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ABSTRACT

Self-assembly of nanoparticles on fluid and elastic membranes

An�ela Šarić

This dissertation presents studies on self-assembly of nanoparticles adsorbed onto fluid

and elastic membranes. It focuses on particles that are at least one order of magnitude

larger than the surface thickness, in which case all chemical details of the surface can

be ignored in favor of a coarse-grained representation, and the collective behavior

of many particles can be analyzed. We use Monte Carlo and molecular dynamics

simulations to study the phase behavior of these systems, and its dependence on

the mechanical and geometrical properties of the surface, the strength of the particle-

surface interaction and the size and the concentration of the nanoparticles. We present

scaling laws and accurate free-enegy calculations to understand the occurence of the

phases of interest, and discuss the implications of our results.

Chapters 3 and 4 deal with fluid membranes. We show how fluid membranes

can mediate linear aggregation of spherical nanoparticles binding to them for a wide

range of biologically relevant bending rigidities. This result is in net contrast with the

isotropic aggregation of nanoparticles on fluid interfaces or the expected clustering of

isotropic insertions in biological membranes. We find that the key to understanding

the stability of linear aggregates resides in the interplay between bending and binding

energies of the nanoparticles. Furthermore, we demonstrate how linear aggregation

can lead to membrane tubulation and determine how tube formation compares with

the competing budding process. The development of tubular structures requires less

adhesion energy than budding, pointing to a potentially unexplored route of viral

infection and nanoparticle internalization in cells.

In Chapters 5 – 8, we shift focus to elastic membranes and study self-assembly

of nanoparticles mediated by elastic surfaces of different geometries, namely planar,



cylindrical and spherical. Again, a variety of linear aggregates are obtained, but

their spatial organization can be controlled by changing the stretching rigidity of the

elastic membrane, the strength of the particle adhesion, the curvature of the surface,

as well as by introducing surface defects. Furthermore, we show how a fully flexible

filament binding to a cylindrical elastic membrane may acquire a macroscopic persis-

tence length and a helical conformation. We find that the filaments helical pitch is

completely determined by the mechanical properties of the surface, and can be easiliy

tuned. Moreover, we study the collapse of unstretchable (thin) hollow nanotube due

to the collective behavior of nanoparticles assembling on its surface, resulting in an

ordered nanoparticle engulfment inside the collapsed structure. Our hope is that the

results presented in this Dissertation will stimulate further experimental studies of

the mechanical properties of fluid and cross-linked membranes, in particular the long

range correlations arising due to the particle binding.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Self-assembly on interfaces and deformable sur-

faces

Self-assembly is the process by which initially isolated components spontaneously or-

ganize into large, ordered and stable structures. The phenomenon is ubiquitous in

nature and is observed across all length scales: “from molecules to galaxies” [1]. At

the nanoscale, self-assembly is usually achieved by a complex balancing act between

two factors: the direct or effective interactions among the components, and the ran-

dom thermal fluctuations of the surrounding medium. While the former factor usually

determines the morphology and symmetry of the final aggregate, the latter allows the

components to diffuse through the medium and explore the available space. Exam-

ples of self-assembly, and more in general self-organization of molecules, proteins and

protein complexes in biological systems are numerous and are fundamental for the

proper functioning of the cell [2–5]. Furthermore, self-assembly is expected to play an

important role in the production of materials with novel optical, mechanical, and elec-

tronic properties. In fact, whether we are considering organic photovoltaics, photonic

crystals with optoelectronic capabilities or energy-saving transistors and LEDs, key to
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CHAPTER 1. INTRODUCTION

the efficiency of these electronic materials is a regular and precise spatial organization

of their building blocks. Because of the large cost associated with nanolithographic

patterning, their large-scale production remains prohibitive, and the process of self-

assembly has been put forward as an attractive candidate for a cost-effective solution

to the next generation of functional materials.

Although the field of self-assembly has historically focused on molecular systems

interacting via covalent interactions, recent advances in particle synthesis [6–12] have

significantly extended the structural landscape accessible to colloids that are typically

two or three order of magnitude larger than molecules and interact via dispersion

forces. Colloidal particles that are anisotropic both in shape and surface chemistry

are today easily synthesized, and provide an unlimited number of building blocks

that can potentially organize into an unprecedented variety of structures via the

process of self-assembly. Unfortunately, self-assembly is a rather delicate and poorly

understood process, and the formation of defect-free structures is hardly achievable

unless a careful design of the building blocks is performed beforehand.

This dissertation deals with self-assembly on two dimensional fluctuating surfaces,

as they can act as powerful universal templates through which arbitrary building

blocks of even larger sizes than colloids can be readily driven close to each other

thus favoring their aggregation. Spontaneous organization of components adhering

to fluid interfaces is a matter of common experience, and is observed across a wide

range of length scales: from the assembly of marine litter into large garbage patches

and clustering of cheerios on milk at the macroscopic scale, to the aggregation of

proteins embedded in lipid membranes at the nanoscale. The first example of small

particles assembling onto the interfaces of liquid droplets was reported over a century

ago [13], and has been used ever since in industrial processing [14], as well as to

produce supracolloidal structures, such as colloidosomes, capsules and nano-particle-

based membranes [15, 16]. The effectiveness of bottom-up schemes to organize

millimeter-size objects at fluid interfaces in a controlled manner was further demon-

2



CHAPTER 1. INTRODUCTION

strated by Whitesides and co-workers [17, 18]. The origin of particle aggregation

driven by fluid interfaces is very well established [19, 20]. Local deformations in the

profile of the interface induced by floating objects adhering to it result in long-range

capillary forces that develop to minimize the interfacial free energy that is regulated

by its surface tension. By a judicious choice of the interface, and a careful design of

the building blocks, a plethora of patterns and even three-dimensional objects can be

assembled [21]. For recent reviews the reader is referred to [15, 16, 22, 23].

The work in this dissertation focuses on self-assembly of nanoobjects on surfaces

that are not exclusively dominated by their tension and have richer mechanical prop-

erties that give rise to a complex response to deformations and peculiar assembly

patters. Namely, we are interested in fluid and elastic/tethered membranes. While

in the former case the elastic properties are controlled by the tension of the surface

and by its bending rigidity, in the latter case surfaces are tensionless but have both

bending and stretching rigidities.

The simplest and most important example of fluid surfaces are biological mem-

branes. The main constituents of biological membranes are phospholipids − am-

phiphilic molecules that spontaneously organize in sheets that stack into bilayers and

are capable of forming complex and soft two dimensional geometries. They envelop

Eukaryotic cells and compartmentalize their different subcellular regions [2, 24]. Un-

der physiological conditions lipid molecules inside each layer are found in the fluid

state and can freely diffuse over the membrane surface. Fig. 1.1a) illustrates the typ-

ical structure of a lipid bilayer. The thickness of biological membranes is t ∼ 5nm,

while their surface area is usually many orders of magnitude larger [24, 25]. For

instance, the total area of a complex network of membranes in a typical liver cell is

110,000 µm2, which gives about 8.2m2 of membrane area per gram of tissue [2].

Biological membranes are constantly in contact with various macromolecules that

either reside on their surface, or are being transported between the cell and its envi-

ronment as well as shuffled between different compartments within eukaryotic cells.

3



CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.1: Schematic representation of a fluid (a) and a crosspolymerized (elastic)

(b) membrane.

Since a lipid membrane is permeable only to water and small uncharged molecules [25],

all macromolecules that are required to interact with it or cross it need to do so by

locally deforming the surface upon binding and subsequently either organize upon ad-

sorption or possibly vesiculate away from it. Self-assembly on biological membranes

is thus a crucial step in cellular transport, signaling and recognition. Being able to

control this process is of central interest for designing particles for targeted-drug deliv-

ery and for understanding nanotoxicity [26, 27]. It has also promising applications in

nanopatterning and nanotechnology [28], in medical imaging [29] and in development

of biosensors and functional biomimetric materials [30, 31]. In addition to phospho-

lipids, many other amphiphilic molecules are capable of building bilayer membranes,

for example blockcopolymers and surfactants [32–34], and recently membranes made

of colloidal particles have been successfully assembled [35].

Unlike in their fluid counterparts, the building blocks of elastic membranes do

not diffuse, but are tethered to each other as sketched in Fig. 1.1b. As a result,

the elements of elastic membranes cannot flow and can withstand shear [36]. Exam-

ples of such surfaces are cross-polymerized membranes [37], gels [38], actin-spectrin

networks of red blood cells’ cytoskeleton[39, 40], membranes made of close-packed

nanoparticles[41], graphene and graphite-oxide sheets [42–45] and polymer films [46].

Their study has seen a drastic increase over the past decade due to their potential use

in flexible electronics [47], artificial skin [48] and as blood cells substitutes [49], tunable

diffraction gratings [50], and in stimulus responsive materials and soft-robotics [51].
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CHAPTER 1. INTRODUCTION

Although much of the elastic properties of elastic sheets or shells is by now well un-

derstood [36], very little is known about their properties as self-assembly templating

agents.

This dissertation discusses how self-assembly of nanoparticles and colloids can be

driven by soft, deformable surfaces, with emphasis on biological and elastic mem-

branes. Specifically it is focused on adsorbed particles that are at least one order

of magnitude larger than the membrane thickness and do not disrupt the molecular

structure of the underlying surface nor do they pierce through it in any way.

1.2 Organization of this dissertation

This dissertation is organized as follows.

We begin by providing a physical description of fluid and elastic membranes, fol-

lowed by a brief overview of accepted theories of self-organization on membranes, and

computer models for their simulation, as detailed in Chapter 2.

In Chapters 3 and 4 we focus on nanoparticles adsorbed on fluid membranes.

Chapter 3 discusses how lipid membranes can mediate linear aggregation of spherical

nanoparticles binding to it for a wide range of biologically relevant bending rigidities.

It is based on work published in [121].

Chapter 4 deals with membrane tubulation driven by large colloidal particles. We

detail the mechanism behind it and investigate how the tube formation compares

with the competing budding process. It is based on work published in [122].

Starting with Chapter 5 we shift our focus to elastic surfaces and show how the

linear aggregates of adsorbing nanoparticles are again favorable, but that the stretch-
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CHAPTER 1. INTRODUCTION

ing rigidity of the underlying surface controls the morphology of linear aggregation.

It is based on work published in [123].

In Chapter 6, we begin to consider elastic surfaces of various geometries. In this

Chapter we show how a flexible filament binding to an elastic cylindrical surface may

acquire a macroscopic persistence length and a helical conformation. It is based on

work published in [124].

Chapter 7 focuses on radial collapse of unstretchable (thin) hollow nanotubes un-

der adhering nanoparticles. This work is currently under review [125].

Finally, in Chapter 8, we study nanoparticle self-assembly on spherical elastic

shells. This case yields the largest variety of patterns, due to its peculiar topology

and inevitable presence of surface defects. It is based on work published in [126].

Chapter 9 gives a brief summary of the results presented in this Dissertation, and

outlines future directions in relation to this work.

6



CHAPTER 2. PHYSICAL PROPERTIES AND MODELING OF MEMBRANES

Chapter 2

Physical properties and modeling

of membranes

2.1 Deformable surfaces

When a particle adhering to a surface is at least one order of magnitude larger than

the surface thickness, it is reasonable to neglect the surface molecular details. In this

limit a particle will experience the surface as a continuous medium (see Fig. 2.1a)

for an illustration) having specific mechanical properties. For a lipid membrane the

standard elastic representation is given by the Helfrich free energy [25, 52, 53] and

contains a curvature Fc and a surface tension Fγ term:

F = Fc + Fγ =

∫
dA
[κ
2
(H −H0)

2 + κGK
]
+

∫
γ dA (2.1)

where H = 1/R1 + 1/R2 is the mean curvature, K = 1/(R1R2) is the Gaussian

curvature, R1 and R2 are the principal radii of curvature at a certain point on the

surface A, and the constant H0 is the surface spontaneous curvature. κ, κG and γ are

respectively the bending rigidity, the Gaussian rigidity and the tension of the surface.

The bending rigidity κ for biological membranes can be estimated as the cost to

compress the inner leaflet of the bilayer and stretch the outer one exposing some of its

7
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(a) (b)

Figure 2.1: (a) A bending (top panel) and a stretching (bottom panel) deformation

of a thin sheet. (b) Stretch-free deformation along a zero-curvature direction on a

thin cylinder (left panel). d-cone formed as a result of a stretch-inducing deformation

(right panel).

hydrophobic area to water [24, 25]. Experimentally measured values of κ are found

to be in the range of 10 − 30kBT , where T is the temperature and kB is the Boltz-

mann constant; the exact value depends on molecular composition. Unfortunately,

no methods are available for a direct measurement of the Gaussian rigidity κG, as

a result its value is much more uncertain. To date, the only assessment for a pure

phospholipid system yielded κG ≈ −0.9κ [54]. In most treatments of membranes, the

Gaussian curvature term of the Helfrich free energy is neglected as κG is a measure

of the energy cost associated to topological changes of the surface, and it is constant

as long as the surface topology remains unaltered.

The bending rigidity of artificial fluid membranes can be tuned by changing the

properties of their building blocks. κ for surfactant membranes grows quadratically

with the length of the surfactant molecule, and depends on the surface area per

surfactant polar head [32, 33, 55]. Surfactant membranes are relatively soft with

8



CHAPTER 2. PHYSICAL PROPERTIES AND MODELING OF MEMBRANES

1kBT ≤ κ ≤ 10kBT [55]. Analogously, the rigidity of block-copolymer membranes

greatly depends on the molecular weight of the copolymer [56] and can be as low as

10kBT and as high as 100kBT [56, 57]. Fluid membranes made of colloidal rods are

reported to be quite stiff and have κ ≈ 150kBT [35].

Although measured values of surface tension γ of lipid membranes vary signifi-

cantly, most studies assume a negligible or a very small value γ ≈ 10−3−10−2pN/nm,

depending on the conditions of the experiment and the presence of a lipid-reservoir [25,

58]. The surface tension of polymeric membranes has been shown to be relatively

independent of molecular weight, with similar values as those reported for lipid mem-

branes [32]. Therefore, the behavior of fluid membranes in the limit of small defor-

mations is mostly governed by the bending energy.

Let us now consider the physical properties of elastic/tethered membranes. They

do not have surface tension, but are resistant to stretching and respond to perturba-

tions away from their equilibrium shape in a spring-like fashion. Their free energy

can be decomposed in two contributions: a curvature term Fc that has the same form

of that introduced for fluid surfaces, and an elastic term, Fe, that accounts for the

stretching energy (see Fig. 2.1a) for an illustration) and can be expressed in terms of

the surface Lamé coefficients µ and λ [36] as

Fe =
1

2

∫
dA
(
2µu2

ij + λu2
jj

)
. (2.2)

Here uij is the two-dimensional strain tensor that can be written in terms of the in-

plane displacement vector field ui and the out-of-plane displacement field h[36] with

respect to the unstressed planar reference surface

uij =
1

2
(∇iuj +∇jui +∇ih∇jh) . (2.3)

The last term in the above equation preludes to a non-trivial coupling between in-

and out-of plane deformations. In this representation, also known as the Monge

9
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gauge [25], the bending free energy can be approximated (for H0 = 0) to

Fc =
κ

2

∫
dA
(
∇2h

)2
, (2.4)

It can be shown that the Lamé coefficients are related to the Young’s modulus of the

sheet by a simple relation Y = µ(3λ+ 2µ)/(λ+ µ), while the bending rigidity scales

as κ ∼ Y t3; here t is the thickness of the sheet [36].

A very important property of thin elastic sheets can be readily obtained by con-

sidering the ratio between the cost associated to stretching and that associated to

bending deformations. A simple scaling analysis reveals that Fc ∼ Y t3h2/L4, and

Fe ∼ Y th4/L4, where L is the lateral length of the surface, and the ratio between the

two terms scales as

q = Fe/Fc ∼ (h/t)2 . (2.5)

This equation states that whenever the extent of the deformations applied to an

elastic sheet is larger than the surface thickness, bending is the preferred mode of

deformation. Furthermore, it is also possible to show that the strain tensor is simply

related to the principal radii of curvature, c1 and c2, of a small deformation imposed

on a planar surface, namely uxy ' c1c2xy [59]. This relation, intimately related to

the above-mentioned coupling between ui and h, implies that the only stretch-free

deformations possible on an elastic sheet are those involving a single axis of curvature,

i.e. either c1 or c2 must be equal to zero. These two results have a profound effect on

the way thin elastic surfaces respond to deformations, and are at the core of most of

the phenomenological behavior experienced with thin elastic materials. For instance,

spherical shells have no stretch-free deformations as any perturbation of the spherical

shape necessarily involves two axes of curvature. The resulting conformations involve

stress-focusing by buckling[59], as readily observed when poking a table tennis ball.

Fig. 2.1b shows examples of a stretch-free and a stretch-costly deformation on a

cylindrical shell. Skin wrinkling under applied stress [60] and stress focusing via d-

cone formation of crumpled paper [59] are two beautiful examples of this phenomenon

that has a strong geometrical dependence.

10
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2.2 Membrane-mediated interactions

Nanoobjects that interact with fluid membranes can be either adsorbed on the mem-

brane surface or embedded in the bilayer, in which case we will call them inclusions.

In either case, adsorption or inclusion of a nanoparticle locally perturbs the mem-

brane surface in a way that depends on the shape and size of the nanoparticle and

the nature of its interaction with the membrane. The tendency of the membrane to

minimize the size of these perturbations can result in effective interactions between

the adsorbed/included nanoparticles. These forces can be either attractive or repul-

sive as schematically shown in Fig. 2.2. Theoretical studies of the these phenomena

for fluid membranes go back over two decades and there are a number of excellent

reviews on the subject [61–63]. Nonetheless, the field is still developing, and new

findings and improvements of the theories are constantly being reported.

There are several ways for a membrane to induce interactions between embedded

particles. In the simplest case of an isotropic particle perfectly included in the bilayer

(Fig. 2.2a)), a Casimir-like interaction is known to develop for a range of particle

separations. In general, nanoparticles are much stiffer than the membrane, and their

presence perturbs the spectrum of natural membrane fluctuations. The extent of the

perturbation depends on the separation r between the nanoparticles, and is minimized

when they are brought together, leading to an effective nanoparticle-nanoparticle

attraction [64–66] of the form V (r) ∼ −1/r4. Although long-ranged, its magnitude

and importance are still under debate.

Often the presence of membrane inclusions locally alters the thickness of the hy-

drophobic core of the bilayer resulting in its distortion near the inclusion perimeter.

As illustrated in Fig. 2.2b), this typically leads to either a local compression or ex-

pansion of the surface [67–70]. Whenever two adjacent inclusions deform the bilayer

in the same way (both are thinner or thicker than the unperturbed membrane’s hy-

drophobic region), the boundary deformations are minimized upon their aggregation,

giving rise to a short-range attraction. When the inclusions alter the membrane

11
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Figure 2.2: Illustrations of membrane-induced interactions between inclusions. (a)

Casimir-like attractions between particles perfectly included in the bilayer. (b) Hy-

drophobic missmatch: like deformations attract. (c) Bending-mediated repulsion

between like deformations.
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thickness in an opposite manner (one thins it out and the other one thickens it), the

resulting interaction is repulsive. In both cases the energy cost of the deformation

increases as the square of the hydrophobic mismatch length ∆tHP, but it is mainly

constant and with a limited range of interaction (several nm) [62, 68]. This interac-

tion is of great importance for the organization of transmembrane proteins and other

membrane inclusions.

Another very important membrane-mediate interaction is more readily linked to

local bending deformations. Consider for instance the deformation caused by an

adsorbing nanoparticle attracted to a membrane as it tries to locally bend it to

maximize their surface contact, or the deformations enforced by membrane inclusions

that are not symmetric with respect to the bilayer mid-plane (Fig. 2.2c)). When the

deformation profiles induced by different nanoparticles are close enough to overlap,

an effective interactions take place [64, 65, 71]. In the limit of shallow deformations,

like-indentations repel, while oppositely-curved indentations attract. The bending

mediated interactions are of a longer range than the hydrophobic mismatch and decay

with particle separation as V (r) ∼ 1/r4. They are considered to be very important

for many membrane-associated aggregation processes. Recently, Deserno et al. have

considered interactions between strongly curved deformations, and have showed that

a crossover from repulsion to attraction takes place as the deformation deepens [72].

Moreover, Fournier et al. studied anisotropic deformations, and have showed that

orientationally-dependent attractions are also possible [73].

The global shape of the membrane can also be used to sort particles in differ-

ent regions and favor phase segregation in multi-component systems. For instance,

membrane-bending particles tend to aggregate in the regions of the membrane whose

curvature is the most similar to their own − thus maximizing their surface contact at

a minimum cost in bending [74, 75]. Analogously, when clustering of like-membrane-

bending particles occurs, due for example to phase separation between different com-

ponents [76, 77], large shape deformations on an initially flat region of the membrane
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can develop for easily bendable surfaces. When the bending energy is non-negligible,

micro-phase separation into repulsive bulged phases will occur, resulting in a finite-

spaced membrane domains, providing yet another mechanism of membrane-induced

ordering [78]. This complex coupling between particle self-assembly and surface de-

formability is central to understanding intra- and extra cellular communication in

Eukaryotic cells [79–83].

Unlike fluid membranes, only particle adsorption is possible on elastic surfaces,

and they respond to it by bending and stretching. The treatment of the bending

part of the deformation is identical to that described for fluid membranes, however,

very little is known on the role of the stretching energy in the pair-wise interaction

between the deformations. The main difference from fluid membranes is that the

topology and the geometry of the surface play a much more important role in the

response of elastic surfaces to deformations. Simply put, depending on the elastic

parameters and geometry of the surface, different directions on the surface might not

be equivalent. Of particular interest are thin elastic surfaces for which the stretching

dominates over the bending energy resulting in global constraints involving exclusively

(whenever possible) uni-axial deformations. Additionally, the presence of defects in

elastic networks may also play an important role, since defects might be more or

less prone to deformation compared to the rest of the surface, and might attract or

repel particles [84]. These phenomena give rise to orientational interactions between

deformations and lead to more complex and beautiful aggregation patterns.

2.3 Computer simulations of deformable surfaces

A large number of membrane models has been put forward to describe soft surfaces

across all length scales. Not surprisingly, most of them have been developed for bio-

logical membranes, although models for surfactant and polymer membranes are also

available [85–88]. Our goal here is not to review all existing membrane-simulation
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Figure 2.3: From implicit to full atomistic: schematic illustration of representative

membrane models at different length scales. From left to right: triangulated network,

three-bead per lipid coarse-grained (CG) model, atomistic representation.

techniques, but to give a brief overview of representative models at different scales,

with focus on their applications in simulating membrane interactions with macro-

molecules. An overview of representative models is sketched in Fig. 2.3. Detailed

reviews on various techniques and their evaluation can be found in References [53, 89–

92].

Membrane systems can be modeled either as continuous surfaces, using the math-

ematical functions described in Eq. 2.1 and 2.2, or with a particle-based represen-

tation where each lipid/building-block is depicted explicitly with more or less degree

of coarse-graining. A common approach in continuous models includes writing all

energy contributions in the framework of the Helfrich elastic model and performing

numerical energy minimization with system-dependent constraints. This process is

relatively fast and computationally inexpensive, but an analytical expression of all

energy contributions in the system is not always trivial. This is especially true in

the case of complex membrane-particles systems where multi-body interactions and

unexpected geometrical realizations of the membrane and nanoparticles can occur.
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In addition, this technique does not capture thermal effects or the dynamics of the

system, although a few dynamical continuous models have been developed. Let us

just mention Fourier space Brownian dynamics [89], which evolves the free energy of

a lipid bilayer in the Fourier space in the presence of arbitrary forces, and includes

hydrodynamics as well as thermal fluctuations.

Particle-based models are more versatile and can be applied to arbitrary geome-

tries and number of components. However, they need to satisfy the non-trivial task

of keeping membrane integrity while maintaining its fluidity. They can be roughly

classified in two groups, depending on whether the bilayer structure is described ex-

plicitly or implicitly [92]. Models in the first group describe each amphiphilic molecule

separately and can be fully atomistic or coarse-grained. Implicit models depict a mem-

brane as a coarse-grained surface where a unit segment does not represent a single

molecule, but a membrane patch consisting of hundreds to thousands of amphiphilic

molecules. The most detailed, full atomistic, models explicitly account for each atom

of an amphiphilic molecule via molecular mechanics, sometimes employing the united

atoms approach to represent nonpolar alkyl groups of the hydrocarbon tails, and a

set of interaction parameters are then given by the chosen force field. Such a level

of detail is necessary when studying membrane interactions with small molecules or

the inner-working of transmembrane channels. Nowadays these simulation are bench-

marked at about hundred fully hydrated lipids for 50−100ns. A nice review on recent

developments of membrane force-fields can be found in Ref. [93].

For simulation of membrane interactions with larger nano-components, this de-

tailed description is unnecessary and unfeasible, and several coarse-graining tech-

niques have been developed. An amphiphilic molecule can be coarse-grained by

forming groups consisting of 2-5 heavy atoms into a single coarse-grained (CG) site,

with water included either explicitly or implicitly via effective potentials. Further

coarse-graining is achieved by a systematic decrease in the number of CG sites- up

to two or three segments [94–96] or even just one spherocylinder for the whole lipid
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molecule [97] with the solvent represented via an effective attractive potential be-

tween hydrophobic parts. Particle-based explicit models that include some degree of

depiction of the lipids require a large number of explicit or effective water molecules to

provide osmotic pressure and stabilize the surfaces against lipid evaporation. A rough

estimate is at least 30 molecules of water per lipid [90], and this increases the compu-

tational cost by at least an order of magnitude. For this reason water-free membrane

models have become very popular, however, the parametrization of such models is less

straightforward and a large variety of ad-hoc potentials have been suggested. Most of

them are based on modifications of a Lennard-Jones potential [95, 96]. Although all

of the proposed potentials are able to reproduce membrane self-assembly, the resulting

values of membrane rigidities are hard to control and range between several kBT up

to over 100kBT [90]. Effective potentials for CG simulations of biological membrane

can also be derived from atomistic simulations of lipids in water using a multiscaling

approach, either via force-matching or by employing hybrid algorithms [98]. Each of

these approaches has its strengths and weaknesses, see for instance Ref. [91, 99, 100],

but all of them have been employed to attack important biophysical questions.

In the second group of particle-based models, the membrane is built from units

that represent a coarse-grained surface patch rather than an individual molecule.

Since they ignore the details of the bilayer, these models are valid only for a description

that involves length-scales sufficiently larger than the membrane thickness (� 5nm).

The mechanical properties of the bilayer are reflected in the values of a set of elastic

parameters associated with the Helfrich free energy. The strength of this group of

models is that they give access to larger length and time scales unobtainable by

explicit-lipid models.

The standard physical representation in this class is the triangulated-network

model, which is the model used to simulate fluid membranes in this Dissertation.

Here the membrane is described as an infinitely thin elastic surface consisting of hard,

spherical beads connected by flexible links to form a triangulated mesh [101–104].
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Figure 2.4: Triangulated-network model for fluid membranes. Left panel: the mem-

brane bending energy acts on neighbouring triangles, according to Eq. 2.6. Right

panel: the mesh connectivity is dynamically rearranged to incorporate surface fluid-

ity.

Using Monte Carlo (MC) methods, the mesh connectivity is dynamically rearranged

to incorporate surface fluidity. The membrane bending energy acts on neighbouring

triangles, and has the typical form

Hc
ij =

κ

2
(1− ni · nj) , (2.6)

where ni and nj are the normals of two triangles i and j sharing a common edge, as

illustrated in Fig. 2.4. The cost associated with area changes is usually included via

the energy term

Hγ = γA, (2.7)

where A is the total surface area. Since membrane beads are connected by dy-

namic bonds, this model cannot account for topological changes, such as poration or

budding-off.

A closely related representation is the meshless model, where membrane beads

are polar and are not held together by imposed bonds, but they self-assemble into a

membrane by carefully designed potentials. Most of these potentials consist of three

distinct interactions: a repulsive part that ensures volume exclusion, an attractive
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part that drives membrane self-assembly, and an angular part that depends on par-

ticle orientation and mimics the membrane bending rigidity. Meshless models can

capture membrane topological changes and dynamics, but in the majority of them

the membrane elastic properties are not included into the system in the as exter-

nal parameters, but are encoded into the details of the pair potentials between the

membrane beads and need to be extracted by analyzing the fluctuations spectrum of

the surface or by other means. The first meshless model was proposed by Drouffe

et al. in 1991 [105] and has relied on multibody interactions. Recently, a few pair-

wise-additive meshless models have been reported [106–108]. An alternative meshless

model, in which particles have no internal degrees of freedom and the potentials de-

pend only on particle positions, can be found in [109]. It is important to emphasize

that the size of a surface bead in triangulated-network model as well as in the mesh-

less model is not related to the membrane thickness, but rather to the coarse-graining

length-scale of the membrane surface, and should be large enough, σ ' 30− 50 nm,

so that an elastic description of the membrane is acceptable.

Tethered membranes can also be described employing continuum elastic models,

however simulations of elastic membranes in contact with nanoobjects have been

mostly performed using particle-based elastic models. The simplest particle-based

model for an elastic membrane is a fixed-mesh (network) model [101, 104, 110]. It

is a predecessor of the triangulated-network model for fluid membranes, without the

bond-flip to maintain the interparticle-connectivity fixed. The bending energy can

be incorporated using Eq. 2.6, while the shear elasticity/stretching energy can be

accounted for through the strength of harmonic bonds between linked surface beads:

He
mn = Ks(rmn − rb)

2 (2.8)

where Ks is the spring constant, rmn is the distance between two neighbouring beads

m and n, and rb is their equilibrium bond length. Special attention has been given to

elastic models of a red-blood-cell membrane [111–114], where effects of both fluid and
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elastic membrane can be of importance for different purposes. Beyond the standard

fixed-mesh model, they have been described by attaching an elastic network on the

bilayer membrane as in [115]. A few alternative schemes have also been proposed,

including the coupling of the elastic network with the hydrodynamics of the surround-

ing solvent [92, 113, 116].

Finally, a full description of the systems of interest requires a representation of

the nanoobject-membrane interaction. Adsorption of a nanoobject can take place in

different ways, for instance it can be induced by binding of ligands on the nanoparticle

to receptors on the surface on the membrane, such as streptividin-biotin links, but it

can also be driven by van der Waals interactions, or by electrostatic physysorption for

charged membranes and nanoparticles. Particle inclusion within the bilayer is usually

driven by hydrophobic effects. These interactions in atomistic models arise from first

principles calculations, while in coarse-grained models they are usually included via

a generic short-range attractive potential between a nanoobject and each membrane-

building particle, and can be described with simple functional forms ranging from

Morse to truncated Lennard-Jones potentials. These short-ranged attractions ade-

quately account for the ligand-receptor or van der Waals interactions.
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Chapter 3

Fluid membranes can drive linear

aggregation of adsorbed spherical

nanoparticles

3.1 Introduction

Lipid membranes have unique mechanical properties that are crucial for many bio-

logical processes, including cellular recognition, signal transduction, inter- and intra-

cellular transport, and cell adhesion. Most of these processes require interactions of

a lipid-bilayer with a variety of nano- and micro-size objects, such as proteins, DNA,

viruses and other biomacromolecules. Along with its fundamental importance, under-

standing the interactions of fluid membranes with nano-objects is a crucial component

in targeted drug-delivery design and in nanotoxicity studies.

Lipid membranes are typically very flexible and under thermal perturbations they

undergo surface deformations that are significantly larger than their thickness. Be-

cause of such a flexibility, they can easily be deformed when interacting with nano-

particles that can be either adsorbed on the membrane surface or embedded in the

lipid bilayer. As discussed in Chapter 2.2, the resulting membrane deformations may
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in turn mediate interactions between the membrane-bound objects. Adsorption or

inclusion of objects comparable in size to the membrane thickness (∼ 5nm) greatly

perturbs the local packing of the lipids leading to quite complex phenomena depen-

dent on the molecular details of the membrane-object interactions. When considering

larger objects, on the contrary, it becomes feasible to describe the membrane as a

continuous surface and coarse-grain its interactions with the nanoscopic objects with

generic binding potentials. Here we are interested in membrane driven interaction be-

tween adsorbing colloidal particles that are more than one order of magnitude larger

than the membrane thickness. Despite their structural complexity, for sufficiently

large scales the behavior of lipid membranes can be described by a small number of

elastic parameters that capture their response to deformation; a bending rigidity κb

of the order of 10kBT , and a small surface tension γ ≈ 10−2 − 10−3pN/nm are the

most important ones. Both can be altered either by dispersing within the bilayer

additional molecular components, or by changing the lateral forces/osmotic pressure

applied on the membrane.

In this Chapter we show that spherical nanoparticles adhering to fluid membranes

can self-assemble into a variety of two-dimensional aggregates. Significantly, for inter-

mediate and biologically relevant values of the bending rigidity we find that particles

preferentially arrange into linear/flexible aggregates. This result is in striking contrast

with most of the theoretical studies on membrane inclusions that predict isotropic ag-

gregation when the embedding object imposes an isotropic deformation on the surface.

Linear aggregation is expected only for sufficiently anisotropic wedge-like local defor-

mations [73], and this is clearly not the case for spherical nanoparticles. We find that

the key to understand the stability of linear versus isotropic aggregates resides in the

interplay between bending and binding energies of the nanoparticles. The latter term,

usually and correctly neglected when dealing with embedded nano-components, does

indeed play a major role in the structural morphology of the aggregates formed by

non-embedded adhering components.
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It should be stressed that string-like formations very similar to those we present

here have been observed experimentally in several systems. To best of our knowledge,

Safinya et al. have been the first to experimentally investigate membrane mediated

attraction of colloidal particles bound to a lipid membrane [75]. They studied two

systems: streptavidin-grafted latex beads (0.3 and 0.9 µm in diameter) attached to a

biotinilated phospholipid giant unilamellar vesicles (GUV) and negatively charged col-

loidal DNA-lipid aggregates adsorbed on cationic GUVs. Their experiments revealed

that in both cases particles caused deformations of flexible GUVs and experienced

membrane mediated attraction. Vesicles with a single attached bead showed distorted

contours with a pinched angle around the bead. If the vesicle was not spherical, but

had a stomatocyte shape, the bead would preferentially bind to the concave region

of the vesicle. This maximizes particle binding energy, with as little bending cost as

possible. When a second bead was added to the system, the two beads approached

each other over a period of time and eventually bound. The lipid mobility was a

prerequisite for aggregation, and particles showed no tendency to aggregate in so-

lution, excluding the possibility of particle attractions without the presence of the

membrane. Interestingly, upon addition of the third particle a chain-like triplet was

formed on a spherical vesicle, as opposed to a triangular formation which would be ex-

pected in isotropic aggregation. Remarkably, in a multi-particle system, a ring shaped

string of beads aggregated around the waist of a multilamellar vesicle as shown in

Fig. 3.1, clearly exhibiting a peculiar non-isotropic attraction. A close packed hexag-

onal cluster of colloids was observed only when the vesicle was not symmetric and

had a concave region as a preferred binding site. Similarly, the cationic lipid-DNA

complexes of low net charge assemble into linear colloidal aggregates when adsorbed

to the cell membrane [128].

Concurrently with our work, Yue and Zhang have performed computer simulations

of receptor-mediated endocytosis of multiple nanoparticles [129]. Uptake of nanopar-

ticles in cells and GUVs is often preceded by nanoparticle clustering, as regularly
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Figure 3.1: Latex beads bound to a multilamellar vesicle via biotin-streptavidin in-

teractions forming linear string-like aggregates. Reprinted from Ref. [75].

observed in experiments [130]. The authors have shown that membrane-mediated

interactions between adsorbed nanoparticles are strongly sensitive to their size. They

have found small nanoparticles (∼ 2.5nm) to exhibit short-range attractions and to

aggregate in hexagonal structures. Nanoparticles of intermediate size (∼ 4.5nm),

once partially wrapped by the membrane, experience longer range interactions that

connect them in a linear arrangement, very much like the pearl-like chains observed

by Safinya et al [75, 128]. For larger nanoparticles (∼ 6.5nm) the membrane dy-

namics slows down significantly, as the number of receptors required to be recruited

to deform the membrane becomes large. In that case individual-wrapping of each

nanoparticle has been observed, except when the nanoparticles were initially next

to each other, which leads to wrapping of the whole dimer. Zhang et. al attribute

this aggregation patterns to membrane-mediated interactions, which are strongest

for small, highly-curved particles, and decrease with the particle size. Furthermore,

they argue that the interactions are attractive for the small sized particles and re-

pulsive for the big ones. This however does not explain the switch form isotropic to

anisotropic aggregation. Nanoparticles of size comparable to the membrane thickness
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can considerably disturb the local lipid packing. The resulting deformations induced

on the membrane are complicated, but the net effect seem to be analogous to that

induced by hydrophobic mismatch leading to the familiar short-range isotropic at-

traction when like deformations of individual particles overlap. Less well understood

is the scenario in the large particle limit. In this Chapter we use a combination of

numerical simulations and scaling arguments to detail the physical origin behind it.

3.2 Simulation details

We performed Monte Carlo simulations of planar and spherical fluid membranes in-

teracting with adsorbing nanoparticles. The membrane is modeled using a simple one

particle-thick solvent-free model, and consists of N hard spherical beads, of diameter

σ, connected by flexible links to form a triangulated network [101, 102, 104] whose

connectivity is dynamically rearranged to simulate the fluidity of the membrane, as

detailed in Chapter 2.3. The membrane bending energy acts on neighboring triangles,

and has the form given by Eq. 2.6, with κB being its bending rigidity. γ is the tension

of the surface and is included in the cost associated with area changes via Eq. 2.7.

A nanoparticle is modeled as a sphere of diameter σnp = Zσ, with Z = 3, 4 or 6.

Excluded volume between any two spheres in the system (nanoparticles and surface

beads) is enforced with a hard-sphere potential. Finally, the nanoparticle-to-surface

adhesion is modeled via a generic power-law potential between the nanoparticles and

the surface beads defined as

Vatt(r) = −D0

(σM

r

)6
(3.1)

with σM = (σ+σnp)/2, and cutoff at rcut = 1.5σM . Following [131], simulations of the

planar membrane were carried out in the NγT ensemble, while the NV T ensemble

was used for the spherical membrane. Each simulation was run for a minimum of

5 · 106 steps. In each simulation the number of nanoparticles is held constant, and
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the surface tension is set to γ = 3kBT/σ
2. For σ ≈ 30− 50nm we have nanoparticles

of diameter σnp = 100− 200nm and surface tensions γ ≈ 10−2 − 10−3pN/nm.

3.3 Phase behavior

We begin by computing the phase behavior of the system for different values of the

surface bending rigidity κb and nanoparticles’ adhesive energy D0. The results are

summarized in the left panel of Fig. 3.2, and report the structure of the aggregates

observed for each pair [κb, D0] in the case of the planar geometry.

A gas phase occurs when D0 is too weak for the particles to deform the membrane.

In this phase particles are just lightly bound to the surface, they are highly mobile,

and have a certain probability of detaching from it. An arrested phase occurs for

large values of D0. In this case particles bind very strongly to the membrane result-

ing in large local deformations that heavily limit their mobility over the surface. This

typically leads to configurations that are kinetically trapped or even to nanoparticle

engulfment. Three ordered phases occur for moderate values of D0. Each of the

three phases spans a range of κb values. For small values of the bending rigidity,

particles create well defined deep-spherical imprints in the membrane and organize

into ordered hexagonal arrays (H1). Low cost in bending energy and high gain in

surface binding allows for these deep deformations. In this phase the nanoparticles

are not in direct contact with each other, but are separated by the pinched parts

of the membrane. Close-packing maximizes sharing of the pinched regions between

neighboring nanoparticles, thus maximizing the surface-to-nanoparticle contact area.

An identical result is obtained when repeating the simulations on the spherical mem-

brane, and is reminiscent of the experimentally observed two-dimensional hexagonal

crystal formed by negatively charged particles on positively-charged surfactant vesi-

cles reported in [132]. Even in this case the colloids are extensively wrapped by the

membrane and are not in direct contact with each other.
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Figure 3.2: Left panel: Phase diagram of particle self-assembly on a fluid surface

in terms of the surface bending rigidity κb and particle binding energy D0. The

snapshots show typical aggregates in the H1, L and H2 phases in a top-to-bottom

order, and the deformation pattern they leave on the membrane. The membrane-area

is A ' (40×40)σ2, the nanoparticle-size σnp = 4σ and their surface fraction ρ = 0.27.

Right panel: Snapshots of the linear aggregates on the spherical membrane. The

upper two snapshots show the system of R ' 15σ, σnp = 4σ and ρ = 0.11 and the

bottom snapshot depicts R ' 45σ, σnp = 3σ and ρ = 0.16.
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For biologically relevant values of κb, our nanoparticles create smooth channel-

like distortions on the membrane and self-assemble into linear aggregates (L) non

unlike those predicted for anisotropic membrane inclusions [73]. Although we have

not computed a structural phase diagram for our vesicle model, we find that the

simulations on the vesicle performed at different nanoparticle concentrations and

vesicle radii lead to analogous results. Here particles form sinuous linear patterns

that tend to follow the equatorial lines of the vesicle. Snapshots from our simulations

are shown in the right panel of Fig. 3.2. This phase strikingly resembles the linear

aggregates of colloidal particles on Giant Phospholipid Vesicles obtained by Safinya

et al. [75].

For very large values of κb the nanoparticles re-organize into the familiar hexagonal

lattice, however, unlike what happens for the small κb aggregates, the membrane now

remains almost completely flat and the nanoparticles are in contact with each other

(H2). Because of its high stiffness, particles can only weekly deform the membrane to

gain in binding energy, as a result the binding energy is minimized by recruiting the

largest number of membrane beads in the vicinity of the nanoparticles. This effectively

drives the crystallization of the region of the membrane that directly interacts with

the nanoparticles, creating a line tension between crystalline and fluid membrane

regions that is minimized when isotropic aggregation takes place [77, 81].

As mentioned before, the formation of linear aggregates is quite surprising. To ensure

that our results are not affected by the triangulation underlying the definition of our

membrane model, we repeated our simulations using the coarse-grained, but tether-

free model proposed by Zhang et al. [107]. This model also accounts for possible

topological changes in the surface, however the elastic properties of the membrane

are not fed to the system in the form of parameters of an elastic energy, but are

encoded into the molecular details of the anisotropic pair potentials between the

effective building blocks of the membrane, and need to be extracted by analyzing

the fluctuations spectrum of the surface [107], or by other means. It is comforting
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to report that no qualitative difference was found on the overall phenomenology of

the phase diagram: linear aggregates do indeed form and are not an artifact of our

model. We also checked that linear aggregates do no form when limiting the area of the

particles’ binding region to enforce a finite (constant) contact angle between particles

and membrane. This case is basically equivalent to enforcing isotropic regions with

intrinsic curvature, mimicking for instance the local perturbation of a protein, in a

lipid bilayer for which isotropic aggregation is expected [81].

3.4 Free energy studies of linear aggregation

To understand why linear aggregates become more favorable for moderate bending

rigidities, we placed three nanoparticles, A,B and C in linear formation and at a

kissing distance over a planar membrane, and calculated the free energy cost required

to disrupt the linear arrangement. The idea is to keep in place particles A and B

and force particle C to form an angle ϕ0 between the vector connecting particles

A and B and that connecting particles B and C while keeping the relative particle

distance unaltered. Using the umbrella sampling method, we can reconstruct piece-

wise the probability that the trimer arranges according to any of the explored angles,

which in turns gives us access to the free energy difference ∆F = F (ϕ) − F (π). All

simulations were repeated for different values of D0 and two different ranges of the

binding potential. The results are shown in Fig. 3.3a, and undoubtedly tells us that in

this region of the phase diagram the linear configuration is the most stable one, with

the close-packed compatible configuration (ϕ0 = π/3) sitting in a metastable shallow

minimum of the free-energy curve separated from the linear configuration (ϕ0 = π) by

a significant barrier. The height of the barrier depends on the exact parameters, but

is typically larger than 4kBT inside the linear region of the phase diagram. Fig. 3.3b

shows the free-energy as a function of particle separation when the third particle

approaches the other two from infinity, either in the linear or perpendicular alignment,
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(a) (b)

Figure 3.3: (a) Angular free-energy profile for three nanoparticles bound to the mem-

brane at different values of binding constant D0 and interaction range rcut. (b) Free-

energy as a function of the separation when a third particle approaches a fixed dimer

along the direction of the dimer’s axis (dashed line) and perpendicular to it (full line).

In both cases we used κb = 20kBT and σnp = 3σ.

as depicted in the insets in Fig. 3.3b. When the third particle approaches the dimer to

form a linear aggregate, the free-energy (when particles are sufficiently close) decreases

monotonically down to a minimum at contact. When the third particle approaches the

dimer from a direction that is perpendicular to the dimer’s axis, we observe a repulsive

free energy barrier that precedes a shallow minimum at contact. Remarkably the

range of the repulsion is felt as far as three nanoparticle diameters (up to 9 times the

range of the attractive part), revealing correlations in the three body interactions that

are significantly longer than the ones expect from a simple Casimir effect [73, 127].

To understand the unexpected stability of the linear aggregates over the close-

packed structures in the regime where linear aggregation occurs, we measured the

energy of the system associated with linear and hexagonal aggregates. The left panel

of Fig. 3.4 shows explicitly how the total energy difference between linear and hexag-

onal aggregates, computed for the same values of γ,D0 and kb, as a function of
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Figure 3.4: Left panel: Difference in bending, (FL − FH)bend, and binding, (FL −

FH)bind, energies between linear and hexagonal aggregates as a function of particle

number N at κb = 20kBT , D0 = 10.9kBT and σnp = 3σ. The dashed line indicates

the total energy difference between the two configurations. Right panel: typical

membrane profiles underneath the aggregates in this regime.

particle number N , is partitioned between the bending (FL − FH)bend and the bind-

ing (FL−FH)bind contribution. This analysis reveals that despite the smaller bending

cost, hexagonal aggregates provide a fairly small gain in binding energy when com-

pared to linear aggregates, and this leads to a net energy balance that favors the

latter. It is worth mentioning that we monitored the difference in free energy due to

the surface tension between the two configurations, and found it to be indeed neg-

ligible. We also checked that linear aggregates form for our largest nanoparticles,

Z = 6.

To rationalize these numerical data we offer the following scaling argument. A

quick look at the typical surface deformations in this region of the phase diagram (see
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snapshots in the right panel of Fig. 3.4) suggests that in either linear or hexagonal

configuration the contribution to the system energy can be split in two parts. The

first part comes from the overall deformation of the membrane due to the collective

arrangement of the particles. The second part comes from the shallow surface inden-

tations (corrugations) produced by each particle on top of the overall deformation.

Let’s assume that the energy due to the corrugation is fairly independent of the over-

all arrangement of the aggregates. We can think of it as a particle self energy e0 that

is constant for a given κB, γ and D0. The total self-energy is than E0 = e0N .

When particles arrange into linear structures (L), they generate a channel-like

profile in the membrane with length proportional to the number of the nanoparticles

N and width proportional to σnp. The bending energy of the channel can be estimated

using the standard elastic energy κB

2
(A/R2) [36] with A being the area and 1/R

being the constant curvature of the deformation. Ignoring the energy due to the

contribution of the surface tension and subtracting the contribution of the particles’

self energy, we can write the total free energy of the channel as FL −E0 ≈ 2πα(κB

2
−

D0σ
2
np)N , where 0 < α < 1 is a parameter that accounts for the degree of surface

wrapping per nanoparticle, and is related to the overall height of the channel. Close-

packed hexagonal (H) arrangements form a flat, two-dimensional imprint of lateral

size proportional to
√
N . In this case, apart from a geometrical prefactor, the free

energy due to the rim of the imprint scales as FH−E0 ≈ πα(κB

2
(1+N−1)−D0σ

2
np)N

1
2 .

In fact, here the area is proportional to the length of the rim and grows as
√
N ,

and the N−1 term accounts for the small bending cost associated with the in-plane

curvature of the rim kB/2c
2A with c ∼ N−1/2. The key step is to notice that for

any of these phases to be stable, the gain in binding needs to overcome the cost in

bending, otherwise particles would not even bind to the membrane. Since the binding

energy in the L phase grows much faster with N than that in the the H phase, the L

phase becomes more stable as more and more particles are added to the surface. In

other words, the gain in binding energy overwhelms the larger cost in bending.
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Figure 3.5: Bending (postive) and binding (negative) energy of linear (red stars and

dashed lines) and hexagonal aggregates (black circles and solid lines) as a function

of particle number N at κb = 20kBT , D0 = 10.9kBT and σnp = 3σ. The self-energy

E0, estimated with a linear fit of bending and binding energies of the inner particles

in hexagonal aggregates, has been subtracted from both curves. The inset shows the

total energy of the two configurations, and the snapshots show the membrane profiles

underneath the aggregates.
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Fig. 3.5 shows separately the scaling of binding and bending energies once we

subtract out the total particles’ self-energy NE0 and the average bending energy due

to thermal fluctuations measured in particle-free simulations. This reveals that indeed

our scaling hypothesis is correct, and for linear aggregates both bending and binding

grow linearly with N , whereas isotropic structures result in a weaker
√
N dependence

on the number of particles. The inset in Fig. 3.5 shows the total energy (this time

including NE0) due to bending and binding for the two configurations as a function of

the number of particles and shows that indeed the linear aggregates are more stable,

and the difference between them increases with increasing N . The binding energy

term, usually and correctly neglected for the case of membrane inclusions, is thus the

essential ingredient for understanding the behavior of adsorbed particles.

3.5 Conclusion

In this Chapter we have computed a phase diagram showing the different aggregates

formed by nanoparticles adsorbing onto a lipid bilayer as a function of the surface

bending rigidity and nanoparticles adhesive energy. Our main result is that for a wide

range of bending rigidities κb ≈ 10 − 100kBT , nanoparticles can organize into linear

aggregates − provided the binding energy is sufficiently large.

Although linear aggregates can be expected to form on elastic (polymerized)

surfaces due to the global constraints imposed on the surface deformations by the

stretching rigidity Ks (at least in the large Ks limit) [123, 124], for fluid membranes

Ks = 0. Our result is therefore quite different than the expected, and usually as-

sumed, isotropic aggregation mediated by either local isotropic deformations of the

surface or due to hydrophobic mismatch. The binding energy of the nanoparticles,

the missing ingredient in studies of aggregation of membrane inclusions, is the key to

rationalize this phenomenology.
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Chapter 4

Membrane tubulation induced by

adhesive nanoparticles

4.1 Introduction

The internalization of complex macromolecules is a key factor in cell trafficking and

intercellular communication. As large and charged biological cargo cannot directly

cross the lipid bilayer that envelops the different compartments within eukaryotic cells,

this process is usually accompanied by the formation of vesicular- and tubular-shaped

membrane protrusions. The mechanism by which they develop can be extremely

diverse [80, 133–137]. It often involves active processes requiring accessory factors,

such as clathrin or caveolin protein coats, or motor-proteins and external forces. It

can also develop as a result of the self-assembly of anchoring proteins, such as BAR

domain proteins [138, 139], that impose a local curvature on the lipid bilayer. The

physical mechanism driving protein aggregation in this case is fairly well understood

within the framework of effective bending mediated elastic forces[69]. The size and

shape of the resulting deformation is determined by how the packing properties of

the proteins couple to the elastic response of the membrane.

Several endocytic pathways, however, are found to be triggered by the cargo it-
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self [133, 135, 140, 141]. In some cases, such as HIV-1 [142], the virus itself is formed

on the membrane as its proteins self-assemble inducing their own vesicular bud. The

internalization is thus a consequence of cooperativity of many protein molecules.

In this Chapter we are interested in passive internalization of preassembled viruses,

virus-like particles and other colloidal particles. The main difference from the cases

discussed above is that the interaction of a single colloidal particle (typically one

order of magnitude larger than a protein) with the lipid bilayer can induce its own

invagination by wrapping its surface with the membrane. For instance, it has been

shown that budding of preassembled alphaviruses and type-D retroviruses [135, 143],

as well as charged colloids [144], can take place without the presence of external

factors.

Although one might expect budding to be the main mechanism for internalization

of large particles, long tubular protrusions typically of one-particle diameter are often

observed in viral or nanoparticle internalization. Simian virus 40 (SV40), upon its

binding to membrane receptors, is found to induce deep invagination and tubulation

of both the plasma membrane and giant unilamellar vesicles (GUVs) [145]. Its entry

occurs via small, tight-fitting indentations and the resulting invaginations have the

same size as the virus-particle diameter. Positively charged nanoparticles were also

shown to spontaneously induce tubulation in supported [146] and unsupported [144]

giant unilamellar vesicles, suggesting the existence of a general physical mechanism

of internalization, which is not exclusive for viruses and does not require assistance

of membrane proteins.

Understanding this phenomenon is of great importance for developing anti-viral

strategies, but also because viral and virus-like particles, as well as artificial nanopar-

ticles, are promising tools in gene-therapy and molecular medicine, for which control

over their cellular uptake is essential. Despite the large body of work [107, 147–153]

on the particle budding problem, most studies have focused on the interaction of

a single particle with the membrane, and have completely missed tube formation,
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a crucial component of the phenomenological behavior associated to particle inter-

nalization, that can only arise as a result of nontrivial cooperative behavior among

many particles. Here we use computer simulations to investigate the physical mech-

anisms behind the occurrence of this process, and show how it depends on particle

size, concentration and binding strength. While the phenomenon has been observed

in several experiments, to the best of our knowledge, this Chapter presents the first

theoretical study that addresses nanoparticle-driven tubulation, and rationalizes its

interplay with the particle budding process.

4.2 Literature review

In Chapter 3 we have considered only nanoparticles that impose relatively small de-

formations on the membrane surface. Significant local deformations can occur for

sufficiently flexible membranes and large enough binding constants or nanoparticle

diameters. Self-assembly in such conditions can lead to large global membrane de-

formations, and even to topological transitions. Now it is a good time to take a

more detailed look at the binding of a single nanoparticle to the membrane. Let us

consider a particle of radius Rp � t adsorbed on a fluid membrane. The resulting

membrane indentation can be approximated as a spherical cap of height h and area

Scap = 2πRph, as illustrated in Fig. 4.1. According to Eq. 2.1, the cost in bending as-

sociated with this configuration is 2κ
R2

p
Scap and the cost due to surface tension is γπh2.

In the latter expression πh2 is the difference between the area of the spherical cap

and its projected area, giving the increase in the membrane area due to particle bind-

ing. The free energy gain due to the adhesion energy between particle and membrane

scales as −D0Scap, where D0 is the binding constant per surface area. A balance of

these terms leads to an equilibrium particle coverage χ ≡ Scap/(4πR
2
p) =

D0−2κ/R2
p

2γ
.

This suggests that, for small values of surface tension, a particle will become wrapped

by the membrane as soon as D0 & 2κ/R2
p. At that point the wrapped particle looses
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Figure 4.1: Nanoparticle of radius Rp wrapped by the membrane. h is the height of

the corresponding spherical cap-like deformation induced on the membrane.

the contact with the membrane and buds off. The main point of this simple back-on-

the envelope calculation is that for a given binding constant D0, budding is easier for

large particles.

A variety of more complicated calculations have been put forward to understand

the nature of this transition [153–160]. In an early work on the subject [153],

Döbereiner and Lipowsky have analyzed vesicles in contact with many colloids and

they predicted individual budding of large particles. The authors completely ne-

glected the contribution of the surface tension, in which case the simple analysis

shows that the membrane coverage of a particle χ can be either 0 or 1, corresponding

to unbound or fully wrapped particles, which clearly does not capture the complete

picture since partial wrapping has been observed both in simulations and experi-

ments. In a series of papers Deserno and co-workers have described the membrane

profile underneath the bound nanoparticle and in its vicinity using full nonlinear

shape equations [154, 155]. Their analysis reveals continuous nanoparticle binding

with increase in D0 followed by a discontinuous envelopment transition, pointing out

to the presence of an energy barrier for the complete budding process. These results

are in agreement with the particle-based simulations of the same process [150, 161–

164], which in addition provide insight into molecular details of the transition and

the different pathways it can take. Simulations have been extended to particles of

different shapes [151, 152, 168, 169] and flexibility [170], and several statistical ther-
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modynamic models have been developed [156–160] in search for optimal conditions for

nanoparticle engulfment. Finally, a few experiments have been performed to under-

stand the interaction of a single nanoparticle with a fluid membrane [165–167], with

results in line with most of the theoretical findings. All these studies in the large

deformation limit considered exclusively single-particle/membrane interactions. In

what follows we review recent findings on binding of multiple particles showing that

cooperative effects in such systems can lead to significantly different phenomena.

Reynwar et al. [140] have investigated aggregation of model virus caps and col-

loidal virus particles adsorbed on a coarse-grained membrane. They found that both

the individual caps and the whole nanoparticles induce large, long range membrane

deformations that span throughout the whole simulation box. Subsequently, the over-

lap of these large deformations drives nanoparticles together and induces membrane

budding of several caps or particles without them being in direct contact. Although

it is still unclear what is the origin of such large deformations, to the best of our

knowledge this was the first explicit simulation study of the important process of col-

lective endocytosis. Recently, the same authors have conducted continuum elasticity

study of membrane-mediated interactions between circular particles in the strongly

curved regime [72]. For large enough deformations they find a crossover from repul-

sive to attractive pair-interactions, in agreement with their particle-based simulations.

Collective budding of many nanoparticles has also been discussed in simulations by

Zhang et al. [129], in the small particle limit. In that case the budding is preceded

by isotropic aggregation of nanoparticles into hexagonal structures and driven by in-

crease in binding energy. Their snapshots show no large global deformations as the

ones observed by Reynwar et al.

On the experimental side, Yu et al. have studied interaction of cationic nanoparti-

cles enclosed inside spherical phospholipid GUVs [144]. In this experiments nanopar-

ticles adsorbed onto the membrane surface and induced shape transformation in the

form of tubular protrusions, that would break up into pearls over longer periods of
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time. The tubules were almost uniform in size and approximately an order of magni-

tude larger than the size of a single nanoparticle. The nanoparticles did not appear to

be embedded within lipid tails, but were mobile in the adsorbed state. The authors

argue that the adsorption of a cationic nanoparticle increases the headgroup area of

lipids causing a mismatch of surface area between the outer and inner leaflets. This

would create a local curvature that could drive nanoparticle aggregation and shape

change, but no qualitative explanation is available at this time. Similarly, Orwar et al.

have investigated adsorption of ∼ 200nm CdSe/CdTe nanoparticles inside of surface-

supported phospholipid vesicles connected to a multilamellar reservoir of lipids [146].

By tuning the concentration of salt they were able to control the spreading of the phos-

pholipid on the supporting surface. When the vesicle did not preferentially adhere

to the surface, they found that nanoparticles create tubular protrusions in the lipid

bilayer which grow up to up to a length of several hundred microns and subsequently

retract. They observe nanotubes of different fluorescent intensities, pointing out to

a range of possible tube radii. In some occasions, tubes grew large in diameter and

exhibited multicompartmentalization, which is beyond the scope of this discussion.

Unlike Yu et al., this study did not report tubule pearling.

These results are quite exciting, since they point out to unexplored routes to

nanoparticle internalization in biological and artificial membrane compartments [133].

To be able to use and control the process, a better understanding of the mechanism

behind it is essential. It is well established that tubes can be generated out of lipid

membranes by mechanical methods such as by action of motor proteins [171] or

polymerization of cytoskeletal filaments [172] in cells, as well as by pulling by mi-

cropipette or optical tweezers in controlled experiments [173–176] and by exposure to

hydrodynamic flows [177]. The size of the tubule in all of these cases is determined

by the membrane’s mechanical properties, and is given by R0 =
√
κ/(2γ) [178, 179].

Tubules can also be generated by curvature-inducing proteins [81, 133, 180–183],

as well as by different chemical means such as by polymer or cholesterol insertion
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Figure 4.2: Tubular membrane invaginations induced by binding of SV40 virus parti-

cles. (a) Electron micrographs of cells that were incubated with SV40. Note the tight-

fitting membrane under SV40 particles. (b) Electron micrographs of polyomavirus

virus-like particle after incubation with cells. The virus-like particles line inside of

tubular membrane invaginations like beads on a string (shown by arrowheads). Scale

bars are 200 nm. Reprinted from Ref. [145].

[80, 181]. But until recently, tubulation induced by adhering nanoparticles has been

missing from the large body of work published on nanoparticle-membrane interac-

tions.

For large particles one usually expects budding to be the main mechanism of

internalization by membranes. Nevertheless, long tubular protrusions have been ob-

served in infectious pathways of preassembled virus particles. Ewers et al. have

performed a thorough study of tubulation induced by simian virus 40 (SV40), both

in plasma membranes and GUVs [145]. The authors conducted separate experi-
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ments on tubulation driven by preassembled virus-like particles (VLP) of 45nm in

diameter, as well as by individual ∼ 5nm capsomers. SV40 binds to the membrane

via specific ligand-receptor interaction and the experiments show that association of

both isolated capsomers and VLPs with membrane receptors was sufficient to induce

formation of long tubular invaginations. However, the mechanism by which small

membrane-curving capsomers induce tubulation is very different from that of pre-

assembled particles. In both cases adhesion to the membrane creates local regions

enriched in lipid receptors, causing line tension between receptor-enriched regions and

the surrounding lipids. Decrease in line tension energy drives isotropic aggregation of

capsomers enabling curvatures of individual proteins to build up cooperatively and

deform the membrane, thus promoting tubulation via isotropic self-assembly. This

picture is supported by the fact that tubulation in the case of capsomers is strongly

tension-dependent and has a definite lag-time required for the aggregates to nucleate.

On the other hand, binding of a single VLP causes sufficiently large local curvature by

itself and tubulation happens almost instantaneously. Tubulation of VLPs shows no

tension-dependence and fails to occur if not enough membrane receptors are engaged,

pointing out to the dependence on binding. The VLPs aggregate into tight-fitting

single-file nanotubes, where each VLP is in significant contact with the membrane

(see Fig. 4.2). The authors suggest that VLP aggregation and membrane tubulation

is driven by line tension or by means of curvature-mediated attractions, presumably

similar to those proposed in simulations of Reynwar et al. However, these experi-

ments suggest a scenario in which colloids are in direct contact with each other and

well wrapped by the membrane, in contrast with the floppy invaginations in [140]

which are low in nanoparticle density.

In this Chapter we discuss how this process can be explained by pure tendency

of nanoparticles to increase their contact with the membrane, thus decreasing the

binding energy and free energy of the whole system.

42



CHAPTER 4. MEMBRANE TUBULATION INDUCED BY ADHESIVE
NANOPARTICLES

4.3 Simulation details

Our system setup consists of Np particles, modeling colloidal viruses, virus-like par-

ticles or inorganic colloids, placed inside a vesicle of undeformed average radius R.

Given the large size difference between the thickness of the vesicle and the nanoparti-

cles considered in this study, we model the vesicle as an infinitely thin elastic surface

consisting of N spherical beads of diameter σ connected by entropic flexible links of

maximal extension
√
3σ to form a triangulated network [101, 102, 104] whose connec-

tivity is dynamically rearranged to simulate the fluidity of the membrane, as detailed

in Chapter 2.3.

The membrane bending energy acts on neighboring triangles, and has the form

given by Eq. 2.6, where κb is the bending rigidity. The cost associated with area

changes is included via the energy term given by Eq. 2.7, where γ is the tension of the

surface. The particles are represented as spheres of diameter σp = Zσ, where Z > 1 is

a parameter used to control their size. Excluded volume between any two spheres in

the system (particles and surface beads) is enforced with a hard-sphere potential. The

colloid-to-membrane adhesion energy is modeled via an additional power-law interac-

tion between the particles and the surface beads defined as in Eq. 3.1, with the cut-off

set at rcut = 1.5σM . D0 is thus again the membrane-particle binding constant. This

potential is quite generic and is typically employed to describe short-range attractions,

such as ligand-receptor or van der Waals interactions. The system is equilibrated us-

ing the Monte Carlo simulations in the NV T ensemble where N is the total number

of particles, V is the volume of the simulation box, and T is the temperature of the

system. Most of our data are obtained at κb = 5kBT , γ = 1kBT/σ
2 (corresponding

to surface tensions of the order of 10−2 − 10−3 pN/nm ) and Z = 2, 3, 4, 6 or 8.
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4.4 Tubulation versus budding

We begin our analysis by computing a diagram that indicates, for a given value of

D0 and Rp, the phenomenological behavior of the particle-membrane coupled system

at a constant particle concentration. The results are shown in Fig. 4.3. For small

values of D0, the overall shape of the membrane is unchanged while the particles,

barely adhering to it, freely diffuse over its surface as a low-density two-dimensional

gas (G). Increasing D0, we find that the nanoparticles organize into linear aggregates

(L). This phase develops due to effective interactions between the particles driven

by the membrane’s need to minimize its elastic energy while maximizing its binding

surface to the particles, as explained in Chapter 3. Upon further increase in D0,

spontaneous formation of tubular protrusions (T) takes place. This region of the

diagram is characterized by nanoparticles tightly and linearly packed into tubular

structures extruding out of the membrane core. The radius of the tubes equals the

diameter of the particles. This behavior is in agreement with the SV40-induced

membrane invaginations [145], where one-particle-wide tubes were also observed, but

tubulation failed to occur if the adhering viruses were unable to form a sufficient

number of interactions with the membrane binding sites. Further increase in D0

causes nanoparticles to adhere to the membrane and become completely enveloped

into a bud (B) before any significant particle diffusion can occur. The T-B transition

is not abrupt, and a mixture of both “corrugated” tubes and single-particle buds is

found in the borderline area between the two phases. Although in our model buds

cannot physically detach from the membrane, they are easily identifiable by their

complete surface-coverage and the characteristic sharp membrane neck shape. A

single particle bud is shown in the inset of Fig. 4.3.

The most important message arising from our analysis is that tubulation develops

as a result of the interaction of many particles and should be expected for intermediate

binding constants. Such a behavior occurs for all particle sizes considered in this

study and for all bending rigidities analyzed (up to 40kBT ), indicating that what sets
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Figure 4.3: Left panel: D0-Rp phase diagram of the membrane aggregates and pro-

trusions induced by colloidal particles. Right panel: Snapshots of the linear (L) and

tubular (T) phases. The inset shows a typical single-particle bud conformation (B)

that occurs at large D0. The bottom region of the phase diagram is the gaseous phase

(G). The radius of the membrane is R = 30σ and the particle surface fraction is kept

constant at 0.15.
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the tube size is the particle diameter and not the natural length-scale associated to

membrane tube formation, R0 =
√

κb/(2γ), obtained by pulling experiments [179,

185]. Moreover, preassembly of nanoparticles into linear aggregates seems to greatly

facilitate the formation of long tubes.

4.5 Free energy studies of tubulation

To obtain more physical insight into the mechanism by which tubular protrusions

form, we considered a series of free energy calculations. First, we measure the effective

interaction between two colloids adhering to the membrane in the T-region of the

phase diagram. A standard implementation of the umbrella sampling method [119],

using the distance d between the particles as an order parameter and a weak harmonic

potential as a constraining bias, allows us to sample piecewise the probability that

the two particles are at any given separation d from each other and estimate the free

energy difference ∆F = F (d)− F (∞). Fig. 4.4a shows ∆F as a function of d, while

the inset monitors how the orientation of the dimer with respect to the membrane

surface, ϕ, depends on the same variable. This result is quite revealing; the elastic

cost required to bring together two large membrane deformations, responsible for the

weak mid-range repulsion, is replaced by a large energy gain when the particles are in

contact. The corresponding configuration is characterized by two particles contained

within a membrane tube oriented perpendicularly to the membrane surface. As we

have not imposed any constraint on the values of ϕ, this is clear evidence, at least

at the two-particle level, that in this region of the phase diagram, tube formation is

more favorable than budding.

Using the same procedure, we can also measure the free energy as a function of

separation between a two-particle-tube and a third isolated particle. Our data, shown

in Fig. 4.4b, tells us that the lowest free energy is again achieved when the three

particles are in contact in a tubular formation. This very important result indicates
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(a)

(b)

Figure 4.4: Tube formation and growth. (a) Free-energy as a function of separation

of two membrane-bound particles. The inset shows the orientation of the dimer with

respect to the membrane surface and indicates the distance at which the tubulation

occurs. Here, ϕ is the angular excursion of the dimer’s axis as it goes through the

transition (b) Free-energy as a function of separation of a two-particle tube and a

single membrane-bound particle. In both cases Rp = 4, R = 15σ and D0 = 2.6kBT .
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that tubes and free particles bound to the membrane attract each other, and once a

tube is formed, its growth by particle addition drives the system towards a lower free

energy. In both cases, the extent of the repulsion and attraction is dependent on the

specific region of the phase diagram they are computed at. The characteristic energy

barrier at mid-range distance becomes more significant asD0 increases and the system

crosses over to the budding regime, implying that for large D0 particle aggregation

becomes rare, making budding the most likely barrier-crossing mechanism. This is a

kinetically dominated regime: in fact, once the budding threshold has been overcome,

particles would leave the membrane before having the time to aggregate.

4.6 Tubule nucleation

Interestingly, in most of our simulations in theT phase we observe that tube formation

if often preceeded, in particular at higher particle densities, by the formation of long

linear aggregates that eventually extrude from the membrane via a tilting mechanism

illustrated in Fig. 4.5. This two-step process becomes more significant as we move

closer to the L-T boundary, suggesting that these aggregates function as nucleation

seeds promoting the transition. To support this idea we perform two sets of simula-

tions: in the first set we start from a connected four-particle-long linear aggregate,

and measure its surface coverage χ as a function of D0 until a tube is formed, in the

second set we start from an already tubulated structure and we decrease D0 until the

tubule retracts. As shown in Fig. 4.5, tubulation is accompanied by a sudden jump

in the particle coverage χ (and consequentially in the binding energy), indicating the

presence of a free energy barrier between the two states that needs to be crossed

for the linear aggregates to protrude out of the membrane. This result is consistent

with previous force-extension calculations and experiments on GUVs [179], that also

indicated tube formation to be a first order transition.

Finally, we measured the onset value D∗
0 at which a preformed linear aggregate
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Figure 4.5: Hysteresis associated with the tubulation of a linear aggregate, in terms of

the surface coverage χ and D0, for the extrusion of a four-particle-long aggregate. χ

is computed as the ratio between the number of membrane beads in contact with the

particles and the same number when the surface completely envelops the particles.

The red crosses show the results of simulations that start form a linear aggregate,

while the black circles show simulations that start from a tube. Here Rp = 4σ and

R = 15σ.
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Figure 4.6: Onset binding constant for tubulation D∗
0 as a function of the length of

the preformed linear nucleation cluster; Rp = 4σ and R = 15σ.

forms a tube as a function of its size, at a fixed particle radius. A weak but clearly

inverse dependency is found, shown in Fig. 4.6, and supports the idea that the free

energy cost for tubulation from the L phase does indeed decrease monotonically with

the size of the aggregates which therefore act as nucleation seeds for the transition. It

should be stressed that because the probability of forming linear aggregates increases

with particle surface concentration, ρ, it is logical to expect tubulation to be more

likely to occur in denser systems. This is indeed what we find in our study. We have

not computed the phase diagram for different particle surface fractions, but we find

that for σp = 4 the onset value of D0 for tubulation decreases as the particle surface

fraction is increased from 0.05 to 0.15 and 0.3. We expect tubulation to cease for

sufficiently large nanoparticle-surface coverage as one approaches the colloidosome

limit.

Working on almost identical system, Bahrami et al. [184] performed energy

minimization of two and three particles adsorbed on the outer side of a vesicle. In
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line with the results of our group, they found that the tubule which encapsulates

colloids is indeed the energy minimum also in that case. The authors repeated two-

particle simulations for several values of reduced volumes of the vesicle, mimicking

conditions of different osmotic pressures obtainable in experiments. Based on the

fact that stability of a two-particle tube varied with the reduced value of the vesicle,

they suggest that changing osmotic pressure should be enough to reversibly control

nanoparticle uptake.

4.7 Conclusion

We have shown that for a broad range of binding energies, tube formation and not

membrane budding is the main mechanism leading to internalization of sufficiently

large particles. Nowhere in our simulations have we observed formation of membrane

tubes of radius larger than one particle diameter; however, these may develop as

a result of direct particle-particle interactions or nontrivial long-range electrostatic

effects [144] not included in our study. It should be emphasized that our results should

hold as long as the particle size is sufficiently large so that the molecular details of the

membrane can be ignored. Although the elastic constants of our model were selected

in a range relevant to biological processes and we only considered two vesicle radii, we

do not expect the process to be extremely sensitive to these parameters. Indeed, data

with nanoparticle-membrane interaction range down to 0.1σM , and surface tensions

up to one order of magnitude larger show no qualitative difference in the tubulation

process as long as membrane fluidity is preserved ( γ . 30kBT/σ
2 in our model when

κb = 5kBT ).
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Chapter 5

Self-assembly of nanoparticles on

planar elastic surfaces

5.1 Introduction

Elastic surfaces are ubiquitous in nature and technology and appear across all length

scales, from the cellular microenvironment to large-scale objects such as bridges and

buildings. The mechanical properties of these surfaces play an important role both

in their biological function, and in their wide usage in material engineering. For in-

stance, it is known that the stiffness of an elastic substrate alters the morphology and

dynamics of tissue cells adhering onto it [186]. Variable cytoskeleton assembly [187]

and cell spreading [38] on substrates of different mechanical properties are two nice

examples of this. Furthermore, their response to external stress have been exploited

in metrology [46, 188] and in the production of micro- and nano-scale patterned

surfaces that may serve as components with novel optical, electronic and magnetic

properties [189].

In this Chapter we are interested in understanding how elastic surfaces could be

used to template aggregation of nanocomponents. The idea to use elastic surfaces

to design more complex nanoparticle patterns has come as a response to increasingly
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large number of novel methods in producing elastic sheets and shells at the nano- and

microscopic scale.

Elastic surfaces bend and stretch in response to deformations. The resulting macro-

scopic behavior is characterized by strong nonlinearities [36]. The mechanical prop-

erties of macroscopic elastic sheets have recently been the subject of intense inves-

tigation [46, 48, 59, 190–192]. Under an applied force an elastic surface deforms in

a way that minimizes the energy associated with the deformation. As discussed in

Chapter 2.1, it is easy to show [36, 59] that the ratio between stretching and bend-

ing energies for an arbitrary deformation of amplitude h on a flat elastic sheet of

thickness t scales as Es/Eb ∼ (h/t)2. Therefore, for sufficiently thin sheets, bending

is the preferred mode of deformation and unstretchability can be thought of as an

overall geometrical constraint to the deformations. The net result is that thin elastic

surfaces respond to an external applied stress with stretch-free deformation involv-

ing (when possible) exclusively uniaxial bending. Such nontrivial phenomenology

extends to the micro-scale. There are several artificial and naturally occurring exam-

ples of microscopic elastic surfaces, including graphite-oxide sheets [44, 45], graphene

sheets [42, 43], cross polymerized biological membranes [37], cross polymerized hydro-

gels [38], buckypaper [193–195], the spectrin-actin network forming the cytoskeleton

of Red Blood Cells [39, 40], and very recently they have been fabricated using close-

packed nanoparticle arrays [41]. Our expectation is that diffusible particles adhering

over an elastic surface should be driven to aggregate into configurations that reduce

the mechanical cost of the overall surface deformation. These configurations will de-

pend on the geometry of the surface, its elastic properties and the strength of the

adhesion (the applied force).

In this Chapter we explore the phase behavior of nanoparticles adhering onto

a planar (extended) elastic substrate as a function of the mechanical properties of

the substrate, namely its stretching and bending rigidity, and the strength of the

adhesion. We also analyze the role of the boundaries of the elastic sheet and their
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influence on the aggregation patterns. Our findings suggest that the geometrical

features of the anisotropic aggregation of the particles can be tuned in a variety of

patterns by controlling the elastic parameters of the problem.

5.2 Simulation details

The elastic plane is modeled via a standard triangulated mesh with hexagonal sym-

metry [101]. To impose surface self-avoidance we place hard beads at each node of the

mesh. Any two surface beads interact via a repulsive truncated-shifted Lennard-Jones

potential:

ULJ =


4ε

[(σ
r

)12
−
(σ
r

)6
+ 1

4

]
, r ≤ 21/6σ

0 , r > 21/6σ

(5.1)

where r is the distance between the centers of two beads, σ is their diameter, and

ε = 100kBT .

We enforce the surface fixed connectivity by linking every bead on the surface to

its first neighbors via a harmonic spring potential

Ustretching = Ks(r − rB)
2. (5.2)

Here Ks is the spring constant and it models the stretching rigidity of the surface. r

is the distance between two neighboring beads, rB = 1.23σ is the equilibrium bond

length, and it is sufficiently short to prevent overlap between any two triangles on the

surface even for moderate values of Ks.

The bending rigidity of the elastic surface is modeled by a dihedral potential

between adjacent triangles on the mesh:

Ubending = Kb(1 + cosφ) (5.3)

where φ is the dihedral angle between opposite vertices of any two triangles sharing

an edge and Kb is the bending constant.
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Figure 5.1: Illustration of the triangulated mesh model used in our simulations. The

surface beads of diameter σ (blue spheres) are set at the nodes of each triangular

element to enforce surface-self-avoidance and are linked to their first neighbors with

springs of the constant Ks and the equilibrium length rNB (measured form the beads

centres). The surface connectivity is kept constant, and apart from boundary nodes

each surface bead has six neighbors. The dihedral angle 1-2-3-4 from which bending

energies are computed is also indicated. This energy is minimized when all angles

between neighboring triangles are equal to φ.

Particles of diameter σc = 10σ are described via the repulsive truncated-shifted

Lennard-Jones potential introduced in Eq. 5.1 with σ → σc. The generic binding

between the nanoparticles and surface is described by a Morse potential:

UMorse =

D0

(
e−2α(r−rNB) − 2e−α(r−rNB)

)
, r ≤ 10σ

0 , r > 10σ

(5.4)

where r is the center-to-center distance between a nanoparticle and a surface-bead,

rNB is bead-nanoparticle contact distance rNB = 5.5σ and D0 is the binding energy.

The interaction cutoff is set to 10σ and γ = 1.25/σ.

The simulations were carried out using the LAMMPS molecular dynamics pack-

age [196] with a Langevin dynamics in the NV T ensemble. Dimensionless MD units

are used throughout this Chapter. The timestep size was set to dt = 0.002τ0 (τ0 is
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the dimensionless time) and each simulation was run for a minimum of 5 · 106 iter-

ations. In this study we considered unconstrained and edge-constrained sheets. To

minimize edge effects in unconstrained sheets we considered surfaces with an overall

circular geometry. Two different equilibrium radii Rplane ' 50σ and Rplane ' 60.4σ

were explored. To preserve the mechanical stability of the sheet the colloids were

placed both on top and at bottom of the surface. When edge-constrained surfaces

were considered, a rectangular shape was selected and the colloids were placed only

on one side of the plane. For this specific case we considered two surface equilibrium

areas, A ' (176 × 152)σ2 and A ' (244 × 212)σ2. In both cases a wide range of

nanoparticle surface fractions between 10% and 60% was explored. Typical values of

σ ∼ 10−20nm would imply colloidal particles of diameter ∼ 100-200 nm and surfaces

of area A ∼ 200− 1000µm2. Figure 5.1 illustrates the model used in our simulations.

5.3 Free-standing elastic sheet

We find that elastic surfaces can indeed drive nanoparticle aggregation. The geometry

of the aggregates can be tuned into a variety of patterns controlled by the mechanical

properties of the surface (Ks and Kb) and the strength of the particle’s adhesion (D0).

Let us begin by looking at the role of the membrane’s stretching rigidity. Fig. 5.1a)

shows a diagram of the different aggregates obtained for different values of Ks as a

function of the extent of the surface deformation (regulated by D0) at fixed bending

rigidity Kb. Fig. 5.1c) shows simulation snapshots of the corresponding patterns.

As expected, when D0 is small the surface is basically unaffected by the presence

of the particles and the particles behave effectively as a low-density two-dimensional

hard sphere fluid. In the opposite limit, when the particles bind very strongly, the

membrane undergoes large local deformations limiting the diffusion of the particles

and resulting in kinetically trapped configurations. Repeating the simulations under

the same conditions leads to a different not well defined configuration. We call this
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phase the arrested phase.

The intermediate regime is characterized by five distinct structured phases. For

small values of Ks the aggregation is completely driven by the minimization of the

bending energy. As a result particles aggregate into a two-dimensional hexagonal

crystal. Upon a small increase in Ks the hexagonal crystal rearranges into a square

lattice.

For even larger values of Ks the connected network is disrupted and particles ar-

range into straight parallel lines. Increasing Ks at this points only leads to to a larger

stiffness of the linear aggregates. This transition is completely stretching-driven. The

parallel lines start appearing when Ks & Kb. This is clearly shown in Fig. 5.1b)

where we show how the formation of straight and connected aggregates depend on

both stretching and bending constants. For Ks/Kb � 1 one indeed recovers the thin

and unstreachable sheet limit for which only stretch-free (uniaxial) deformations are

possible. It is important to stress that the formation of parallel lines, that effectively

creates a uniform undulating and one-particle-think corrugation on the surface, is

driven by the binding energy. In fact, a stretch free deformation could also be ob-

tained by forming several particles-thick linear aggregates, but these configurations

would have a weaker binding to the surface. The most dramatic consequence of this

property of elastic plates is the fifth, folded phase. This phase occurs for larger values

of D0, when particles tend to increase the contact area with the membrane as much

as possible. In this region the surface immediately folds into a well organized higher

three-dimensional hexagonal structure (Fig. 5.1c)).

To better characterize the dependence of the different phases on Ks - from the

hexagonal to the square lattice, from the connected network to the linear one, we also

measured the frequency of particle contacts as a function of Ks. Fig. 5.2 shows the

probability distribution of the number of the nearest neighbors as a function of Ks

in the different phases. The connectivity decreases when increasing Ks, going from

the six neighbors of the hexagonal phase to the four neighbors in the square lattice,
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Figure 5.2: (a) Phase diagram of nanoparticles binding to an elastic planar surface.

In this case the bending rigidity is Kb = 150kBT ; the equilibrium radius of the surface

is R ' 60.4σ and the number of nanoparticles is N = 40. The lines separating the

different phases serve as a guide to the eye. The arrow points in the direction of

lower line connectivity. (b) Boundary between connected to straight parallel lines as

a function of Ks and Kb. The dashed Kb = Ks line serves as a guide to the eye.

(c) Simulation snapshots of the seven observed phases. For the sake of clarity the

hexagonal and the square crystal phases are shown with the larger number of particles

than the other phases.
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Figure 5.3: Probability distributions of particle contacts in self-assembled aggregates

for different values of Ks, and constant Kb = 150kBT . From right to left the distri-

butions refer to the planar hexagonal crystal, the planar square crystal, the intercon-

nected lines, and the straight parallel lines.

and finally two for the connected and the straight lines. For the linear aggregates

the significant difference is not in the location of the peak of the distribution (indeed

a large number of particles will have two neighbors even in the connected linear

aggregates), but in the relative height of P (3) which is the signature for branching.

It should be emphasized that the number of connections does decrease continu-

ously with increasing Ks. It is tempting to interpret these data in terms of a single

growing length scale that sets the size for the average distance between any two nodes

in the linear network, and consider the straight-line phase as the limiting behavior

in which this distance becomes larger than the surface. A simple mean field cal-

culation balancing stretching and bending energies [59] points to the length scale
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lp ∝ h1/2(Ks/Kb)
1/4R1/2 (discussed in details in Chapter 6), which qualitatively pro-

duces the correct phenomenological behavior, but unfortunately the small system

sizes analyzed in this study prevent us from making such a link more concrete.

5.4 Clamped elastic sheet

It is important to stress that the free boundaries of the membrane play an important

role. Indeed, it is not clear whether the linear phases indicated in Fig. 5.1 are stable

with respect to folding. In fact, in a few cases our longest simulations of the linear

phases resulted eventually in a folded phase. We expect this to be an effect of the

free boundary of the surface that can be taken care of by applying a small external

tension or by clamping the outer edge of the surface. To show that this is indeed the

case, we considered a rectangular elastic sheet in which two opposite sides (edges)

are kept fixed (clamped). In the absence of the adhering particles the sheet remains

flat to its equilibrium size. Once the particles bind to it we observe only two phases

for moderate values of Ks, the gas phase and the straight-linear phase. The former

appears when D0 is insufficient for the particles to deform the membrane, while the

latter occurs when D0 crosses a certain threshold value which depends mainly on the

bending rigidity of the plane (Fig. 5.3a)).

The linear structures formed in this phase always appear to be perpendicular to

the constrained sides of the membrane (Fig. 5.3b)). However we observe that the

distance between them can be tuned by changing Ks and Kb. This kind of pattern is

reminiscent of the wrinkle pattern that occurs when a thin elastic sheet is subjected

to a longitudinal stretching strain[191, 192]. The sheet is then unable to contract

laterally near the clamped boundaries, so it wrinkles to accommodate the in plane

stress. Cerda and Mahadevan showed that, for a constant tension, the wavelength of

the wrinkles scales as λ ∼ (L)1/2 ∼ (Kb/Ks)
1/4 [192].

Indeed, we find the same reasoning can be applied here. Instead of having an external
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force stretching the plane, the particles binding to the surface act as the stress source

causing the sheet to wrinkle. This stress is directed perpendicularly to the fixed sides

of the plane. Since the wrinkles are the regions where the particles can gain the

highest contact area with the surface, i.e the highest binding, the particles follow

the wrinkle pattern resulting in the straight parallel aggregates. We believe that the

destabilization of the linear-connected phase is due to the implicit symmetry breaking

imposed by the way we clamp the membrane, in fact, when clamping is enforced on

all four edges of the sheet, the phase reappears.

We also analyzed the dependence of the wavelength of the particles’ lines with

Kb and Ks and it appears to nicely follow the theoretical prediction of Cerda and

Mahadevan (Fig. 5.3b)). Nevertheless, two extra parameters play a role in deter-

mining the separation between the lines in this case: the surface coverage and the

particles’s binding energy. Since particle binding to the surface is favorable, once the

particle’s density becomes larger than that required to completely fill the wrinkles

with particles, new lines (wrinkles) form in between the preexisting ones, bringing

the preexisting ones closer together. The inset in Fig. 5.3b) shows the decrease in λ

with the increase in the particle density, for two different values of Ks. In addition to

that, we find that the increase in D0 (for constant Ks and Kb) also brings the lines

closer together. Higher binding increases the amplitude of the wrinkles (analogous to

increasing the strain tension in [191]), which decreases the surface area accessible to

the particles, effectively increasing the density.

It should be stressed that the mechanism driving self-assembly of particles into lin-

ear aggregates that we described is significantly different from the controlled wrinkling

methods recently developed for the fabrication of patterned surfaces[189]. There the

wrinkles are preformed by compressing the substrate, and particles trivially arrange

along the wrinkles’ axis to maximize their binding energy, in our case the surface

is not pre-wrinkled, and the linear aggregates develop (in a reversible manner) as a

result of a more delicate balance between the energies of the system and the collective
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Figure 5.4: (a) Phase diagram of nanoparticles binding to a clamped rectangular

elastic surface. Two phases are observed for different values of Kb and depend only on

D0: the gas phase and straight parallel lines phase (SL). These data refer to the case

in which Ks = 150kBT/σ
2, N = 60, and the area of the the plane is (176×152)σ2. (b)

Line separation λ as a function of the mechanical properties of the surface. We show

data for two different surface coverages: φ = 38.7% (cross symbols) and φ = 21.2%

(circle symbols). The straight lines represent the fit of the data to the scaling law

λ ∼ (Kb/Ks)
1/4. The inset shows the dependence of λ on the particle surface coverage,

shown for three different values of the (Kb/Ks)
1/4 parameter: 1.35σ1/2(top), 0.9σ1/2

(middle), 0.51σ1/2 (bottom). (c) Simulation snapshots of linear aggregates for three

different combinations of the elastic parameters and the surface coverage densities.

The equilibrium surface area is A = (176× 152)σ2.
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behavior of the particles. Interestingly, once the wrinkled phase is formed it is pos-

sible to control the overall direction of the lines by simply applying a small external

tension. For instance, the release of the surface clamping and simultaneous applica-

tion of a small tension in the direction perpendicular to the direction of the wrinkles,

results in a reorientation of the lines along the direction of the tension. This supports

our assumption of the reversibility of the line-forming process and could suggests even

richer potential application of this approach for periodical patterning.

5.5 Conclusion

In this Chapter we shown how elastic surfaces can template self-assembly of nanopar-

ticles, similarly to the way fluid interfaces do. We show how by tuning the relative

cost of bending and stretching energies (i.e. the thickness of the sheet) it is possi-

ble to control the geometry of the aggregates. The formation of the different linear

aggregates, for thin sheets, is an explicit manifestation of the anisotropic interaction

between the nanoparticles. When the surfaces become effectively unstreachable parti-

cles arrange into macroscopic ordered parallel lines whose separation can be controlled

by the elastic parameters of the surface. Clamping of the edges across the membrane

substantially improves the periodic ordering in the system.

The physical properties of our model can be mapped onto a model of a thin sheet

supported on an elastic foundation if the stretching rigidity of the plane is substi-

tuted by the stiffness of the elastic foundation. Therefore, the results of our theo-

retical study are quite general and may suggest novel use of the elastic interfaces in

nano/micromechanics and material engineering. Possible experimental systems where

our predictions could be tested include cross-polymerized or crystalline lipid bilayers,

thin polymeric sheets, ultrathin cross-linked nanoparticle-membranes or possibly free

standing liquid crystalline films in the presence of colloidal particles. More in general,
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any elastic substrate that can be locally deformed by the interaction with a diffusable

binding component.
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Chapter 6

Effective elasticity of a flexible

filament bound to a deformable

elastic tube

6.1 Introduction

A ubiquitous geometrical state filaments arrange into is the helix. Apart from some

synthetic polymers [197] and biological filaments such as ds-DNA and actin filaments

which spontaneously develop a helical conformation due to their inherent chemical

structure [2], helicity can also appear when a filament is bound to a cylindrical surface.

This phenomenon can be observed across all length scales: from vine wrapped around

trees, to DNA on carbon nanotubes [198].

Although in several instances it is believed that what leads to the helicity of a

filament is either a specific property of the filament or the specific interactions between

the filament and the underlying surface [199–201], there is evidence that semiflexible

polymers binding non-specifically to cylindrical surfaces can spontaneously develop

helical conformations. The arrangement of cellulose microfibrils in the plant cell

wall [202] is a nice example of it. Recently it has been suggested that the helix is the
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preferred conformation of semiflexible polymers when generically bound to the surface

of an infinitely long cylinder, provided the cylinder’s radius is sufficiently large [203].

One particular aspect of the problem that has not been studied and could be of

great relevance, concerns the role of the deformability of the underlying cylindrical

surface. This property is inherent to biological materials, and the dynamical interplay

between protein filaments and the soft cell membrane has been shown to be crucial in

several biological processes [2]. In fact, semiflexible biopolymers such as microtubules

and actin filaments not only provide the cell with a highly dynamical scaffolding that

regulates its shape, but they also mediate important extracellular interactions. Cell

division [204] and cell crawling [205] are two dramatic examples of it.

In this Chapter, we explicitly consider the role of the surface deformability and

geometry, and predict that new phenomelogical behavior arises when a filament is

bound to it. Because of the surface’s curvature, the situation is a bit more complex

than in the case of the elastic plane discussed in Chapter 5 [124, 209]. As long as

the surface-rigidity allows the particles to indent the membrane, they will arrange

in linear aggregates that optimize the binding energy, analogous to the cases of a

fluid membrane and elastic plane. However, the spatial orientation of the lines will

change depending on the ratio of the bending to the stretching rigidity. Unlike flat

sheets, elastic nanotubes have a unique and very well defined way of deforming at

zero stretching cost: the deformation must be parallel to its axis and must persevere

uniformly along the whole cylinder.

Using simple scaling arguments it is possible to estimate the extent of the defor-

mation, lp, that arises when an indentation of amplitude h is imposed on a narrow

elastic sheet of width D, as shown in Fig. 6.1a). Following Ref. [59], the bending and

stretching energies associated with this deformation scale as Eb ∼ Kb (h/D
2)

2
Dlp and

Es ∼ Ks

(
h2/l2p

)2
Dlp, where Kb and Ks are the bending and stretching constants re-

spectively. The balance between the two terms gives lp ∼ Dh
1
2 (Ks/Kb)

1
4 . A more

familiar form of this expression is obtained by plugging Ks ∼ Yt and Kb ∼ Yt3 [36]
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(Y is the Young modulus of the surface) to give lp ∼ D(h/t)
1
2 .

(a) (b)

Figure 6.1: (a) Sketch of the extent of the deformation, lp, after an indentation of

height h is imposed on a planar elastic sheet of a width D. (b) Analogous extent of

the deformation along the axis of a cylinder.

This result can be generalized to a cylindrical surface of radius R (with D ∼ R)

as long as h � R (see Fig. 6.1b)), and saturates to lp ∼ R(R/t)
1
2 for thin cylinders

and/or large deformations [206, 207]. Either way, for a fixed cylindrical radius R and

indentation h, the extent of the deformation along the axis of the cylinder is set by

the ratio between bending and stretching constants.

In this Chapter we show how a fully flexible filament that generically binds to

a deformable cylindrical surface can acquire a macroscopic bending rigidity and a

specific intrinsic curvature set by the mechanical properties of the surface and the

extent of the deformation. The net result is an effective semi-flexible chain that

wraps around the cylinder with a tunable pitch. Using a combination of scaling

arguments and numerical simulations we show how the characteristic length scale lp

is directly related to the pitch of the helix, and we present a phase diagram showing the

transition from a disordered (random walk) to the helical conformation of the filament

as a function of its binding affinity to the surface. The physical reasons behind it

are quite general, are applicable to arbitrary geometries, and can be understood by

analyzing the nontrivial mechanical response of elastic sheets to local deformations.
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6.2 Simulation details

We model the elastic surface via a standard triangulated mesh [101]. The mesh is

composed of N = 14960 nodes arranged to produce an initial configuration with

perfect hexagonal tessellation. To impose surface self-avoidance we place hard beads

of diameter σ in each node of the mesh. Any two surface beads interact via a purely

repulsive truncated and shifted Lennard-Jones potential given in Eq. 5.1.

We enforce the surface’s fixed connectivity by linking every bead on the surface to

its first neighbors via a harmonic spring whose constant is Ks (Eq. 5.2). The bending

rigidity of the elastic surface is modeled by a dihedral potential between adjacent

triangles on the mesh (Eq. 5.3), with the bending constant Kb.

The polymer is constructed as a “pearl necklace” with Nm = 20 monomers of

diameter of σm = 10σ. Neighboring monomers are connected by harmonic springs

as in Eq. 5.2 with an equilibrium bond length rM = 1.18σm and spring constant

of 120kBT/σ
2. Polymer self-avoidance is again enforced via the repulsive truncated-

shifted Lennard-jones potential introduced in Eq. 5.1 with σ → σm. Note that we do

not associate an explicit bending rigidity to the polymer which behaves as a simple

self-avoiding random walk when bound to an infinitely rigid cylinder.

The generic binding between polymer and surface is described by a Morse potential

with its associated binding constant D0, as in Eq. 5.4.

We used the LAMMPS molecular dynamics package [196] with a Nosé/Hoover

thermostat in the NV T ensemble to study the statistical behavior of the system.

Periodic boundary conditions are imposed to make the cylinder effectively infinite.

No difference was found when using the NPzT ensemble, with Pz = 0 (z is aligned

along the cylinder’s axis). The timestep size was set to dt = 0.002τ0 (τ0 is the

dimensionless time) and each simulation was run for a minimum of 5 · 106 steps. The

radius of the undeformed cylinder was set to R = 14σ in all our simulations.
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6.3 Polymer phases

The overall strategy of our numerical work is to perform a statistical analysis of the

system for different values of Ks and D0, and to understand how the configurational

properties of the binding polymer are related to the elastic properties of the templat-

ing surface.

Fig. 6.2 shows for a particular value of the membrane bending rigidity the different

phases of the polymer in terms of the binding constant D0, which regulates the extent

of the surface indentation h, and the stretching constant Ks. We find a gas phase, an

arrested phase and a helical phase.

The behavior of the system in the limit of very large and very small indentations

is clear. In the first case, the cylinder is effectively rigid and does not alter the be-

havior of the polymer which performs a self-avoiding random walk over its surface.

We indicate this phases as the gas phase. In the second case, the polymer acquires

non-helical conformations that differ from each other once simulations are repeated

(under the same conditions) using a different initial configuration. This is indica-

tive that the polymer becomes kinetically trapped and we take this as a signature

that the system dynamics is becoming glassy. We call this phase the arrested phase.

The most interesting behavior arises for moderate indentations, where the interplay

between bending and stretching energies of the surface strongly affects the configura-

tions of the polymer, and results in an interesting helical phase with pitch increasing

monotonically with the membrane stretching cost.

6.4 Analysis of the polymer helicity

Local deformations caused by each monomer in the helical phase pair-up coherently to

generate a smooth surface channel following the chain profile. Scaling arguments can

be used to estimate the energy cost required to form a channel along the cylinder axis

and one around it. The total bending energy associate with the axial configuration
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Figure 6.2: Phase diagram of a fully flexible polymer binding to an elastic tubular

surface for fixed Kb = 150kBT . Three phases are shown as a function of D0 and Ks -

A: gas, B: helix, C: arrested phase. The direction of the white arrow and the shading

in the B phase show the helical pitch increase with Ks. Dark regions indicate large

pitch, whereas light regions represent low pitch. The inset shows three snapshots of

the chain configurations in the three phases.

scales as E
‖
b ∼ Kb (h/R

2)
2
lR, while that for the transversal configuration has a

bending cost E⊥
b ∼ Kb

(
h/l2p

)2
llp, where l ∼ σmNm is the contour length of the

polymer.

As lp is typically larger than R, lp ∼ R
√
h/t, the bending energy balance favors

configurations in which the polymer wraps around the cylinder to produce ring-like

configurations. However, the stretching energy becomes negligible when the polymer
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is placed along the cylinder’s axis, and grows as E⊥
s ∼ Ks (h/lp)

4 llp when it is placed

across the axis. The net result is that when the polymer is bound to a surface that

is easily stretchable, i.e. sufficiently thick, it will spontaneously wrap around its axis.

In the limit of an unstretchable, i.e. very thin surface, the polymer will align with the

cylinder axis. The intermediate regime is dominated by helical configurations which

represent a balance between the two tendencies. By holding h constant and altering

the relative weight of bending and stretching energies we can modulate the pitch of

the helix and establish its dependence on the mechanical properties of the membrane.

The angle θ formed between the axis of the cylinder and the direction of the

polymer can be dimensionally related to the two natural length scales of the problem:

the axial, lp, and the transversal, R

tan(θ) ∼
(
R

lp

)
∼

(
1

h
1
2 (Ks/Kb)

1
4

)
. (6.1)

This functional form has the correct limiting behavior. In the stretching domi-

nated regime θ → 0, and in the bending dominated regime θ → π/2. It is important

to notice that one should be able to modulate the helicity of the polymer by increas-

ing its binding energy to the surface (i.e. h). However, for sufficiently large values of

h the system can become kinetically trapped, or crosses over to the scaling behavior

lp ∼ R3/2/t1/2 [207], which is independent of h. It is therefore clear how variations of

h have a weak effect on the pitch of the polymer.

To test our theoretical predictions, we performed a series of numerical simulations

in which we carefully investigated the dependence of θ on the membrane stretching

rigidity, and on the indentation h. The amplitude of the indentation, h, is tuned

by changing the strength of the monomer-bead attraction (binding energy) D0, and

can be estimated by computing the largest vertical distance among the surface beads

underneath a given monomer. Fig. 6.3a) shows how θ depends onKs for fixed bending

rigidity, Kb, and indentation, h. The line is a fit to the data obtained by using the

inverse of the functional form in Eq. 6.1.
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Fig. 6.3b) shows how θ depends on the binding energy D0 which, for fixed Ks and

Kb, and within the narrow range of values of D0 we explored, grows linearly with h.

We repeated the calculation for two different values of Ks and fit the data with the

inverse of Eq. 6.1. In both cases Eq. 6.1 appropriately describes the helicity of the

polymer in terms of the elastic properties of the membrane. The inset of Fig. 6.3a)

shows the representative snapshots of the polymer conformations for different values

of Ks at constant h and Kb.

6.5 Polymer persistence length

Two important points need to be emphasized. (1) The physical origin of the disordered-

to-helix transition of the chain can be understood in terms of the usual balance be-

tween the entropy of the filament and the energy penalty associated with a random,

non-optimal distribution of indentations on the surface. (2) By going through the

transition the filament acquires a large effective bending rigidity which results in a

persistence length several times larger than the chain length.

The jump in persistence length of the polymer can be best observed by measur-

ing a function that accounts for the periodic correlation between the monomers, as

described in [208]:

G(m) =
1

Nm − 3

Nm−2∑
i=1

g(m, i). (6.2)

Here m is the number of monomers between particle i and j along the chain, and

g(m, i) is given by

g(m, i) =
(Nm − 1)

∑Nm−m−1
j=1 (si,j − si,j)(si,j+m − si,j)

(Nm −m− 1)
∑Nm−1

j=1 (si,j − si,j)2
(6.3)

where si,j = cos θi,j is the cosine of the angle between bond vectors i and j, and si,j

is the average over all such angles in the chain.
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(a)

(b)

Figure 6.3: (a) Variation of θ as a function ofKs at fixed h ≈ 1.17σ andKb = 150kBT .

The solid line indicates the fit to the data using the inverse of Eq. 6.1. The inset

shows the representative helices form increasing values of Ks. (b) Variation of θ as

a function of the binding energy D0, at Kb = 150kBT , for two different values of the

stretching constant: Ks = 30kBT/σ
2 and Ks = 110kBT/σ

2. The solid line indicates

the fit to the data using the inverse of Eq. 6.1.
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Figure 6.4: G(m) as calculated from Eq. 6.2 at Ks = 10kBT/σ
2, Kb = 150kBT , for

different values of D0. The jump in persistance length is observed around h ' 0.5σ.

We indicate G(m) with dashed lines for h < 0.5σ and we use solid lines for h > 0.5σ.

Fig. 6.4 shows G(m) for different values of h at Ks = 10kBT/σ
2 and Kb =

150kBT/σ
2, and clearly indicates two distinct cases. For h < 0.5σ the correlation

between the relative location of the monomers on the surface is negligable, while for

h > 0.5σ, G(m) shows perfect helical correlation of monomers over a distance that is

larger than l. Since G(m) does not decay, it is obvious that our polymer is too short

for a reliable estimate of the persistance length in the helical phase. However, the

persistence length clearly exceeds the chain length over several times.

What limits the length of the polymer in our simulations is the large number of

triangles required to describe the cylindrical surface. In fact, to avoid the artifacts

due to the specific tesselation of the surface, monomers need to be significantly larger

than the surface beads. We find that the σm = 10σ is enough for the monomers not

to feel the underlying structure of the membrane. Interestingly, when the monomer

size becomes comparable to the size of the surface beads, we find that the direction
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of the chain is biased along the main axes of the mesh. This is a reminder that

below a certain length scale, the structural details of the underlying surface cannot

be neglected.

6.6 Conclusion

In conclusion, it is important to emphasize two things. The first is that the onset

indentation amplitude h for helical conformation is typically just a small fraction of

the monomer size (barely 5% in the case described above) which is not an unreasonable

perturbation even for simple membrane-bound proteins. The second is that although

in this Chapter we have focused specifically on the problem of flexible chains on

cylindrical surfaces, the nature of this phenomenon is quite general and is intrinsically

connected to the nonlinear response to deformations of elastic sheets. This behavior

can be generalized to arbitrary geometries − we find that filaments also acquire very

peculiar conformations when placed on spherical or toroidal deformable shells [126] −

and more importantly can be extended to any component adhering to the surface. We

can anticipate [209] that elastic surfaces can be used to drive self-assembly of hard

colloidal particles resulting in a variety of geometric patterns not unlike the ones

observed with the filaments. Clearly the specific details of the long-range correlations

induced by the surface will depend on the surface topology, and on the physical

constraints of the macromolecules adhering to it. Nevertheless, it is the interplay

between the stretching and bending modes of the surface that will determine the

effective interactions between the components bound to it and the overall geometry

of the aggregates.

Our hope is that the results presented in this Chapter will stimulate experimen-

talists to further study the elastic and mechanical properties of elastic sheets and, in

particular the long range correlations arising when particles bind to it.
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Chapter 7

Collapse transition of

nanoparticle-laden nanotubes

7.1 Introduction

Nanotube-nanoparticle composites are currently one of the most promising hybrid

materials. Combining the unique properties of these two components can result in

exceptional mechanical, electronic and optical properties [210]. Efficient protocols for

decorating carbon, silica or polymeric nanotubes with a variety of inorganic nanoparti-

cles have opened novel avenues for their application in nanotechnology [211–216]. Up-

to-date nanoparticle-nanotube composites have successfully been used as chemical-

and biosensors [217–219], catalysts and catalyst supports in fuel cells [220–222], high-

strength engineering fibers [223, 224], as well as components in nanoelectronics [225],

photovoltaics [226] and neural nets [227]. Understanding the interactions between

nanoparticles and nanotubes, as well as the structural properties of their assemblies,

is essential for the successful design and manipulation of these materials. Here, we

consider how the self-assembly of adhering nanoparticles drives a peculiar collapse

transition of nanotubes that has the potential to broaden the application of this class

of hybrid materials.
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The thin walls of hollow nanotubes render them quite flexible when subjected

to radial deformation, even when their stiffness in the axial direction is extremely

high. Consequently, nanotubes are prone to radial buckling. Due to the importance

of this transition, a significant body of work has been dedicated to understanding

the radial buckling and collapse of nanotubes under point-like mechanical loading

or isotropic compressive stresses [228–231]. Radial buckling of carbon nanotubes

within a carbon nanotube fiber has been shown to improve the mechanical strength

of the fiber [223, 224]. Such a collapse also strongly affects the nanotube’s electrical

properties, inducing for example their semiconductor-metal transition in single and

double walled carbon nanotubes [232–234]. Furthermore, the catastrophic collapse of

cytoskeletal microtubules under large radial loads has been reported [207], though its

biological significance is still unclear. In all cases, the process is characterized as a

discontinuous transition that depends only on the nanotube radius and that is often

directed by attractions between the opposite walls of the nanotube.

In this Chapter we show how the collective behavior of nanoparticles assembling

on a deformable nanotube can promote this transition, even when the walls of the

nanotube are fully noninteracting, and can result in an ordered nanoparticle engulf-

ment inside the collapsed structure. In our simulations the nanotube is modeled in

a coarse-grained fashion as a generic elastic tubular surface which, depending on the

specific choice of mechanical parameters, can represent a hollow nanotube of a broad

range of materials. We study the process for different values of bending stiffness

(Young moduli) of the nanotube and characterize the dependence of the transition on

the ratio of nanotube/nanoparticle radii, the concentration of the nanoparticles, and

the strength of the nanoparticle adhesion to the nanotube walls. We demonstrate how

the collapse and nanoparticle engulfment can be controlled and reversed by tuning

the strength of nanoparticle adhesion, which can be achieved for instance by chang-

ing the properties of the medium, suggesting a new class of environment-responsive

nanocomposites.
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7.2 Simulation details

We model the nanotube as an elastic membrane of cylindrical shape, using a standard

triangulated mesh of hexagonal symmetry [101]. Hard spherical beads of diameter σ

are placed at each node of the membrane in order to impose surface self-avoidance,

and any two surface beads interact via a repulsive truncated-shifted Lennard-Jones

potential, as in Eq. 5.1.

Each bead of the surface is linked to its immediate neighbors via the harmonic

spring potential of a constant Ks (Eq. 5.2).

Keeping Ks constant, we modulate the bending rigidity of the surface according

to a dihedral potential between adjacent triangles of the mesh, as given in Eq. 5.3.

Kb is the bending constant that sets the bending rigidity of the surface.

The ratio between stretching and bending constants is simply related to the thick-

ness of the material t, Ks/Kb ' (1/t)2 [36], and in this work we focus on the limiting

behavior of nearly unstretchable tubes (σ2Ks/Kb ≥ 102), corresponding to nanotubes

with very thin walls. An analogous continuous mechanics descriptions of nanotubes

has been shown to be applicable even to study the mechanical properties of carbon

nanotubes containing as little as about 10 atoms on the perimeter [228].

Nanoparticles of diameter σc = 10σ are described via the repulsive truncated-

shifted Lennard-Jones potential above. Generic nanoparticle adhesion to the mem-

brane is described by the Morse potential of a depth D0, as given by Eq. 5.4. The

interaction cutoff is set to 7σ (i.e. 70% of the nanoparticle diameter) and the decay

factor to α = 1.25/σ. Nanoparticles appear to each other as hard spheres, interacting

via Eq.( 5.1) with σ → σc. Simulations were carried out using the LAMMPS molec-

ular dynamics package [196]. To allow for stretch-free configurations, changes in the

length of the box parallel to the nanotube axis (the x-axis in our case) are included

by employing an NPxT ensemble with Px = 0. The timestep was set to dt = 0.002τ0

(τ0 is the dimensionless unit of time). We varied the bending rigidity, Kb, the radius

of the tube, R, as well as the number of nanoparticles, N , and their adhesion to the
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nanotube, D0, to characterize how the binding of the particles drives the collapse of

the nanotube.

7.3 Collapse of the nanotube

Nanoparticles exhibit three distinct phases upon adhesion to the surface, as depicted

in Fig. 7.1, depending on the binding constant D0. The first is a gas phase that

arises when D0 is insufficient to overcome the resistance to deformation imposed by

the bending rigidity and the particles randomly diffuse over the surface (Fig. 7.1(a)).

As D0 is increased, the nanoparticles slightly deform the tube and self-assemble into

linear string-like aggregates which are aligned with the cylinder’s axis and partially

wrapped by the surface, albeit never fully (Fig. 7.1(b)). This phase is a consequence

of the inherent tendency of thin sheets to respond to a deformation by bending uni-

axially, the only stretch-free way. Since the stretching rigidity of the surface is much

higher than its bending rigidity (the nanotube’s walls are very thin), the axial di-

rection is the preferred direction of the deformation and promotes nanoparticle self-

assembly into long lines [123, 124, 209]. However, the range ofD0 for which this occurs

is relatively narrow, and the phase invariably appears in coexistence with the first

gaseous phase, with the majority of the nanoparticles arranging in linear formation

and a few diffusing to either side of it.

As soon as the nanoparticle adhesion or concentration is slightly increased, the

linear phase becomes unstable and the third phase (hereafter collapsed) occurs, as

shown in Fig.7.1(c). This illustrates that in the high-stretching and binding limits,

incompletely wrapped axial lines are unstable and as the particles become entirely

wrapped by the surface in order to maximize the energy gained by nanoparticle-

nanotube binding interactions, the surface collapses to generate a uniform buckle

along the axis of the tube. In this configuration, nanoparticles are arranged into

strings and are firmly contained within the tubular inner fold. By reversing the tran-
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Figure 7.1: Snapshots of three possible phases upon nanoparticle (orange) adsorption

on the nanotube (blue). (a) The random gas state. (b) The axial linear aggregate

of nanoparticles. Top panel shows the cross-section when looking down the cylinder

axis, the bottom panel shows the view from above. (c) The collapsed state in which a

self-assembled linear aggregate of nanoparticles is completely wrapped by the surface

of the nanotube. The panels are analogous to those in (b).

sition, for instance by decreasing the nanoparticle binding with changing experimental

conditions, a mechanism similar to responsive nanocaging could be achieved.

7.4 Onset binding energy for the collapse

To characterize the transition from the axial structures to the stable collapsed state,

it is insightful to relate the onset value of binding D0
∗ (i.e. the first value of D0 that

is sufficiently large to induce collapse) to the mechanical properties of the surface and

the number of nanoparticles in the system. To obtain cleaner results, we initially
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prepare the nanoparticles in linear formation just above the surface of the tube and

oriented parallel to the axis of the cylinder. However, it should be emphasized that the

linear configuration is also the lowest-energy configuration, as explained above, and

reported in [124]. We let the simulation equilibrate and measured the average extent

of particle wrapping by the surface, φ, as a function of increasingly larger values of

D0. Particle wrapping is defined as the total surface area of the nanotube in contact

with a nanoparticle, S0, divided by the surface area of a nanoparticle, φ = S0/(4πσ
2
c ).

We consider a bead of the nanotube to be in contact with a nanoparticle when their

center-to-center distance is within the cut-off of the Morse potential. Clearly, φ = 1

would imply complete wrapping of the nanoparticles. However, because of the large

energy costs associated with the stretching energy, this scenario never occurs in our

system and the maximum particle wrapping is achieved when a linear aggregate is

completely enveloped by the nanotube (as depicted in Fig.7.1(c)). This configuration

yields typical wrapping values per particle of φ ' 0.4. To understand the nature of

the transition, we also examine the reverse process, i.e. we repeated the simulations

for the same set of parameters, but choosing a fully wrapped linear aggregate as

an initial configuration and by decreasing D0 until the buckle is released and the

cylindrical geometry is restored. This analysis has been repeated for different values

of Kb, R, and number of particles, N .

The collapse transition for three bending rigidities is illustrated in Fig. 7.2, and

shows that there is a clear discontinuity in nanoparticle wrapping parameter above

an onset value D0
∗, corresponding to a first-order transition. Not surprisingly, as Kb

increases,D0
∗ shifts to higher values due to larger energy needed to deform the surface.

Simulations for the reversed process, which started from a wrapped state, show that

nanoparticle engulfment can indeed be reversed, with D0 for the nanoparticle release

being lower than the onset D0
∗ needed to promote the collapse. We observe hysteresis

broadening for higher values of Kb, indicating a higher energy barrier for the collapse

of stiffer nanotubes, but also for the reverse process. This result is important because
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it suggests a simple way to control the stability of the collapsed state, against restoring

forces.

Figure 7.2: From top to bottom, hysteresis plots for Kb = 15kBT , Kb = 35kBT ,

and Kb = 55kBT , respectively. For each plot, triangles (black) represent the forward

direction, whose initial configuration is a line of nanoparticles just above surface of

the cylinder and parallel to its axis, and circles (red) represent simulations whose

initial configuration is the fully wrapped linear aggregate (see Fig.7.1c). The onset

value of collapse, D0
∗, increases with increasing Kb, accompanied by the hysteresis

broadening. Here, R = 25.4σ and N = 15

Our data also reveal that D0
∗ increases when decreasing the radius of the cylinder

or the number of nanoparticles (Fig. 7.3). In the first case, the nanoparticles need

to deform against a larger curvature in order to adhere, resulting in higher values of

D0
∗. This is analogous to the well-known fact that carbon nanotubes of smaller radii
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are more stable against buckling [229], and it is due to the smaller cost associated to

bending deformations of wider tubes. Additionally, since the collapse transition is a

consequence of a collective behavior of nanoparticles, at lower nanoparticle densities

the surface is deformed to a lesser extent resulting in greater D0
∗.

Figure 7.3: Top panel: The onset value of collapse, D0
∗, increases as the nanotube

radius R decreases because the nanoparticles need to deform against the larger cur-

vature. Kb = 35kBT and N = 15 are kept constant. Bottom panel: D0
∗ increases as

the number of nanoparticles N decreases due to lesser collective deformation by the

particles. Kb = 35kBT and R = 25.4σ are kept constant.
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7.5 Scalling analysis for the onset binding energy

Our findings suggest a general scaling law relating D0
∗ to the mechanical and geomet-

ric properties of the surface, and the number of adhering nanoparticles. A good place

to start are the scaling laws for the deformation of thin elastic sheets. As explained

in Chapter 6, when a thin sheet of a thickness t, width w, and mechanical parameters

Kb and Ks, is subject to a deformation of amplitude h, the associated bending and

stretching energies scale as Eb ' Kb (h/w
2)

2
wlp and Es ' Ks

(
h2/l2p

)2
wlp, where lp is

the extent of the axial deformation. Minimizing the sum of the bending and stretch-

ing energies contributions with respect to lp gives lp ' wh
1
2 (Ks/Kb)

1
4 = w(h/t)1/2,

a well known expression for the persistence length of a point-like deformation. This

result can be generalized to a cylindrical surface of radius R when h � R −which is

the relevant case to study the onset of the collapsing transition − and one recovers

the large deformation limit lp ' R(R/t)
1
2 by setting w and h equal to R [207].

A single particle adhering to an elastic surface imprints a deformation whose

shape can be approximated by that of a spherical cap of a height h and radius σc.

Binding energy is then Ebind ' −πD0hσc/σ
2, where πhσc/σ

2 accounts for the degree

of wrapping of the nanoparticle, i.e. the number of membrane beads it is in contact

with. As the depth of the deformation, h, is now controlled by the binding constant

D0, we can perform the same minimization described above with the additional energy

contribution due to the biding energy, and obtain an expression for the equilibrium

value of h, namely

h
1
2 ∼ (D0σcR

2)
1
3

(σ8KsK3
b )

1
12

. (7.1)

The expression for the extent of the deformation along the axis of the cylinder, lp,

upon binding of one nanoparticle, can then be re-written as
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lp ∼

(
Ks

1
3

Kb

) 1
2 (

R5D0σc

σ2

)1/3

. (7.2)

In the case of a single indentation, a necessary condition for the buckling transition

to span the entire axis of the cylinder thus leading to the collapse is that lp > L,

where L is the length of the cylinder. Whenever lp < L uniform axial buckling does

not occur and a local transversal deformation involving the formation of two stress

points does instead take place as shown in Fig. 7.4(a).

Figure 7.4: (a) Transversal bucking caused by a large single point deformation. In

this case lp < L, and the side rings indicate the location of the transversal stress

focus points. (b) Uniform axial buckling and nanotube radial collapse induced by

four equidistant localized deformations such that 4lp > L.

These arguments suggest that the collapse of an elastic tube indented by N

equidistant and well spaced binding particles can occur whenever L∗ ≡ Nlp ≥ L,

i.e. when the persistence lengths from each independent deformation couple and
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span the length of the cylinder (see Fig. 7.4(b) for an illustration). Our system is

a bit different from the case discussed above, in fact, in the linear aggregates self-

assembled in our study − precursors configuration for tube collapse − particles are

in contact with each other, and typically lp � σc, suggesting that a more appropriate

measure for the extent of the total longitudinal deformation is L∗ = Nσc + lp. Im-

posing that the correlation of the axial deformations between the particles extends

beyond the length of the tube, L∗ ≥ L, leads to a scaling law for D∗
0

D∗
0 ≥

(L−Nσc)
3σ2

σcR5

(
K3

b

Ks

) 1
2

. (7.3)

It should be stressed that in this formula, N is not the total number of particles

in the system, but the length of the aggregate driving the collapse transition. To test

this scaling ideas, we inserted data from all our simulations for various values of D0,

Kb, R and N into a single scatter plot, which has the right-hand side expression of Eq.

(7.3) on the y-axis, and the binding constantD0 on the x-axis, as shown in Fig. 7.5.

The points are marked as “collapsed” and “not collapsed”, according to the final state

of the simulation. There appears a distinct division between data corresponding to

the collapsed state and those that do not, verifying the validity of the scaling law

given in Eq. (7.3). We expect deviations to this scaling law when the diameter of

the tube becomes comparable to that of the particles, as in this case a more accurate

estimate of the elastic energies of the nanotube would be required to better take into

account its global deformation.

7.6 Conclusion

In conclusion, in this Chapter we have studied a system of nanoparticles adhering

to an elastic unstretchable nanotube. We have shown how the nanoparticles self-

assemble into a linear aggregate which promotes the collapse transition of the nan-

otube, resulting in nanopaticle entrapment. The collapse is easier if the nanotube

86



CHAPTER 7. COLLAPSE TRANSITION OF NANOPARTICLE-LADEN
NANOTUBES

Figure 7.5: Testing the scaling law presented by Eq. (7.3): scatter plot of all simula-

tion data. The right-hand side of Eq. (7.3) is plotted on the y-axis versus D0 from

the simulation. Open squares represent simulations which did not induce a collapsed

state, while filled squares represent simulations which have ended in a collapsed state.

In both cases the initial state was a non-collapsed linear aggregate prepared above

the surface of the nanotube containing N particles. The straight line is provided as

a guide to the eye to emphasize the clear division between the data.

radius or the nanoparticle concentration are increased, and the bending rigidity (the

material thickness) is decreased. Using the elasticity theory for thin sheets we estab-

lish a scaling law linking the onset of binding energy to the collapsing transition in

terms of the elastic and geometric properties of the tube. Finally we show how the

process can be reversed and we how its hysterectic cycle widens with the bending

rigidity of the tube. We suggest that this feature can be exploited to design particle
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nanotraps, but also as a way to enhance the mechanical strength of nanoparticle-

nanotube composites, in addition to altering their electric and optical properties.

Clearly the release (un-buckling) transition can be further stabilized by adding a

weak attraction between the layers of the nanotube. Although our work focused

primarily on the low particle density limit, it would nevertheless, be interesting to

generalize our scaling laws for buckling in the presence of multiple linear aggregates

(in the large particle coverage limit) and to understand how the presence of one axial

collapse may influence the occurrence of further collapse of the nanotube. We expect

this effect to be important when σc ∼ 2R. We hope that our research will stimulate

experimental investigations of the nanoparticle-induced collapse of nanotubes as well

as its application in nanotechnology.
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Chapter 8

Nanoparticle self-assembly on

elastic shells

8.1 Introduction

In this Chapter we try to understand how closed elastic surfaces, such as spherical

shells, can be used to drive self-assembly of nanoparticles. What makes this problem

very interesting is that unlike planar or cylindrical geometries, for which there is a

clear solution to the stretch-free deformation problem, any deformation of a spherical

shell will necessarily involve stretching of the surface. The shape of the deformation

minimizing the stretching energy in this case is therefore far from obvious. Further-

more, a buckling transition from the spherical to a faceted icosahedral shape is known

to take place at large stretching energies [235]. In addition to that, for sufficiently

small shells (or large deformations) the ratio between bending and stretching energy

becomes independent of h, and only depends on the radius of the sphere R and its

thickness t, Es/Eb ∼ (R/t)2 [36]. Such complexity of elastic shells can give rise to

very peciliar and beautiful aggregation patterns.

In Chapters 5 and 6 we have shown how the response to deformations of elastic

sheets and nanotubes can drive self assembly of colloidal particles into straight and
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curved lines [123, 209] and can alter the elastic properties of a flexible filament binding

to it [124]. Here we will show how the elastic response to deformations of a spherical

shell can be used to self-assemble colloidal particles in a variety of patterns that only

depend on the mechanical properties of the system and the amount of deformation

of the surface. We will also show how a fully flexible polymer bound to the shell will

spontaneously arrange to conform to similar patterns observed for the nanoparticles.

8.2 Simulation details

We model the elastic surface via a standard fishnet network representation[101]. Each

node of the network is placed to conform to the symmetry of an icosadeltahedron. In

such surfaces, like viral shells, all but 12 nodes have a regular triangulation with six

neighbors; 12 five-fold disclinations are also present as required by Euler’s theorem

relating number of faces, edges and faces on a spherical triangulation. The number of

nodes Nk describing the surface is then related to the location of the five disclinations,

and satisfies the constraint Nk = 10(n2 + nm+m2) + 2. Here n and m indicate that

one must move n nodes along the row of neighboring bonds on the sphere, and then

after a turn of 120o, move for m extra steps [236].

We studied two different sphere sizes; the smaller one has Nk = 6752 nodes and

symmetry described by n = 15 and m = 15, the larger one contains Nk = 10832

nodes with n = 19 and m = 19.

To impose surface self-avoidance we place hard beads at each node of the mesh.

Any two surface beads interact via a purely repulsive truncated and shifted Lennard-

Jones potential, according to Eq. 5.1.

We enforce the surface fixed connectivity by linking every bead on the surface to

its first neighbors via a harmonic spring potential with the associated spring constant

Ks, as in Eq. 5.2.

The bending rigidity of the elastic surface is modeled by a dihedral potential
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between adjacent triangles on the mesh, as in Eq. 5.3, with Kb being the bending

rigidity.

Colloidal particles of diameter σc = 10σ are described via the repulsive truncated-

shifted Lennard-Jones potential introduced in Eq. 5.1 with σ → σc. Finally the

polymer is constructed as a “pearl necklace” with N ∈ [20, 45] monomers of diam-

eter also σm = 10σ. Neighboring monomers are connected by harmonic springs as

in Eq. 5.2, with an equilibrium bond length rM = 1.18σm and spring constant of

120kBT/σ
2. Polymer self-avoidance is again enforced via the repulsive truncated-

shifted Lennard-Jones potential introduced in Eq. 5.1, with σ = σm.

The generic binding of the polymer monomers (and the colloids) to the surface

is described by a Morse potential, given by Eq. 5.4, with D0 being the depth of the

well, i.e. the surface-colloid binding constant. The interaction cutoff is set at 10σ

and α = 1.25/σ.

We used the LAMMPS molecular dynamics package [196] with a Nosé-Hoover

thermostat [237, 238], in the NV T ensemble to study the statistical behavior of the

system at room temperature. The timestep size is set to dt = 0.002τ0 (τ0 is the unit

time expressed in standard MD units) and each simulation was run for a minimum

of 5 · 106 steps. The radii of the undeformed spherical shells are R = 29.05σ for

Nk = 6752, and R = 34.16σ for Nk = 10832.

8.3 Shell buckling and the phase behavior

To understand how the configurational properties of the binding polymer and colloids

are related to the elastic properties of the templating surface, we performed a series

of simulations for many values of Ks, Kb, D0 which controls the extent of the surface

indentation) and for different polymer lengths and number of colloidal particles. We

find that a convenient way of representing our data is via the dimensionless parameter

known as the Foppl-Von Kàrmàn number, defined as γ = Y R2/κB, where Y is the
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Young modulus of the shell and κB is the bending rigidity as defined in the contin-

uum theory of elasticity [36, 239]. We begin our analysis by studying the buckling

transition of the shell as a function of γ in the absence of binding agents. This will

give us critical information about how to relate the shape of the templating surface

(the elastic shell) and its elastic properties. To identify the buckling transition and

match the numerical parameters of our model with γ we follow the analysis carried

out in [101]. Fig. 8.1A shows the results of our simulations. The surface asphericity

A, defined as

A =
〈∆R2〉
〈R〉2

=
N∑
i=1

(Ri − 〈R〉)2

〈R〉2
, (8.1)

Ri being the radial distance of the surface bead i and 〈R〉 being the mean radius of

the shell, is plotted againts γ = (4/3)KsR
2/Kb. The buckling transition, for which

the spherical shape begins to facet, begins for values of γ & 102. This result is in good

agreement with that computed in [235], and represents a good test of our numerical

model. We next add colloidal particles to the system and observe their self-assembly

on the surface of the spherical shell. Depending on the value of γ, particles arrange in

patterns that minimize the elastic energy of the shell. Figure 8.1B shows the resulting

patterns as a function of γ for different values of indentation, and a constant number

of colloidal particles N = 35. A convenient way of extracting the indentation is

obtained by computing (Ap − A)1/2, where Ap is the asphericity of the shell in the

presence of the particles and A is the asphericity without them.

The general feature of the diagram is that self-assembly occurs for only a relatively

narrow range of particle deformations. When (Ap−A)1/2 is too small, i.e. the surface

is basically unaffected by the presence of the particles, we find no aggregation; this

is the result one should indeed expect when placing N noninteracting hard particles

on the surface of a rigid sphere (al low densities). We indicate this phase as the

gas phase. When (Ap − A)1/2 is too large and significant deformations are induced

by the binding particles, we find that the system becomes kinetically trapped (at

least within the timescales considered in this study) into metastable states. In fact,
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repeating the simulations under the same conditions leads consistently to different

and not well defined aggregation patterns. We indicate this phase as the arrested

phase. For intermediate deformations, particles consistently self-assemble in a variety

of patterns whose features are clearly related to the mechanical properties of the shell

via γ.

For small values of γ we find that particles aggregate isotropically to form a two

dimensional crystal on top of the sphere. The presence of these 2d crystals tends to

flatten the surface underneath it. As a consequence, if a sufficiently large number of

particles is added to the system we find that the side length of the crystal is limited

by the shell diameter, and extra particles begin to aggregate on its opposite side (Fig.

8.1B-I). As γ becomes larger, at low surface coverage, particles become localized over

the twelve disclinations, and as N increases linear aggregates initially grow by linking

the five fold disclinations on the sphere and finally form a linear network with 3-line

joints winding around the disclinations in the shell (Fig. 8.1B-II). As the templating

surface begins to facet, each segment of the network straightens revealing a clear

patterns following the seams that a pentagonal tiling of the sphere would generate

(a dodecahedron, Fig. 8.1B-III). It should be noticed that the previous two phases

are topologically equivalent. The only difference is the presence of extra particles

sitting on the twelve disclinations in region II of the diagram. Increasing the surface

coverage in region III results in thickening of the width of the dodecahedral pattern

by formation of parallel and adjacent secondary lines of particles.

At even larger values of γ, once the shell is well faceted, particles arrange into

a linear and non-connected aggregate that smoothly winds around and away from

the twelve disclinations (Fig. 8.1B-IV). This pattern is reminiscent of that of the

baseball or tennis ball seam, the difference being that in our case the geometry of the

aggregate is dictated by the presence of 12 topological defects, while in the baseball

the seam winds around the location of the four s = 1/2 disclinations that a thin

nematic liquid crystal texture would generate on a sphere [240, 241].
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Figure 8.1: (a) Plot of the asphericity A versus Foppl-Von Kàrmàn number γ indi-

cating the buckling transition in our model of a spherical elastic shell in the absence

of colloidal particles. (b) Phase diagram indicating how the different aggregates

formed by the colloidal particles depend on the mechanical properties of the shell (γ)

and the degree of indentation measured in terms of the particle-induced asphericity

(Ap − A)1/2/N computed using N = 35 particles. The five different phases are indi-

cated with Roman numerals and include data for spherical shells of radius R = 29.05σ

and R = 34.16σ. Different symbols are used to emphasize simulation points that give

rise to the different phases. (c) Snapshots from our simulations of the phases indi-

cated in the phase diagram. From top to bottom γ = 5.6, γ = 37.5, γ = 75, γ = 225

and γ = 4500. For the sake of clarity, the particles defining the shell are depicted

with a larger volume and the regions around the disclinations are depicted with a

lighter color.
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Figure 8.2: Snapshots showing the particle aggregates as a function of surface coverage

for the phase II (see Fig. 8.1B). These snapshots are taken for a spherical shell with

γ = 37.5 and R = 29.05σ.

Finally, for the largest values of γ we find that particles arrange into straighter

but shorter aggregates (rods) that localize into ten distinct regions of the shell. The

length of the rods grows with the surface coverage until a critical size which depends

on the size of the sphere and equals roughly the distance between two disclinations

located at the opposite vertices of two of the icosahedral triangles that share one edge

(Fig. 8.1B-V). Further increase of N results in the formation of multiple rods per

region which align parallel to each other. Figure 8.2 shows the explicit dependence

of the pattern as a function of surface coverage in region II of the phase diagram.

8.4 Energy analysis of the shell

To gain insight into the physical origin of the different patterns formed by the parti-

cles, we measured the strain and bending energy at each node of the shell for different

values of γ in the absence of the particles. Figure 8.3 shows the energy map of the
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Figure 8.3: Bending energy map (top) and stretching energy map (bottom) of a

spherical shell as a function of γ. Different shades indicate the relative strengths as

indicated in the color map on the side.

two contributions for small, intermediate and large values of γ. The results are quite

revealing and provide a simple framework from which the patterns can be understood.

Particles aggregates align to follow the low bending and stretching energy regions on

the shell. The formation of isotropic aggregates and the presence of the particles on

top of the disclinations for small values of γ suggests that bending energy plays an

important role in determining the pattern in region 1 and 2 of the diagram. Regions

III, IV and V are instead completely dominated by the stretching energy which is

driving the shape transition of the shell.

Of particular interest are the two phases that occur for very large values of γ

(region IV and V). This condition that can be obtained either by increasing the

radius of the sphere R or by significantly altering the relative weight of stretching

and bending energies in favor of the former. In this regime particles can easily bend

the surface in regions that are far away from the icosahedral vertices, yet the only

bending deformations that will not induce stretching energy are those that involve

bending around a single radius of curvature. We believe that the transition from the

dodecahedral arrangement to the smooth closed loops in Fig. 8.1B region IV is due
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to the large stretching energy cost that would be associated with the formation of

either sharp corners or three-lines joints. This constraint become so severe in region

V of the same figure, that the linear aggregates break into shorter pieces of roughly

equal length that straighten by flattening the edges shared by any two triangles of

the underlying icosahedral geometry.

8.5 Phases of an adsorbing polymer

Figure 8.4: Snapshots showing the different conformations adopted by a fully flexible

chain when binding to a deformable elastic shell. From left to right γ = 5.6, γ = 37.5,

γ = 112.5, γ = 140 and γ = 2700.

Interestingly, we find that almost all phases depicted in Fig. 8.1 can also be ac-

quired by a fully flexible chain binding to the shell for analogous degrees of defor-

mations and comparable number of monomers. The only differences are due to the

connectivity constraints on the chain. Region II and region V are obviously impos-

sible to achieve with a chain; nevertheless, the difference in region V is minimal as

short rods are in this case replaced by a poly-line with segments having the same

length of the rods formed by the colloids.
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In region II the polymer traces a simple path connecting the disclinations. Fig-

ure 8.4 shows snapshots of the different phases for the fully flexible chain. Given these

similarities between the behavior of the polymer and that of the colloidal particles,

it is clear that the mechanism regulating the conformational changes of the chain on

a flexible shell is identical to that driving the self-assembly of the colloidal particles

on the same surface.

8.6 Conclusion

In this Chapter we detailed how deformable elastic surfaces can be used to mediate

self-assembly of otherwise noninteracting colloidal particles, and/or alter the confor-

mational properties of a fully flexible chain bound to it. We find that the structure

of the aggregates (the conformation of the polymer) can be understood in terms of

the mechanical properties of the templating shell via the Foppl-Von Kàrmàn number

γ. Specifically, we have shown how there are two distinct regimes: one dominated

by the shell bending energy, and the other by its stretching energy. In the former

case the shell acquires an overall spherical shape and particles localize on top of the

disclinations and organize to link small bending energy regions. In the latter case

the shell facets into an icosahedron with vertices located where the twelve five-fold

disclinations reside; here particles follow low stretching pathways across the shell.

Crucially, the underlying shell’s shape transition determines the role of the discli-

nations in the self-assembly process. The twelve five folded points attract the binding

colloidal particles for small values of γ and repel them in the other regime. This result

can be of great importance for controlling the functionalization of mesoparticles such

as for instance colloidosomes [242]. In fact, we have shown how a small number of

particles can be localized around the twelve disclinations in the bending dominated

regime, and around the vertices of a dodecahedron (dual to the icosahedron) in the

stretching dominated regime.
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Our results can be considered as another example or an extension of the ideas

discussed by Nelson [101, 240] regarding the functionalizability of the four s = 1/2

disclinations in a nematic liquid crystal texture covering a colloidal particle. One of

the main differences, apart from the overall symmetry of the problem, is that in our

case the shape of the template is allowed to change in response to the elastic strains

induced by the presence of the defects, and that self-assembly (or conformational

changes in a flexible chain) is driven by the elastic response to deformation of the

shell. It would be interesting to study how particles self-assemble over a deformable

shell under the overall tetrahedral symmetry provided by a nematic liquid crystal

texture.
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Chapter 9

Final remarks and future directions

In this Dissertation we have discussed the self-assembly of nanoparticles adsorbed on

fluid and elastic membranes. We have found a plethora of aggregation patterns, whose

stability can be explained by the interplay between mechanical properties of the sur-

face and cooperative binding of many nanoparticles. Specifically, we have shown how

fluid membranes can mediate linear aggregation of spherical particles for a wide range

of biologically relevant bending rigidities. In the case of a very deformable membrane,

this can be followed by an additional morphological transition - membrane tubula-

tion. We have presented a detailed study of the tubulation mechanism, and have

discussed how it compares to the competing process of membrane budding. When

the membrane is cross-polimerized (elastic), the linear aggregates are again favorable,

but they appear straighter. If a persistence length is associated to these aggregates,

it can be tuned by changing the stretching rigidity of the surface, while their spatial

orientation is controlled by the surface’s geometry. Various organizational patterns

of linear aggregates have been found on cylindrical and spherical shells, including

helices and self-avoiding loops. We have demonstrated that nanoparticle aggregation

can also lead to a reversible collapse of the underlying shell, a property which could

be exploited in nanoparticle caging.

Although we have not covered the topic of multi-components systems, it is im-

100



CHAPTER 9. FINAL REMARKS AND FUTURE DIRECTIONS

portant to mention here the recent work by Olvera de la Cruz and collaborators

[243, 244], as it bears important implications for the systems described so far. They

studied phase separation of two or more component elastic shells using an effective

elastic description of their local properties. Unlike most of the previous work on the

subject, they also included explicitly the gaussian rigidity term in their energy bal-

ance. As explained in Chapter 2.1, κG is expected to be negative, it is proportional

to the bending rigidity, and accounts for the topological changes of the membrane.

Because a two component membrane can be described as a system of two surfaces,

each constituted by its own component, mixed together and coupled via a line ten-

sion between them, arising for instance from different bending rigidities or chemical

immiscibility, the energy coming from the Gaussian curvature cannot be considered

constant and depends on the specific arrangements of the two components. A positive

κG would occur with the line tension to form large domains with minimal mixing of

the components, but κG < 0 leads to the destabilization of such phases promoting

demixing. Using these arguments, Olvera de la Cruz and collaborators have studied

phase separation and buckling of two component elastic shells as a function of compo-

sition and relative bending rigidities, and have reported patterns that are strikingly

similar to those found in our study of particle self-assembly on elastic surfaces. These

results suggest that the latter system can be described as an effective two-component

system where the first component represents the fluctuating surface and the second

component, having a larger bending rigidity and an intrinsic curvature, represents the

particles. Although such an effective representation would probably be appropriate

mostly for intermediate binding strengths (deformations), it is not obvious how to

associate a Gaussian rigidity to these systems. Nevertheless, it provides an elegant

and more general framework of the problem that can be easily generalized to particles

interacting on fluid membranes as well as on interfaces.

Furthermore, there is typically a certain degree of attraction between nanoparti-

cles, which introduces an extra degree of complexity in the nanoparticle-membrane
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systems. In which case the nanoparticle-surface binding competes with the binding

of nanoparticles between themselves. Our preliminary results indicate a rich vari-

ety of new phases which arise due to the interplay between the linear and isotropic

aggregation. Moreover, different mechanisms of nanoparticle invagination by fluid

membranes can be obtained, with multiple-file nanotubes, as well as budding of two-

and three-dimensional nanoparticle crystals.

It would also be interesting to study the effect of electrostatic interactions in

these systems. It has been shown that binding of charged nanoparticles can lead to

membrane tubulation and subsequential membrane pearling [144], a process which is

not yet understood. Moreover, charged nanoparticles, in the limit of large nanopar-

ticle concentrations, have been found to induce membrane shrinkage and formation

of homogeneously distributed tubes extruding perpendicularly from the membrane

surface [245]. For this purpose, the role of the volume and surface-area constraints

on the membrane, both highly dependent on the experimental conditions, should be

explored.

Finally, we plan to study how the presence of surface defects, that are known to

create long-range elastic perturbations in elastic membranes, may alter the nanopar-

ticles aggregation patterns. We expect this study to suggest additional mechanisms

for controlling functionalization of elastic surfaces.
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A. Böker, Soft Matter, 2011, 7 8231.

[29] T. A.-J. Wafa and K. Kostarelos, Nanomedicine, 2007, 2, 85.

[30] P. J. Costanzo, E. Liang, T. E. Patten, S. D. Collins and R. L. Smith, Lab

Chip, 2006, 5, 606.

[31] R. J. Mart, K. P. Liem and S. J. Webb, Pharm. Res., 2009, 26, 1701.

[32] J. H. Fendler, Acc. Chem. Res., 1980, 13, 7.

[33] J. Oberdisse et al., Langmuir, 1996, 12, 1212.

[34] D. E. Discher and A. Eisenberg, Science, 2002, 297, 967.

[35] E. Barry and Z. Dogic, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 10348.

[36] L. D. Landau and E. M. Lifshitz, Theory of Elasticity, (Pergamon, New York,

1970).

[37] J. H. Fendler and P. Tundo, Acc. Chem. Res., 1984, 17, 3.

[38] P. C. Georges, P. A. Janmey, J. Appl. Physiol., 2005, 98, 1547.

[39] A. Elgsaeter, B. T. Stokke, A. Mikkelsen and D. Branton, Science, 1986, 234,

1217.

[40] C. F. Schmidt et al., Science, 1993, 259, 952.

[41] K. E. Mueggenburg, X. M. Lin, R. H. Goldsmith and H. M. Jaeger, Nature

Mater., 2007, 6, 656.

[42] S. Stankovich et al., Nature, 2006, 442, 282.

105



REFERENCES

[43] J. C. Meyer et al., Nature, 2007, 446, 60.

[44] M. S. Spector, E. Naranjo, S. Chiruvolu, J. A. Zasadzinski, Phys. Rev. Lett.,

1994, 73, 2867.

[45] X. Wen et al., Nature, 1992, 355, 426.

[46] J. Huang et al. Science, 2007, 317, 650.

[47] R. J. Hamers, Nature, 2001, 412, 489.

[48] K. Efimenko et al., Nature Mater, 2005, 4, 293.

[49] N. Doshi, A. Zahr, S. Bhaskar, J. Lahann and S. Mitragotri, Proc. Natl. Acad.

Sci. U. S. A., 2009, 106, 21495.

[50] J. H. Lim, K. S. Lee, J. C. Kim and B. H. Lee, Opt. Lett., 2004, 29, 331.

[51] F. Ilievski, A. D. Mazzeo, R. F. Shepherd, X. Chen and G. M. Whitesides,

Angew. Chem. Int. Ed., 2011, 50, 1890.

[52] W. Helfrich, Z. Naturforsch. C, 1973, 28, 693.

[53] F. L. H. Brown, Annu. Rev. Phys. Chem., 2008,59, 685.

[54] M. Hu, J. J. Briguglio and M. Deserno, Biophys. J., 2012, 102, 1403.

[55] E. Kurtisovski, N. Taulier, R. Ober, M. Waks and W. Urbach, Phys. Rev.

Lett., 2007, 98, 258103.
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