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Complexity in a spatially uniform continuum fault model 

Bruce E. Shaw 
Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 

Abstract Recent.ly, Rice [1993] point.ed out that., up to now, the 
self-organizing models which have produced complex nonperiodic se
quences of events have all been sensit.ive t.o the spatial discretization 
used, and t.hus did not have a well defined continuum limit.. He went 
on the suggest. t.hat. spat.ial nonuniformit.y or "inherent. discret.eness" 
maybe a necessary ingredient. in allowing the complexit.y to develop 
in t.hese syst.ems. In t.his paper, I present. a count.erexample to this 
suggest.ion: a spat.ially uniform model wit.h a well defined cont.inuum 
limit. is shown t.o give rise t.o complex non periodic sequences. The 
complexit.y arises in t.he det.erminist.ic model from inertial dynamics 
wit.ha velocit.y-weakening frictional inst.abilit.y, wit.h the instability 
being st.abilized at. short. lengt.hscales by a viscous term. The numer-' 
ical result.s are shown t.o be independent. of t.he spat.ial discretization 
for discret.izat.ions small compared t.o t.he viscous lengt.hscale. Fur
thermore, t.he qualit.at.ive feat.ures of t.he complexit.y produced are 
seen to be invariant. wit.h respect t.o t.wo very different. types of small 
scale cut.offs, 'implying a universalit.y of t.he result.s wit.h respect to 
the det.ails of t.he small scale cut.off. 

1. Int.roduction 

Eart.h<luakes are complex in many ways. Where they occur, when 
they occur, how big t.hey are, and what. kind of shaking they produce, 
are just some of the complicated features we would like to under
st.and. In t.rying t.o develop models t.hat displayed the richness and 
complexity exhibited by eart.hquakes, seismologists were led to pro
pose models wit.h spat.ially inhomogeneous properties. The general 
belief was t,hat. material inhomogeneit.ies were essential to generate 
the observed complexity. Recent.ly, t.his point of view has been chal
lenged by a clas8 of models in which complexit.y arises along a uni
form fault from t.he self-organizat.ion of repeated rupt.ures when iner
t.ial effects and velocit.y-weakening frict.ion are included [Carlson and 
Langer, 1989]. In cont.rast., quasist.at.ic models which neglect inert.ial 
dynamical t.erms seem t.o require some degree of het.erogeneity in ei
t.her driving or mat.t>rial propert.ies, t.o produce complex sequences 
[Bak, Tang, alld WipseIlfdd, 1987; Xu, Bergersen, and Chen, 1992; 
Cowie, Van nest.e , and Sornet.t.e, HJD:l]. Real fault.s are, of course, 
spat.ially inhomogeneous, showing geomet.rical irregularities- fract.al 
fault. t.races, st.eps, and IWllds- as well as frict.ional variat.ions. The 
([uest.ion is whet.her it. is t.hese fixed irregularit.ies (which, while vary
ing 011 a g"ological t.im"scale, aI''' essent.ially unchanging over the 
t.imescale on which t.he complexit.y is occurring) which are t.he domi
nant. cont.rol of t.he complexit.y seen, or whet.her t.he dynamical fields 
which evolve during t.he eart.hquake cycle it.self- t.he stresses and 
st.rains- are t.he dominant. cont.rol. It. is clear that models where the 
dominant. cont.rol is fixed inhomogeneit.ies can show sufficient. com
plexit.y t.o mimic t.he observat.ions. The disadvant.age of t.hese models 
is t.hat. what. det.ermines t.he dist.ril;ut.ions of inhomogeneities remains 
unexplained, and how one might. measure t.he corresponding distri
but.ions fort.he real syst.em remains unclear. The hope would be that 
t.here might. be propert.ies of t.hese syst.ems t.hat. are, t.hough, somehow 
universal, and t.hus are independent. of the dist.ribut.ions of inhomo
geneit.ies. The abilit.y t.o circumvent t.his whole issue is a major reason 
why t.he spat.ially uniform models, which achieve complexity through 
dynamical inst.abilit.ies, appear so att.ractive. For the spatially uni
form self-organizing models, the question of whet.her they can show 
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sufficient complexit.y in t.he case relevant to real earthquakes- fully 
dynamic three dimensional elast.ic int.eractions- is still unanswered. 
The main t.hing st.anding in the way of answering this question is 
t.he numerical cost.liness of dynamic elast.icit.y. Typically, then, mod
els neglect eit.her t.he t.rue dynamic aspects or t.he long range elastic 
aspect.s, and st.udy a reduced less costly model. Thus the current 
sit.uat.ion regarding the self-organizing models is t.hat there are hints 
t.hat. t.hey may work t.o give sufficient. complexit.y in the full case of 
int.erest., but. no dear answers. Of comse, even if they did give suf
ficient. complexit.y, the Eart.h might still be in a regime where the 
fixed inhomogeneit.ies were dominant. As we learn more about what 
t.he self-organizing models can and cannot. do, though, the choice 
bet.ween t.he t.wo alternatives should become clearer. 

In a recent. paper, Rice [1993] has raised a serious concern regard
ing whether t.he self-organizing explanation can give rise to complex
it,y on a t.ruly spat.ially uniform fault. He point.s out that, up to now, 
all of the results from the self-organizing models have been sensitive 
to t.he spat.ial discret.izat.ions used. He furt.her comments on results 
from his numerical model, which involves t.he quasistatic evolution of 
three dimensional elastic interactions, and which contains no inertial 
term. Again, t.he fully dynamic case is too costly t.o study; he de
cides t.o make t.he tradeoff by neglecting the dynamic part. When he 
nilmerically evolves t.he syst.em wit.h sufficiently refined spat.ial dis
cret.ization so t.hat. t.he cont.inuum limit is well resolved, he gets only 
periodic sequences, while if the spat.ial discretization is made too 
coarse, so t.hat. the syst.em is "inherently discret.e" , he observes non
periodic complex sequences. He goes on t.o suggest. that this property 
may be true of all t.he self-organizing models as well: the complexity 
t.hey produce may be a result. of their inherent discret.eness, and that 
models with a well defined col!t.inuum limit. will not give complex 
non periodic sequences. This issue is fundament.al t.o t,he fixed ir
regularit.y versus self-organization debat.e, since if t.he self-organized 
models require a discollt.inuous nonuniform part.it.ioning of space t.o 
gen<'rat.e sutticit'nt. coll1plexity, t.hen t.hey t.oo ultimat.ely rest. on fixed 
irregularit.i"s. 

In t.his pal",r, I present. a count.erexample t.o Rice's suggest.ion. 
A spat.ially homogelle~\ls mod,,] wit.h a well defined cont.inuum limit. 
is shown t.o give a complex nonperiodic sequence of event.s, wit.h 
a dist.ribut.ion of sizp.s of event.s t.hat. is independent. of t.he spat.ial 
discret.ization. Previous work, by Horowit.z and Ruina [1989] found 
evidence t.hat. complex non periodic slip modes could develop in con
t.inuum fault. models wit.h a number. of unst.able modes. Because 
of t.he numerical costliness of t.heir model, however, t.hey were not 
able t.o st.ndy t.he self-organized complexit.y t.hat. can arise in t.hose 
models. Here, I present. an example of a cont.inunm fault model 
which dynamically generat.es self-organized complexity. The partic
nlar form of complexit.y produced shows, generically, a power law 
dist.ribut.ion of small event.s, and a peak of large events, with both 
feat.ures being seen for two very different types of small scale cutoffs. 

The model used here differs in t.hree import.ant. ways from the 
model Rice used: t.he dimensionalit.y of t.he space used here is smaller, 
fully dynamic int.eractions are solved here as opposed to quasistatic 
int.eractions used by Rice, and, finally, the constitut.ive laws relating 
frict.ion t.o mot.ion Oll the fault are different. Which of these differ
ences may be crucial t.o t.he different. answers obt.ained- complexity or 
nol.- and, more import.ant.ly, which is relevant. for earthquakes? The 
reduced spat.ial dimension used here is a signi.ficant alteratioll , and it, 
is essent.ial t.hat. highe~ spat.ial dimensional ext.ensions of this model 
continue t.o show complexit.y if the results are to be relevant to earth
quakes. This quest.ion is as yet. unanswered, and is a t.opic of current 
research. The simplified t.emporal dynamics used by Rice is also a 
severe alteration wit.h respect. t.o t.rue elast.odynamics; by the same 
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t.oken, extensions of Rice's model which include complet.e temporal 
dynamics are also crucial t.o its relevance t.o earthquakes. The final 
difference, in the const.itut.ive law, is a complex issue that, despite ef
fort.s in the laborat.ory, has not. been resolved. We really do not know 
what effective constitutive equations are relevant at the slip rates, 
pressures, and t.emperatures where earthquake occur in t.he presence 
of gouge, fluids, and fractured surrounding rocks. Rice has chosen 
to use constitut.ive laws obt.ained from laboratory measurements of 
materials at relatively low slip rates [Dieterich, 1979]. There is, how
ever, a fundamental problem that arises if one tries to directly apply 
laborat.ory derived constitutive relations to earthquake settings, and 
that is that so much heat would be generated from frictional slid
ing that rocks would melt [McKenzine and Brune, 1972]. As this 
is rarely seen [Sibson, 1975]' and would, in any case, substantially 
alter the const.itutive equat.ions, some other effect must be going on. 
The,e are a number of possibilities, including ones involving pore 
fluids [Sibson, 1973] and ones involving new modes of rupture [Shal
lamach, 1971; Brune, 1994], any of which could substantially alter 
the constit.ut.ive equat.ions that. represent the effect.ive friction in an 
earthquake. In t.he absence of a sufficient underst.anding of what con
st.it.ut.ive relations do apply t.o real eart.hquakes, t.he best. any of us can 
do is discuss what. classes of relat.ions have what. effects. I have made 
a different. choice than R.ice, choosing t.o look at. t.he ;implest con
st.it.ut.ive relat.ions; in t.his case, t.hat. means no hist.ory dependence. 
Despit.e all t.hese differences, and t.he unanswered quest.ions relat
ing t.he work t.o real eart.hquake, t.his work does address one impor
t.ant. point. concerning t.he role of discret.eness in dynamical models: 
geometrical irregularities or "inherent discreteness" is not a neces
sar'y conciition for prociucing complex non periodic sequences. 

2. The Model 

The model is a part.ial different.ial equat.ion representing the evo
lut.ion of slip S along a fault. [Myers and Langer, 1993] 

(1) 

where t is t.ime and ;r: is space. This is Newton's equation in dimen
sionless form for t.he acceleration of t.he slip S subject to four forces: 
a compressional st.ress 82 SI 8;r:2, a shear st.ress vt - S, where v is the 
fault. loading rat.e, a nonlinear friction ¢ which is a function of the 
velocit.y, and a viscous force of st.rengt.h 'I. All the complexity arises 
from a dynamical inst.abilit.y associat.ed wit.h ¢, which is a stick-slip 
velocit.y-weakening friction. By st.ick-slip, we mean .the friction re
sists sliding up t.o a t.hreshold force; once this threshold is exceeded, 
sliding occurs. By velocit.y weakening, we mean t.hat the friction 
get.s smaller as t.he velocit.y get.s bigger, for some range of velocities. 
When the frict.ion is velocit.y st.rengt.hening when evaluated at the 
slip rat.e v, t.he solut.ion 8S18t = v is st.able. When it is weakening 
t.here, however, t.his solut.ion is unst.able, and a non constant motion 
ensues. 

The particular form of ¢ used here is: 

8S _ {(-OO, 1], ~~ = 0; 
¢( EJt ) - 1-u 8S 

1+ 1.':. ¥. ' [), > o. 
(2) 

While the t.ot.al forces on t.he fault remain less than the threshold 
force of 1, the fault remains st.uck wit.h as I 8t = 0 , and is slowly 
loaded at rate v <t: 1. When t.he threshold force is exceeded, the fault 
begins to slide wit.h initial accelerat.ion u. As the velocity initially 
increases, the friction decreases with t.he velocity at a rate Q. The 
velocity weakening is a crucial ingredient; a linear stability analysis 
shows that all Fourier modes wit.h wavelengths larger than 27r~ 
are unstable when sliding in the velocity weakening regime. 

The velocity weakening also causes pulses of slip to sharpen into 
shock fronts. The dynamics then becomes sensitive to the small 
lengthscale in t.he problem. The new t.erm in this equation is the 
viscosity TJ83 S18x 28t , which has been added t.o give t.he equation a 

small lengt.hscale which then allows a well defined continuum limit 
[Myers and Langer, 1993; Langer and Nakanishi, 1993]. Together, 
t.he frict.ion ¢ and t.he viscosit.y define t.he const.it.ut.ive laws used here 
t.o relate dissipat.ion on t.he fault. t.o mot.ions on it. 

To solve t.his equat.ion numerically, a finit.e difference approxima
t.ion of t.he spat.ial deri vat.i ves are used: 

(3) 

where j is t.he label of t.he ph element, and t.he parameter a repre
sent.s t.he degree of refinement. of t.he lat.t.ice, wit.h t.he small cutoff 
lengt.hscale being IL, and IL -> 0 being t.he cont.inuum limit. This 
discret.ized equat.ion wit.hout. t.he viscous t.erm, set.t.ing TJ = 0, is the 
classic Burridge-Knopoff model [Burridge and Knopoff, 1967]. Pre
vious work wit.h 'I = 0 found t.hat. complex sequences of events were 
observed wit.h a power law distribut.ion of small event.s and a peak of 
large event.s above t.he ext.rapolat.ed small event distribution [Carlson 
and Langer, 1989]. This dist.ribut.ion was seen t.o be sensitive to the 
spat.ial discret.izat.ion, however, wit.h bot.h t.he small and large events 
scaling wit.h II [Carlson, Langer, Shaw, and Tang, 1991]. The main 
result of t.his paper is the demonstration that the addition of the 
viscous t.erm '183 S18;r:28t , which introduces a smalliengthscale 

(4) 

below which the equation is stable, displays complex behavior that 
is essent.ially independent. of a, for a small enough compared to f. 

The small paramet.er 7] replaces the small length a as being relevant 
in setting t.he lower cut.off of the small event power law region, and 
the upper cutoff of t.he size of the largest event.s. For these two 
very different. t.ypes of small scale cut.offs, the distribution of sizes of 
event.s looks very similar. This result point.s out the universality (i.e. 
insensit.ivit.y) of t.he complexit.y produced with respect to the details 
of t.he physics of t.he small scale cutoff. 

3. Results 

Beginning from any non smooth initial condition, the system 
evolves wit.hin a few loading cycles to a stat.istically steady state, 
wit.h a broad dist.ribut.ion of sizes of events. As in the case of 7] = 0, 
t.here are t.wo different. types of behavior displayed by the model. 
When Q;S 1, t.here are only small event.s which scale with u. In 
cont.rast., when Q 2; 1, t.here are small events that scale with u and 
large events t.hat. scale wit.h 1. While Q is a crucial parameter in 
t.he problem, the value t.hat. best corresponds with the Earth is very 
uncertain. Fort.unat.ely, from t.he point of view of the model, the im
portant question is only whether Q is small or large compared to 1; 
the two different t.ypes of behavior depend on whether Q is small or 
large, but the behavior is otherwise relatively insensitive to the ex
act value of Q, with the velocit.y-weakening friction we examine here. 
Since the large Q case is somewhat. more robust and interesting, pro
ducing bot.h small and large event.s, we will focus our attention on it 
in t.his paper. 

The size of an event is given by the moment, which is the sum 
of slips 6S of all t.he blocks t.hat. moved during an event: 

. (5) 

where t.he fact.or II comes in because each element. is size o. The 
magnit.ude of an event. is just. t.he logarit.hm of t.he moment 

. (6) 

In Fignres 1-:3 t.he rat.e R of event.s (per unit. fault. lengt.h per unit 
loading t.ime) having magnit.udes bet.ween Jl and Jl + fiJI is plotted. 
The friction paramet.ers IX and u are held fixed, wit.h (X = 6 and 
u = .01 ill all t.he figmes, while II and TJ are varied. The result.s 
shown are generic for a broad range of (X and u, holding for u small 
(". < 1) and (X large (x 2; 2 ). Periodic boundary condit.ions are 
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Fig. 1. The dist.ribut.ion of sizes of event.s for t.he small lengthscale 
being <t. The different.ial rat.e of event.s R(J1.) having magnitudes be
t.ween JI- and II. + <il'. is plot.t.ed. The rat.e is expressed as t.he number 
of event.s per unit. fault loading per unit. fault length. The two differ
ent curves differ only in t.he value of a, having the same parameters 
a = 6, 0" = .01, and 1] = o. The top curve has a = .25 while the 
bottom curve has a = .125 . Each curve has two different types of 
events. The small event.s show a power law in the rate versus mo
ment, seen in t.he st.raight line on the log R versus magnitude (log M) 
plot. The large event.s occur at a rate that is larger than the rate 
that would be obt.ained by ext.rapolating from the small event rate. 
Note t.hat. the distribut.ion contini!es to change as a changes. 

o+-----~------~----~----~------+ 

cc -5 

E 

-10 

-15 -10 -5 o 5 10 

Fig. 2. The dist.ribut.ion of sizes of event.s, for the distribution going 
from depending on II to depending on 1]. to (. As in Figure 1, the 
rate of event.s R versus magnitude J1. is plotted. The different curves 
are for fixed a = 6, 0" = .01, a fixed nonzero 1] = .02, and differing 
ll. These values of 1] and a correspond to a value of f = .25 . The 
values of a shown are decreased by a constant factor of .j2, with a = 
.353, .250, .176, .125, .088" and .062 plotted. Not.e the transition 
from a dist.ribut.ion that. depends on a, to a limiting distribution 
that collapses onto a curve that is independent of a. This transition 
occurs at around a = .15, which is of order f. 

used. The system size is N, but. as long as N is large enough, and 
v <t: 1/ N, t.he largest. events will be smaller than the system size, 
and N does not enter int.o the problem. In Figure 1,1] = 0, while a 
is varied. The change in t.he distribution as a function of the small 
lengthscale II can be seen. Not.e that. while the smallest and largest 
event.s scale wit.h a [Carlson, Langer, Shaw, and Tang, 1991], the 
magnitude where t.he transit.ion between the power law small events 
and peak oflarge events occurs is independent. of a, and the exponent 
of the power law dist.ribution of small event.s is also independent of 
a [Carlson and Langer, 1989J. 

In Figure 2, 1] = .02, and again a is varied. Here, we can see the 
crossover as a becomes small enough and t.he distribution becomes 
independent of a. When a becomes small enough, all the curves col
lapse ont.o the same dist.ribut.ion. The only difference between the 
curves is t.he cutoff of the very smallest events, which scale as O"a

3 , 

with the II -+ 0 limit being well defined. Finally, in Figure 3, two 
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Fig. 3. The distribution of sizes of events for the distribution de
pending on 'I, for t.wo different values of 1]. As in Figures 1 and 2, 
R(J1.) is plot.ted for fixed Q = 6, 0" = .01. Here, two different values 
of 1] are shown: 1] = .25 and T} = .0625. Two different values of 
a are used for each value of T}. Since a is small enough the curves 
having the same T}, but different a, collapse onto each other. The 
two solid curves have a = .0625 and two different values of T}, with 
T} = .25 and T} = .0625 . The are also two dashed curves, which have 
a = .25 and the same two T} values as the solid curves, T} = .25 and 
T} = .0625 ; since the dashed curves overlay the solid curves so well, 
they are difficult. to see. Note the similarity of these distributions, 
~hich depend on T}, as compared to the distributions in Figure 1 
which depend on a- two very different types of small scale cutoff. 
Not.e also the similarity of the change in the dist.ribution with f seen 
here, as f is changed by a fact.or of 2, compared to the change in the 
dist.ribut.ion in Figure 1 when a is changed by a fact.or of 2. 

different. values of 'I are used, T} = .25 and T} = .0625, along with two 
different. a's, which are small enough so they collapse onto the contin
uum limit dist.ribut.ions. Here, the curves having different values of 
a but. t.he same value of T} collapse ont.o the same distribution, while 
t.he two different. values of 'I yield different. distributions. Note that 
t.he change in t.he dist.ribut.ion when the smaillengthscale is changed 
by a factor of 2 (corresponding t.o t.he change in T} of a factor of 4) in 
Figure 3 looks very similar t.o the change in t.he distribution under a 
factor of 2 change in t.he small lengthscale in Figure 1. 

4. Conclusion 

What is the relevance of the complexity produced by this model 
with respect to real earthquakes? Two big questions arise when we 
try to answer this one. First, the model used only 1 dimensional 
elastic interactions, which are all short range, while the higher di
mensional elasticity of real faults produces interactions between dis
tant parts of a fault. Whet.her or not higher dimensional extensions 
of the model continue t.o produce complexity is the key open ques
tion, a concern also raised by Rice [1993] (the 2 dimensional case 
will be sufficient. to answer t.he quest.ion, and is an active area of 
current research). The second set. of questions, assuming that the 
higher dimensional models do cont.inue to produce complexity, is 
what. types of const.it.ut.ive laws produce what types of complexity, 
and how we might. dist.inguish bet.ween different constitutive laws, 
whether through the t.ypes of complexity produced, through labora
t.ory measurement.s incorporat.ing t.he full range of relevant physical 
processes occurring in eart.hquake set.t.ings, or through a derivation 
of a const.it.ut.ive law from physical processes. 

In t.his paper we I! ave seen t.hat. a spat.ially uniform self-organizing 
model wit.h a well defined cont.inunm limit. can produce complex non
periodic bdlavior. This provides a count.erexample t.o the conjecture 
of Rice [1993] t.hat. "inherent. discret.eness" might be an essential in
gredient. in allowing t.he sdf-organizing models t.o produce complex
it.y. An addit.ional result. was t.hat. t.he qualit.at.ive feat.ures of the 
complexit.y produced by t.he model were invariant. wit.h respect to 
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t.wo very diffe~ent, t,ypes of small scale cut.offs, suggesting a univer
salil,y of the complexit.y with respect to t.he details of the small scale 
cut.off. 
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