving problems requiring Bayes's 

formula, difficulty in encoding conditional probability affected an item's difficulty with respect 

to the given CPs, rather than the direction of the CP to be solved.  The difficulty that novice 
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statistics students have in applying Bayes's formula was also supported in the data by the 

scarcity of correct solutions. 

Study 3 was designed to revisit the hypotheses addressed in Study 2, with refinements to 

isolate schematic order effects.  It was shown that for both temporally- and causally-related 

events, participants were more likely to encode given conditional probabilities incorrectly when 

the events are expressed in inverse order.  In addition, those errors were more likely to transpose 

the events from inverse order to intact order than from intact to inverse order.  For problems 

depicting causally-related events, participants were also more likely to incorrectly encode CP 

when solving for CP expressing events in inverse order. 

This finding may be considered in light of the phenomenon of the fallacy of the time axis, as 

illustrated by Falk (1986).  In a within-subjects study, participants were asked to consider the 

events of drawing two marbles from an urn containing two black and two white marbles.  Asked 

first to evaluate the probability of drawing a second white marble after having drawn a first 

white marble without replacement, P(W2|W1), most participants provide the correct answer 

with relative ease.  Next, asking the same participants to consider P(W1|W2), a significant 

proportion of participants reply that the question is meaningless.  Of those who attempt to solve 

the problem, many indicate that the probability is 1.00 or incorrectly solve the item without 

considering the probability of the conditioning event.  A similar phenomenon was also observed 

in the data from Studies 2 and 3, in that only participants asked to evaluate and solve for CP in 

inverted order answered the problem with extreme values of 1.00 or the given simple 

probability.  For example, given event A which precedes event B, when asked the likelihood of A 

given B, only students in the inverted-order condition answered P(A) rather than P(A|B).  In 
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Study 2, one participant in the temporal-item NV condition reasoned that "P(E) = 1 because you 

know he took an express bus". 

Although the results from Studies 2 and 3 parallel Falk's (1986), only the current studies 

illustrated that the fallacy persists when encoding formal CP, typically considered a Type 2 

process.  There has been little evidence or explanation of relevant processes influencing the 

occurrence of the fallacy of the transposed conditional.  Villejoubert and Mandel (2002) 

illustrated that while frequency formats reduced the number of transposed conditional errors, 

their only explanation offered is that "people simply confuse p(H|D) with p(D|H) because the 

latter sounds a lot like the former" (their emphasis).   

Krynski and Tenenbaum (2007) speculated that transposed conditionals are more likely 

when P(A|B) is estimated as roughly equivalent to P(B|A), as defined by Tversky and Kahneman 

(1980).  Krynski and Tenenbaum's interpretation overgeneralizes the Tversky and Kahneman 

finding; neither the 1980 data nor the present findings support that the transposed conditional 

occurs specifically in cases when P(A|B) and P(B|A) are roughly equivalent, but rather persists 

despite the two CPs being defined as equivalent.  Results from Study 3 further illustrated that 

participants exhibited a significant bias in transposing CP to forward causal or temporal 

direction when those events in a problem were depicted in inverse temporal or causal order, but 

rarely from intact to inverse order. 

Limitations 

The current research was undertaken to examine schematic effects on probability 

problem solving in a general population, but with particular emphasis on training social 

scientists expected to produce and consume research.  The pool of participants for Study 1 was 
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different from the participants in Studies 2 and 3 in a number of ways worth noting.  

Information about Study 1's participants' fields of study or profession was collected with other 

demographic items.  No differences were shown affecting performance or assigned condition 

among groups defined by academic field, so it was not included in analyses.  In addition, almost 

80% of in-person volunteers for Study 2 indicated that they had never heard of the online 

platform used to recruit Study 1 participants.  Anecdotal evidence may inform that volunteers on 

an online testing platform have more experience in technical fields and, by extension, more 

experience with training in mathematics and statistics.  These participants also exhibited 

differential effects depending on the countries in which they were educated, although the 

variable used to group them by region did not specifically assess English proficiency and should 

not be interpreted as such. 

The experimental data collected for all three studies were limited to performance on a 

numeric calculation; participants were not required to provide any interpretation of results or 

put their numeric answers in the problem context.  This may have been where additional 

schematic effects would have been demonstrated.  Further study into the additional conditions 

for Study 1 will likely require more complicated problems to illustrate the more nuanced effects 

typically attributed to Type 1 processes.   

Analyses on problem-solving processes were possible to a degree on data collected for 

Studies 2 and 3 since the data included written protocols, but these were unavailable for about 

ten participants who used separate materials on which to work.  Most of these participants 

produced correct solutions to the problems, but error analyses were not possible for the few 

who did not.  Further, in those cases it was not possible to examine written work to inform 

whether their solutions included a tree or other graphical representation of the problem. 
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Implications 

How do schematic effects of probability problem solving inform processes by which 

individuals make valid statistical inferences about human behavior?  Allowing for the limitations 

of the studies presented in this paper, it is still apparent that stochastic influence on human 

behavior is not easily conceptualized.  People more readily attribute outcomes to unobserved or 

unknown variables rather than stochasticity in most situations (Luhmann & Ahn, 2005).  When 

a problem's situational or schematic content refers to human behavior, variation is regularly 

attributed to human intent (Cheng & Holyoak, 1985; Cheng, et al., 1993; Falk & Lann, 2008; 

Fong, et al., 1993; Nisbett, et al., 1993; Schwartz & Goldman, 1996).   

Krynski & Tenenbaum (2007) showed improved performance on probability problems 

when the conditions assumed in conditional probabilities function as causal roles or explanations 

over those problems in which conditions are presented with no explanatory role.  For example, 

the temporal items from Studies 2 and 3 might include an explanation that the friend is unlikely 

to catch an express bus because they are typically overcrowded.  The friend's preference for local 

buses may then account for his 75% overall likelihood to arrive late.  Such details have been 

shown to highlight problem elements which may otherwise be overlooked.   In statistics 

instruction in the social sciences, providing explanatory roles for conditions affecting stochastic 

human behavior may improve both performance on a problem as well as its interpretability for 

students.   

Parsing how conditional probability is interpreted may inform a source of bias produced 

by the order of events depicted in probability problems.  If, in the cover story of a problem, event 

A occurs before event B or causes event B, the conditional probability P(B|A) reflects a schema-
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consistent, intact order of events, translated as “the probability that B occurs given that A has 

occurred,” reflecting a deterministic, forward-looking time perspective.  In contrast, translating 

P(A|B) as “the probability that A occurs given that B has occurred” is nonsensical given the 

problem script.  Representing P(A|B) demands consideration of events in inverted chronological 

order and may be validly translated as only “the probability that A has occurred given that B has 

occurred,” with retrospective time perspective.   

These two representations of conditional probability reflect two different types of 

reasoning about uncertainty (Hacking, 1975; Fox & Ülkümen, 2011).  While P(B|A) may be 

addressed in the predictive, aleatory sense, P(A|B) must be considered with epistemic evaluation 

postdictively.   

Reasoning from signs to sources has an extensive history distinct from deductive 

reasoning from causes to effects.  The historical and philosophical contexts of reasoning about 

an event's likelihood versus estimating one's confidence in an assertion has been thoroughly 

discussed as the aleatory-epistemic distinction by Hacking (1975), but the dichotomy has also been 

explicitly addressed as probable-plausible with respect to mathematical induction (Pólya, 1941, 

1954b), predictive-diagnostic in the heuristics and biases debate (Cohen, 1981; Mackie, 1981), as 

well as objective-subjective in literature on decision making (Fox & Ülkümen, 2011).   

Schematic effects on probability problem solving may inform instruction on statistical 

inference by reflecting on how the two dimensions of probability judgments are theoretically 

distinct.  Evidence from Study 3 supports an interpretation which addresses this difference in 

reasoning as parallel to the process of statistical inference and has implications for statistical 
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education.  In evaluating evidence from a sample, the process of hypothesis testing requires 

considering the conditional probability of finding a result in light of the null hypothesis H0, a 

preexisting fact in the world, which in fact either is, P(H0) = 1, or is not, P(H0) = 0.  So while 

results from Studies 2 and 3 indicate that it is easier to conceptualize P( some observed phenomenon | 

H0), hypothesis testing evaluates P(H0 | some observed phenomenon).  In addition, in evaluating the 

validity of statistical inferences, students are taught to consider the likelihood of Type I and Type 

II errors, terms which have become shorthand for particular conditional probabilities.  The 

convention in statistics education of not representing Type I and Type II errors as explicitly 

conditional probabilities has been criticized for oversimplifying students' concept of statistical 

inference and leads to inappropriate levels of confidence in results (Neath, 2010).  Training in 

statistical inference demands a level of mastery of understanding CP in inverted order, which is 

inconsistent with causal schemas and may warrant more classroom discussion with respect to 

the nuances and implications for hypothesis testing. 

In the case of social scientific research, quantitative evidence supporting claims about 

human behavior relies on the convention of hypothesis testing, which requires a degree of 

sophistication in understanding probability and likelihood.  Judgments about social phenomena 

are mediated by the interaction of how one interprets human behavior through personal 

experience while accounting for patterns which may not be apparent except in aggregate.  The 

combination of the salience of personal experience with the relative opacity of statistical 

inference regularly leads to discounting or misinterpreting empirical evidence when making 

high-stakes educational or policy decisions (Epstein, 1986; Milton, 2006; Paris & Luo, 2010; 

Slavin, 2004). 
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Heuristics and biases in evaluating quantitative information, including those addressed 

in this paper, have been shown in both laypeople as well as persist in individuals with extensive 

graduate training in probability and statistics.  Conditions and assumptions which are relevant 

in applying statistical analyses to human behavior are regularly violated or overlooked, in part, 

by these biases, and impede nuanced evaluation of empirical results.  Statistical training may 

explicitly address the demonstrated schematic effects, so that social scientists' are better able to 

contextualize statistical evidence having real-world consequence.  

Future Directions 

Further investigation into schematic effects on probability problem solving will 

incorporate additional conditions which have been demonstrated in the literature.  The robust 

effects facilitating problem-solving success when probabilities are expressed in frequency 

formats (Gigerenzer & Hoffrage, 1995, 2007; Krynski & Tenenbaum, 2007) would be expected 

to affect problem solving on the items designed for this paper.  The salience of a causal 

relationship was shown to possibly mediate order effects with respect to coding conditional 

probability in Studies 2 and 3, and variants of causal items in future studies will be written to 

address this factor more explicitly, in the model of Krynski and Tenenbaum (2007). 

Interview data may contribute particularly relevant details about the probability 

problem-solving process.  A few sessions with students instructed to "think aloud" while solving 

problems may add to a future research program.  Analyses on interview data should inform 

critical points as sources of common misconceptions and biases in problem-solving 

performance. 
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APPENDIX A 

Table A1: Study 1 Participants' Self-Reported Countries of Education 

One of the demographic items asked in which country or countries participants were 

educated.  Each participant was assigned to one of three following categories for the variable 

Region based on the response to this question. 

Table A1 
Study 1: Region Codes by  Participants’ Self-Reported Countries of Education 

Region N Countries of Educationa 

English-speaking countries 275 United States, Canada, United Kingdom, Ireland, Australia, 

Jamaica, and New Zealand 

Asia 73 India, Singapore, Bahrain, China, Japan, Iran, Mongolia, Nepal,  

Pakistan, South Korea, Sri Lanka, and Thailand  

Europe, Latin America,   

Non-English-speaking 

countries 

46 Spain, Chile, France, Romania, Russia, Austria, Brazil, Germany, 

Serbia, Ukraine, Venezuela, Bosnia, Brazil, Bulgaria, Costa Rica,  

Croatia,  Czech Republic, Greece, Israel, Italy, Macedonia, Mexico, 

Poland, Portugal, Sweden, Switzerland, The Netherlands 

aCountries listed in order of most to least frequent
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Figure A1:  Probability Formulas Provided to Participants 

 



Table A2:  Detailed Regional Outcomes and descriptives 

 

Table A3: Sensitivity Analysis 

Table A3 
 

Study 1: Sensitivity Analyses Using Generalized Linear Models: Effect by Region 

ST1: Random appropriate versus Random inappropriate 
   

N Odds B X2
LR df p 

Region 

Asia 73 3.06 1.12 5.28 1 .022 

Europe and Latin America 46 13.14 2.58 8.32 1 .004 

English-speaking Countries 275 1.19 0.17 0.48 1 .489 

              

 

Table A2  

Study 1: Descriptive Statistics by Region            

Region 
Correct 
solution 

Time on task 
(minutes) 

Age   
(years) 

 
N (% total) N (% region) M (SD) M (SD) 

United States 248 (62.9) 151 (60.9) 3.28 (2.3) 29.1 (9.9) 

India 58 (14.7) 20 (34.5) 3.56 (2.7) 26.9 (6.6) 

Europe, not English-speaking 36 (9.1) 28 (77.8) 4.84 (2.5) 30.2 (9.2) 

English-speaking countries outside North Americaa 17 (4.3) 11 (64.7) 3.35 (2.2) 25.2 (5.3) 

Asia, not India 14 (3.6) 9 (64.3) 2.54 (1.7) 26.5 (8.4) 

Canada 10 (2.5) 5 (50.0) 2.77 (1.5) 24.4 (4.6) 

Mexico and South America 10 (2.5) 9 (90.0) 4.71 (1.9) 27.1 (6.0) 

Africa 1 (0.3) 1 (100) 5.38 (0) 23 (0) 

Total 394 234 (59.4) 3.47 (2.4)  28.4 (9.1) 
  

a Australia, Ireland, Jamaica, New Zealand, United Kingdom
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APPENDIX B 

Table B1: Study 2 Correlation Among Dependent Variables 

Table B1 

Study 2: Intercorrelations Among Dependent Variables by Cohort 

In-Person (N = 19)  

 
Temporal 
solution 

Causal 
solution 

Temporal 
encoding 

Causal 
encoding 

Temporal 
solution 

- .344 .309 .286 

Causal 
solution  

- .268 .899** 

Temporal 
encoding   

- .328 

Causal 
encoding 

      - 

Online (N = 59)       

 
Temporal 
solution 

Causal 
solution 

Temporal 
encoding 

Causal 
encoding 

Temporal 
solution 

- .247 .376** .295** 

Causal 
solution  

- .105 .705** 

Temporal 
encoding   

- .135 

Causal 
encoding    

- 

** Statistically significant at p < .001 
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APPENDIX C 

Table C1: Study 3 Correlation Among Dependent Variables 

Table C1 
 

Study 3: Intercorrelations Among Dependent Variables 

N = 122 
Temporal 
solution 

Causal 
solution 

Temporal 
encoding 

Causal 
encoding 

Temporal 
solution 

- .278 .565 .316 

Causal 
solution  

- .185 .481 

Temporal 
encoding   

- .140 

Causal 
encoding 

      - 

 **Statistically significant at p < .002 
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