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We study numerically the behavior of a two-dimensional clastic plate (a crustal plane) that terminates
along one of its edges at a fault boundary. Slip-weakening friction at the boundary, inertial dynamics
in the bulk, and uniform slow loading via elastic coupling to a substrate combine to produce a complex,
deterministically chaotic sequence of slipping events. We observe a power-law distribution of small
events and an excess of large events. For the small evenis, the moments scale with rupture length in a
manner that is consistent with seismological observations. For the large events, rupture occurs in the

form of narrow propagating pulses.

PACS numbers: 91.30.Bi, 03.40.Dz, 05.45.+b, 64.60.Ht

The discovery of dynamic complexity in the uniform,
one-dimensional Burridge-Knopoff (BK) model of an
earthquake fault [1,2] has brought new urgency to some
questions about models of seismic sources. Perhaps
the most pressing of these questions concerns the role
of clasticity in the crustal plane—an ingredient that
is necessarily missing in any one-dimensional model
but which must be important for an understanding of
the dynamics of slipping events. Off-fault elasticity is
relevant to many features of real earthquake faults such as
stress concentrations at rupture fronts, long-range elastic
interactions, and seismic radiation.

Previous studies [3—7] indicate the following: The
completely uniform, one-dimensional BK model, with
velocity-weakening stick-slip friction, is a deterministi-
cally chaotic dynamical system that exhibits a broad range
of earthquake-like events. The frequency-magnitude dis-
tribution for these events includes a scaling region of
small localized events that is qualitatively similar to
a Gutenberg-Richter (GR) law [8], and a region of
large delocalized events whose frequency exceeds that
of the extrapolated GR law and which account for most of
the moment release. The large events propagate along the
fault at roughly the sound speed in the form of “Heaton
pulses” [9]. In order to be well posed mathematically,
the model requires a cutoff or an ad koc mechanism for
initiating rupture at very small length scales. The ques-
tions of whether such mechanisms imply inherent dis-
creteness of these models and whether that discreteness,
in turn, implies the need for small-scale heterogeneity in
realistic fault models are beyond the scope of this inves-
tigation. The important point is that the large-scale prop-
erties—complexity of large events and existence of a GR
regime—are independent of the discretization length or
the heterogeneity scale, and therefore appear to be robust
features of this class of models.

Our purpese in the investigations reported here has
been to test the above features of the one-dimensional
BK models in a two-dimensional model that includes
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elasticity in the crustal plane. Like the one-dimensional
models, our two-dimensional model is still a caricature of
the physically realistic situation, but it brings us a large
step closer to an understanding of the dynamic behavier
of this class of systems. It remains unrealistic in at least
two respects, both of which are dictated by computational
feasibility. First, our crustal plane is an elastic plate that
moves only normal to itself and is coupled elastically
to a rigid substrate. In this way, we obtain an essential
simplification of our equations of motion and retain a very
important dynamic time scale associated with coupling
between the top and bottom of the crust; but we lose
the long-range behavior of true elasticity for very slow
motions. Because we are interested primarily in source
dynamics, we find this to be an acceptable compromise,
Second, as in the one-dimensional models, we use an
overly simplified mechanism for producing a stress drop
at the initiation of rupture. We believe that this is an
adequate approximation for an ordinary fracture on a
smooth fault with a nucleation length roughly the same
as our mesh size, but we cannot prove this without
very extensive computation. (For an opposite point of
view, see [10].) Again, we emphasize that this length
scale appears to be an irrelevant parameter insofar as
the observable, large-scale properties are concerned. Our
main conclusions are that the crucial features listed in
the preceding paragraph are indeed preserved in the new
model, and that we are discovering a substantial degree of
universality in these systems.

Our elastic plate occupies the y > 0 half of the (x,y)
plane (the “crustal plane™) and terminates at a fault on the
x axis (see Fig. 1). It is easiest to visualize the fault [the
(x,z) plane] as moving downward at the loading speed
v with respect to the plate when it is stuck, and exerting
tractions on the edge of the plate via a stick-slip friction
force. In a rough sense, we are modeling a vertical
dip-slip fault. Throughout the plate, the dimensionless
equation of motion for the displacement field U(x,y,t)
is a massive wave equation:
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corresponding slipping speed (of order m /sec); thus, »
L. The position variables x,y src expressed in units of
8 lenpth (of order 10 km) that we identify roughly as
the thicknese of the seismopgenic zohe, i.e, the distance
between the plate and the substrate, Accordingly, our umit
of t is the time taken for a8 gound wave to traverse this
distance {of order sec).

The forcez on the right-hand side of (1)} are the two-
dinsentizional elastic strain gradients and the conpling to
the moving substrate, #¢ — I7. The latier torm produces
an antealistic exponential decay of static strain gradients,
but without it we would be missing the restoring force
crustal motions. In 8 fully three-dimensional model with
tensor mather than scalar clesticity, this period would
appeat a5 a low-fequensy catodT for Rayleigh waves on
the fault plane.

To complete the model, we write the boundary condition
at y = 0 in the foon

ﬂUfa}'Iy—D =9, (2)
where P is the stick-slip fiction that provides the traction
m the fault sorface. Here we depart from oor previous
practice and mae a slip-weakening rather than a velocity-
weakening version of the friction law. One resson for do-
ing this is that, in our opinion, the slip-weakening model
iz at Ieast 3 partially comrect repressntation of the failute
mechanism that cccurs on real faulis. In a scenarioc pro-
posed by Sibson [11], frictional heating raises the tem-
perature and pecssurs of pore fluids, thereby reducing the
effieotive normal gireas and fdetion. This seenario leads
to slip-weakening friction whea heat dissipation ie slow
compared to the mpture ime scale [12,13], and to velogity-

l3|r,,-“
FIG. 1. The displacement field ¥{x,y) in &n example of a

fulty stuck The varishle x is the distance along
the fimlt, and y is the distenos to the fanlt. The
fault bomadary is the x sxids, alony which the filctional stregses
are apphed,

weakening friction when heat dissipation is relatively fast
[13]. Volume expansioh provides 8 mechanizm for disei-
paticn of pore preagure on the ruptyre time gcale [14], a
time soale intermediate between these two extremes. Thig
suggests that pome mixture of slip- and velocity-weakening
effects ia relevant to earthquakes. 'We have examined both
types of fiiction laws in this two-dimensional model and
have found hasically the same behavior in both cases, A
seootid reagon for considering only the slip weakening in
this diecussion is that, as expluined below, it is methemati-
cally better behaved in the contimuam lmmit.
The form of slip-weakening fiiction that we use is

_ [[-=,6(8 — Sp)] @5/ar=0,
= {lf-(S — So) — u&{r} asfor>0, @

with
$(S — So) = [1 + a,{§ — S)]1. “@

Here, the function S(x,?) = U(x,0,#) denotes the
displacement of the cmst elong the fumlt, Sy(x) =
U[x,0,5(x)] is the value of § at the beginning of an
cvent, and 75(x) is the time when slip starts at the point x.
Equation (3) specifies the stick-slip nature of the Riction:
it resiets naotion up to 8 threshold and decreases cotrting-
onsly onee slipping starts. Note that S(x} — Spix) is the
total slip at x starting from the beginning of an event, as iz
consistent with the relatively slow rate of heet dissipation
in our phymical pichore of slip weakening. In 8 complex
event, fhe material at a poith x may elip and restick
more than once, but ¢ contimyes to decrease thronghont
this motion according to {3). Once the event is over,
the fuult rcheals, aud the slipping threshold is reset to
¢(0) = 1 everywhere.

The term &(t} is our special spproximation for the
rapid but contimoug drop in strength thet occurs when
material chanhges fvan sticking to alipping. In this wotk,

we have ugad
so=[9"9 4-HESh o

g0 thai & incresees Linearly with time once the fanlt
becomes unstock, up to a maximum valoe o over a time
scale 7, and iz reset to zero when the famlt resticks.
The time ¢, is messred from the Inst wnstickmg and,
utlike Sy, is reset during an event if the fanlt reaticks and
picture of the two terma, with § — §; arising from the
built up heating effects, and & arizsing fiom transitions
from sticking to elipping. When & depends only on time,
a8 in (5), and is amall compared to the change in ¢
dos to slip weakening, the large events are found to be
independent of . 'We also observe that, when we teke
stnall compared to the event time scale, the stress drops in
the emall cvemte scale with o and are independent of 7.
There are two ovetall symmetries in the equationa
which allow subtraction of a constant from O and over-
all myltiplication by snother comstant, These symmetries
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have been used to set to unity both the maximum stick-
ing friction and the maximum drop in friction due to slip
weakening. The reduction of friction ¢ with slip § — Sp
in (4) is the source of the crucial instability that leads to
slip complexity, and the slip-weakening parameter o de-
termines the strength of this instability. For a; large com-
pared to unity we see a generic complex behavior. We
have used a; = 3 throughout the computations described
here. The exact functional form of ¢ also appears to
be unimportant.

In the velocity-weakening case, the slip § — Sp in (4)
would be replaced by the slip rate 35 /d¢, and a; would be
replaced by, say, a,. The velocity-weakening model as
defined in this way fails to have a well-defined continuum
limit. The difficulty can be understood by examining the
linear growth rates for sinusoidal deformations on the
fault surface during slipping in the frictional weakening
regime. For a perturbation of the form U ~ exp(ikx —

ky + Q1), we find that
a=vaa-®-1  ©

K = ag,
Q=VvE+1/@-1) O
for velocity weakening. There is no apparent problem in
going to a continuum limit for the case of slip-weakening
friction; the smallest wavelengths remain marginally
stable. In contrast, for velocity weakening, the smallest
wavelengths are strongly unstable. A viscous force
of the form 7 83S5/8%xdt cures this difficulty in the
one-dimensional BK model [5,6] and is also useful in a
related two-dimensional model of ordinary fracture [15].
In our numerical integrations, we have used a finite-
difference scheme with a variety of grid spacings. We
have performed our numerical integrations using a finite,
rectangular grid of physical size L, by L, and grid
spacings 6x and dy. We impose periodic boundary
conditions in the x direction (along the fault) and a
zero-normal-derivative (Neumann) condition along the
boundary at y = L,. Because the plate is necessarily
finite in the y direction, we need to minimize the extent to
which elastic waves reflect back upon the fault from the
system’s outer edge at y = L,. To accomplish this, we
have added a layer of viscous damping to the equation of
motion (1) near the outer edge of the form 7 (y)V2aU /at,
with 7(y) rising smoothly from zero at y = 3L, /4 and
saturating at a value of 0.5 at the outer boundary. Our
finite-difference scheme steps forward in time using an
explicit Euler method which is first-order accurate in the
time step 6¢. Spatial derivatives, both in the bulk and on
the boundary, are accurate to O((6x)?,(8y)?). In all of
the calculations reported here we have used 7 = 0.2 and
o = 0.03. (This value of o may be unrealistically small
but is convenient for clarifying the distinction between
large and small events in these limited simulations.)
Beginning from an arbitrary nonuniform initial configu-
ration, our system evolves into a statistically steady state
with a rough configuration and a wide range of event
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for slip weakening, and

K = a,{},

sizes. Figure 1 shows a typical displacement field U
in a fully stuck configuration. The displacements are
inhomogeneously locked by the friction on the fault, and
decay exponentially into the bulk over length scales of
order unity.

Figure 2 shows a sequence of stuck configurations at
the fault boundary as the plate moves forward. Note
that there are many small events (most of which are
not visible) and fewer large ones, but almost all of the
forward motion occurs in the large events. One way to
characterize this complexity is to look at the differential
distribution R of event magnitudes u = logioM, which is
shown in Fig. 3. The moment M is the total slip on the
fault during an event:

M= [ [S,(x) — So(x)]dx., @®

where Sy and Sy are the initial and final configurations.
Just as in the one-dimensional cases, logoR(u) has a
straight-line scaling or power-law region with negative
slope b = 1 for small events, and a distinct peak for the
large events. The value of b for the small events is a
robust feature of our dynamic models, holding for both
slip and velocity weakening, and in lower dimensions as
well. (However, the medium events are exponentially
suppressed in the one-dimensional slip-weakening model,
perhaps because the dynamic instability is weakest in that
case.) We also show in Fig. 3 that these distributions are
insensitive to changes in the grid spacings. Of course,
as we decrease 6x, we add new small-scale events to
the bottom of the distribution. Aside from this effect,
the curves liec on top of one another to within our
statistical uncertainty. We have also checked that there
is no appreciable dependence of these distributions on the
dimensions of the system, L, and L.

19.0
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S(x,t)

150 ¢

13.0 : -
0.0 20.0 40.0 60.0

X

FIG. 2. A sequence of stuck configurations of the displace-
ment at the fault boundary. The area between subsequent con-
figurations is the moment M of an event. The lattice parameters
used in this figure are 6x = 0.15, 6y = 0.075, L, = 60, and
L, =3.75.
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FIG. 3. The differential magnitude distribution and a demon-

stration showing that these results are insensitive to changes in
the grid spacing. R(u) is the number of events with magni-
tudes between p and p + dp per unit fault loading per unit
fault length. The three curves differ only in their grid spacings
as shown. L, = 60 and L, = 3.75 for all curves. Also plotted
is a line of slope —1.

One respect in which the two-dimensional model dif-
fers from the one-dimensional version is the correlation
between the moment M and the source dimension A (the
size of the region that slips in an event). In the Earth,
this correlation is well fit over a wide range of source di-
mensions by an assumption of constant stress drop, which
implies that the average slip scales linearly with A.
Therefore, for our two-dimensional model, we expect
M ~ A%, The dashed lines in Fig. 4 indicate that we
see this behavior throughout the GR region, with M ~
oA? for the small events. The average slip M /A con-
tinues to increase with slip-zone size A up to and
beyond A = 1, which is our analog of the crust depth. A
similar phenomenon has been reported for real ecarth-
quakes by Scholz [16]. For the very largest events in
Fig. 4, we see M ~ A, which means that the average
slip becomes independent of slip-zone size. These are
delocalized events in which slip occurs in the form of
propagating, self-healing pulses which fit the scenario ad-
vocated by Heaton [9]. Analytic progress in understand-
ing aspects of these pulses has been made recently by
Langer and Tang [4], Myers and Langer [5], and Langer
and Nakanishi [15]. Details of the present results will be
reported elsewhere.

In conclusion, we have demonstrated that this two-
dimensional elastodynamic model with slip-weakening
friction along a homogenous one-dimensional fault
boundary produces slip complexity. We believe that
these results support the case that inertial dynamics and
frictional weakening are contributing in fundamental
ways to earthquake complexity.
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FIG. 4. The moment M as a function of the slip-zone size
A. The dots indicate individual events. The lower two dashed
lines have slope 2; the upper two lines have slope 1. o = 0.03
sets the stress drop of the small events.
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