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ABSTRACT 

 

Which Approaches Do Students Prefer? 

Analyzing the Mathematical Problem Solving Behavior 

of Mathematically Gifted Students 

 

Hartono Hardi Tjoe 

 

This study analyzed the mathematical problem solving behavior of 

mathematically gifted students. It focused on a specific fourth step of Polya’s (1945) 

problem solving process, namely, looking back to find alternative approaches to solve the 

same problem. Specifically, this study explored problem solving using many different 

approaches. It examined the relationships between students’ past mathematical 

experiences and the number of approaches and the kind of mathematics topics they used 

to solve three non-standard mathematics problems. It also analyzed the aesthetic of 

students’ approaches from the perspective of expert mathematicians and the aesthetic of 

these experts’ preferred approaches from the perspective of the students. 

Fifty-four students from a specialized high school were selected to participate in 

this study that began with the analysis of their past mathematical experiences by means of 

a preliminary survey. Nine of the 54 students took a test requiring them to solve three 

non-standard mathematics problems using many different approaches. A panel of three 



 

research mathematicians was consulted to evaluate the mathematical aesthetic of those 

approaches. Then, these nine students were interviewed. Also, all 54 students took a 

second survey to support inferences made while observing the problem solving behavior 

of the nine students. This study showed that students generally were not familiar with the 

practice of looking back. Indeed, students generally chose to supply only one workable, 

yet mechanistic approach as long as they obtained a correct answer to the problem. 

The findings of this study suggested that, to some extent, students’ past 

mathematical experiences were connected with the number of approaches they used when 

solving non-standard mathematics problems. In particular, the findings revealed that 

students’ most recent exposure of their then-AP Calculus course played an important role 

in their decisions on selecting approaches for solution. In addition, the findings showed 

that students’ problem solving approaches were considered to be the least “beautiful” by 

the panel of experts and were often associated with standard approaches taught by 

secondary school mathematics teachers. The findings confirmed the results of previous 

studies that there is no direct connection between the experts’ and students’ views of 

“beauty” in mathematics.  
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Chapter I: INTRODUCTION 

 

Need for the Study 

Problem solving has been the focus of research in mathematics education for 

many years. The National Council of Teachers of Mathematics stated in the Principles 

and Standards for School Mathematics that: 

Problem solving means engaging in a task for which the solution method 
is not known in advance. In order to find a solution, students must draw on 
their knowledge, and through this process, they will often develop new 
mathematical understandings. Solving problems is not only a goal of 
learning mathematics but also a major means of doing so… Problem 
solving is an integral part of all mathematics learning, and so it should not 
be an isolated part of the mathematics program. (NCTM, 2000, p. 52) 
 

Problem solving has also been examined from many different points of view (Karp, 

2007b; Kilpatrick, 1985; Lester, 1994; Schoenfeld, 1985; Schroeder & Lester, 1989; 

Silver, 1985; Stanic & Kilpatrick, 1988). 

The seminal work of Polya (1945) identified four steps in the process of solving 

mathematics problems. These steps consist of understanding the problem, devising a plan, 

carrying out the plan, and looking back. Not all of the four steps, however, have received 

equal attention in problem solving research. For example, the second step, devising a plan, 

gained interest in the mathematics education community (Schoenfeld, 1985), but the 

fourth step, looking back, has attracted much less consideration so far (Lee, 2009). 

In recent years, solving mathematics problems using many different approaches 

has drawn more attention than before. Some researchers, in fact, considered such practice 

to be beneficial for students’ mathematics learning experience (Tabachneck, Koedinger, 

& Nathan, 1994). Certainly, this consideration appears warranted with evidence of 
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students’ learning outcomes, albeit conflicting evidence (Große & Renkl, 2006). In 

addition, problem solving can be analyzed in the preparation of mathematics teachers 

(Leikin & Levav-Waynberg, 2007; Silver et al., 2005). 

Teaching and learning experiences are not the only focus of research in solving 

mathematics problems using many different approaches. Another focus involves 

investigating why some people solve one particular problem using different ways than 

others do. Some researchers have analyzed students’ choice of approaches based on 

certain mathematics topics (Nesher et al., 2003). Others have explored the question of 

selecting a particular problem solving approach from an aesthetic point of view (Dreyfus 

& Eisenberg, 1986; Karp, 2008; Silver & Metzger, 1989; Sinclair, 2004). Typically, a 

problem solving approach is “beautiful” if it is particularly clear, simple, and unexpected. 

Cognitive psychologists, in addition to mathematics educators, have also been 

interested in studying choices of problem solving approaches (Siegler, 1983). In 

particular, they examined how the order in which approaches are presented affects the 

whole process of thinking in problem solving. Their investigations, primarily on basic 

arithmetic skills, pointed towards an understanding of the development of approaches and 

the interactions among those approaches (Geary & Brown, 1991; Roberts et al., 1997). 

It can be inferred thus far that research in mathematics education needs more 

analysis to explain the thinking processes involved in problem solving. Even existing 

research in cognitive psychology has typically concentrated on (limited) elementary 

school mathematics topics (Star, 1999). A joint effort from both fields in mathematics 

education and cognitive psychology is clearly needed. Interpreting the cognitive 
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rationales for selecting certain approaches over many other approaches in solving 

advanced mathematics problems is an important area that still requires further study. 

To access numerous different approaches to solving the same problem, one would 

need subjects capable of conceptualizing multiple approaches. Consideration for subjects, 

then, is crucial. One can start with a group of individuals who, as a whole, are more 

motivated to problem solve. One may alternatively consider individuals who are 

consistently more capable of producing a greater number of different approaches with 

less effort than others. To this end, problem solving for mathematically gifted students is 

one possible choice. 

One attribute that allows gifted students to use many different approaches is 

creativity (Renzulli, 1986; Tannenbaum, 1983; Ervynck, 1991; Silver, 1997; Sriraman, 

2005). The question then becomes how to locate and further delve into the presence of 

such creativity among mathematically gifted students. It is therefore important to reflect 

on which assessment is appropriate to elicit mathematical creativity from such students. 

Some researchers recommend non-standard mathematics problems as an effective means 

of exploring mathematical creativity in connection with mathematically gifted students 

(Leikin & Lev, 2007). 

Past studies have led to a much needed, quite possibly neglected, path of 

investigation. Research in mathematics education demonstrates that problem solving 

using many different approaches improves students’ learning experiences. Explanations 

from within the mathematics education field about how students choose a particular 

approach have usually been limited to a specific branch in mathematics (e.g., algebra) or 

to the aesthetic considerations of subjects not at the high school level. Research in 
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cognitive psychology reveals that approaches interact with each other in a successful 

problem solving process. Rationales for the choice of approaches from this field are 

limited to only elementary school mathematics topics (e.g., counting). Thus, it remains 

unclear whether cognitive processes do affect the unique preferences of gifted students 

for certain approaches in advanced mathematical problem solving. By synthesizing the 

literature from the fields in mathematics education and cognitive psychology, it may be 

possible to make a connection to teaching mathematically gifted students, specifically at 

the high school level, in order to fill this gap in the research. This is important to consider 

because gifted students likely provide a greater variety of problem solving approaches 

than other students (Krutetskii, 1976). 

Purpose of the Study 

This study is an effort to analyze the mathematical problem solving behavior of 

mathematically gifted students at the high school level. It attempts to examine: how the 

many different approaches become readily available to them, and whether any of these 

approaches are more favorable to them than others. 

The current study is, in part, based on the study by Nesher et al. (2003) on 

preferred approaches. Nesher et al. investigated mathematical processes that affect 

students’ choices of many approaches to algebra problems. The current study examines 

students’ thinking processes in solving problems in several different branches of 

mathematics. Based on a study by Leikin and Lev (2007) on mathematical creativity, the 

current study builds upon their recommendation to use non-standard mathematics 

problems as productive measures of mathematical creativity. Criteria such as number of 

approaches also are not limited in the current study. The current study takes into account 
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the mathematical aspect of aesthetic as well. Finally, it allows for a cognitive 

psychological examination of interactions among those approaches and the students’ 

thinking processes. 

Similar to Dreyfus and Eisenberg’s (1986) study on aesthetic appreciation, the 

current study inquires into the aesthetic feelings leading to the formation of approaches in 

mathematical problem solving. Its focus on a group of high school students rather than on 

a group of college-level students is particularly appealing because of the limited research 

available on this group in the analysis of mathematical aesthetic. The current study also 

seeks to examine the interactions among approaches by looking at opportunities to 

replicate similar analyses, as conducted by Geary and Brown (1991). Instead of focusing 

on how young children use certain approaches for simple addition problems, the current 

study concentrates on how high school students select and use specific approaches to 

solve advanced mathematics problems. 

In essence, the present research combines studies of students’ mathematical 

problem solving experiences from mathematics education, gifted education, and 

cognitive psychology (see Figure 1). It analyzes mathematical creativity via many 

different problem solving approaches and specifically explores mathematical and 

cognitive reasons for preferred approaches. Finally, it examines the presence of aesthetic 

appreciation for particular approaches. 
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Figure 1. Domains and Sub-Domains of Analysis 

 

Research Questions 

This study aimed to explore influences on the preferences of problem solving 

approaches of mathematically gifted students at the high school level. It analyzed the 

development of such preferences from the perspectives of mathematics education and 

cognitive psychology. The following research questions guided the study: 

1. How do gifted students’ past mathematical experiences affect the number of 

approaches they used when solving non-standard mathematics problems? 

2. How are gifted students’ past mathematical experiences connected with the 

mathematics topics involved in their solutions? 

3. To what extent are gifted students’ approaches considered “beautiful” by 

experts? 

4. To what extent are experts’ preferred approaches considered “beautiful” by 

gifted students? 
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Procedures of the Study 

Any study of mathematical problem solving, gifted education, and cognitive 

learning should make use of both qualitative and quantitative approaches and be solidly 

grounded in current literature. A review of this literature is presented in Chapter II. 

This study involved 54 mathematically gifted students selected from a specialized 

high school in New York City. During the data collection, they were enrolled in an 

Advanced Placement (AP) Calculus course. In addition, three research mathematicians 

with no Columbia University affiliation participated as a panel of experts. 

This study used five main instruments: 1) students’ preliminary survey, 2) 

students’ test, 3) experts’ evaluation, 4) students’ follow-up interview, and 5) students’ 

validation survey. The preliminary survey was administered to provide details about the 

descriptions of students’ past mathematical experiences. Of the 54 students, nine students, 

who were highly recommended by their AP Calculus teacher, took a test with three 

mathematics problems. They were specifically asked to provide as many different 

approaches as they could for each problem on the test. The three research mathematicians 

who served as a panel of experts were consulted to evaluate the aesthetic value of the 

students’ approaches, in addition to other approaches that the researcher had prepared 

beforehand. Follow-up interviews were conducted with the nine students to examine their 

choice of presenting approaches and their reactions to the experts’ preferred approaches. 

A validation survey was conducted with all 54 students to strengthen the inferences made 

from the problem solving behavior of the nine students. 

To answer the first and second research questions, the researcher analyzed the 

past mathematical experiences of the nine students who took the test. In particular, a list 
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of their mathematics courses, standardized tests, and other related mathematical 

experiences were compared with their test performances for: 1) the number of successful 

approaches which they supplied on the test (in connection with the first research 

question), and 2) the mathematics topics involved in their solutions (in connection with 

the second research question). To answer the third research question, the successful 

approaches supplied by the nine students on the test, as well as the approaches chosen by 

the 54 students in the validation survey as their first approach, were assessed according to 

the findings from the experts’ evaluation of the aesthetic value. To answer the fourth 

research question, the findings from the interviews with the nine students who took the 

test, as well as those from the written responses provided by the 54 students in the 

validation survey, were analyzed for their aesthetic reactions towards the experts’ 

preferred approaches. 

Organization of the Study 

This study is organized into six chapters. Chapter I, Introduction, presented an 

overview of the need for the study, the purpose of the study, the research questions, and 

the procedure of the study. 

Chapter II, Literature Review, describes past studies from the fields of 

mathematics education, gifted education, and cognitive psychology. It begins with 

interpretations and definitions of mathematical problem solving using many different 

approaches. It continues with expositions of different perspectives and recommendations 

on this pedagogy, along with students’ learning experiences. It also offers explanations 

from the point of view of cognitive psychologists for the development, interactions, and 

choices of problem solving approaches. Given the study’s focus on students of gifted 
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abilities, the chapter concludes with research on mathematical creativity in gifted 

education. 

Chapter III, Methodology, details the research design of this study. It describes 

the criteria of selecting the 54 mathematically gifted students and the three research 

mathematicians who served as an expert panel. It also explains the procedure used to 

assess students’ problem solving approaches through the experts’ evaluation and the 

students’ follow-up interview, and concludes with a discussion of the students’ validation 

survey. 

Chapter IV, Findings from Phases 1 and 3: Students’ Preliminary Survey and 

Experts’ Evaluation, describes the mathematical background of the subjects and the 

aesthetic evaluations of the panel of experts. Chapter V, Findings from Phases 2 and 4: 

Students’ Test and Students’ Follow-up Interview, describes the problem solving 

experiences of the nine students who took the test in terms of their test performance and 

interview responses. Chapter VI, Findings from Phase 5: Students’ Validation Survey, 

describes the 54 students’ choices of problem solving approaches and their attitudes 

towards problem solving using many different approaches. 

Chapter VII, Summary, Conclusions, and Recommendations, recapitulates the 

study and highlights selected findings of significant consequences. It discusses the 

study’s limitations and presents a discussion of recommendations for future research and 

for classroom practice. 
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Chapter II: LITERATURE REVIEW 

 

Problem Solving: An Overview 

Contemporary literature in mathematics education indicates that problem solving 

is a popular topic. Many issues have been discussed on problem solving in connection 

with many different topics in mathematics education. The important place of problem 

solving in school mathematics is understandable, given its strategic role in teaching and 

learning mathematics. A number of pedagogical approaches have been proposed to 

incorporate the problem solving experience in everyday mathematics classrooms. The 

topic has drawn considerable interest and attention from not only mathematics school 

teachers and mathematics educators, but also research mathematicians. 

One research mathematician of Hungarian origin, George Polya (1945), was 

among several who made important contributions to the field of mathematics education. 

He analyzed how professional mathematicians solved mathematics problems and 

advocated that anyone could use problem solving in learning mathematics. He 

enumerated four distinct steps in the process of mathematical problem solving: 1) 

understanding the problem, 2) devising a plan, 3) carrying out the plan, and 4) looking 

back.  

The first step, understanding the problem, begins with the identification of what 

the problem is asking for; that is, it is necessary to figure out the question being asked. 

For this purpose, it is important to recognize all available data in the problem. This also 

suggests being able to determine and differentiate necessary, sufficient, relevant, 
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redundant, and contradictory conditions from the given information. Additional facts may 

be further derived from drawing appropriate figures or introducing suitable notations. 

The second step is devising a plan. A well-devised plan makes the most of the 

straightforward connection between the data and the unknown. In addition, it also builds 

on comparably similar problem solving experience from the past. It is therefore important 

to think about analogous problems which may vary in appearance, from the structure of 

the data presented to the construction of the unknowns being requested. The use of 

similar techniques or established results in solving those related problems facilitates the 

way in which the problems are restated differently. Polya himself discussed many 

heuristic strategies to solve mathematics problems. They include: drawing a picture, 

solving an analogous simpler problem, considering a special case to find a general pattern, 

working backward, and adopting a different point of view. 

The third step is carrying out the plan. Once the plan has been devised, carrying 

out the plan follows immediately. At this point, it is critical to carry out each step of the 

plan carefully. It is also no less important to be able to prove that each step is indeed 

logically correct. 

The fourth step is looking back. A solved problem does not mean that the process 

of problem solving has ended. In retrospect, it is necessary to examine the obtained result 

by checking the argument along the way. Alternatively, it is valuable to derive the 

obtained result by using a different approach. Finally, this obtained result and many 

different approaches involved in deriving the result should be coordinated for future 

problem solving experience. 
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Polya devoted much time to supplying his model of problem solving with 

concrete exemplars. The model, as a result, gained many enthusiasts from a larger 

audience. He convinced them that problem solving processes were not only accessible for 

research mathematicians, but could also be utilized by and applied to the learning 

purposes of broader audiences. Many researchers in mathematics education have 

examined Polya’s model of problem solving comprehensively and systematically. A 

review of prior literature reveals that much attention has focused specifically on the first 

three steps. In fact, many researchers were more attracted by the second step, devising a 

plan (Schoenfeld, 1985), and, understandably, this is what most classroom practitioners 

look for in their students to develop and implement in learning mathematics. This was, 

after all, the exigent reason why the model was constructed in the first place. 

The truth is that Polya’s model of problem solving does not end at the third step. 

The mathematics education community, however, seems to have done little to move 

forward and become aware of the fourth step, looking back. Only a limited number of 

studies in mathematics education have examined students’ use of alternative approaches 

in problem solving. Some researchers in this field have been particularly successful in 

exploring the use of mathematical tasks requiring students to solve the same problem in 

many different approaches. 

Problem Solving Using Many Different Approaches: Definitions and Interpretations 

In order to describe a definite meaning of many different approaches, it is 

necessary to offer a common language. This becomes even more important because of the 

several distinct yet synonymous terminologies used in the current literature. Each will be 
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explained along with the described problems and evaluated in relation to the purpose of 

the present study. 

Leikin and Levav-Waynberg (2007) introduced the term “multiple-solution 

connecting task.” In principle, they defined such a task as “one that may be attributed to 

different topics or to different concepts within a topic of the mathematics curriculum, and 

therefore may be solved in different ways” (p. 350). They especially considered the 

following three types of mathematical connections: 

1. Connections based on similarities and differences between various 

representations of the same concept (see Appendix A). 

2. Connections between different mathematical concepts and procedures (see 

Appendix B). 

3. Connections between different branches of mathematics (see Appendix C). 

In their study, Leikin and Levav-Waynberg (2007) also asked teachers for their 

interpretations of the meanings of problem solving in different ways. One of the teachers 

tackled three interpretations at once in a way that is more appropriate for the purpose of 

the current study: 

Maybe we’ll sort different types of solutions into different groups. Say, for 
example now, it occurred to me that you could solve the same exercise 
differently: graphically or algebraically [different representation]…. By 
way of algebra you may solve [systems of equations] using the linear 
combination method or by substitution: these are two different ways 
[different tools within one topic]. A problem in space [geometry] can be 
solved by using vectors or trigonometry [tools associated with different 
topics]. (Leikin & Levav-Waynberg, 2007, p. 362) 
 
Moreover, Silver, Leung, and Cai (1995) used the terms “multiple solutions,” 

“solution methods,” and “solution strategies” interchangeably. In addition, they also used 

the term “modes of explanation.” They conducted a comparative study using a marble 
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arrangement problem (see Appendix D), which was simple yet complex enough to 

provoke students’ use of many different explanations in solving it. The researchers 

categorized “multiple solution strategies” into enumeration, grouping, and restructuring 

(see Appendix E). They also identified “modes of explanation” as either visual, 

verbal/symbolic, mixed, neither, or inconsistent (see Appendix F). On one hand, the 

categorization of “multiple solution strategies” is reasonable, but the choice of the 

problem allows limited analysis of different mathematics topics. On the other hand, the 

identification of “modes of explanation” is useful in assessing students’ cognitive 

understanding of how they solve the problem.  

As a whole, the descriptions of “multiple solution strategies” and “modes of 

explanation” are close to what was needed in the current study. The current study, 

however, more often uses the expressions “many different approaches” or “many 

different ways” to solve mathematics problems. An approach or a way of mathematical 

problem solving can be understood as an active process in arriving at an answer. It is 

dissimilar from a solution or a strategy, which can be interpreted as a well-furnished 

explanation of an answer. In the same manner, an answer or a result can be interpreted as 

a final complete product that the problem seeks to solve. The development of 

mathematical thinking in problem solving, then, is best viewed through the lens of many 

different approaches. 
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Problem Solving Using Many Different Approaches:  

Different Perspectives and Recommendations 

Perspectives of Mathematics Educators 

Despite lacking a certain systematic framework of analysis, mathematics 

educators have initiated preliminary dialogue on this topic in recent years. As with any 

potential development of a pristine research study, considerations should begin by 

reflecting on its objectives. Many earlier discussions were based on a variety of proposed 

benefits from the use of different problem solving approaches. 

Silver et al. (2005) believed that students “can learn more from solving one 

problem in many different ways than [they] can from solving many different problems, 

each in only one way” (p. 288). They particularly advised students interested in 

mathematics to obtain more experience in problem solving with many different 

approaches. They regarded such experience as having “the potential advantage of 

providing students with access to a range of representations and solution strategies in a 

particular instance that can be useful in future problem-solving encounters” (p. 288). 

They also considered the use of many different approaches in order to “facilitate 

connection of a problem at hand to different elements of knowledge with which a student 

may be familiar, thereby strengthening networks of related ideas” (p. 288). 

In order to compare their beliefs within common classroom practice, these 

mathematics educators interviewed several middle school mathematics teachers. Some of 

the teachers indeed shared similar views. First, these teachers valued a student-centered 

classroom environment. They welcomed an open classroom discourse on students’ use of 

different problem solving approaches. This warm gesture created a sense of acceptance 
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among every student in the classroom. “[I]nstead of focusing on just one student,” one of 

the teachers explained that it was important to “help everyone feel comfortable to give 

their opinion, or share their strategy or their way of how they looked at it …” (Silver et 

al., 2005, p. 292). Another teacher expressed a way to facilitate discussions among 

students about the similarities, differences, and relationships between their own 

approaches. The teacher intended these discussions to foster a positive classroom 

environment, thereby creating more dynamics and flexibility in the students’ learning 

experience. 

Second, teachers also indicated possible improvement in students’ conceptual 

understanding of the subject matter by looking at different perspectives. One teacher said, 

“It is important to consider several strategies when solving complex problems. Not only 

does it validate students’ different solutions, it offers them additional strategies for their 

mathematical ‘tool bag’” (Silver et al., 2005, p. 297). A different teacher hinted at the 

applications for future problem solving encounters, stating, “This is my philosophy about 

math: You can try it in one way, your favorite way, but you should always have a back-

up. Because if your original way doesn’t work, then you have a backup” (p. 297). 

Another teacher made recommendations to demonstrate different problem solving 

approaches to students to “offer [them] a more useful strategy” (p. 297). 

Third, teachers understood the significance of incorrect problem solving 

approaches as part of students’ learning experience. One teacher mentioned that it 

became “really important to take a look even at wrong answers” (Silver et al., 2005,  

p. 294). Such approaches should be made more noticeable at an earlier stage of students’ 

learning exposure on the subject matters. Although flawed, incorrect approaches were 
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endorsed as an encouragement for students to improve their deeper understanding of 

related mathematics topics. A similar comment was raised by another teacher from a 

different study by Smith et al. (2005, as cited in Silver et al., 2005, p. 293). She cultivated 

in her students an open-minded way of thinking by becoming more courageous in 

communicating any conceptually erroneous approaches. She specifically considered 

revealing an incorrect approach as beneficial in “expos[ing] the fallacy of this approach 

as soon as possible and mov[ing] on to others” (Smith et al., 2005, as cited in Silver et al., 

2005, p. 293). Teachers as a whole discussed many benefits of the students’ learning 

experience in solving mathematics problems with many different approaches. 

Like Silver et al. (2005), Leikin and Levav-Waynberg (2007) were interested in 

surveying teachers for their thoughts about alternative approaches in problem solving. 

They interviewed several high school mathematics teachers in a comparable study on 

teachers’ beliefs. Their findings revealed positive attitudes towards the use of many 

different approaches in problem solving. Most teachers in fact considered it a benefit in 

connection with fostering students’ success in problem solving. They believed that 

working with many different approaches accommodated the learning experiences of 

students who had pronounced preferences in learning style. In return, they reasoned that 

struggling students could benefit from the presentation of various approaches, especially 

regarding difficulty level. Such presentation should be applied to problems with complex 

approaches that require sophisticated mathematics knowledge, yet are solvable using 

elementary approaches. As one teacher mentioned, when presented with different 

approaches, students would be able to choose the approach “that is easiest [for them] to 

understand” (Leikin & Levav-Waynberg, 2007, p. 363). 
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Some teachers saw another benefit in promoting students’ aesthetic interest in 

mathematical problem solving. They asserted that working with and observing many 

different approaches might possibly cultivate students’ appreciation of the beauty of 

mathematics. One teacher, for example, conveyed this message in order for the students 

to understand “how beautiful mathematics is” (Leikin & Levav-Waynberg, 2007, p. 363). 

This pedagogical aspect was also viewed as encouraging students to be more thoughtful 

in accepting and more critical in seeking alternative approaches. On this matter, a teacher 

noted that “[s]ome students dislike a certain method; maybe a different method can make 

them like the problem better” (Leikin & Levav-Waynberg, 2007, p. 363). 

Other teachers valued the students’ development of mathematical thinking and 

reasoning. As such, they assumed that students would then be more likely to establish a 

solid foundation for their future academic careers. A few other teachers acknowledged 

the significance of students’ awareness of the connections among mathematics topics. 

Mathematics should be viewed “as a whole,” that is, a collection of connected, as 

opposed to separate, mathematics topics (Leikin & Levav-Waynberg, 2007, p. 363). In 

general, Leikin and Levav-Waynberg (2007) concluded that these teachers indicated 

constructive opinions about the use of many different approaches. 

Perspectives of Cognitive Psychologists 

The promise of favorable students’ learning outcomes has successfully fueled a 

number of recommendations for alternative approaches in problem solving. Yet these 

recommendations were apparently not issued by mathematics education researchers and 

mathematics teachers alone. Long before these groups expressed their opinions, 
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analogous theories were in fact proposed by many cognitive psychologists who had a 

keen interest in educational psychology with applications in learning and cognition. 

Collins, Brown, and Newman (1989) posed deliberations on using multiple 

perspectives in the instructional method by means of their cognitive apprenticeship 

approach. In their model, the students’ learning processes progressed from five teaching 

methods: modeling, coaching, scaffolding, reflection, and articulation. These teaching 

methods took the form of either a recursive, a cyclical or a spiral pattern. The teachers’ 

roles in supporting the students’ learning experience gradually decreased as students 

themselves felt more confidence in communicating their understanding. The researchers 

argued that the more approaches and perspectives students explored, the more effective 

the implementation of this cognitive-based learning method. Some benefits of this 

method included improved apprenticeship in encouraging the value of real-world 

activities and assessments (Collins, Brown, & Newman, 1989). The method also 

enhanced students’ motivation and engagement in overall learning (Collins, 1991), 

greater transfer and retention rates (Resnick, 1989), and higher order reasoning (Hogan & 

Tudge, 1999). 

Spiro, Feltovich, Jacobson, and Coulson originated the cognitive flexibility theory 

(Spiro et al., 1991; Spiro & Jehng, 1990). Spiro et al. claimed that restructuring 

knowledge through changes in different approaches made learning new concepts possible. 

Such adaptations were based on the notion that the human mind could be trained to be 

flexible enough to accommodate different situations. New information and experience 

were processed via the transfer of knowledge and skills and further constructed to 

develop new meaning and understanding. In other words, they believed that learning 
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through different perspectives associated with different situations deepened students’ 

understanding and learning experience. 

Tabachneck, Koedinger, and Nathan (1994) also recognized the purpose of 

adopting many different approaches in problem solving. They argued that on its own, 

each approach entailed disadvantages and weaknesses. In order to overcome these, they 

recommended students operate a combination of approaches, instead of counting on only 

one approach. More specifically, they maintained that students could benefit from 

employing this learning style in mathematical problem solving. In addition to teaching to 

solve one problem with many approaches, psychologists encouraged teaching a coherent 

interrelation among those approaches (Skemp, 1987; De Jong et al., 1998; Van Someren 

et al., 1998; Bodemer et al., 2004). Equally important, Reeves and Weisberg (1994) 

recommended showing students many analogical problems or examples concurrently. On 

the whole, cognitive psychologists took a positive stance on problem solving using many 

approaches, as did mathematics education researchers. 

Challenges in Classroom Implementation 

Despite the benefits of implementing this learning style, some discussions were 

not without uncertainties. A few teachers in the study by Silver et al. (2005) talked about 

issues in teaching problem solving with many approaches. The first issue was the 

limitation of instructional time. Teachers’ concerns included: 1) “You don’t have time to 

show all of these solutions,” 2) how to “make it possible to explore and share several 

different solutions and to validate student thinking,” and 3) how to “‘fit everything in, 

and rush kids’ to cover the content in the prescribed time” (p. 295). Schoenfeld (1991) 

also recognized this time factor. Teachers’ common anxieties originated mostly from the 
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nature of school administrations that put heavy emphasis on curricula and results. On one 

hand, teachers were responsible for covering many materials, which provided a time 

constraint on the academic calendar. On the other hand, they were accountable for 

ensuring the acceptability of their students’ performance by the end of the year. 

Incorporating problem solving with many approaches thus offered greater challenges to 

the teachers. They would have to pack in more materials to teach within the same given 

timeframe. They would also have to convince students that these materials were worthy 

of learning, although less likely to be assessed. 

The second issue was the limitation of students’ perceived abilities. Teachers’ 

concerns ranged from “Sometimes I am scared to put even two strategies up there 

because [the students] are barely able to get one” to “I would be afraid to have someone 

explain this [non-standard solution]. I have kids struggling to understand this stuff, and if 

a group comes up and starts explaining this, my kids would just shut down” (Silver et al., 

2005, p. 295). Leikin et al. (2006) also acknowledged this issue. They observed 

reluctance among teachers to implement the teaching of problem solving with many 

different approaches. These teachers explained that exposing students to different 

approaches merely benefited them with a higher mathematics aptitude and were 

concerned that the presentation of different approaches might distract those with lower 

mathematics aptitude. In their opinion, such students would struggle to comprehend one 

approach, let alone all different approaches simultaneously. They also worried that these 

students might even lose interest in problem solving because of their growing frustration 

and confusion. 
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The third issue was the selection of approaches. Teachers’ concerns ranged from 

“Explaining is important, but which solutions you focus on have to be tied to the goals of 

the lesson instead of always sharing everything” to “Do we need to ‘share’ strategies that 

are not brought up?” (Silver et al., 2005, p. 296). The fourth issue was presentation order. 

Teachers revealed their indecision over which approaches to present in which order and 

how much discourse they should use to follow up. Their concerns centered on the 

question of “Do I start with the most simplistic way and move up the ladder or is it 

random?” (Silver et al., 2005, p. 296). One teacher in the study by Smith et al. (2005, as 

cited in Silver et al., 2005) also pointed out that she was unsure of how to go about which 

approaches “to get out publicly and in what order” (Smith et al., 2005, p. 33). 

The fifth issue was the presentation of incorrect approaches. Some teachers were 

worried that displaying erroneous approaches impaired students’ orientations to their 

supposedly accurate conceptual understanding. They also anxiously anticipated possible 

passive learning behaviors from less motivated students. One teacher indicated that 

“students sometimes think, ‘I will just sit here and wait’ until…[the approaches offered 

by other students are] shown. They won’t pay much attention until you get to theirs” 

(Silver et al., 2005, p. 297). The sixth issue was the reality of boredom. Teachers felt 

uneasy in supplying one single problem for an unusually longer period of time. Doing so, 

they believed, could especially prompt an unpleasant learning experience for higher-

ability students. They asked, “How much time would you spend on this problem with a 

class? [How does a teacher tackle the] issue of boredom?” (Silver et al., 2005, p. 297). 
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A few other teachers in the study by Leikin and Levav-Waynberg (2007) 

expressed concern about teaching problem solving with many different approaches. One 

teacher specifically saw a practical conflict from the point of view of curriculum practice: 

This happens in plane geometry.… I told them: “I can show you how to 
solve the same problem using trigonometry.” The same problem in plane 
geometry can be solved using trigonometry. At the end of the lesson I 
thought I had made a mistake because they might conclude that they 
would be allowed to use trigonometry to solve a plane geometry problem 
in the matriculation exam [the Israeli matriculation exam requires solving 
plane geometry problems using geometrical theorems only]. (Leikin & 
Levav-Waynberg, 2007, p. 361) 
 

Some teachers in the study by Leikin and Levav-Waynberg (2007) in fact showed 

genuine concern about students’ learning experience. They worried that students might 

confuse “whether the object of study is to solve the problem, the fact that there is more 

than one solution to the problem, or the principles behind the solutions and the 

connections between them” (p. 366). 

In view of these constraints and concerns, mathematics education researchers and 

cognitive psychologists still felt firmly confident in their recommendations for problem 

solving using many different approaches. Silver et al. (2005) even went as far as pointing 

out the possibility of teachers’ weak mathematics content knowledge. They believed that 

this factor might contribute to a psychological threshold in integrating many different 

approaches into classroom practice. 

Students’ Learning Outcomes 

Proposals to advocate learning mathematics through problem solving in many 

different approaches demanded another step toward progress. These proposals might only 

become a pool of publicly agreed-upon hypotheses without any empirical findings on 

students’ learning outcomes. Große and Renkl (2006) examined the effects of learning 
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problem solving with many different approaches through worked-out examples. They 

conducted two experiments involving university-level students. Each experiment was 

conducted with different sets of conditions and mathematics topics. 

In the first experiment, Große and Renkl (2006) were interested in two factors:  

1) number of approaches and 2) instructional support. Participating students were 

randomly assigned to six conditions: 1) two approaches with no support, 2) two 

approaches with self-explanation, 3) two approaches with instructional explanations,  

4) one approach with no support, 5) one approach with self-explanation, and 6) one 

approach with instructional explanations. The mathematics topic used in the first 

experiment was combinatorics. In the second experiment, Große and Renkl (2006) were 

interested in the use of different mathematical representations. Participating students 

were randomly grouped into three conditions: 1) two approaches with two representations, 

2) two approaches with one representation, and 3) one approach. The mathematics topic 

used in the second experiment was probability. 

Their assessment on learning outcomes was based on procedural knowledge and 

conceptual knowledge. This assessment was conducted during the learning stage of the 

experiment. Procedural knowledge was evaluated using an elementary combinatorics 

problem to check the accuracy of students’ answers. Conceptual knowledge was 

evaluated using an elementary combinatorics problem. It also involved careful 

discussions on the pros and cons of different approaches, the correctness of each 

approach, and their general applicability. The findings from the two experiments were 

inconsistent with each other. Exposing students to many different approaches did 

improve their procedural and conceptual understanding in the first experiment, but it did 
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not make any significant difference in the second experiment. Große and Renkl (2006) 

reasoned that a different mathematics topic might have different effects on students’ 

learning outcomes. 

Moreover, Rittle-Johnson and Star (2007) analyzed the effect of comparing many 

different approaches on students’ learning experience in problem solving. Their 

experiment involved seventh grade students who were randomly assigned to two groups. 

In this experiment, students were given algebra lessons on solving one linear equation 

with one variable. They were all exposed to many types of approaches, such as the 

conventional approach and the nonconventional approach. Although both groups were 

presented with similar problems along with similar approaches, the order in which the 

approaches were presented differed. In the first group, students solved these algebra 

problems by comparing and contrasting many different approaches. In the second group, 

students solved similar problems by reflecting on many different approaches, one at a 

time. 

In order to evaluate their learning outcomes, students were assessed on their 

procedural knowledge, flexibility, and conceptual knowledge. Procedural knowledge was 

evaluated based on the students’ accuracy in their answers and the type of approaches 

provided during the assessment. Flexibility was measured on three aspects: students’ 

abilities to 1) generate and 2) recognize many different approaches, and 3) evaluate 

nonconventional approaches. Conceptual knowledge was evaluated based on students’ 

understanding of algebraic symbolism and the effect of applying simultaneous operations 

to algebraic equations. The assessment brought about positive outcomes. Students in the 

first group performed better than those in the second group in procedural knowledge and 
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flexibility. Students in both groups showed similar improvement in conceptual 

knowledge. This evidence supported the learning practice of solving algebraic equations 

by comparing many different approaches simultaneously rather than sequentially. Overall, 

in addition to the study by Große and Renkl (2006), Rittle-Johnson and Star’s (2007) 

study demonstrated potentially favorable learning outcomes through problem solving 

with many different approaches in other branches of mathematics. 

Problem Solving Using Many Different Approaches:  

Factors Affecting Choice of Approach 

Perspectives of Mathematics Educators 

In addition to the teaching and learning aspects of solving problem with many 

different approaches, mathematics education researchers have examined choices of 

approaches. Analysis of choice involves understanding why different people solve one 

particular problem using different ways than others. Given the many possible different 

approaches to solve the same problem, a student’s decision to choose one approach may 

be less than arbitrary. Observations of students’ problem solving experiences have 

prompted a search for specific explanations. 

Silver et al. (1995) conducted a comparative study to investigate the problem 

solving experiences of American and Japanese students at the fourth grade level. Two 

problems assigned were simple but complex enough to be solved with many different 

approaches. One of these problems was the marble arrangement problem described 

earlier (see Appendix D). The students were asked to solve both problems using as many 

different approaches as they could think of. In addition, they were also asked to include 

explanations in their responses. The findings indicated that students in both countries 
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employed essentially a similar type and frequency of particular approaches. On one hand, 

Japanese students were able to generate many different approaches more accurately than 

American students. On the other hand, Japanese students were able to explain such 

approaches with more rigorous mathematical concepts than American students. Japanese 

students appeared more skilled in multiplication and mathematical symbolism, whereas 

American students were more comfortable with addition and verbal statements. 

Silver et al. (1995) discussed choices of approaches in the students’ problem 

solving experience. They specifically observed a common pattern in the students’ order 

of presentation of approaches. They noted that the first approach was “the only one 

purely directed toward the generation of a numerical answer” (p. 44). That is, students 

were more eager to figure out an accurate answer to a problem immediately. As soon as 

an accurate answer became accessible, the following approaches they used were aimed at 

validating their first approach. Despite this process, students unconsciously made use of 

their first approach as a stepping stone to generate additional approaches. 

Like Silver et al. (1995), Star and Madnani (2004) were also interested in 

examining students’ choices of approaches. Their study involved teaching sixth and 

seventh grade students basic algebraic operations to solve one linear equation with one 

variable. These simple equation transformations were demonstrated separately so that the 

students could work their way up to doing them jointly. As they worked, they were asked 

to explain their choice of approaches in combining several equation transformations. 

Student performance was measured by: 1) their abilities to solve isomorphic and transfer 

equation problems, 2) their flexibility, and 3) their conceptual understanding of equations. 

Students’ abilities to solve isomorphic and transfer equation problems were assessed by 
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means of solving problems that were, respectively, very similar and relatively similar to 

those demonstrated in the lessons. Students’ flexibility was evaluated by their use of 

many different approaches, while students’ conceptual understanding was assessed by 

concepts of equation, variable, and equivalency. 

The findings revealed that students had various responses to their choices of 

problem solving approaches. Students’ explanations were classified as either naïve or 

sophisticated. Naïve explanations included “most accurate way, with fewest errors, and 

arriving at right answer,” “way that I’m more sure, confident, comfortable with, proud of, 

or happiest with,” and “way that is most neatly written and organized” (Star & Madnani, 

2004, p. 486). Sophisticated explanations included “shortest way, involving fewest steps,” 

“quickest or fastest way,” “easiest, least complicated, or least confusing way,” and “it 

depends on various things, including the problem, how quickly a solver can execute steps, 

and the preferences or goals of a solver” (p. 486). Star and Madnani (2004) concluded 

that beginning problem solvers were capable on their own (with little instructional 

support) of identifying and describing choices of problem solving approaches. These 

were students who were also being exposed to solving one linear equation with one 

variable for the first time. Some students interpreted “best” approaches with more 

sophisticated explanations such as choosing the ones with the fewest steps and the fastest 

time required in problem solving. Not surprisingly, students with these interpretations 

performed better in transfer equation solving, flexibility, and conceptual knowledge. That 

is, better explanations for choosing particular approaches often led to better performance 

in mathematics literacy. 
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Like Star and Madnani (2004), Nesher, Hershkovitz, and Novotna (2003) also 

investigated students’ choices of approaches to solving algebra problems. Specifically, 

they were interested in ninth grade students’ use of independent variables when solving 

algebra word problems. These word problems involved a situation with three unknown 

quantities whose sum was known. In interviewing the students, the researchers found that 

the students’ choices of independent variables were mainly influenced by the order in 

which the quantities were described in the word problems. At the same time, students 

favored independent variables with the smallest quantity in relation to the other two 

quantities discussed in the problems. By doing so, students unconsciously revealed their 

natural inclination to working with whole numbers as opposed to rational numbers. 

Perspectives of Cognitive Psychologists 

Unlike mathematics education researchers, cognitive psychologists analyze choice 

of approach in terms of interaction among approaches. Koedinger and Tabachneck (1994), 

for example, analyzed students’ use of informal approaches in their problem solving 

process. Their study involved university students who were asked to solve two algebra 

word problems. Four approaches to solving the algebra word problems were identified 

and classified into two groups. The first group was labeled formal, schooled approaches, 

which included the use of either algebraic or diagrammatic representations. The second 

group was labeled informal, unschooled approaches, which included the use of either 

model-based reasoning or verbal explanation. 

The findings revealed that students’ high performance was not related to one 

choice of either a formal or an informal approach. Instead, students who attempted both 

formal and informal approaches were twice as likely to succeed as those who persisted on 
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any one single approach. Each approach required a different familiarity with words and 

mathematical representations, computational efficiency, and demand on working memory 

capacity. Because of these differences in the strengths and weaknesses of the approaches, 

a problem became solvable more efficiently by complementing formal with informal 

approaches. The flexible and synergistic use of approaches resulted in a complementary 

effect by heightening the strengths and decreasing the weaknesses of those approaches. 

In addition to interactions among approaches, cognitive psychologists analyze 

choice of approach in relation to mastery of certain attributes. Roberts et al. (1997) 

examined students’ choices of problem solving approaches as related to spatial ability. 

Spatial ability is the mental skill to reason through manipulating geometric figures or to 

think in terms of visual representations. In their study, university students were grouped 

according to their performance on a spatial and verbal ability pre-test: 1) students with 

high spatial ability and 2) students with low spatial ability. Each student was tested 

individually on three direction tasks: the compass-point task, the one-person direction 

task, and the two-person direction task. These direction tasks required students to locate 

positions according to given directions. Roberts et al. (1997) identified beforehand two 

main approaches to solving these tasks. The first approach was the spatial approach, 

which made use of spatial representations to produce an accurate visualization of the 

directions. The second approach was the cancellation approach, which neutralized the 

effect of opposite directions to generate the estimated representations of the paths. The 

former appeared more mechanical, with naïve application of superficially necessary skills, 

whereas the latter required less cognitive demand in connection with spatial ability. 
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These three tasks were intentionally designed to cause inefficiency when students relied 

heavily on their spatial ability. 

The findings demonstrated “an apparently counter-intuitive inverted aptitude-

strategy relationship” (Roberts et al., 1997, p. 480). Students with high spatial ability 

ingeniously avoided the use of spatial ability when solving the direction tasks. They were 

aware that the use of spatial ability yielded an inefficient approach. Consequently, they 

demonstrated more flexibility in developing and adapting alternative approaches that 

increased accuracy and saved time in problem solving. Roberts et al. (1997) also noticed 

that the cancellation approach did not become immediately apparent to students with low 

spatial ability. They concluded that the level of spatial ability dictated their competency 

to acquire and assess more efficient choices of approaches. 

Despite these results, it is still possible to interpret the findings of this study 

differently. That is, one might infer that strong evidence showing that students favored 

problem solving approach through visual reasoning was indeed lacking. Presmeg (1985, 

as cited in Presmeg, 1986), for example, found that almost all high achievers in 

mathematics at the senior high school level were identified as non-visualizers. An even 

more famous example was the case of Terence Tao, as described by Clements (1984): 

“While he has well developed spatial ability, when attempting to solve mathematical 

problems he has a distinct, though not conscious, preference for using verbal-logical, as 

opposed to visual thinking” (Clements, 1984, p. 235). For her part, Presmeg (1986) 

pointed out cognitive preference to explain why being identified as a visualizer did not 

compel one to solve mathematics problems visually all the time. While interviewing 

students doing problem solving, Presmeg (1986) noticed a cognitive progression from 
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conceptual thinking to procedural thinking. The shift in cognitive preference was at first 

considered to be unnaturally habituated by school curriculum, but it later appeared to be 

naturally developed by the students themselves. In other words, Presmeg (1986) viewed 

the unconscious automation of the non-visual approach as a direct consequence of the 

repetitive practice of the visual approach in an effort to exploit efficient memory 

workload. “Apparently when a topic is first taught, a visual presentation often aids 

visualisers’ understanding, but practice of the procedure of formula may lead to 

habituation, when an image is no longer necessary” (p. 302). 

Like Presmeg (1986), Geary and colleagues were interested in the development of 

problem solving approaches. Geary and Wiley (1991), in particular, analyzed the use of 

alternative approaches by two different age groups. The younger group was between 18 

and 31 years old, while the older group was between 60 to 82 years old. Each subject was 

tested individually on a total of 40 basic addition problems. The problems involved two 

one-digit numbers (e.g., 6+9). For each problem, subjects were asked to explain their 

thinking processes, which were mainly categorized into: 1) verbal counting (e.g., six plus 

nine equals fifteen), 2) decomposition (e.g., 6+9=5+1+9=5+10=15), and 3) memory 

retrieval (e.g., 15). The memory retrieval approach required long-term memory workload. 

It was therefore considered to be a mathematically more developed approach than the 

verbal counting and decomposition approaches. The subjects’ performance was assessed 

based on accuracy and time spent on each problem. 

The findings by Geary and Wiley (1991) revealed different choices of approaches 

by the two age groups. On one hand, the older group performed better in terms of 

accuracy and favored the use of the more mature approach. They showed more frequent 
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use of the memory retrieval approach, and less frequent use of the decomposition and 

verbal counting approaches. On the other hand, the younger group performed better in 

terms of overall time spent on the entire experiment. At the same time, the older group 

appeared slower than the younger group in retrieving addition facts and producing verbal 

answers. More interestingly, on more difficult problems, the older group appeared to 

switch from memory retrieval to decomposition. They did so even when they were aware 

of the additional time required to solve the problems. Geary and Wiley (1991) maintain 

that these problem solvers consciously adjusted their choice of approaches according to 

each problem’s difficulty level. In particular, they reserved the use of decomposition as a 

backup approach when memory retrieval fell short in the first place. 

Similarly, Geary and Brown (1991) analyzed children’s choices in problem 

solving approaches and speed of processing information associated with the problems. 

Their experiments using simple addition problems involved three groups of third and 

fourth grade students: gifted, normal, and mathematically disabled. They identified 

children’s addition approaches into two main categories. The first category included the 

memory retrieval approach, which resorted to strong long-term memory and was often 

associated with quick mental calculation. The second category included the counting 

approach, which varied from physical use of fingers to audible or indistinct lip movement. 

The findings revealed that the gifted group, significantly more than the non-gifted 

groups, utilized the memory retrieval approach more frequently than the counting 

approach. The constant and frequent use of the memory retrieval approach by the gifted 

group was independent of the problem’s difficulty level. The non-gifted groups, however, 

executed retrieval with easier problems and counting with more difficult ones. As for 
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reaction time and error rate, the gifted group performed significantly better than the non-

gifted groups. This difference was evidenced in the analysis of the verbal counting rate, 

but not of the memory retrieval rate. Based on their findings, Geary and colleagues 

(Geary & Wiley, 1991; Geary & Brown, 1991) have, to some extent, verified Siegler’s 

(1983) view on approaches often used to backup imperfect approaches. A similar 

observation in the older group (Geary & Wiley, 1991) was once again evident in the  

non-gifted groups (Geary & Brown, 1991). In these groups, the use of counting on more 

difficult problems was interpreted as a remedy to compensate for memory retrieval. 

Problem solvers appeared eager to obtain the correct answers even if they had to suffer 

through a longer reaction time associated with a less efficient approach. 

Furthermore, in a two one-digit addition experiment, Siegler and Robinson (1982) 

observed that young children could produce four different approaches. First, in the 

“counting-fingers” approach, children raised their fingers to correspond with each addend 

and counted them. Second, in the “fingers” approach, children raised their fingers to 

correspond with each addend without counting them. Next, in the “counting” approach, 

children counted aloud without an external referent. Finally, in the “retrieval” approach, 

children performed addition without any visible or audible referent. Children spent less 

time in problem solving when using the retrieval approach, followed by the fingers, 

counting, and counting-finger approaches. Other researchers further classified the 

counting approach into max, min, and sum approaches (Fuson, 1982; Groen & Parkman, 

1972). The max approach counted the larger value as an addend to the smaller value, for 

example, counting 3,4,5,6 to solve 2+4. The min approach counted the smaller value as 

addend to the larger value, for example, counting 5,6 to solve 2+4. The sum approach 
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counted both addends starting from 1, for example, counting 1,2,3,4,5,6 to solve 2+4. 

Siegler et al. (1996) maintained that schooling played an important role in the children’s 

acquisition and use of addition approaches. In the earlier grades, schools promoted the 

frequent use of the min approach as opposed to the max approach. Later on, children 

were oriented towards the use of the decomposition approach and eventually the retrieval 

approach. The choice of problem solving approaches for this elementary school 

mathematical task was influenced developmentally by the instructional settings. 

Aesthetic 

Aesthetic aspects were also considered in many studies connected with preference 

in problem solving approaches. Dreyfus and Eisenberg (1986), for instance, were 

interested in exploring whether students assessed the aesthetic value of mathematical 

reasoning in problem solutions. Their study involved college-level mathematics students 

who had been rigorously prepared in advanced mathematics courses. They were tested on 

several carefully chosen mathematics problems which involved many different 

approaches not immediately apparent to average students, yet readily accessible with high 

school mathematics knowledge. After completing the test, students were presented with 

elegant approaches. They were not able to supply elegant approaches in the test as they 

had been expected to, and they were not able to recognize the differences between 

elegant and pedestrian approaches. Furthermore, when presented with elegant approaches, 

they showed no enthusiasm and found them no more attractive than their own approaches. 

In other words, they had no sense of aesthetic appreciation. Dreyfus and Eisenberg (1986) 

concluded that mathematics instruction in classroom settings lacked an emphasis on 

reflective thinking, especially aesthetic value. 
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Silver and Metzger (1989) also assessed the role of the aesthetic but at a much 

higher level of expertise in a study involving university professors in mathematics. They 

examined the aesthetic influence on mathematical problem solving experience in two 

assessments. In one assessment, they monitored the role of aesthetic value in the process 

of problem solving as discussed by Poincare (1946) and Hadamard (1945). In another 

assessment, they analyzed the sense of aesthetic in the evaluation of the completed 

solutions as described by Kruteskii (1976) or the problems themselves. Silver and 

Metzger (1989) found that these expert problem solvers displayed signs of aesthetic 

emotion. On one occasion, a subject resisted the temptation to resort to the use of 

calculus in solving a geometry problem, acknowledging the possibility of a “messy 

equation” (p. 66). Only after some unsuccessful attempts to seek a geometric approach 

did the subject concede to solving the problem using calculus. Although successful, he 

felt that “calculus failed to satisfy his personal goal of understanding, as well as his 

aesthetic desire for ‘harmony’ between the elements of the problem and elegance of 

solution” (p. 66). On another occasion, having solved another geometry problem 

algebraically, the same subject appeared unsettled, recognizing that a geometric approach 

could be “more elegant” (p. 66). 

Using a similar scope of analysis as Silver and Metzger (1989), Koichu and 

Berman (2005) examined how three members of the Israeli team participating in the 

International Mathematics Olympiad coped with conflict in their conceptions of 

effectiveness and elegance. An effective approach led directly to a final result in 

answering a mathematics problem with minimum memory retrieval of concepts and 

terms and procedural knowledge. An elegant approach was considered to have clarity, 
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simplicity, parsimony, and ingenuity in solving a mathematics problem with minimum 

intellectual effort and few mathematical tools. In their clinical interview, Koichu and 

Berman (2005) observed that when solving geometry problems, these mathematically 

gifted students consistently directed greater aesthetic appreciation towards geometric 

approaches than algebraic or trigonometric approaches. However, when such a geometric 

approach was not readily accessible to them, they immediately resorted to algebraic or 

trigonometric approaches as long as they effectively solved the problems. Only later on 

when students had built up their confidence could they develop the desired geometric 

approach to satisfy their need for aesthetic appreciation. This experience marked the 

point at which students successfully managed to balance the need for elegant approaches 

with the time constraint requiring effective approaches. 

In addition, Sinclair (2004) analyzed the role of aesthetic value from several 

conceptual insights. She drew examples from existing empirical findings such as those by 

Dreyfus and Eisenberg (1986) and Silver and Metzger (1989). In one of her 

interpretations of their work, she suggested that “mathematicians’ aesthetic choices might 

be at least partially learned from their community as they interact with other 

mathematicians and seek their approval” (Sinclair, 2004, p. 276). Furthermore, she 

indicated that mathematical beauty was only feasible in the process “when young 

mathematicians are having to join the community of professional mathematicians—and 

when aesthetic considerations are recognized (unlike at high school and undergraduate 

levels)” (p. 276). 

Related to Sinclair’s (2004) interpretations, Karp (2008) conducted a comparative 

study on the aesthetic aspect of mathematical problem solving. He was fully aware that 
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Dreyfus and Eisenberg (1986) observed no aesthetic awareness in mathematics among 

college-level students. Karp’s comparative study involved middle and high school 

mathematics teachers from the U.S. and Russia. In his study, teachers were asked to 

provide examples and explanations of “beautiful” mathematics problems and approaches 

in solving those problems. 

Karp’s (2008) findings confirmed that the curricular system of education had a 

tremendous impact on students’ aesthetic preference in mathematics problem solving. 

Each group of teachers showed different perspectives on what counted as mathematical 

“beauty.” In particular, these differences stood out from their selections of mathematics 

topics. American teachers put extra weight on mathematics topics as prescribed by the 

American curriculum which were typically associated with real-life situations and 

applications. Russian teachers did likewise as recommended by Russian curriculum with 

its traditionally heavy emphasis on algebra, number theory, and geometry. Evidently, 

these Russian problems tended to require longer approaches and were more algebraically 

demanding than their American counterparts. In their explanations, American teachers 

described “usefulness in the teaching process,” “useful[ness] in practical life or comes the 

real world,” “non-standard and cannot be solved using ordinary methods that are 

regularly discussed in school,” “unexpectedness of the solution,” “openness of the 

problem,” and “a combination of methods and knowledge from different fields of 

mathematics” (Karp, 2008, p. 40). Russian teachers revealed in their choices of problems 

and solutions the sense of “overcoming of chaos,” “non-standard nature,” and “traditional 

fields” in their origins (p. 40). In his conclusion, Karp indicated a relative character of 

aesthetic preference in mathematics problem solving.  
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Problem Solving and Gifted Students 

As mentioned earlier with regard to choices of approaches, gifted students 

demonstrate unique problem solving behavior which is atypical of regular students. 

Gifted students are often characterized by their high abilities and performance. Terman 

(1925) initiated a longitudinal study on gifted students and promoted the use of the 

Stanford-Binet Intelligence Scale. Since then, growing interest in psychometric works has 

placed the field of gifted education in a more quantifiable position, starting with the 

analysis of IQ tests. Consequently, the identification of gifted students using educational 

achievement tests has become increasingly popular. The Study of Mathematically 

Precocious Youth (SMPY) at Johns Hopkins University established in 1971 by Julian C. 

Stanley was an example of the successful application of the College Board Scholastic 

Aptitude Test (SAT) (Brody & Stanley, 2005). The test was considered to be highly 

effective when administered to a younger age group, such as those at middle school level, 

than originally intended for those in their last years of high school. “Because few 

seventh- and eighth-graders have formally studied the mathematical content that high 

school students have, the SAT appeared to be more of a reasoning test for seventh- and 

eighth-graders than for high school juniors and seniors” (Brody & Stanley, 2005, p. 22). 

The success of the SMPY gifted education program has influenced various states and 

even extended its reach to many other countries such as Australia (Kissane, 1986) and 

Germany (Wagner & Zimmermann, 1986). 

Gifted education programs have flourished with the success of identifying gifted 

students through psychometric tests. However, this use of psychometric tests had had its 

share of critiques. Borland (2005), for instance, believes in the prospect of gifted 
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education without gifted students. Taking an American perspective, which considers a 

more heterogeneous group of people, he maintains that the concept of gifted students is 

“incoherent and untenable” (Borland, 2005, p. 2) because of: 1) the questionable validity 

of the concept of gifted students, 2) the questionable value and efficacy of gifted 

education, 3) the inequitable allocation of educational resources, and 4) the questionable 

need for the construct of gifted students. Therefore, he argues specifically that the 

identification of gifted students by means of psychometric tests would be useless without 

gifted students in the first place. 

Wu (2005), by contrast, examined giftedness from a Chinese perspective. He 

specifically considered a Confucian philosophy that associated nurture (encouraging 

diligent efforts to success), rather than nature (recognizing innate abilities), with talented 

performance. His interviews with Chinese teachers revealed their firm convictions about 

the complete dynamic of giftedness and talented performance. Unlike most Western 

researchers, these Chinese teachers believed that in addition to gifted children, children 

with average or even low innate abilities had the potential to achieve high performance in 

the presence of optimal nurturing. This dynamic also made possible the risk that children 

with high abilities might only achieve low performance if they are given inadequate 

nurturing. Wu indicated five environmental factors crucial in nurturing the potentials of 

young children: 1) parental and familial influences; 2) school and teacher influences;  

3) specific training and practice; 4) self-effort, motivation, and perseverance; and 5) 

chance or opportunity. 

In the field of mathematics itself, the most systematic study that explored the 

nature and structure of the mathematical abilities of gifted students was led by Krutetskii 
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(1976). He argued that although latent talents in various fields were innate in all young 

children, these talents might not necessarily be uniform for each child across all fields. 

That is, he believed that some students were more mathematically able than others. In his 

analysis, Krutetskii named six attributes of mathematically gifted students as in 

describing their three main stages of mental activity in solving a mathematical problem. 

In the first stage, mathematically gifted students gathered necessary information in 

solving the problem. This formalizing perception attribute (first attribute) could be 

performed analytically by extracting individual elements from the given composite 

structure in the order of their significance to the alleged problem. It could also be 

performed synthetically by interpreting them in an integrated arrangement in terms of 

their mathematical relationship and functional dependencies. 

In the second stage, mathematically gifted students processed information to 

obtain a solution to the problem. First, they demonstrated effectively the ability to 

generalize mathematical objects, relations, and operations, as well as the ability to retain 

these mathematical materials. This generalization attribute (second attribute) emerged 

very naturally “on the spot” as these students performed problem solving tasks with an 

insignificant amount of training (Krutetskii, 1976). Second, they displayed an ability to 

curtail the process of mathematical reasoning and the corresponding system of operations. 

This curtailment attribute (third attribute) was measured by taking into account the 

number of steps in a typical course of reasoning versus the number of actual steps taken 

by the students and the time spent on solving the problem. Mathematically gifted students 

were known to be capable of solving problems using a minimal path and the least amount 

of time. Third, they revealed the flexibility and reversibility of mental processes in 
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mathematical reasoning. This flexibility attribute (fourth attribute) facilitated students in 

varying their approaches to solving a problem without being constrained by standard, 

stereotypical or habitual approaches, as encountered in their previous problem solving 

experiences. The reversibility of mental processes also allowed students to switch easily 

and freely from a direct to a reverse train of thought. Moreover, they showed their own 

striving to achieve an elegant solution. This striving for elegance attribute (fifth attribute) 

motivated students to avoid settling to merely solve a problem, but rather to search for a 

solution with such qualities as clarity, simplicity, economy, and originality. 

In the third stage, mathematically gifted students retained information about the 

solution to the problem. They specifically paid more attention to the mathematical 

relationships in the problem and the principles of the solution to the problem than to the 

superfluous, unnecessary content of the problem. This strong mathematical memory 

attribute (sixth attribute) provided them with generalized and operative, as opposed to 

selective, memory retention. 

In examining the relationship between knowledge, talent, and giftedness, Karp 

(2007a) interviewed 12 teachers in secondary schools specializing in the study of 

mathematics, as opposed to those in ordinary schools as in the work by Krutetskii (1976). 

These teachers were distinguished based on the criteria used in selecting them, including: 

1) the number of their former students who had participated or won high-level 

mathematics competitions, such as the International Mathematics Olympiad; 2) the 

number of their former students who had become prominent mathematicians, such as 

those holding senior faculty positions in the mathematics department of leading academic 

institutions; and 3) their professional activity in terms of the number of professional 
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publications. Karp’s interviews revealed several important characteristics of 

mathematically gifted students. First, these students demonstrated success in problem 

solving as indicated not only by their outstanding speed and genuine interest in problem 

solving, but also by their exceptional precision and depth of understanding of problem 

solving approaches. Second, their non-standard problem solving approaches revealed 

their capacity for independent thinking. Third, their wealth of knowledge reflected their 

precocity and competence in absorbing easily profound mastery of a mathematics subject 

that surpassed their age level. 

Other studies have considered creativity as another attribute to identify this group 

of gifted students. In his “three-ring conception” of giftedness, Renzulli (1978) suggested 

three clusters of traits that characterized gifted students. In addition to above-average 

ability and task commitment, he discussed the role of creativity in distinguishing the 

group of gifted students. Apart from conceptualizing mathematical creativity, 

mathematics education researchers are aware of the need to assess mathematical 

creativity as part of fulfilling the goal of the gifted education. Haylock (1987) identified a 

specific feature in his assessment of mathematical creativity in schoolchildren: the 

capacity to prevail over fixation and rigidity. In particular, the children were able to 

overcome the Einstellung effect, a phenomenon generally observed when students 

commit either 1) algorithmic fixation or 2) content universe fixation. An algorithmic 

fixation occurred when students persisted on applying a previously learned, yet 

inappropriate, inefficient or unsuccessful approach (Luchins, 1951, as cited in Haylock, 

1987). A content universe fixation occurred when students restricted the range of 
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unnecessary elements in a problem solving situation (Haylock, 1984, as cited in Haylock, 

1987). 

In addition, Silver (1997) valued both problem solving and problem posing as 

means to developing students’ mathematical creativity in terms of fluency, flexibility, 

and novelty. Leikin and Lev (2007) analyzed the problem solving behavior of students 

from three different groups. The first group included those with high IQ scores and high 

mathematical achievement. The second group included those without high IQ scores but 

with high mathematical achievement. The third group included those without high IQ 

scores but with average mathematical achievement. In particular, Leikin and Lev 

explored the many different approaches that each group of students used in solving two 

mathematics problems which were taken from either a mathematics curriculum textbook 

or a mathematics Olympiad textbook. The researchers evaluated mathematical creativity 

using criteria such as number of approaches, originality, and time spent on each approach. 

The findings revealed students’ mathematical creativity in terms of number of approaches 

and time spent for each approach. The first group performed as well as the second group 

on mathematics curriculum problems, but performed significantly better than the second 

group on mathematics Olympiad problems. The first and second groups performed better 

than the third group on both types of problems. Hence, the researchers recommended 

non-standard mathematics problems as an effective means of exploring mathematical 

creativity in connection with mathematically gifted students. 
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Chapter III: METHODOLOGY 

 

Subjects 

Fifty-four mathematically gifted students at the high school level participated in 

the current study. The term gifted students in the current study was understood to mean 

highly “selected” students who underwent several rounds of selection to be part of this 

study. The criterion for selecting these gifted students was based on the definition by 

New York State Education Department stated in New York State Education Law Chapter 

740, Article 90, Section 4452.a: 

[T]he term ‘gifted pupils’ shall mean those pupils who show evidence of 
high performance capability, and exceptional potential in areas such as 
general intellectual ability, special academic aptitude and outstanding 
ability in visual and performing arts. Such definition shall include those 
pupils who require educational programs or services beyond those 
normally provided by the regular school program in order to realize their 
full potential. 
 
The New York City Department of Education functions in accordance with the 

New York State Education Department. It has consequently designated a few specialized 

high schools of New York City. Much like the special secondary schools for the 

mathematically and scientifically talented in Russia from the 1960s (Vogeli, 1997), the 

specialized high schools in New York City require prospective students to pass an 

entrance examination, i.e., the Specialized High Schools Admissions Test. These schools 

are the most selective public high schools available to serve the needs of academically 

gifted students in New York City. The 54 students in this study were selected from one of 

these specialized high schools. They were assumed to have met the criteria of gifted 

students as defined by New York State Education Department. In particular, the 54 
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students were among many in that high school who were taking an AP Calculus course at 

the time this study was conducted. In addition, three research mathematicians unaffiliated 

with Columbia University were selected as expert consultants. 

Instruments and Evaluations 

The current study utilized five main instruments: 1) students’ preliminary survey, 

2) students’ test, 3) experts’ evaluation, 4) students’ follow-up interview, and 5) students’ 

validation survey. Each instrument was utilized in a particular phase of the study (see 

Figure 2). 

 

 

Figure 2. Five Phases of the Study 

 

In Phase 1, the 54 students were asked to fill out a preliminary survey (see 

Appendix G). These preliminary survey responses provided details about the students’ 

past mathematical experiences, including mathematics courses taken since eighth grade 

and their grades for each course, the American Mathematics Contest (AMC) 10 and 12 

scores, SAT scores (SAT Mathematics Section, SAT Subject Test—Math Level I and II), 

planned undergraduate major, and favorite mathematics topics. 
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In Phase 2, the students’ AP Calculus teacher was asked by the researcher to 

make a list of 16 highly recommended students selected from the 54 participating 

students, based on their performance in their AP Calculus course. From this list, 10 

students volunteered to take a test requiring them to solve problems using many different 

approaches. On the test day, one student did not show up. Therefore, only nine students 

were included in Phase 2. (The one student who did not show up on the test day was still 

included in the other phases of the study, i.e., Phases 1 and 5.) The test, proctored by the 

researcher, was taken by the nine students at the same time in an after-school period. A 

video recorder was set up to capture each student’s process of problem solving as 

presented by the student in his or her written responses. The test consisted of three non-

standard mathematics problems: an arithmetic inequality problem (Problem 1), an algebra 

problem of two variables (Problem 2), and a geometry problem (Problem 3) (see 

Appendix H). The researcher selected the three non-standard problems to comprise a 

standard secondary school mathematics curriculum, which typically included arithmetic, 

algebra, and geometry. These problems were also particularly chosen because of the 

many different approaches that students could use to solve them. The correctness of a 

student’s approach was evaluated based on a simple acceptability scoring system: an 

acceptability score of 1 indicated that a student successfully supplied a correct answer by 

using an approach in a logical manner to solve the problem; otherwise, an acceptability 

score of 0 was given (see Appendix I for examples of students’ written work for Problem 

1). A student’s approach was also classified based on a list of approaches for the three 

problems, henceforth referred to as the collection of approaches (see Appendix J). This 

list consisted of four different approaches for Problem 1, eight different approaches for 
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Problem 2, and three different approaches for Problem 3. For the sake of brevity, a 

coding scheme was utilized. For example, P1A4 indicated Approach 4 for Problem 1. Of 

the 15 approaches available in the collection of approaches, 13 approaches were prepared 

by the researcher beforehand and 2 approaches (i.e., P1A4 and P2A8) were added based 

on students’ written work. 

In Phase 3, a panel of experts was consulted to evaluate the collection of 

approaches for their aesthetic value. The panel consisted of three research 

mathematicians from mathematics research institutes as classified in the Carnegie 

Research I University. Professor 1 was a Full Professor of Mathematics and has worked 

in a university for nearly 30 years. Professor 2 was an Assistant Professor of Mathematics 

who has been working in a university for 8 years. Professor 3 was an Associate Professor 

of Mathematics who worked in a university for 10 years. The panel of experts was asked 

to provide two aesthetic evaluations: 1) a five-point scale and 2) an order of preference 

(see Appendix K). 

In the five-point scale evaluation, each expert was to rate each approach in the 

collection of approaches according to the following rubric. A score of 5 indicated that the 

student’s approach was the most “beautiful” approach ever seen in similar or related 

problems. A score of 4 indicated that the student’s approach was “beautiful,” but more 

“beautiful” approaches in similar or related problems have been observed. A score of 3 

indicated that the student’s approach was very typical to similar or related problems and 

was often associated with standard approaches taught or suggested by mathematics 

teachers or curriculum at the secondary school level. A score of 2 indicated that the 

student’s approach suggested brute-force application of naïve information processing 
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skills relying only on the information explicitly provided in the problem. A score of 1 

indicated that the student’s approach showed a primitive understanding of basic 

mathematics skills required to solve similar or related problems. 

In the order of preference evaluation, each expert was asked to place all 

approaches in the collection of approaches for every particular problem in order from 

most to least preferred approach in terms of aesthetic value. They were also asked to 

provide careful explanations for why they placed those approaches in such order. The 

purpose of these two evaluations was simply to mediate possible discrepancies in the 

three experts’ evaluations. (For example, there might have been a case where more than 

one approach received the higher average five-point scale evaluation.) The more 

“beautiful” approach for a problem was determined not only by the higher average five-

point scale evaluation, but also by the higher rank in the order of preference evaluation. 

For example, in the case of two or more approaches with similar high average five-point 

scale evaluations, the most “beautiful” approach was decided according to the majority 

vote of the experts’ first preference in the order of preference evaluation. After the panel 

of experts determined the most “beautiful” approaches for the three problems, these 

approaches were presented to the 54 students: 1) via students’ follow-up interview and, 

concurrently, 2) via student’s validation survey. In other words, Phase 4 was conducted at 

the same time as Phase 5. 

In Phase 4, a follow-up interview was conducted with each of the nine students 

who had previously taken the test in Phase 2. It elicited students’ explanations for their 

problem solving approaches and their reactions to the aesthetic view of the panel of 

experts. Appendix L presents an illustration of the interview questions. The interview was 
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conducted individually for each student and video recorded. Each student was informed 

of his or her test result during the interview (i.e., the number of correct answers on the 

test) and of the aesthetic evaluation of his or her approaches according to the panel of 

experts. Each student was asked for his or her opinions of the approaches considered to 

be “beautiful” by the panel of experts. Transcripts of these interviews can be found in 

Appendix M. 

In Phase 5, a validation survey was conducted with all 54 students (see Appendix 

N). This validation survey consisted of two parts. The first part of Phase 5 examined a 

hypothetical problem solving experience. The 45 students who had not taken the test 

were asked about their understanding of the 15 approaches for the three problems, their 

order of presenting approaches, and their preferred approaches. The nine students who 

had taken the test were asked similar questions, but with the additional rephrasing of “If 

you had to do these problems all over again, what would you do differently?” In terms of 

their understanding of the approaches, students were to rate each approach according to 

the following rubric: A score of 2 indicated that a student understood all of the steps or 

reasoning behind the particular approach. A score of 1 indicated that a student understood 

some of the steps or reasoning behind the particular approach. A score of 0 indicated that 

a student did not understand any of the steps or reasoning behind the particular approach. 

As they went through all 15 approaches, the students were also advised to keep in mind 

the question of whether they had previously learned the necessary mathematics 

knowledge involved in each approach. The following rubric was used: A score of 2 

indicated that a student had previously learned all of the necessary mathematics 

knowledge involved in the particular approach. A score of 1 indicated that a student had 
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previously learned some of the necessary mathematics knowledge involved in the 

particular approach. A score of 0 indicated that a student had not previously learned any 

mathematics knowledge involved in the particular approach. In the analysis, the most 

frequently occurring statistic in the data set (i.e., mode) was utilized. 

Students were further asked to provide a self-assessment of their likelihood of 

using each of the 15 approaches. They were expected to measure their belief in their 

abilities to solve the problem using a particular approach. The following rubric was used: 

A score of 2 indicated that a student would be very likely to solve the problem using the 

particular approach. A score of 1 indicated that a student might be able to solve the 

problem using the particular approach. A score of 0 indicated that a student would not 

have thought of solving the problem using the particular approach. In terms of their order 

of presenting approaches, students were asked to rank three approaches that would most 

likely come up as their first, second, and third attempts at solving each of the three 

problems. In terms of their most favorite approaches, students were asked to select only 

one approach which they considered was the most preferable for each problem. They 

were also asked to provide justifications for why that particular choice was more 

preferable than the other available approaches. The second part of Phase 5 examined 

students’ attitudes towards problem solving using many different approaches. In 

particular, the intention was to draw out students’ reactions to statements, 

recommendations, constraints or concerns asserted by the mathematics education 

researchers, mathematics teachers, and cognitive psychologists in earlier studies 

(discussed in the literature review). Students were to rate a total of 25 statements (S1-S25) 

on a five-point scale: 5, 4, 3, 2, 1 for strongly agree, agree, neither agree nor disagree, 



52 
 

 

disagree, and strongly disagree, respectively. When making inferences, mean and 

standard deviation were utilized. 
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Chapter IV: FINDINGS FROM PHASES 1 AND 3:  

STUDENTS’ PRELIMINARY SURVEY AND EXPERTS’ EVALUATION 

 

Findings from Phase 1: Students’ Preliminary Survey 

The current study included 54 students: 28 female and 26 male students. There 

were six eleventh graders and 48 twelfth graders. Four of the eleventh graders had not 

taken the SAT at the time of data collection, whereas the other 50 students had an 

average score of 747 on the SAT Mathematics Section. This score was in the 97th 

percentile compared with the national average score of 516 for the class of 2010 (The 

College Board, 2011). Moreover, seven students reported an average score of 716 in the 

SAT Subject Test—Math Level I. This score was also above the national average score 

of 605 for the class of 2010 (The College Board, 2011). In addition, 38 students reported 

an average score of 758 in the SAT Subject Test—Math Level II. This score was also 

higher than the national average score of 649 for the class of 2010 (The College Board, 

2011). 

These 54 students also documented their planned undergraduate majors. Twenty-

eight students (52%) planned to major in natural science disciplines such as Electrical 

Engineering, Computer Science, Biology, Chemistry, and Geological Science. Ten 

students (18%) planned to major in social science disciplines such as Political Science, 

Economics, Finance, and History. The rest of the 16 students (30%), including the 

eleventh graders, had not yet declared their planned undergraduate majors. Previous 

mathematics knowledge of these students was generally uniform as a result of taking the 

same mathematics curriculum. All 54 students had been taking at least two mathematics 
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classes per academic year. This homogeneity was the result of all students coming from 

the same specialized high school. With the exception of one of the six eleventh graders, 

most students at the time of data collection had already taken approximately nine 

mathematics classes, including algebra, geometry, trigonometry, pre-calculus, calculus, 

as well as a mix of statistics and computer science courses. All 54 students were taking 

an AP Calculus course at the time of data collection. 

These 54 students also reported a variety of favorite mathematics topics. Twenty-

three students (42%) chose calculus as their favorite mathematics topic, 16 students (30%) 

chose algebra, 9 students (17%) chose geometry, and 6 students (11%) chose a mix of 

statistics and trigonometry. A student’s explanation for his or her favorite mathematics 

topic was categorized based on unifying principles (see Table 1). Eleven students (20%) 

chose their favorite mathematics topics because it provided practical or real-life 

applications, 9 students (17%) did so because it made logical sense, 9 students (17%) did 

so because it integrated ideas from previously taken mathematics courses, 8 students 

(15%) did so because it promoted powerful tools to solve problems with minimal effort,  

7 students (13%) did so because it facilitated spatial visualization ability, and 10 students 

(18%) did so because of other reasons not directly related to mathematics. 



55 
 

 

Table 1 

Students’ Explanations for Their Favorite Mathematics Topic 

Unifying 
Principles Examples 

Provides 
practical or real-
life applications 

“It helps me understand the mathematics behind production costs. By 
maximizing volume and minimizing the surface area of a container, I can find 
the perfect dimensions for minimizing costs”; “there are many applications in 
engineering and organizing data. You can even use it in sciences such as 
chemistry”; “most applicable to real life situations…in card games, or the 
probability that a guess on a multiple choice test will be correct”; “it can be 
used to solve real-life problems such as calculating the height of a building if 
you know the distance from and the angle.” 

Makes logical 
sense 

“I like how everything is logical and like a puzzle. It’s also one of the 
fundamentals for math so it’s obviously extremely important”; “requires you 
to think logically rather than emphasizing on rote learning.” 

Integrates ideas 
from previously 
taken 
mathematics 
courses 

“It has an appealing factor of problem solving and it utilizes arithmetic 
learned early on. It is also a new way to view former concepts”; “a 
combination of various fields of math study…it integrates everything I’ve 
learned in math”; “allows one to use combinations of math previously learned 
in a useful way”; “ allows me to combine all of the past math that I have 
learned.” 

Promotes 
powerful tools to 
solve problems 
with minimal 
effort 

“I was astounded at the complexity of problems that can be solved with this 
technique”; “it gives you the ability to understand or find out a lot about a 
given problem with minimum effort. The concepts involved are interesting 
and one does not get bogged down in tedious manual calculations”; “it gives 
me a set of tools I can use to solve problems that previously would have been 
lengthier or even impossible”; “allows me to solve even the most complex 
problems with relative ease. The methods used make it easier to solve 
problems which would otherwise take much longer if I were to use other 
method”; “it provides me with the techniques to answer math questions 
without using the graphing calculator or numerous equations with many 
unknown variables”; “it teaches valuable shortcuts and problems that would 
take multiple steps before can now be done fast”; “using little information to 
find the answer.” 

Facilitates spatial 
visualization 
ability 

“I am naturally good with shapes. It is easier than other topics because many 
questions have visual aids, i.e. shapes with dimensions”; “I like being able to 
visualize the figures”; “it’s easiest to visualize, and is less about 
memorization and is more about applying concepts.” 

Other “It’s easy”; “Not sure, I just love it”; “It’s cool”; “My teacher was more 
intriguing.” 
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The findings from Phase 1 revealed that the subjects in the current study included 

a reasonable mix of female and male students. These students enrolled in a specialized 

high school in New York City. They consequently had had some of the most rigorous 

high school mathematics curriculum in the country. They also demonstrated excellent 

performance in a number of standardized tests. The students had expressed interest in 

continuing their studies at the undergraduate level, choosing mostly natural science 

disciplines. Moreover, they were able to provide reasonable explanations for their 

favorite mathematics topics. In general, by virtue of attending this specialized high school, 

the subjects in the current study could be considered to be mathematically gifted students. 

Findings from Phase 3: Experts’ Evaluation 

The findings from Phase 3 suggested that not all approaches for the three 

problems received common agreement from all three experts, either in their five-point 

scale evaluation or in their order of preference evaluation (see Appendix J for the 

collection of approaches, and Appendix K for instructions for experts’ evaluations). 

There was, however, only one approach with unanimous assessment, namely P3A2. In 

general, P1A3, P2A2, and P3A3 were considered to be the most “beautiful” approaches 

for Problems 1, 2, and 3, respectively. Table 2 presents a summary of the findings from 

Phase 3. (Note: The highlighted parts in this figure are each expert’s preferred approaches 

as well as the most “beautiful” approaches as determined collectively.) In this section, 

explanations for each approach were described one after another, from most preferred 

one to least preferred. 
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Table 2 

Summary of the Findings from Phase 3 

 

 

Problem 1 

Fill in the blank with one of the symbols <,≤, =,≥, or . 

√2009 + √2011    2√2010 

The panel of experts generally considered Approach 3 (P1A3) to be the most 

mathematically “beautiful” approach for Problem 1. Professor 3 maintained that P1A3 

required “the knowledge of the more advanced notion of convexity. It is very short and 

direct, and therefore beautiful.” Still, he had hoped that “the student would have to give 

another proof if he or she was asked to prove strict concavity of square root.” Professor 2 

appreciated the generalizability of P1A3 to more advanced mathematics functions that 
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could be afforded only by “formidable intuition.” He argued that this geometric reasoning 

was easily transferable to a “broader context [that] relates to finite-difference 

approximation to the Laplacian.” Professor 1, on the other hand, did not think that P1A3 

was “rigorous” because “the proof that the square root function is concave is algebraic.” 

He believed that “the kid who did this had seen the graph and remembered the shape and 

understood or figured out that that shape has relevance for algebra.” But he agreed that 

P1A3 was “a beautiful approach because it shows the power of geometry to solve algebra 

problems.” 

Approach 1 (P1A1) was ranked second most preferred. Professor 2 thought very 

highly of P1A1 as much as he did of P1A3. He imagined that P1A1 “hinges on the 

concavity of log(𝑥), i.e. the step (𝑥 − 1)(𝑥 + 1) < 𝑥2 is equivalent to asserting that 

log(𝑥 − 1) + log(𝑥 + 1) < 2 log(𝑥), which is similar to the original problem.” 

Nevertheless, he doubted whether the student who supplied P1A1 actually “realizes it.” 

Professor 3 thought of P1A1 as “a standard procedure which involves algebraic 

operations to simplify the expression.” He commented that, unlike P1A3, P1A1 was less 

preferred “from an aesthetic viewpoint due to its mechanical nature at the beginning.” 

Still, he felt that “the last step was clever in avoiding complicated arithmetic” and that it 

“shows that 2010 is treated as a symbol rather than a number itself, which demonstrates 

abstraction.” Professor 1 was less enthusiastic about P1A1; it was “a textbook solution,” 

as he put it. He thought that “the kid who did this learned the trick somewhere. It’s not 

the kind of thing a kid would come up with on his or her own.” 

The panel of experts also considered Approach 1 (P1A1) to be relatively similar 

to Approach 4 (P1A4), yet contended that P1A4 was generally less appealing than P1A1. 
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Professor 2 felt a little frustrated with P1A4, stating “I don’t see why the student didn’t 

simply calculate √2009 + √2011 to begin with.” He further explained his frustration 

with P1A4 because “this approach doesn’t seem any more powerful than directly 

evaluating the original function.” On the other hand, he stated that “I don’t think this is a 

bad approach, but I’m not sure if it allows for a useful perspective on this problem.” 

Professor 3 also recognized similarities between P1A4 and P1A1. In particular, he 

pointed out that P1A4 “starts same as in [P1A1] but the last step requires brute-force 

multiplication and is therefore naïve.” He said that P1A4 is far less preferred to P1A1 or 

any other approaches because of “its fully mechanical nature” and lack of presence of 

“abstraction involved.” Interestingly enough, Professor 1 found P1A4 more preferable 

than P1A1. He said, “[t]he kid who did this I would call ‘scrappy,’ able to find a solution 

somehow with minimal tools.” He admired students who provided P1A4 for their 

“willingness to think” and believed that they “had a bigger toolbox than the others, even 

if one of the tools is fifth grade math.” 

Approach 2 (P1A2) elicited the most varied opinions. Professor 3 valued P1A2 as 

the most aesthetically appealing among the four approaches. He preferred P1A2 because 

of “the originality of the first step.” He believed that it was “more original and elegant 

because the first step is not ‘learned’ hence nontrivial.” Yet, Professor 2 thought that 

Approach 2 was “convoluted, but perhaps some of the techniques will be useful in 

solving other problems.” He said, “I can’t come up with a simple geometric interpretation 

of this approach. That doesn’t mean that there isn’t one!” What seemed to bother him 

more was that he could not “see more general utility in the intuition offered by this 

approach.” Nevertheless, Professor 1 thought of P1A2 as the least aesthetically appealing 
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of the four approaches. Connecting it with P1A1, he said, “[h]ere too I would imagine 

that the student had seen manipulations like this before. This particular manipulation is 

used in calculus to get the formula for the derivative of the square root function.” 

Moreover, he attributed the reason why P1A2 was “less ‘beautiful’ than Approach 1” to 

its unnecessary length as “[i]t does more of the same kind of thing to get to the same 

result.” 

Problem 2 

Given 𝑥2 + 𝑦2 = 1, find maximum of 𝑥 + 𝑦. 

Approach 2 (P2A2) was considered to be the most “beautiful” by the panel of 

experts. It received an equal average score as P2A1 and P2A3 in the five-point scale 

evaluation, but was ranked highest by far in the order of preference evaluation. Professor 

1 thought that P2A2 was “beautiful” because it “makes the problem seem so simple that 

it does not require brilliance to solve it.” He admitted that it was “a little long,” but 

explained that “finding the farthest out line that crosses the circle is the geometry of the 

problem that makes the solution obvious.” Professor 2 recognized that P2A2 “clearly 

points out to Lagrange multipliers.” He explained: 

The first two sentences of this approach contain a great deal of structure. 
First, the student introduces the notion of level sets of the original function, 
and then the student introduces the notion that the level-curves of the 
original function should be tangent to the constraint manifold at the 
critical point. This is already a great deal of structure. Indeed, these two 
observations encapsulate the basic idea of Lagrange multipliers. Aside 
from smoothness and boundary considerations, these observations solve 
the problem. At this point, the student can just draw the constraint 
manifold (a circle) as well as the level sets of the original function 
(straight lines with a fixed slope) and pick out the points of tangency. The 
rest of the student’s argument is unnecessary. 
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Professor 3 recognized Lagrange multipliers in P2A2, but did not consider this approach 

as highly because it was “almost textbook style.” 

Approach 1 (P2A1) was the second most favored. Professor 1 saw it as “a 

thoughtful approach, but with a clever twist at the end.” He commented that “[i]t shows 

the ability to formulate some algebraic expressions based on a picture.” Professor 3 liked 

that this “very elegant symmetry breaking argument” was “original in that it involves a 

proof by contradiction for a constrained optimization problem.” He was impressed by the 

“efficient way of demonstrating how the constraint cannot be satisfied with a larger value 

of the objective function.” Professor 2 thought P2A1 “heroic, yet flawed” in a more 

general case. He explained that  

[t]he original assertion (i.e., by symmetry) is not well founded. Consider, 
for example, the situation where the constraint is, say √𝑥 + �𝑦 = 1. In 
this situation the maximum of 𝑥 + 𝑦 occurs at 𝑥 = 1,𝑦 = 0 and 𝑦 =
1, 𝑥 = 0. The assumption of symmetry might lead the student to believe 
that 𝑥 = 𝑦 = 1

4
. The further attempt to justify such a conclusion will be 

impossible (as it is not true). In this particular case the constraint happened 
to be (i.e., 𝑥2 +  𝑦2 = 1), and the student’s analysis demonstrated that the 
symmetry assumption was correct. 
 

Therefore, although “[t]he techniques used in this analysis are no easily generalizable to 

other situations,” he believed that “the student’s attempt to use symmetry to solve such a 

problem is commendable.” 

Approach 3 (P2A3) was ranked third. Professor 1 thought that “[t]his is an 

example of a ‘slick’ argument.” He explained that “[i]t is very short and gives little hint 

what is going on.” Despite the appeals of “slick” arguments, he said, “I try to avoid them 

because they make me nervous.” Professor 2 thought P2A3 made a good use of “a cute 

inequality.” He added that it was “quite clever” but “otherwise not generalizable to other 

constrained maximization problems.” Professor 3 thought that P2A3 would have been 
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more favorable had it been more complete. He believed that it “requires more explanation 

on why the stated inequality is true and how it gives a complete solution (i.e., case of 

equality).” 

Approach 7 (P2A7) was ranked fourth. Professor 3 commended its originality. He 

said that “[i]t is highly original to think of the objective function as an inner product for 

which the constraint is the norm of one of the vectors.” Professor 2 also praised this 

approach as having “a facility for linear algebra.” He added, “[w]hile not generalizable to 

other functions, this type of geometric reasoning will be useful for other problems.” 

Professor 1 thought P2A7 was comparable to P2A6, but “even clunkier and longer.” Still, 

he imagined that “[t]he person using vectors clearly has lots of math training, which 

would probably include calculus.” 

Approach 5 (P2A5) was ranked fifth. Professor 2 thought that “[t]his approach 

uses techniques for analyzing trinomials, but doesn’t generalize.” Professor 1 thought 

P2A5 was comparable to P2A4 in that “it puts the problem into a standard form and 

applies the standard solution method.” He ranked it lower than P2A4 because “the 

solution method is more special and clunkier.” However, he acknowledged that “if the 

student did not know calculus, it’s a good solution.” Professor 3 thought that it was 

“highly original.” He believed that it demonstrated “a high level understanding of 

algebraic facts which are often simply memorized at the secondary school level.” 

Approach 4 (P2A4) was ranked sixth. Professor 3 found “not much aesthetic” in 

this approach. He thought that it was “mechanical once the substitution is made and 

methods of calculus are invoked.” Professor 2 liked it the least, saying that “[t]his 

approach is only viable when the constraint can be incorporated into an explicit 
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description of the original function, which of course is not generally the case.” Still, 

Professor 1 thought that “[t]his approach is ‘competent.’” He explained, “[t]he solver 

calmly applied what he or she knew in a way that was almost guaranteed to find the 

answer, if there is a simple answer.” He added, “Mathematics, in my opinion, is more 

about avoiding brilliance than using it.” P2A4, he believed, was an example of this. 

Approach 8 (P2A8) was ranked seventh. Professor 2 saw similarities of it in P2A4 

in that “it relies on an explicit characterization of the constraint manifold.” Professor 3 

also saw the similarities, but did not like it because it was “mechanical.” Nonetheless, 

both professors ranked P2A8 higher than P2A4 because P2A8 involved trigonometry, 

which made it relatively more “elegant,” as Professor 3 put it. Professor 1 saw the 

similarities as in P2A4 as well, but thought that the use of trigonometry was 

“unnecessary.” 

Approach 6 (P2A6) was the least favored of all. Professor 1 thought of it as a 

“grind out trigonometry,” that is, “more complicated than necessary.” He explained that 

“[t]he person who did this could have saved time by using less machinery and finding a 

more conceptual approach, like Approach 1.” Professor 2 also thought “[i]t’s good that 

the student understands some trigonometry, but I don’t think these tools will apply to 

more general problems of this type.” Interestingly, Professor 3 thought that this approach 

was rather “elegant because it solves the maximization problem in one step.” 
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Problem 3 

Given triangle 𝐴𝐵𝐶 with median 𝐶𝐷���� and 𝐶𝐷 = 𝐵𝐷, find measure angle 𝐴𝐶𝐵. 

Approach 3 (P3A3) was considered to be the most elegant by the panel of experts. 

It received a relatively similar score in its five-point scale evaluation compared to P3A2, 

yet was generally more favored than P3A2. Indeed, all three experts agreed that both 

P3A3 and P3A2 were somewhat similar and aesthetically pleasing. Professor 3 rated 

P3A3 the highest on a five-point scale. He was intrigued by “the combination of 

originality and efficiency of the solution.” He contrasted P3A3 with P3A2, suggesting 

that P3A3 “seems more original by considering the symmetric extension about 𝐷.” 

Professor 2 deemed that P3A3 went beyond P3A2 by facilitating “an illustration of the 

location of these points (on a circle), as well as a proof that the inscribed angle 

(associated with a semicircle) is 90°.” Professor 1 agreed with the earlier observations, 

adding that P3A3 was “another clever insightful proof” that made good use of parallel 

lines. 

Approach 2 (P3A2) was rated the second most favored. Professor 3 regarded it as 

“aesthetic because of the simplicity of the solution which can be presented with a single 

picture.” However, unlike P3A3, he thought that P3A2 was rather “standard to consider 

the circumcircle in a problem like this, so it is not highly original.” Professor 2 echoed 

the same opinions, describing that P3A2 “paints a picture wherein points A, B, and C all 

lie on a circle about D.” Comparing it with P3A3, he favored P3A2 less for lacking “a 

proof of the fact that the inscribed angle associated with a semicircle is 90°.” Professor 1 

thought that “[t]he circle construction is very clever.” He took his view one step further, 

stating, “[t]he interesting thing about this, however, is that it relies on a theorem about 
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angles in a circle, the proof of which is basically the direct approach to this problem.” 

P3A2 was (curiously) the only one of all 15 approaches that received unanimous 

assessment from the three experts. Yet, aesthetic appeals in P3A2 could clearly be 

captured, according to the experts’ evaluations, stemming from a sense of harmony once 

all pieces of information were united within a circle. 

Approach 1 (P3A1) was graded the least elegant for being a very typical approach. 

Professor 2 thought that “[t]his approach isn’t bad, but doesn’t provide a clear picture 

associated with the problem.” Professor 3 felt that “[i]t is an efficient solution, but not 

necessarily an aesthetic one” because “[t]his approach is built on a straightforward 

inspection of relations between the angles based on the given information.” Although 

grading it exactly the same as the other two professors on the five-point scale, however, 

Professor 1 ranked P3A1 most appealing. He believed that P3A1 was “the one I think is 

the best, but it is not the most beautiful.” He explained that this approach “uses no extra 

machinery and just competently builds up information.” Contrasting it with P3A2 and 

P3A3, he said: 

Both [P3A2 and P3A3] add extra structure that immediately makes the 
solution obvious. It is beautiful to see a mathematics problem instantly put 
into a new light by an insight like that. Some of the solutions to [Problems 
1 and 2] also involve extra structure, but in those cases I did not feel that 
the extra structure put the problem in a different light. 
 

He justified his belief further: 

[P3A1] consists essentially of building up information step by 
unremarkable systematic step until the solution appears. I am comfortable 
with this because I can see how to apply this kind of reasoning to many 
other problems. The other approaches do not go in steps, but just give the 
answer and the consequence of an insightful picture.  
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The three research mathematicians evaluated the aesthetic value of the 15 approaches in 

great detail and they appeared impressed by many of the 15 approaches. 

Some Perspectives from the Panel of Experts 

Professor 1 took the time to discuss his overall perspective on mathematics 

aesthetic evaluations. He made some remarks about his experience as a professional 

mathematician, in particular during his graduate school training. He said: 

In grad school, I had problems with the many beautiful arguments you 
find in advanced textbooks. They would prove that something is true 
without really saying why or helping me decide related questions. You 
could learn a beautiful proof, but could not “understand” it. Often a more 
clumsy, longer argument gives more insight and therefore is more useful 
in the long run.  
 

It was obvious that Professor 1 placed as much value on the issue of pedagogy as he did 

on aesthetic value. He cared about the accessibility of concepts at an earlier stage of one’s 

mathematics learning experience. He believed that students with little formal training 

ought to be able to understand every line of reasoning in a “beautiful” proof effortlessly. 

A similar view had been declared by a group of mathematicians who chose a “beautiful” 

proof of the irrationality of √2 because of “[t]heir simplicity and the fact that they can be 

completely understood with a minimal amount of mathematical background” (Dreyfus & 

Eisenberg, 1986, p. 8). 

Unlike Professor 1 who saw “beauty” in the efficacy for learning purpose, 

Professor 2 found context of generalization most appealing. He was pleased when an 

approach could be modified and applied to similar problems in a more advanced 

mathematical setting. He would appreciate it even more if an approach could be seen as a 

small-scale reproduction of some grand mathematics propositions. Indeed, this very same 
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orientation to generalizability was observed by Krutetskii (1976), who pointed out that 

the work of mathematically gifted students was very generalizable to different topics. 

Professor 3, on the other hand, appreciated originality in “beautiful” mathematics 

proofs. He deemed an approach “beautiful” if he could find in it some presence of 

mathematical ideas, steps or reasoning that were connected in an unexpected way. His 

view of originality perhaps could be understood better by contrasting it with his 

opposition to “dull” approaches. He disliked the mechanical use of mathematical 

machinery similar to the mathematical theme in the surface structure of the problem. For 

him, there was no “beauty” for anything learned or taught in classroom standards. The 

sense of “foreignness” of an approach attracted him more. 

The findings from Phase 3 showed that the mathematics aesthetic evaluations 

were indeed subjective, in keeping with the expression “beauty is in the eye of the 

beholder.” Professor 1 valued the learnability of an approach in establishing his view of 

mathematical “beauty.” Professor 2 appreciated the transferability of an approach to more 

general situations. Professor 3 regarded the originality of an approach as a determining 

factor to impress a well-rounded audience. They nonetheless all agreed that with 

mathematically “beautiful” work came the power to stand out from the “crowd.” 
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Chapter V: FINDINGS FROM PHASES 2 AND 4:  

STUDENTS’ TEST AND STUDENTS’ FOLLOW-UP INTERVIEW 

 

This chapter is devoted to describing the mathematical problem solving behavior 

of the nine students who took the test in Phase 2 and were interviewed in Phase 4. It 

describes the students’ test performance, their choices of approaches, and their reactions 

to the experts’ opinions of “beautiful” approaches. Table 3 presents a summary of the 

findings from Phases 2 and 4. (Note: The maximum score for the AMC-12 test is 150. 

The maximum score for the SAT tests is 800. The maximum score for the test in Phase 2 

was 3. When a student did not report a test score, data were considered not available. See 

Appendix I for examples of acceptability scores of 1 and 0. A student’s successful 

approach was an approach that the student supplied during the test and was scored 1. 

When a student was not successful in supplying a score 1 approach, data were considered 

not applicable. A student’s preferred approach was an approach that the student preferred 

among all approaches from the collection of approaches in Appendix J. An aesthetic 

score for the student’s preferred approach is given according to the experts’ evaluations. 

See Table 3 for aesthetic scoring scheme. The last column indicates a typical student with 

an average statistic in terms of mean or mode. For example, a typical student reported an 

average SAT Mathematics Section score of 754, and supplied and preferred P2A4 in 

solving Problem 2.) 
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Table 3 

Summary of the Findings from Phases 2 and 4 

 

Student 1 

Student 1 was a senior planning to enroll in college with a premedical major. She 

reported an SAT Mathematics Section score of 760. She chose algebra as her favorite 

mathematics topic because it was relatively simple and easy for her to understand. Her 

mathematics background was typical of students from that particular specialized high 

school. She started off with algebra in eighth grade and, from then on, continued with 

geometry, trigonometry, pre-calculus, and calculus. Her overall acceptability score was  

1 for a correct answer in Problem 3. She started the test with Problem 1, producing two 

approaches which were very similar and unsuccessful. Her written work showed that she 

approached the problem using derivatives, but was unsuccessful. Clearly, her reflex had 

to do with her then-calculus course. After going through the other two problems, she 
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returned to Problem 1. On a separate page, she attempted to produce a different approach. 

This time it was more arithmetic in nature, possibly as a continuation of her work in her 

first attempt. It was again not successful. When presented with four approaches from the 

collection of approaches (see Appendix J), she chose Approach 4 (P1A4) as her preferred 

approach because in her view, it was the most understandable. The other three, she said, 

were complicated. When told that P1A3 was considered to be “beautiful” by the panel of 

experts, she was not able to provide an adequate explanation. She answered quite 

honestly: 

It’s probably because it’s the simplest way to solve it, but I don’t 
understand how they solve it, so I can’t say, but I agree that’s easy if I 
knew how to solve it…it’s simple, if you understand the concept of it, 
don’t go through all these big numbers to solve it.  
 

Clearly, her lack of understanding the mathematical knowledge involved in the process of 

P1A3 prevented her from appreciating its aesthetic value. 

Student 1 continued with Problem 2, supplying only one approach which was 

considered to be unsuccessful. Her written work again had a number of derivatives. It 

showed that she was considering a calculus approach, a topic related to the course she 

was enrolled in at that time. Despite this, when eight approaches from the collection were 

presented to her, it turned out that the calculus approach, Approach 4 (P2A4), did not 

appeal to her as strongly as the geometry approach, P2A2. On one hand, her explanation 

for choosing P2A2 over P2A4 had to do more with her understanding of the two 

approaches. She reported that she would have chosen P2A2 as her first attempt if she had 

another chance to do the problem again. On the other hand, her choice of preferred 

approach had little to do with her ability to identify the aesthetic values of the approach. 

When informed that P2A2 was considered to be “beautiful” by the panel of experts, she 
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was somewhat indifferent. Asked whether she saw anything appealing in P2A2, she only 

said that “[i]t doesn’t involve so much numbers in it, not many properties involved.” 

Clearly, her descriptions of aesthetic appeal did not go beyond the explicit and concrete 

presentations of the approaches. 

At the end of the test, she was able to solve Problem 3. Her written work showed 

that it was very similar to Approach 1 (P3A1). She explained that P3A1 came out to her 

in her first attempt because she tried different angles to find the measure of the angle in 

question. Her choice of approach might be viewed as an instinctive one with the sole 

intention to find the answer to the problem. After shown the three approaches from the 

collection, she said that she preferred P3A2 to P3A1. Her explanation was again limited 

by her mathematical understanding of the approaches. When told that P3A3 was 

considered to be “beautiful” by the panel of experts, she had a reaction similar to her 

earlier in Problem 1. She said, “I think it’s the same thing, like the beautiful if you know 

some mathematical properties, you can apply them the right way, you don’t have to 

involve like numbers or logic as much, you just use those properties.” 

Generally, Student 1’s performance was somewhat unsatisfactory since she 

provided only one correct approach for Problem 3. Her explanations for this problem 

solving experience indicated that she was not in her best shape for the test. She said, “I 

realized I forgot to do some of the math, I haven’t been really doing that much this year, I 

know that’s probably my biggest issue.” At the same time, her aesthetic feelings did not 

emerge, probably because of her lack of understanding the necessary mathematical 

concepts involved in the approaches. 
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Student 2 

Student 2 was a senior planning to continue his academic career in college but he 

reported an undeclared major. He documented an SAT Mathematics Section score of 770, 

an SAT Subject Test—Mathematics Level II score of 800, and an AMC 12 score of 94.5. 

His favorite mathematics topic was geometry, but he gave no specific reason for why. He 

was the only student to receive a maximum acceptability score of 3, having successfully 

solved all three problems. He started the test with Problem 1, producing two approaches, 

only one of which was successful. He was not able to solve Problem 1 on his first try. 

However, after solving the other two problems successfully, he returned to Problem 1 and 

managed to obtain a correct answer by supplying Approach 1 (P1A1, see Figure 3). 

 

 

 

Figure 3. Student 2’s Written Work for Problem 1 
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In his second attempt, Student 2 considered a relationship of arithmetic and 

geometric means, but it was not quite as successful. He was the only student who 

successfully solved Problem 1 using an approach other than P1A4. As a matter of fact, he 

seemed not to bother pursuing P1A4 even after successfully producing P1A1. His choice 

of P1A1 demonstrated a developed level of awareness of mathematics aesthetic values. 

When exposed to P1A4 from the collection, he somewhat disliked the mechanical 

calculation involved. He said: 

It starts off the same way as me, but in the end he just multiplied them 
together, instead of doing the difference of two squares method. I prefer 
the first one better, well because of laziness, I don’t particularly want to 
multiply 2009 and 2011, when I could rather abstract it and get 20102 −
1, so yeah.  
 

Provided with all four approaches, he chose P1A3 as his preferred approach. He also 

stated that it would have been his first attempt had he thought of it. He clearly had an 

adequate comprehension of this approach. He said: 

Because it’s concave, and it’s not increasing steadily, steadily in one 
direction, as you get further out the, intuitively, I know what he’s saying, 
but I can’t really put it into words, because the averages, as you get further 
out, the averages of any two points is going to be less and less, like when 
you draw a line between the two points and take the midpoint, that’ll be it, 
and you would want that point.  
 

He mentioned that P1A3 was “a quick, smart, logical argument.” He clarified his 

preference for this approach, saying “because it’s the simplest, the most abstract, you can 

generalize it to any function that is strictly concave, or concave over the range or domain 

that you want to use it.” It was obvious that he recognized the value of the 

generalizability of P1A3. Indeed, when told that it was considered to be “beautiful” by 

the panel of experts, he was able to offer a justification of it. He said: 
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Yeah, it’s more aesthetically pleasing, shall we say, it’s also a bit more fun 
in a way, because if I knew this, like I said, I could use it on any other 
problem that is like this, whereas if I get a bunch of numbers with some 
function being acted on all of them, and I’m asked to classify them in 
some way like this, I can just refer back to this and generalize it…. 
 
Student 2 continued with Problem 2, producing two approaches, only one of 

which was successful. He solved the problem successfully on his first attempt, using an 

approach that had not been in the original collection (it was later added as Approach 8, 

P2A8, in Appendix J). He explained how seeing the constraint function 𝑥2 + 𝑦2 = 1 

made him generate the unit circle visualization and connect to it at once with 

trigonometry aspects. This, he said, enabled him to think of the problem as a combination 

of calculus, geometry, and trigonometry. Perhaps his strong problem solving ability came 

about as a result of his access to advanced mathematics education as well as his 

mathematical aptitude. After his first successful attempt, he continued working on it to 

furnish another approach. His second attempt appeared incomplete and was considered to 

be unsuccessful. He said that he was trying to replicate the problem into an optimization 

of a perimeter of a rectangle type of problem. When shown eight approaches from the 

collection, he at first identified P2A2 as his second preferred after P1A8. In his 

explanation, he cleverly made a connection with his favorite mathematics topic, geometry. 

He said, “Well, this one [P2A2] kind of nicely turns it into a geometry problem, it seems 

a little roundabout for my taste.” When informed that P2A2 was considered to be 

“beautiful” by the panel of experts, he was not initially completely convinced. Still, he 

described it as “nice and pleasing.” When asked to compare P2A2 with other approaches, 

he eventually said that the calculus approaches P2A4 and P2A8 were “kind of the brute 

force” but could be used “for everything, whereas [P2A2] only works for this condition 
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[in Problem 2].” To some extent, he valued the parsimonious aspect of aesthetic values. 

He said that P2A2 was “kind of low tech, I think. I didn’t have to use more advanced 

topics in order to solve a problem which you wouldn’t think only requires less 

sophisticated methods to solve.” In the end, he switched his preference to P2A2 “because 

of the simplicity and the solving of a complex problem with simple tools.” 

Lastly, he produced three approaches for Problem 3. Quite remarkably, when 

compared with the other eight students taking the test, two of his three approaches were 

not only distinct, but they were also successful. His first attempt was a similar version of 

Approach 1 (P3A1) from the collection. He was able to represent the angle measures 

involved in the triangle using algebraic representations. After successfully solving all 

three problems in the test, he returned to Problem 3 with his second attempt. He was able 

to produce P3A2 from the collection. He drew a semicircle instead of a complete circle, 

and immediately indicated a right angle for the measure angle in question. In comparing 

the two approaches, he favored P3A2 rather than P3A1. He explained: 

I like it more because it’s kind of more abstract in a way, whereas this one 
Approach 1 turns it into an algebra problem, even though the proof of 
inscribed in the semicircle, the simplest proof is actually the same thing, I 
still like this Approach 2 more, it’s simpler and more abstract, I tend to 
like more abstract things better.  
 

When shown P3A3, he was a little indifferent at first. He replied, “It’s a rectangle, okay 

so, what about it?” Then he added, “Yeah, that’s pretty simple, I see how the logic works, 

I would not have thought about this approach, I usually don’t extend into a parallelogram, 

I don’t know, it just doesn’t occur to me naturally.” After being informed about P3A3 

being considered “beautiful” by the panel of experts, he paused for a while, then said: 

Well, it’s not, it’s a good bit of thinking, I have to think of a reason why 
you said that, it’s because, the person had to realize that, hey if you extend 
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these two lines parallel, you get a parallelogram, you can work with that, 
because this forms, this also intersects with that one, so you get a diagonal, 
it’s, I guess, it’s a nice, I can’t really think of a solid reason, it’s all 
opinion really.  
 

When asked whether he would choose P3A3 as his first attempt, he declined and 

maintained his position with P3A2. He said: 

I’d still say [P3A2], yeah, I don’t know why I like using, I like working 
with triangles and circles better than I do parallelograms, quadrilaterals in 
general, I can’t think of anything, simpler possibly. Of course, maybe [the 
panel of experts] likes working with parallelograms.  
 
In general, Student 2 was the top performer with a perfect acceptability score of 3. 

The manner of his mathematical thinking proceeded rather systematically. He said: 

Well, the first solution was really easy, because I just solved the problem 
however I thought of first, it’s just like a normal question, whereas the 
second approach, for each of them, I was thinking, well, if I couldn’t do 
that, what is some other way I can try and solve it, and I just thought of 
anything I could to solve it, and after that, I kept just trying other methods, 
but usually it didn’t work, or I find some problem where I thought they 
could happen.  
 

He did not appear to show much stress during the test. That said, he did not advance 

further when he thought his subsequent approaches led him nowhere closer to the answer. 

He was nevertheless able to see clearly the benefits of interacting between these 

approaches, such as having a stepping stone for another approach, from his experience 

solving Problem 3. Moreover, his appreciation of the mathematics aesthetic value was 

outstanding. Unlike other students who generally perceived “beauty” as only the outward 

appearance of an approach, Student 2 was able to apply a more sophisticated judgment of 

aesthetic values. This was evident from his accounts on the generalizability, 

parsimoniousness, and abstraction of the approaches that he considered to be 

mathematically elegant. 
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Student 3 

Student 3 was a senior planning to major in Biology for her undergraduate study. 

She reported an SAT Mathematics Section score of 640. Her favorite mathematics topic 

was geometry because of her fondness for visual reasoning. Her overall acceptability 

score was 2 for correct answers on Problems 1 and 3. She began the test with Problem 1, 

supplying four approaches, of which only two were different. Her first attempt was 

successful and classified as Approach 4 (P1A4). She continued working on Problem 1, 

looking for different ways to solve it. She wrote down two additional approaches on two 

different pages. Although she recorded them as different approaches, they both had very 

much the same ideas as P1A4 and they were all correct. Her fourth attempt started off 

with the same reasoning as her first attempt, but she quickly switched to using some 

algebraic notations. Apparently, she was gearing towards a more general version of P1A1, 

but it proved to be incorrect. In the interview, she said: 

The first three approaches that like came to mind right away, whereas the 
fourth approach was when I finished the test and I was trying to check if 
that answer was right. So I tried a different way to just check my answer 
rather than resolve it. So I’m more confident that the first three approaches 
the answer I got there was the right answer.  
 
Student 3 made use of her incorrect result from her last attempt to dispel her 

doubts about her answers earlier on. She wanted to verify that the answers she obtained in 

her previous three attempts were in fact correct. One might argue that accepting the 

accuracy of her first three attempts simply because of a conflicting result in her last 

attempt did not sound reasonably compelling. Nevertheless, for her, this experience 

signaled a valid check and thus a boost in her confidence. Moreover, she explained that 

she preferred P1A4 because it was easier and more straightforward, although she 
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mentioned that it was also more computationally involved. P1A1, by contrast, was more 

logically clear and required less calculation, as she said. When shown four approaches 

from the collection, she was able to recognize that her four approaches were similar to 

P1A4 and P1A1. Moreover, she chose P1A3 as her preferred approach. She recognized 

the value of the concavity of square root function in reducing the amount of work needed 

to solve the problem. She claimed that it would have become her first attempt if she had 

to do a similar problem all over again. After being informed that P1A3 was considered to 

be “beautiful” by the panel of experts, she concurred. This information did not come as a 

surprise to her. However, one could sense her positive reaction even as she showed only a 

subtle sign of contentment because of this conformity. Although she indicated P1A3 as 

her preferred approach before being told about the aesthetic selection by the panel of 

experts, her explanation for the aesthetic seemed to intensify later on. She revealed a 

greater conceptual understanding of the geometric properties of the square root function. 

Student 3 continued with Problem 2, providing four approaches, all of which were 

very much alike and unsuccessful. In general, she appeared to apply a guess-and-check 

approach. She expressed her uncertainty about the problem but did not provide detailed 

explanations for it, other than “that’s all I can think of.” When presented with eight 

approaches from the collection, she pointed out without any hesitation that Approach 4 

(P2A4) would have been her first attempt if she had to do a similar problem all over 

again. She said, “I know when I was first doing the test and I saw the problem, I knew 

that I needed to use derivatives, but I didn’t remember how to use them, so that would 

probably be the first one.” She added that it looked very familiar to her as she connected 

it with her recent exposure of derivatives in her then-AP Calculus course. Despite her 
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reported favorite mathematics topic, geometry, she did not say much else about the 

geometric approach P2A2, except that it would have been her second attempt if she had a 

chance to do it again. 

Student 3 successfully solved Problem 3. She provided three approaches, all of 

which were similar to Approach 1 (P3A1). In some sense, they were simpler than P3A1 

in the collection because she did not offer as many geometric arguments as she did 

algebraic representations to denote her inferences. In the interview, she said that she was 

more confident about her logical reasoning in her second attempt compared with her first 

attempt. She added that obtaining the same answer twice in her first and second 

approaches “solidifies” her conviction of getting the correct answer. Her third attempt 

was also similar to P3A1. Yet, she ended up with a result that differed from the previous 

two. She explained in the interview how she felt somehow more relieved about her 

results in the first two approaches. This was yet another example of a peculiar behavior of 

rationalizing her problem solving skills, as observed previously in Problem 1. From the 

collection, she chose P3A2 as her preferred approach. In explaining her choice, she 

referred to her fondness for circles more than parallelograms. P3A3 was not quite as 

likeable to her. She discussed how parallelograms were more connected to triangles than 

circles were to triangles. Unlike a circle, she said, a parallelogram could be constructed 

using only two congruent triangles. Other than the geometric shapes involved in the three 

approaches, her responses indicated a disregard for the deeper structure of mathematical 

proofs behind those approaches. 

In general, Student 3 performed adequately on the test by supplying one 

successful approach each for Problems 1 and 3. She was able to recognize some values of 
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problem solving using many different approaches. She also acknowledged the benefit 

inherent in taking advantage of a previously obtained result and comparing it with one 

obtained in a different way. She said: 

I kept skipping back and forth because originally I was able to find like 
one way to do something and then I moved on and I realized I could’ve 
done something else so I returned to the original question. And also a lot 
of times the second time when I’m doing the question a different way, I 
would end up with a different answer and then realized that the first way I 
had done it was completely wrong so like it was just interesting to like be 
able to think about different ways, instead of just going the one easiest 
way to do per question.  
 

Student 3’s aesthetic choices of approaches indicated her particular inclination towards 

the more economical mathematical thinking and knowledge required in those approaches. 

Nevertheless, her choices revealed a literal manner in which the approaches were 

transcribed, overlooking other critical aspects of aesthetic values such as originality or 

simplicity. 

Student 4 

Student 4 was a senior planning to major in Computer Science in college. He 

recorded an SAT Mathematics Section score of 770 and an SAT Subject Test—

Mathematics Level II score of 800. His favorite mathematics topic was calculus because 

of its relative ease compared to other mathematics topics. His overall acceptability score 

on the test was 1 for a correct answer in Problem 2. He started with Problem 1, producing 

two approaches, all of which were similar to Approach 4 (P1A4) but not successful. 

When shown four approaches from the collection, he said that P1A1 needed fewer 

computations than P1A4. He added, “The other ones [P1A2 and P1A3] are kind of messy, 

easy to mess up kind of arithmetic and algebra, this one [P1A1] feels a bit more elegant 
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to me.” Thus, he preferred P1A1. He was also not able to comprehend the aesthetic value 

behind P1A3 as suggested by the panel of experts. Because of his lack of understanding, 

he did not find P1A3 particularly more appealing than P1A1. He said, “It’s hard to tell 

because I don’t totally understand it, I usually don’t find graphs beautiful in general, 

though.” 

Student 4 did very well on Problem 2. He supplied only one approach, which was 

similar to Approach 4 (P2A4) and considered to be successful. He chose this calculus 

approach P2A4 as his first attempt for the same reason as most students did: reflexive 

short-term memory recall of his most current mathematics course. In the interview, he 

discussed this: “I guess that just means that I’ve been doing this kind of [calculus] 

problem more recently.” When informed that P2A2 was considered to be “beautiful” by 

the panel of experts, he said: 

Like for me, it feels more like algebra and like numbers, I can’t make too 
much of a connection with graph, the problem is more like algebra so I’m 
having a hard time like making a connection related to it, so I’m not really 
a big fan of this approach, I don’t see anything beautiful in this approach.  
 

He nevertheless chose P2A1 as his preferred approach. He said that P2A1 was “[s]ort of 

like [to] prove that it cannot be false, it’s very like convincing immediately to me, more 

logical, there’s less places where you can get lost.” He was clearly intrigued by the proof-

by-contradiction approach in P2A1. One might think that this was the first time he had 

been exposed to this proof-by-contradiction approach. One could also assume that there 

was an element of originality in his surprise when he perceived something completely 

different. A proof-by-contradiction approach might have been frequently relied upon by 

research mathematicians. Still, for Student 4, this mathematical scene did not seem to 
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have ever taken place during his entire learning experience. Because it was such an 

uncommon approach for him, it was also the most appealing. 

Student 4 continued with Problem 3, supplying one approach which was 

considered to be unsuccessful. He appeared somewhat confused by this problem. Later on 

in the interview, he revealed that he had trouble understanding the definition of a median 

of a triangle. Consequently, he could not proceed further. When presented with three 

approaches from the collection, he first discussed how he somewhat disliked Approach 1 

(P3A1). It was clear that he saw the mechanical nature of this approach. He said, “The 

first approach [P3A1] has too many steps and feels clunky to me. The next two [P3A2 

and P3A3] seem easier and are more intuitive.” He showed great interest in P3A3, as he 

said, “Yeah, I like that one, because extending the line completely changes the problem 

for me but in a way that’s more solvable because it’s just a parallel line, but by making it 

a parallelogram makes it much easier to solve the problem.” When informed that P3A3 

was considered to be “beautiful” by the panel of experts, he was, to some extent, able to 

see the harmony in unifying randomness in the argument involved in P3A3. In some 

sense, his choice might be a clue to his awareness of the element of originality in 

aesthetic values. He said: 

I guess I’d agree because extending the line and making a couple of 
parallel lines, it seems a bit random at first, but then it makes the angle 
you’re trying to solve part of something that’s much easier to solve, it 
proves it in a very unexpected way.  
 
In general, Student 4 did not perform satisfactorily as he solved only one problem 

successfully. He showed a certain understanding of mathematics aesthetic values such as 

originality or unexpectedness in an approach. Nonetheless, he appeared relatively 

simpleminded to the extent that he understood that his objective of problem solving was 
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mainly to find the answer to the problem. He also showed some sign of fixation in his 

problem solving behavior. He did not see himself as being flexible enough to view the 

problem from a different perspective in order to solve it differently from his initial 

approach. He said: 

Once I solved it in one way, it’s hard to not think of that way, I guess, like 
the second kind of try, like it’s hard to try completely different approach 
starting from the beginning, that part was hard. I don’t know, I guess I just 
like the idea that the first one worked, and it’s to me like, you know, it’s 
like you have to get from the question to the answer, so it’s not really 
about the steps or the process, it’s like getting from the question to the 
answer, so once I’ve gotten to the answer, it’s hard to start over and just 
think a completely different way to do it.  
 

Student 5 

Student 5 was a senior planning to major in Computer Science at the college level. 

He reported an SAT Mathematics Section score of 780 and an SAT Subject Test—

Mathematics Level II score of 800. He chose calculus as his favorite mathematics topic 

but provided no clear reasons for doing so. He did relatively well on the test. His 

acceptability score was 2 for correct answers in Problems 1 and 2. He began the test with 

Problem 1, producing three approaches, only two of which were considered to be 

different. His first two attempts involved approximations using some combinations of 

decimal and fractional notations, but he was not successful on either. On his third try, he 

managed to produce a successful approach similar to Approach 4 (P1A4). During the 

interview, he explained some thoughts about how he worked out Problem 1, particularly 

how P1A4 came about in his third attempt. He said, “Yeah, I couldn’t find anything at 

that time so I resort to that, because I need to get the answer, because at first, I just played 

around the first two, I think because I knew it wasn’t time constrained, or like, yeah, so I 
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just tried those first until I couldn’t then I, I just did that one to get the answer.” When 

presented with four approaches from the collection, he chose P1A1 as his preferred 

approach. In his explanation, he discussed an aesthetic element of surprise. He said: 

I mean I like [P1A1], it didn’t came to me during the test, but I like it 
because, cause it has different twist in it, but what usually comes to me 
first was squaring both sides, to solve problems like that, like how do you 
deal problems with square roots, well, you square it, so I just decided to 
square both sides, just playing around with the number and see what 
happened, but [P1A1] seems interesting, like oh, I never looked at it that 
way, and I just liked it, it looks interesting, it looks obvious right now, but 
it would never occur to me, it looks surprising you can subtract by 1.  
 

P1A2 and P1A3 did not appeal as much to him. He said that P1A2 seemed a little too 

long. He also dismissed P1A3 as being “beautiful,” as suggested by the panel of experts. 

From his explanation, one might sense his inability to comprehend the deeper structure of 

the mathematical proofs in the two approaches. 

Student 5 continued with Problem 2. He successfully solved Problem 2, 

presenting three approaches, only two of which were different. His first two attempts 

utilized some algebraic manipulations of the constraint function, but were considered to 

be unsuccessful. His third attempt was similar to Approach 4 (P2A4) and was considered 

to be successful. During the interview, he mentioned his then-AP Calculus course to 

justify resorting to the calculus approach, P2A4, as his way of solving the problem. He 

said, “I’m learning calculus right now, so I figure why not use calculus, which is still 

fresh, more fresh.” He also chose P2A4 as his preferred approach. When informed that 

P2A2 was considered to be “beautiful” by the panel of experts, he somewhat disagreed. 

He said: 

I’m not very good at considering hypothetical situation, so like I’m not 
that type of person to solve the problem with that method, like consider 
here, I mean, like assuming some line here non-existent before to come up 
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here, my geometry is not very good, I mean, it’s very logical way of 
thinking, I mean, yeah.  
 
Problem 3 proved to be a considerable challenge for him. He supplied one 

approach, which was considered to be unsuccessful. His written work showed that he 

utilized the law of cosines in a special case of the given triangle, namely an isosceles 

triangle. When shown three approaches from the collection, he chose Approach 1 (P3A1) 

as his preferred approach. He said that P3A1 was the most logical of the three. Moreover, 

he liked P3A1 perhaps because he did not like the other two approaches. He said, “Yeah, 

I chose this one, because I like the whole logical following it, the other ones were just 

like consider this, consider that, it’s because of this, it’s that, therefore it’s 90°.” When 

informed that P3A3 was considered to be “beautiful” by the panel of experts, he was 

rather indifferent. The way he viewed P3A3 simply appeared as a way to show the 

existence of a rectangle. Unfortunately, he was not able to make a direct connection 

between this proof and the alleged angle measure. 

Overall, Student 5 performed relatively well. He found this problem solving 

experience very interesting as he had no experience being assessed to supply as many 

different approaches as possible to solve one problem. During the test, he worked 

somewhat systematically, producing various approaches until successful, then moving on 

to the next problem, instead of looking for additional approaches for the one he 

successfully solved. Evidently, he was used to taking tests, the goals of which were 

simply to solve the problems. In fact, he explained that he felt a little uncomfortable with 

the instruction to seek many different ways to solve the problems. He said: 

Yeah, I’m more of a structured person, I like to think that like, oh, I got 
the answer definitely right, and knowing that there are multiple 
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approaches to the problem, especially if you’re like, this might be wrong, 
oh no, this might be wrong.  
 

On the other hand, he understood some of the benefits of problem solving with many 

different ways, such as “checking my work type of thing.” Moreover, his aesthetic 

feelings were mostly expressed in approaches that were not only unusually different than 

the ones he normally encountered, but also reasonably understandable by means of his 

most recent mathematics knowledge. In general, he did not seem to show that much 

interest in the aesthetic aspect of problem solving approaches. 

Student 6 

Student 6 was a senior planning to continue his academic career in college but had 

not yet decided on his major course of study. He reported a perfect score of 800 on both 

SAT Mathematics Section and SAT Subject Test—Mathematics Level II. His favorite 

mathematics topic was calculus, but he supplied no clear reasons for why. His overall 

acceptability score on the test was 1 for a correct answer in Problem 3. He began the test 

with Problem 3. In the interview, he said that he was more comfortable with that problem 

than with the other two problems. He produced three approaches, all of which were 

similar to Approach 1 (P3A1). His first attempt was very much an algebraic variation of 

P3A1. The next two attempts were very similar to his first approach. He acknowledged 

this resemblance during the interview. When shown four approaches from the collection, 

he chose P3A3 as his preferred approach. He seemed attracted to the uncommon 

geometrical relationship between parallelogram and triangle. He explained that the 

construction of a parallelogram, unlike that of a circle, was considered to be very closely 

related to the given triangle in the problem. He said: 
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For this one, I chose P3A3 as my favorite because when I looked at the 
three approaches, well, I only chose it because it’s because I wouldn’t 
think of that during the test, it’s sort of, something about it really, like I 
would normally just create the triangle and use that triangle, I mean the 
angle and like, but the fact that they solved it by creating a different shape, 
rather than just using a triangle, I found that interesting.  
 
Problem 1 did not interest him that much. He produced only one approach, which 

made use of approximations to the square roots, but it was considered to be unsuccessful. 

Among the four approaches from the collection, P1A1 and P1A3 did not attract much of 

his attention because of his lack of understanding of the reasoning involved. With regard 

to P1A2 and P1A4, Student 6 said that he had the knowledge necessary to perform those 

approaches except that he did not think about them during the test. In the beginning, he 

appeared somehow inconsistent with his explanations for the two latter approaches. He 

indicated that he would have solved the problem using P1A2 in his first attempt. As he 

explained, “I use Approach 2 often in solving problems currently in my calculus class so 

I would be comfortable using this method.” However, he chose P1A4 as his preferred 

approach because “this approach is the most straightforward and I would just be relying 

on my arithmetic skills.” When asked about the seemingly reversed explanations for his 

first attempt and his preferred approach, he discussed his risk tolerance for the 

approaches. On one hand, he would have started off the problem using P1A2 because 

P1A4 was thought to require more arithmetic multiplications and therefore P1A2 would 

have taken less time on the test. On the other hand, he preferred P1A4 because P1A2 

demanded more careful thinking to multiply the binomial conjugates and hence P1A4 

was considered to be more error free. Clearly, his choices in his first attempt and his 

preferred approach were rationalized based on his risk aversion to the other choice 

instead of his aesthetic inclination to that particular choice. 
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In the end, he mentioned the originality of P1A4. He said, “I mean [P1A4] is 

simpler, I’ve never seen that before.” He then went on to make an important comment to 

position his view on the benefits of problem solving in many different ways, saying that 

“if I couldn’t solve the problem with [P1A2], I would resort to [P1A4].” Still, he was not 

able to recognize the aesthetic value of P1A3, even after informed that P1A3 was 

considered to be “beautiful” by the panel of experts. His inability to appreciate P1A3 was 

mostly connected with his lack of understanding the mathematical knowledge involved in 

that approach. At the same time, he indicated that the “beauty” in P1A3 might be 

perceived by the brevity of the literal lines in its proof. He said, “Well, I’m not confident 

with graphing, I think, I mean, maybe it’s because it’s short, like the proofs here, I’m not 

sure.” 

He was not as successful in solving Problem 2 as he was in Problem 1. He 

provided two approaches, which were similar but still considered to be unsuccessful. 

When shown eight approaches from the collection, he chose Approach 4 (P2A4) as his 

first attempt and his preferred approach. His rationale for his choices primarily hinted at 

his most recent mathematics learning experience in an AP Calculus course. When 

informed that P2A2 was considered to be “beautiful” by the panel of experts, he seemed a 

little indifferent. His explanations were limited to a comparison of that approach with the 

others for its noticeable graphic appearance. He said, “Well, that’s the only approach that 

uses graphs and creates like triangles, and tangents, the other ones are just formulas.” 

In general, Student 6 did not do as well as his peers. Despite his performance, he 

contributed several meaningful accounts describing his thinking process in choosing first 

attempts and favorite approaches. He occasionally indicated his choices by comparing 



89 
 

 

and contrasting the advantages and disadvantages of other choices. In some instances, his 

lack of mathematical knowledge impeded his appreciation of mathematical “beauty,” as 

his descriptions of preferred approaches went only as far as a concrete presentation of the 

approaches. 

Student 7 

Student 7 was the only eleventh grader who took the test. He did not document 

any plan to pursue a postsecondary school career. Because he had not taken any national 

standardized test, neither an SAT Mathematics Section score nor an SAT Subject Test—

Mathematics Level II score was reported. His mathematics curriculum was similar to that 

of the other students in that particular specialized high school, except that he accelerated 

it by taking two or three classes per academic semester. He indicated calculus as his 

favorite mathematics topic because he recognized the power of the tools of calculus for 

solving problems with minimal effort. His overall acceptability score was 2 for correct 

answers in Problems 1 and 3. He began with Problem 1. His work showed a very well-

written proof of Approach 4 (P1A4) and was considered to be successful. When shown 

four approaches from the collection, he recognized similarities between P1A4 and his 

work. In replying to the question of what he thought of P1A4 compared with the other 

three approaches, he stated that with P1A4, “You just kind of hacked away at it.” He 

explained, “Okay, I mean like you’re taking the numbers, right? And you’re playing with 

them, and you do this big multiplication, and you finally get this large number is bigger 

than that large number.” When informed that P1A3 was considered to be “beautiful” by 

the panel of experts, he agreed. He said, “I like [P1A3] just because it’s not like plugging 

away at the numbers, you know, like you’re not working or doing the manipulations, 
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you’re looking at something like in the nature of the square root function to solve the 

problem.” He was not as successful in Problem 2 as he was in Problem 1. He only 

produced one approach, which was considered to be unsuccessful. When provided with 

eight approaches from the collection, he indicated that he would have solved Problem 2 

using Approach 4 (P2A4) if he had to do it all over again. He also chose P2A4 as his 

preferred approach. His rationale for this choice had to do with his recent AP Calculus 

course. In responding to the question of whether he thought any one of the four 

approaches was more “beautiful” than the others, he said, “I’m not sure. Nothing strikes 

me particularly as beautiful.” Furthermore, he could not find any aesthetic appeal in 

P2A2, even after informed that it was considered to be “beautiful” by the panel of experts. 

Student 7 then continued with Problem 3. He provided one approach, which was 

similar to Approach 1 (P3A1) and was considered to be successful. Unlike six other 

students, his written work in P3A1 involved more geometrical reasoning than algebraic 

representations. When presented with three approaches from the collection, he chose 

P3A3 as his preferred approach. His justification was essentially his dislike of the other 

approach. He said, “I don’t know, well, [P3A1] seems like what we’ve been describing as 

ugly, brute force.” Nevertheless, he thought that constructing extra lines to make up a 

new geometrical figure did not contribute any “beauty” to the problem as it did already in 

P3A1. More specifically, he considered this extension to be “artificial” to the extent that 

it “negated” something that was perhaps already more “beautiful” beforehand. 

Overall, Student 7 did well on the test. His problem solving experience was 

simpleminded because he stopped producing approaches once he successfully solved 

each problem. In the interview, he recognized that problem solving using many different 
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approaches made it possible for him to validate results between approaches, “to check the 

answer from the previous approach, to see if the other approach is valid.” He also 

appeared to have a sense of a “beautiful” approach in that he considered it only a means 

to make a relative comparison to an “ugly” approach. 

Student 8 

Student 8 was a senior planning to continue her education in college, yet had not 

declared her major. She recorded an SAT Mathematics Section score of 740 and an SAT 

Subject Test—Mathematics Level II score of 770. Her favorite mathematics topic was 

algebra because of its relative ease, compared with other mathematics topics. Her 

acceptability score was 1 as she successfully solved only Problem 1. She began the test 

with Problem 1. Her written work showed similarities with Approach 4 (P1A4) and was 

considered to be successful. When shown four approaches from the collection, she chose 

P1A4 as her preferred approach. She said, “I thought I was more comfortable with adding 

and multiplying and I thought the others were more abstract.” When informed that P1A3 

was considered to be “beautiful” by the panel of experts, she viewed it as a consequence 

of applying more advanced mathematical knowledge. She said: 

I guess they might think that can be shown the other ways, it’s something 
that, it’s a method that’s more efficient of solving it, it shows a higher 
level of understanding it, because you’re using calculus concept rather 
than algebra concept, more sophisticated knowledge.  
 

In the end, she affirmed her conviction in choosing P1A4 as her preferred approach. Her 

explanation established a clear relationship between her preferred approach and her 

confidence in her mathematical knowledge. She said that “because I know the algebra, I 
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think I’ve learned this math, long time ago, it’s something that’s repeating in calculus, 

pre-calculus and so on, and a lot more comfortable with this than graphing.” 

Moreover, she was not successful in Problem 2. Using only one approach, she 

made some inappropriate approximations. When presented with eight approaches from 

the collection, she realized that she could have solved the problem using the calculus 

Approach 4 (P2A4). She chose P2A4 as her preferred approach and relied on her then-AP 

Calculus course to support her explanation. She said, “I would most likely choose 

Approach 4 because it involves derivatives, which is a topic that I studied very recently. 

As a result, that knowledge is most accessible to me.” P2A2 did not attract her attention, 

and she was not able to comprehend why P2A2 was considered to be “beautiful” by the 

panel of experts. 

Student 8 then continued with Problem 3. She successfully solved this problem 

only after her second attempt because her first one was not as effective. The two 

approaches she supplied were similar to Approach 1 (P3A1). When presented with three 

approaches from the collection, she repeated her rationale for choosing her preferred 

approach, just as she did in Problem 1. She preferred P3A1 because “it’s less abstract.” 

Her confidence in her mathematical skills prevented her from moving away from this 

particular selection. She said, “I don’t think [P3A1] is the most beautiful necessarily, I 

just think that’s what I would do over again, I wouldn’t, I don’t have the, I think, 

knowledge has to do with it maybe.” When informed that P3A3 was considered to be 

“beautiful” by the panel of experts, she made a geometrical comparison of the three 

approaches. She said, “I like the shape of parallelogram, this reminds me of a diamond, 

like more of that shape and I would, I mean that would be more aesthetically pleasing 
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than a circle especially with a triangle in the middle.” She also mentioned a sense of 

harmony in P3A3, saying that “there are parallel lines, I think can be aesthetically 

pleasing, I think has to do with uniformity.” In the end, she chose P3A3 as her preferred 

approach.  

In general, Student 8 did satisfactorily on the test. She also provided adequate 

understanding and reasoning in terms of aesthetic value.  

Student 9 

Student 9 was a senior planning to major in Computer Science for her 

undergraduate study. She reported an SAT Mathematics Section score of 770, an SAT 

Subject Test—Mathematics Level I score of 750, and an SAT Subject Test—

Mathematics Level II score of 770. She reported that she liked algebra because it was 

easy. Her acceptability score was 2 for correct answers in Problems 1 and 3. She started 

the test with Problem 1. She produced three approaches, all of which were similar to 

Approach 4 (P1A4). She obtained the correct answer right on her first attempt. Despite 

this correct answer, she continued with a second attempt on the problem. In her second 

attempt, she applied some derivatives to some square root functions. It was not as 

successful as the first one. She then continued with her third attempt, yet it was just 

another reworking of the first one. In the interview, she described the thinking process of 

her problem solving experience as instinctive. That is, she was eager to find the answer as 

quickly as possible in the first place. She said, “So for [P1A4], when you gave me that 

problem, thing is, because especially it’s a square root, your first instinct is like, making 

them into integers, like squaring.” When presented with four approaches from the 

collection, she said that P1A1 was the most efficient of the four approaches, and thus she 
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chose it as her preferred approach. P1A4 was considered to be very time-consuming in 

her opinion. She said: “If you asked me to find the most efficient way to do it, then this 

P1A1 would be better, I think because you can clearly see that this is going to be 1 less, 

so this is obviously less than that.” Despite the brevity of P1A1, she realized that the time 

involved in thinking about P1A1 would probably be much longer than the time to work 

out the calculation involved in P1A4. P1A4 would still have been her first attempt even if 

she had to do it all over again because: 

You just want to get answer anyway, I guess, when you’re thinking to 
solve a problem, you don’t like consider many different ways, and think 
like, oh, this is the most efficient way, let me do it that way, you just think 
of a way to do it, and then you do it that way.  
 

When asked which among the four, she considered to be “beautiful,” she chose P1A3. 

Her explanations centered on the outer appearance of the problem nonetheless. She said: 

Well, I kind of think it’s this one [P1A3] just cause it doesn’t have so 
many, like here [P1A2], it goes down, it has so many radicals, but, I can’t 
think of the right word, but this one is kind of like a sentence, it invokes, 
kind of neater approach, I think.  
 

In response to the aesthetic evaluation of the panel of experts, she added that P1A3 “laid 

down in a very straightforward, a very matter of fact kind of way, and it’s like very short 

and simple.” In the end, she reiterated her preferred approach of P1A1. 

Student 9 continued with Problem 2. She worked out one approach, which was 

considered to be unsuccessful. When presented with eight approaches from the collection, 

she chose Approach 2 (P2A2) as her preferred approach. Her rationale for this choice had 

to do with how she related her confidence in her mathematical skills and how she viewed 

the written-out reasoning. She said, “Well, I just thought that’ll be the best way to do it 

and I like that way…. I am most familiar with its concepts and it seems to be the clearest 
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way to solve it.” In some sense, she associated P2A2 with a geometric approach and 

P2A4 with a calculus approach. The equation 𝑥2 + 𝑦2 = 1 immediately caused her to 

draw the geometrical shape of a circle, she said. As for her then-AP Calculus course and 

P2A4, she said that she felt more confident in her mathematics skills needed in P2A2. 

She also thought that the knowledge involved in P2A4 was too recent to be devised at 

that moment since she had not had as much experience with it as she did with P2A2. 

Likewise, she believed that her favorite mathematics topic, algebra, was irrelevant to her 

choice of first attempt. She was more focused on finding the answer to the problem, but 

paid little attention to different possibilities of presenting the answer to the problem. In 

some sense, she was very used to the usual mathematics tests in which the goal was 

simply to solve the given problems. She said: 

I don’t really think that way, I mean, I like algebra, but I don’t, I won’t do 
algebraic approach all the time for all kinds of problems, like this calculus 
problem, I think it’s more like, when you see a problem, you just try to 
solve it the way any kind of way that’s easiest or comes to you first, I 
think it depends a lot on a problem, because some problems you can solve 
in multiple ways, different ways to solve it, and then whereas some 
problems are strictly calculus, if they say specifically find the derivative of 
this, then you would think of calculus, you wouldn’t think of, like oh, I 
may solve this in algebraic way.  
 

To some extent, she was able to see some aesthetic appeal in P2A2, but it related more to 

the external attraction rather than to the proof itself. The figure in P2A2 seemed to attract 

her interest very much. She said: 

I think just the fact that you can graph it and see what you’re doing 
physically, as opposed to like more theoretical proof. Well, if you don’t 
have the graph, then it would be more, it would be more kind of, more 
jumbled up, or more confusing because you’ll have a lot of text and you 
read through, and you won’t be able to have something to attach yourself 
to, like round yourself, like oh, angle ABO, you’re like, I don’t know what 
that is.  
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Student 9 then continued with Problem 3. She furnished only one approach yet a 

successful one, which was categorized as Approach 1 (P3A1). When presented with three 

approaches from the collection, she chose P3A1 as her preferred approach because of its 

clear logical flow. When informed that P3A3 was considered to be “beautiful” by the 

panel of experts, she disagreed. She did not find the line extensions in P3A3 particularly 

appealing. She said, “I feel like constructing two parallel lines makes it more, just like 

more work that what it’s needed.” 

Overall, Student 9 performed satisfactorily. Moreover, she did not feel 

comfortable with the notion of problem solving in many different approaches. Her test 

experience during most of her academic career somehow supported her obsession to find 

only the answer of the problems. Consequently, she could not identify considerable 

aesthetic appreciation for the problem solving approaches as she was only concerned with 

those approaches which she found more understandable. 
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Chapter VI: FINDINGS FROM PHASE 5: STUDENTS’ VALIDATION SURVEY 

 

This chapter describes the mathematical problem solving behavior of the 54 

students who took the validation survey in Phase 5. It includes two parts. The first part 

investigates the students’ hypothetical problem solving experiences, and the second part 

considers their attitudes towards problem solving using many different approaches. 

Students’ Problem Solving Experiences 

This section presents the findings from the first part of Phase 5. It describes the 

relationship between students’ prior knowledge and understanding of approaches for the 

three problems in the test. It also connects these experiences with the likelihood that the 

students would supply those approaches in a hypothetical test taking experience as well 

as their choices of first and preferred approaches. Figure 4 presents the first summary of 

the findings from the first part of Phase 5. (Note: The clustered column chart compares 

values across categories of approaches from Appendix J. The vertical axis represents the 

number of students for each category. The horizontal axis represents a score following 

the rubrics explained in Chapter III: Methodology.) 
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Figure 4. First Summary of the Findings from the First Part of Phase 5 

 

Regardless of their relatively adequate understanding and knowledge of reasoning 

involving all other approaches in Problems 1 and 3, the students reported that they would 

use P1A4 and P3A1, respectively. In particular, the first two charts in the last row of 

Figure 4 indicates that nearly all students assessed their own understanding and 

mathematics background with respect to all three approaches for Problem 3 with a score 

of 2 (i.e., students understood all of the steps and had learned previously all of the 

necessary mathematics knowledge involved in those three approaches). The following 

chart of the corresponding likelihood of presentation reveals that the number of students 

assessing their likelihood of presenting P3A1 with a score of 2 was significantly greater 

than the numbers of students assessing their likelihood of presenting P3A2 and P3A3 

with a score of 2 (i.e., P3A1 was more significantly than P3A2 and P3A3 to be chosen by 
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students as their likely approach in solving Problem 3). Regarding Problem 2, the 

enrollment of all 54 students in an AP Calculus course at the time of the study might have 

been an important factor in their likelihood of presenting the calculus approach to P2A4. 

This observation was also found in many responses from the students’ validation survey. 

One student wrote: 

I chose [P2A4] because I have most recently learned that so it’s the 
freshest in my mind. They are related to what I have learned recently in 
calculus. As a result, that knowledge is most accessible to me. If given this 
test now, I would most likely resort to [P2A4].  
 

Therefore, the findings suggest some association between students’ understanding and 

mathematics background and the likelihood that students would supply a particular 

approach. 

The next three smaller tables in Table 4 provide the relationship between students’ 

order of presenting an approach, their first approach, their preferred approach, and their 

favorite mathematics topic. The highlighted areas in the tables are the modes, the most 

frequently appearing statistic for a particular data set. For example, P1A4 was the 

predominant first approach for Problem 1 since 24 students reported that they would 

supply P1A4 as their first approach, compared to 16, 6, and 8 other students who would 

supply P1A1, P1A2, and P1A3 as their first approach, respectively. Likewise, P1A4 was 

the predominant first approach for Problem 1 among students who chose algebra as their 

favorite mathematics topic. 
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Table 4 

Second Summary of the Findings from the First Part of Phase 5 

 

 

According to the experts’ evaluations, P1A4, P2A4, and P3A1 were considered to 

be the least original, the least abstract, and the most mechanistic, and often associated 

with approaches taught by secondary school mathematics teachers. The three approaches 

thus could be considered ones that required the least mathematical thinking. According to 

the students’ explanations, less thinking simply meant more straightforward, more 

familiar, easier, and requiring only the most basic knowledge of mathematics. The first 

smaller table in Table 4 demonstrated a connection between students’ choice of first 

approaches and the level of mathematical thinking involved in those approaches. 

Compared to Problems 2 and 3, Problem 1 delivered a clearer confirmation of this 

general pattern. Twenty-four out of 54 students (44%) declared that they would supply 

P1A4 as their first approach. Sixteen others (30%) said they would supply P1A1 as their 
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first approach. Obviously, both P1A4 and P1A1 were prominent in students’ mind at the 

outset by taking the majority of the votes (74%). Unlike P1A1, P1A4 entailed less 

mathematics sophistication; if anything, it obligated mundane calculation. Students 

recognized the lengthy time involvement for calculating 2009 × 2011 and 2010 × 2010. 

Still, most students preferred P1A4 to P1A1 as their first approach. They were convinced 

that their labor in machine-like computation would prove more fruitful in the end. In a 

way, they unconsciously built up their persistence in getting the correct answer to 

compensate for their lack of advanced mathematics knowledge and, consequently, their 

lack of willingness to seek a more efficient approach. They did so even by sacrificing 

their time. One student wrote: 

I would think the brute force approach [P1A4] would bring me an answer 
first. Then I would try other approaches. [P1A4] is the least effective 
method, but requires almost no thinking. [P1A4] is the most 
straightforward way to solve the problem.  
 

Therefore, the findings reveal a general pattern in which the students’ order of presenting 

their first, second, and third approaches was more likely connected with the level of 

thinking demanded by those approaches. The more cognition an approach demanded, the 

more likely it would appear later in the order of presentation. The less thinking involved 

in an approach, the more likely students voted for it as their first approach. 

The second smaller table in Table 4 demonstrates that students in general chose 

P1A4, P2A4, and P3A1 as their first approaches, regardless of whether they chose 

algebra, calculus, geometry or other as their favorite mathematics topic. This choice of 

first approach, however, was more connected with students’ goal of getting a correct 

answer at once. Students’ choice of a calculus approach for P2A4 was particularly 

evident, given that when students were posed with a more demanding problem, more 
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recent mathematical experience (i.e., their AP Calculus course) dominated their favorite 

mathematics topic. This more recent mathematical experience created for the students 

such an instantaneous reaction in their mathematical thinking process that it facilitated 

greater assurance in their problem solving ability through a clearer understanding of the 

problem. One might infer from this observation that when sufficiently challenged in a 

problem, the students’ favorite mathematics topic had little to do with their first approach. 

This was most probably because the students were very eager to obtain the answer to the 

problem as quickly as possible. In doing so, recent mathematical experience apparently 

played a more important role in selecting a more understandable and more familiar 

problem solving approach. Therefore, the findings suggest no direct relationship between 

students’ choice of first approach and their favorite mathematics topic.  

Finally, the findings demonstrate that students’ choices of preferred approaches 

(i.e., P1A4, P2A4, and P3A1) were considered to be among the least preferred by the 

panel of experts. Students showed little aesthetic appreciation for “beautiful” approaches 

in their explanations of preferred approaches. Although P2A2 and P2A4 were voted 

equally preferred, those who chose P2A2 as their preferred approach were not able to 

offer adequate justification for its aesthetic value. Moreover, a few students found 

“beautiful” approaches to be rather objectionable. One student, for example, considered 

P2A2 to be “too showy.” Another student said that P3A2 and P3A3 “try too hard to be 

unique and clever, when they are totally unnecessary.” 
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Students’ Attitudes towards Problem Solving Using Many Different Approaches 

This section presents the findings from the second part of Phase 5. It describes 

students’ attitudes towards problem solving using many different approaches. Figure 5 

presents a summary of the findings from the second part of Phase 5. (Note: The column 

chart depicts students’ responses for each statement [S1-S25] in the second part of 

Appendix N. The vertical axis represents the number of students. The horizontal axis 

represents a score on a five-point scale: 5, 4, 3, 2, 1 for strongly agree, agree, neither 

agree nor disagree, disagree, and strongly disagree, respectively. Each statement is first 

described or rephrased in the analysis, and then accompanied by its mean and standard 

deviation. For example, students neither agreed nor disagree with Statement 1, “I learn 

more from solving one problem in many different ways than I can from solving many 

different problems, each in only one way,” and S1-3.39-1.07 indicates that students 

assessed Statement 1 with an average score of 3.39 and a standard deviation of 1.07.) 

The first seven statements in the list (see Appendix N) were designed to 

investigate whether students agreed with the benefits of problem solving with many 

different approaches. The findings show that students were generally able to recognize 

these benefits. More specifically, they understood that problem solving using many 

different approaches: 1) provided greater access to a range of representations and solution 

strategies in a particular instance that could also be useful in future problem solving 

encounters (S2-4.03-0.79); 2) facilitated connection of a problem at hand to different 

elements of knowledge with which they might be familiar, thereby strengthening 

networks of related ideas (S3-4.04-0.75); 3) improved their critical thinking skills by  
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Figure 5. Summary of the Findings from the Second Part of Phase 5 
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comparing and contrasting the many different ways (S5-3.83-0.84 and S21-3.46-1.02);  

4) improved deeper understanding of subject matters by looking at different perspectives 

(S6-3.72-0.76); and 5) provided them with backup strategies when they could not recall a 

typical solution to the problem (S7-3.83-1.09). 

Students, however, were generally indifferent about the first and fourth statements. 

While recognizing those benefits, students still believed they would have learned just as 

well through the experience of problem solving using many different approaches (S1-

3.39-1.07). One might also infer from the students’ view that the benefits mentioned 

earlier were still attainable even without the presentation of more than one approach in 

solving a problem. On the issue of creativity, students appeared somewhat unenthusiastic 

about coming up with more than one approach to solve a problem. They did not 

comprehend that such training could prepare them to become more creative problem 

solvers in the future (S4-3.13-1.12). 

The other 18 statements in the list were designed to analyze the students’ problem 

solving experience in a classroom setting. Most students neither agreed nor disagreed 

when it came to teachers’ involvement in assisting them to solve with many different 

approaches (S8-3.43-1.16). They were nevertheless indifferent in their beliefs that they 

were capable of coming up with many different approaches to solving a problem (S9-

2.93-0.77). In a way, one could determine that they were noticeably apathetic about the 

idea of embracing problem solving with many different approaches in their classroom 

practice. Most students indeed were indifferent when thinking of more than one approach 

to solving a problem (S23-3.09-1.01). One explanation might be that such an experience 

had already been incorporated into their day-to-day classroom practice. Indeed, based on 
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most students’ responses, they did not feel that their mathematics teachers had the time to 

facilitate students who initiated discussion about solving one problem with many 

different approaches (S11-2.57-0.98). Still, most students were more in favor of agreeing 

that their teachers often encouraged them to solve a problem using many different 

approaches (S10-3.61-0.88). Likewise, a large number of students leaned towards 

disagreeing with the misconception that they often felt hesitant to share their ways of 

solving a problem that differed from those that their teachers demonstrated on the board 

(S12-2.50-0.82). 

Furthermore, students valued the advantage of learning from incorrect approaches. 

Most agreed that flawed approaches would help them avoid making similar mistakes in 

their future problem solving endeavors (S13-3.52-0.99). More students also tended to 

oppose the concerns that they would become distracted (S14-2.81-1.12), confused (S15-

2.48-1.14) or bored (S17-2.67-0.97) by the many different approaches. Moreover, they 

did not feel worried about struggling to understand just one approach, even when seeing a 

new problem for the first time (S18-2.69-1.10). Then again, the students themselves 

appeared to demand a clearer sense of purpose for why they needed to learn problem 

solving in many different approaches. Most of them associated this uncertainty with the 

reality that no standardized test in a school, state or national context involved a particular 

testing instruction to solve with many different approaches (S16-3.02-1.19). Because of 

this uncertainty, most students often became unmotivated, agreeing that they would often 

care to use only one approach as long as they could solve the problem (S19-3.65-1.05). 

Even when many different approaches were presented to them, they agreed that they 

would often prefer using only those approaches that were the easiest for them to 
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understand (S20-3.76-1.10). But they agreed that being able to choose one or some 

approaches helped them better understand the context of a problem (S22-3.76-0.82). Still, 

the majority of the students were indifferent about wanting either: 1) more occasions 

where teachers demonstrated problem solving using many different approaches in a 

classroom setting (S24-2.98-0.69), or 2) more opportunities for themselves to practice 

problem solving with many different approaches (S25-2.85-0.68). 

The findings reveal that students for the most part were able to appreciate the 

values of problem solving using many different approaches as recommended by 

researchers in the field of mathematics education and cognitive psychology. More 

importantly, they managed to a certain extent to dismiss their classroom teachers’ 

constraints and concerns about the practice of problem solving using many different 

approaches. Nevertheless, students appeared rather unenthusiastic about embracing the 

idea of problem solving using many different approaches in an actual classroom practice. 
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Chapter VII: SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

 

Summary and Conclusions 

This study sought to analyze the mathematical problem solving behavior of 

mathematically gifted students at the high school level. In particular, it explored 

influences on choice of approach, with an emphasis on the aesthetic value. Fifty-four 

students from a specialized high school in New York City participated in this research. 

The study began with collecting students’ past mathematical experiences by means of a 

preliminary survey. Nine of the 54 students took a test requiring them to solve three non-

standard mathematics problems using many different approaches. A panel of three 

research mathematicians was consulted to evaluate the aesthetic value of mathematical 

reasoning in those approaches. The nine students were then interviewed. All 54 students 

also took a validation survey to support inferences made from the problem solving 

behavior of the nine students. In general, the current study revealed that students were not 

very used to the practice of a specific fourth step of Polya’s (1945) problem solving 

process, namely, looking back to find alternative approaches to solving the same problem. 

Indeed, students generally chose to supply workable, yet mechanistic approaches as long 

as they obtained a correct answer, but were not successful in looking back to find other 

approaches afterwards. 

This section describes the main findings of the current study in connection with 

the research questions proposed earlier. Answers to the first and second research 

questions were based only on the work of the nine students who took the test. This fact 
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excluded the possibility of using statistical methodology. The results, therefore, should be 

viewed as suggesting some conclusions rather than clearly proving them. 

Research question 1: How do gifted students’ past mathematical experiences affect the 

number of approaches used by them when solving non-standard mathematics problems? 

The nine students, whose test performances were analyzed, were recruited from 

the same specialized high school. The school utilizes a uniform mathematics curriculum, 

which makes the analysis of differences in past mathematical experiences of the nine 

students fairly limited. It would be possible, however, to categorize these nine students 

into two “groups” of unequal size based on those past mathematical experiences: 1) the 

first “group” consists of Student 2, and 2) the second “group” consists of the other eight 

students. Indeed, unlike the eight students in the second “group,” Student 2 had a greater 

past mathematical experience. First, unlike the eight students, he had taken the AMC-12 

test. Second, unlike the eight students, he was a member of the mathematics team in that 

particular specialized high school. Not surprisingly, he simply had better mathematical 

knowledge. He himself mentioned in the interview that he had seen a mathematical fact 

similar to Problem 3. 

Moreover, the test results of Student 2 differed substantially from those of the 

eight students. He was the only student who was able to supply two different and 

successful approaches for Problem 3, whereas none of the eight students were able to 

supply more than one successful approach for that problem. He was also the only student 

to solve all three problems successfully, whereas none of the eight students were able to 

solve more than two problems successfully. 
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This finding suggests that students’ past mathematical experiences, to some extent, 

are connected with the number of approaches they use when solving non-standard 

mathematics problems (nevertheless, further study is necessary to explore whether, 

indeed, the number of courses, tests, and so on was directly responsible for the better test 

performance in finding different approaches for problem solving, or whether both were 

influenced by some other characteristic, for example, abilities.) 

Research question 2: How are gifted students’ past mathematical experiences connected 

with the mathematics topics involved in their solutions? 

The findings in the current study are unique to each case. As mentioned earlier, 

Student 2 had a relatively greater past mathematical experience than the other eight 

students who took the test. As a result, Student 2 chose to solve Problem 1 using an 

algebraic-like Approach 1 (P1A1), while five students (from the second “group” of eight 

students) solved it using an arithmetic-like Approach 4 (P1A4). Student 2’s mastery of 

algebra appeared to have placed him at a different level of conceptual understanding, 

compared with the other eight students. 

Problem 2 could be analyzed differently. Student 2 chose to solve Problem 2 

using a calculus-in-polar-coordinate Approach 8 (P2A8), while two students (from the 

second “group” of eight students) solved it using a regular calculus Approach 4 (P2A4). 

This difference could be explained by the fact that Student 2 had greater past 

mathematical experience (particularly in trigonometry, in addition to calculus) than the 

other eight students who took the test. Despite this, P2A8 and P2A4 were both calculus 

approaches in nature. Indeed, most students viewed Problem 2 as a calculus problem 

instead of an algebra problem, as it was intended. Given that all nine students were 
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enrolled in an AP Calculus course, one could infer that the students’ recent mathematics 

course played an important role in their decisions to use calculus approaches to solve a 

calculus-related problem. 

Problem 3 could be analyzed primarily using the fact that Student 2 knew a 

mathematical fact similar to Problem 3. In solving Problem 3, Student 2 discussed how 

he simply attempted to prove a known fact instead of figuring out an answer to the 

problem. As a result, he chose to solve Problem 3 using a circle-construction Approach 2 

(P3A2) in addition to a direct Approach 1 (P3A1), which was the only approach supplied 

by six students (from the second “group” of eight students). Then again, one could 

analyze the way in which these students solved Problem 3. Despite the mediocrity of the 

test results of the second “group” (of eight students) compared with the superiority of the 

test result of the first “group” (Student 2), there appeared to be some differences 

(insignificant but noticeable) in the way students presented P3A1. Specifically, Student 7 

(who was the only eleventh grader taking the test) used a formal geometric type of proof 

in his reasoning, similar to Approach 1 (P3A1), whereas the other six students, including 

Student 2 from the first “group,” used some algebraic notations to represent the angles of 

the triangle. Apparently, even though all nine students had taken a geometry course as 

part of their uniform mathematics curriculum, this finding suggests that this particular 

mathematics course, to some extent, was not clearly connected with the students’ 

approaches to solving this particular problem. 

Research question 3: To what extent are gifted students’ approaches considered 

“beautiful” by experts? 
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The findings in the current study reveal that the gifted students’ approaches were 

not considered to be the most “beautiful” by the panel of experts. In general, a typical 

student who took the test was only able to supply the least preferred approach according 

to the panel of experts. A typical student solved Problems 1, 2, and 3 using P1A4, P2A4, 

and P3A1, respectively (see Table 3). Likewise, the 54 students in the validation survey 

generally chose P1A4, P2A4, and P3A1 as their first approach in solving Problems 1, 2, 

and 3, respectively (see Table 4). According to experts’ aesthetic evaluations, P1A4, 

P2A4, and P3A1 were scored 3.00, 3.33, and 3.00, and were ranked the fourth of four 

approaches, the sixth of eight, and the third of three, respectively (see Table 2). 

Apparently, the students’ approaches were considered to be the least “beautiful” by the 

panel of experts and were often associated with standard approaches taught by 

mathematics teachers at the secondary school level. 

Research question 4: To what extent are experts’ preferred approaches considered 

“beautiful” by gifted students? 

The findings in the current study show that the experts’ preferred approaches were 

not considered to be “beautiful” by gifted students. When informed that P1A3, P2A2, and 

P3A3 were considered to be “beautiful” by the panel of experts, students in their 

interviews generally disagreed. Even those who agreed in the interviews, or those of the 

54 students who chose them as their preferred approaches in the validation survey, were 

for the most part not able to provide adequate explanations for the aesthetic value of 

those approaches. They were only able to see the outward appearance of those “beautiful” 

approaches. For instance, P1A3 was considered to be “beautiful” because of the relatively 

shorter lines of argument, P2A2 was considered to be “beautiful” because of the presence 
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of the graph accompanying the solution, and P3A3 was considered to be “beautiful” 

because of the physical shape of the parallelogram. Clearly, the experts’ preferred 

approaches did not appeal to the students as “beautiful” in the sense of the deeper 

structure of the mathematical arguments involved in those approaches, as discussed by 

the experts. 

It can be concluded that this study confirmed the results of Dreyfus and Eisenberg 

(1986), who emphasized that students are not very interested in aesthetic values in 

problem solving and that they actually do not demonstrate these aesthetic values in their 

problem solving experiences. These findings seem to be important because both the 

methodology of the study and the group of subjects in this study were substantially 

different from those in the study by Dreyfus and Eisenberg (1986). 

Limitations 

This study has some limitations. First, the issue of giftedness itself can be 

interpreted in different ways. The subjects in this study were considered to be gifted to 

the extent that they were enrolled in a specialized high school. However, using a different 

conception or definition of giftedness, these subjects might not be considered to be gifted. 

For example, none of the 54 students was a winner in the International Mathematical 

Olympiad. It may be that by selecting another group of (more or less gifted) students, the 

researcher would obtain another result. Theoretically, one can hypothesize that the effect 

of the mathematical experience differs across different groups. 

Second, the subjects in this study did not prove to be sufficiently diverse in their 

mathematical background. All students had more or less the same teachers and took the 

same courses and tests. As a consequence, it was problematic to identify differences in 
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students’ past mathematical experiences in a meaningful way, thereby decreasing the 

sample for comparing past experiences with the results of the problem solving sessions. 

Third, the current study involved only a relatively small number of subjects. The 

goal of this study was to identify possible patterns and collect some evidence which could 

later be verified more rigorously. At this point, several studies in the development of the 

current one can be suggested. 

Recommendations for Future Research 

First, it would be of interest to conduct similar studies across a range of 

mathematical abilities, starting with a highly gifted population, such as winners of the 

International Mathematical Olympiad, and continuing with a population not characterized 

as gifted at all. Second, it would be of interest to have a study with a larger group which 

would permit the use of statistical methodology. It would also be helpful to explore a 

more diverse group in terms of the mathematical background; such a study also seems to 

be of interest. Finally, it would be of interest to conduct a study with another set of 

problems. 

Recommendations for Classroom Practice 

In addition to recommendations for research, some recommendations for 

classroom practice for teaching mathematically gifted students could be suggested based 

on this study. In particular, this study demonstrated that classroom practice paid little 

attention to the fourth step of Polya’s (1945) problem solving process. Therefore, one 

could recommend presenting many different approaches for solving problems as well as 

discussing their advantages or disadvantages. Sinclair (2004) inferred, from the findings 
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of Dreyfus and Eisenberg (1986) and Silver and Metzger (1989), that the process in 

which aesthetic became a motivation for mathematical problem solving “only gains 

momentum in and after graduate school, when young mathematicians are having to join 

the community of professional mathematicians–and when aesthetic considerations are 

recognized (unlike at high school and undergraduate levels)” (p. 276). Still, young 

children could and should have practice in adapting to and adopting the mathematical 

culture and its values, even if they will not ultimately join the community of professional 

mathematicians and even if they do not view their careers as directly connected with 

mathematics. 

Furthermore, one could recommend that students be encouraged to contrive, on 

their own, the possibilities of novel approaches. This self-discovery learning approach 

could empower students to think beyond the norm skills-and-drills mathematical routines. 

The instrument which was used in the study for research purposes could also be used for 

the purpose of education: teachers may present many different approaches to finding the 

solution of the problem. Such a presentation would allow students to compare and 

contrast the approaches presented by the teachers. Given this frequent accumulation of 

different approaches, students could begin to grow their sense of mathematics aesthetic 

appreciation. 
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APPENDIX A 
 

Example of Connections Based on Similarities and Differences between  
Various Representations of the Same Concept  

(Leikin & Levav-Waynberg, 2007) 
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APPENDIX B 
 

Example of Connections between Different Mathematical Concepts and Procedures 
(Leikin & Levav-Waynberg, 2007) 
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APPENDIX C 
 

Example of Connections between Different Branches of Mathematics  
(Leikin & Levav-Waynberg, 2007) 
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APPENDIX D 
 

Marble Arrangement Problem  
(Silver et al., 1995) 
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APPENDIX E 
 

“Multiple Solution Strategies” for Marble Arrangement Problem  
(Silver et al., 1995) 
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APPENDIX F 
 

“Modes of Explanation” for Marble Arrangement Problem  
(Silver et al., 1995) 
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APPENDIX G 
 

Students’ Preliminary Survey 
 
PRELIMINARY SURVEY 
 
Name:        Today’s Date:    
 
School:       Date of Birth:    
 
Grade Level:       Gender:    
 
AMC 10:       (e.g. 100 out of 150.) 
 
AMC 12:       (e.g. 100 out of 150.) 
 
SAT – Math Section:       (e.g. 700 out of 800.) 
 
SAT Subject Test – Math Level I:    (e.g. 700 out of 800.) 
 
SAT Subject Test – Math Level II:    (e.g. 700 out of 800.) 
 
Planned Undergraduate Major:    (e.g. Undeclared.) 
 
Favorite Mathematics Topic:     (e.g. Geometry.) 
 
I choose this Favorite Mathematics Topic for the following reasons:    
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Please list all mathematics courses in the order in which they have been taken since 
eighth grade along with corresponding information such as grade level, school year, 
grade received, and school name. 
 

 Grade 
Level School Year Mathematics Course Grade 

Received School 

e.g. 1 8 Fall 2006 Algebra 91 ABC Middle School 

e.g. 2 10 Fall 2008 Pre-calculus 92 DEF High School 

e.g. 3 11 Summer 2010 Complex analysis A- GHI College 

1      

2      

3      

4      

5      

6      

7      

8      

9      

10      

11      

12      
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APPENDIX H 
 

Students’ Test 
 
INSTRUCTIONS 

1. This test consists of three problems. 
2. Please solve each problem in as many different approaches as possible. You may feel 

free to solve the problem in any order. 
3. However, on the sheets provided, please mark the order in which you present each 

approach for each problem. 
4. Please refer to Sample Problem and Sample Answer for explanations of instructions 2-3. 
5. You have a maximum of 60 minutes to complete this test. 
6. Write clearly. Do not scribble, erase, or discard any of your work that you feel is not part 

of your responses. Instead, you may cross them out lightly. 
 
SAMPLE PROBLEM 

Sample Problem 0. Solve:  7 × 21 + 79 × 7 
 
SAMPLE ANSWER 

1st approach: 7 × 21 + 79 × 7 = 147 + 543 = 700 
2nd approach: 7 × 21 + 79 × 7 = 7 × (21 + 79) = 7 × 100 = 700 

             
 
 
 
 
TEST 
 
Name:        Date:     
 
School:       
 
 

1. Fill in the blank with one of the symbols <,≤, =,≥, or . 
√2009 + √2011    2√2010 
 

2. Given 𝑥2 + 𝑦2 = 1, find maximum of 𝑥 + 𝑦. 
 

3. Given triangle 𝐴𝐵𝐶 with median 𝐶𝐷���� and 𝐶𝐷 = 𝐵𝐷, find measure angle 𝐴𝐶𝐵. 
 
Reminder – Please avoid discussing questions involved in this test with other students. 
Thank you. 
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APPENDIX I 
 

Examples of Students’ Written Work for Problem 1 and Their Acceptability Scores 
 

Examples of an Acceptability Score of 1 Examples of an Acceptability Score of 0 
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APPENDIX J 
 

Collection of Approaches 
 
P1A1: Approach 1 for Problem 1 

�2009 + �2011 ? 2�2010 
��2009 + �2011�

2
 ? �2�2010�

2
 

2009 + 2011 + 2�2009�2011 ? 4 ∙ 2010 
�2009�2011 ? �2010�2010 

�(2010 − 1)�(2010 + 1) ? �2010�2010 

�20102 − 1 
< 

�20102 
Therefore, √2009 + √2011 < 2√2010. 
 
P1A2: Approach 2 for Problem 1 

�2009 + �2011 ? 2�2010 
�2011−�2010 ? �2010 −�2009 

�2011−�2010 ∙
√2011 + √2010
√2011 + √2010

 ? �2010 −�2009 ∙
√2010 + √2009
√2010 + √2009

 
2011− 2010

√2011 + √2010
 ? 

2010 − 2009
√2010 + √2009

 
1

√2011 + √2010
 < 

1
√2010 + √2009

 

Therefore, √2009 + √2011 < 2√2010. 
 
P1A3: Approach 3 for Problem 1 
Because the graph of square root function is strictly concave, it follows that 
√2009+√2011

2
< √2010. Therefore, √2009 + √2011 < 2√2010. 

 
P1A4: Approach 4 for Problem 1 

�2009 + �2011 ? 2�2010 
��2009 + �2011�

2
 ? �2�2010�

2
 

2009 + 2011 + 2�2009�2011 ? 4 ∙ 2010 
�2009�2011 ? �2010�2010 
�4040099 ? �4040100 

4040099 < 4040100 
Therefore, √2009 + √2011 < 2√2010. 
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P2A1: Approach 1 for Problem 2 
By symmetry, 𝑥 = 𝑦 = 1

√2
. A proof by contradiction is as follow. Without loss of 

generality, consider 𝑎 < 𝑏 such that 𝑥 = 1
√2
− 𝑎 and 𝑦 = 1

√2
+ 𝑏. It means that 𝑥2 + 𝑦2 =

1 + 𝑎2 + 𝑏2 + √2(𝑏 − 𝑎) > 1, which contradicts 𝑥2 + 𝑦2 = 1. Therefore, maximum of 
𝑥 + 𝑦 = √2. 
 
P2A2: Approach 2 for Problem 2 
Consider a straight line 𝑥 + 𝑦 = 𝑎. In order to satisfy the condition 𝑥2 + 𝑦2 = 1, it 
follows that this line 𝑥 + 𝑦 = 𝑎 is a tangent line to the circle 𝑥2 + 𝑦2 = 1. Consider 
triangle 𝐴𝑂𝐶 (see figure below). Because 𝐴𝐶 is tangent to the circle, it follows that 
𝑚∠𝐴𝐵𝑂 = 90°. Because of the straight line 𝑥 + 𝑦 = 𝑎, it follows that 𝐴𝑂 = 𝐶𝑂, that 
∠𝐶𝐴𝑂 ≅ ∠𝐴𝐶𝑂, that triangles 𝐴𝐵𝑂 and 𝐶𝐵𝑂 are congruent, and that they are 
45°: 45°: 90° special right triangles. Because of the circle 𝑥2 + 𝑦2 = 1, it follows that 
radius 𝑂𝐵 = 1. Then 𝐴𝑂 = √2. Therefore, maximum of 𝑥 + 𝑦 = √2. 

 
 
P2A3: Approach 3 for Problem 2 
Given 𝑥2 + 𝑦2 = 1, it follows that (𝑥 + 𝑦)2 ≤ 2(𝑥2 + 𝑦2) = 2. Therefore, maximum of 
𝑥 + 𝑦 = √2. 
 



134 
 

 

P2A4: Approach 4 for Problem 2 
This problem can be related to a maximization of the function 𝑓(𝑥) = 𝑥 + √1 − 𝑥2 
whose derivative with respect to 𝑥 is 𝑓′(𝑥) = 1 − 𝑥

√1−𝑥2
. For 𝑓′(𝑥) = 0, it means 𝑥 = 1

√2
. 

Because 𝑓′(𝑥) > 0 for 𝑥 < 1
√2

 and 𝑓′(𝑥) < 0 for 𝑥 > 1
√2

, it follows that 𝑥 = 1
√2

 provides 

a maximum value for 𝑓(𝑥). Therefore, maximum of 𝑥 + 𝑦 = √2. 
 
P2A5: Approach 5 for Problem 2 
Consider 𝑥 + 𝑦 = 𝐴, or 𝑦 = 𝐴 − 𝑥. Given 𝑥2 + 𝑦2 = 1, it follows that 𝑥2 + (𝐴 − 𝑥)2 =
1. This implies a quadratic trinomial 2𝑥2 − 2𝐴𝑥 + (𝐴2 − 1) = 0 whose determinant is 
8 − 4𝐴2. Then, 𝐴 is maximum when the determinant is zero. Therefore, maximum of 
𝑥 + 𝑦 = √2. 
 
P2A6: Approach 6 for Problem 2 
Given 𝑥2 + 𝑦2 = 1, it follows from trigonometric identity sin(𝑎 + 𝑏) = sin𝑎 cos 𝑏 +
cos 𝑎 sin 𝑏 that 𝑥 + 𝑦 = cos 𝜃 + sin 𝜃 = √2 sin �𝜃 + 𝜋

4
� ≤ √2 for all values of 𝜃. 

Therefore, maximum of 𝑥 + 𝑦 = √2. 
 
P2A7: Approach 7 for Problem 2 
Given 𝑥2 + 𝑦2 = 1 and considering vectors 𝑎⃑(𝑥,𝑦) and 𝑏�⃑ (1,1) with 𝜃 being the angle 
between the two so that ‖𝑎⃑‖ = �𝑥2 + 𝑦2 = 1 and �𝑏�⃑ � = √12 + 12 = √2, it follows that 
𝑎⃑ ∙ 𝑏�⃑ = (𝑥)(1) + (𝑦)(1) =  ‖𝑎⃑‖ �𝑏�⃑ � cos 𝜃 = (1)�√2� cos 𝜃 ≤ √2 for all values of 𝜃. 
Therefore, maximum of 𝑥 + 𝑦 = √2. 
 
P2A8: Approach 8 for Problem 2 
Given 𝑥2 + 𝑦2 = 1, it follows that 𝑥 = cos 𝜃 and 𝑦 = sin 𝜃. Then, this problem can be 
related to a maximization of the function 𝑓(𝜃) = cos 𝜃 + sin𝜃 whose derivative with 
respect to 𝜃 is 𝑓′(𝜃) = − sin𝜃 + cos𝜃. For 𝑓′(𝜃) = 0, it means that sin𝜃 = cos𝜃 and 
that 𝜃 = 𝜋

4
. Because 𝑓′(𝜃) > 0 for 0 < 𝜃 < 𝜋

4
 and 𝑓′(𝜃) < 0 for 𝜋

4
< 𝜃 < 0, it follows 

that 𝜃 = 𝜋
4
 provides a maximum value for 𝑓(𝜃). Then 𝑥 = 𝑦 = 1

√2
. Therefore, maximum 

of 𝑥 + 𝑦 = √2. 
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P3A1: Approach 1 for Problem 3 
Because of median 𝐶𝐷����, it follows that 𝐴𝐷 = 𝐵𝐷. Then, because 𝐶𝐷 = 𝐵𝐷, it follows 
that ∠𝐶𝐵𝐷 ≅ ∠𝐵𝐶𝐷. Likewise, because 𝐶𝐷 = 𝐴𝐷, it follows that ∠𝐴𝐶𝐷 ≅ ∠𝐶𝐴𝐷. Since 
the sum of measures of all three angles in a triangle is 180°, then 𝑚∠𝐶𝐵𝐷 + 𝑚∠𝐵𝐶𝐷 +
𝑚∠𝐴𝐶𝐷 + 𝑚∠𝐶𝐴𝐷 = 180° and 𝑚∠𝐵𝐶𝐷 + 𝑚∠𝐴𝐶𝐷 = 90°. Therefore, 𝑚∠𝐴𝐶𝐵 = 90°.  
 
P3A2: Approach 2 for Problem 3 
Consider a circle centered at 𝐷 with radius 𝐷𝐶. Then 𝐴𝐵 is a diameter of the circle 
because median 𝐶𝐷���� implies 𝐴𝐷 = 𝐵𝐷 and given that 𝐶𝐷 = 𝐵𝐷. So ∠𝐴𝐶𝐵 is an inscribed 
angle of the alleged circle. Therefore, 𝑚∠𝐴𝐶𝐵 = 90°. 
 
P3A3: Approach 3 for Problem 3 
Extend 𝐶𝐷. Construct a line parallel to 𝐵𝐶 from 𝐴 and another line parallel to 𝐴𝐶 from 𝐵, 
both of which intersect 𝐶𝐷 at 𝐸. Then 𝐴𝐶𝐵𝐸 is a parallelogram with congruent diagonals 
𝐴𝐵 and 𝐶𝐸 because median 𝐶𝐷���� implies 𝐴𝐷 = 𝐵𝐷 and given that 𝐶𝐷 = 𝐵𝐷. Specifically, 
𝐴𝐶𝐵𝐸 is a rectangle. Therefore, 𝑚∠𝐴𝐶𝐵 = 90°. 
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APPENDIX K 
 

Materials for Experts’ Evaluations 
 
INSTRUCTIONS 
 
1. Please find attached a copy of students’ test, a list of students’ approaches, and an 

Excel file of evaluation template. Please use the Excel file for your evaluations. 
2. In regards to the aesthetic aspect of students’ approaches, there are two kinds of 

evaluations that are expected here: 
a. Five-point scale: 

For each of the three problems, please rate each approach in the attached 
compiled list according to the following rubric: 
5 – Student’s approach is the most beautiful approach that I have ever seen in 

similar or related problems. 
4 – Student’s approach is beautiful, but I have seen more beautiful approaches in 

similar or related problems. 
3 – Student’s approach is very typical to similar or related problems and is often 

associated with standard approaches taught or suggested by mathematics 
teachers or curriculum at the secondary school level. 

2 – Student’s approach suggests brute force application of naïve information 
processing skills relying only on the information explicitly provided in the 
problem. 

1 – Student’s approach indicates primitive understanding of basic mathematics 
skills required to solve similar or related problems. 

b. Order of preference: 
For each of the three problems, please put students’ approaches in order from the 
most preferred approach to the least preferred approach. Please provide careful 
explanations for your preference in regards to aesthetic aspect. Please limit each 
explanation to a maximum of 200 words. 

3. After evaluating students’ approaches, you are welcome to provide your own 
approaches. If you decide to do so, please include your own approaches during your 
evaluations of both the five point scale and the order of preference. (You may scan 
your own handwritten solutions and send them as a PDF attachment.) 

4. Please categorize students’ approaches into mathematics subject classification with a 
brief description of your own interpretation. 

5. Please email all your responses to hht2105@columbia.edu. 
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EXPERTS’ EVALUATIONS 
 
Name:        Date:     
 
University:       
 
 

Problem Approach 

Ratings 
for 

Five-
Point 
Scale 

Brief 
Note 

Mathematics 
Subject 

Classification 
Explanation Order of 

Preference 

e.g. 0 1 3 
  Order of operation Student applied a standard 

procedure of order of 
operations. 

2nd 

e.g. 0 2 4 

  Factorization A rather more elegant 
approach which made use of 
sophisticated knowledge of 
factorization and resulted in an 
efficient mental arithmetic: 
less time and memory 
workload spent on solving the 
problem. 

1st 

1 2           
1 2           
1 3           
1 4           
2 1           
2 2           
2 3           
2 4           
2 5           
2 6           
2 7           
2 8           
3 1           
3 2           
3 3           
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APPENDIX L 
 

Students’ Follow-up Interview 
 
INTERVIEW 
 
Name:        Date:     
 
School:       
 
 
Part 1 – Pre demonstration of the collection of approaches: 

1. How do you feel about the test? Have you had any experience in taking a test 
requiring you to solve in many different approaches? 

2. How did the instruction to look for many different approaches affect your overall 
performance in this test? (Positively or negatively?) 

3. Have you seen any of these problems before? (In school context? Or outside 
school context?) 

4. What about the approaches you have provided here? (Did you learn this in school? 
Outside school? Or did you invent it on your own?) 

5. What is similar about all approaches you have provided here? What about 
differences? 

6. What influences your decision to solve a problem in a particular approach? 
7. For each particular problem [e.g. Problems 1, 2, and 3], do you see any 

advantages or disadvantages using any one of your approaches here? 
8. Among all of those approaches that you have provided here, which one do you 

prefer? [e.g. Approach 1]. What influences your decision to prefer a particular 
approach among all different approaches that you have provided here? 

9. You mentioned in your take-home survey that your favorite mathematics subject 
was [e.g. geometry]. There was no [e.g. geometric] approach in this particular 
problem [e.g. Problems 1, 2, and 3] that you have solved. Do you have any 
comment on that? 

10. You mentioned in your take-home survey that you have taken a mathematics 
course in [e.g. algebra]. There was no [e.g. algebra] approach in this particular 
problem [e.g. Problems 1, 2, and 3] that you have solved. Do you have any 
comment on that? 

11. Is there a connection or interaction among all different approaches that you have 
provided here? How would you explain the sequencing of approaches that you 
have provided here? [e.g. In problem number 1, why did you come up with 
geometric approach as Approach 1? After that, why did you follow up with 
algebraic approach as Approach 2? Why not Approach 3 after Approach 1?] 

12. Can you relate your previous explanations to the time you spent on each approach? 
[e.g. You spend more time on Approach 1 than 2]. 

13. How do you relate your preferred approach to your favorite mathematics subject? 
14. How do you relate your preferred approach to the way you were taught in school? 
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Part 2 – Post demonstration of the collection of approaches: 
1. Please take a look at the collection of approaches that I have prepared here. 

Which approach do you understand based on the mathematical steps or logical 
reasoning behind it? Which approach do you not understand? 

2. Would you have thought about solving the problem by using these approaches? 
(Why?) 

3. From this collection of approaches, which one do you prefer? (Why?) 
4. How does this collection of approaches change your preferred approach as you 

answered earlier based only on your own approaches? 
5. This particular approach [e.g. Approach 4] was considered elegant by a group of 

Mathematics professors. What do you think about this claim? 
 
Part 3 – Students’ attitude towards solving in many different approaches: 

1. Think about your mathematics classes. Do you recall any mathematics teacher 
who has taught to solve in many different approaches? 

2. What was the mathematics topic that he or she taught in which problems were 
solved in many different approaches? [e.g. solving systems of two linear 
equations with two variables, solving quadratic equations, etc.] 

3. Do you recall any classroom experience where you or your classmates attempted 
to solve a problem in a different approach than the teacher taught? (I will refer 
‘solving a problem in many different approaches’ as ‘this experience’ henceforth). 

a. What was your teacher’s reaction? (Did he or she encourage you or your 
classmates to seek for different approaches than he or she taught? Or did 
he or she think that the different approaches were out of context of the 
mathematics topic that he or she was teaching at that time?) 

b. Did your teacher actively promote this experience in his or her teaching 
method? Or did he or she react positively (or passively) only when 
students brought up this experience in the classroom? 

c. What do you think about this experience? (Would this help you learn more 
mathematics concepts from the problem? Or would this impede your 
learning experience on the mathematics concept that your teacher taught 
you?) 

d. Would you attempt more often to solve a problem in different approaches 
if your teacher encourages you to do so? 

4. What are the implications of this test for your future learning experience, 
especially in mathematics? 

5. Is there anything else you want to add in your general opinions about learning 
mathematics by solving problems in many different approaches? 

 
Reminder – Please avoid discussing questions involved in this interview with other 
students. Thank you. 
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APPENDIX M 
 

Transcripts of Students’ Follow-up Interview 
 
Interview with Student 1 
 
Interviewer: So how do you feel about the test? You can take a look at this. 
 
Student 1: This test? 
 
Interviewer: Yes, this test. 
 
Student 1: I realized I forgot to do some of the math, I haven’t been really doing that 
much this year, I know that’s probably my biggest issue. 
 
Interviewer: Have you had any experience in taking a test requiring you to solve in many 
different approaches? 
 
Student 1: I think probably when I was younger and the state test sort of you have to do it 
in two different ways, but it’s a lot simpler. 
 
Interviewer: Have you seen any of these three problems before? 
 
Student 1: Not the exact problem. 
 
Interviewer: But it’s similar? 
 
Student 1: Yeah, I’ve seen similar problems. 
 
Interviewer: Which one? 
 
Student 1: All three of them. 
 
Interviewer: Was it in school? In high school? 
 
Student 1: Yeah, and in 8th grade, and I took a prep course for getting, to take SHSAT, 
and I had stuff like that. 
 
Interviewer: Which ones? 
 
Student 1: Probably the second two more than the first one. 
 
Interviewer: Okay, so you have had all of these approaches before? 
 
Student 1: Yeah, I’ve seen them before. 
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Interviewer: I want to ask you to take a look at this table over here, and this is kind of like 
the guide for you to do these questionnaires, I have four different approaches for Problem 
1, you can take a look at these, you can use this, what I want you to do for each problem, 
whether you understand the steps or not, 2 if you understand all the steps, 1 if you 
understand some, 0 if you don’t understand anything, and then second, whether you have 
the mathematical tools to be able to perform this, like have you learned this, and tell me 
what is the essential tools, what is it needed for you to be able to perform the approach? 
 
Student 1: What do you mean? 
 
Interviewer: Like for example like this one, Approach 1, all I need to know is 
multiplication and addition, for Approach 2, factoring or something like that, so that’s 
what I mean by essential mathematical knowledge, number 4, 5, and 6 are like 
hypothetical questions, that means, if you had to do it all over again, if you had to do 
similar problems, what is the likelihood, what is the chance that you’d use this approach, 
2 if you’re very likely, 1 if you may be able to solve it like this, 0 if you wouldn’t have 
thought about solving it like this, and then take a look at this, you can think aloud. 
 
Student 1: Oh okay. 
 
Interviewer: You can think aloud as you read the problem. 
 
Student 1: This one, factoring, square roots. 
 
Interviewer: So would you have thought about this? 
 
Student 1: Not sure. 
 
Interviewer: So take a look at the next one, what do you think is the necessary tools? You 
can just write it out. And this is Approach 3. What about Approach 4? The whole idea of 
the study is whether or not students can solve a problem in many different ways, so here 
we have four different approaches, now there are four of these, which approach would 
you choose in your first attempt to solve this problem? Approach 4? 
 
Student 1: Yeah. 
 
Interviewer: Second and third? 
 
Student 1: Approaches 1 and 2. 
 
Interviewer: Which one among all of these four do you prefer? 
 
Student 1: This one. 
 



142 
 

 

Interviewer: Let’s try to circle this Approach 4. So I have consulted with the university 
professors, I cannot name the name of the school, they said that Approach 3, they said, 
it’s considered to be beautiful, can you comment on that? 
 
Student 1: It’s probably because it’s the simplest way to solve it, but I don’t understand 
how they solve it, so I can’t say, but I agree that’s easy if I knew how to solve it. 
 
Interviewer: It’s basically about being very easy? 
 
Student 1: Yeah, it’s simple, if you understand the concept of it, don’t go through all 
these big numbers to solve it. 
 
Interviewer: Let’s move on to the second problem here, we have eight different 
approaches for Problem 2, same thing here, whether you understand the steps, whether 
you have the ability to perform like this, do you understand this? 
 
Student 1: Okay. 
 
Interviewer: So this is the second one, you think aloud as you read this. 
 
Student 1: Well, I understand it logically, but it probably won’t come to mind, so unit 
circle and basic triangles. 
 
Interviewer: And then this is the third approach, see if you can understand this. 
 
Student 1: Yeah, I don’t understand how to do this, like I understand the rest but I don’t 
understand this one. 
 
Interviewer: This is Approach 4. 
 
Student 1: Derivatives, oh okay, I get it. 
 
Interviewer: So that would be Approach 5, then Approach 6, this is seven. 
 
Student 1: What is that symbol? Like a line segment? 
 
Interviewer: If you don’t understand, maybe you can put 0 or 1. This is the last one, 
Approach 8. 
 
Student 1: I understand this one cause I get it. 
 
Interviewer: So what do you think is the tools? 
 
Student 1: Trigonometry, reasoning. 
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Interviewer: Alright, now all of these eight, among all of these eight, do you see anything 
similar or anything different? 
 
Student 1: Like 6 and 8 similar. 
 
Interviewer: Among of these eight which one is your favorite? 
 
Student 1: Approach 8. 
 
Interviewer: Which one would you attempt the first if you had to do it all over again? 
Which approach would you start with? 
 
Student 1: Approach 2. 
 
Interviewer: What about your second attempt? You can take a look at them one more 
time. 
 
Student 1: Okay. 
 
Interviewer: Now this is the third problem and the same thing again. 
 
Student 1: Can I draw the triangle? 
 
Interviewer: Yeah, sure, you can write whatever you want. So you fully understand the 
steps here, so what are the tools here? 
 
Student 1: Triangle properties. 
 
Interviewer: Anything else you want to add? 
 
Student 1: No. 
 
Interviewer: Let’s go to the second approach, see if you understand the steps. 
 
Student 1: Yeah, now I get it, I think it’s just angles in relation to circles. 
 
Interviewer: Anything else? 
 
Student 1: No. 
 
Interviewer: This is the last one. 
 
Student 1: So I understand the mathematics, but I don’t understand the steps, like I don’t 
know. 
 
Interviewer: What do you think is the tools here? 
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Student 1: Properties of angles. 
 
Interviewer: Now which one do you prefer among all of these three? 
 
Student 1: This one. 
 
Interviewer: The second one? 
 
Student 1: Yeah. 
 
Interviewer: By the way, I asked the university professors, and they said, approach 3 is 
considered to be beautiful, can you take a look at this and comment on that? 
 
Student 1: I think it’s the same thing, like the beautiful if you know some mathematical 
properties, you can apply them the right way, you don’t have to involve like numbers or 
logic as much, you just use those properties. 
 
Interviewer: What about this one Problem 2? They said, Approach 2 was considered 
beautiful, can you comment on that? And that’s your favorite. 
 
Student 1: It doesn’t involve so much numbers in it, not many properties involved. 
 
Interviewer: Okay. Thank you for your time. 
 
 
 
 
Interview with Student 2 
 
Interviewer: How do you feel about the test? 
 
Student 2: It was easy, it’s fine, the problems seem simple, I knew some shortcuts 
beforehand so I could just look at it and tell the answer was, and then I had to figure out 
how I knew the answer. 
 
Interviewer: When you said you knew the shortcuts, do you mean that you have seen 
these problems before? 
 
Student 2: No, I’ve never seen the problems themselves before but I’ve seen something 
similar, like the triangle one, I saw that this was, I’ve seen this property of triangle before 
where the median is equal to the two sides that are, or the two line segments that are 
formed by it, I’ve seen before that that’s always a right triangle so I knew that was, that 
angle measure was always 90 degrees, so I just need to figure out which one, rather how I 
did that, how to figure that out, so I just went about proving it. 
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Interviewer: So you knew the fact, you knew the answer already, and you just had to 
prove it, you just had to show that that fact is correct. 
 
Student 2: Yeah, I just had, I just went about proving it. 
 
Interviewer: Have you had a test requiring you to solve in many different ways? 
 
Student 2: Occasionally, my teacher will tell us to solve a problem in a way that, like for 
example, in calculus, there’s the limit version of finding the area under the curve, and 
there’s just taking integral version of finding the area under the curve, and occasionally, 
on the test, she’ll test us to find, even though we know how to do the integral method, 
she’ll tell us to limit definition for the area under the curve, to find the area just to see if 
we still remember it, not often though, it’s relatively new. 
 
Interviewer: So how did the instruction to look for many different approaches affect your 
overall performance in this test? 
 
Student 2: Well, the first solution was really easy, because I just solved the problem 
however I thought of first, it’s just like a normal question, whereas the second approach, 
for each of them, I was thinking, well, if I couldn’t do that, what is some other way I can 
try and solve it, and I just thought of anything I could to solve it, and after that, I kept just 
trying other methods, but usually it didn’t work, or I find some problem where I thought 
they could happen. 
 
Interviewer: Right, can we take a look at like your Problem 2 Approach 2 on page 5? 
 
Student 2: I was thinking how I knew that, I was thinking of the perimeter problem that 
like we’ve done maximin problems before, so I was thinking of how the perimeter is, or 
rather the area is maximized when it’s a square, but I realized that had, that didn’t 
actually have to do with the problem, and so yeah, I cut it off at that point, when I 
realized it took a lot longer to go through that, it wasn’t exactly relevant, I guess this one 
was an example of that too, I forgot what I was thinking, oh I was thinking of arithmetic 
versus geometric mean, it looked like it, but didn’t exactly work. 
 
Interviewer: Let’s look at Problem 3, I see that you have two different approaches here, I 
don’t know if you realized over here, this is the first approach for Problem 3 is kind of 
similar to what I have here on the survey, Approach 1, and the other one, you in fact 
mentioned about inscribed angle in the semicircle, like Approach 2 here, so I want to ask 
you, for the two you had here, which one do you prefer? 
 
Student 2: Well, I think it would be this one Approach 2 on page 8, I like it more because 
it’s kind of more abstract in a way, whereas this one Approach 1 turns it into an algebra 
problem, even though the proof of inscribed in the semicircle, the simplest proof is 
actually the same thing, I still like this Approach 2 more, it’s simpler and more abstract, I 
tend to like more abstract things better. 
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Interviewer: Have you looked at Approach 3 for Problem 3? 
 
Student 2: Do you mind if I draw so I can visualize it? 
 
Interviewer: Sure, sure. 
 
Student 2: It’s a rectangle, okay so, what about it? 
 
Interviewer: You see how it works. 
 
Student 2: Yeah, that’s pretty simple, I see how the logic works, I would not have thought 
about this approach, I usually don’t extend into a parallelogram, I don’t know, it just 
doesn’t occur to me naturally. 
 
Interviewer: When you solve Problem 3, can you tell me why you started off with 
Approach 1 first, instead of Approach 2? 
 
Student 2: Well, it came to my mind first because at first I just drew it out and then I 
realized that these both are isosceles triangles and so these two angles, I have seen that 
idea, this thing before, like I said, I’ve seen the right triangle that halfway to midpoint of 
the hypotenuse equidistant long. 
 
Interviewer: So why algebraic approach first, then the inscribed angle approach later? 
 
Student 2: I guess I’m just more used to doing algebra problems to doing geometry 
problems, it’s been a long time since I took geometry. 
 
Interviewer: Actually, you’re pretty good with geometry, in fact, in your survey, your 
favorite subject is geometry. 
 
Student 2: Yeah, my favorite subject is geometry, just haven’t worked with it for a long 
time, I’m not in the state of thinking, I guess. 
 
Interviewer: So after I presented to you Approach 3, which one do you now prefer? 
 
Student 2: I’d still say Approach 2, yeah, I don’t know why I like using, I like working 
with triangles and circles better than I do parallelograms, quadrilaterals in general, I can’t 
think of anything, simpler possibly. 
 
Interviewer: What is simpler about triangles and circles than parallelograms? 
 
Student 2: Well, they have less sides. 
 
Interviewer: Circle has infinite number of sides. 
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Student 2: Yeah, but I think of it as just one, I don’t know, it’s ingrained prejudices, I’m 
not exactly sure why they’re there. 
 
Interviewer: So according to the university professors, Approach 3 was considered 
beautiful, can you comment on that? 
 
Student 2: Well, it’s not, it’s a good bit of thinking, I have to think of a reason why you 
said that, it’s because, the person had to realize that, hey if you extend these two lines 
parallel, you get a parallelogram, you can work with that, because this forms, this also 
intersects with that one, so you get a diagonal, it’s, I guess, it’s a nice, I can’t really think 
of a solid reason, it’s all opinion really. 
 
Interviewer: Right, something beautiful is subjective, I should say. 
 
Student 2: Of course, maybe he likes working with parallelograms. 
 
Interviewer: Okay, I don’t know if you read the sample problem, it’s about a kid solving 
this problem and there’s his response to the questions in the survey, he said, if he would 
choose Approach 1 to get the correct answer, not so much about Approach 2, although 
Approach 2 is the one I prefer the most, do you have anything to say about this? 
 
Student 2: He’s, the reason he said that is because, I guess, he had problems with using 
abstract ideas, like abstracting things. 
 
Interviewer: Can you comment on this phrase, to obtain the correct answer? 
 
Student 2: I think he believes his abilities to do computation is better than his ability to 
abstract things, for example, the actual multiplication of a 7 and 21, and adding that to 
multiplication of 79 and 7 is easier, or he’s more confident to get it correct than 
abstracting it that actually if you use the distributive property that up to 100, it’d be much 
easier. 
 
Interviewer: He actually realized that. 
 
Student 2: He did realize that, the thing is he first thought of, or, well, the thing is, I 
believe his goal was to get the answer correct rather than to solve it in the easiest fashion, 
it may have been harder for him to, or more tedious or whatever it was to multiply 7 by 
21 and 79 by 7 and add them together, but he doesn’t believe, he thought he would get an 
incorrect if he had tried to abstract, and then add the 21 and 79. 
 
Interviewer: Good, have you looked at all four approaches I have here for Problem 1? 
 
Student 2: Yeah. 
 
Interviewer: You solved this problem using Approach 1. 
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Student 2: Yeah, so last time I worked with square roots, I squared both sides to reduce 
the amount of radicals you have and then solving for the radicals, keep squaring it, so 
first thing came to mind was squaring both sides and so I did, and then I just simplified it 
a little bit, but I had that, you could subtract two of these and get two these, and so this is 
the square root, it’s pretty much the same but it ends up to be the difference of two 
squares. 
 
Interviewer: Okay, so since you did Approach 1, let’s take a look at the other approaches 
here, do we understand the second approach? 
 
Student 2: Yeah, he was multiplying by conjugates, which is another way of dealing with 
radicals, so he just got, split it into two separates things that have conjugates and then 
multiply both sides by the conjugates from there. 
 
Interviewer: What about Approach 3 here? 
 
Student 2: Yeah, because it’s concave, and it’s not increasing steadily, steadily in one 
direction, as you get further out the, intuitively, I know what he’s saying, but I can’t 
really put it into words, because the averages, as you get further out, the averages of any 
two points is going to be less and less, like when you draw a line between the two points 
and take the midpoint, that’ll be it, and you would want that point. 
 
Interviewer: Good, what about the fourth one? 
 
Student 2: It starts off the same way as me, but in the end he just multiplied them together, 
instead of doing the difference of two squares method. 
 
Interviewer: Okay, can you compare the two, I mean, which one do you prefer? 
 
Student 2: I prefer the first one better, well because of laziness, I don’t particularly want 
to multiply 2009 and 2011, when I could rather abstract it and get 2010^2 - 1, so yeah. 
 
Interviewer: Now among all of these four, which one is your favorite? 
 
Student 2: I don’t know, but if I would’ve thought of three, I would have like, yeah, three 
is the best, because it’s the simplest, the most abstract, you can generalize it to any 
function that is strictly concave, or concave over the range or domain that you want to 
use it. 
 
Interviewer: When we consulted with university professors, they also said that Approach 
3 was considered beautiful, can you comment on that, can you see what they’re trying to 
say there? 
 
Student 2: Yeah, because you can abstract, it’s most easily abstracted to whole bunch of 
other applications, for example, you could take pretty much any curve that’s concave or 
convex in any way, you can change it to convex, then it’d become greater than over that. 
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Interviewer: Okay, I want to go back to the sample problem, remember the guy said that 
the first approach is to get the answer right away, then probably he might be able to try 
Approach 2, can you make some connection with this Problem 1, I mean you actually did 
Approach 1 on your first attempt, and that was successful, I was curious whether you’re 
at that time experiencing what the guy was talking about? 
 
Student 2: That’s true, this Approach 1 is the first thing I thought of, but I would rather 
have used this Approach 3 as my first attempt if I had thought of it, but I didn’t. 
 
Interviewer: So you actually, can we say that even as your objective is to get the answer 
as quickly as possible, you still prefer to use that elegant Approach 3 as your first attempt? 
 
Student 2: Yeah, it’s more aesthetically pleasing, shall we say, it’s also a bit more fun in a 
way, because if I knew this, like I said, I could use it on any other problem that is like this, 
whereas if I get a bunch of numbers with some function being acted on all of them, and 
I’m asked to classify them in some way like this, I can just refer back to this and 
generalize it, so I’ll look at it and say, oh, it’s convex or it’s concave in that area, I’ll just 
arrange them in such a way that gives me another way of looking at it, or another 
equation to use to help me find the answer, it’s also the more elegant solutions tend to be 
the simpler ones, which is nice. 
 
Interviewer: I see, sorry, I’m going back to the sample problem again here, and you said 
you prefer the second approach, you said Approach 1 is more complicated because it 
requires more computations, can we say that Approach 1 more brute force approach and 
Approach 2 more elegant approach? 
 
Student 2: Yeah. 
 
Interviewer: So the next question is looking at these four approaches, I mean, without me 
showing you Approaches 2 and 4, do you think you’d say the same about Approach 3 as 
being aesthetically appealing as you said before? 
 
Student 2: Yeah, it’s just the same. 
 
Interviewer: I mean, will your point of view looking at Approach 3 in terms of aesthetic 
value be changed without looking at the sort of ugly approaches, like you said 4 since it’s 
more computational? 
 
Student 2: Yeah, again, because it can be generalized to a bunch of other things, for a lot 
of different problems, it’s nice and it’s simple, it’s a good logical idea. 
 
Interviewer: Say, a teacher shows you a new problem like this and he just shows you this 
one only approach, Approach 3, would you think you’d be able to appreciate the aesthetic 
appeals of this even if he didn’t show you the uglier approaches? 
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Student 2: Yeah, the contrast doesn’t exactly necessarily for, to see something beautiful, 
to see how the structures, how pleasing it is, nice simple thing, it just looks good. 
 
Interviewer: Good, take a look Problem 2, here you solved it using Approach 8, and you 
got the right answer here, now given you know all of the eight approaches, which one do 
you prefer? 
 
Student 2: Well, this one Approach 2 kindly of nice turns it into a geometry problem, it 
seems a little roundabout for my taste, the only one, it’s, well, no, it seems roundabout for 
my taste, whereas the one I thought of was rather, or I think is very simpler. 
 
Interviewer: So you prefer Approach 2 among all of the eight? 
 
Student 2: No, I prefer mine, Approach 8, because how I wrote it is simpler at least, I just 
saw x^2 and y^2, well they’re equal one, well, there’s the equation that is like that I’ve 
seen before, that sine square and cosine square, so at that point I thought cosine and sine, 
well the point where you get the, I think it had to do, why did I think of the square, oh I 
think it has to do with the maximin problems, previous experience has told me that I was 
going to end up with the squares no matter what I did, well, what do you know, it worked, 
and I went about proving it. 
 
Interviewer: Okay, so university professors said Approach 2 was considered beautiful, 
can you comment on that? 
 
Student 2: Yeah, well, oh, well, since we’re thinking of, since this graph illustrates it 
quite well, for x+y=A the maximum you’re going to get is when this point is high as you 
can possibly get it, because that’s representation of A on the y-axis, so then you just draw 
the circle as defined by x^2+y^2=1 and you move A as high up you can while still having 
that line, the line like that, straight line tangent to the circle, which is the furthest point 
you can get, the highest out you can get A without completely leaving the domain. 
 
Interviewer: I see you understand the problem, now can we see why they consider this 
beautiful? 
 
Student 2: No, I can’t really think about it, it’s not that I don’t see that this is nice and 
pleasing, I can’t really explain why it is, it’s again one of those nice and simple, good 
looking solutions, I think Approach 2 is simpler than Approach 8 because, if you take out, 
it’s just, well, it’s just you can visualize it in your head a lot easier than say I don’t know, 
Approach 8, or how I did it, it’s much easier to see it in your head I guess. 
 
Interviewer: I remember your favorite subject is geometry. 
 
Student 2: Yeah, I can see Approach 2 is geometric, and Approach 8 had to do more with 
calculus, I tend to think of calculus just as extension of geometry in that it’s still working 
figures on the Cartesian plane, or well, and then once you get into multivariable one, 
vector calculus, you’re working solid, three dimensional space. 
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Interviewer: If you take a look at the problem by itself, what type of problem does 
Problem 2 look like to you? 
 
Student 2: From that, I think it’s geometry problem, yeah, just looking at it, oh sorry, 
finding the maximum thing makes it look like calculus problem, the whole thing. 
 
Interviewer: So you see that the university professors think that this geometric approach 
for this calculus problem is more aesthetically pleasing that the calculus approach? 
 
Student 2: Well, how do I explain that, I guess, in that context, calculus approach is kind 
of the brute force approach, it works for everything, whereas this only works for this 
condition, like you can’t do this with any maximize x^3+y^3, it’s kind of low tech I think. 
 
Interviewer: Can you explain what you mean by “low tech”? 
 
Student 2: Well, he didn’t have to use more advanced topics in order to solve a problem 
which you wouldn’t think only requires less sophisticated methods to solve. 
 
Interviewer: Okay, now that you know all of the 8 approaches, which one would you use 
as your first attempt? 
 
Student 2: Approach 8, because, I guess, it’s something I’ve done more recently, but 
Approach 2, it’s just starting that out I’m not sure if I can solve it that way, whereas with 
8, I know that I could solve it that way, you notice that I tried a couple here and there, if I 
want to solve the problem first, then I’ll go with 8. 
 
Interviewer: So is your experience here the same as this student in the sample problem? 
 
Student 2: Yeah, it’s pretty similar, I guess, it’s getting the solution as fast as possible is 
the thing that I was trying to do here. 
 
Interviewer: Okay, now regular tests don’t require you to solve in many different ways, 
but if you’re assessed in tests requiring you to solve in many different ways, how would 
you think of that? 
 
Student 2: I could, but it’d probably be harder for me than most regular tests. 
 
Interviewer: So our learning behavior depends on the assessment of the test? 
 
Student 2: So how we learn is based on how we’re tested, maybe it would be true for 
many people, for me, I learn as many different methods as I possibly can, and do the ones 
that I like the best, or the easiest. 
 
Interviewer: Let’s make a connection with creativity in this context, will solving one 
problem in many different ways help you be more creative in problem solving in general? 
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Student 2: Yeah, I think so, the ability to think in different ways, to see problems from 
different perspectives is very helpful to find solutions that you wouldn’t think you’d be 
able to solve normally. 
 
Interviewer: Okay, what about the issue of fixation, one student told me that he couldn’t 
switch into a different mode of thinking once he tried his first approach or even after he 
successfully got the answer, so his approaches after the first one would be similar to that 
first one, can you comment on that? 
 
Student 2: Well, I can see that happening, you’re so used to working, having to solve the 
problem in that way, or the first method for him, for him, he’s been working like that for 
a long time so he’s not used to working in a different way, I guess. 
 
Interviewer: Have you had any experience like this before? 
 
Student 2: No, I don’t remember it ever happening to me, I mean, I could solve it in this 
way, then let’s try it that way, and I did it, it’s not hard to switch in the way I’m thinking. 
 
Interviewer: Thank you. 
 
 
 
Interview with Student 3 
 
Interviewer: So I’ve taken a look at your test here and I’m going to ask you these 
questions. How do you feel about the test? 
 
Student 3: Well, I mean the questions, the questions, I kept skipping back and forth 
because originally I was able to find like one way to do something and then I moved on 
and I realized I could’ve done something else so I returned to the original question. And 
also a lot of times the second time when I’m doing the question a different way, I would 
end up with a different answer and then realized that the first way I had done it was 
completely wrong so like it was just interesting to like be able to think about different 
ways, instead of just going the one easiest way to do per question. 
 
Interviewer: Have you had any experience taking a test that required you to solve in 
many different approaches? 
 
Student 3: Well, I mean generally like most math classes they show you like more than 
one way to do something but then they tell you that on the test, you can use whichever 
way you’re more comfortable with. So I was never really put in that situation. 
 
Interviewer: When you said, so you had this experience before but then the test only 
requires you to solve it in one way to get the correct answer. In which subject is it? I 
mean I know it’s math, but in which topic? 
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Student 3: Yeah. Um, pre-calculus, that happened a lot like, and now calculus like 
especially when we’re doing like limits and like even the upcoming test, we were told 
that you can the definition to solve it, but then there’re all of these shortcuts that you can 
use to get around and you still get the same answer. 
 
Interviewer: Okay. So these three problems, have you seen any of these three problems? 
Have you seen any of these three before? 
 
Student 3: No. 
 
Interviewer: So these problems are pretty new. So I have these questions here. For the 
first problem, do you feel that you actually solved this problem? Let’s see. I recorded 
four. One, two, three, and four. Do you feel that you actually solved, successfully solved 
this problem? 
 
Student 3: The right answer? 
 
Interviewer: Right. 
 
Student 3: The first three approaches I got consistently greater than, I mean less than, and 
then the last approach I tried I got equals to for some reason. But I felt more confident 
with the first three approaches cause I felt like the fourth approach was just testing 
something out, see if it would work again. 
 
Interviewer: Can you repeat the last sentence and can you elaborate on that? 
 
Student 3: Okay, well, the first three times I did it, the first three approaches that like 
came to mind right away, whereas the fourth approach was when I finished the test and I 
was trying to check if that answer was right. So I tried a different way to just check my 
answer rather than resolve it. So I’m more confident that the first three approaches the 
answer I got there was the right answer. 
 
Interviewer: So when you come up a different result for the fourth approach, how do you 
feel about your first three approaches? 
 
Student 3: I’m more confident about those, because those are the ones that came to mind 
right away, whereas the fourth approach I had to like really think about another way to do 
it. 
 
Interviewer: Okay. What about Problem 2? 
 
Student 3: That I wasn’t confident at all actually because I mean I couldn’t understand 
the question right away and then I tried solving it so many different ways, I mean I’m 
sure my answer was wrong because that’s all I can think of. 
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Interviewer: It’s okay. So you have two, so you have, you also have four, one, two, three, 
four here. What about Problem 3? 
 
Student 3: I think a lot of how I solved it, I work a lot better with visual representations 
and if I see something, it makes it easier for me, but in that problem, a lot of my 
information there was based on assumption, or like I was trying to connect what I was 
presented with to come up with a solution that would work. 
 
Interviewer: What do you think about the correctness of this problem? Your solution? In 
two approaches? I’m sorry, three approaches. Do you feel confident about the solution? 
 
Student 3: No, not really. This is strange, but after the test that I realized that could’ve 
been a different measure and so I was thinking about different answers after the test as 
well. 
 
Interviewer: Okay, that’s good. 
 
Student 3: So that definitely puts me like, as long as, whenever I know that I’m 
questioning all these different answers, then I know that I’m not sure about the answers. 
 
Interviewer: Okay. I just have a quick question about this, the one you’ve written here. 
I’m wondering how you know that CD is perpendicular to AB over here? 
 
Student 3: Okay, well, yeah, that was part of the difficulty in solving that one. I almost 
forgot like that, I realized that the median would split them in half. 
 
Interviewer: What do you mean “split them”? What is them? 
 
Student 3: Like the sides, the one side if it’s a median, it would split, divide them in half. 
 
Interviewer: The length of the sides? 
 
Student 3: Yeah. 
 
Interviewer: This AB. 
 
Student 3: Yeah. So I tried thinking that if this was equal, that was equal, that was equal, 
and so I ended up saying that it would have to be 90, then I realized that it could have 
been, sorry, 30-30-60 triangle, no, my bad, 60-60-30 and then it would have been, what 
am I saying, 40… 
 
Interviewer: 30-60-90? 
 
Student 3: 30-60-90, yeah, and then that was when I started questioning, that probably 
wasn’t right. At the beginning, I just assumed right away that if those were equal, it 
would have to be 45-45-90. 
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Interviewer: So you assumed that it was a 45-45-90 triangle? 
 
Student 3: Yeah. 
 
Interviewer: So actually, 90 is the correct answer. 
 
Student 3: Oh okay. 
 
Interviewer: Just curious how you get this inference from, so I guess you’re guessing? 
 
Student 3: It’s not even guessing, I can’t even remember what information we’re given. 
 
Interviewer: Do you want to see the problem? 
 
Student 3: Right, find the measure, I separated it and I said that if this one is equal and 
that would mean that it’s reflexive and so that angle and that angle have to be the same 
and that must have been the different angle. That’s why I said that. 
 
Interviewer: Okay, good. So looking at these approaches, do you feel about all of these 
approaches? For example, for Problem 1, you have four different approaches. What do 
you think about these four approaches? Are they similar? Are they different? Why do you 
call them Approach 1, Approach 2, Approach 3, Approach 4? What is different about 
them? 
 
Student 3: They were all generally similar, a lot of times I was switching steps back and 
forth, like I know for Problem 1, there was one approach where I just tried to like factor 
out the radical and then do it that way, and then there was another approach where I 
realized I didn’t want to use the radicals, so I used a different way to figure it out. 
 
Interviewer: What about Problem 2? What about your approach here and this approach 
here? 
 
Student 3: That was just, I mean, I tried first to get rid of the radicals, and then I don’t 
know how that worked out in getting the answer, and then I tried to use the radicals to 
solve it, I tried setting it equal to zero and solving that. 
 
Interviewer: Okay, I see what you did here. And then these three approaches for Problem 
3. 
 
Student 3: Yeah, the second approach for Problem 3 was the more logical one where I 
actually wrote down what I was thinking about the problem. 
 
Interviewer: Right. And do you see anything different about page 9 and page 10 here? 
 



156 
 

 

Student 3: Well, for me page 9 feels like it’s more of the inferences and assumptions I’m 
just trying to connect everything in my head and then Approach 2 solidifies everything 
and that’s when I was thinking about it mathematically. 
 
Interviewer: I like that word “solidifies.” Okay, I’m going to show, these are the 
approaches that they gave me, they meaning the professors in a university, sorry I cannot 
tell the name the school or anything like that. But for Problem 1, I want to show there are 
four different approaches so take a look at these one, two, three, four and tell me what 
you think about this as you read this. Actually can you just put it here? Do you need a pen? 
 
Student 3: Thank you. 
 
Interviewer: So as you read these solutions, keep in mind these four questions, in terms of 
understanding of these approaches, rate each approach according to these rubric, you put 
2 if you understand all the necessary steps, 1 if you understand some of the steps, 0 if you 
don’t understand anything at all, and then this the mathematical knowledge, if you think 
you have all the necessary mathematics knowledge, that means you have the tools, 
mathematical tools for this, you put 2, if you don’t have the essential mathematics tools, 
you put 1, if you don’t have anything, you put 0, and you have to identify what is the 
essential mathematics knowledge that is required to be able to perform this solution, and 
then, alright, let’s try to focus on these, and here’s a table to write your answer, you can 
talk as you read the problem, tell me what you’re thinking. 
 
Student 3: This approach I get because, I wouldn’t have thought of it right away, but I get 
that they just multiplied it out to realize, to figure out which one was greater than, so this 
one I feel like I get the steps, I’d be able to do it right based on the knowledge I have, 
what’s the third question? 
 
Interviewer: What do you think is required to perform this approach? 
 
Student 3: Just multiplying out binomials. 
 
Interviewer: Okay, you can write it out. The next question is, how likely you’re going to 
present this? If you had to do it all over again with similar problem, what is the chance 
that you’d attempt to solve this problem using this approach? 2 if it’s very likely, 1 if you 
might be able to solve it, 0 if you would not have thought about this. 
 
Student 3: I probably would not have thought about this. 
 
Interviewer: Next one. 
 
Student 3: I mean, I get the reasoning behind this, but right away, it really confuses me, 
like the jumps back and forth, I know that they write it out in different way and instead of 
plus, they’re subtracting and just writing it out, instead of just doing radical 2010 but I 
wouldn’t be able to follow these steps unless someone was actually explaining it to me. 
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Interviewer: But looking at this approach, this solution, do you understand all of these 
steps? Okay, so that you can write it there, and so what do you think is the necessary 
mathematical tools here? 
 
Student 3: I mean it’s a lot of arithmetic and logical reasoning with the problem, and I 
definitely wouldn’t use it. 
 
Interviewer: That’s okay. Then Approach 3? 
 
Student 3: Alright, I see where they’re getting it from, like I know this information, that 
square root function is strictly concave, and I follow what they were doing, yeah, I mean, 
that’s one way I might use, if I would’ve thought about using that rule, it would’ve made 
it easier. 
 
Interviewer: Would you be able to graph it? 
 
Student 3: I wouldn’t be able to graph it, like right away, I wouldn’t be. Do you want me 
to? 
 
Interviewer: No, that’s fine. 
 
Student 3: Okay. 
 
Interviewer: So that means you might be able to do it. So this is the fourth approach. 
 
Student 3: This is one of the ways I tried using it, yeah, it looks similar to approach one, 
here they actually multiply, I definitely understand that and have the knowledge to be 
able to do that, and I probably use that. 
 
Interviewer: Just want to focus on the first problem first, we have four approaches, do 
you feel they are different? 
 
Student 3: Yeah, because I saw similarities only between Approach 1 and Approach 4, 
but then halfway through instead of like here they cancel out and then multiply to get the 
actual value but then here they try to, Approach 1 is more logical, like I feel like you have 
to think about this way, whereas Approach 4 has a lot of arithmetic approach, Approach 4 
is straightforward in the way you would solve it, but it’s more actual arithmetic like 
multiplying it out. 
 
Interviewer: Okay, so all of these four approaches, which one do you prefer? 
 
Student 3: I prefer Approach 4. 
 
Interviewer: Approach 4, so I’m going to circle this, and the next question is if you have 
to do it all over again, which approach would you attempt using first? 
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Student 3: Knowing that all of these exist, probably Approach 3. 
 
Interviewer: So what would be the hypothetical sequence of future presentation? What 
about the second one? Help me fill this out. 
 
Student 3: It would probably Approach 1, then here, the last one I would try would be 
Approach 2. 
 
Interviewer: Can you explain the reasoning behind the sequencing? Why is this the first 
one? Why is this the second one? And so on. 
 
Student 3: Approach 3 is a lot quicker, if I would’ve thought knowing the square root 
function strictly concave, so that would’ve been quick to solve. Approach 1 is more of 
the way I would’ve thought to solve it then there’s like less multiplying number out and 
then Approach 4 is more straightforward, but it has more math involved, and then 
Approach 2 is the last one I would’ve thought of, it gave me a hard time like 
understanding it right away. 
 
Interviewer: So earlier you said, Approach 4 is your favorite approach, right? I want to 
tell you that Approach 3 was said to be a beautiful approach by the university professors. 
Do you have any comment on that? 
 
Student 3: I agree with them, because all you need to know is the square root function is 
concave and then you would’ve easily been able to apply that knowledge and figure out 
the problem, but all the other ways like require you to actually try either solve the square 
roots and get the values and simplify in some other ways, like this is the one with the 
knowledge right way you know the answer so it makes sense they said it’s the best one. 
 
Interviewer: So let’s try to do it with the second one, so I have eight approaches for 
number two. Do you understand the steps here? 
 
Student 3: So I get that they’re solving, because you don’t really use x and y, the two 
different variables so they try to set a and b and set to x^2 + y^2, but I don’t really get it. 
 
Interviewer: Do you think you have the tools to understand this? 
 
Student 3: Yeah. 
 
Interviewer: And what are the necessary tools to be able to solve this problem? 
 
Student 3: Well, there’s substitution, and you need to know symmetry and radicals. 
 
Interviewer: Will you be likely that you solve this problem this way? 
 
Student 3: No probably not. 
 



159 
 

 

Interviewer: Okay, here’s the next one. 
 
Student 3: This is probably the way I would do it if I had a second chance, like I just like 
using geometry and I see the picture in front of me and their reasoning here because x^2 
+y^2 = 1 just seems abstract to me and when it’s put into a diagram and it’s explained, 
you say there’s a tangent line to the circle, it just makes it a lot easier to understand. 
 
Interviewer: What is the diagram for x^2 +y^2 = 1? 
 
Student 3: It’s a straight line, sorry, they’re factoring it out, instead of using x^2 +y^2, 
they’re using x+y, so they graph it as a line and then x^2 +y^2 = 1 is a circle, they’re 
telling you that the line is tangent to the circle they give you, and yeah, this is definitely a 
lot easier to understand. 
 
Interviewer: So you can write here. Then this is Approach 3. Tell me if you understand 
the steps. 
 
Student 3: Okay, so I know that they’re factoring that out and then they’re replacing it 
with x^2 +y^2 but I get a little bit lost over the 2, like I feel like there could have been a 
step included that may be left out, oh okay, I see, alright, so they add a one here, they 
multiply by 2 so they have to multiply by 2 on both sides and they factor that out, yeah, I 
mean I get that, and I have the knowledge to use it but I probably wouldn’t use that way. 
 
Interviewer: So what are the tools? 
 
Student 3: Factoring and binomials. 
 
Interviewer: This is Approach 4. 
 
Student 3: Yeah, this is the way we learned last term in AP Calculus, I definitely 
understand what they’re doing, have the knowledge to use it, and they use derivatives, 
yeah, just max/min problem, and I probably would have thought of this in the future. 
 
Interviewer: So this is Approach 5. 
 
Student 3: Okay, I get how that works and I have the reasoning, a lot of substitutions, if 
I’m graphing, it probably helps just to picture and I might consider using that one. 
 
Interviewer: And this is Approach 6. 
 
Student 3: I understand it, I have the material, but I probably wouldn’t use it, you need to 
use a lot of trigs, you probably have to pick up on that right away, without reading this 
explanation, I would never think to use that method to solve for it. 
 
Interviewer: Anything else you want to add? 
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Student 3: No. 
 
Interviewer: This is Approach 7. 
 
Student 3: I sort of get it, I know I have the knowledge to use it, but it’s still really hard to 
follow, and I probably wouldn’t consider using it, possibly because I have a hard time 
just understanding how they apply the vector with trigonometry. 
 
Interviewer: Anything else? 
 
Student 3: No. 
 
Interviewer: So that’s Approach 8, that’s the last one. 
 
Student 3: This one reminds me of the other approach using derivatives, Approach 4, 
Approach 8 looks like Approach 4, except using just x and y, they use cosine theta and 
sine theta, so that I understand, I might consider using it, but it just seems easier to keep 
the x and y and solving for the derivatives. 
 
Interviewer: Anything else you want to add? 
 
Student 3: No. 
 
Interviewer: Okay, let’s do hypothetical question again, if you had to do it all over again, 
which one would you do first? 
 
Student 3: Probably Approach 4 because I know when I was first doing the test and I saw 
the problem, I knew that I needed to use derivatives, but I didn’t remember how to use 
them, so that would probably be the first one. Approach 2 would be the second one just 
because it’s easier for me to follow, probably also the last one will be Approach 7. 
 
Interviewer: So among all of these eight approaches, which one do you prefer? 
 
Student 3: Approach 4. 
 
Interviewer: Why is that? 
 
Student 3: I’m more familiar with it and it’s easy to follow if you have the mathematical 
knowledge to be able to do it. 
 
Interviewer: Okay, the professors said that Approach 2 is considered to be beautiful, can 
you take a look at that and comment on that? 
 
Student 3: Oh yeah, I like this one a lot just because the diagram helped out and you 
don’t really need much mathematical knowledge to be able to figure it out because as 
long as you know how the geometric rules work, you’d be able to solve it. 



161 
 

 

 
Interviewer: Let’s speed up a bit. Problem 3 here. Problem 3 has three different 
approaches. 
 
Student 3: I get this one [Approach 1] because it’s probably one of the ones that I 
attempted. 
 
Interviewer: Here is Approach 2. 
 
Student 3: I also understand now that I have the knowledge to use it, I might have 
considered using it just because I wouldn’t have put it in the circle. 
 
Interviewer: And then the last one here. 
 
Student 3: I also understand that one, and I have the knowledge, I might have used it 
because it wouldn’t occur to me to use a parallelogram and just thought it would be easier 
to draw with the triangle. 
 
Interviewer: Just really quickly, can you order this one and give me the favorite. 
 
Student 3: Okay. 
 
Interviewer: Thank you. 
 
 
 
Interview with Student 4 
 
Interviewer: So how do you feel about the test? 
 
Student 4: Well, in the second question, I don’t really know one of the words, what the 
term meant, the triangle one. 
 
Interviewer: The second question or the third question, the third question was the triangle 
one. 
 
Student 4: Yeah, alright. 
 
Interviewer: You don’t understand the term? 
 
Student 4: I guess, median. The first one I tried approximating I guess I didn’t realize 
how close the answer should be, so I guess that was a bit of a problem, the second one I 
had only one way to do it really. 
 
Interviewer: Have you had any experience taking a test requiring you to solve in many 
different approaches? 
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Student 4: No. 
 
Interviewer: So this would be the first one? 
 
Student 4: Yeah. 
 
Interviewer: How do you feel about the instruction to solve in many different ways? 
 
Student 4: Once I solved it in one way, it’s hard to not think of that way, I guess, like the 
second kind of try, like it’s hard to try completely different approach starting from the 
beginning, that part was hard. 
 
Interviewer: So in other words, when you solved the problem using first approach, you 
tend to keep thinking about that approach as go with the second approach, can you 
explain why? 
 
Student 4: I don’t know, I guess I just like the idea that the first one worked, and it’s to 
me like, you know, it’s like you have to get from the question to the answer, so it’s not 
really about the steps or the process, it’s like getting from the question to the answer, so 
once I’ve gotten to the answer, it’s hard to start over and just think a completely different 
way to do it. 
 
Interviewer: Let me try to understand you, the first attempt seems to me that you’re trying 
to get the answer right away, and then the second attempt tends to mimic the first 
approach, right? 
 
Student 4: Yeah. 
 
Interviewer: Does the instruction affect your performance in any way? 
 
Student 4: I think it’s slowing me down because there’s like, knowing that there are many 
options that can solve it, I guess, like in regular math class, they’re testing you on like 
specific math concepts you just learn, but here it’s, you know, just give you this problem 
and think of ways to do it, I guess, it slows me down, because it’s more general, and not 
like I have to start with more basic I guess. 
 
Interviewer: Have you seen any of these three problems before? Anywhere in the school 
context, outside school context, or like reading a book? 
 
Student 4: The second one, I feel like I’ve seen that type of problem, I’m not sure if I’ve 
seen the exact one. 
 
Interviewer: The next few questions will be to figure out the factors influencing you 
when solving a problem in particular approaches, so the first problem over here has four 
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different approaches, tell me what you’re thinking as you read these approaches, so like, 
do you understand the steps, the logical reasoning here? 
 
Student 4: Like do I understand this step? 
 
Interviewer: Yeah, how do you feel about this approach? 
 
Student 4: Up to here, it’s pretty basic, I’m pretty sure about this, but I didn’t think to do 
that. 
 
Interviewer: Would you have thought about doing this? 
 
Student 4: Maybe given enough time, I’m not sure. 
 
Interviewer: What about your skills, are you confident that you have the knowledge to do 
this approach? 
 
Student 4: Yeah. 
 
Interviewer: It’s just you didn’t come up with this, so what would be a factor triggering 
this approach, coming up with this approach, given that you know all the knowledge here? 
 
Student 4: I don’t totally understand. 
 
Interviewer: You just told me that you have all the knowledge here, but it’s just that this 
approach did not come up right away, so I’m wondering how I can give you some hints 
so that you’d be able to come up with this approach, what would that hint be? 
 
Student 4: I’m not sure, like I know if I’m doing a similar problem recently, I may be 
able to do that, I’m not sure what in the problem to get me to think of doing that. 
 
Interviewer: Okay, let’s take a look at the second approach here, tell me if you get it or 
not. 
 
Student 4: I think I get it, I think it’s just rationalizing, this was actually I was thinking of 
trying, but I don’t know, for some reason, it didn’t work out, but I think I would’ve tried 
it eventually. 
 
Interviewer: Let’s take a look at the third one here, tell me if you get it. 
 
Student 4: I don’t think I totally understand that. 
 
Interviewer: That’s okay, now let’s go to the next one. 
 
Student 4: Yeah, that’s similar to what I did, I didn’t complete it that one, I guess if I had 
a calculator, then I would probably do that. 
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Interviewer: Okay, among all of these four approaches, can you tell me which one you 
prefer? 
 
Student 4: I think I prefer Approach 1 because the other ones are kind of messy, easy to 
mess up kind of arithmetic and algebra, this one feels a bit more elegant to me. 
 
Interviewer: The university professors actually thought that Approach 3 was considered 
beautiful, can you comment on that? 
 
Student 4: It’s hard to tell because I don’t totally understand it, I usually don’t find graphs 
beautiful in general though. 
 
Interviewer: That’s fine, here is the second problem with eight different approaches, so 
we’ll do the same thing here. 
 
Student 4: I guess I don’t get this part in Approach 1. 
 
Interviewer: What about the second one? 
 
Student 4: Yeah, I understand the steps, I think I could probably have done this. 
 
Interviewer: What about this third approach? 
 
Student 4: I don’t totally understand this part. 
 
Interviewer: That’s fine, what about this Approach 4? 
 
Student 4: I think this is what I did actually, I understand this. 
 
Interviewer: What about Approach 5? 
 
Student 4: I don’t know what a quadratic trinomial is, oh, okay, I get it, I guess I 
understand this one. 
 
Interviewer: What about this one? 
 
Student 4: Yeah, I understand this. 
 
Interviewer: Approach 7? 
 
Student 4: I don’t really understand vectors. 
 
Interviewer: That’s okay, last one, 8. 
 
Student 4: Yeah, I get this, this is like similar to what I had. 
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Interviewer: So we had eight approaches for Problem 2, can you choose one that you 
prefer? 
 
Student 4: It’s hard because actually I did one of them, Approach 4. 
 
Interviewer: Does that mean you prefer 4 to the others? 
 
Student 4: I guess that just means that I’ve been doing this kind of problem more recently, 
and there’s not too many logical leaps, it’s just pretty straightforward step of what to do. 
 
Interviewer: So the university professors said that Approach 2 is beautiful, can you 
comment on that? 
 
Student 4: Like for me, it feels more like algebra and like numbers, I can’t make too 
much of a connection with graph, the problem is more like algebra so I’m having a hard 
time like making a connection related to it, so I’m not really a big fan of this approach, I 
don’t see anything beautiful in this approach. 
 
Interviewer: Do you see anything beautiful in the 8 approaches? 
 
Student 4: I guess, the first one, proof by contradiction. 
 
Interviewer: What is appealing about it? 
 
Student 4: Sort of like prove that it cannot be false, it’s very like convincing immediately 
to me, more logical, there’s less places where you can get lost. 
 
Interviewer: Okay, let’s look at Problem 3, it has three approaches, you can take a look at 
it one by one. 
 
Student 4: Yeah, yeah, I understand. 
 
Interviewer: Let’s take a look at the second one. 
 
Student 4: Oh, I get it. 
 
Interviewer: What about this one, Approach 3? 
 
Student 4: Yeah, I like that one, because extending the line completely changes the 
problem for me but in a way that’s more solvable because it’s just a parallel line, but by 
making it a parallelogram makes it much easier to solve the problem. 
 
Interviewer: So actually the university professors said that Approach 3 was beautiful, do 
you see anything that they say it’s beautiful? 
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Student 4: I guess I’d agree because extending the line and making a couple of parallel 
lines, it seems a bit random at first, but then it makes the angle you’re trying to solve part 
of something that’s much easier to solve, it proves it in a very unexpected way. 
 
Interviewer: Okay, so let’s do hypothetical questions, if you had to do this all over again, 
which approach would you try first? 
 
Student 4: I guess with the knowledge I have now, I would try Approach 3 first, but I 
think I would like, without any of this knowledge, I would do Approach 1 first, I don’t 
think it would occur to me to try another shape to find the angle, I wouldn’t try to draw 
more lines to solve the problem, I think that would mess up the problem. 
 
Interviewer: Okay, would you think you would get the answer faster using Approach 1 or 
3? 
 
Student 4: Probably Approach 3. 
 
Interviewer: Have you looked at the sample problem? 
 
Student 4: Yeah. 
 
Interviewer: Here’s a response to that, can you relate to your experience in Problem 3? 
 
Student 4: I think that’s how I felt about the triangle problem, I would feel more 
confident to use what I know about triangles, but I definitely prefer the one making 
parallelogram, I guess it’s kind of make sense to just improvise based on what you’re 
confident in and it reminds me when you’re trying to say something in foreign language 
like you’re trying to awkwardly form sentences based on the few words that you do know, 
even though you obviously prefer a sentence with more complex words but if you’re 
taking a test, you work from what you know and try to find the answer from what you 
know, from what you’re confident more. 
 
Interviewer: Take a look at this response, he said, so as to obtain the correct answer, so he 
thought the first attempt is the first approach, in other words, he wants to get the answer 
as quickly as possible, even though he prefers the second approach here, can you 
comment on that? 
 
Student 4: I guess, I often feel the same way about getting the answer as quickly as 
possible, I guess it depends on the context of answering the question, like taking the test 
obviously, you want to get the answer as soon as possible, I guess, I usually would want 
to get the answer as soon as possible in the school context. 
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Interview with Student 5 
 
Interviewer: How do you feel about the test? 
 
Student 5: I thought that was interesting, there were three problems, and how you 
mentioned that there’re actually many different ways to solve them. 
 
Interviewer: Have you had any experience taking a test that requires you to solve in many 
different ways? 
 
Student 5: No, this was the first one. 
 
Interviewer: How do you feel about the instruction to solve in many different ways, did 
that affect your overall performance? 
 
Student 5: Yeah, it requires me to think outside the box, how can I solve this in another 
way, cause there’s no one way to solve the problem. 
 
Interviewer: So is this a positive or a negative effect on your performance? 
 
Student 5: Yeah, I’m more of a structured person, I like to think that like, oh, I got the 
answer definitely right, and knowing that there are multiple approaches to the problem, 
especially if you’re like, this might be wrong, oh no, this might be wrong. 
 
Interviewer: Usually when you solve a math problem, do you just solve the problem and 
stop thinking after you found the answer? 
 
Student 5: I mean when I say different approach, I’m just saying like a whole different 
mathematical concept, if you see oh, you could solve it using proofs, you could solve it 
using geometry, you could solve it using calculus, and it’s just like, it makes me feel a 
little uncomfortable taking the test, but like it feels like, solve this using calculus, but 
there’re multiple ways to solve it using calculus, there’s more a checking my work type 
of thing, but like using a different mathematical concept, that I’m not 100% recalling it 
well, it makes me feel oh, I mean, I would feel more comfortable if it’s the one like more 
checking my work type of thing than looking for so many different ways from different 
concepts. 
 
Interviewer: Okay, now let’s take a look at Problem 1, your response here, you said your 
first attempt would be Approach 4 and your favorite was Approach 1. 
 
Student 5: Yeah. 
 
Interviewer: That’s in fact what you’re doing the test, you started off with an approach, 
actually two different approaches according to you for Problem 1 before you, before you 
finally solved the problem using your third approach or Approach 4 here for Problem 1. 
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Student 5: Yeah, I couldn’t find anything at that time so I resort to that, because I need to 
get the answer, because at first, I just played around the first two, I think because I knew 
it wasn’t time constrained, or like, yeah, so I just tried those first until I couldn’t then I, I 
just did that one to get the answer. 
 
Interviewer: Did you ever think that you could use your answer you get from Approach 4 
to probably get, figure out your previous approaches, the ones that didn’t work? 
 
Student 5: I mean I like Approach 1, it didn’t came to me during the test, but I like it 
because, cause it has different twist in it, but what usually comes to me first was squaring 
both sides, to solve problems like that, like how do you deal problems with square roots, 
well, you square it, so I just decided to square both sides, just playing around with the 
number and see what happened, but Approach 1 seems interesting, like oh, I never looked 
at it that way, and I just liked it, it looks interesting, it looks obvious right now, but it 
would never occur to me, it looks surprising you can subtract by 1, it would never come 
to me on test, and here I would, I like Approach 2 better than 3 because of the graph thing. 
 
Interviewer: What about Problem 2, what were you thinking as you solved the problem, I 
mean Approach 4 is your favorite approach and also your first attempt, in fact you solve 
the problem like that, using Approach 4. 
 
Student 5: This could be solved in two different ways, either calculus or geometry, my 
geometry is very very rusty, but I’m learning calculus right now, so I figure why not use 
calculus, which is still fresh, more fresh, the other thing like Trigonometry, I mean I 
understand how it works, but I would never never in a million years I would’ve like, wow. 
 
Interviewer: So were you surprised by this Approach 6 as much as you were surprised by 
Approach 1 in Problem 1, like element of surprise? 
 
Student 5: Well, element of surprise, yeah, it’s very viable method of solving a problem, 
it just would never come up to me. 
 
Interviewer: So would you change your favorite approach then? 
 
Student 5: No, I think I would still like Approach 4, because I just learned that, it’s still 
fresh to me, that’s exactly why I chose that method. 
 
Interviewer: Can we take a look at Approach 2 and can you comment on that? 
 
Student 5: I’m not very good at considering hypothetical situation, so like I’m not that 
type of person to solve the problem with that method, like consider here, I mean, like 
assuming some line here non-existent before to come up here, my geometry is not very 
good, I mean, it’s very logical way of thinking, I mean, yeah. 
 
Interviewer: So some university professors say that this Approach 2 is considered 
beautiful, can you comment on that? 
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Student 5: Well, the whole concept of math works out like, no matter how you look at 
things, they always turn out to be the same way, and this is exactly that, like 7 times 3 is 
the same as if you’re adding 7 three times, so same answer no matter, but here it’s just 
like, it’s no dispute, it’s just logic, what is it, first you have straight line, and then circle 
here, tangent, and then triangle, yeah, it just follows, it’s like a logic proof basically, I 
mean, maybe the logic concept of it that makes it beautiful, I don’t know. 
 
Interviewer: Okay, how about Problem 3 here? 
 
Student 5: I didn’t get this problem, like I mean, my geometry is horrendous.  
 
Interviewer: That’s okay, but you do understand the steps here in Approach 1? 
 
Student 5: Yeah, this is the stuff we learned in 9th grade, the geometry. 
 
Interviewer: Approach 2? 
 
Student 5: Oh, I see, this makes sense, that makes sense, that’s the whole inscribed angle 
of the circle here. 
 
Interviewer: What about this one? 
 
Student 5: That’s a rectangle, yeah, it’s proving it’s a rectangle.  
 
Interviewer: Okay, you said here your favorite is Approach 1. 
 
Student 5: Yeah, I chose this one, because I like the whole logical following it, the other 
ones were just like consider this, consider that, it’s because of this, it’s that, therefore it’s 
90 degree. 
 
Interviewer: Okay, here’s a classroom situation, a teacher gives you a new problem, and 
he shows you 8 different approaches at the same time, using totally different 
mathematical concepts. 
 
Student 5: I think it’d be interesting, but it will feel a little, well, a little, you have to 
know all of those methods, because all they sound very interesting. 
 
Interviewer: Can you say something about your ability to recall those many different 
mathematical concepts? 
 
Student 5: Yeah, I have to recall all of those concepts, but I’m quick to recall them, so it 
wouldn’t be too much of a problem to recall, maybe a little bit overwhelmed, it’s like, I 
mean, it never happened to me before, it’s like, well, do you remember back in 8th grade 
when you were learning factoring, oh, you can use it here right now, well, that was a bad 
example, because factoring is always used in high school, if right now my teacher asks 
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me to recall something from 9th grade like geometry where we’re learning about logic 
and proofs and stuff, and he or she expects me to put that on the test, I’ll just be like, 
excuse me, but I mean, it’s pretty cool to know that you’re not restricted to one way of 
solving a problem. 
 
Interviewer: Okay, that’ll be it, thanks so much.  
 
 
 
Interview with Student 6 
 
Interviewer: So let’s start, how do you feel about the test? 
 
Student 6: I thought, I thought when I first saw it, it would be easy, but when I started it, I 
found that I couldn’t find many ways. 
 
Interviewer: So was it the instruction that affected your overall performance in the test? 
 
Student 6: Because usually in class, we just solve the problems that is easiest to each 
person usually. 
 
Interviewer: So you never had any experience taking a test that requires you to solve in 
many different ways before? 
 
Student 6: No, this is the first time. 
 
Interviewer: Okay, have you seen any of these three problems before? 
 
Student 6: You mean the actual problems? 
 
Interviewer: Similar ones maybe? 
 
Student 6: I’ve probably seen similar ones like number 2, maybe number 3. 
 
Interviewer: How do you describe number 2? 
 
Student 6: Not with exponents, maybe like x times y equals some number, so what is x+y, 
something like that. 
 
Interviewer: What about the third one? 
 
Student 6: Third one, well, I’ve done a lot of those kinds of problems where they give 
you line segments and stuff, and you have to figure out the angle. 
 
Interviewer: I want to ask the sequencing, what were you thinking as you present your 
approaches as you worked on the problems? 
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Student 6: Well, I first just tried to solve the problem in a way that’s most comfortable for 
me, and then go try to figure out different approaches, whether it’s harder, but usually I 
would first start off with the easier approach. 
 
Interviewer: So here, I was looking at your test, you actually started with the third 
problem, instead of the first problem, and you did get the correct answer on your first 
attempt here for Problem 3, do you think third problem is easier than first problem? 
 
Student 6: Because number three seems more familiar to me than the other ones to me so 
I just started off with that one.  
 
Interviewer: In the first survey, you mentioned that your favorite topic was derivatives, so 
it’s like calculus, right, but it seems like you didn’t start with Problem 2 which is more 
like calculus problem, can you say anything about that? 
 
Student 6: Well, I think it’s because I’m learning calculus now, but it’s just at that time 
number 3 looked easier to me. 
 
Interviewer: For Problem 1, you said you prefer Approach 4, can you explain more of 
your response here? 
 
Student 6: Well, Approach 4 would be like, basically if I didn’t know any more 
complicated, like more advanced math, that would be the best way to solve it, just 
multiply out or square, get rid of radicals to figure out less than, greater than, or perhaps 
equal, but the other ones, I have to use some of formulas, or some of more recent 
knowledge maybe. 
 
Interviewer: Here you said your first attempt would be Approach 2, I am wondering why 
not your favorite Approach 4, what is the relationship between your first attempt and 
your favorite approach? 
 
Student 6: Well, Approach 4 is straightforward, just multiplying, but then, I wouldn’t 
start off with that because I think that would take longer than some other approach that I 
would take so I chose the second approach. 
 
Interviewer: But if you know Approach 4 takes longer time than Approach 2, why do you 
prefer Approach 4 to Approach 2? 
 
Student 6: Well, there I just need to multiply and not to make any mistake, but Approach 
2 I have to multiply square roots, there’s more room for error I guess for Approach 2. 
 
Interviewer: So you are risking yourself into more error by taking Approach 2 at first, no? 
 
Student 6: Yeah, I know, but I think I’m better at just regular multiplying number like in 
Approach 4. 
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Interviewer: So why not try with Approach 4 first then? 
 
Student 6: But I think Approach 2 is faster if I’m taking the test, because it’s more recent, 
more like a recent concept, like what I just learned, well, multiplying 2009 and 2011 
might take longer time, but the other method is faster, I mean Approach 4 is simpler, I’ve 
never seen that before, like if I couldn’t solve the problem with Approach 2, I would 
resort to Approach 4. 
 
Interviewer: Okay, let’s see the sample problem and the example of the response from a 
student here, can you relate your experience with this? 
 
Student 6: Well, when I see the problem at first, it doesn’t seem like a simple problem, I 
would probably think of a more complicated way of solving it rather than like just a 
multiplying straight out and getting big number to compare, I think because I can find the 
answer faster, to do it with more complicated way. 
 
Interviewer: So your experience is quite the opposite of the one in sample problem? 
 
Student 6: Well, the sample problem was a lot easier, so it’s kind of different than this 
one where the number is a lot bigger, so just multiplying, using the order of operations, 
it’s different from here, so it takes longer, I mean I am very sure to get the answer right 
out using Approach 4 in Problem 1, but I just want to try, like, find a faster way to do it, 
but maybe see, use answer from Approach 4 to go back to the other approaches that I 
didn’t finish. 
 
Interviewer: Okay, now some university professors think that Approach 3 is beautiful, 
can you comment on that? 
 
Student 6: Well, I’m not confident with graphing, I think, I mean, maybe it’s because it’s 
short, like the proofs here, I’m not sure. 
 
Interviewer: Let’s see, for Problem 2, your favorite approach here is your first attempt, 
like you have here for Approach 4. 
 
Student 6: Well, because I’m currently taking calculus, more comfortable I guess. 
 
Interviewer: What about your second attempt? 
 
Student 6: Well, truthfully, I couldn’t think of many different methods, but when I looked 
at all of these, I found Approach 2 is simpler than the other ones, in terms of 
understanding. 
 
Interviewer: So university professors said also Approach 2 is beautiful, do you see 
anything beautiful? 
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Student 6: Well, that’s only approach that uses graphs and creates like triangles, and 
tangents, the other ones are just formulas. 
 
Interviewer: What about Problem 3, here you said, your favorite is Approach 3 and your 
first attempt would be Approach 1, in fact that what you did in your actual test, and you 
did that well, you get the correct answer, can you comment on that, your favorite 
approach and your first attempt? 
 
Student 6: For this one, I chose Approach 3 as my favorite because when I looked at the 
three approaches, well, I only chose it because it’s because I wouldn’t think of that during 
the test, it’s sort of, something about it really, like I would normally just create the 
triangle and use that triangle, I mean the angle and like, but the fact that they solved it by 
creating a different shape, rather than just using a triangle, I found that interesting. 
 
Interviewer: Say now, if a teacher shows you 8 different approaches on the board, would 
you get confused by these approaches? 
 
Student 6: I would probably be a little confused, but if I were in that situation, I would 
just try to understand, absorb the ones that I understand the most, so I’d probably get two 
or three of them. 
 
Interviewer: What about calculus, I mean geometric approach like here in Problem 2, 
would you be able to recall that geometry that you probably learned like two years ago? 
 
Student 6: Probably I won’t remember everything, but I would be able to recall a lot of 
them, since it incorporates into the problem itself, but once I see it, I’d probably 
remember. 
 
Interviewer: Okay, thank you. 
 
 
 
Interview with Student 7 
 
Interviewer: So how do you feel about the test? 
 
Student 7: No, not too great actually, but then if you notice the STEP crews outside were 
a little bit loud, so I was having a tough time concentrating. 
 
Interviewer: So basically the classroom testing environment? 
 
Student 7: Yeah, I think so. 
 
Interviewer: What about the instruction? Have you had any experience in taking a test 
requiring you to solve in many different approaches? 
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Student 7: No, I don’t think so, I can’t recall anything. 
 
Interviewer: Does the instruction to solve in many different ways affect your performance 
in any way? 
 
Student 7: No, I don’t think so, because just the way I looked at it, I tried to solve the 
problem first then looked for other ways to do it. 
 
Interviewer: Have you seen any of these problems before? 
 
Student 7: No. 
 
Interviewer: I want to take a look at Problem 2 here. 
 
Student 7: I think I said something a bit strange for that. 
 
Interviewer: By the way, I should tell you that there’s no right or wrong answer. So for 
the second problem, you said you have a total of, you have one approach here? 
 
Student 7: Yeah, right there I started a second one. 
 
Interviewer: You were doing some derivatives here. 
 
Student 7: Yeah, then I saw the survey you handed out, the way I would have liked to do 
it. 
 
Interviewer: I see you were doing derivatives here so basically you’re trying to do 
calculus approach for this problem. What about this? Can you tell me what you’re doing 
here? 
 
Student 7: I think for that part, I don’t really remember, I’m sorry. 
 
Interviewer: That’s okay. You mentioned that in your first survey, your favorite math 
topic is calculus and you wrote, I chose calculus because it gives me a set of tools I can 
use to solve problems that previously would have been lengthier or even impossible, can 
you explain that? 
 
Student 7: Such as minimization and maximization problems, like simple ones we have 
some, cause I’m also taking pre-calculus, so we were learning, so I was learning two 
methods for those at the same time, so with pre-calculus, it seems what I thought as very 
ineffective method of finding minimum or maximum as opposed with calculus. 
 
Interviewer: Can you explain what you mean by lengthier? 
 
Student 7: Like an indirect way. 
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Interviewer: You mean the logical steps? 
 
Student 7: Right. 
 
Interviewer: You have the survey that I gave you, the one you get earlier today, the 
second one, wait hold on, good, so if you take a look at Problem 2 Approach 4, so this is 
basically calculus approach, I mean, have you learned anything like this in class? 
 
Student 7: Yeah, just with two formulas and putting it in terms of one variable and taking 
the derivatives. 
 
Interviewer: So you’ve seen something like this before? 
 
Student 7: No, not that problem, but that method of learning I mean. 
 
Interviewer: You said you never had any experience in taking test requiring you to solve 
in many different ways before. 
 
Student 7: No, I don’t recall. 
 
Interviewer: Do you have any experience in the classroom where you want to shout out a 
new different way, maybe the one different from the teacher’s? 
 
Student 7: Well, just in class today we were looking at problem, my teacher asked, you 
know, is there another way to do this? So there were three methods on the board. 
 
Interviewer: How do you feel about that? Do you get confused many different ways on 
the board at the same time? 
 
Student 7: No, I think it’s interesting, like there isn’t just one method to look about it, but 
there’s like different ways of approaching the problem. 
 
Interviewer: Say, if you haven’t seen the problem before, say this problem is very new, 
would you be confused to understand these? 
 
Student 7: Like what my teacher did today was we’ve been looking at a style of problem 
before, finding the area between two curves, and she gave us a particular instance or a 
specific case where there’re multiple ways to do it, so that’s a topic that we’re already 
familiar with. 
 
Interviewer: Okay, so say you had to do this all over again, you want to solve in many 
different ways, how would you think of your first approach to solve the problem? 
 
Student 7: You mean what’s my rationale for choosing this approach? 
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Interviewer: Right. 
 
Student 7: I think like I mentioned before, it was, I was trying to solve the problem first. 
 
Interviewer: By solving first, you mean to get the answer? 
 
Student 7: Yes, to get the answer first, then I suppose I would use the other approaches to 
check it. 
 
Interviewer: What do you mean to check? 
 
Student 7: To check the answer from the previous approach, to see if the other approach 
is valid. 
 
Interviewer: Do you often do that in your learning experience? 
 
Student 7: Yeah, sometimes, if there’s two ways of going about it, like a lot of these seem 
to be connected to what we’ve been doing in the past few weeks in class, such as on the 
test yesterday, like to find the limit definition, I mean to use the limit definition to find 
the definite integral, which was an example of a rather lengthier method, and part B of 
that question was to check our answer using the fundamental theorem of calculus. 
 
Interviewer: So you had this kind of test before as a way to check your previous answer? 
Let me try to understand. You have a test where you have two questions, basically the 
first one to get the answer and the second one to check the answer you get in the previous 
question. 
 
Student 7: Right. 
 
Interviewer: How do you feel about that? Say you don’t get the answer in the first one, 
how would you check your answer in the second one? 
 
Student 7: Well, the second one was a different approach, it’s a different way of finding 
the answer, if you get the same one as the first one. 
 
Interviewer: Okay, what if you forget how to do the first question, say you cannot recall 
the first approach, so same problem, what would you do in the second part of the question? 
 
Student 7: Well, if I don’t remember the first approach, I would probably resort to the 
second approach as a means to solve the problem. 
 
Interviewer: So that means, you’re using the second approach as a backup to the first 
approach? 
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Student 7: Well, in this case, the first approach that was being tested as the lengthier way 
of doing it and I would rather not do, I don’t know if it’s a backup, it’s just this specific 
situation, but I guess you could view the second method as a backup. 
 
Interviewer: I was trying to extract from you whether you actually yourself independently 
would find to find the second approach if the teacher or test does not require you to find 
the second approach? 
 
Student 7: I doubt it. 
 
Interviewer: So in the testing situation if the test doesn’t require you to solve in many 
different ways, you would just solve the problem and that’s the end of it? 
 
Student 7: Yes. 
 
Interviewer: Okay, now would you have attempted more if the teacher encouraged you to 
do so? This is different from the testing setting, I mean some teachers would show you 
many different ways to solve some problem but in the test they probably don’t require 
you to do so, so there’s no assessment sort to say. 
 
Student 7: I think in the classroom setting it would be about exploring the topic, like 
finding different ways of understanding the problem, and in the testing situation, it’d be 
like, can you do this, can you use any method to find the answer. 
 
Interviewer: So if the method of assessment is changed, in other words, if the teacher 
requires you to solve in many different ways in test, would you be more likely say at 
home to study about solving the problem in many different ways? 
 
Student 7: Oh yes, if I knew that would likely to be tested. 
 
Interviewer: Okay so let me get this, so your learning behavior depends on assessment 
process. 
 
Student 7: I suppose so. 
 
Interviewer: Have you looked at the four approaches for Problem 1? 
 
Student 7: Not really, not in depth. 
 
Interviewer: Let’s take a look at this and tell me what you’re thinking. 
 
Student 7: I think this is what I did here in Approach 4. 
 
Interviewer: Okay. What about Approach 1? Do you understand this? 
 
Student 7: Not quite, in between those steps, oh okay I see. 
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Interviewer: What about this one? 
 
Student 7: Okay. 
 
Interviewer: Let’s take a look at the third one. Tell me if it’s okay, if you get it. 
 
Student 7: I’m wondering what you mean by the graph of the square root function is 
strictly concave, oh okay, oh yeah, I see. 
 
Interviewer: This of course you know, because you did this one. Now tell me which one 
you prefer. 
 
Student 7: I like number 3 just because it’s not like plugging away at the numbers, you 
know, like you’re not working or doing the manipulations, you’re looking at something 
like in the nature of the square root function to solve the problem. 
 
Interviewer: Okay, say you had to do it all over again, which approach would you attempt 
first? Which one comes up to your mind first? 
 
Student 7: Approach 4. 
 
Interviewer: Second? 
 
Student 7: Approach 1. 
 
Interviewer: How about third? 
 
Student 7: I’m not sure about Approaches 2 and 3. 
 
Interviewer: What about this, would Approach 3 come up on the list? 
 
Student 7: No, I don’t think I would think of it. 
 
Interviewer: Some university professors, and I don’t name the school they’re from, they 
said that Approach 3 was considered to be beautiful, can you comment on that? 
 
Student 7: I mean, it was like, like I said before, okay, this one, Approach 4, you just kind 
of hacked away at it. 
 
Interviewer: Can you explain that word? 
 
Student 7: Okay, I mean like you’re taking the numbers, right? And you’re playing with 
them, and you do this big multiplication, and you finally get this large number is bigger 
than that large number. 
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Interviewer: Brute force? 
 
Student 7: Yeah. 
 
Interviewer: So take a look at the second problem and tell me what you’re thinking. 
 
Student 7: Okay, I’m not really following Approach 1. 
 
Interviewer: That’s okay. We’re kind of running out of time. How about Approach 2? 
 
Student 7: Okay. 
 
Interviewer: 3? 
 
Student 7: No. 
 
Interviewer: 4? 
 
Student 7: Yeah, I follow that one. 
 
Interviewer: 5? 
 
Student 7: Yeah. 
 
Interviewer: 6? 
 
Student 7: Yeah. 
 
Interviewer: 7? 
 
Student 7: No, I don’t think. 
 
Interviewer: 8? 
 
Student 7: I think so. 
 
Interviewer: Alright, let’s do this again, hypothetically, which one would you do first? 
 
Student 7: Approach 4 
 
Interviewer: Can you tell me why? 
 
Student 7: That one makes more sense to me, I don’t know it just seems logical to me, 
you have two equations and you put them together into one. 
 



180 
 

 

Interviewer: So your decision is based on your knowledge? 
 
Student 7: Yes, I learned about this. 
 
Interviewer: So it has nothing to do with getting the answer right away? 
 
Student 7: I wouldn’t say that. 
 
Interviewer: So your decision, was it because of your knowledge or because you want to 
get the answer right away? 
 
Student 7: Both, because I can get the answer using that knowledge comfortably. 
 
Interviewer: Okay, then what about the second attempt? 
 
Student 7: Approach 2. 
 
Interviewer: Because you have knowledge of this? 
 
Student 7: Yes. 
 
Interviewer: What about the third one? 
 
Student 7: Nothing really strikes me, probably this one, Approach 5, again it’s my 
knowledge. 
 
Interviewer: So now among all of these eight, which one do you prefer? 
 
Student 7: The one that I like is number 4. 
 
Interviewer: Which one do you think is most beautiful? 
 
Student 7: I’m not sure. Nothing strikes me particularly as beautiful. 
 
Interviewer: Okay, the university professors said Approach 2 was beautiful, can you 
comment on that or do you see anything beautiful about Approach 2? 
 
Student 7: No, I don’t think so, not beauty in the way that like the Approach 3 for 
Problem 1. This Approach 2 for Problem 2 not so, it seems like a good way to go about it, 
but it doesn’t strike me as particularly beautiful, I mean, I suppose it’s similar to the other 
beautiful problem, it’s not so much showing that it’s not so much brute force. 
 
Interviewer: Hold on, so it seems to me that you can see something beautiful only if 
there’s other thing that’s ugly, you said in the first problem, Approach 3 is beautiful 
because Approach 4 is brute force? 
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Student 7: Yes. 
 
Interviewer: But in Problem 2, you don’t see anything particularly strikes you as beautiful 
because you don’t see anything ugly or anything with brute force? 
 
Student 7: Right, I see, none of these particularly strikes me as ugly, so I suppose because 
there’s no contrast between the two. 
 
Interviewer: Interesting, okay. Let’s take a look at Problem 3. I think you did Approach 1 
in the test. 
 
Student 7: Right, I know that. 
 
Interviewer: This is Approach 2. 
 
Student 7: I see. 
 
Interviewer: What about Approach 3? 
 
Student 7: Yeah. 
 
Interviewer: Same question, which one would you attempt first if you had to do it all over 
again? 
 
Student 7: Approach 1. 
 
Interviewer: Second attempt? 
 
Student 7: Approach 3. 
 
Interviewer: Which one do you prefer among all of the three? 
 
Student 7: I prefer Approach 3. 
 
Interviewer: So why do you choose this one? 
 
Student 7: I don’t know, well, Approach 1 seems like what we’ve been describing as ugly, 
brute force. 
 
Interviewer: I see, do you see anything beautiful one? 
 
Student 7: If I have to choose, then I would choose Approach 3. 
 
Interviewer: Okay, so the university professors also chose Approach 3 as the beautiful 
one, can you comment on that? 
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Student 7: I don’t see anything beautiful here, it seems artificial to me, in the other two 
problems, like you’re referring to something about what you, like what you’re given, an 
aspect in order to solve the problem, in this one, you’re creating something around it and 
then using an aspect of that to solve it, the method is, constructing additional information 
in the process seems artificial, it’s not like adding things in general, I’m not sure I would 
say that negate beauty but in this particular instance, it strikes me as artificial. 
 
Interviewer: Let’s go back to the second problem, when you say an approach being 
beautiful, and the fact that your favorite Approach 4 doesn’t look beautiful to you, could 
it be because you have little knowledge when comparing the eight approaches here? 
 
Student 7: I think beauty has something to do more with experience rather than 
knowledge, so as I see many different approaches, experience many different approaches, 
then I will grow sense of something being beautiful. 
 
Interviewer: Okay. Thank you. 
 
 
 
Interview with Student 8 
 
Interviewer: How do you feel about the test? 
 
Student 8: I didn’t know any of the questions. 
 
Interviewer: Actually, you solved Problem 1, this was the correct answer. 
 
Student 8: Okay. 
 
Interviewer: Have you read this survey? 
 
Student 8: No, I haven’t. 
 
Interviewer: Can you flip through these four approaches for Problem 1 and tell me what 
you think, maybe we can see Approach 4 first because that’s the one you did there. 
 
Student 8: Yeah, I understand this. 
 
Interviewer: How about Approach 1? 
 
Student 8: I don’t understand how to get from this step to this step, oh, okay, I see, I get it. 
 
Interviewer: Next approach here? 
 
Student 8: Kind of multiplying by conjugates, same thing here, yeah, I get it. 
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Interviewer: What about this one, this is the third approach. 
 
Student 8: I kind of get it, I guess, I don’t really get this part, oh, I see, I get that part. 
 
Interviewer: So then among all of the four, which one do you prefer? 
 
Student 8: The way that I did it, Approach 4, because I thought I was more comfortable 
with adding and multiplying and I thought the others were more abstract. 
 
Interviewer: Some university professors said Approach 3 is beautiful, can you comment 
on that? 
 
Student 8: I guess they might think that can be shown the other ways, it’s something that, 
it’s a method that’s more efficient of solving it, it shows a higher level of understanding it, 
because you’re using calculus concept rather than algebra concept, more sophisticated 
knowledge. 
 
Interviewer: Remember the sample problem, you can read it, can we compare your 
experience there with this student’s response? 
 
Student 8: I think he’s thinking that 100 is an easier number, because it’s a multiple of 10 
rather than, as opposed to 21 and 79, so it makes it easier just to multiply 7 by 100, very 
very simple, you’re combining two not beautiful numbers 21 and 79, then from there, you 
get a beautiful number 100, because it’s easier to multiply by 100. 
 
Interviewer: So is this a similar situation as your experience for Problem 1? 
 
Student 8: I think that sometimes we want to do things efficiently so we don’t even 
though I realized this approach is more, well, I want to get the correct answer, I think, 
yeah. 
 
Interviewer: If you had to do this all over again, which one do you prefer? 
 
Student 8: Approach 4 maybe because I know the algebra, I think I’ve learned this math, 
long time ago, it’s something that’s repeating in calculus, pre-calculus and so on, and a 
lot more comfortable with this than graphing. 
 
Interviewer: So your first attempt will be Approach 4, okay, so here’s next Problem 3, 
and you tried Approach 1 and the answer is 90 degree. 
 
Student 8: Yeah. 
 
Interviewer: Let’s take a look at Approach 2 then. 
 
Student 8: I’m not sure, oh, okay, right, okay. 
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Interviewer: Next Approach 3. 
 
Student 8: Oh okay, oh okay, yeah, okay so, it’s a parallelogram, oh okay, alright, I get it. 
 
Interviewer: Which one do you prefer? 
 
Student 8: The first one because it’s less abstract. 
 
Interviewer: What about your first attempt say if you had to do it all over again? 
 
Student 8: This Approach 1 would be my first attempt. 
 
Interviewer: University professors said that Approach 3 is beautiful, can you comment on 
that, or do you see anything aesthetically pleasing? 
 
Student 8: I like the shape of parallelogram, this reminds me of a diamond, like more of 
that shape and I would, I mean that would be more aesthetically pleasing than a circle 
especially with a triangle in the middle, and there are parallel lines, I think can be 
aesthetically pleasing, I think has to do with uniformity. 
 
Interviewer: Do you see that same beauty in Approach 1? 
 
Student 8: I don’t think Approach 1 is the most beautiful necessarily, I just think that’s 
what I would do over again, I wouldn’t, I don’t have the, I think, knowledge has to do 
with it maybe. 
 
Interviewer: Okay, let’s get back to sample problem, sorry, say you’re learning this 
problem, or you’re seeing this problem for the first time, and teacher just gives you 
Approach 2, would you still think that Approach 2 is beautiful without comparing it with 
Approach 1, because you said it has too much calculation? 
 
Student 8: No, because I don’t consider mathematical expressions to be beautiful, if this 
were fresh, if I didn’t know about Approach 1, if I wouldn’t be able to compare them at 
all, I don’t. 
 
Interviewer: So can we say that you have to see an uglier approach to be able to 
appreciate a beautiful approach? 
 
Student 8: Yeah, I mean I just said that this one is more beautiful because it’s a 
comparison, comparatively I think the second one is more beautiful than the first 
approach, however, if you just asked me if I thought either of them would be beautiful, I 
don’t think that they’re beautiful. 
 
Interviewer: So beauty is only observable by comparison? 
 
Student 8: Yeah, in this case, mathematically beautiful, I mean. 
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Interviewer: Okay, what would you do if a teacher shows you 8 different approaches for a 
new problem? 
 
Student 8: Well, I would look for the one that seems easier, and that the one I would do 
the next time. 
 
Interviewer: What about the rest of the approaches? 
 
Student 8: I would only learn them if they are easier, but I wouldn’t be that interested 
mastering them if I still find them more difficult. 
 
Interviewer: Would you be confused about the purpose of the lesson, whether it was to 
learn the different approaches or whether it was to solve the problem itself? 
 
Student 8: I wouldn’t be concerned, because I’m assuming that they’re showing us 
different approaches so that we can just gain greater understanding than just to trick us 
out. 
 
Interviewer: Okay, in the testing environment, do you have any experience taking a test 
that requires you to solve in many different approaches? 
 
Student 8: Not really, well, maybe in only two different ways, but that’s it. 
 
Interviewer: Okay, I want you to see your two approaches for Problem 1, I actually think 
that they look the same, do you feel that too, or do you feel that at that time you’re 
actually doing two completely different approaches? 
 
Student 8: Yeah, I was having trouble at that time, I guess, being flexible in solving the 
problem, or looking at it in a different way, but I think I get the answer right in the end. 
 
Interviewer: When we talked about beautiful approaches, you said you need more than 
one to compare, do you have any classroom experience in this aspect? 
 
Student 8: I think often teachers refer to messy numbers and that’s often like mixed 
numbers or maybe sometimes odd can be quote and quote messy numbers, so when you 
have nice numbers like whole numbers, they’ll be nice. 
 
Interviewer: Let’s say you haven’t seen Approach 2 in sample problem, and say you only 
know about Approach 1, do you think you get that Approach 2 somehow? 
 
Student 8: Yeah, I think if I keep doing the same kind of problems over and over again, I 
would realize that if I keep doing Approach 1, it would be tedious and somehow I would 
probably realize that there must be a shortcut to that, so I mean, maybe I will get that 
after a while but a lot longer if I don’t get to do Approach 1 repeatedly. 
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Interviewer: Wouldn’t you be bored if, or if your teacher keeps drilling you with the same 
problem like that and you keep doing Approach 1? 
 
Student 8: Yeah, I mean after a while, maybe a good learning experience, drills are 
helpful even though it’s boring, I mean, I think math can be kind of boring sometimes. 
 
Interviewer: What about the aesthetic appreciation, what if you’re given the Approach 2 
first without Approach 1? 
 
Student 8: I still think that, wait, what, well, I think you need to see the ugly approach 
first before the beautiful approach, otherwise it wouldn’t be known that it’s a shortcut, I 
mean, yeah, like it’s actually shorter because the other one is longer, but if it’s shorter 
than the one after that, I think, it’s just like that, that one wouldn’t be looked as much 
anyway, so there’s no need to do too much comparison in that case. 
 
Interviewer: So boring is good? 
 
Student 8: Sometimes, but I kind of think, I would rather see the more beautiful one 
rather immediately, even though I might not realize there is the beauty in it rather than 
just see it the next one later, I would rather take the easy way out sort to speak. 
 
Interviewer: Okay, thank you.  
 
 
 
Interview with Student 9 
 
Interviewer: How do you feel about the test? 
 
Student 9: Ah, it’s kind of hard, it’s also like, it’s kind of hard to think of different ways 
and I couldn’t really think of many different ways. 
 
Interviewer: So was this the first time you’re taking test requiring you to solve in many 
different ways? 
 
Student 9: Well, I mean, most of the tests I take is just like get an answer. 
 
Interviewer: How did the instruction to solve in many different ways affect your overall 
performance? 
 
Student 9: I guess, maybe a bit negatively, but it was just like a different kind of 
questions, I guess. 
 
Interviewer: Different, so you haven’t seen any of these questions before? 
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Student 9: Well, well, these questions aren’t really like the things in my math test, they’re 
more like questions in AMC kind of thing. 
 
Interviewer: I see, let’s take a look at Problem 1, here you did Approach 4 first, and you 
got the answer right on, and the second one you tried but wasn’t successful, and then you 
had a third one that looks like the first one, here in the survey you said your favorite 
approach is Approach 1, so can tell me what were you thinking at that time? 
 
Student 9: So for Approach 4, when you gave me that problem, thing is, because 
especially it’s a square root, your first instinct is like, making them into integers, like 
squaring, but if you asked me to find the most efficient way to do it, then this Approach 1 
would be better, I think because you can clearly see that this is going to be 1 less, so this 
is obviously less than that. 
 
Interviewer: So your first attempt would be to get the answer as quickly as possible? 
 
Student 9: Yeah, like instinct tells you to do that right away just like that squaring thing. 
 
Interviewer: So if you think Approach 1 is more efficient, why not come up with the 
more efficient approach on your first attempt because you’ll spend less time on that, no? 
 
Student 9: Oh, no, I think, it will take more time to think about the more efficient way to 
do it, I think, whereas me facing the problem, you just start doing it, then you feel like 
actively working on it, so that’ll help you try to get the answer quicker, cause like when 
you’re like doing something, as opposed to like sit there and doing nothing. 
 
Interviewer: So Approach 1 takes longer time to think about the concepts, Approach 4 
takes longer time to do the calculations, so you’re compensating on the time to think 
more by doing the calculations, because time to do calculations is still less than time to 
think about the concepts? 
 
Student 9: Yeah, it makes sense, because you just want to get answer anyway, I guess, 
when you’re thinking to solve a problem, you don’t like consider many different ways, 
and think like, oh, this is the most efficient way, let me do it that way, you just think of a 
way to do it, and then you do it that way. 
 
Interviewer: I see, let’s talk about a situation where a teacher’s showing you 8 different 
approaches at the same time to solve one problem like the one here. 
 
Student 9: Well, I think, it’ll be a bit overwhelming, if he shows me three or four 
different ways to solve it, then that will be helpful because well you can pick which, 
which way to solve it, you think best for you to do it, and you just do it that way, I mean, 
it depends, like who it is, some people might find one way easier than another way, or 
like, if you, I mean some people are like good doing it one way, then it doesn’t matter 
like, then they will be more efficient and faster in doing it that way, than like forcing 
themselves to do it their way. 
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Interviewer: How about in terms of recalling the concepts? 
 
Student 9: I think the geometry will be easier to recall, because the Trigonometric 
identities are like, they’re very precise, like you have to know them, like very, you have 
to have those specific things memorized, whereas for the geometric one, it’s like 
graphical and you can see what you’re doing. 
 
Interviewer: Your favorite approach you said here is Approach 2 and it’s also your first 
attempt so to speak, can you tell me more about that? 
 
Student 9: Well, I just thought that’ll be the best way to do it and I like that way. 
 
Interviewer: What about Approach 4, I mean because you’re in calculus class, you put 
that only as your second attempt? 
 
Student 9: I guess I’m just more comfortable with geometry, especially because you have 
many experience with geometry, whereas calculus I’m just learning right now. 
 
Interviewer: Your favorite mathematics topic as you said in the first survey was algebra, 
actually, there’s an algebraic approach here, Approach 5 you put that as your third 
attempt, can you explain? 
 
Student 9: I don’t really think that way, I mean, I like algebra, but I don’t, I won’t do 
algebraic approach all the time for all kinds of problems, like this calculus problem, I 
think it’s more like, when you see a problem, you just try to solve it the way any kind of 
way that’s easiest or comes to you first, I think it depends a lot on a problem, because 
some problems you can solve in multiple ways, different ways to solve it, and then 
whereas some problems are strictly calculus, if they say specifically find the derivative of 
this, then you would think of calculus, you wouldn’t think of, like oh, I may solve this in 
algebraic way. 
 
Interviewer: So you think there’s a clue in the problems, what about Problem 2 here, do 
you see explicit clue that makes you think you need to solve it this way or that way? 
 
Student 9: Well, x^2+y^2=1 and my first thought it’s like a circle, so that what I thought, 
so I go with that. 
 
Interviewer: What about Problem 3, in test you only solved it one way, but it’s correct, 
Approach 1, you have here, also in your survey you said you like Approach 1, it’s your 
favorite, can you tell me more about it? 
 
Student 9: Yeah, cause it’s easier for me to understand, to follow, I was able to do it that 
way, faster, I think, to get the right answer. 
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Interviewer: I see, can we go back to Problem 1, can you tell me which one do you think 
is beautiful? 
 
Student 9: Well, I kind of think it’s this one, Approach 3, just cause it doesn’t have so 
many, like here Approach 2, it goes down, it has so many radicals, but, I can’t think of 
the right word, but this one is kind of like a sentence, it invokes, kind of neater approach, 
I think. 
 
Interviewer: So the one that’s aesthetically pleasing is the one that has fewer lines in it? 
 
Student 9: Oh, no, I don’t think so, I think it’s like, I like this one, Approach 3, because 
it’s kind of clear that, it’s done in a logical way, like people are able to follow along, and 
fairly straightforward, you can clearly tell that, oh because of this, this is less than that, 
and I don’t know, just more logical, but Approach 1 is easier to follow, I don’t know. 
 
Interviewer: That’s okay, some university professors said that Approach 3 was 
considered beautiful, can you comment on that? 
 
Student 9: Well, I guess, because it’s laid down in a very straightforward, a very matter 
of fact kind of way, and it’s like very short and simple. 
 
Interviewer: Short, does that have anything to do with the number of lines of arguments 
there? 
 
Student 9: Maybe, I guess. 
 
Interviewer: What about Problem 2? 
 
Student 9: Well, like I said, my first thought, it’s a circle, I like this one the best, it’s kind 
of aligned with my way of thinking, it’s just, it’s just, I think geometry lays out very 
graphically, so you can see like how it works, and then for this problem, you see the 
circle, you see the triangle and the congruency. 
 
Interviewer: Do you see anything beautiful in this approach? 
 
Student 9: I think just the fact that you can graph it and see what you’re doing physically, 
as opposed to like more theoretical proof. 
 
Interviewer: What if I didn’t give you this graph, I mean, what if I just gave you these 
lines, explanations without the picture here? 
 
Student 9: Well, if you don’t have the graph, then it would be more, it would be more 
kind of, more jumbled up, or more confusing because you’ll have a lot of text and you 
read through, and you won’t be able to have something to attach yourself to, like round 
yourself, like oh, angle ABO, you’re like, I don’t know what that is. 
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Interviewer: Approach 2 was considered beautiful by university professors, can you 
comment on that? 
 
Student 9: I guess in a way that the arguments follow each other, and how it’s proved, the 
maximum is proved in a very logical way, like because this is this, then it must follow, 
then I guess I can see what they mean, but I guess I consider this stuff to be different 
from what they think. 
 
Interviewer: That’s fine, what about Problem 3? 
 
Student 9: I like Approach 1 because you can see the triangle, with different parameters 
they give you, it’s just like logical kind of approach, it’s just because of this, because of 
this, it follows like this, I don’t know, it’s easier to understand. 
 
Interviewer: What about Approach 3, it’s also considered beautiful by university 
professors, can you comment on that? 
 
Student 9: I see what they’re doing, but I feel like constructing two parallel lines makes it 
more, just like more work that what it’s needed. 
 
Interviewer: So you don’t think that Approach 3 is efficient? 
 
Student 9: No, I don’t think it’s efficient, sorry. 
 
Interviewer: That’s okay, let’s talk about your classroom experience, have you had 
teachers showing you many different ways to solve a problem? 
 
Student 9: I have many teachers who mentioned alternate ways of solving things, I think, 
one or two may have accept alternate ways of solving it on the tests, but for the most part, 
when we’re going over one problem, I usually go for one way to do it. 
 
Interviewer: Say, have you had someone in your class showing teacher a different way of 
solving a problem than the one the teacher had, what was the teacher’s reaction? 
 
Student 9: Yeah, if it’s right, they’ll be okay with that, they kind of encourage us to think 
different ways, but on the test, they want it to be done a certain way on the test. 
 
Interviewer: Okay, now I want to ask whether you need to see uglier approach, brute 
force maybe, in order to appreciate beautiful approach, can you say anything about this? 
 
Student 9: I think when you have solution that goes like a brute force method, there’s a 
reason why it’s called brute force, it’s not like a pretty picture that paints in your head, 
but I don’t really think in terms of what’s beautiful, what’s ugly in this kind of situation, 
as more as like what’s efficient, or what’s not efficient. 
 
Interviewer: Okay, thank you, that’s good. 
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APPENDIX N 
 

Students’ Validation Survey 
 
Name:        Date:     
 
There is no right or wrong answer. Your responses will not influence your school grade 
in any way. Please be as honest as you can in filling out this survey. 
 
Reminder – Please avoid discussing questions involved in this survey with other students. 
Thank you. 
 
 
Part 1 
Please refer to the attachment. There are a total of 15 approaches for three problems: 4 
approaches for Problem 1; 8 for Problem 2; and 3 for Problem 3. 
 
Q1. In terms of your understanding of these approaches, please rate each approach 

according to the following rubric: 
2 – I understand all of the steps/reasoning behind this approach. 
1 – I understand some of the steps/reasoning behind this approach. 
0 – I do not understand any of the steps/reasoning behind this approach. 
 

Q2. In terms of your mathematics knowledge, please rate each approach according to the 
following rubric: 
2 – I have previously learned all of the necessary mathematics knowledge involved in 
this approach. 
1 – I have previously learned some of the necessary mathematics knowledge involved 
in this approach. 
0 – I have not previously learned any mathematical mathematics involved in this 
approach. 
 

Q3. What do you think is the necessary mathematics knowledge involved in this 
approach?  
 

Q4. If you had to do this problem (hypothetically speaking), what is the chance that you 
would attempt to solve the problem using this approach? 
2 – I would be very likely to solve this problem using this approach. 
1 – I might be able solve this problem using this approach. 
0 – I would not have thought of solving this problem using this approach. 
 

Q5. If you had to do this problem (hypothetically speaking), which approach would you 
choose in your 1st attempt to solve this problem? Why? What would be your 2nd, 3rd? 
(Choose only up to 3 approaches if more than 3 approaches are involved.) 
 

Q6. Among all approaches, please choose your most favorite approach and explain why.  



192 
 

 

Example of student’s response for Sample Problem 0: 
 

Problem Approach 

Q1. 
Understanding of 

Logical 
Reasoning 

(0/1/2) 

 
Q2. 

Necessary 
Mathematics 
Knowledge 

(0/1/2) 

Q3. 
Necessary Mathematics 

Knowledge 

Q4. 
Likelihood of 

Future 
Presentation 

(0/1/2) 

Q5. 
Hypothetical 
Sequence of 

Future 
Presentation 

e.g. 0 1 2 2 Basic multiplication and 
addition 2 1st 

e.g. 0 2 2 2 

Factorization and number sense 
that 21&79 make up 100 which 
is easier to multiply than 21 or 
79 alone 

1 2nd 

 
 
Q5. Explanations for hypothetical sequence of future presentation: I choose Approach 1  
 
as my 1st attempt because I am more confident with my ability in solving the problem  
 
using Approach 1 so as to obtain the correct answer but not so much using Approach 2,  
 
although Approach 2 is the one I prefer the most. If I had enough time taking the test, I  
 
would try to think of Approach 2 as my 2nd attempt.       
 
Q6. My most favorite approach is Approach 2 because I am too lazy to multiply 21 by 7  
 
and 79 by 7 and add them up together. I would rather multiply 100 by 7.    
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Student’s response for Problem 1: 

Problem Approach 

Q1. 
Understanding of 

Logical 
Reasoning 

(0/1/2) 

 
Q2. 

Necessary 
Mathematics 
Knowledge 

(0/1/2) 

Q3. 
Necessary Mathematics 

Knowledge 

Q4. 
Likelihood of 

Future 
Presentation 

(0/1/2) 

Q5. 
Hypothetical 
Sequence of 

Future 
Presentation 

1 1           

1 2           

1 3           

1 4           

 
Q5. Explanations for hypothetical sequence of future presentation:      
 
             
 
             
 
             
 
             
 
Q6. My most favorite approach is Approach    because      
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Student’s response for Problem 2: 

Problem Approach 

Q1. 
Understanding of 

Logical 
Reasoning 

(0/1/2) 

 
Q2. 

Necessary 
Mathematics 
Knowledge 

(0/1/2) 

Q3. 
Necessary Mathematics 

Knowledge 

Q4. 
Likelihood of 

Future 
Presentation 

(0/1/2) 

Q5. 
Hypothetical 
Sequence of 

Future 
Presentation 

2 1           

2 2           

2 3           

2 4           

2 5           

2 6           

2 7           

2 8           

 
Q5. Explanations for hypothetical sequence of future presentation:      
 
             
 
             
 
             
 
             
 
Q6. My most favorite approach is Approach    because      
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Student’s response for Problem 3: 

Problem Approach 

Q1. 
Understanding of 

Logical 
Reasoning 

(0/1/2) 

 
Q2. 

Necessary 
Mathematics 
Knowledge 

(0/1/2) 

Q3. 
Necessary Mathematics 

Knowledge 

Q4. 
Likelihood of 

Future 
Presentation 

(0/1/2) 

Q5. 
Hypothetical 
Sequence of 

Future 
Presentation 

3 1           

3 2           

3 3           

 
Q5. Explanations for hypothetical sequence of future presentation:      
 
             
 
             
 
             
 
             
 
Q6. My most favorite approach is Approach    because      
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Part 2 
Please rate each statement below according to the following rubric: 
5 – I strongly agree with this statement. 
4 – I agree with this statement. 
3 – I neither agree nor disagree with this statement. 
2 – I disagree with this statement. 
1 – I strongly disagree with this statement. 
 
 

S1 I learn more from solving one problem in many different ways than I can from 
solving many different problems, each in only one way. 

 

   
S2 Learning how to solve one problem in many different ways provides me with access 

to a range of representations and solution strategies in a particular instance that can 
be useful in future problem solving encounters. 

 

   
S3 Learning how to solve one problem in many different ways facilitates connection of 

a problem at hand to different elements of knowledge with which I may be familiar, 
thereby strengthening networks of related ideas. 

 

   
S4 Learning how to solve one problem in many different ways motivates me to be more 

creative in seeking the solution of the problem. 
 

   
S5 Learning how to solve one problem in many different ways improves my critical 

thinking skills by comparing and contrasting the many different ways.  
 

   
S6 Learning how to solve one problem in many different ways improves a deeper 

understanding of subject matters by looking at different perspectives. 
 

   
S7 Learning how to solve one problem in many different ways provides me with backup 

strategies when I could not recall a typical solution to the problem. 
 

   
S8 I need guidance from my mathematics teachers in order to learn how to solve one 

problem in many different ways. 
 

   
S9 In a classroom setting, I often have many ideas of solving one problem in many 

different ways. 
 

   
S10 In a classroom setting, my mathematics teachers often encourage students to solve 

one problem in many different ways. 
 

   
S11 In a classroom setting, my mathematics teachers often do not have time to facilitate 

students who initiate discussion of solving one problem in many different ways. 
 

   
S12 In a classroom setting, I often feel hesitant to share my ways of solving a problem 

that are different from the ones my mathematics teachers demonstrate on the board. 
 

   
S13 If my mathematics teachers demonstrate incorrect approaches to a problem, I will 

learn to avoid such mistakes in my future problem solving encounters. 
 

   
S14 If my mathematics teachers demonstrate many different approaches to solve one 

problem, I will often become distracted with those many different approaches. 
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S15 If my mathematics teachers demonstrate many different approaches to solve one 
problem, I will often become confused whether the goal of the lesson is to solve the 
problem or to learn those many different approaches. 

 

   
S16 If my mathematics teachers demonstrate many different approaches to solve one 

problem, I will often become indifferent since there has not been a standardized test 
(in school, state, or national context) that involves a particular testing instruction to 
solve in many different approaches. 

 

   
S17 If my mathematics teachers demonstrate many different approaches to solve one 

problem, I will often become bored by those many different approaches. 
 

   
S18 If my mathematics teachers demonstrate many different approaches to solve one 

problem, I will often become worried that I will have to struggle to understand barely 
one approach, especially when seeing a new problem for the first time. 

 

   
S19 If my mathematics teachers demonstrate many different approaches to solve one 

problem, I will often care for only one approach so long as I can solve the problem. 
 

   
S20 If my mathematics teachers demonstrate many different approaches to solve one 

problem, I will often care for only approaches that are easiest for me to understand. 
 

   
S21 If my mathematics teachers demonstrate many different approaches to solve one 

problem, I will often compare and contrast some of the advantages and disadvantages 
of these approaches. 

 

   
S22 If my mathematics teachers demonstrate many different approaches to solve one 

problem, I will be able to choose one or some approaches (among those many 
different approaches) that will help me understand better the context of the problem. 

 

   
S23 If my mathematics teachers ask me to solve one problem in many different 

approaches in a classroom setting, I will come up with at most one approach or will 
be most likely to sit and wait until all approaches are presented on the board. 

 

   
S24 I really wish that there could be more occasions where my mathematics teachers 

demonstrate many different approaches to solve one problem. 
 

   
S25 I really wish that there could be more opportunities for me to solve one problem in 

many different approaches in a classroom setting. 
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