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ABSTRACT

Differences between species have been suggested
to largely reside in the network of connections
among the genes. Nevertheless, the rate at which
these connections evolve has not been properly
quantified. Here, we measure the extent to which
co-regulation between pairs of genes is conserved
over large phylogenetic distances; between two euk-
aryotes Caenorhabditis elegans and Saccharomyces
cerevisiae, and between two prokaryotes Escherichia
coli and Bacillus subtilis. We first construct a reliable
set of co-regulated genes by combining various
functional genomics data from yeast, and subse-
quently determine conservation of co-regulation in
worm from the distribution of co-expression values.
For B.subtilis and E.coli, we use known operons and
regulons. We find that between 76 and 80% of the
co-regulatory connections are conserved between
orthologous pairs of genes, which is very high
compared with previous estimates and expectations
regarding network evolution. We show that in the
case of gene duplication after speciation, one of
the two inparalogous genes tends to retain its
original co-regulatory relationship, while the other
loses this link and is presumably free for differentia-
tion or sub-functionalization. The high level of
co-regulation conservation implies that reliably
predicted functional relationships from functional
genomics data in one species can be transferred
with high accuracy to another species when that
species also harbours the associated genes.

INTRODUCTION

With the availability of complete genome sequences, it has
become clear that the perceived large differences in the pheno-
type of organisms do not correspond to equally large differ-
ences in their gene repertoire (1–3). Instead, it has been
proposed that these differences largely reside in the network
of connections among genes (2–7). This implies that the wir-
ing must evolve fast: e.g. transcription regulation is supposed

to evolve relatively fast (3,6,8,9) and the gene regulatory
network across organisms reveals extensive variations (4).

We are flooded with high-throughput experiments to deter-
mine the functional links between genes and proteins: func-
tional genomics data such as those derived from proteomics or
transcriptomics (10–12). As these data come from multiple
species, they open the possibility of studying the evolution of
functional links. At the same time, these data raise the question
as to what extent findings from functional genomics experi-
ments are transferable from, e.g. yeast, where most of these
techniques are piloted, to other organisms such as human.
Co-regulation is one such type of connection and it is an
important facet of the cellular network for which abundant
data is available (10,11). Here, we study the evolution of co-
regulation, with the aim of determining the degree of conserva-
tion of the co-regulatory link between two genes across species.

Previous studies that compared the co-regulation between
species did not focus on the degree of conservation of
co-regulatory links, but rather on the large-scale properties
of the regulatory network or on gene function prediction.
The studies that focussed on the network did not address
the level of conservation of co-regulation between genes,
but did report similarities in terms of global network features
(5,13–15). The function-prediction studies have shown that the
conservation of co-expression, or arguably an approximation
of that, drastically increase the accuracy of microarray data for
gene function prediction (4,5,16,17). To the extent that these
function-prediction studies did address conservation, they
implied that co-regulation is poorly conserved except for
functionally tightly associated genes, e.g. genes that code
for physically interacting proteins.

At any rate, it is not trivial to measure the degree of
co-regulation conservation from functional genomics data
or genome sequence data. There are two important issues
when measuring the degree of evolutionary conservation of
co-regulation between two species A and B. First, the set of
genes that are selected as co-regulated in species A might
actually contain too many genes that are not co-regulated
(false positives). For example, even when using a high thresh-
old of correlation in co-expression (r), genes could still be
spuriously expressed as suggested by the poor performance of
using co-expression alone for the prediction of functional
interaction (12,16), and by its limited correlation with shared
transcription factor binding sites (TFBSs) (18). Second, asses-
sing the absence of co-regulation in species B is not trivial.
When, e.g. the same strict co-expression threshold to find
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co-regulated genes in species A is subsequently used to define
the absence in species B, many truly co-regulated pairs below
this threshold are missed (i.e. many false negatives). A similar
example is to equate the lack of gene order conservation in
prokaryotes to the lack of co-regulation conservation because
this indicates operon disruption. Yet, this also can lead to
many false negatives because genes that are not in the
same operon can still belong to the same regulon and
thus can still be co-regulated (Figure 1). The low level of
co-regulation conservation that has been previously hinted
at might thus very well be the result of methodological pitfalls.

Here, we directly measure the extent to which co-regulation
is conserved between two eukaryotes, the nematode
Caenorhabditis elegans and the budding yeast Saccharomyces
cerevisiae, and between two well-studied prokaryotes, the
proverbial workhorse of bacterial molecular genetics,
Escherichia coli, and its Gram-positive counterpart Bacillus
subtilis. We seek to answer a simple question: if two genes are
co-regulated in one species, how often are they also co-
regulated in the other, distantly related species? To overcome
the potential pitfalls for defining co-regulation mentioned
above, we obtain a reliable set of co-regulated genes for the
eukaryotes by comparison of two functional genomics data sets,
namely the TFBSs as determined by chromatin immuno-
precipitation (ChIP-on-chip) (10) and co-expression from
microarray experiments (11). To prevent spurious detection
of the absence of co-regulation, we analyse regulons rather
than only operons when comparing the two prokaryotes, and
in the comparison of the two eukaryotes, we analyse the dis-
tribution of co-expression values rather than take an a priori
threshold of co-expression. In order to choose a criterion of
what conservation entails in the case of inparalogs (19), we test
for the preferential retention of a co-regulation link by one of
the inparalogs.

METHODS

Genomes, KEGG and orthology: eukaryotes

The S.cerevisiae genome was obtained from the EMBL data-
base (20). The C.elegans genome was obtained from worm-
base (21). Genes from these genomes are linked to KEGG (22)
via the kegg gene name files. Orthologies between C.elegans
and S.cerevisiae were assigned through the construction of
gene trees of homologues across multiple eukaryotic genomes
and subsequent analysis of each tree for orthology between our
two species based on the phylogenetic tree [see (16,23) for a

detailed description]. Note that this procedure can result in
multi-to-one and multi-to-multi co-orthologous relationships.

Expression data, TFBS data and correlations

For the co-expression in S.cerevisiae, we use the microarray
expression data from Hughes et al. (11). For the co-expression
in C.elegans, we use the Kim et al. (24) data set. Correlation
coefficients between genes are computed using uncentred cor-
relation (25). The TFBS data for S.cerevisiae were obtained
from Lee et al. (10) on ChIP using a cut-off of P < 0.001,
which the authors propose as a reliable indicator that the
transcription factor binds that upstream region.

Genomes, operons and regulons in E.coli and B.subtilis

For operons in B.subtilis, we use the data set created by Itoh
et al. (26). For regulons and operons in E.coli, we use the data
set of known regulons from RegulonDB (27). Genes from
these files were linked to orthologous groups as defined by
the latest release of the COG database (28) through gene
names therein, and through the SwissProt proteome files (29).

Testing for differentiation of inparalogs

We test for the preferential retention of co-regulation of one of
the paralogs by analysing the 130 yeast gene pairs that have
exactly two ortholgous gene pairs in C.elegans. We then intro-
duce a threshold of r (0.45) such that half of the 260 ortholgous
pairs in C.elegans fall below and the other half above this
threshold. This allows us to count the occurrences of the scen-
arios depicted in Figure 3 (complete conservation, partial
conservation, complete loss). These counts allow us to test
whether the losses tend to be independent by observing the
deviation from the expected number of occurrences. Given
that half of the gene pairs is conserved (i.e. in this case,
their r is >0.45) the expected number of occurrences is as
follows: 32.5 (0.25 · 130) for complete conservation,
65 (0.5 · 130) for partial conservation, and 32.5 (0.25 · 130)
for complete loss. The deviations are summed according to the
c2 formula and tested for significance.

RESULTS

Determining co-regulation in eukaryotes

Co-regulation between genes has successfully been defined
as a threshold in the correlation coefficient, r, between
microarray-based expression profiles in a single species for
the purpose of function prediction (11,25). This definition has
also been used for detecting conservation of co-regulation
between different species of eukaryotes to improve function
prediction (4,16,17). However, here we argue that such a defi-
nition of co-regulation is not well suited for measuring the
amount of co-regulation conservation, because even above a
high correlation of co-expression threshold (such as 0.6 or
0.7), there still might be genes that are not truly co-regulated
but only spuriously co-expressed.

There are two empirical lines of evidence that suggest that
gene pairs whose co-expression is above 0.6 are not necessar-
ily co-regulated, despite statistical considerations to the
opposite (25). First, the recent advance of the large-scale
elucidation of TFBSs by ChIP-on-chip experiments (10)

Figure 1. Measuring conservation of co-regulation between E.coli and
B.subtilis. This figure illustrates the various contexts in E.coli that the genes
from an operon in B.subtilis can occur in. The various possibilities should be
taken into account when measuring conservation of co-regulation between the
two species: genes can be absent from E.coli (the blue gene), genes can still be
together in an operon (the red and green gene); genes can be in different operons
but still share the same transcription factor (the red/green genes versus the
yellow gene) or a gene can be in another operon and be regulated by a different
transcription factor (the purple gene versus the others).
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reveal very limited correlation between the co-expression and
the number of shared TFBS (18). Here, we find a correlation
coefficient of only 0.034 between the degree of co-expression
of pairs of yeast genes versus the similarity in the transcription
factor binding profile (Figure 2). The second reason why a set
of gene pairs whose co-expression is above 0.6 are not neces-
sarily co-regulated comes from the poor performance of co-
expression by itself as a predictor of functional relationships
and functional co-regulation between genes. The probability
that two highly co-expressed genes have a functional relation-
ship is only �50% when defined according to a database of
known cellular processes, such as KEGG and when compared
to a database of genes sharing functional transcription factor
binding such as SCPD (16,22,30) (Table 1). This leaves the
question why the other 50% has a high co-expression, unless
one assumes that either our ‘database’ knowledge of processes

does not agree with the cellular point of view or that some of
these seemingly highly co-expressed genes are in fact not
co-regulated. We observe the same poor correlation between
functional relations and sharing of one more TFBS in the
ChIP-on-chip-based functional genomics data set of Lee
et al. (10) (Table 1), leading to the same question. In contrast,
>90% of the genes that have a high co-expression and share a
TFBS, function in the same cellular pathway, while 80% are
regulated by the same transcription factor (Table 1). This
suggests that the more pedestrian explanation, i.e. that there
is plenty of noise (false positives) both in the TFBS data and in
the highly co-expressed genes, plays a much larger role in exp-
laining the relatively poor performance of co-expression for
the prediction of functional relations, than the explanation that
the human point of view of what constitutes a functional
relation, as e.g. implemented in KEGG, differs widely from
the cellular point of view.

The increased likelihood of genes to be involved in the same
cellular pathway when they are co-expressed and share
upstream transcription factors according to high-throughput
experiments (Table 1), in addition, suggests that this definition
of co-regulation is a promising method for function prediction.
Its accuracy is higher than that of the composing data sets
(Table 1) while still predicting a substantial number of links. In
fact, when we lower the co-expression correlation threshold to
0.3, there are over 19 000 links that still have a probability of
85% to be involved in the same cellular pathway (Table 1).
Combining the co-expression data with the TFBS data thus
promises to be a very successful venue for vertical data inte-
gration of functional genomics data for function prediction.

Possible outcomes of evolution of co-regulation in
the case of gene duplication

To accurately measure the conservation of co-regulation, we
need to take into account recent gene duplications, i.e. inpar-
alogs (19) that result in multi-to-multi and one-to-multi co-
orthology relations (Figure 3). For example, when do we
define a co-regulatory link to be conserved in the case that
a co-regulated pair of genes from S.cerevisae has multiple,
equivalent ‘orthologous pairs’ in C.elegans (because of inpar-
alogs)? Do we consider the link conserved when all pairs in
C.elegans are still co-regulated, or do we consider it conserved
when at least one of the pairs is still co-regulated? In line with
the current work on function and gene duplication (31), here,
we use the latter: if one of the multiple orthologous pairs still
displays co-regulation, then the co-regulation is conserved.
The underlying model for this statement is that in the case
of gene duplication, one gene would maintain the relations
of the ancestral gene, while the other gene would be ‘free’ of
selection constraints and could differentiate and/or undergo
sub-functionalization.

We can validate this proposition by testing for the independ-
ence of the loss of co-expression of inparalogous gene pairs
(Figure 3). Assuming that the loss of co-expression of inpar-
alogous gene pairs is independent, we can compute the
expected number of occurrences of all possible scenarios:
complete conservation, partial conservation and complete
loss of co-regulation (Figure 3). Subsequently, we compare
the observed number of each scenario against this expected
value (see Methods). We find that the observed number of

Table 1. Correlation of various measures of co-regulation with functional

relations

Data set of gene pairs Fraction of
gene pairs
on the same
KEGG mapa

Fraction of
gene pairs
sharing a
TF according
to SCPDa

Number of
gene pairs
in this set

r > 0.5 0.43 0.35 169 768
r > 0.6 0.52 0.49 65 430
r > 0.7 0.51 0.53 22 459
Sharing > 1 TFBS 0.50 0.45 356 947
Sharing > 2 TFBS 0.77 0.59 39 818
Sharing > 1 TFBS and r > 0.3 0.86 0.57 19 386
Sharing > 1 TFBS and r > 0.4 0.88 0.64 11 434
Sharing > 1 TFBS and r > 0.5 0.90 0.71 6 687
Sharing > 1 TFBS and r > 0.6 0.90 0.80 3 382
Sharing > 1 TFBS and r > 0.7 0.86 0.87 1 156

aThe fraction is computed by taking only those pairs where both genes are
present in the database they are compared to.

Figure 2. A scatter plot of co-expression correlations from microarray
experiments and correlation in transcription factor binding profiles from
ChIP experiments. Correlations between expression profiles are computed
in the normal fashion (see Methods). Correlations between the ChIP binding
profiles are used here to allow a quantitative evaluation of the relation between
both data sets, which would be conceptually complicated if the ChIP-on-chip
data were treated by the presence/absence of transcription factor binding.
The correlation coefficient is 0.034. This is a very weak correlation, but
it nevertheless is very significant with P < 10�16 when tested against the
normal distribution.
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cases in which one of the inparalogs retained co-regulation is
significantly higher than expected (P < 0.005; c2 test). Thus,
the loss of co-expression of paralogs is not independent: selec-
tion tends to prefer that one of the paralogs loses a connection,
while the other retains its connection. This retention of one
of the connections while losing the other probably reflects
differentiation. When measuring the conservation of co-
regulation (see below), we will thus consider this differentia-
tion scenario to still indicate conservation of the ancestral
co-regulatory link.

High level of conservation of co-regulation between
two prokaryotes

We study the co-regulation evolution in prokaryotes by taking
an operon map from one species and comparing it to the
regulon map in the other species. We do not use conservation
of gene order for the study of co-regulation evolution as has
been performed before, because genes that are neighbours on
the genome are not always co-regulated as they are not neces-
sarily part of the same operon, and, more importantly even
when an operon from one species is disrupted in another spe-
cies, the genes from that operon can still both belong to the
same regulon in that species (32). Previous studies that did not
take this approach possibly interpreted the repeatedly noted
rapid pace of gene order shuffling (33–36) in prokaryotes as
the lack of co-regulation conservation (4).

Here, we compare, B.subtilis and E.coli, two bacteria in
which at least a reasonable operon map is available for one
(36) and a decent regulon map is available for the other (27).
We would, of course, prefer to use regulon data from both
species, but unfortunately such a database exists only for

E.coli. Of the 1023 gene pairs in operons in the B.subtilis
data set, 755 are amenable for analysis because they both
have orthologs in E.coli. The regulation of 276 of those
755 E.coli gene pairs has been elucidated and has been docu-
mented in regulonDB (27). We can thus assess the conserva-
tion of the co-regulation link for 276 gene pairs, assuming that
this is an unbiased sample for the entire pool of 755 gene pairs.
Analysis of these 276 gene pairs in the regulon data set reveals
that 222 of them are in the same regulon in E.coli. Thus, �80%
of the gene pairs that are in an operon in B.subtilis are also
co-regulated in E.coli, and the conservation of co-regulation
between these two species is 80%. When we perform the same
analysis using only gene order information and not regulon
information, only 139 gene pairs of the 276 gene pairs can be
linked in so-called runs (37,38), which would have entailed
an estimate of 50% conservation. Taking regulon data into
account, thus, leads to a �2-fold increase in conservation
and it yields a level of conservation that is substantially higher
than previous estimates based on gene-order conservation (4).

High level of conservation of co-regulation between
two eukaryotes

To measure the extent of conservation of co-regulation
between two eukaryotes, we analyse a set of yeast gene
pairs that can be reliably said to be co-regulated. We obtain
such a set by taking only those gene pairs that have both a
co-expression r > 0.6 and share the upstream binding of at least
one transcription factor. These criteria result in 3382 gene
pairs in S.cerevisiae. Not all of the 3382 yeast gene pairs
that have a reliable co-regulation link can be analysed in
C.elegans: for 618 gene pairs, neither of the genes has an
ortholog in C.elegans; for 703 gene pairs, only one of the
genes has an ortholog; for 2061 gene pairs, both have an
ortholog in C.elegans. Of these 2061 gene pairs, 1267 gene
pairs are suitable for analysis in C.elegans. Among the rest,
either the C.elegans orthologs are not in the microarray data or
the S.cerevisae gene pairs are inparalogous and thus share the
same orthologous C.elegans gene pair. The 1267 gene pairs
still contain inparalogous worm pairs. To decide for each yeast
pair, the worm pair that should count for the determination of
conservation, we select the pair with the highest correlation.
The choice of the highest correlation is based on the rationale
outlined above that one inparalogous gene typically has
a higher level of co-regulation than the others. We plot
the frequency distribution of correlation coefficients of the
remaining 975 C.elegans gene pairs (Figure 4). This reveals
an asymmetric distribution with a median r of 0.65.

Rather than defining an a priori threshold for what con-
stitutes a not co-regulated gene pair in C.elegans, we compare
the distribution of co-expression values of the 975 gene pairs
to the distribution between all C.elegans gene pairs (i.e.
the total genome), which represent the expected distribution
for any random set of C.elegans gene pairs. This comparison
provides a natural definition of conserved co-regulation: the
fraction of the distribution of the 975 gene pairs that is above
this expected distribution, i.e. the part of the distribution that
does not intersect with the distribution of the total genome. We
thereby find that 76% of the S.cerevisiae gene pairs retain
co-regulation when both genes are also present in C.elegans.
In order to investigate whether our choice of the inparalogous

Figure 3. Possible outcomes of co-regulation evolution after gene duplication.
This figure illustrates the dilemma with respect to inparalogs, which occurs
when studying co-regulation. We delineate three different situations: complete
conservation, partial conservation and complete loss. We argue (see text) that
gene co-regulation is conserved, not only in the case of complete conservation
but also in the case of partial conservation. Ce denotes C.elegans and Sc denotes
S.cerevisiae.
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pair with the highest correlation unduly biases this estimate,
we repeated the above procedure for gene pairs where both
genes have a one-to-one orthology. As there are only 79 such
pairs, the distribution is rugged (Supplementary Material
Figure 1), and the resulting estimate might be unreliable
because it is based on too few cases. Nevertheless, we obtain
a similar value (70%) for the degree of co-regulation conser-
vation. We, thus, reliably find a high level of conservation
relative to previous estimates (4,16) and to existing expecta-
tions regarding the regulatory network.

DISCUSSION

Co-regulation evolves quite slowly

Here, we study the evolution of co-regulation between genes,
to reveal more about the rate of evolution of connections
between genes. Although these links are thought to evolve
relatively fast (3,6), we find that co-regulation is relatively
well conserved among eukaryotes and prokaryotes. Between
S.cerevisiae and C.elegans, which have been estimated to have
diverged 1.5 billion years ago (39), 76% of the gene pairs that
can be reliably said to be co-regulated in S.cerevisiae and that
are present in C.elegans are co-regulated in C.elegans.
Similarly, between B.subitlis and E.coli, 80% of the gene
pairs that are co-regulated in an operon in B.subtilis and are
also present in E.coli are co-regulated in E.coli. Note that both
estimates of the level of conservation are very similar, despite
the fact that they were obtained using radically different data
sets: regulons and operons for the prokaryotes versus micro-
array co-expression and ChIP-on-chip data for eukaryotes.
This independence solidifies the reliability of our estimates.
We, thus, find a much higher level of co-regulation conserva-
tion than previous estimates, because co-regulation evolution
apparently was not properly measured and the resulting esti-
mates fitted the existing expectations regarding regulatory
network evolution.

Our estimate of the level of conservation is uncertain with
respect to gene pairs, where one or both of the genes are not
present in the other species. We did not include these pairs

when estimating the level of conservation, because we can
only analyse the co-regulation of gene pairs that are present
as pairs in two species. On the one hand, it can be argued that
such pairs constitute cases of disruption of co-regulation. We,
on the other hand, argue that the fate of a co-regulatory link is
unknown for gene pairs when one or both of the genes have
been deleted. The co-regulation link could have existed right
up until the deletion, or the loss of the link could predate,
or even have caused, the subsequent deletion of one or both
genes. The main justification for our approach, however, is
that connections, in general, are evolutionary observables that
are secondary to the evolutionary observable of nodes (i.e.
gene presence and absence), hence our approach to measuring
conservation relative to gene content.

Implications for co-expression correlations extracted
from microarray data

We confirm here that there is only a small correlation between
co-expression and sharing more than one TFBS as already
noted (18). This could indicate either a fundamental intrinsic
non-linearity in transcription regulation (e.g. a transcription
factor binds upstream of a gene but this does not always result
in upregulation of that gene) or simply a substantial level of
noise in both data sets. Here, we observe that for both data sets,
individually, only 50% of the gene pairs is involved in the
same cellular pathway, while this fraction is 90% for the
combined data set. This observation suggests that it is largely
the latter, more pedestrian, explanation: the poor correlation
between the two data sets is largely the result of noise in both
data sets.

Interestingly, the combined data set performs so well in
predicting whether two genes are involved in the same cellular
pathway that this integrated definition of co-regulation is a
very promising method for function prediction with a high
coverage and a high reliability.

The poor correlation between the TFBS data and the
co-expression data, as well as the performance for function
prediction of the overlap versus the individual data sets
on KEGG maps, also helps to explain why the use of con-
servation of co-expression for function prediction is so
successful: it suggests that the co-expression data from multi-
ple species filters out (experimental) noise. This explanation
thereby complements the analysis of Stuart et al. (17), who
found that conservation of co-expression works not only
because it uses more data, but also because it uses data
from different species.

Implications of a high level of conservation of
co-regulation

The high level of conservation of co-regulation at first glance
seems to leave little room for evolutionary flexibility. It, more-
over, seems to contradict our finding that functional modules
display a lot of plasticity in their evolution (40) and the finding
of Wagner (9) that the expression of genes after duplica-
tion diverges rapidly. The former apparent contradiction is
explained by the fact that the plasticity of functional modules
was measured by the presence of their components, and, in
fact, the observed high level of co-regulation conservation
solidifies our hypothesis that when two genes are conserved,
their functional association is also conserved. The latter

Figure 4. Distribution of rs of C.elegans orthologous pairs. We plot the r of the
C.elegans orthologous pairs of reliably co-regulated yeast pairs to measure
the degree of conservation. The distribution shows a very clear tendency to
high co-expression correlation coefficients. The amount of conservation can be
measured by comparing this distribution to the distribution of rs among all
C.elegans genes.
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contradiction can be explained by the fact that we measure the
conservation of co-regulation after speciation (i.e. between
orthologs), while Wagner (9) measured co-expression after
gene duplication (between paralogs). This explanation is for-
tified by the tendency of recent gene duplicates to have one
inparalog retain the original co-regulatory connection, while
the other differentiates, as we observe here. One potentially
more important implication of this tendency is that it suggests
that we can use functional genomics data to pinpoint the
ortholog that retained the ancestral function in the case of
multiple inparalogs.

Analogous to the transfer of protein structures and mole-
cular function between homologous proteins, the high level of
conservation of co-regulation suggests that we can transfer
knowledge on co-regulation in one species to another species:
if we have determined that two genes in yeast are co-regulated,
and they are also present in worm, then they are also likely to
be co-regulated in worm. Here, we describe this conservation
for co-regulation relationships, but expect it to hold for
protein–protein interactions and other functional interactions.
As worms and humans are evolutionarily equidistant to yeast,
we have now provided a basis to reliably transfer findings on
functional genomics from yeast to humans.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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