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Transition regimes for growing crack populations
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Numerous observational papers on crack populations in the material and geological sciences suggest that
cracks evolve in such a way as to organize in specific patterns. However, very little is known about how and
why the self-organization comes about. We use a model of tensilelike cracks with friction in order to study the
time and space evolution of normal faults. The premise of this spring-block analog is that one could model
crustal deformation for long time scales assuming a brittle layer coupled to a ductile substrate. The long
time-scale physics incorporated into the model are slip-weakening friction, strain-hardening rheology for
coupling the two layers, and randomly distributed yield strength of the brittle layer. We investigate how the
evolution of populations of cracks depends on these three effects, using linear stability analysis to calculate the
stable regimes for the friction as well as numerical simulations to model the nonlinear interactions of the
cracks. We find that we can scale the problem to reduce the relevant parameters to a single one, the slip
weakening. We show that the distribution of lengths of active cracks makes a transition from an exponential at
very low strains, where crack nucleation prevails, to a power law at low to intermediate strains, where crack
growth prevails, to an exponential distribution of the largest cracks at higher strains, where coalescence
dominates. There is evidence of these different length distributions in continental and oceanic normal faults.
For continental deformation the strain is low, and the faults have power-law frequency-size distributions. For
mid-ocean ridge flanks the strain is greater, up to an order of magnitude higher than the continental strain, and
faults have exponential-like frequency-size distributions. No theory has been offered to explain this difference
in the distributions of continental and mid-ocean faults. In this paper we argue that they are indicative of
different stages of evolution. The former faults are at an early stage of relatively small deformation, while the
latter are at a later stage of the evolution. For high strain the faults reach a saturation regime with system size
cracks evenly spaced in proportion to the brittle layer thickness. We asymptotically approximate the time space
evolution of faults as a long time-scale phenomenon, thereby avoiding modeling the short time-scale earth-
quakes. We show that this assumption is valid, which implies that the faults that creep and faults with
carthquakes display the same time and space evolutions.
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L INTRODUCTION

Geologists have known for over 40 years and materials
scientists for somewhat less that if a brittle layer on a plastic
substrate is stretched, a state will eventually be reached in
which the layer contains system sized cracks that are evenly
spaced, with a spacing proportional to the layer thickness.
The explanation for this saturated case is trivial: each crack
is spaced to avoid the stress relaxation zone of its neighbor,
the width of which scales with layer thickness [1]. The
deeper question, addressed here, is how does the system
evolve from its initial uncracked state to this saturated state.

Geologists have recently observed that the populations of
faults (shear cracks) often exhibit power-law length distribu-
tions [2,3]. It has been suggested that this fault size distribu-
tion is what gives rise to the same kind of distribution long
observed for earthquakes and known as the Gutenberg-

*Now at Exxon-Mobil Upstream Research, Houston, TX; Elec-
tronic address: ccspyro{@upstream.xomcorp.com

Electronic address: scholz@ldeo.columbia.edu

Hlectronic address: shaw@ldeo.columbia.edu

1063-651X/2002/65(5)/056105(10)/$20.00

65 056105-1

PACS number(s): 62.20.Mk, 64.60.Cn, 81.40.Np

Richter relation [4,5]. Such power laws are characteristic of
self-organized critical systems [6—10], sometimes considered
“universal” states of the system. However, exponential fault
size distributions have also been observed [11]. This opens
the possibility that these two populations are transition re-
gimes between the end-member states described above. If
this is true then, for these systems, power law distributions
occupy only a portion of the phase space.

Geological faults grow episcdically by frictional stick-slip
instabilities, resulting in earthquakes. Here, however, we are
interested in the long time-scale phenomena. Let us consider
the case of a region of the lithosphere undergoing tension
producing deformation of the upper brittle layer, the schizo-
sphere. The schizosphere behaves as a brittle material, and
localization of strain causes faults to grow. For time scales of
hundreds of thousands of years or longer, the faults nucleate,
propagate, and coalesce, organizing themselves in a particu-
lar manner. Field data of faults can only serve scientists as
snapshots of what state a system is in today. However, a
more detailed theory of how systems of faults evolve and
why they organize themselves in such states may be possible
by studying models that can be set up as simplified cases of
geological systems.
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In that spitit we propose a model that explores the differ-
ent distributions observed during the evolution of a popula-
tion of cracks as a function of strain. Introducing certain
simplifications and assumptions to the problem effectively
determines which mechanisms we consider important in pro-
ducing such behaviors. We assume there are only a few key
ways in which the nonlinear interaction of cracks takes place.
Agreement of our results with observations makes the case
for their importance. The model we introduce in this paper
simulates an upper brittle layer coupled to a ductile substrate.
We describe a two-dimensional quasistatic system where
cracks nucleate and evolve in the brittle layer in response to
the deformation of the ductile layer. The displacement field is
given as a scalar field in the direction of stretching. The
scalar displacement field models tensile cracks. The underly-
ing assumption is that the stress interactions of tensile cracks
are similar to those of normal faults. This can be argued by
noting that in the planar view the stress field around the tips
of a normal fault (mode III shear crack) are exactly sym-
metrical to those of tension cracks. Although the stress in the
case of normal faults is due to shearing, whereas in the case
of tension cracks it is due to tension, the interaction of these
symmetrical fields around cracks is what we are interested in
capturing, The physics determining the behavior of the sys-
tem studied here may be summarized as follows.

(a) The friction law of the cracks. This model mimics
faulting on the crust. In order to get localization of strain an
important physical mechanism is slip weakening, which ren-
ders an already cracked surface weaker than before and thus
more likely to slip again as more strain is loaded into the
system. The crack tips have a much higher stress concentra-
tion than the area around them and the crack propagates as a
response to further extension of the bottom layer., The slip-
weakening function used in this paper is modeled as an ini-
tially linear decay of yield strength of the brittle material. We
use linear stability analysis to study the parameter space of
slip weakening, and we find a wide range of values for which
the system is stable. This parameter space has a second vari-
able, the rheology of the ductile layer, which is the next
physical parameter in the problem.

(b) The constitutive law of the two layer interface, In the
case of this model we study two-dimensional (2D) growth of
cracks that are as deep as the top layer. The ductile substrate
is simulated as a plastic layer with strain hardening. How-
ever, as we will see, we will be able to scale this part of the
problem out.

(c) The heterogeneity of the brittle layer. The crust can be
thought of as a brittle layer of variable yield strength due to
imperfections or variations such as inclusions, prior ruptures,
variable material composition, ete. This disorder is modeled
here as a randomly distributed initial yield strength threshold
of the brittle layer. This aspect of the model resembles pre-
vious work done by Colina, de Arcangelis, and Roux [12]
using an electric analog of a layer of fuses coupled by resis-
tors to a bottom layer where a uniform electric field was
imposed. They varied the heterogeneity introduced in the
system and looked at the effects it produced to their system.
Similarly we also observe that the number of cracks obtained
for a given strain depends on the disorder. For very homo-
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geneous systems and at low strain, slip localizes mostly on
large evenly spaced cracks, while for more heterogeneous
systems at the same strain, slip gets distributed over a range
of sizes of cracks.

Given these parameters, we found that the growth of
populations of cracks is characterized by three regimes as a
function of strain, which have three distinct crack size distri-
butions. Initially, as the system is strained, we observe an
increasing number of new cracks. This regime is dominated
by the heterogeneities, and leads to an exponential distribu-
tion. This is the nucleation regime. With further stain, when
the slip weakening effects become comparable to the disor-
der, the cracks begin to grow, and the distribution approaches
a power law. This is the growth regime. As strain continues,
more cracks are coalescing to form longer cracks than there
are cracks nucleating, and therefore the mumber of active
cracks begins to decrease. The power law becomes distorted,
with the largest cracks approaching an exponential distribu-
tion. This is the coalescence regime. Finally, for even higher
straing the system organizes into the maximum number of
cracks it can hold for any additional strain. This is the satu-
ration regime. At this stage the cracks have grown into a
pattern of long arrays that are spaced apart proportionally to
the depth of the brittle layer, with the largest cracks having
an exponential distribution. Figure 1 is a simulation using the
above model, which shows a snapshot of a network of cracks
in the planar view at increasing strain. In the sections to
follow we study these populations and explain their interac-
tion mechanisms.

‘We have organized the sections as follows. In Sec. I we
describe the model. Section ITI has the numerical results and
the stability analysis with Sec. IV briefly comparing these
results to observations. The last section contains our conclu-
sions.

II. THE MODEL

We want to study the problem of the crack population
formation and its evolution on a brittle layer that is driven on
the bottom by an extending layer. First, the lower plastic
layer is extended by a small amount. That in turn strains the
top layer whose equilibrium requirement is satisfied when
the total stresses applied to it are lower than its yield
strength. If at any point on the brittle layer the yield strength
is exceeded, a crack is allowed to form with slip opening 4.
The crack accumulates slip until the stress on it satisfies the
boundary condition, in other words the stress is less than its
yield strength. Once that condition is satisfied, the system
has reached quasistatic equilibrium. It gets driven by addi-
tional extension applied to the bottom layer, and the process
repeats itself.

Figure 2 shows a schematic representation of the dis-
cretized model. It is a two-dimensional system of spring
blocks with the x and y dimensions scaled by the thickness of
the top layer. The resolution in the plane can be effectively
changed by varying the spring constants k, and k,. All
lengths in the problem scale with L, the widih of the brittle
layer. We therefore approximate the 3D problem as a 2D
problem. It is reasonable to expect that the in-depth slip pro-
file of cracks is important in examining their growth rates
and their shapes. The representation of the vertical stress by
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FIG. 1. Snapshot of model simulation shows plan view of a
network of cracks at different strain values. The axes are scaled by
the brittle layer thickness. The cracks propagate along the axis nor-
mal to the direction of extension. Crack evolution with strain €. (a)
€=0.064, (b) €=0.072, (c) e=0.08.

the leaf springs is an approximation of the fracture energy G
of a crack growing in three dimensions. Of course, this func-
tion oversimplifies the rheological behavior of real material
interfaces, which is much more complicated but has no
known analytical form.

Another simplification in the model is the use of a scalar
displacement in the direction parallel to that of the loading.
This is an acceptable first-order approximation to the dis-
placement field for the case of uniform extension. An impor-
tant ingredient of this model is the dynamics introduced
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FIG. 2. Schematic representation of the model. Looking from
the top, there are coil springs in the y direction and coil springs in
the x direction. The blocks can move in the x direction only. A crack
is shown as an opening of a certain distance #;; in the middle of
block (ij). Looking from the side, there are leaf springs in the z
direction such that the spring coefficient ratios &, /k, and £, /k, set
the resolution scale. The lower ductile layer is stretched and drives
the upper brittle layer through the leaf springs. (The extension di-
rection x is rotated 90° in this figure with respect to Fig. 1).

through the slip weakening friction law. The slip weakening
law drives much of the localization of strain on the surface
and that, in turn, leads to avalanches of cracking events
[13,14]. The effects of this friction law will be further ana-
lyzed in the following section. Another feature of this model
is the coupling of the top layer to a bottom layer through the
propagation resistance stress. While we have posed the prob-
lem so that we can study different rheologies, we will focus
here on the small disorder limit where the different rheolo-
gies can be effectively scaled out of the problem.

The dynamic 2D scalar model for the brittle layer we
examine is given by the Klein-Gordon equation

2Tz (1

where u is the displacement, ¢ is the time, x and y are the
perpendicular directions, U is the displacement of the lower
ductile layer, c is the wave speed, and L is the brittle layer
depth. The first three terms are from the wave equation, our
scalar approximation of the linear elasticity of the stress in
the horizontal direction. The last term is a linearized approxi-
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mation of the stress in the vertical direction that couples the
two layers. The bottom layer has a constant (homogeneous)
strain boundary condition,

FU

axat @
We use periodic boundary conditions in the x and y direc-
tions.

‘We want to study the problem of crack growth, which has
a much larger time scale than that of wave propagation, (i.c.,
earthquakes will not be treated in this paper). Therefore, we
hypothesize that the propagation and organization of faults
are long time-scale phenomena, which can be approximated
by letting the wave speed, ie., the speed of earthquake
propagation, approach infinity. Separation of these two time
scales, where c—, gives the following Poisson problem:

Fu  Fu (u—U)
EZ-FF__LQ'__O. (3)

In order to study the originally proposed model of a brittle
layer driven by an elastic bottom layer, we must construct the
top layer with brittle properties. This will be very simply
described by introducing a yield strength threshold boundary
condition. The yield strength is constructed as

CI)O’ h=0,
®= &h 4)
o B, >
Dy+mh T k>0,

where &>0 and m>0. We define & to be the integrated
strain across a discontinuous boundary, which is given as the
following limit:

xtedu

h(x)=1li
(x) Elf; &

dx. (5)
In the case where there is no crack, the yield threshold is just
given by ®4(x,y) as a random distribution of strength, In the
case where there is a crack, the yield strength includes a slip
weakening friction law with no time healing where ®(x,y)
is the stochastic part of the function given at t=0.

Our choice of the slip weakening function for the strength
of the material is meant to capture the essential physics,
though it is a huge simplification of all that occurs in mate-
rial failure. The biggest simplification is that here we con-
sider fracture energies associated only with interfaces, while
there are bulk effects associated with process zones [3,15]
and plastic deformation [16], which may be important as
well. Our main justifications for our simplificaticn is that the
slip weakening is generally considered a central component
of the breakdown process, and that it makes the problem
much more tractable and computationally efficient, and cap-
tures well the observations, as we will see. Moreover, it is
only a linearization of the slip weakening that dominates the
model behavior we examine here.

The equations of motion are symmetric with respect to the
addition of a constant to U and @, so only differences in
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the values of u are relevant to the dynamics of the system,
The parameter m determines an effective rtheology in the
coupling of the two layers. For small & we can simplify the
equation of the yield strength by incorporating the strain
hardening rheology in &. Therefore, we can study a collec-
tive effect in the slip weakening parameter by defining o
=a—m,

ah

P=Do— 1+ ahk’

h=0, (6)

an approximation of Eq. (4) valid to the linear order. For
small &, we could drop the denominator altogether, but we
keep it here in Eq. (6) so as to keep the strength formulation
physical for all values of k. Thus, we can write the boundary
condition along a cracked interface in static equilibrium as
1 (du du
x=crack™ ox

ah

2\ )5‘1’0‘@’ @

x=crackt

where the stresses on that point have to be equal to or less
than the yield strength. If the stresses at any point exceed the
yield threshold, then the crack slips more until the boundary
condition is satisfied. In this paper we show that these effec-
tive parameters alone can capture many of the most interest-
ing features of crack networks. The next point we have to
address is how A gets updated. We assumed that the cracks
relax to a quasistatic steady state faster than the loading rate,
v and that dk/dt does not affect the way the cracks will
develop and their organization. We test this hypothesis nu-
merically, and in the following section we show that it holds
true.

To discretize the model, it is convenient to make a change
of coordinates. We consider the variable wy;=u;;— U,; rep-
resenting the displacement of the upper layer relative to the
lower layer evaluated at each node; a crack, when it forms, is
taken to reside at the center of the node and has the opening
h,; at that node. Thus, the displacement just to the right of a
crack of width h;; is u,?;=w,-j+h,-j/2+ U;; while the dis-
placement just on the other side is u;;=w;;—h;;/2+ U;. In
these variables, the equation of the model is

kx(w,-+1j—2w,-j+ wl'—lj) +ky(w,-j+1 —2W,-j+w,-j_1)
k
+Ex(hi+1j_hz'—1j)_kzwij=0: (8)

withi=1—N, and j=1—N,,; N, and N, are the number of
grid peints in the x and y directions. This is the discrete
version of Eq. (3) with k,=1/Ax?, k,=1/Ay? k,=1/L,.
The square lattice used here for the scalar field of the dis-
placement introduces an inherent anisotropy to the model.
However, this effect is rather inconsequential in the realm of
this study since we have tensile straining of the material,
which is in itself anisotropic, leading to surface cracks that
propagate mostly in the dircction normal to that of the ex-
tensional force.

The updating of the system occurs as follows. First a
small strain step »J7 is made, then the stresses o, are cal-
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culated for all nodes. If the stresses are above threshold then
h gets updated. The slip displacement of the cracks, 4, get
updated by adding small Ak;; increments to it, and recalcu-
lating the stresses on the brittle layer until the equilibrium
equation is satisfied. The equation of evolution of % is

n+l_gn
by =hi+Ahy, ©))

where n is the relaxation step of the time scale of earth-
quakes. There are various ways of updating #. Here we
present two different functions for calculating Ah;;. One
way is to compute it as a percentage of the stress drop and
the other is to compute it as a constant step increment.

p%(ﬁ_l)’ Ty

an={ B Py Py 10
= ” (10)
0
, o<
or
Ah, Jizq,
Ahl]= ¥ (11)
0, iy
2 @ .

i

p takes a value from 0<p<1 and is a percentage of the
stress drop. Naturally the question to ask is: how do the
results depend on the two choices of functions? As we will
see, they do not.

III. RESULTS AND ANALYSIS OF THE MODEL

In this section we shall discuss the linear stability analysis
as well as present the results obtained by isolating and com-
bining the parameters, treating first the irrelevant, and then
the relevant parameters to the dynamics.

A. Linear stability analysis

Let us first consider what happens with the slip-
weakening instability we have introduced in the model. A
linear stability analysis of the growth of Fourier modes will
show for which values of « the instability will grow. Starting
from the wave equation, let us expand about u=U,

Pu Fu u F*u

1
=z

— + ——— —
ax? gy L? c* ot (12)
and now the boundary condition is
du _ ah -
x| l+ah’ (13)
x=crack

@, does not appear in the equation since it is a first-order
term that satisfies the boundary condition of the mean dis-
placement. Linearizing the equation of a Fourier mode exp
(—kx+ik,y+ ) we get a dispersion relation of
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FIG. 3. Fraction of active sites evolving with increased strain.
On the horizontal axis, excess strain e=(vt—®P,)/g is normalized
by disorder. Disorder g=10"*, 1073, 1072, with thicker lines cor-
responding to smaller g. Note the overlaying of curves. The three
different strain regimes are labeled.

Q=¢c\/(a2—k§—L1—2). 14

For stability we need Q to be imaginary, ie., a’< ki
+1/L?. When cracks nucleate, the wave number k, is very
large, so the restriction on « is easily satisfied, whereas for
very long cracks k, approaches zero and in order to keep the
stability we must have a<1/L2. This imposes an upper
bound for a. A lower bound is given from the fact that for
the slip weakening to localize strain, it must at least beat the
strain hardening rheology. This means that &—m>0 and
therefore, 0<a<1/L2. In the following simulations we have
set L=1, without loss of generality, in which case the bounds
on « are 0<a<l1. We distinguish between two types of
parameters: those that are irrelevant or can be scaled out, and
those that remain relevant. We look at each in turn.

B. Irrelevant parameters

For large enough systems, the system size is irrelevant.
For the distribution of breaking strengths, we let ®(x,y)
=®,+gé&(x,y) where £ is a random number between 0 and
1. For small disorder, when g<€1, a number of parameters
can be scaled out. First, we will see a number of regimes as
strain is increased, but all of them, for g small, occur when
h<<1. Thus, the earlier approximations of absorbing the rhe-
ology into « is valid, and we only need to consider the one
parameter a for the strength evolution. A second scaling can
be made to remove g itself: by dividing the strain increment
above ®, by g, we get the brittle strain excess e=(w¢
—®,)/g which then collapses the effective loading for g
ranging over many orders of magnitude. Figure 3 illustrates
this result through the overlay of a number of curves with
different values of g. Figure 3 shows the fraction of active
sites as a function of &, for g ranging from 107> to 1072,
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FIG. 4. Number of cracks per unit area as a function of strain, &,
for four different cases of updating the slip displacement 4 at each
strain step. The relaxation is done using slow increments of the
displacement 4 such that the total stress on the crack is less than its
yield threshold. For the first two cases, we let the increments be a
fraction of the stress above threshold; these cases are shown by the
two thick lines, with the solid line having a smaller fractional in-
crement compared to the dashed line. For the other two cases, we
take constant A strain opening steps; here again the solid thin line
has a smaller increment relative to the dashed thin line. Observe
that the curves all basically overlay.

Active sites are the sites that have broken recently. We con-
sider sites that have broken recently, as we are interested
here in what part of the network is currently accommodating
strain. For all cases we observe the following: at the begin-
ning the fraction of active sites increases with elastic strain.
This indicates that initially nucleation is the dominant pro-
cess. When the slip displacement on the crack is big enough
for slip weakening to become comparable to the disorder, the
slip weakening begins to dominate, and the slip localizes so
that the number of active sites starts to decrease; this is the
growth regime. The system then transitions to a regime of
coalescence of cracks where the rate of coalescence domi-
nates that of the nucleation. Eventually, the fraction of active
sites asymptotes to the saturated regime where we get cracks
that are evenly spaced about one layer thickness apart. These
four regimes are central to the behaviors for the general pa-
rameter space of the model, and we will return to them when
we later examine the distribution of sizes of cracks.

Grid resolution does not play a role at the large scales,
and we find stable distributions of crack sizes for sufficiently
resolved grids. Event dynamics, through the relieving of
stress via the updating of 4, is also irrelevant. Figure 4 illus-
trates this with a range of choices of parameters p and A% in
Egs. (10) and (11). The first two cases shown are with frac-
tion updates of stress excess above threshold, from Eq. (10),
with the fraction p taking the values 0.4 and 0.7. The two
other cases shown are with constant slip increments, from
Eq. (11), where the increment A% was equal to 1076 and
1075, The figure shows that, for all the different ways of
updating 4, the three regimes of evolution of cracks are al-
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most identical. This means that the details of d4/dt are not
important for relaxing the system to its quasistatic equilib-
rium within each loading step. This validates our hypothesis
that we can study the growth of faults in time and space
without necessarily modeling the carthquakes. Faults that
grow by earthquakes and faults that creep, all else being
equal, have indistinguishable spatial properties. Thus, we are
left with one fundamental relevant parameter, the net slip
weakening .

C. Slip weakening

The linear stability analysis above shows that the equation
for the crack evolution has a stable regime for a between 0
and 1. In the case of a=0, we expect to get no localization
of deformation into cracks. The dynamics are controlled
solely by the randomly distributed yield threshold at t=0, so
each site will crack according to that distribution and the slip
localization on the cracks remains uncorrelated. For the case
of a=1, we have marginal stability where a crack could
grow for very small strains. The crack will keep weakening
the more it slips since its friction is a function of the slip
displacement. For > 1, it will be unstable in the sense that
there will be no quasistatic equilibrium solution of % such
that the boundary condition is satisfied. We get a runaway
crack as the more it slips to satisfy the threshold condition
the more it weakens.

Figure 5 shows six simulations done with different « val-
ues. These are snapshots of a part of the grid at given strains.
The figure is organized in order of decreasing « from 1 to 0.
We show the particular six values, because they are indica-
tive of the different behaviors of the model. Figures 5(a) and
5(b) are shown at lower strains than the rest, because they are
at or near the upper limit and any higher loading causes
catastrophic failure. It is clear that when @— 1.0, all the de-
formation localizes onto few cracks which soon grow un-
stable. For intermediate values of a, Figs. 5(c) and 5(d) the
cracks are stable and their number increases while they keep
the separation distance of one depth layer between large
cracks. As a—0, Figs. 5(e) and 5(f), the deformation does
not localize, and we do not get a full spectrum of sizes of
cracks.

Before continuing, we should mention how we define a
crack. We take a crack to be the network of all the nodes that
have touching neighbors. We can vary the allowed neighbors
as either the four nearest nodes or only the two collinear
nodes in the direction of propagation. So, if two crack tips
are offset by one grid point in the diagonal [e.g., (i/) and
(i+1,j+1)], they are not counted as one crack but as two
separate ones. We also keep track of one other feature of
crack openings, which is when it last opened. In this way, we
can distinguish between active and inactive sites. This is im-
portant, because as strain accumulates, more and more sites
are cracked, and we eventually run into a percolationlike
behavior if we consider the connectivity of all sites that have
ever cracked. This leads to sensitivity in how we define con-
nectedness and cracks. If, instead, we consider only the sites
that have broken recently, we find well behaved distributions
of cracks, which are insensitive to choices (such as how re-
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FIG. 5. Oblique angle view of simulations for different slip weakening values, a. x axis is scaled by the brittle layer thickness. Slip
displacement is ploted on the z axis. (a) @=1.0, €=0.02%, and (b) a=0.9, €=0.07%; cracks grow unstable for additional strain, €. (c)
a=0.4, €=0.19%. The system evolves in a stable manner. (d) @=0.2, €=0.19%. (¢) @=0.1, €=0.19%. Deformation is less localized. (f)

a=0.0, €=0.19%. There is no localization of deformation.

cently they have broken). Thus, when we speak of cracks, we
speak of connected elements that have broken within the last
time (equivalently strain) interval Ae.

Figure 6 shows the fraction of active sites as a function of
the elastic strain as we vary a. Active sites are the sites that
have broken recently. There are four data sets altogether,
showing different values of a. We see, as described before,
four different regimes, the nucleation, the growth, the coa-
lescence, and the saturation. As a decreases, we observe that
the maximum fraction of active sites increases while it shifts
towards larger strains.

Let us now examine the distribution of active crack sizes
in the different regimes. Here we use a fixed value of a, &
=0.2. Figure 7 shows the distribution of crack lengths, plot-

ted on a log-linear scale, for small loading. We see exponen-
tial distributions of lengths for the very smallest loading,
with slopes decreasing as the fraction of active sites in-
creases. Towards the end of this regime, we see crack lengths
exceeding the extrapolated exponential distribution, as the
upward curvature indicates. These distributions approach a
power law, as Fig. 8 shows, plotting now on a log-log scale,
for the full range of loading. Here we see the exponential
distributions for low loading falling off, then the approach to
a power-law, with slope around —2, indicated by the dashed
line. At the highest values of strain, the largest sizes appear
to asymptote, approaching a bump on this plot, while the
smaller sizes remain power-law-like, though somewhat di-
minished in number. Figure 9 probes this largest size distri-
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FIG. 6. Fraction of active sites as a function of strain, &, for four
different values of slip weakening . In all four cases shown there is
a nucleation regime (the number of cracks increases with strain),
the growth regime (the number of cracks peaks), a coalescence
regime (the number of cracks starts to decrease), and a saturation
regime (constant density of cracks spaced one layer thickness
apart). As a decreases, the maximum number of cracks per unit area
increases while it shifts towards larger strains. Weakening a=0.1,
0.2, 0.3, 0.4. Thicker lines correspond to smaller a.

bution, this time plotted on a log-linear scale. We see here
then the clear exponential distribution of these largest cracks
in the high strain saturation regime.

This behavior is the same for other values of «, with only
some quantitative differences. Figure 10 shows the relevant
distribution curves for «=0.4, indicating a similar power-
law slope value for the growth regime, with a slightly steeper
but nevertheless exponential distribution for the largest
cracks in the saturation regime.

FIG. 7. Log-linear plot of distribution of sizes for increased
strain, at low strain values in the nucleation regime. Strain increases
from left to right, with the highest strain indicated by the thick line.
Note the initially exponential distribution.
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FIG. 8. Log-log plot of distribution of sizes for increased strain.
Note the power-law distribution at intermediate strain, indicated by
the thickest line, and the asymptotic distribution at higher strain,
indicated by the other thick line. The dashed line shows a slope of
—2 for comparison.

IV. COMPARISON WITH DATA AND A PHYSICAL MODEL

Geologic data from normal faults show the main features
we have discussed in the paper. Fig. 11(a) shows data from
the surface of Venus where normal faults were radar imaged
during the Magellan mission in 1989 [17—19]. SAR mapping
of 1750 faults on the low plains of Venus, which have un-
dergone extension, reveals a clear power-law scaling of
frequency-size distribution with an exponent of —2.02. The
resolution of that image was 70 m per pixel and the scanned
area was about 10 km?. The total strain for the Fig. 11(a)
dataset is calculated to be around 1%.

Figure 11(b) is a log-linear plot of the frequency-size dis-
tributions of normal faults sonar imaged from the flanks of
mid-ocean ridges. Two different strains are shown, namely,
5% and 10%, the second being an order of magnitude larger
than in Fig. 11(2). The distributions observed here are clearly
exponential. This is a distinct regime in the fault growth,
which would correspond to the coalescence regime of our
model. Recently, we have demonstrated the strain transition
from power law to exponential fault distributions in a single
geological site [21]. Finally, Fig. 11(c) shows the distance
between tensile cracks as it scales with the thickness of the
bed they are in. The two kinds of points indicate two differ-
ent rock types, and they both show a linear scaling. This
graph corresponds to the saturation regime where we observe
that the system size cracks about a thickness layer apart.

Finally, in a physical model in which tensile cracks form
in a thin clay layer stretched on a rubber sheet, we observed
the same crack population history as Fig. 3, together with the
corresponding transition from power law to exponential size
distributions [22].

V. CONCLUSIONS

In this paper we have shown that a model with only slip-
weakening instability, strain-hardening rheology, and ran-
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140

FIG. 9. Log-linear plot of distribution of sizes for increased
strain, at large strain values. Note the exponential distribution of
largest events at large strains. The highest strain is highlighted with
the thicker line.

(a) L
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FIG. 10. Distribution of sizes of cracks for larger value of the
weakening, a=0.4. (a) Log-log plot; note the similarity with Fig. 8
(b) Log-linear plot; note again the exponential distribution at large
strain, as in Fig. 9, but here with a higher slope.
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FIG. 11. Geological evidence of the three evolution regimes. (a)
Power-law distribution (exponent is —2.02) for normal faults on
Venus. Strain is around 1%. Figure from Scholz, 1997 [4]. (b) Log-
linear plot shows exponential frequency-size distributions for mid-
ocean normal faults at 5% and 10% strains. Figure from Cowie
et al., 1993 [11]. (c) Tensile crack spacing scales with the layer
thickness. The two point types are for two different types of rock.
This saturation regime has system-size cracks, one thickness layer
apart. Figure from Price; data from Bogdanov, Kirollova, and No-
vikova [20].
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domly distributed thresholds of yield strength can be used to
study the evolution of a population of cracks in time and
space. For very strong slip weakening, a>> 1, cracks above a
certain length never relax to a steady state, i.e., catastrophic
failure. For strain hardening, a:<<{), there is no localization of
deformation. For intermediate values of slip weakening, 0
< a<1, a complex population of faults emerges.

The model offers a new way to look at the evolution of
populations of cracks. Three regimes are observed with in-
creasing strain. At very low strain, the cracks are short, the
crack population is dilute, there is very little interaction
amongst the stress fields around them, and disorder domi-
nates. The distributions here are exponential, with the scale
of the exponential changing with increasing crack density.
With additional extension, the cracks propagate in the direc-
tion normal to the direction of extension. Disorder and weak-
ening compete, and the distribution of sizes of cracks is char-
acterized by a power law. Only at the beginning do cracks
grow solely by propagation of their tips, because they soon
start to interact with other cracks. The stress field interactions
shield unfavorably positioned cracks, which no longer accu-
mulate slip or grow in length, and also inhibit nucleation of
new cracks. As the population of cracks self-organizes,
cracks begin to coalesce, shifting the main process of growth
from propagation to coalescence. Their stress fields merge to
form larger stress-free zones of trapped, dead cracks. The
coalescence of the cracks as a result of the higher strain
signifies a transition in the organization of the cracks to a
regime in which the largest cracks have an exponential dis-
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tribution. As the cracks grow longer, shadow zones extend
over a distance that scales with the depth of the brittle layer.
The system reaches the maximum number of cracks allowed
according to the stress interactions, i.e., saturation, character-
ized by evenly spaced system sized cracks. All three regimes
are observed in natural systems, and in a physical model.
The model also suggests that, all other things being equal,
faults that creep and faults that have earthquakes evolve in
the same way. This is because the fault growth interactions
occur with the accumulated strain, not strain increments.
Therefore, we need not model carthquakes in order to study
fault dynamics and fault interactions. Separating the two
time scales of the problem is a valid approximation. Finally,
the regime characterized by power laws occupies only a por-
tion of the phase space of this system, although this is the
portion most commonly observed for faults and earthquakes.
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