
Cost and Scalability of Hardware Encryption
Techniques

Adam Waksman
Department of Computer Science

Columbia University
New York, USA

waksman@cs.columbia.edu

Simha Sethumadhavan
Department of Computer Science

Columbia University
New York, USA

simha@cs.columbia.edu

I. DATA OBFUSCATION AND FULLY HOMOMORPHIC

ENCRYPTION

We discuss practical details and basic scalability for two
recent ideas for hardware encryption for trojan prevention. The
broad idea is to encrypt the data used as inputs to hardware
circuits to make it more difficult for malicious attackers to
exploit hardware trojans. The two methods we discuss are data
obfuscation and fully homomorphic encryption (FHE).

Data obfuscation [5] is a technique wherein specific data
inputs are encrypted so that they can be operated on within
a hardware module without exposing the data itself to the
hardware.

FHE is a technique recently discovered to be theoretically
possible [2]. With FHE, not only the data but also the opera-
tions and the entire circuit are encrypted. FHE primarily exists
as a theoretical construct currently. It has been shown thatit
can theoretically be applied to any program or circuit [2]. It
has also been applied in a limited respect to some software [4].
Some initial algorithms for hardware applications have been
proposed [1].

We find that data obfuscation is efficient enough to be
immediately practical, while FHE is not yet in the practical
realm. There are also scalability concerns regarding current
algorithms for FHE.

A. Data Obfuscation

Data obfuscation encrypts or re-maps the inputs to hardware
modules. We can implement two different versions of this,
one for modules that transport data and one for modules that
operate on data.

The data transport version is for protecting data while it
is in memory, registers, buses or any of the other myriad
components that transport and store data. For this case, we
have a dynamically chosen on-chip random value called the
key. The key is applied via bitwise XOR with all data,
addresses and indices for memory, registers and other similar
components. While data is stored in memory, it has a random
value and is at a random location. Reads and writes are applied
with the same key, so finding data is never a problem.

For arithmetic circuits, we need a structure preserving
mapping so that the work of the arithmetic circuits is not
lost. Our idea for this is to use displacement constants that

have a small number of ones in their binary representations.
As noticed in prior work [3], such numbers allow for fast
arithmetic in hardware and also achieve good randomness.
To take a multiplier as a motivating example, the goal of a
multiplier is to compute:

P = X ∗ Y

without receivingX or Y as inputs. To do this, we choose
displacement constantsa andb. These constant should be odd,
positive integers; they need not be prime. We then compute
a+X, b+Y , bX, andaY , all of which can be done with fast
partial adders, and we compute the constantab offline (does
not need to be re-computed each cycle, the result can be stored
on-chip). Our multiplier then takes the inputsa+X andb+Y

to produce :

XY + aY + bX + ab

We then subtract out the three values we’ve pre-computed
to get:

︷ ︸︸ ︷

XY + aY + bX + ab− ab− bX − aY
︸ ︷︷ ︸

= XY = P

The original multiplier is the only circuit that has done
any multiplication. Since addition is structure preserving over
arithmetic operations, this technique can be applied with
minor modifications to most common arithmetic circuits, with
varying cost. Due in part to the good scalability of fast adders,
the cost of this technique scales well to large bit widths.

The takeaway is that data obfuscation scales well.

B. Fully Homomorphic Encryption

Fully homomorphic encryption (FHE) has excellent security
properties but in its current form appears to be impractical. In
FHE, input data has to be encrypted before entering a unit and
then periodically re-encrypted depending on the logical depth.
Both of these operations are too expensive.

Logical depth refers to the length of a path of logic in
a combinational circuit. In FHE, each logical gate roughly
doubles the size of the data, so that data has to be periodically
re-encrypted to reset the process.



The complexity of the encryption relies on large prime
numbers and has a quadratic cost in terms of the bit width
of the prime numbers. The cost essentially boils down to a
multiply. Each FHE gate requires at least one full multiply
operation, and ann-bit multiply scales asn2 in terms of area
and power. For a prime number sizep and a logical depthd,
the area and power costs of a single FHE gate scale asc(2dp)2

wherec is the baseline cost.
The factor of2d comes that from the fact that each multiply

doubles the bit width. For example, the product of two 32-bit
numbers is a 64-bit number. If the circuit has depthd, since
each gate requires at least one multiply operation, the total bit
width has to be at least2d larger than that of the initial prime
number size. Thus the size of the operands is at least2dp, so
the cost in terms of area and power scales as:

(2dp)2

or equivalently:

(22d)p2

The conclusion is that current implementations of FHE are
too expensive to be immediately practical. The issue does not
yet come down to low-level circuit optimizations. The overall
algorithm is expensive. The exponential growth in cost with
respect to logical depth is the biggest problem. Prime number
size is also an issue, as large multipliers are expensive.

For a conservative lower-bound estimate on cost, we syn-
thesized some small FHE circuits. Consider for example the
relatively small prime number size of 64 bits and a small
depth of only two. Using 90nm technology libraries and a
large modern server die with 300mm2 of area, we could fit
at most about a hundred logical gates. This is too few gates
to build anything interesting. A design that small could be
much more easily secured with formal verification and/or code
review. Results are similar with the absolute minimum logical
depth of one.

These results show that FHE is orders of magnitude away
from where it would need to be for practical applications.
Moving into smaller technology nodes and applying circuit
optimization techniques will not be enough to overcome that
large of a gap.

The takeaway is that current implementations of FHE scale
poorly and are not yet practical.

REFERENCES

[1] M. Brenner, J. Wiebelitz, G. von Voigt, and M. Smith.
Secret program execution in the cloud applying homomor-
phic encryption. InDigital Ecosystems and Technologies
Conference (DEST), 2011 Proceedings of the 5th IEEE
International Conference on, pages 114 –119, 31 2011-
june 3 2011.

[2] C. Gentry. Computing arbitrary functions of encrypted
data. Commun. ACM, 53(3):97–105, 2010.

[3] M. Kharbutli, Y. Solihin, and J. Lee. Eliminating conflict
misses using prime number-based cache indexing.IEEE
Transactions on Computers, 54(5):573–586, 2005.

[4] M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovitch.
SCiFI - A System for Secure Computation of Face Iden-
tification. In Proceedings of the 31st IEEE Symposium on
Security and Privacy, 2010.

[5] A. Waksman and S. Sethumadhavan. Silencing hardware
backdoors. InProceedings of the 2011 IEEE Symposium
on Security and Privacy, SP ’11, pages 49–63, Washing-
ton, DC, USA, 2011. IEEE Computer Society.

2


	Data Obfuscation and Fully Homomorphic Encryption
	Data Obfuscation
	Fully Homomorphic Encryption


