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We study numerically the behavior of a two-dimensional elastic plate (a crustal plane) that terntinates 
along one of its edges at a fault boundary. Slip-weakening friction at the boundary, inertial dynamics 
in the bulk, and uniform slow loading via elastic coupling to a substrate combine to produce a complex, 
deterministically chaotic sequence of slipping events. We observe a power-law distribotion of small 
events and an excess of large events. For the small events, the moments scale with rupture length in a 
manner that is consistent with seismological observations. For the large events, rupture occurs in the 
form of narrow propagating pulses. [S003l-9007(96)00703-X] 

PACS numbers: 91.30.B~ 03.40.Dz, 05.45.+b, 64.60.Ht 

The discovery of dynamic complexity in the uniform, 
one-dimensional Burridge-Knopoff (BK) model of an 
earthquake fault [1,2] has brought new urgency to some 
questions about models of seismic sources. Perhaps 
the most pressing of these questions concerns the role 
of elasticity in the crustal plane-an ingredient that 
is necessarily missing in anyone-dimensional model 
but which must be important for an understanding of 
the dynamics of slipping events. Off-fault elasticity is 
relevant to many features of real earthquake faults such as 
stress concentrations at rupture fronts, long-range elastic 
interactions, and seismic radiation. 

Previous studies [3-7] indicate the following: The 
completely uniform, one-dimensional BK model, with 
velocity-weakening stick-slip friction, is a deterministi­
cally chantic dynamical system that exhibits a broad range 
of earthquake-like events. The frequency-magnitude dis­
tribution for these events includes a scaling region of 
small 10ca1ized events that is qualitatively similar to 
a Gutenberg-Richter (GR) law [8], and a region of 
large delocalized events whose frequency exceeds that 
of the extrapolated GR law and which account for most of 
the moment release. The large events propagate along the 
fault at roughly the sound speed in the form of "Heaton 
pulses" [9]. In order to be well posed mathematically, 
the model requires a cutoff or an ad hoc mechanism for 
initiating rupture at very small length scales. The ques­
tions of whether such mechanisms imply inherent dis­
creteness of these models and whether that discreteness, 
in tum, implies the need for small-scale heterogeneity in 
realistic fault models are beyond the scope of this inves­
tigation. The important point is that the large-scale prop­
erties-complexity oflarge events and existence of a GR 
regime-are independent of the discretization length or 
the heterogeneity scale, and therefore appear to be robust 
features of this class of models. 

Our purpose in the investigations reported here has 
been to test the above features of the one-dimensional 
BK models in a two-dimensional model that includes 
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elasticity in the crustal plane. Like the one-dimensional 
models, our two-dimensional model is still a caricature of 
the physically realistic situation, but it brings us a large 
step closer to an understanding of the dynamic behavior 
of this class of systems. It remains unrealistic in at least 
two respects, both of which are dictated by computational 
feasibility. First, our crustal plane is an elastic plate that 
moves only normal to itself and is coupled elastically 
to a rigid substrate. In this way, we obtain an essential 
simplification of our equations of motion and retain a very 
important dynamic time scale associated with coupling 
between the top and bottom of the crust; but we lose 
the long-range behavior of true elasticity for very slow 
motions. Because we are interested primarily in source 
dynamics, we find this to be an acceptable compromise. 
Second, as in the one-dimensional models, we use an 
overly simplified mechanism for producing a stress drop 
at the initiation of rupture. We believe that this is an 
adequate approximation for an ordinary fracture on a 
smooth fault with a nucleation length roughly the same 
as our mesh size, but we cannot prove this without 
very extensive computation. (For an opposite point of 
view, see [10].) Again, we emphasize that this length 
scale appears to be an irrelevant parameter insofar as 
the observable, large-scale properties are concerned. Our 
main conclusions are that the crucial features listed in 
the preceding paragraph are indeed preserved in the new 
model, and that we are discovering a substantial degree of 
universality in these systems. 

Our elastic plate occupies the y > 0 half of the (x, y) 
plane (the "crustal plane") and ternrinates at a fault on the 
x axis (see Fig. I). It is easiest to visualize the fault [the 
(x, Z ) plane] as moving downward at the loading speed 
II with respect to the plate when it is stuck, and exerting 
tractions on the edge of the plate via a stick-slip friction 
force. In a rough sense, we are modeling a vertical 
dip-slip fault. Throughout the plate, the dimensionless 
equation of motion for the displacement field U (x, y, t) 
is a massive wave equation: 
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have been used to set to unity both the maximum stick­
ing friction and the maximum drop in friction due to slip 
weakening. The reduction of friction ¢ with slip S - So 
in (4) is the source of the crucial instability that leads to 
slip complexity, and the slip-weakening parameter as de­
termines the strength of this instability. For as large com­
pared to unity we see a generic complex behavior. We 
have used as = 3 throughout the computations described 
here. The exact functional form of ¢ also appears to 
be unimportant. 

In the velocity-weakening case, the slip S - So in (4) 
would be replaced by the slip rate as / at, and as would be 
replaced by, say, avo The velocity-weakening model as 
defined in this way fails to have a well-defined continuum 
limit. The difficulty can be understood by examining the 
linear growth rates for sinusoidal deformations on the 
fault surface during slipping in the frictional weakening 
regime. For a perturbation of the form U ~ exp(ikx -
Ky + Ot), we find that 

o = .J a; - k2 - 1 (6) 

for slip weakening, and 

K = avO, 0 = .J(k2 + 1)/(a~ - 1) (7) 

for velocity weakening. There is no apparent problem in 
going to a continuum limit for the case of slip-weakening 
friction; the smallest wavelengths remain marginally 
stable. In contrast, for velocity weakening, the smallest 
wavelengths are strongly unstable. A viscous force 
of the form TJ a3 S / a2xat cures this difficulty in the 
one-dimensional BK model [5,6] and is also useful in a 
related two-dimensional model of ordinary fracture [15]. 

In our numerical integrations, we have used a finite­
difference scheme with a variety of grid spacings. We 
have performed our numerical integrations using a finite, 
rectangular grid of physical size Lx by Ly and grid 
spacings 8 x and 8 y . We impose periodic boundary 
conditions in the x direction (along the fault) and a 
zero-normal-derivative (Neumann) condition along the 
boundary at y = L y • Because the plate is necessarily 
finite in the y direction, we need to minimize the extent to 
which elastic waves reflect back upon the fault from the 
system's outer edge at y = L y • To accomplish this, we 
have added a layer of viscous damping to the equation of 
motion (1) near the outer edge of the form TJ (y ) \/2 au / at, 
with TJ (y) rising smoothly from zero at y = 3Ly /4 and 
saturating at a value of 0.5 at the outer boundary. Our 
finite-difference scheme steps forward in time using an 
explicit Euler method which is first-order accurate in the 
time step 8 t. Spatial derivatives, both in the bulk and on 
the boundary, are accurate to O«(8x)2, (8y)2). In all of 
the calculations reported here we have used T = 0.2 and 
u = 0.03. (This value of u may be unrealistically small 
but is convenient for clarifying the distinction between 
large and small events in these limited simulations.) 

Beginning from an arbitrary nonuniform initial configu­
ration, our system evolves into a statistically steady state 
with a rough configuration and a wide range of event 
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sizes. Figure 1 shows a typical displacement field U 
in a fully stuck configuration. The displacements are 
inhomogeneously locked by the friction on the fault, and 
decay exponentially into the bulk over length scales of 
order unity. 

Figure 2 shows a sequence of stuck configurations at 
the fault boundary as the plate moves forward. Note 
that there are many small events (most of which are 
not visible) and fewer large ones, but almost all of the 
forward motion occurs in the large events. One way to 
characterize this complexity is to look at the differential 
distribution R of event magnitudes IL = 10glOM, which is 
shown in Fig. 3. The moment M is the total slip on the 
fault during an event: 

M = J [Sj(x) - So(x)] dx, (8) 

where So and S j are the initial and final configurations. 
Just as in the one-dimensional cases, log lOR (IL) has a 
straight-line scaling or power-law region with negative 
slope b = 1 for small events, and a distinct peak for the 
large events. The value of b for the small events is a 
robust feature of our dynamic models, holding for both 
slip and velocity weakening, and in lower dimensions as 
well. (However, the medium events are exponentially 
suppressed in the one-dimensional slip-weakening model, 
perhaps because the dynamic instability is weakest in that 
case.) We also show in Fig. 3 that these distributions are 
insensitive to changes in the grid spacings. Of course, 
as we decrease 8x, we add new small-scale events to 
the bottom of the distribution. Aside from this effect, 
the curves lie on top of one another to within our 
statistical uncertainty. We have also checked that there 
is no appreciable dependence of these distributions on the 
dimensions of the system, Lx and Ly. 
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17.0 

15.0 

13.0 L....--___ ---L.._~ __ -'--_ _'__ _ ___' 

0.0 20.0 40.0 60.0 
x 

FIG. 2. A sequence of stuck configurations of the displace­
ment at the fault boundary. The area between subsequent con­
figurations is the moment M of an event. The lattice parameters 
used in this figure are 8x = 0.15, 8y = 0.075, Lx = 60, and 
Ly = 3.75. 
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FIG. 3. The differential magnitude distribution and a demon­
stration showing that these results are insensitive to changes in 
the grid spacing. R(JL) is the number of events with magni­
tudes between JL and JL + d JL per unit fault loading per unit 
fault length. The three curves differ only in their grid spacings 
as shown. Lx = 60 and Ly = 3.75 for all curves. Also plotted 
is a line of slope -1. 

One respect in which the two-dimensional model dif­
fers from the one-dimensional version is the correlation 
between the moment M and the source dimension a (the 
size of the region that slips in an event). In the Earth, 
this correlation is well fit over a wide range of source di­
mensions by an assumption of constant stress drop, which 
implies that the average slip scales linearly with a. 
Therefore, for our two-dimensional model, we expect 
M ~ a 2 . The dashed lines in Fig. 4 indicate that we 
see this behavior throughout the GR region, with M ~ 
u a 2 for the small events. The average slip M / a con­
tinues to increase with slip-zone size a up to and 
beyond a = 1, which is our analog of the crust depth. A 
similar phenomenon has been reported for real earth­
quakes by Scholz [16]. For the very largest events in 
Fig. 4, we see M ~ a, which means that the average 
slip becomes independent of slip-zone size. These are 
delocalized events in which slip occurs in the form of 
propagating, self-healing pulses which fit the scenario ad­
vocated by Heaton [9]. Analytic progress in understand­
ing aspects of these pulses has been made recently by 
Langer and Tang [4], Myers and Langer [5], and Langer 
and Nakanishi [15]. Details of the present results will be 
reported elsewhere. 

In conclusion, we have demonstrated that this two­
dimensional elastodynamic model with slip-weakening 
friction along a homogenous one-dimensional fault 
boundary produces slip complexity. We believe that 
these results support the case that inertial dynamics and 
frictional weakening are contributing in fundamental 
ways to earthquake complexity. 

C. R. M. was supported by the NSF under grant 
ASC-9309833, and the Cornell Theory Center, which 

V It." 
I:· . 

10° .... '.' 
: 
~. .,. 

.. 
10-1 . 

<1 I·. '-' 

~ 
10-2 .1·· / 

iii .. / 
1 1: 1

:
1
/ 

10-3 7 10-4 

10-1 10° WI 

Ll 

FIG. 4. The moment M as a function of the slip-zone size 
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