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ABSTRACT

Fabrication, Characterization and Modeling of Functionally Graded Materials

Po-Hua Lee

In the past few decades, a number of theoretical and experimental studies for design,

fabrication and performance analysis of solar panel systems (photovoltaic/thermal systems)

have been documented. The existing literature shows that the use of solar energy provides

a promising solution to alleviate the shortage of natural resources and the environmental

pollution associated with electricity generation. A hybrid solar panel has been invented to

integrate photovoltaic (PV) cells onto a substrate through a functionally graded material

(FGM) with water tubes cast inside, through which water �ow serves as both a heat sink

and a solar heat collector. Due to the unique and graded material properties of FGMs, this

novel design not only supplies e�cient thermal harvest and electrical production, but also

provides bene�ts such as structural integrity and material e�ciency.

In this work, a sedimentation method has been used to fabricate aluminum (Al) and

high-density polyethylene (HDPE) FGMs. The size e�ect of aluminum powder on the ma-

terial gradation along the depth direction is investigated. Aluminum powder or the mixture

of Al and HDPE powder is thoroughly mixed and uniformly dispersed in ethanol and then

subjected to sedimentation. During the sedimentation process, the concentration of Al and

HDPE particles temporally and spatially changes in the depth direction due to the non-

uniform motion of particles; this change further a�ects the e�ective viscosity of the suspen-

sion and thus changes the drag force of particles. A Stokes' law based model is developed to

simulate the sedimentation process, demonstrate the e�ect of manufacturing parameters on

sedimentation, and predict the graded microstructure of deposition in the depth direction.

In order to improve the modeling for sedimentation behavior of particles, the Eshelby's

equivalent inclusion method (EIM) is presented to determine the interaction between parti-

cles, which is not considered in a Stokes' law based model. This method is initially applied

to study the case of one drop moving in a viscous �uid; the solution recovers the closed



form classic solution when the drop is spherical. Moreover, this method is general and can

be applied to the cases of di�erent drop shapes and the interaction between multiple drops.

The translation velocities of the drops depend on the relative position, the center-to-center

distance of drops, the viscosity and size of drops. For the case of a pair of identical spherical

drops, the present method using a linear approximation of the eigenstrain rate has provided

a very close solution to the classic explicit solution. If a higher order of the polynomial form

of the eigenstrain rate is used, one can expect a more accurate result.

To meet the �nal goal of mass production of the aforementioned Al-HDPE FGM, a

faster and more economical material manufacturing method is proposed through a vibration

method. The particle segregation of larger aluminum particles embedded in the concentrated

suspension of smaller high-density polyethylene is investigated under vibration with di�erent

frequencies and magnitudes. Altering experimental parameters including time and amplitude

of vibration, the suspension exhibits di�erent particle segregation patterns: uniform-like,

graded and bi-layered. For material characterization, small cylinder �lms of Al-HDPE system

FGM are obtained after the stages of dry, melt and solidi�cation.

Solar panel prototypes are fabricated and tested at di�erent water �ow rates and solar

irradiation intensities. The temperature distribution in the solar panel is measured and

simulated to evaluate the performance of the solar panel. Finite element simulation results

are very consistent with the experimental data. The understanding of heat transfer in the

hybrid solar panel prototypes gained through this study will provide a foundation for future

solar panel design and optimization.
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1

Chapter 1

Introduction

Functionally graded materials (FGMs) exhibit a continuous variation of material proper-

ties which result from the non-homogenous microstructure (Miyamoto et al., 1999; Neubrand,

2001). Due to the unique graded material properties, FGMs have attracted a great amount

of attention from researchers in many �elds, including aerospace, biomaterials and engineer-

ing, among others, in the past few decades. In the novel design of a hybrid solar roo�ng

panel system discussed in this thesis (Yin et al., 2009; Yin, 2009; Yin et al., 2012, 2013),

an aluminum and high-density polyethylene (Al-HDPE) FGM is integrated to provide the

combined bene�ts of heat harvesting e�ciency, material e�ciency and structural integrity.

This dissertation primarily investigates the fabrication and characterization of this Al-HDPE

FGM, as well as the corresponding modeling and simulations. In what follows, the funda-

mentals, background, motivation and scope of this work are introduced.

1.1 Functionally Graded Materials

1.1.1 Properties of Functionally Graded Materials

Functionally graded materials (FGMs) possess a position-dependent microstructure, chem-

ical composition or atomic order, which may result in the continuous variation of material

properties with position (Neubrand, 2001), such as mechanical, electrical and thermal prop-
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erties. The two basic structures of gradation are illustrated in Figure 1.1.1. For the con-

tinuously graded structure, two di�erent material phases gradually change from one side to

another, as shown in Figure 1.1.1(a); whereas in Figure 1.1.1(b), material phases change in

a discontinuous manner, such as a stepwise gradation which is also called segmented FGMs.

The spatial gradation may exhibit at a global or local level. In a global gradation (Figure

1.1.1), the variation of properties extends over the bulk of the material. On the contrary,

local gradation is restricted to a speci�c location in the material, such as coating on the

surface or joint in the interfacial region as shown in Figure 1.1.2 (Miyamoto et al., 1999).

Figure 1.1.1: (a) Continuous and (b) stepwise graded structures

Figure 1.1.2: Local gradient at the (a) surface and (b) joint

In terms of microstructures, there are four general types of gradation: volume fraction,

shape, orientation and size of material, as illustrated in Figure 1.1.3. The gradation of

material could be described as a transition function, which is the relation between spatial

position and gradient status. FGMs can be either arti�cial or natural. Animal bones and
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bamboo are excellent examples of natural FGMs. For these two cases, combination of more

than one type of gradation may occur. In the cross section of a typical animal bone, the

reduction of both volume fraction and size of porosity from the inner to the outer surface are

observed in Figure 1.1.4(a) (Wang et al., 2012). As for vascular bundles in bamboo, shown

in Figure 1.1.4(b), the volume fraction increases and size decreases from the inner to the

outer surface, respectively. Due to the graded distribution of vascular bundles, the e�ective

elastic modulus of bamboo varies continuously in the radial direction. The radial elastic

moduli and ultimate strength of bamboo are measured and analyzed by the hollow cylinder

test, details of which are described in Appendix A. The gradation in both bone and bamboo

provide the function of accommodating or sustaining external force in a similar way.

Figure 1.1.3: Di�erent types of FEM. Gradation of (a) volume fraction, (b) shape, (c)
orientation and (d) size (Neubrand, 2001)

In this work, Al-HDPE FGMs have been successfully fabricated by the sedimentation

and vibration methods. To be an e�cient heat collector, the aluminum-rich side is attached

to a photovoltaic (PV) cell to absorb the heat collected from solar irradiation. On the other

hand, the HDPE-rich side prevents heat leakage so that the thermal energy remains inside

the FGM, to be taken by the water �ow. As shown in Figure 1.1.4(c), the volume fraction

of aluminum is about 50% at the bottom, and gradually reduces to 0% along thickness
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(a) (b) (c)

Figure 1.1.4: Combination of more than one type of gradation in cross section of: (a) animal
bone, (b) bamboo, (c) Al-HDPE FGM

direction; additionally, the size of aluminum particles decreases from bottom to top. The

processes of both experimental and theoretical study will be described in Chapters 2 - 5.

1.1.2 History of Functionally Graded Materials

The original idea of compositional and structural gradient in material microstructure was

�rst proposed for composites and polymeric materials in 1972. Bever (1972) studied vari-

ous gradient composites, investigated the global material properties and reviewed potential

applications of graded composites. Shen (1972) reported that the gradation of polymeric

material might be induced by the variation of the chemical nature of the monomers, the

molecular constitution of the polymers and the supramolecular structure or morphology of

the polymers. The e�ective properties, such as chemical, mechanical, biomedical and trans-

port properties, and possible applications, including gasoline tank and damping materials,

were considered. However, the design, fabrication and evaluation of this gradient structure

was not studied.

Until 1985, the use of continuous texture control was presented to improve the adhesion

strength and minimize the thermal stress in the ceramic coatings and joints being developed

for a reusable rocket engine (Niino et al., 1986). More general concepts applied to impart new
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properties and functions of materials were proposed by continuous control of the microstruc-

ture; also the design of such materials was initially introduced. The term of �functionally

graded materials (FGMs)� was coined for these gradient composites and materials for more

accurate description and grammar in 1986. In 1987, the famous research plan of FGMs,

�Fundamental Studies on the Relaxation of Thermal Stress by Tailoring Graded Structures�,

was pioneered in the thermal barrier for a space plane in Japan (Koizumi and Niino, 1995).

The capabilities of withstanding a surface temperature of 1700 °C and a temperature gradi-

ent of 1000 °C across only a 10 mm section were achieved by FGMs as a thermal barrier. The

results and development of this research project were spread worldwide via papers, media

and international conferences.

Figure 1.1.5: Potentially applicable �elds for FGMs (Miyamoto et al., 1999)

Due to their unique graded material properties, FGMs attracted great amounts of re-

searcher interest; FGMs are potentially widely applicable in numerous �elds, as shown in

Figure 1.1.5. In addition to the aforementioned thermal barriers, coatings and joints in

aerospace, FGMs have also been developed for other novel applications.

In the �eld of biomaterials, biomedical implants, such as arti�cial bones and dental im-

plants, are classic examples. Tampieri et al. (2001) attempted to produce the porosity-graded

hydroxyapatite (HAP) ceramics, which not only provide good and fast bone ingrowth but

also withstand early physiological stress, as an implant to replace natural bone. Many other

researchers agreed and reported that FGMs could provide the implant a suitable sti�ness to
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endure the physiological loading, and that the graded porosity structure could enhance the

mechanical property of the implant to optimize the material's response to external loading

(Becker and Bolton, 1997; Pompe et al., 2003; Wang et al., 2012). As for dental implants,

titanium/hydroxyapatite (Ti/HAP) FGMs exhibited good biocompatibility and mechanical

toughness (Watari et al., 1995). No in�ammation was observed in both traditional pure Ti

and improved Ti/HAP FGM dental implants after eight weeks. But, Ti/HAP FGM implants

showed better biocompatibility for newly formed bone (Watari et al., 1997).

1.1.3 Fabrication of Functionally Graded Materials

During the famous FGM program in Japan from 1987 to 1991, several processing methods

were developed for FGM parts as a thermal barrier of a space plane. These former methods

included powder metallurgy, plasma spraying, physical and chemical vapor deposition, self-

propagating high temperature synthesis (SHS) and galvanoforming. Since 1991, various new

methods have been invented and developed. The processing of FGMs has been categorized in

di�erent ways in reviews papers (Mortensen and Suresh, 1995; Neubrand and Rodel, 1997;

Miyamoto et al., 1999). As shown in Figure 1.1.6, Miyamoto et al. (1999) classi�ed the

fabrication of FGMs into four categories including bulk, layer, preform and melt processing.

To scale up the manufacturing of Al-HDPE FGMs, various FGM manufacturing methods

have been reviewed for cost savings and expediency (Suresh and Mortensen, 1998; Miyamoto

et al., 1999). Powder metallurgy (PM) is one of the most popular ways, including powder

stacking, plasma spraying, slip casting, electrophoretic deposition and sedimentation, among

others. (Kieback et al., 2003). However, some PM methods, such as sequential slip casting

(Moya et al., 1992), will make the FGM possess sharp interfaces causing the phenomenon of

residual thermal stresses and thermal expansion mismatch between di�erent layers. In order

to eliminate the interfaces successfully and to produce the continuous gradation of material,

sedimentation and vibration methods are used in this work.
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Figure 1.1.6: Proceeding methods and classi�cation for fabrication of FGMs

1.2 Sedimentation Behavior of Particles

As described in the previous section, the sedimentation method is selected to fabricate

the functionally graded materials (FGMs). In addition to the experiment, a model is also

developed to simulate the dynamic behavior of particles during the sedimentation process.

The fundamental theories involved in the modeling, including Stokes' law and Eshelby's

equivalent inclusion method (EIM), will be �rst introduced in this section.

1.2.1 Reynolds Number and Stokes' law

In �uid mechanics problems, it is fundamental to de�ne the �ow condition before the analysis.

Two di�erent types of �ow, laminar �ow and turbulent �ow, may occur in a �uid in a channel

largely depending on the velocity of the �ow. Laminar �ow, also called streamline �ow, is a

�ow condition in which �uid �ows in parallel layers without disruptions between layers, and

it always occurs at lower velocity. Opposite to laminar �ow, turbulent �ow shows a more

complicated �ow regime characterized by chaotic and stochastic behaviors, which include

low momentum di�usion, high momentum convection, and rapid variation of pressure and

velocity in space and time. The illustration of laminar and turbulent �ow is showed in Figure
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1.2.1. The so-called Reynolds number (Re) is the dimensionless parameter to distinguish

these two �ow regimes and is de�ned as:

Re =
�vL

�
=
vL

�
(1.2.1)

where �, v, L, � and � are the density of �uid, the mean velocity of the object relative to the

�uid, a characteristic linear dimension, the dynamic viscosity of the �uid and the kinematic

viscosity of the �uid, respectively; all these parameters are SI units. In the case of a spherical

particle moving in the �uid, the characteristic linear dimension would be the diameter of the

particle. For a �ow through a circular cross-section of a straight pipe, the �uid motion may

remain laminar at Reynolds numbers below the critical value of approximately 2040; on the

contrary, the �ow could be turbulent at larger Reynolds number (Avila et al., 2011). Stokes

�ow is the extreme case of laminar �ow at Reynolds number much less than 1.

Figure 1.2.1: Illustration of laminar and turbulent �ow

Reynolds number is de�ned as the ratio of the inertial forces to the viscous forces. Here,

the inertial force is not de�ned in the classic way; rather, it characterizes the rate of change

in momentum for a particular �uid volume element in motion and is de�ned as

F inertial
i = �

�
@vi
@t

+ uj
@vi
@xj

�
(1.2.2)

where �, v, t and x are the density of �uid, the velocity of �uid, time and position, respec-
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tively. The viscous force is the shear stress for a particular �uid volume element caused by

the viscosity of �uid and is de�ned as

F viscous
i = �

�
@2vi
@xj@xj

�
(1.2.3)

Therefore, in a viscous �uid with small Reynolds number (Re <�< 1), the inertia forces

may be disregarded in the Navier-Stokes equation, which becomes the Stokes equation, and

the vorticity �eld and stream function can be solved. Consequently, the force on the surface

can be obtained, and the drag force can be determined by the integral of the surface force.

For a rigid sphere moving in a liquid, the drag force is written as

Ds
i = 6�a�vi (1.2.4)

where Ds, a, � and v are the magnitude of the drag force for the rigid sphere, the radius

of the rigid sphere, the viscosity of the liquid, and the settling velocity of the rigid sphere,

respectively. The formulation (1.2.4) is well known as Stokes' law to determine the frictional

force, caused by the viscosity of the liquid, acting on a moving solid sphere (Batchelor, 1967).

As for a spherical drop moving in a di�erent �uid, such as a gas bubble or insoluble drop,

the drag force has been derived in a similar fashion (Batchelor, 1967). In addition, the drag

force of other shapes of object moving through liquid has also been investigated, such as an

ellipsoid and a circular disk (Lamb, 1975).

Under Stokes �ow (Re <�< 1), the motion of a falling spherical object will reach the

terminal velocity rapidly if there is no external force applied. The terminal velocity can be

determined by the balance between the drag (frictional) force and the driving (e.g. buoyant

or gravitational) force and written as (Batchelor (1967))

U0
i =

2a2
�
�s � �l

�
9�

gi (1.2.5)
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where �s, �l, � and g are the density of the rigid sphere, the density of the liquid, the viscosity

of the liquid, and the acceleration due to gravity, respectively.

For all sets of sedimentation experiments studied in this thesis, the settling motion of alu-

minum and high-density polyethylene particles in ethanol is under Stokes �ow because of the

micro-size of particles. Thus, the model for predicting the sedimentation behavior of parti-

cles, which is discussed in Chapter 2, is based on Stokes' law. Even though the self-consistent

method, which considers the time-dependent volume fraction of particles, viscosity and set-

tling velocity, is included in the Stokes' law-based model, the interaction between particles is

not considered. Therefore, the approach proposed in this thesis, Eshelby's equivalent inclu-

sion method, is introduced and developed for a better understanding of the sedimentation

of numerous particles.

1.2.2 Eshelby's Equivalent Inclusion Method

In the case of a Stokes �ow, the hydrodynamic Green's function, also called the Stokeslet, is

the fundamental solution of the Stokes equation. For a point in the viscous liquid applied

with a concentrated force F, the velocity �eld v caused by the force could be written in

terms of the Stokeslet as

vi(x) = GijFj (1.2.6)

where Gij is the hydrodynamic Green's function, also known as the Oseen-Burgers tensor,

as follows

Gij =
1

4��

�
�ij

jx� x0j �
1

2

@2jx� x0j
@xi@xj

�
(1.2.7)

The hydrodynamic Green's function has been derived by several di�erent methods as

follows. Kim and Karilla (1991) have developed the solution of the Stokeslet by making

use of the linearity of the Stokes equations and symmetries of the system with the Fourier

transform. Also, basing on the linearity of the Stokes equations, a physical approach has

been derived by Dhont (1996). Zapryanov and Tabakova (1998) took the divergence of Stokes
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equation, and applied the Fourier transform and the fundamental solution of the Laplace

equation to solve the Stokeslet. The Stokeslet is essential for the derivation in this work,

which is also referred to as the Green's function.

A new approach to derive the drag force using Eshelby's equivalent inclusion method

(EIM) is presented. Eshelby (1957; 1959) �rst studied the stress for an inhomogeneity in

an in�nite matrix under a uniform far �eld stress and proposed that the stress disturbance

caused by the inhomogeneity could be simulated by an inclusion with the same material

properties as the matrix but with a appropriately chosen eigenstrain. This method is coined

as Eshelby's equivalent inclusion method (EIM). The beauty of this method is that the

eigenstrain is a constant when the inhomogeneity is ellipsoidal. The EIM is not only valuable

for the e�ective elastic moduli of composites (Y. Takao et al., 1982; Chen and Cheng, 1996;

Yin et al., 2008a), but it also has been successfully applied to the prediction of thermal and

electric behavior of composites, e.g., work-harden rate (Huang, 1996), thermal steady-state

heat conduction (Hatta and Taya, 1986) and thermal expansion coe�cient (Takei et al.,

1991a,b; Sakata et al., 2010) and electroelastic moduli (Dunn and Taya, 1993). In the

elastic problem of an in�nite domain containing an inhomogeneity, the overall elastic �elds,

stress, strain and displacement �eld are the summation of far �eld and disturbed elastic

�eld. The elastic Green's function provides the connection between disturbed strain �eld

and eigenstrain of the equivalent inclusion; the EIM is used to link the eigenstrain of the

equivalent inclusion and far �eld strain �eld together (Mura, 1987).

Before now, the EIM has not been used in problems of �uid mechanics. Although a �uid

has distinct material behavior from a solid, the mathematical formulation is very similar.

The main di�culty in using the concept of EIM for a drop moving in a di�erent �uid is

that not only is the material property of the drop di�erent from the matrix �uid, but also

a driving force is applied on the drop. The work in this thesis successfully extends the EIM

to the above-mentioned problem and formulates the velocity and stress �eld in the �uid.

When a drop moves at a constant velocity in an in�nite domain of a di�erent liquid, the
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driving force, such as gravity or buoyancy, will be exactly balanced by the drag force from the

viscous �uid. Therefore, given a driving force, if the terminal velocity can be determined, the

correlation between the velocity and the drag force can also be obtained from the relationship

of the velocity and the driving force, which creates a new approach to derive the drag force

bypassing the boundary integral of the stress vector over the drop surface.

To �nd the correlation between the driving force and the terminal velocity, the EIM

with a continuous boundary condition will be used. If the drop has the same viscosity as

the liquid, the motion of the drop and the distributed driving force can be directly written

in terms of the integral of Eq.(1.2.6) over the volume of the drop. However, due to the

di�erence in viscosities between the liquid and the drop, the motion of the drop will surely

be di�erent. Using the EIM, the viscosity mismatch between the drop and the liquid can be

simulated by introducing an eigenstrain rate. Then the overall velocity �eld can be written

in terms of the combination of the velocity �eld caused by the driving force and the velocity

�eld caused by the eigenstrain rate.

1.3 Photovoltaic/Thermal Hybrid Solar Technology

The development of photovoltaic/thermal hybrid solar technology demonstrates the po-

tential and prospects of solar energy. In our hybrid solar roo�ng panel system, the aluminum

and high-density polyethylene functionally graded materials (Al-HDPE FGMs) is integrated

to provide the advantages of heat harvesting e�ciency, material e�ciency and structural in-

tegrity (Yin et al., 2009; Yin, 2009; Yin et al., 2012, 2013). In this section, the background,

motivation and history of photovoltaic/thermal hybrid solar systems are introduced, as well

as the design and function of the proposed hybrid solar roo�ng panel system.

1.3.1 Background and Motivation

In past few decades, the natural resource consumption and the pollution during electric

generation became critical and urgent issues. In the US, about 40% of all energy and a
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considerable percentage of non-recyclable building materials and non-renewable natural re-

sources were consumed by residential and commercial buildings; especially, the consumption

of energy was increased by 48% between 1980 and 2009 (D&R International, 2011). The

use of renewable energy, such as solar energy, wind power, hydro-power and geothermal en-

ergy, was considered as the solution to release both of these environmental burdens. In the

topic of solar technology, the photovoltaic/thermal hybrid solar system has demonstrated a

promising performance in recent years.

A photovoltaic/thermal hybrid solar system (PVT system) is an integrated system of

photovoltaic and solar thermal components/systems which produce electricity and collect

heat. The solar cell only utilizes particular energy band gap which mainly the wavelength

is within the ultraviolet and visible light, as shown in Figure 1.3.1. Thus, a common PVT

system converts 4~21% of the solar irradiation into electricity, depending on the type of

solar cells in use and working conditions. In other words, the electricity conversion does

not take place in the range of infrared light, which means more than 50% of solar energy

is wasted as heat. The excess heat causes the extreme high working temperature, 70�C or

higher in summer, and this may lead to undesirable e�ects. First, the e�ciency of solar cell

will be signi�cantly reduced (Yang and Yin, 2011; Yin et al., 2013); and second, the long-

term thermal stress among the interface between di�erent components may yield permanent

structural damage and shorten its lifetime. The improvement by cooling and controlling the

temperature of solar cells with air or water has been studied for several decades, the history

and details are described later. The main feature of a �at-plate PVT collect is shown in

Figure 1.3.2, and the several common designs of air-type and water-type PVT collector are

shown in Figure 1.3.3.

1.3.2 History of Solar Roo�ng Panel

In the mid-1970s, theoretical and experimental investigations on photovoltaic/thermal hy-

brid solar system were initially documented. The fundamental concept and the data with



14

Figure 1.3.1: The standard Extraterrestrial Solar Spectrum

the use of either air or water �ow for cooling, which are called PVT air and water systems re-

spectively, were proposed by Florschuetz (1975; 1979), Wolf (1976), Kern and Russell (1978)

and Hendrie (1979). Afterward, the research work of technical validity and performance

analysis on �at-plate collectors (Figure 1.3.2) was conducted (Raghuraman, 1981; Cox III

and Raghuraman, 1985; Braunstein and Kornfeld, 1986; Lalovic et al., 1986). From the late

1980s, the performance of di�erent designs of air-type and water-type PVT collectors, as

shown in Figure 1.3.3, were analyzed and compared.

For an air-type PVT collector system, the detailed analytical and experimental studies

of di�erent designs were demonstrated by Garg and his co-workers (Garg and Adhikari,

1997, 1998). Compared with the double glass cover, a single glass cover may collect more

heat; however, the overall energy performance of a double glass cover was better than single

glass. The e�ect on e�ciency of an air-type PVT system produced by the design parameters,

such as dimension of absorber plate and �ow rate, was observed; the longer length and less

depth of absorber and the faster air-�ow rate lead to an increased thermal and electrical

outputs (Bhargava et al., 1991; Garg and Adhikari, 1999). The performance of single-pass

and double-pass designs (See in Figure 1.3.3(a)) were investigated in both modeling and
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Figure 1.3.2: Main features of a �at-plate PVT collector (Chow, 2010)

experiments, the double-pass design showed better performance due to superior cooling of

the front cover and solar cells (Sopian et al., 1996, 2000). For a conventional PVT collector,

Prakash (1994) pointed out that water-type designs provided higher thermal e�ciency than

air-type because of the lower heat transfer between the air-�ow and absorber plate.

Moreover, the modeling of di�erent designs of water-type PVT collector systems were ex-

plored. Similarly, the single-covered design showed the better performance than uncovered

and double-covered designs, which produced relatively low thermal and electrical e�ciency

respectively (Vries, 1998). However, the analysis indicated that exergy output density of

the single-covered design was slightly lower than the uncovered design, which meant that

so much unavailable energy existed in the thermal energy (Fujisawa and Tani, 1997). The

studies expressing the relation between e�ciency and design parameters, including the di-

ameter of the tube and the quantity of water, were documented (Bergene and Lovvik, 1995;

Agarwal and Garg, 1994). Additionally, the experimental tests of water-type PVT collector

ware discussed and compared. Al Harbi et. al. (1998) found that there was a 30% reduc-

tion of PV cell e�ciency when the water-type PVT system is operated at a high ambient

temperature whereas the thermal e�ciency keeps good. The prototypes of thermoelectric
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(a) (b)

Figure 1.3.3: Longitudinal cross-sections of some common (a) air-type PVT and (b) water-
type PVT collector designs (Chow, 2010)

collectors and water-type PVT collectors were constructed and tested by Rockendorf et al.

(1999), the electrical output of the water-type PVT collector is signi�cantly higher than that

of thermoelectric collector.

Generally speaking, for the �at-plate collectors, the thermal e�ciency of water-type PVT

collector systems is within the range of 45~70% depending on the design; as for the air-type

PVT collector system with optimized design, the thermal e�ciency is up to 55% . According

to long-term e�orts of Research and Development on PVT collector system, for practical real-

building applications, the air-type and water-type designs become more and more popular

in both Europe and North America.

1.3.3 Hybrid Solar Roo�ng Panel

Di�erent from the aforementioned conventional designs, a novel functionally graded mate-

rial (FGM) based hybrid solar roo�ng panel as shown in Figure 1.3.4 is developed (Yin

et al., 2013). This roo�ng panel system consists of four major components, which the or-
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der from top to bottom are the protective layer, the photovoltaic (PV) cell, the aluminum

and high-density polyethylene system functionally graded material (Al-HDPE FGM) inter-

layer and the structural substrate, respectively. The transparent protective waterproo�ng

layer protects the power generating elements and the underlying building materials from

external environmental distress such as moisture migration, surface wear, and impact. The

photovoltaic (PV) cell generates power using proven mono-crystalline PV technology. The

FGM layer is constructed of a mixture of heat conducting aluminum (Al) and insulating

high density polyethylene (HDPE) with water tubes cast inside, which is integrated upon a

structural substrate. The strong substrate in bottom, which is made of recycled polymer,

provides mechanical loading support and heat insulation of the roof.

Figure 1.3.4: Schematic illustration of the hybrid solar roo�ng panel with a functionally
graded layer (Yin et al., 2013)

The FGM interlayer contains aluminum powder dispersed in a high density polyethylene

(HDPE) matrix with a graded microstructure seen in the left top of Figure 1.3.4; the volume

fraction of aluminum is 50% at the top of the FGM interlayer, and continuously reduces to

0% at the bottom along the depth direction. The purpose of Al-HDPE FGM fabrication is

to create a light-weight layer of solar roo�ng panel with gradient thermal conductivity in the

depth direction, which is gradually transited from well conductive side attached with solar

cell to highly insulative side bonded to the structural substrate. Water pipelines in a loop are
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cast within the FGM to control the panel's temperature by using water �ow rate controls and

a temperature sensing system. The innovative design combined with photovoltaic/thermal

hybrid solar system and temperature control system, whose cross section is illustrated in

Figure 1.3.5, provides the multifunctional advantages of energy generation and savings as

follow (Yin et al., 2013):

1. Improved PV e�ciency - It is known that most current solar roo�ng panels only serve

at the temperature range from �40 to 85�C, and the energy utilization e�ciency signif-
icantly reduces with increasing working temperatures (Skoplaki and Palyvos, 2009a,b).

After exposure to solar radiation for a while, the temperature of a PV cell will increase;

then, heat may be conducted from the PV cell to the upper part of the FGM. Cold

water, whose �ow is controlled by the panel, is introduced through the water tubes to

cool down the PV module. Consequently, the e�ciency of the PV cell will be improved

under moderate temperature conditions. The relations between electricity generation

e�ciency and temperature under di�erent irradiations, which are 850 and 1100 W=m2,

are depicted in Figure 1.3.6 (Yin et al., 2013).

2. Free heating supply - During the process of cooling the PV module, the heat is har-

vested in the water. After going through the holistic PVT system, the hot or warm

water is collected in preheated water systems for �oor and celing heating or domestic

usage.

3. Reduced cooling demand - In summer, the excellent thermal insulation performance of

the panel and the moderate roof temperature controlled by water �ow will create a more

comfort indoor condition, the energy for cooling demand can be saved in consequence.

4. Snow and ice removal - In winter, warm water can be introduced to remove ice and

snow from the roof, clean solar panels, and thus restore and enhance solar energy

utilization.
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Figure 1.3.5: Cross section of residential system (Yin et al., 2013)

In addition to the above bene�ts, compared with the traditional sandwich construction, the

use of Al-HDPE FGM interlayer reduces the total number of layers and provides the following

bene�ts (Yin et al., 2013):

1. Heat harvesting e�ciency - the water tubes are embedded in the top part of the FGM

layer, where the high aluminum concentration creates high thermal conductivity so that

heat can be e�ectively transferred to water tubes in all directions, while simultaneously

being insulated by the bottom part of the FGM layer, which is made of pure HDPE.

2. Material e�ciency - Due to the gradual variation of the phase proportion of materials,

only a small amount of aluminum powder is needed. This reduces the cost of the panel

as the aluminum material is relatively expensive.

3. Structural integrity - The absorber layer and insulation layer in traditional PVT can

be replaced by one FGM layer which integrates the high thermal conductivity of the

aluminum rich part in the top and the thermal insulation of the pure HDPE in the

bottom. Since the volume fraction of aluminum (Al) powder continuously varies in the

thickness direction, the thermo-mechanical property distribution changes smoothly,

and avoids the thermal stress concentration across layers, increasing the structural
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(a) (b)

Figure 1.3.6: Panel surface average temperature and PV e�ciencies for (a) irradiation: 850
W=m2, water �ow rate: 33 ml=min, (b) irritation: 1100 W=m2, water �ow rate: 66 ml=min
(Yin et al., 2013)

integrity and durability of the panels.

Figure 1.3.7 is the blue print of the �nal future goal - a net zero energy house, installed

with a great deal of hybrid solar roo�ng panels and a water control system. The electricity

and hot water for domestic usage could be generated by this solar roo�ng system. Thus, in

order to achieve this dream, the economical and e�cient fabrication of Al-HDPE FGM for

mass production has to be �rst developed. The details and improvement of the fabrication

method will be described in Chapters 2 - 5.

1.4 Scope

The primary objective of this study is to investigate the fabrication, characterization, and

modeling of an aluminum and high-density polyethylene functionally graded material (Al-

HDPE FGM), which is appropriately selected for the novel hybrid solar roo�ng panel system.

Some relevant testing and analysis is also presented. The dissertation has been organized as

follows:

Chapter 2 studies the fabrication of Al-HDPE FGM by the sedimentation method, as

well as the simulation of the mixture of aluminum and high-density polyethylene powders
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Figure 1.3.7: Future net zero energy house

settling in the ethanol by Stokes' law based modeling. For simplicity, the sedimentation

test in which only �ne aluminum particles (AL-104, 0.2~10 �m) dispersed in ethanol is

�rstly introduced, the modeling based on Stokes' law is also created by discrete method.

The size distribution of the aluminum particles along the depth direction of deposition after

24 hours of sedimentation can be measured and predicted by experiment and simulation

respectively. The good agreement between both results demonstrates the applicability of

our modeling for the sedimentation behavior of particles under Stokes �ow. Furthermore,

the simple experiment is later extended to a more complicated case, where the mixture

of aluminum and high-density polyethylene powders is well-dispersed and settling in the

ethanol. According to the di�erent size and density of materials, a gradient deposition of

aluminum and high-density polyethylene is successfully produced, when the appropriate size

of aluminum is selected.

Chapters 3 and 4 present a new approach on Eshelby's equivalent inclusion method to

derive the Stokes �ow of single, two or even numerous ellipsoidal drops moving in the viscous

liquid. The purpose of this approach is to discuss the interaction between particles, which

is not considered in the Stokes' law based modeling described in Chapter 2. Using the EIM,

the viscosity mismatch between the drop and the liquid can be simulated by introducing an
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eigenstrain rate. For the case of a single ellipsoidal drop, the eigenstrain rate can be assumed

as a linear function; the velocity and pressure �elds caused by the body force and eigenstrain

rate on the inclusions of an in�nite �uid domain can be obtained by the Green's function

explicitly. When the drop is spherical, the solution recovers the well-known classic solution

for a drop moving in a �uid (Batchelor, 1967).

However, for the case of two or more ellipsoidal drops, the eigenstrain rate distribution

could be more complex. Instead, the eigenstrain rate distribution can be written in the

polynomial form, and the coe�cients of each order of the coordinate can be determined

separately. Moreover, the translational velocities of the drops depend on the relative position,

the center-to-center distance of drops, the viscosity and the size of drops. When two identical

spherical drops are considered, the results of present method well agrees with Batchelor's

solution (Batchelor, 1972).

Chapter 5 demonstrates another fabrication approach of Al-HDPE FGM by a vibration

method for the mass production. The vibration method provides a faster and more eco-

nomical manufacturing process. Under high-frequency vibration, the particle segregation of

larger size aluminum particles (100 ~ 600 �m) embedded in smaller high-density polyethy-

lene (1~100 �m) concentrated suspension is investigated. In the experiment, according to

varied parameters including the amplitude, frequency and time of vibration, the suspen-

sion displays di�erent particle segregation: uniform-like, gradient and bi-layered. The small

cylinder �lms of Al-HDPE FGM is successfully obtained by the vibration method with ap-

propriate experimental parameter, and this method can be also practical for the massive

manufacture of thin interlayer of the novel hybrid solar roo�ng panel.

Chapter 6 presents the performance analysis of the novel hybrid solar roo�ng panel system

by experiments and �nite elements simulation. This novel system is invented to integrate

photovoltaic (PV) cells onto a substrate through a functionally graded material (FGM) with

water tubes cast inside, through which water serves as both a heat sink and a solar heat

collector. Therefore, electrical e�ciency of PV cells can be improved under a relatively low
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temperature. The prototypes have been fabricated and tested at di�erent water �ow rates

and solar irradiation intensities. The temperature distribution in the solar panel is measured

and simulated to evaluate the performance of the solar panel. The �nite element simulation

results are very consistent with the experimental data. The understanding of heat transfer

in the hybrid solar panel prototypes will provide a foundation for future solar panel design

and optimization.

Chapter 7 documents the conclusions on the fabrication, characterization, and modeling

of aluminum and high-density polyethylene functionally graded materials (Al-HDPE FGMs)

and discusses the future research directions. Three appendices are also included: Appendix A

develops a hollow cylinder test to characterize the strength and sti�ness of bamboo specimens

in the cross sectional plane. Based on the cellular microstructure and comparison of the

elastic modulus distribution, the exponential function of elastic modulus provides the most

reasonable results. Appendix B derives the velocity and pressure �elds of drop moving in

a viscous �uid, which is only applied with a concentrated force. Appendix C provides the

expression of the integral terms of �, 	, �p and 	p and their derivatives, which are widely

used in the Eshelby's equivalent inclusion method in Chapters 3 and 4.
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Chapter 2

Fabrication of Aluminum and

High-Density Polyethylene Functionally

Graded Materials by the Sedimentation

Method

A simple, economical, and scalable material manufacturing method of sedimentation has

been used to fabricate functionally graded materials for solar roo�ng panels. This chapter

investigates the size e�ect of aluminum powder on the material gradation in the depth direc-

tion when only aluminum powder or the mixture of aluminum and high-density polyethylene

(HDPE) powder is thoroughly mixed and uniformly dispersed in ethanol and then subjected

to sedimentation for a certain period respectively. A Stokes' law based model is developed to

simulate the sedimentation process, in which the concentration of aluminum and high-density

polyethylene (HDPE) particles temporally and spatially changes in the depth direction due

to the non-uniform motion of particles. The concentration variation further a�ects the e�ec-

tive viscosity of the suspension and thus changes the drag force of particles. The numerical

simulation demonstrates the e�ect of manufacturing parameters for sedimentation and pre-
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dicts the graded microstructure of deposition in the depth direction. The present modeling

and testing method provides a very useful tool for the material design and optimization of

the solar roo�ng materials.

2.1 Overview

The functionally graded materials (FGMs) exhibit a non-homogenous microstructure,

which results in the continuous variation of material properties, such as mechanical, electrical

and thermal parameters (Krstic, 1983; Hu et al., 1998; Nishida et al., 2000; Yin et al., 2004,

2007, 2008b; Moussa et al., 2012). FGMs attract widespread attention for various novel

engineering applications, such as bonding dissimilar materials (Zhou and Hashida, 2002),

connecting electrodes and insulating containments (Nishida et al., 2000), and manufacturing

thermal barriers (Khor et al., 1999; Bertolino et al., 2003). In our recent work (Yang et al.,

2012; Yin et al., 2012, 2013), we have successfully fabricated an FGM with high density

polyethylene (HDPE) and aluminum (Al) powders and integrated it into the hybrid solar

roo�ng panel as Figure 1.3.4. The purpose of Al-HDPE FGM fabrication is to create a

light-weight layer of solar roo�ng panel with gradient thermal conductivity in the thickness

direction, which is gradually transited from a well conductive side attached with a PV solar

cell (laminated by a protective layer) to another highly insulative side bonded to a structural

substrate. The water �ow through the FGM layer cools down photovoltaic (PV) cells and

harvest the solar heat. Consequently, the e�ciency of PV cell is improved while working

under a moderate temperature condition; and the water �ow through the FGM layer is useful

for preheated water systems, which also intercepts the heat �ow into the building for cooling

savings.

To scale up the manufacturing of Al-HDPE FGMs, various FGM manufacture methods

have been reviewed for manufacturing cost and speed (He et al., 1997; Suresh and Mortensen,

1998; Miyamoto et al., 1999; Cirakoglu et al., 2002). Powder metallurgy (PM) is the one

of the most popular ways including powder stacking, plasma spraying, slip casting, elec-
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trophoretic deposition and sedimentation etc (Neubrand et al., 2003). However, some kinds

of PM methods, such as sequential slip casting (Moya et al., 1992), will make FGM with

sharp interfaces causing the phenomenon of residual thermal stresses and thermal expansion

mismatch between di�erent layers.

Sedimentation method has been applied to fabricate FGM with continuous variation for

eliminating the interfaces successfully in several setups and processes. Sanchez-Herencia

et al. (1997) obtained Al2O3/Y-TZP continuous functionally graded ceramic (FGC) by

�ltration-sedimentation, where the gradient deposit body is moved out of plastic mold with

a plaster-of-Paris basement after complete �ltration and drying. Simonet et al. (2007) have

studied both the experiment and simulation on YSZ/LSM FGM with two sedimentation

process with di�erent initial condition: one is that YSZ and LSM powders are mixed together

in the water and homogenous dispersed in the whole vessel, and another is that YSZ and

LSM particles only locates at the lower and upper part of suspension respectively. Yang et

al. (2001) have developed the improved sedimentation process, both Ti and Mo start settling

at a height of tube, to manufacture Ti-Mo FGMs without a homogenous bottom layer.

Yin et al. (2012) proposed to use sedimentation in manufacture of the FGM layer (Fig-

ure 1.3.4) with Al and HDPE powder, in which a suspension liquid is used to create the

graded microstructure of the mixture. Because Al powder exhibits chemical reaction with

water, ethanol is used to mix Al powder and HDPE powder. Because Al and HDPE have

signi�cantly di�erent speci�c gravities (2.7 and 0.95, respectively) over a large range of size

distribution, the two types of powders will fall down at di�erent velocities and thus create

a graded microstructure automatically. When a desired graded microstructure forms, the

ethanol is �ltered out for reuse. By heating up the graded powder mix in a vacuum oven, the

HDPE powder will be melt so as to form a composite of Al particles dispersed in the HDPE

matrix with graded microstructure. After curing it, one can obtain the solid FGM layer.

To optimize the particle distribution and manufacturing speed, the sedimentation process

should be quantitatively understood and controlled.
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There exist several theories on the analysis of small particles sedimentation (Mirza and

Richardson, 1979; Tory et al., 1995; Caron et al., 1996; Yang et al., 2008). Tory et al. (1995)

used a fourth-order stochastic Runge-Kutta method to statistically determine the particle

position and velocity at discrete time. Yang et al. (2008) considered various prevailing forces,

such as van der Waals attractive, electrostatic repulsive, Brownian, depletion, gravitational,

contact and drag force, acting on single particles. The Stokes' law (Batchelor, 1967), which

can calculate the settling velocity of small spherical particle in viscous liquid under the

laminar �ow (Re � 1), has been used to predict the particle motion in sedimentation

process. Yang et al. (2001) developed a mathematical model base on Stokes' law to predict

the compositional distribution of Ti-Mo FGM systems. In their model, it is assumed that the

viscosity of solution is not concentration-dependent but consistent as pure solvent because of

the low volume ratio between solid and liquid, also the sedimentation velocity of particle can

be constant as terminal velocity calculated by Stokes' law directly. This model is applicable

to the sedimentation of a dilute suspension with a large sedimentation distance compared

with particle size.

However, in the proposed manufacturing method for Al-HDPE FGMs, both the pro-

portion of ethanol and the sedimentation distance should be minimized for low cost and

fast manufacturing. Therefore, the existing models for dilute suspensions are not applica-

ble to the proposed manufacturing method. As the �rst step toward fully understanding

the sedimentation process of Al-HDPE mix, the goal of this chapter is to understand the

sedimentation process of aluminum particles with size from 200 nm to 700 �m. The cou-

pled behavior of particle concentration change and particle motion will be investigated by

considering concentration-dependent viscosity of solution. Stokes' law based model for sed-

imentation tests has been developed, and particle size distribution has been experimentally

measured and numerically simulated in this chapter.

First, for simplicity, only aluminum powder with size from 200 nm to 10 �m (Al-104 from

Micron Metals, Inc.) was introduced into ethanol, was chosen to observe the sedimentation
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behavior of small spherical particles. After complete sedimentation and drying, the deposit

body was investigated layer by layer to measure the particle size distribution along the

thickness direction by a particle analyzer. The model is used to predict the volume fraction

of three groups of aluminum powder, containing di�erent range of particle sizes, along the

depth direction and to explore the e�ect of manufacturing parameters, such as height of

suspension, for sedimentation behavior.

Moreover, the experiment has been extended to the mixture of Al and HDPE with di�er-

ent Al particle sizes, namely Al-104 (200 nm - 10 �m), Al-101 (2 - 100 �m) and Al-111(100

- 700 �m). For each group of Al powder, Al and HDPE particles were mixed uniformly in

ethanol and then were subjected the sedimentation process. The density measurement of

powder layer by layer, which is based on the Rice Density Measurement (ASTM D-2041),

is used to determine the volume fraction of aluminum in depth direction of deposit body

after complete sedimentation and drying. According to the observation of the Al and HDPE

particle distribution, the graded and bi-layered mixtures of particles have been created for

di�erent Al particle groups. The aforementioned model has been extended to predict the

volume fraction of aluminum in the mixtures.

The remainder of this chapter is organized as follows: Section 2.2 introduces the exper-

iments including the apparatus, material preparation, testing procedure and measurement

results. Section 2.3 presents the sedimentation model and provides the theoretical algo-

rithm of simulation. Finally, Section 2.4 shows the comparison between experimental and

numerical simulation results. Using the present model, parametric studies are conducted.

2.2 Experiment

2.2.1 Apparatus and Material Preparation

Three types of aluminum powders Al-101, Al-104 and Al-111, whose particle size distribution

were showed in Figure 2.2.1, were used for experiment of sedimentation with the suspension

of ethanol. Notice that the Al-101 and HDPE have very similar size distributions; Al-104
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and HDPE exhibits spherical shape of particles; whereas Al-101 and Al-111 have irregular

shape. The sedimentation device, as shown in Figure 2.2.2, with a diameter of 27 mm was

used for sedimentation. The drain faucet was designed to drain the upper level ethanol after

completed sedimentation. Notice that the deposit body after the completion of sedimentation

should always be below the drain outlet. The detachable pedestal provided convenience

to take out the air-dried deposit for particle size analysis. The particle size distribution

was characterized by a particle analyzer (Mastersizer 2000, Malvern). The morphology of

aluminum particles was observed by the scanning electron microscope (SEM).

Figure 2.2.1: Particle size distribution of di�erent types of aluminum and HDPE powders

2.2.2 Experimental Tests

The �rst experiment, which will be called the Al test (Al-T) later, was designed to measure

the particle size distribution of deposit body at di�erent depth. Although the particle size

is continuously change in the range of 0.2 to 10 microns, for convenience of demonstration,

the aluminum powder (Al-104) was divided into three groups, namely groups A, B and C,

depending on particle size. In each group, some subgroups were divided for simulation. The

size speci�cations were provided in Table 2.1.

In the mixing procedure, the 11.5 g aluminum powder was introduced into ethanol and
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Figure 2.2.2: Sedimentation device with speci�cation

well dispersed by ultrasonic devices for 10 minutes. After that, a mechanic mixer was used

with mixing speed 500/s for 10 minutes. After mixing, the homogenous suspension was

placed in the sedimentation device and started settling; the total height of suspension is

80 mm. Through sedimentation for 24 hours, more than 98% aluminum particles were

completely settled; minor particles were still �oating in the suspension above the deposition,

which leads to the di�erence between the original and justi�ed particle size distribution

in Figure 2.2.3. The deposit body was obtained after discharging most the suspension by

opening the drain and vaporing remaining ethanol out of the deposit body by air-dry for 6

hours.

The following steps were conducted for particle analysis: divide the aluminum deposit

body equally into �ve layers along the thickness direction after fully-drying; number the

layers in order from top to bottom; scratch out the powder layer by layer; and then analyze
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Table 2.1: Details of particles in groups A, B and C with the maximum particle size speci�ed

the particle size for each layer. The particle analyzer was used to measure the particle size

distribution for each layer as shown in Figure 2.2.3. In addition, the SEM observations for

layers 1 and 5 were shown in Figure 2.2.4, which were the top and bottom layers, respectively;

it con�rmed the test results from the particle analyzer, where the average particle size raised

up from top to bottom. After the measurement by the particle analyzer, the volume fractions

of group A, B and C for each layer were calculated and plotted later in Figure 2.4.1 of

Section 2.4. The particle size distribution of original aluminum powder (Al-104) and justi�ed

aluminum powder, integral of 5 layers, were also plotted in Figure 2.2.3.

In addition, the interaction between aluminum powder and the solution is also important

for FGM fabrication in this study. It has been mentioned on the International Chemistry

Safety Card (ICSC) that aluminum powder in contact with water and ethanol may cause

chemical danger. We have investigated the chemical reaction with special caution for the

mixing and sedimentation process. In the literature, Streletskii et al. (2008) have also
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Figure 2.2.3: Particle size distribution of 5 di�erent layers and original Al-104 powder

observed that aluminum ethoxide (Al (C2H5O)3) and hydrogen were produced while nano-

size aluminum particle reacted with ethanol under 90�C. However, there is no obvious

chemical reaction in our experiment with micron size of aluminum powder. Figures 2.2.4

and 2.2.5 show the microstructure of aluminum powder, which has been immersed in ethanol

and water for 24 hours before the SEM observation. Aluminum oxide (Al2O3) produced by

reaction between aluminum and water causes the hairy surface of particle as shown in Figure

2.2.5(a); whereas no obvious di�erence is observed between the original aluminum particles

in Figure 2.2.5(b) and the particles placed in the ethanol for 24 hours in Figure 2.2.4. In our

�nal manufacturing process, the mixing duration should be much less than one hour, so the

chemical reaction will not be an issue.

Moreover, the second experiment, which will be called the FGM test (FGM-T) later, was

developed to explore the volume fraction of aluminum along the depth direction of deposit

body of Al and HDPE particles. To investigate the size e�ect of the Al particles on the

gradation of the deposition, Al-101, Al-104, or Al-111 powders were used to be mixed with

high-density polyethylene (HDPE) powder in the solution of ethanol. The solid loading
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(a) (b)

Figure 2.2.4: SEM observations (7000x) for (a) top layer and (b) bottom layer of deposit
body which settling in ethanol for 24 hours

of powders (wt:%) and volume ratio of aluminum in mix were chosen as 20% and 25%,

respectively, namely 7.29 g aluminum powders and 7.71 g HDPE powder prepared for the

mixing in each test. The mixing procedure was applied as same as the Al-T method. After

the mixing process, one hour sedimentation, and then 48 hours air-dry, the deposit body

was also divided equally into �ve layers along the depth direction. It has been observed that

a graded deposition was created for the cases of Al-101 and Al-104; whereas a bi-layered

deposition was produced for Al-111. Dry powder of each layer was collected separately, and

the Rice density measurement method was used to measure the density of mixed powder as

a common and simple method to determine the volume fraction of aluminum in each layer.

2.3 Simulation and Modeling

To calculate the settling velocity of spherical aluminum particle in a viscous liquid, Stokes'

law is used as:

V =
2r2g (�particle � �liquid)

9�
(2.3.1)

where V , r, �, � and g are the settling velocity of particle, radius of particle, density,

viscosity of liquid and acceleration of gravity, respectively. Yang et al. (2001) introduced
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(a) (b)

Figure 2.2.5: SEM observations (7000x) for (a) aluminum powder immersing in water for 24
hours and (b) original Al-104 powder

the mathematical model based on Stokes' law to predict the compositional distribution of

Ti-Mo system FGM. Because of the low volume ratio, which is only 0.6%, the viscosity of

suspension is assumed as constant and not relative with concentration. Besides, consistent

settling velocity of all particles is adopted in the whole simulation without consideration

of acceleration. This model may provide reasonable prediction for dilute suspension with a

large settling distance.

However, in the present work, the simulation will be based on the acceleration of particles

with drag force which depends on solution concentration. A Stokes' law based numerical

model, the discrete method dividing the mixed suspension into n sections and estimating the

volume fraction of di�erent groups (group A, B and C) or volume fraction of aluminum at any

time with �xed time interval �t, is derived and demonstrated for prediction of sedimentation

behavior of aluminum particle. The major process and formula of discrete method for the

Al-T measurements are introduced in this Section, which can be straightforwardly extended

to the simulation of the FGM-T.

In the simulation, the suspension is evenly divided into n sections in the depth direction.

The motion of particles and e�ective properties of the suspension are simulated and thus

the microstructure of the deposition can be obtained when the sedimentation process is
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completed.

2.3.1 Measurement of Initial Parameters and Conditions

To set up the initial condition for the sedimentation, the suspension in the cylinder is dis-

cretized into n sections in the depth direction. Because the suspension is thoroughly mixed,

each section has uniform �0a, �
0
b and �

0
c , which are initial volume fraction of group A, B and

C, as follows: 8>>>>>><
>>>>>>:

�0a = F (ra;max)�MAL

�AL�S�htotal

�0b =
[F(rb;max)�F (ra;max)]�MAL

�AL�S�htotal

�0c =
[F (rc;max)�F(rb;max)]�MAL

�AL�S�htotal

(2.3.2)

where MAL and �AL are total mass of aluminum powder and density of aluminum, respec-

tively. Here �AL = 2.699 g=cm3.

The number and size of particles in each group are shown in Table 2.1. The relationship

of volume fraction between particles and groups can be described as

8>>>>>><
>>>>>>:

�0a =
Pn

k=1

P
i=1 �

0
a;i;k

�0b =
Pn

k=1

P
i=1 �

0
b;i;k

�0c =
Pn

k=1

P
i=1 �

0
c;i;k

(2.3.3)

�jtotal;k = �ja;k + �jb;k + �jc;k =
maxX
i=1

�
�ja;i;k + �jb;i;k + �jc;i;k

�
(2.3.4)

where �0a;i;k refers to the initial volume fraction of each particle index i of group A at section

k. The superscript, �rst, second and third subscripts represent number of time period,

name of group, index of particles and number of sections, respectively. Besides, �ja;k, the

summation of �ja;i;k, is the volume fraction of all particles of group A at section k during

time period j. The initial total volume fraction of each group, �0a;k, �
0
b;k and �

0
c;k, should be

all uniform (�0a;1 = �0a;2 = ::: = �0a;n ) in the di�erent sections as for the uniformly dispersed
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mixture.

2.3.2 Corresponding Viscosity �

The viscosity of suspensions varies with the volume fraction of suspended particle. The

e�ective viscosity can be estimated by the self-consistent method as (Yin and Lai, 2012)

� =
�0

1� 2:5�
(2.3.5)

where �, �0 and � are e�ective viscosity of suspension, viscosity of the matrix �uid and

volume fraction of the suspended particle, respectively.

To consider the three size groups of particles, �jk, the e�ective viscosity of solution in

section k during time period j, is calculated by three steps in sequence as follows:

8>>>>>>>>>><
>>>>>>>>>>:

�j1;k = �0

1�2:5

 
�
j
a;k

1��
j
b;k

��
j
c;k

!

�j2;k =
�
j
1;k

1�2:5

 
�
j
b;k

1��
j
c;k

!

�j3;k =
�
j
2;k

1�2:5(�jc;k)

(2.3.6)

These three steps in Eq.(2.3.6) are used to solved �j3;k which is treated as �jk and applied

for determination of settling velocity and distance for every identical i in the whole analysis.

Eq.(2.3.6) is introduced under following assumption: At �rst, the �nest particles (group

A) were placed into ethanol; �j1;k was the e�ectively viscosity of the suspension which only

included particle of group A. Then, we treated the suspension only with particle of group

A as the matrix liquid; �j2;k is solved by these known parameters. Finally, the second step

was repeatedly employed; the suspension with particles of group A and B is treated as the

matrix liquid for the particle of group C, �j3;k and is obtained. The initial volume fractions,

�0a;k, �
0
b;k and �

0
c;k, are obtained from Eqs.(2.3.2) ~ (2.3.4); updating volume fractions with
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varied time period, �ja;k, �
j
b;k and �

j
c;k are calculated from Eqs.(2.3.7) ~ (2.3.11).

Notice that there is a limit to the Eq.(2.3.5) while �! 0:4 which causes that the e�ective

viscosity approaches in�nity. However, it is not realistic because the suspension with 40%

particle should still �ow. It has also been con�rmed in the experiments that the maximum

volume fraction �max is commonly more than 0.4. Fortunately, with the homogenization

of particles with di�erent sizes in Eq.(2.3.6), the overall volume fraction of the aluminum

particles can be over 0.4.

2.3.3 Time-dependent �

As times goes by, all the aluminum particles will fall down; it causes the reduction of con-

centration and viscosity in upper sections and the increments in lower sections. According

to the Stokes' law, Eq.(2.3.7) shows the acceleration of settling spherical particle.

a =
Fg � Fd
m

=
4�r3g (�p � �l)� 6��rV

3m
(2.3.7)

where Fg, Fd, �p, �l and m are gravitational force combined with buoyant force, drag force,

density of aluminum particle, density of ethanol and mass of single aluminum particle, re-

spectively. Settling distance of identical particle X from time period j to j+1 (time interval

= �t) can be estimated in Eq.(2.3.8) by considering of acceleration. Coe�cient m, the ratio

of settling distance to height of section �h, is relative with X and solved in Eq.(2.3.9).

Xj
a;i;k = V j

a;i;k ��t+
1

2
aja;i;k (�t)

2 (2.3.8)

mj
a;i;k =

Xj
a;i;k

�h
(2.3.9)
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Thus, for group A, the corresponding volume fraction of identical particle i in section k at

t = j can be calculated as below

8>><
>>:

�ja;i;k+�;I =
�
 �mj

a;i;k

� � �ja;i;k
�ja;i;k+;II =

�
mj
a;i;k � �

� � �ja;i;k
if k +  � kmax (2.3.10)

8>><
>>:

�ja;i;kmax;I
=

Pkmax

k

�
 �mj

a;i;k

� � �ja;i;k
�ja;i;kmax;II

=
Pkmax

k

�
mj
a;i;k � �

� � �ja;i;k
if k +  > kmax (2.3.11)

�j+1a;i;k = �ja;i;k;I + �ja;i;k;II for k = 1 � n (2.3.12)

where  and � rounds the elements ofmj
a;i;k to the nearest integers greater and less thanm

j
a;i;k,

respectively. The solutions of volume fraction from Eqs.(2.3.10) ~ (2.3.12) are also adopted

for groups B and C. The corresponding total concentration in each section at following period

of time is obtained by substituting Eq.(2.3.12) into Eq.(2.3.4).

2.3.4 Translation Velocity

Base on Newton's second law of motion and Stokes' law, the settling particle in viscous liquid

will reach terminal velocity at very short times; however, this phenomenon only happens for

a dilute suspension system, which means that the viscosity of liquid is consistent at any

time. In both experiment and simulation, the viscosity of suspension in each section changes

caused by the variation of concentration as time goes by. Thus, the settling velocity of every

aluminum particle will keep changing slightly even during the end of the whole sedimentation

process.

In the process of modeling, each section was treated as a unit where identical aluminum

particle only have one settling velocity during a time period j. Besides, settling velocity of
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identical particle during time period j+1 satis�es the conservation of momentum as follows:

V j+1
a;i;k = P j+1

a;i;k=M
j+1
a;i;k (2.3.13)

where V j+1
a;i;k , P

j+1
a;i;k and M j+1

a;i;k are settling velocity of particle, total momentum and total

mass of identical particle i (belong to group A) located in section k during time period j+1,

respectively.

The total momentum P j+1
a;i;k is contributed by two partial momentum, P j+1

a;i;k;I and P
j+1
a;i;k;II ,

and described as:

P j+1
a;i;k = P j+1

a;i;k;I + P j+1
a;i;k;II =M j+1

a;i;k;I � V j+1
a;i;k;I +M j+1

a;i;k;II � V j+1
a;i;k;II (2.3.14)

where V j+1
a;i;k;I and V

j+1
a;i;k;II are corresponding velocity of mass M j+1

a;i;k;I and M
j+1
a;i;k;II .

These two partial momentums can be written in terms of the velocity of particle during

time period j, V j
a;i;k, and the relationship are:

8>><
>>:

P j+1
a;i;k+�;I = M j+1

a;i;k+�;I � V j+1
a;i;k+�;I =

�
 �mj

a;i;k

� � �ja;i;k � V j
a;i;k

0

P j+1
a;i;k+;II = M j+1

a;i;k+;II � V j+1
a;i;k+;II =

�
mj
a;i;k � �

� � �ja;i;k � V j
a;i;k

0

(2.3.15)

and

V j
a;i;k

0

= V j
a;i;k + aja;i;k ��t (2.3.16)

Combined with two corresponding partial momentum P j+1
a;i;k;I and P

j+1
a;i;k;II from Eqs.(2.3.14)

~ (2.3.16), the new settling velocity of identical particle during time period j+1 is obtained

by Eq.(2.3.13) and placed into Eq.(2.3.7) to solve the new acceleration aj+1a;i;k. Thus, �nal

volume fraction of each group along the thickness direction in deposition will be determined

by repeating Eqs.(2.3.7) ~ (2.3.16) with time-dependent viscosity of liquid, �jk, which is

calculated by Eq.(2.3.6); furthermore, each section of deposition is assumed fully-packed

while the total volume fraction �jtotal;k is equal to 0.5 - the value observed by comparison of
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total thickness of deposition between experimental and ideal results.

This proposed model can also be applicable for the FGM-T test. The only changes of

input parameters in simulations are: (1) there are only two groups, aluminum and HDPE

respectively; (2) the densities of these two powders are di�erent.

2.4 Results and Discussions

The numerical modeling is based on Stokes' law, which is applicable for the laminar �ow.

To determine whether the sedimentation process is still in the range of a Stokes �ow, we

calculate the maximum Reynolds number (Re) of the whole system based on the dilute

suspension formulation as follows:

Vcr = 2r2crg(�p��l)
9�l

=
2�(32:74�10�6)

2
�9:81�(2:699�0:789)�103

9�1:074�10�3

= 4:16� 10�3 m=s
(2.4.1)

and

Re =
�l � Vcr � dcr

�l
=

0:7892� 103 � 4:16� 10�3 � 65:48� 10�6

1:074� 10�3
= 0:2 (2.4.2)

where Vcr and rcr (dcr) are the settling velocity and the radius(diameter) of particle with

critical size; and �l is the viscosity of pure ethanol. Shabestari et al. (1995) veri�ed that

the whole system is under laminar �ow if the Reynolds number (Re) of is less than 0.2.

Based on this, the critical particle size dcr is 65.48 microns using the Eqs.(2.4.1) and (2.4.2);

laminar �ow will happens for an aluminum particle settling in ethanol if the size is smaller

than critical particle size. For all particles and about 97% particles in the group of Al-104

and Al-101 are, respectively, smaller than critical particle size. Therefore, Stokes' law could

be applied in numerical modeling for these two cases of FGM-T test, containing Al-101 and

Al-104, as well as Al-T test. Notice that in actual experiments, the particles may not be

able to reach the critical velocity in Eq.(2.4.1) due to the change of e�ective viscosity and
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density, so the actual critical particle size can be higher than 65.48 microns.

For the Al-T test only containing aluminum powder, Figure 2.4.1 shows the numerical

simulation results using the sedimentation con�guration in Section 2.2. The proportion

distribution of each group, say Group A, B, or C, in the depth direction from the bottom to

the top is illustrated with a curve, which well compares with the experimental data shown

with circles. Obviously, at the top the small particles of Group A are dominated; whereas

at the bottom the large particles of Group C are the majority as observed in Figure 2.2.4.

In Figure 2.4.1(a), the proportion of Group A particles gradually increases from the bottom

to the top. The numerical results slightly overestimate the experimental results. In Figure

2.4.1(b), the proportion of the medium size of Group B particles increases �rst, reaches a

maximum, and then decreases. Both the experiments and the numerical simulation show

the same trend but the simulation results amplify the variation. Figure 2.4.1(c) shows

the proportion of the large size of Group C particles decreases from the bottom to the top.

Notice that in the experiments, only �ve layers are measured and the average values are used.

The variation of the experimental results could be higher if more layers can be accurately

measured. However, considering the resolution of our instrument and our test procedure, we

choose �ve layers in the present experiments balancing the workability and accuracy.

In the sedimentation process, the parameters, such as height of suspension, particle size

distribution, density of particle and matrix liquid, play important roles to a�ect vertical

compositional distribution of �nal deposition. The understanding of the correlation among

these parameters and the end results of the FGM will extremely important for the material

design and optimization. The present numerical simulation and modeling framework provides

a very valuable tool to reveal the correlations.

Given a set of material, the volumetric design of the sedimentation may change the end

results. Figure 2.4.2 illustrates the e�ects of the suspension height on volume fraction distri-

bution of each group in the depth direction. Using the same aluminum-ethanol suspension

as the one in experiments, two more cases of suspension height 40mm and 160mm, respec-
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tively, are considered. The sedimentation processes can be simulated in the computer; upon

the completion of sedimentation, the �nal proportion distributions in the depth direction of

the three groups A, B, and C are illustrated in Figures 2.4.2 (a), (b), and (c), respectively.

Although the proportion distributions for the three cases follow the same trends, the propor-

tion variation of the three groups A, B, and C in the depth direction is considerably lower for

the height of 40 mm compared with that for 160 mm. Therefore, the lower the suspension

height, the smaller the material gradation.

Furthermore, the proposed numerical model has been extended to the FGM-T tests,

which contain three types of aluminum powders mixed with HDPE powder into ethanol,

to simulate the volume fraction of aluminum particles along the depth direction of deposit

body.

Figure 2.4.3(a) illustrates the volume fraction of Al changing along the depth of the

deposition for the case of Al-104. The simulation results show that the volume fraction of

aluminum increases from the bottom to the top because the size of HDPE is much larger than

Al particles, which causes higher settling speed. However, the experiments show that volume

fraction of Al particles starts high at the bottom, reduces to a minimum in the middle, and

then increases again at the top. In addition, the distribution curves vary signi�cantly in

the replicates. This implies the instability of sedimentation process for this set of mixture.

Because the higher density of Al may cause the higher settling speed but the smaller size of Al

particles causes lower settling speed, other factors, such as the e�ective density and viscosity,

may produce signi�cant e�ect on the sedimentation process. In general, the HDPE particles

may �rst settle faster than aluminum particles and deposit in the bottom layer; then it may

start �oating because of the e�ective density of ethanol increases caused by the concentration

of aluminum powders. Moreover, the �ner aluminum particles could in�ltrate through the

bigger particles of HDPE even though the deposit body is almost packed. Therefore, the

proposed model may not fully take into account of these factors. It is observed that the

experimental volume fraction of aluminum in the bottom layer is always higher theoretical
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results. Future investigation of these factors is underway.

Figure 2.4.3(b) illustrates the results for cases of Al-101 and Al-111, which exhibit good

agreement between the experiments and the modeling results. Notice that because the case

of Al-111 simply exhibits a bi-layered microstructure of the deposition and the Reynolds

number of the particle sedimentation may also be higher than 0.2, the modeling results may

be trivial for this case. However, when the solid load is higher in the suspension, the above

trend will be signi�cantly changed, which is still under the investigation. For the case of Al-

101, both Al and HDPE particles fall in the same size range and their motion in the ethanol

belongs to laminar �ow, very good agreement between the modeling and experimental results

is observed.

Based on the present modeling and experimental results, it is demonstrated that the

sedimentation process can successfully produce graded mixtures of Al and HDPE particles,

which will be used to fabricate Al-HDPE functionally graded materials. Future research is

to investigate workability for sedimentation process with higher solid load, so as to scale up

the manufacture process for mass production of solar roo�ng panels.
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(a)

(b)

(c)

Figure 2.4.1: Comparison between experimental and theoretical results for proportion of (a)
group A (ra < 1:9 �m), (b) group B (1:9 � rb � 3:8 �m) and (c) group C (rc > 3:8 �m) at
location from the bottom to the top
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(a)

(b)

(c)

Figure 2.4.2: Theoretical compositional distribution of each group at location from the
bottom to the top from present model when total height of suspension is (a) 40 mm; (b) 80
mm and (c) 160 mm
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(a)

(b)

Figure 2.4.3: Comparison between experimental and theoretical result for volume fraction
of aluminum at location from the bottom to the top in the case of: (a) Al-104 + HDPE; (b)
Al-101 or Al-111 + HDPE
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Chapter 3

Sedimentation Behavior of a Single

Ellipsoidal Drop

An approach based on Eshelby's equivalent inclusion method is presented to derive the

Stokes �ow of an ellipsoidal drop moving in a Newtonian �uid at small Reynolds number. The

inclusion problem is �rst introduced that the drop with the same material properties as the

�uid is subjected to a body force and a �ctitious non-mechanical strain rate, which is called

eigenstrain rate. Then the original problem is solved by the equivalent inclusion method, in

which the drop is replaced with an inclusion but an eigenstrain rate is introduced to represent

the mismatch between the drop and the rest �uid. The drag force on the drop is obtained

by the integral of the distributed body force over the drop volume bypassing the boundary

integral of the stress distribution on the particle surface. This chapter demonstrates the

theoretical framework of this method considering one drop moving in a Newtonian �uid.

When the drop is spherical, the solution recovers the closed form classic solution for a drop

moving in a �uid. This method is general and can be applicable to the cases of di�erent
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shapes of drops and the interaction between multiple drops.

3.1 Overview

In the viscous �uid of small Reynolds number Re, the inertia forces may be disregarded in

the Navier-Stokes equation, which becomes the Stokes equation; and the motion of a falling

spherical object will reach the terminal velocity rapidly, where the drag (frictional) force and

the driving (say buoyant and gravitational) force are exactly balanced. For a rigid sphere

moving in a liquid, the drag force is written in Eq.(1.2.4). This formulation is well known as

Stokes' law to determine the frictional force of a moving solid sphere caused by the viscosity

of the liquid (Batchelor, 1967). As for a spherical drop moving in a di�erent �uid, such

as a gas bubble or insoluble drop, the drag force has been derived in the similar fashion

(Batchelor, 1967). In addition, the drag force of other shapes of objects moving through

liquid has also been investigated, such as ellipsoid and circular disk (Lamb, 1975). In the

above cases, due to condition of the small Re, the governing equations could be simpli�ed

and vorticity �eld and stream function will be solved. Consequently, the stress vector on the

surface is obtained, and the drag force is determined by the integral of surface force.

A closed-form solution to an ellipsoidal drop moving in a di�erent �uid with a no-slip

interface at a small Reynolds number is derived. In case of a Stokes �ow, the hydrodynamic

Green's function is the Stokeslet, which is the fundamental solution of the Stokes equation.

For a point in the viscous liquid applied with a concentrated force F, the velocity �eld v

caused by the force could be written in terms of the Stokeslet as

vi(x) = GijFj (3.1.1)

where Gij is the hydrodynamic Green's function, also known as the Oseen-Burgers tensor,

as follows

Gij =
1

4��

�
�ij

jx� x0j �
1

2

@2jx� x0j
@xi@xj

�
(3.1.2)
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The hydrodynamic Green's function has been derived by several di�erent methods as follows.

Kim and Karilla (1991) have developed the solution of the Stokeslet by making use of the

linearity of the Stokes equations and symmetries of the system with the Fourier transform.

Also, basing on the linearity of the Stokes equations, a physical approach has been derived

by Dhont (1996). Zapryanov and Tabakova (1998) took the divergence of Stokes equation,

and applied the Fourier transform and the fundamental solution of the Laplace equation to

solve the Stokeslet. The Stokeslet will be essential for the derivation in this work, which is

also called the Green's function.

This chapter presents a new approach to derive the drag force using Eshelby's equivalent

inclusion method (EIM). Eshelby (1957; 1959) �rstly studied the stress for an inhomogeneity

in an in�nite matrix under a uniform far �eld stress and proposed that the stress disturbance

caused by the inhomogeneity could be simulated by an inclusion with the same material

properties as the matrix but with a appropriately chosen eigenstrain. This method is coined

as Eshelby's equivalent inclusion method (EIM). The beauty of this method is that the

eigenstrain is a constant when the inhomogeneity is ellipsoidal. The EIM is not only valuable

for the e�ective elastic moduli of composite (Y. Takao et al., 1982; Chen and Cheng, 1996;

Yin et al., 2008a), it but also successfully applied for the prediction of thermal and electric

behavior of composite, e.g., work-harden rate (Huang, 1996), thermal steady-state heat

conduction (Hatta and Taya, 1986) and thermal expansion coe�cient (Takei et al., 1991a,b;

Sakata et al., 2010) and electroelastic moduli (Dunn and Taya, 1993). In the elastic problem

of in�nite domain containing inhomogeneity, the overall elastic �elds, stress, strain and

displacement �eld are the summation of far �eld and disturbed elastic �eld. The elastic

Green's function provides the connection between disturbed strain �eld and eigenstrain of

the equivalent inclusion; the EIM is used to link the eigenstrain of the equivalent inclusion

and far �eld strain �eld together (Mura, 1987).

The EIM has not been used in problems of �uid mechanics yet. Although a �uid has

distinct material behavior from a solid, the mathematical formulation is very similar. The
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main di�culty to use the concept of EIM for a drop moving in a di�erent �uid is that not

only is the material property of the drop di�erent from the matrix �uid, but also a driving

force is applied on the drop. This thesis successfully extends the EIM to the above-mentioned

problem and formulates the velocity and stress �elds in the �uid.

When a drop moves at a constant velocity in an in�nite domain of a di�erent liquid,

the driving force, such as gravity or buoyancy, will be exactly balanced by the drag force

from the viscous �uid. Therefore, given a driving force, if the terminal velocity can be

determined, the correlation between the velocity and the drag force can also be obtained

from the relationship of the velocity and the driving force. Therefore, the drag force can be

directly obtained by the driving force bypassing the boundary integral of the stress vector

over the drop surface.

To �nd the correlation between the driving force and the terminal velocity, the EIM with

a continuous boundary condition will be used. If the drop has the same viscosity as the �uid,

the motion of the drop and the distributed driving force can be directly written in terms

of the integral of Eq.(3.1.1) over the volume of the drop. However, due to the di�erence of

viscosities between the �uid and the drop, the motion of the drop will surely be di�erent.

Using the EIM, the viscosity mismatch between the drop and the �uid can be simulated by

introducing an eigenstrain rate. Then the overall velocity �eld will be written in terms of

the combination of the velocity �eld caused by the driving force and the velocity �eld caused

by the eigenstrain rate.

The method is general and can be extended to a many-particle system by numerical

methods (Lee et al., 2013). This chapter introduces the theoretical framework of the equiv-

alent inclusion method and provides the analytical solution for an ellipsoidal drop moving

in a di�erent �uid. The remainder of this chapter is organized as follows: Section 3.2 intro-

duces the inclusion problem for one ellipsoidal inclusion in an in�nite medium subjected to

a body force and eigenstrain rate. Section 3.3 formulates the EIM problem for an ellipsoidal

drop moving in a viscous �uid and derives the correlation between the driving force and the
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velocity. Finally, Section 3.4 demonstrates the solution for a spheroidal drop and presents

closed form solutions for the case of a spherical drop, solid particle, and air void, which is

consistent with the classic solution. The interfacial continuity of the surface stress vector

and velocity is also discussed.

3.2 The Inclusion Problem

Extending Mura's de�nition (1987) to a �uid system, an inclusion in an in�nite homogeneous

�uid D is de�ned as a subdomain 
, where an eigenstrain rate e�ij(x) or a body force fi(x) is

applied on 
 but is zero on D�
. The viscous properties of the �uids in the inclusion and

the rest (matrix) are the same. This term of inclusion is to di�erentiate another counterpart

- inhomogeneity. An inhomogeneity is a subdomain in a homogenous �uid with di�erent

material properties from the rest. In the following of this section, we focus on the inclusion

problem �rst.

Consider a ellipsoidal inclusion 
 moving in a homogeneous �uid as Figure 3.2.1, where

the ellipsoidal inclusion is de�ned by the function
x21
a21
+

x22
a22
+

x23
a23
� 1 with ai (i = 1; 2; 3) being

the three principal half axes of the ellipsoid. The viscosity is same in the inclusion and the

matrix, written as �0. A body force fi(x) and an eigenstrain e�ij(x) are distributed on the

particle, but are zero in the matrix.

The stress �ij in any position x can be expressed as

�ij = �p�ij + 2�0
�
eij � e�ij

�
(3.2.1)

where the strain rate reads

eij =
1

2
(vi;j + vj;i) (3.2.2)
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Figure 3.2.1: One ellipsoidal subdomain 
 embedded in the in�nite domain D

Both eij and e
�

ij satisfy the mass conservation respectively as

eii = 0; and e�ii = 0 (3.2.3)

Using Eq.(3.2.1) in the equilibrium equation, one can obtain the equation of motion,

written as

2�0eij;i � p;j = �fi(x) + 2�0e
�

ij;i(x); vi;i = 0; x 2 
 (3.2.4)

and

2�0eij;i � p;j = 0; vi;i = 0; x 2 D � 
 (3.2.5)

Notice that outside the inclusion, the equation of motion also reads the Stokes' equation by

substituting Eq.(3.2.2) into it. The velocity and pressure �elds in this inclusion problem is

caused by two sources: the body force and the eigenstrain rate on the right-hand side of

Eq.(3.2.4) in the inclusion domain 
.

Using the Green's function technique (Yin et al., 2006), one can write the velocity and

pressure �elds in the domain D in terms of the integrals of the eigenstrain rate e�ij and the
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applied force fi with the tensorial Green's function G as follows:

vi(x) =

�
D

�
Gik (x;x

0) fk (x
0)� 2�0Gim (x;x0)

@e�mn (x
0)

@x0n

�
dx0 (3.2.6)

and

p(x) = � 1

4�

�
D

�
@�

@xk
fk � 2�0

@�

@xm

@e�mn (x
0)

@x0n

�
dx0 (3.2.7)

where

� (x;x0) =
1

jx� x0j ;  (x;x0) = jx� x
0j (3.2.8)

and the tensorial Green's function is written as

Gij (x;x
0) =

1

4��0

�
�ij�� 1

2

@2 

@xi@xj

�
(3.2.9)

which is the same as the Stokeslet in Eq.(3.1.2). The detailed derivation of Eqs.(3.2.6) and

(3.2.7) is given in Appendix B.

Using the Gauss' theorem, Eqs.(3.2.6) and (3.2.7) can be rewritten as

vi(x) =

�



(Gikfk � 2�0Gim;ne
�

mn) dx
0 (3.2.10)

and

p(x) = � 1

4�

�



(�;kfk � 2�0�;mne
�

mn) dx
0 (3.2.11)

where the eigenstrain rate in the far �eld e�mn = 0 is used. Notice that Eq.(3.2.11) implies

the far �eld pressure is zero. For the case a uniform pressure exists, a constant term of the

pressure will be superposed. Because e�mn = e�nm, using the concept of the modi�ed Green's

function (Kroner, 1990), onecan rewrite Eq.(3.2.10) as

vi(x) =

�



Gikfk � �0�imne
�

mn dx
0 (3.2.12)
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where

�imn = Gim;n +Gin;m (3.2.13)

In the ellipsoidal domain, the body force and the eigenstrain rate are generally contin-

uously distributed, so that they can be written in the polynomial form using the Taylor's

expansion. Then the integral in Eqs.(3.2.10) and (3.2.11) can be explicitly written with the

aid of the identities of the integral of � and  (Mura, 1987; Yin et al., 2006; Yin and Sun,

2006). Appendix C has provided those identities which may be needed in this chapter.

3.3 The Equivalent Inclusion Method

Consider a ellipsoidal drop 
 moving in a homogeneous �uid as Figure 3.2.1, where the

ellipsoidal drop is an inhomogeneity. The viscosity is constant in the drop and the �uid,

written as �1 and �0, respectively. A driving force is uniformly distributed on the particle,

written as

fi(x) =

8>><
>>:

f 0i x 2 


0 x 2 D � 


(3.3.1)

The Stokes equation is written as

2�0eij;i � p;j = 0; vi;i = 0; x 2 D � 
 (3.3.2)

On the drop, the driving force fi(x) makes it move in the �uid. The Stokes equation can

be similarly written as

2�1eij;i � p;j = �fi; vi;i = 0; x 2 
 (3.3.3)

Using Eshelby's equivalent inclusion method, one can assume the particle 
 has the same

viscosity as the �uid, but introduce an eigenstrain rate e�ij(x) in the particle 
 to represent
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the disturbance caused by the mismatch of drop's viscosity. Based on Eshelby's equivalent

inclusion method, e�ij satis�es

�0
�
eij � e�ij

�
= �1eij; x 2 
 (3.3.4)

Here, the eigenstrain rate is a �ctitous non-mechanical �eld, which make the stress �eld in

two problems equivalent (Mura, 1987). Then the original problem with an inhomogeneity can

be treated as an inclusion problem with the eigenstrain rate satisfying Eq.(3.3.4). Therefore,

Eq.(3.3.3) is rewritten as

2�0
@

@xi

�
eij � e�ij

�� @p

@xj
= �fj; vi;i = 0; x 2 
 (3.3.5)

To solve for the eigenstrain rate, it is written in terms of polynomial of x with the origin

at the center of the ellipsoid, such as

e�ij(x) = e0ij + e1ijkxk + e2ijklxkxl + :::; x 2 
 (3.3.6)

For one ellipsoidal inclusion moving in a �uid driven by a constant body force, the strain

rate over the inclusion is linearly distributed (Yin et al., 2006; Yin and Sun, 2006). It can

be seen that only one term e1ijkxk may make the exact solution for one drop problem (Lee

and Yin, 2013). For simplicity, we directly write

e�ij(x) = e1ijkxk; x 2 
 (3.3.7)

where from the de�nition of e�ij, one can write

e1ijk = e1jik and e1iik = 0 (3.3.8)

Notice that, for more than one particles, the eigenstrain rate should be more complex and
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other terms in Eq.(3.3.6) will be non-zero. However, truncating it to linear terms has pro-

duced very accurate results, which will be demonstrated in next chapter (Lee and Yin, 2013).

Substituting Eqs.(3.3.1) and (3.3.6) into Eq.(3.2.12) yields

vi(x) =
1

4��0

�



��
�ik�� 1

2
 ;ik

�
f 0k dx

0 �
�



�0�imne
1
mnpx

0

p

�
dx0 (3.3.9)

Following Mura's book (1987), one can integrate Eq.(3.3.9) as

vi(x) =
1

4��0

��
�ik�� 1

2
	;ik

�
f 0k � �0 (�im�p;n + �in�p;m �	p;imn) e

1
mnp

�
(3.3.10)

where � and 	 denote the integral of � and  over the ellipsoidal particle and �p and 	p

denote the integral of �x
0

p and  x
0

p. These integrals and their derivative terms are explicitly

provided in Appendix C.

Similarly, Eq.(3.2.11) can be rewritten as

p(x) = � 1

4�

�
�;kfk � 2�0�p;mne

1
mnp

�
(3.3.11)

According to Eq.(3.3.10), the derivative of velocity �eld can be obtained as

vi;j(x) =
1

4��0

��
�ik�;j � 1

2
	;ijk

�
f 0k � �0 (�im�p;jn + �in�p;jm �	p;ijmn) e

1
mnp

�
(3.3.12)

Then, strain rate �eld can be determined as

eij(x) =
1

2
[vi;j(x) + vj;i(x)] =

1

8��0

�
Fijkf

0
k �Dijmnpe

1
mnp

�
(3.3.13)

where

Fijk = �ik�;j + �jk�;i �	;ijk (3.3.14)

Dijmnp = �0 (�im�p;jn + �in�p;jm + �jm�p;in + �jn�p;im � 2	p;ijmn) (3.3.15)
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After eij is obtained, substitute Eq.(3.3.6) into Eq.(3.3.4), it can be rewritten as

e�ij = e1ijrxr =
�0 � �1
�0

eij x 2 
 (3.3.16)

Because Eq.(3.3.13) only include the linear terms, the above equation could be rewritten

as

e1ijr =
�0 � �1
�0

eij;r (3.3.17)

The substitution of Eq.(3.3.13) into Eq.(3.3.17) yields

e1ijr =
�0 � �1
8��20

�
Fijk;rf

0
k �Dijmnp;re

1
mnp

�
(3.3.18)

The above relation between e1ijr and f
0
k can be rewritten as

e1ijr = Sijkrf
0
k (3.3.19)

where Sijkr can be solved by the linear equation system with 27 linear algebra equations in

(3.3.18) and will be explicitly provided in the next Section for the case of a spherical drop.

By substituting Eq.(3.3.19) into Eqs.(3.3.10) and (3.3.11), velocity �eld vi(x) and pressure

�eld p(x) can be written in terms of f 0i . Then, the overall velocity of the drop can be

determined as

hvii = 1

V

�



vi (x) dx (3.3.20)

where V is the volume of an ellipsoidal particle. The total drag force Pi can be written in

terms of the body force as

Pi = �V f 0i (3.3.21)

which will be further discussed in Subsection 4.4. The relation between hvii and f 0i can be

obtained in Eq.(3.3.20) and the relation between Pi and f
0
i is given in Eq.(3.3.21); conse-

quently, one can obtain the relation between the drag force and the e�ective velocity.



58

Because all the integrals can be obtained by the identities in Appendix C, which are

given in terms of elliptic integrals, the solution for the pressure and velocity �elds are given

in Eqs.(3.3.11) and (3.3.10), respectively, with e1ijr written in Eq.(3.3.19). In the next section,

we will use a spherical drop as an example to explain the capabilities and applications of the

present method.

3.4 Results and Discussions

This section will demonstrate the present theory through a couple of examples for one drop

moving a Newtonian �uid, including spheroidal and spherical drops. The formulation can

be used to calculate the drag force for the motion of particle systems. The application and

extension of this method to more general cases are also discussed.

3.4.1 Case Study for a Spheroidal Drop Moving in a Fluid

When two of three semi-diameters are equal, the ellipsoidal drop in Figure 3.2.1 becomes a

spheroid drop. According to the derivation in Section 3, the term of e1ijk(x) can be determined

in terms of applied force f 0i , when x is an interior point of 
; and the velocity and pressure

�elds can be calculated in consequence. For example, the motion of a prolate spheroidal drop

with radius (a; a; 2a) and (2a; a; a) are investigated in detail. Given the radii of a spheroidal

drop and applied body force, the velocity of any interested point x at interior or exterior of

spheroid can be determined. In Figures 3.4.1 and 3.4.2, the velocity component v3 at points

along three axes are plotted for two cases that the spheroid drop raising along the long and

short axes, respectively. In each case, three di�erent viscosities of drop, 0.01, twice larger

than viscosity of �uid and in�nite are considered to approximate the inhomogeneities of an

air bubble, a drop and a solid, respectively. When the same body force f 0i is applied, it is

observed that the average raising velocity of spheroidal drop will be a�ected by the viscosity:

the drop with a lower viscosity will have a higher velocity. Besides, the moving orientation of
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the spheroidal drop has di�erent velocities for the Stokes' �ow. For a spheroidal air bubble

(�1 = 0:01) moving along the long axis, the velocity of bubble center approaches 0.4 in

Figure 3.4.1; whereas the velocity will reduce to about 0.15 if it moves along the short axis

in Figure 3.4.2.

(a) (b)

Figure 3.4.1: The comparison of x3�component of velocity at points along (a) x1 and (b)
x3 axes when the the drop moves along the long axis of x3 direction with assumption of
a1 = a2 = 0:5, a3 = 1 and body force f 0i = 1

The velocity vector and the contour of velocity �eld along x1� x3 and x2� x3 planes for
two cases of spheroidal drop (�1 = 2�0) are plotted in Figures 3.4.3 and 3.4.4. According to

the results shown in Figure 3.4.4, the vortex ring will be created in the spheroidal drop when

it moves along the short axis. However, the drop will deform soon due to the concentration of

maximum velocity at both edge, as shown in Figure 3.4.3, when the spheroidal drop raising

edgeways.

3.4.2 Explicit Solution for Spherical Drop

When a1 = a2 = a3 = a, the ellipsoidal drop in Figure 3.2.1 becomes a spherical drop. When

x is an interior point of 
, from Eqs.(3.3.14) ~ (3.3.15), Fijk and Dijmnp for the spherical

drop can be explicitly derived, with the aid of the identities in Appendix C, as

Fijk = �4�

5
�ikxj � 4�

5
�jkxi +

8�

15
�ijxk (3.4.1)
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(a) (b)

(c)

Figure 3.4.2: The comparison of x3�component of velocity at points along (a) x1, (b) x2 and
(c) x3 axis when the the drop moves along the short axis of x3 direction with assumption of
a1 = 1, a2 = a3 = 0:5 and body force f 0i = 1

Dijmnp = �0

2
66666666664
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�
16�
35
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35
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�in�jp

�
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16�
35
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35
�im�jp

�
xn

+
�
16�
35
�ij�mn � 8�

7
�im�jn � 8�

7
�in�jm

�
xp
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77777777775

(3.4.2)

Substitute Eqs.(3.4.1) and (3.4.2) into Eq.(3.3.13); then, Sijkr in Eq.(3.3.19) can be de-

rived from Eqs.(3.3.16) ~ (3.3.18) and can be explicitly written as

Sijkr = �ij�kr + � (�ik�jr + �jk�ir) (3.4.3)
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Figure 3.4.3: The vector and contour of velocity on x1 � x3 (x2 � x3) plane when the drop
moves in the long axis of x3 direction with assumption of a1 = a2 = 0:5, a3 = 1 and body
force f 0i = 1

where 8>><
>>:

 = �0��1
3�0(2�0+3�1)

� = �0��1
�2�0(2�0+3�1)

(3.4.4)

Therefore, the velocity �eld vi (x) from Eq.(3.3.10) can be rewritten as:

vi (x) =

8>>>>>>>>>><
>>>>>>>>>>:

1
3�0(2�0+3�1)

2
664 (3a2�0 + 2a2�1 � 2x2�0) f

0
i

+�0xixkf
0
k

3
775 ; x 2 


1
6�0(2�0+3�1)

2
664 a2� (2�0 + 3�1 + �2�1) f

0
i

+�3 (2�0 + 3�1 � 3�2�1)xixkf
0
k

3
775 ; x 2 D � 


(3.4.5)

where 8>><
>>:

x2 = xixi

� = a
x

(3.4.6)
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(a) (b)

Figure 3.4.4: The vector and contour of velocity on (a) x1 � x3 and (b) x2 � x3 plane
when a spheroidal drop moves in the short axis of x3 direction with assumption of a1 = 1,
a2 = a3 = 0:5 and body force f 0i = 1

Similarly, the pressure �eld p(x) from Eq.(3.3.11) can be rewritten as

p(x) =

8>><
>>:

6�0��1
3(2�0+3�1)

xkf
0
k ; x 2 


1
3
a�2nkf

0
k ; x 2 D � 


(3.4.7)

Here the constant pressure term in the far �eld has not been included. Otherwise, a

uniform pressure term should be superposed in the above equation.

With the known integrals as

8>>>>>><
>>>>>>:

�


a2 dx = 4�a5

3

�


x2 dx = 4�a5

5

�


xixj dx = 4�a5

15
�ij

(3.4.8)
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The average velocity �eld hvii over the drop can be determined as

hvii =
3

4�a3

�



vi (x) dx (3.4.9)

=
2 (�0 + �1) a

2

3�0 (2�0 + 3�1)
f 0i

For three di�erent case, such as spherical solid particle, drop and air void, it is obtained

that 8>>>>>><
>>>>>>:

hviis = 2a2

9�0
f 0i ; for solid sphere �1=1

hviia = a2

3�0
f 0i ; for spherical air void �1 = 0

hviid = 2(�0+�1)a2

3�0(2�0+3�1)
f 0i ; for spherical drop with viscosity �1

(3.4.10)

From Eq.(3.3.21), the total drag force can be determined by substituting Eq.(3.4.10)

Pi = �4�a3

3
f 0i

)

8>>>>>><
>>>>>>:

P s
i = �6�a�0 hvii ; for solid sphere �1 =1

P a
i = �4�a�0 hvii ; for spherical air void �1 = 0

Pi = �2�a�0 hvii 2�0+3�1
(�0+�1)

f 0i ; for spherical drop with viscosity �1

(3.4.11)

The above results of drag force for three di�erent cases show the exactly the same with

the one derived by Stokes' law (Batchelor, 1967). Comparing the velocity and pressure �elds

in Eqs.(3.4.5) and (3.4.7) with the classic solutions (Batchelor, 1967), we found they are also

consistent.

3.4.3 Continuity of the Interface

Although both the EIM and classic solution provide the same results, they follow very

di�erent methodology. The classic solution is formulated from a speci�c boundary value

problem using the continuity of the normal velocity cross the interface ; whereas the EIM is

based on the equivalence of the materials by introducing an eigenstrain rate over the drop.
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Obviously, for one spherical drop moving in a �uid, the velocity continuity has been

exactly satis�ed in Eq.(3.4.5). Notice that the pressure �eld is discontinuous, written as

p+ � p� =
4 (�0 � �1)

3 (2�0 + 3�1)
xjf

0
j (3.4.12)

but the stress vector along the interface is still continuous

nj
�
�+ji
�
r=a

= nj
�
��ji
�
r=a

=
1

a (2� + 3)

��2�xixjf 0j � x2f 0i
�

(3.4.13)

Notice that in the above analysis, no surface tension is considered. Otherwise, a constant

term can be superposed to the pressure �eld in either outer or inner of the sphere, which still

satis�es the governing equation. It means that Eq.(3.4.12) may include one more constant

term. It causes the component of the above stress vector in the surface normal direction may

be discontinuous with the constant pressure term, which should be balanced by the surface

tension of the interface (Batchelor, 1967).

For a general ellipsoidal drop, the velocity continuity across the interface is also guaran-

teed by Eq.(3.2.10) for the continuity of the elliptic integrals in the Appendix C. However,

because the integral of Eqs.(C.0.4) and (C.0.18) is discontinuous for the components of i = j,

which are caused by the integral of a Dirac delta function, the pressure �eld in Eq.(3.2.11) is

generally discontinuous. However, the equivalent condition guarantees the continuity of the

stress vector across the interface. Therefore, for one ellipsoidal drop moving in a Newtonian

�uid, the interfacial continuities of velocity and stress vector can be exactly satis�ed.

The EIM deals with a homogenous �uid system with an eigenstrain rate on the inhomo-

geneities, which can be easily extended to other cases, such as multiple drops with di�erent

sizes. The present method can be implemented through numerical methods to solve general

Stokes �ow problems of heterogeneous �uid systems. In next chapter, the application of the

EIM for the case of two or more particles will be demonstrated (Lee and Yin, 2013; Lee

et al., 2013).
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In general cases of drops moving in a �uid, because the governing equations over the

whole domain have automatically been satis�ed through the Green's function technique, if

the interfacial continuities of velocity and stress vector could be satis�ed, one should obtain

the exact solution. Obviously, the velocity continuity can always be satis�ed. However, the

continuity of stress vector along the interface will depend on the accuracy of the polynomial

form of the eigenstrain �eld over the drop. For ellipsoidal drops, the eigenstrain �eld is

smooth, a few polynomial terms may provide high accuracy. For example, Lee and Yin

(Lee and Yin, 2013) will demonstrate that a linear approximate form of eigenstrain �eld can

provide su�cient accuracy for a two-particle case.

3.4.4 Drag Force and Drop Velocity

Given a body force on a drop, the material di�erence is simulated by an eigenstrain rate.

Once the equivalent inclusion problem is solved, the strain rate and stress �elds can be

obtained. Here the Stokes �ow is considered and so no acceleration of an in�nitesimal

element of the �uid is included in the equilibrium equation. The drag force can be obtained

by the integral of the surface stress vector over the interface, i.e.

Pj =

�
@


ni�ijdx (3.4.14)

Using the Gauss' theorem and the equilibrium equation, the above equation can be

rewritten

Pj =

�



�ij;idx =

�



�f 0i dx = �V f 0i (3.4.15)

where V is the total volume of the drop. Therefore, the drag force on the moving drop is

balanced by the driving force, which is considered as a uniformly distributed body force in

this chapter. This provides Eq.(3.3.21).

Given a driving force, the velocity on the moving drop is not uniform. For simplicity, we
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used the average velocity to represent the drop's velocity, which can be written as

hvji =
�



vj (x) dx =

�



(xjvi);i dx (3.4.16)

where vi;i = 0 has been used. Using the Guass' theorem, the above equation can be written

as

hvji =
�
@


vinixjdx (3.4.17)

Because the velocity is continuous on the interface, the above surface integral is well de�ned.

In general cases, the above integral forms of drag force and velocity are still applicable. For a

solid particle, the velocity is uniform over the drop. The above equation is obvious. Because

the average velocity is also written in term of f 0i , the relation between the drag force and

drop velocity can be obtained.
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Chapter 4

Extension of the Equivalent Inclusion

Method to Multiple Drops

The Eshelby's equivalent inclusion method (EIM) has been presented to investigate the

motion of drops moving in a Newtonian �uid at small Reynolds number caused by the body

force, such as buoyancy or gravity in last chapter. The material mismatch between the drop

and matrix �uids is simulated by a �ctitious nonmechanical strain rate, namely eigenstrain

rate on the drop, which is written in a polynomial form of the local coordinates. Using the

equivalent inclusion condition, the eigenstrain rate on each drop is solved and the velocity

�eld is derived with the Green's function technique. The interaction between a pair of drops

is investigated. The velocities of the drops depend on the relative position, the center-to-

center distance of drops, the viscosity and size of drops. For the case of a pair of identical

spherical drops, the present method using a linear approximation of the eigenstrain rate

has provided a very close solution to the explicit solution provided by Batchelor in 1972

for the average velocity of drops moving in the �uid. If a higher order of the polynomial

form of eigenstrain rate is used, one can expect a more accurate result. Although only two

spherical drops are considered in this chapter, this method is general and can be extended
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to a many-body system with ellipsoidal shape of drops.

4.1 Overview

A pair of drops moving in a viscous �uid have been studied in the past century. Stimson and

Je�ery investigated the motion of two equal or unequal spheres moving parallel to their line

of centers (Stimson and Je�ery, 1926). Goldman, Cox and Brenner determined the terminal

velocity of two identical arbitrary oriented spheres settling in an unbounded �uid at small

Reynolds numbers, either the interactive force and torque due to the translation (Goldman

et al., 1966). After Batchelor's organizing, the translation velocity of two identical rigid

spheres with centers separated by the vector r as

U = �1r
r:U0

r2
+ �2

�
U0 � r

r:U0

r2

�
(4.1.1)

where U0 is the terminal velocity of either rigid sphere falling in isolation, and �1 and �2

are constants corresponding to the ratio of r to radius of sphere a (Batchelor, 1972).

To solve the problems of two spherical inhomogeneities in the in�nite domain, three

standard methods have already been studied. The �rst method is the use of bispherical

(spherical bipolar) coordinates developed by Je�ery to solve electromagnetic �elds related

to Laplace´s equation in 1912 (Je�ery, 1912) . Afterward, it is applied to calculate the

elastic �elds for two voids or rigid spheres by Sternberg and Sadowsky (1952) and Shelley

and Yu (1966). The multipole expansion method is served as the second method. For elastic

problem, it is employed to solve elastic �elds for two voids by Miyamoto (1955; 1958), and

Tsuchida et. al. (1976); Chen and Acrivos (1978) even extended it to general elastic spheres.

Moreover, Ross (1968), Je�ery (1973), and Klingenberg and Zukoski (1990) formalized this

method for the electromagnetic problem. The problem of two identical rigid spheres with

interaction forces and moments embedded in the in�nite domain is solved by Borcea and

Bruno (2001). The last is based on the modi�ed Green's function combined with Eshelby's
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equivalent inclusion method (EIM). Moschovidis and Mura (1975) utilize it to obtain elastic

�elds for two ellipsoidal inhomogeneities. The �rst method requires the numerical solution of

a set of in�nite linear equations for each separation distance between the spheres; the second

requires the derivation of recurrence formulae for relating the coe�cients of the spherical

harmonics (Chen and Acrivos, 1978), and; the last method involves Taylor´s expansions of

the eigenstrain and local strain. Even though all of these methods could provide any desired

degree of accuracy by retaining the appropriate number of terms, the last method provides

convenience for studying the interaction between particles with an analytical expression (Ju

and Chen, 1994a,b). Moreover, it can be used for general ellipsoidal particles (Moschovidis

and Mura, 1975).

To exactly solve the local �eld for an inhomogeneity in an in�nite matrix under a uniform

far �eld stress, Eshelby (1957; 1959) �rstly proposed that the stress disturbance caused by the

inhomogeneity could be simulated by an inclusion with the same material properties as the

matrix but with a appropriately chosen eigenstrain. Eshelby's EIM is not only valuable for

the e�ective elastic moduli of composite (Y. Takao et al., 1982; Chen and Cheng, 1996; Yin

et al., 2008a), it also successfully applied for the prediction of thermal and electric behavior

of composite (Huang, 1996; Hatta and Taya, 1986; Sakata et al., 2010; Takei et al., 1991a,b;

Dunn and Taya, 1993). In the elastic problem of in�nite domain containing inhomogeneity,

the overall elastic �elds, stress, strain and displacement �eld, is the summation of far �eld and

disturbed elastic �eld. Elastic Green's function provides the connection between disturbed

strain �eld and eigenstrain of the equivalent inclusion; the EIM is used to correlate the

eigenstrain of the equivalent inclusion and far �eld strain �eld together (Mura, 1987).

Although two drops moving in a viscous �uid are completely di�erent from two particles

deforming in a matrix in physics point of view, when the drops move slowly, the two problems

share the same mathematical formulation, so that they may be solved in the same approach

too. In this chapter, Eshelby's EIM has been extended to the Stokes �ow of two drops

moving in a viscous �uid. The size, location and viscosity of each drop can be arbitrary.
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This approach is new in �uid mechanics and can be applied to the multiphase �ow problem

with many particles. In this particular study, only two drops are considered. The eigenstrain

rate on each particle is assumed in a polynomial form in the position coordinates by following

Moschovidis and Mura's algorithm (1975), and it can be solved from a linear equation system

numerically. Besides, the interaction between two spherical drops is investigated, the e�ects

on the translational velocity of each drop by several parameters, such as orientation, viscosity

and size of drops, are studied.

The remainder of this chapter is organized as follows: Section 4.2 brie�y reviews the

Eshelby's equivalent inclusion method, and introduces the algorithm to derive the eigenstrain

rate on the drops and the overall velocity and pressure �elds . Section 4.3 demonstrates the

numerical results for case studies, in which a pair of distinct drops are considered. When

two identical spherical drops are considered, the results of present method well agree with

Batchelor's solution (Batchelor, 1972). This method is general and can be extended to a

many-particle system by the numerical methods (Lee et al., 2013).

4.2 Basic Formulation

4.2.1 Introduction to the Equivalent Inclusion Method

Using Mura's de�nition (1987) in a �uid system, an inclusion in an in�nite homogeneous

�uid D is de�ned as a subdomain 
, where an eigenstrain rate e�ij(x) or a body force fi(x) is

applied on 
 but is zero on D�
. The viscosities of the �uids in the inclusion and the rest

(matrix) are the same. On the other hand, an inhomogeneity is a subdomain in a homogenous

�uid with di�erent material properties from the rest. In the following of this section, we focus

on the inclusion problem. Consider one drop 
 with viscosity �1 embedded in a �uid with

viscosity �0 subjected to a body force on the drop. Using Eshelby's equivalent inclusion

method, one can assume the drop 
 has the same viscosity as the �uid, but introduce an

eigenstrain rate e�ij(x) in the particle 
 to represent the disturbance caused by the mismatch
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of drop's viscosity. Based on Eshelby's equivalent inclusion method, e�ij satis�es

�0
�
eij � e�ij

�
= �1eij; x 2 
 (4.2.1)

where the strain rate �eld eij(x) is given by

eij(x) =
1

2
[vi;j(x) + vj;i(x)] (4.2.2)

and the eigenstrain rate is a �ctitous non-mechanical �eld, which make the stress �eld in two

problems equivalent (Mura, 1987). Then, the original problem with an inhomogeneity can

be treated as an inclusion problem with the eigenstrain rate satisfying Eq.(4.2.1). Therefore,

the equation of motion is written as

2�0
@

@xi

�
eij � e�ij

�� @p

@xj
= �fj; vi;i = 0; x 2 
 (4.2.3)

Following our work in last chapter (Yin and Lee, 2013), the velocity and pressure �elds

caused by the body force and eigenstrain rate on the inclusions of an in�nite �uid domain

can be obtained by the Green's function. The velocity �eld vi(x) is given by

vi(x) =

�



Gik (x;x
0) fk � �0�imn (x;x

0) e�mn dx
0 (4.2.4)

and the pressure �eld pi(x) is shown as

p(x) = � 1

4�

�



(�;kfk � 2�0�;mne
�

mn) dx
0 (4.2.5)

where fi(x) is the body force uniformly distributed on the drop; an eigenstrain rate e�ij(x)

can be a continuously tensorial �eld on the drop; and the tensorial and modi�ed Green's
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function are written as

8>><
>>:

Gij = 1
4��0

�
�ij�� 1

2
@2 

@xi@xj

�
�imn = Gim;n +Gin;m

(4.2.6)

with

� (x;x0) =
1

jx� x0j ;  (x;x0) = jx� x
0j (4.2.7)

If the velocity �eld obtained by Eq.(4.2.4) makes the equivalent inclusion condition of

Eq.(4.2.1) exactly satis�ed, one can obtain the exact solution of the original boundary value

problem. When a single drop moves in the �uid, the eigenstrain rate e�ij(x) can be as-

sumed as a linear function , which can be correlated with the body force fi(x). Using the

eigenstrain rate and body force in Eqs.(4.2.4) and (4.2.5), the velocity and pressure �elds

can be expressed explicitly. However, for the cases of two or more drops moving in the

�uid, the eigenstrain rate distribution could be more complex. Instead, the eigenstrain rate

distribution can be written in the polynomial form, and the coe�cients of each order of

the coordinate can be determined separately by numerical method (Moschovidis and Mura,

1975). In what follows, we will �rst go through the single drop solution (Yin and Lee, 2013).

Following the similar steps, we will elaborate the procedure to solve the two drop solution.

4.2.2 Numerical Approach to Single Spherical Drop

For the single spherical drop 
 moving in an in�nite homogenous �uid domain D driven by

a constant body force, set one coordinate system with origin at center of the drop. The body

force fi(x) is written as

fi(x) =

8>><
>>:

f 0i ; x 2 


0; x 2 D � 


(4.2.8)
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however, the eigenstrain rate is expressed in polynomial form as

e�ij(x) =

8>><
>>:

Eij + Eijkxr + Eijklxrxs + :::; x 2 


0; x 2 D � 


(4.2.9)

For the single drop case, as proven later, the eigenstrain rate can be written in term of a

linear function as

e�ij(x) = Eijkxk ; x 2 
 (4.2.10)

The velocity of any points in the �uid can be rewritten by substitution of Eq.(4.2.6) into

Eq.(4.2.4),

vi(x) =
1

4��0

��
�ik�� 1

2
	;ik

�
fk � �0 (�im�p;n + �in�p;m �	p;imn)Emnp

�
(4.2.11)

where �, 	, �pand 	p denote the integral of � and  over the ellipsoidal particle by following

Mura's book (1987) as

8>><
>>:

� =
�


� dx0

	 =
�


 dx0

and
�p =

�


�x

0

p dx
0

	p =
�


 x

0

p dx
0

(4.2.12)

In general, if the eigenstrain rate is given in the polynomial form of Eq.(4.2.9), the strain

rate caused by the constant body force and the eigenstrain rate can be similarly written as

below:

eij(x) = Fijk(x)f
0
k +Dijmn(x)Emn +Dijmnp(x)Emnp + ::: (4.2.13)

where

Fijk = 1
8��0

(�ik�;j + �jk�;i �	;ijk)

Dijmn = � 1
8�

(�im�;jn + �in�;jm + �jm�;in + �jn�;im � 2	;ijmn)

Dijmnp = � 1
8�

(�im�p;jn + �in�p;jm + �jm�p;in + �jn�p;im � 2	p;ijmn) ; etc:

(4.2.14)
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For spherical drops, the above tensors have been explicitly integrated and been provided

in the Appendix C.

To solve for eigenstrain rate, the strain rate eij(x) can be expanded in the Taylor series

as

eij(x) = eij(0) +
@

@xr
eij(0)xr +

@2

@xr@xs
eij(0)xrxs + ::: (4.2.15)

Substituting Eqs.(4.2.9) and (4.2.15) into equivalency equation, shown as Eq.(4.2.1), and

comparing of coe�cient of constants and xr etc., one can obtain

Eij = �0��1
�0

fFijk(0)f 0k +Dijmn(0)Emn +Dijmnp(0)Emnp + :::g
Eijr = �0��1

�0
fFijk;r(0)f 0k +Dijmn;r(0)Emn +Dijmnp;r(0)Emnp + :::g ; etc:

(4.2.16)

where the notation Fijk [0], Fijk;r [0], Dijmn [0], Dijmn;r [0], etc., means that these function

and their derivatives are evaluated at the point 0, the center of spherical drop. After reor-

ganization, the foregoing equation yields

fDijmn(0)� � � IijmngEmn +Dijmnp(0)Emnp + ::: = �Fijk(0)f 0k
Dijmn;r(0)Emn + fDijmnp;r(0)� � � IijmnprgEmnp + ::: = �Fijk;r(0)f 0k

(4.2.17)

where � = �0
�0��1

and I is the unit tensor which maps a tensor to itself through the cor-

responding multiplications. Then the unknowns Eij, Eijr, etc. can be determined from

the linear equation system by numerical method. Notice that for the case of a single drop,

Dijmnp(0) = Fijk(0) = Dijmn;r(0) = 0, one can observed Emn = 0 so that the eigenstrain

rate in Eq.(4.2.10) provides the exact solution (Yin and Lee, 2013). Using the eigenstrain

rate in Eqs.(4.2.4) and (4.2.5), the velocity and pressure �elds at any point in this domain

can be obtained.
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4.2.3 Pair of Spherical Drops Moving in a Viscous Fluid

For the pair of arbitrarily oriented spherical drops, 
I and 
II , moving in a homogenous

�uid domain driven by the constant body force, set two coordinate systems, says 1st and 2nd

system, with origin at point 0 (x1;x2;x3;) and 0 (x1;x2;x3;) respectively, as shown in Figure

4.2.1. Moreover, the corresponding coordinates xi and xi are the 1
st coordinate and the 2nd

coordinate. For an arbitrary point P in the domain, xPi and xPi stand for the corresponding

coordinates in the two systems and their relation is expressed as

xPi = x0i + xPi (4.2.18)

The velocity �eld of any point located in the �uid domain will be the superposition of

the �eld induced by the sources of body forces and eigenstrain rates of the two moving drops

as follows:

vi(x
P) =

1

4��0

�

I+
II

Gik (x;x
0) fk � �0�imn (x;x

0) e�mn dx
0 (4.2.19)

where f Ik and f
II
k are the body force applied on 
I and 
II respectively, and the eigenstrain

rates applied on each drop is written as

e�ij(x) = EI
ij + EI

ijkxr + EI
ijklxrxs + :::

e�ij(x) = EII
ij + EII

ijkxr + EII
ijklxrxs + :::

(4.2.20)

Similarly, the �eld of strain rate in two coordinate systems is the summation as

eij(x
P) = eIij(x

P) + eIIij (x
P)

eij(x
P) = eIij(x

P) + eIIij (x
P)

(4.2.21)

where eIij(x
P) is the strain rate at point P induced by an body force f Ik and eigenstrain

rate e�ij in 
I in 1st coordinate system; eIIij (x
P) is the strain rate at point P induced by an

body force f IIk and eigenstrain rate e�ij in 
II in 2nd coordinate system and so on. According
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to Eq.(4.2.13), these induced strain rates are de�ned as

eIij(x
P) = F I

ijk(x
P)f Ik +DI

ijmn(x
P)EI

mn +DI
ijmnp(x

P)EI
mnp + :::

eIIij (x
P) = F II

ijk(x
P)f IIk +DII

ijmn(x
P)EII

mn +DII
ijmnp(x

P)EII
mnp + :::

(4.2.22)

As mentioned in Eq.(4.2.15), the above strain rates can be expanded in the Taylor series

as

eIij(x
P) = eIij(0) +

@
@xr
eIij(0)x

P
r + @2

@xr@xs
eIij(0)x

P
r x

P
s + :::

eIIij (x
P) = eIIij (0) +

@
@xr
eIIij (0)x

P
r + @2

@xr@xs
eIIij (0)x

P
r x

P
s + :::

eIij(x
P) = eIij(0) +

@
@xr
eIij(0)x

P
r + @2

@xr@xs
eIij(0)x

P
r x

P
s + :::

eIIij (x
P) = eIIij (0) +

@
@xr
eIIij (0)x

P
r + @2

@xr@xs
eIIij (0)x

P
r x

P
s + :::

(4.2.23)

After the Taylor expansion, the strain rates in Eq.(4.2.23) are expressed in terms of the

functions of F I , F II , DI and DII and their derivatives evaluated at origin of two coordinates

0 (x1;x2;x3;) and 0 (x1;x2;x3;). The equivalent condition given by Eq.(4.2.1) in 
I and 
II

with substitution of Eq.(4.2.21) yields

�0
��
eIij(x

P) + eIIij (x
P)
�� e�ij(x

P)
	
= �I1

�
eIij(x

P) + eIIij (x
P)
�
; for P in 
I

�0
��
eIij(x

P) + eIIij (x
P)
�� e�ij(x

P)
	
= �II1

�
eIij(x

P) + eIIij (x
P)
�
; for P in 
II

(4.2.24)

where �I1 and �
II
1 are the viscosity of drop 
I and 
II , respectively.

By substituting of Eq.(4.2.23) into Eq.(4.2.24) and comparing of coe�cient of constants

and xr etc., one can obtain

EI
ij =

�0��
I
1

�0

8><
>:

F I
ijk [0] f

I
k +DI

ijmn [0]E
I
mn +DI

ijmnp [0]E
I
mnp + :::

+F II
ijk [0] f

II
k +DII

ijmn [0]E
II
mn +DII

ijmnp [0]E
II
mnp + :::

9>=
>;

EI
ijr =

�0��
I
1

�0

8><
>:

F I
ijk;r [0] f

I
k +DI

ijmn;r [0]E
I
mn +DI

ijmnp;r [0]E
I
mnp + :::

+F II
ijk;r [0] f

II
k +DII

ijmn;r [0]E
II
mn +DII

ijmnp;r [0]E
II
mnp + :::

9>=
>; ; etc:

(4.2.25)
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and

EII
ij =

�0��
II
1

�0

8><
>:

F I
ijk

�
0
�
f Ik +DI

ijmn

�
0
�
EI
mn +DI

ijmnp

�
0
�
EI
mnp + :::

+F II
ijk

�
0
�
f IIk +DII

ijmn

�
0
�
EII
mn +DII

ijmnp

�
0
�
EII
mnp + :::

9>=
>;

EII
ijr =

�0��
II
1

�0

8><
>:

F I
ijk;r

�
0
�
f Ik +DI

ijmn;r

�
0
�
EI
mn +DI

ijmnp;r

�
0
�
EI
mnp + :::

+F II
ijk;r

�
0
�
f IIk +DII

ijmn;r

�
0
�
EII
mn +DII

ijmnp;r

�
0
�
EII
mnp + :::

9>=
>; ; etc:

(4.2.26)

The functions F I
ijk [0], F

II
ijk

�
0
�
, DI

ijmnp [0], D
II
ijmnp

�
0
�
, DI

ijmn;r [0] and DII
ijmn;r

�
0
�
are all

zero due to the de�nition, then, Eqs.(4.2.25) and (4.2.26) can be simpli�ed

8><
>:

�
DI
ijmn [0]� �I � Iijmn

�
EI
mn + :::

+DII
ijmn [0]E

II
mn +DII

ijmnp [0]E
II
mnp + :::

9>=
>; = �F II

ijk [0] f
II
k

8><
>:

�
DI
ijmnp;r [0]� �I � Iijmnpr

�
EI
mnp + :::

+DII
ijmn;r [0]E

II
mn +DII

ijmnp;r [0]E
II
mnp + :::

9>=
>; = ��F I

ijk;r [0] f
I
k + F II

ijk;r [0] f
II
k

	
; etc:

(4.2.27)

and

8><
>:

�
DII
ijmn

�
0
�� �II � Iijmn

�
EII
mn + :::

+DI
ijmn

�
0
�
EI
mn +DI

ijmnp

�
0
�
EI
mnp + :::

9>=
>; = �F I

ijk

�
0
�
f Ik

8><
>:

DI
ijmn;r

�
0
�
EI
mn +DI

ijmnp;r

�
0
�
EI
mnp + :::�

DII
ijmnp;r

�
0
�� �II � Iijmnpr

�
EII
mnp + :::

9>=
>; = ��F I

ijk;r

�
0
�
f Ik + F II

ijk;r

�
0
�
f IIk
	
; etc:

(4.2.28)

where

�I = �0
�0��

I
1

; and �II = �0
�0��

II
1

(4.2.29)

Solving the linear equation system in Eqs.(4.2.27) and (4.2.28), four unknowns EI
ij, E

I
ijk,

EII
ij and EII

ijk can be determined, and velocity and pressure �eld can be obtained.



78

Figure 4.2.1: Geometry of a pair of spherical drops

4.3 Case Studies

When a pair of spherical drops move together in di�erent viscous �uid, it can be imaged

that the motion of either one drop will be interacted by the other one and become di�erent

compared with the either one moving in isolation. The amplitude of interaction will be

a�ected by the parameters of (1) size; (2) viscosity and (3) corresponding position of drops,

and the e�ect produced by these varied parameters are studied as follows:

Table 1 shows the translational velocity of pair of identical rigid spheres, which the

applied body force f I = f
II = (0; 0; 1) and radius a1 and a2 are both equal to 1, raising

in the �uid (�0 = 1) when the corresponding distance r between two spheres and angle �

varies. The �rst row of the table shows the exact solution, as mentioned in Eq.(4.1.1),

calculated by Batchelor (1972). The second row of the table shows the approximations of

average interior velocity obtained by the present method (EIM) when the eigenstains are

assumed as �rst degree polynomials in the position coordinates. Furthermore, when a pair

of identical horizontally oriented solid spheres
�
�I1 = �II1 =1� with di�erent r , the distance

between centers of spheres, are raising in the �uid (�0 = 1), and the body force applied on

both spheres are the same, f I = f
II = (0; 0; 1), the distribution of x3 component of velocity
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�eld along x1 axis are plotted in Figure 4.3.1. It is obviously observed that the average

velocity within both particle will be reduced when the distances between two spheres is

increasing, in other words, the longer distance, the smaller interaction between two spheres.

Besides, the nonuniform interior velocity, where the inner bound is higher than outer bound,

demonstrates the body rotation of both solid spheres when they are horizontal oriented; and

the body rotation become slower while the interval is larger.

Table 4.1: The x3 component of translational velocity of each one of a pair of identical rigid
spheres for body force f I3 = f II3 = 1 applied on 
I and 
II with a1 = a2 = 1

Distance r = 4 r = 6 r = 8

Angle (�) 0 �
4

�
2

0 �
4

�
2

0 �
4

�
2

Batchelor's (1972) 0.2655 0.2824 0.2994 0.2505 0.2633 0.2761 0.2432 0.2532 0.2632

Present method
0.2656 0.2825 0.2993 0.2505 0.2633 0.2761 0.2433 0.2533 0.2633

(1st degree polynomial)

Figure 4.3.1: The distribution of x3 component of velocity �eld along x1 axis; applied body
force f I3 = f II3 = 1, viscosity of �uid �0 = 1, viscosity of spheres �I1 = �II1 =1, size of drops
a1 = a2 = 1.

Figure 4.3.2 shows the distribution of x3 component of velocity �eld along x1 axis when a

pair of identical horizontally oriented spherical drops with di�erent viscosity
�
�II1 6= �I1 =1�
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are raising in the �uid (�0 = 1), and the body force applied on both spheres are the same,

f
I = f

II = (0; 0; 1). The e�ect on the interior velocity �eld of 
1, which is the left one with

center at origin in Figure 4.2.1, produced by the viscosity change of 
2 is very slight, even

though the change does in�uence the interior and average velocity of 
2. The x3 component

of raising velocity at center of �rst drop 
1 will be slightly increased from 0.2654 to 0.2656,

if the viscosity of second drop 
2 is changed from 2 to 100.

Figure 4.3.3 shows the similar results of distribution of x3 component of velocity �eld

along x1 axis, all the parameters belong to both drops are the same, including viscosity�
�I1 = �II1 =1� and applied body force f I = f

II = (0; 0; 1), except the size a2 � a1 = 1.

The viscosity of �uid �0 and distance � here keeps 1 and 2 respectively. It is investigated

that the size of second drop 
2, the right one in Figure 4.2.1, signi�cantly in�uences the

average velocity of �rst drop 
1. The x3 component of raising velocity at center of �rst drop


1 will be increased from 0.3347 to 0.5738, if the radius of second drop 
2 is expanded from

1 to 2.

Figure 4.3.2: The distribution of x3 component of velocity �eld along x1 axis; applied body
force f I3 = f II3 = 1, distance � = 2, viscosity of �uid �0 = 1, size of drops a1 = a2 = 1,
viscosity of spheres �I1 =1, but �II1 varies.
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Figure 4.3.3: The distribution of x3 component of velocity �eld along x1 axis; applied body
force f I3 = f II3 = 1, distance � = 2, viscosity of �uid �0 = 1, viscosity of spheres �I1 = �II1 =
1, size of drops a1 = 1, but a2 varies.



82

Chapter 5

Fabrication of Aluminum and

High-Density Polyethylene Functionally

Graded Material by the Vibration

Method

Vibration method is one of the numerous ways to fabricate functionally graded materials

(FGMs). This chapter introduces a vibration method to fabricate the thin interlayer of

aluminum (Al) and high-density polyethylene (HDPE) FGMs, whose thermal conductivity is

gradually transited from well conductive side to highly insulative side, for solar roo�ng panels.

Besides, under high-frequency vibration, the particle segregation of larger aluminum particles

settling in the concentrated suspension of smaller high-density polyethylene is investigated.

Altering experimental parameters including vibration time and amplitude, the suspension

exhibits di�erent particle segregation patterns: uniform-like, graded and bi-layered after the

vibration process. The small cylinder �lms of Al-HDPE system FGMs has be fabricated by

the vibration method with appropriate experimental parameters; this method can also be

practically extended to the mass manufacture of large-scale thin interlayer for solar roo�ng
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panel system in the future.

5.1 Overview

For the fabrication of FGM, various manufacture methods have been studied and developed

(Suresh and Mortensen, 1998; Miyamoto et al., 1999). Powder metallurgy (PM) is the

one of the most popular ways including powder stacking, slip casting, plasma spraying,

electrophoretic deposition, gravity sedimentation and vibration etc (Neubrand et al., 2003).

However, some kinds of PM methods, such as powder stacking and sequential slip casting

(Moya et al., 1992), will make stepwise gradient of material with sharp interfaces resulting

in the phenomenon of residual thermal stresses and thermal expansion mismatch along the

interfaces. In this chapter, the fundamental theories and previous experimental works relative

to vibration method are introduced, as well as our present work.

Di�erent species of particles in a concentrated suspension or a granular medium may

segregate under tapping, shaking, vibration or �ow. Understanding of particle segregation

behavior, including Brazil-nut e�ect (BN), reverse Brazil-nut e�ect (RBN) and shear-induced

segregation, is crucial for fabrication of FGM by the vibration method. Brazil-nut e�ect is a

phenomenon indicating the hard and larger particles typically rise to the top while a vertical

vibration is applied; subsequently, the disordered mixture will gradually become ordered

(Jullien and Meakin, 1990). Meanwhile, due to convection mechanism (Knight et al., 1993)

and percolation into voids between large particle during shacking (Jullien and Meakin, 1990;

Rosato et al., 1987), the small particles settle down to the bottom. The segregation behavior

not only depends on the particle size, but also the density and surface roughness (Mobius

et al., 2001; Plantard et al., 2006). On the other side, reverse Brazil-nut e�ect, where the

small particles tend to rise up to the top, is discovered by Shinbrot and Muzzio (1998).

Moreover, Hong et. al. (2001) demonstrated the crossover between BN and RBN relative to

the diameter and mass ratios between two species of particles and the spatial dimension of

simulation.



84

According to the aforementioned principles, the vibration method has been applied to

fabricate FGM with continuous variation for eliminating the interfaces successfully in several

similar setups and process. C.-Y. Lin et al. (1999) have obtained silicon carbide / aluminum

2124 alloy (SiCp/Al 2124) FGM, combination of vertical and rotative vibration is involved

in the manufacture process and followed by powder stacking layer by layer with di�erent

volume fraction of SiCp. J. Fiscina et al. applied the Brazil-nut approach to fabricate

tungsten-cooper (W-Cu) graded alloy (Fiscina et al., 2003, 2004; Ilic et al., 2007). A.J. Ruys

et al. (1996) have developed the thixotropic casting, casting of thixotropic and concentrated

suspensions under vibration, to produce ceramic-metal FGM.

In this present work, aluminum and high-density polyethylene functionally graded ma-

terial (Al-HDPE FGM) is successfully produced by vibration method. Coarse Al powder,

�ne HDPE powder and small portion of ethanol are mixed as high concentrated suspension.

Under vibration with di�erent experimental parameters, the suspension of Al and HDPE

will become graded, bi-layered and uniform-like deposition. After stages of dry, melt and

solidi�cation, the graded solid cylinder is fabricated; and the gradation of volume fraction of

aluminum is determined by density measurement (Rice method) along the depth direction

of specimen. In the future, the simulation of this work will be developed for further design

optimization.

5.2 Experiment

The vibration method is designed to fabricate the aluminum (Al) and high-density polyethy-

lene (HDPE) functionally graded material (FGM) using a vibration table. This equipment

is used to apply the vertical and horizontal vibration to the high-concentrated suspension of

Al and HDPE. According to the size and density, the motion of each particle di�ers under

the vibration; the graded deposition can be obtained if the size of materials and experimen-

tal parameters are appropriately selected. Unlike the sedimentation method mentioned in
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Chapter 2, the vibration method is more suitable for mass production of AL-HDPE FGM

as a rapid and economy manufacture process.

5.2.1 Apparatus and Material Preparation

A vibration table, as shown in Figure 5.2.1(a), produces the vibration to the specimen

�xed on the table; the frequency and amplitude are controlled by the panel, see Figure

5.2.1(b). Three di�erent levels of vibration are selected for the experiment, the corresponding

frequency amplitude are measured and illustrated in Figure 5.2.2, and the vibration behavior

of the table is vertical dominant with minor horizontal motion.

For the material preparation, the coarse aluminum powder (Al-111) with the size from

100 to 600 �m is chosen to mix with the �ner high-density polyethylene (HDPE) powder

with the size from 1 to 100 �m. The particle size distribution of both material are measured

by particle analyzer (Mastersizer 2000, Malvern) and plotted in Figure 5.2.3. Besides, under

scanning electron microscope (SEM) observation, the shape of aluminum and high-density

polyethylene powder is irregular and spherical respectively, see in Figure 5.2.4.

(a) (b)

Figure 5.2.1: Vibration table con�guration: (a) outlook, (b) control panel



86

(a) (b)

(c) (d)

(e) (f)

Figure 5.2.2: The corresponding vibration frequency and amplitude for (a) horizontal and
(b) vertical direction of level 1; (c) horizontal and (d) vertical direction of level 2; and (e)
horizontal and (f) vertical direction of level 3

5.2.2 Experimental Procedure

The whole test procedure is straightforward and containing two major processes, which

details are described as follows:

Production of graded deposition

Beforehand, the goal is to create the AL-HDPE FGM with the gradation of volume fraction

of aluminum from 0 to 50 %, thus, the appropriate volume ratio of aluminum to HDPE is
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Figure 5.2.3: Particle size distributions of aluminum (Al-111) and high-density polyethylene

(a) (b)

Figure 5.2.4: SEM observation of (a) aluminum (Al-111); and (b) high-density polyethylene
powder

chosen as 1 to 3. The solid loading, weight ratio of powder to solution, keeps 72% (wt.) in

the experiment. At the beginning, 7.29 g aluminum powder, 7.71 g high-density polyethylene

powder and 6 g ethanol are introduced as aforementioned proportion in the glass cylinder.

Next, ultrasonic tank and mechanical mixer are simultaneously used to stir the mixture for

1 hour, as shown in Figure 5.2.5(a), until it becomes visually uniform. Shortly after, the

glass cylinder is �xed on the vibration table by plastic clamp; the graded deposition (Figure

5.2.6) is formed after proper vibration is given.

Solidi�cation process

After draining the ethanol o� and air-dry the specimen for 24 hours, the deposition becomes

completely dry. Then, the deposition is placed into the metal mold, applied with 400 g
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weight and heated in the vacuum oven under 180 �C for 10 hours. Eventually, the graded

solid cylinder will be formed after cooling and curing the sample. The cross section of graded

solid cylinder is observed by regular and stereo microscopes as shown in Figure 5.2.7.

(a) (b)

Figure 5.2.5: The fabrication process of (a) mixing; and (b) vibrating the suspension

Figure 5.2.6: Graded deposition obtained after proper vibration

5.3 Results and Discussions

During the process of vibration, varied experimental parameters including amplitude, fre-

quency and time of vibration will a�ect the segregation of aluminum and HDPE particles,
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(a) (b)

Figure 5.2.7: Observation of graded solid cylinder by: (a) stereo microscope (b) microscope

as well as the texture of the deposition. Three di�erent levels of vibration, whose corre-

sponding frequency and amplitude are measured in Figure 5.2.2, are chosen to apply on the

homogenous mixture for 0, 15, 30 and 60 seconds. The results after vibration are displayed

in Figure 5.3.1. There is no gradation occurred even though level 1 vibration has already

continued for 60 seconds. However, the graded deposition could be created while the mixture

is stood under level 2 and 3 vibration for 30 and 15 seconds, respectively. Subsequently, all

aluminum particles tended settling down to the bottom during more longer vibration.

To analyze the gradation, the deposition is divided into �ve layers along the depth di-

rection after air-dry stage, and the density of each layer is measured by the Rice method

(ASTM D-2041) to determine the volume fraction of aluminum. The uniform-like, graded

and bi-layered deposition are produced by the varied vibration parameters, and the results

of gradation are consistent between Figure 5.3.1 and Figure 5.3.2. The gradation of deposi-

tion, which the range of volume fraction of aluminum is from 0 to approximately 50 %, is

stable after level 3 vibration for 15 seconds. Also, after 30 seconds vibration of level 2, the

gradation is exhibited but not as smooth as the result from previous setup. In addition, the

bi-layered and uniform-like gradation are induced by the longer vibration and no vibration,

respectively.
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Figure 5.3.1: Observation of vibration process

Figure 5.3.2: Comparison between di�erent cases for volume fraction of aluminum at location
from the bottom to the top

Compared with the sedimentation method, the vibration method is more practical for

mass production of Al-HDPE FGMs for the following reasons: (1) Quicker fabrication process

- It is time-saving to create graded deposition by vibration method, on the contrary, it will
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takes hours of the sedimentation method. (2) Material saving - the solid loading chosen

in sedimentation method is 20% whereas the vibration method is 72%; in other words,

the consumption of ethanol become relatively less if the vibration method is applied even

though it will be recycled for multiple usage. This test procedure is the framework and will

be extended to manufacture the original size (2
0 � 2

0

) of Al-HDPE FGM interlayer for solar

roo�ng panel system in the near future. Quantitative simulation and modeling of the loss of

the stability of the uniform mix under vibration is underway.
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Chapter 6

Performance of Novel Hybrid Solar

Roo�ng Panel

A hybrid solar panel has been invented to integrate photovoltaic (PV) cells onto a sub-

strate through a functionally graded material (FGM) with water tubes cast inside, through

which water serves as both heat sink and solar heat collector. Therefore, the PV cells can

work at a relatively low temperature while the heat conduction to the substrate can be min-

imized. Solar panel prototypes have been fabricated and tested at di�erent water �ow rates

and solar irradiation intensities. The temperature distribution in the solar panel is measured

and simulated to evaluate the performance of the solar panel. The �nite element simulation

results are very consistent with the experimental data. The understanding of heat transfer

in the hybrid solar panel prototypes will provide a foundation for future solar panel design

and optimization. The �nite element model is general and can be extended for di�erent

material design and other size of panels.

6.1 Overview

Solar panels have become a very promising and popular approach to collect solar energy.

Currently solar panel products in market mainly use photovoltaic (PV) cells for the elec-
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tricity generation. PV technology has achieved tremendous progress since the invention in

1839. However, there is still signi�cant research need in the aspects of e�ciency improve-

ment and life-cycle cost reduction. For the single crystalline single junction Si technology,

the conversion e�ciency keeps lower than 30% (Levy, 2007; Shockley and Queisser, 1961).

Thus a large portion of solar energy is wasted through heat dissipation (Nozik, 2001; Odeh

and Behnia, 2009). Although some emerging technologies can considerably improve energy

utilization e�ciency, such as multi-junction cells (Kaplar et al., 2000), optical frequency

shifting (Trupke et al., 2002), multiple exciton generation cells (Schaller and Klimov, 2004),

hot carrier cells (Ross, 1982) and concentration photovoltaic system (Vincenzi et al., 2009),

these technologies require high cost and complex service conditions, and thus have not been

commercially used in solar roo�ng panel yet.

Solar thermal technology provides another way to use the thermal energy of solar insola-

tion. Solar thermal collectors have been applied to domestic (bath, cooking, space heating

and swimming pool heating etc.) and commercial sectors (pre-heating of boiler and hospitals

etc.). Typically, energy payback time (EPBT) for solar thermal system is much less than

that of PV systems. The EPBT of PV system can be reduced by using it in a hybrid system

integrating PV with solar thermal components, such as hot water (HW) tubes (Crawford

et al., 2006). The combination of the above two approaches is not a simple superposition of

the materials and costs, but provides a viable solution to signi�cantly increase overall energy

utilization e�ciency while alleviating the disadvantages of a single approach (Zondag, 2008).

A PV-thermal collector enables heat harvesting while improving the PV utilization e�ciency

by controlling the temperature of PV modules. Currently, some groups have studied the per-

formance of PV-thermal hybrid systems (Vorobiev et al., 2006; Kraemer et al., 2008), which

provide the good justi�cations of the solar hybrid approaches.

In this work, we developed a novel functionally graded material (FGM) based hybrid

solar panel as Figure 1.3.4 (Yin, 2009). A PV surface layer, transferring the photo energy

into electricity, is bonded to a structural substrate plate through a functionally graded ma-
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terial (FGM) interlayer. The FGM contains aluminum powder dispersed in a high density

polyethylene (HDPE) matrix with a graded microstructure seen in the left top of Figure

1.3.4. Water pipelines are cast within the FGM to control the panel's temperature. The

substrate, namely, plastic lumber made of recycled polymer, provides mechanical loading

support and heat insulation of the roof.

FGMs are characterized by continuous variation of the volume fraction of the constituents

(Miyamoto et al., 1999). FGMs have attracted signi�cant interests among researchers and

engineers because of their unique thermo-mechanical properties and microstructures (Yin

et al., 2008c, 2007, 2004). The e�ective material properties, such as thermal conductivity,

vary continuously in the gradation direction and keep constant in the plane normal to the

gradation direction (Yin et al., 2008c). In the following experiment, the Al powder concen-

tration gradually decreases from the top to the bottom. Thus the thermal conductivity also

decreases gradually from the top to the bottom of the FGM layer.

The remainder of this chapter is organized as follows: Section 6.2 introduces the hybrid

solar panel prototype fabrication, and testing instruments and procedure. In Section 6.3,

the irradiation space uniformity of the metal halide lamp and the temperature distribution

of the solar panel are characterized. A �nite element model (FEM) is implemented using

ABAQUS to simulate the thermal transfer characteristics of the solar panel. The FEM

results are compared with the experimental data. Finally, the overall energy e�ciency of the

solar panel is evaluated based on the testing results.

6.2 Experimental Setup and Procedure

6.2.1 Solar Panel Fabrication

The hybrid solar panel has been fabricated for photovoltaic (PV), hot water utilization

through a multilayered con�guration. The PV cells used in the panels are commercial single

crystalline Si solar cells with an open circuit voltage Voc of 0.55 V , short circuit current Isc of

4400 mA and an energy conversion e�ciency �pv of 13% at room temperature (25�C). The
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length, width and thickness of the solar cell are 12.5 cm, 12.5 cm and 270 �m, respectively.

Pure Al powder and high density polyethylene (HDPE) matrix are used to fabricate the

FGM layer. The thermal conductivity of Al and HDPE are 238 W=m:K and 0.26 W=m:K,

respectively. The HDPE and Al powder are mixed layer by layer with a continuously changing

proportion such as 50% Al volume fraction in the bottom and pure HDPE in the top of a

mold. The mix within the mold is baked in a vacuum at 200�C for 1.5 hrs and is then

solidi�ed with dimensions of 30.5 cm � 30.5 cm � 1.5 cm. A vacuum sintering process is

employed to bond the FGM layer with the plastic lumber substrate which is made of recycled

polymeric materials. The water tubes made with copper (Cu) pipes with a diameter of ~6

mm are cast into the FGM layer with a separation of 2.5 cm. Thermal conductive paste

with a conductivity of 1.9 W=m:K is used as an adhesive between the PV, and FGM layers.

The complete panels are degassed in a vacuum oven at 90�C for 2 hrs.

The photovoltaic (PV) layer can transfer a portion of the solar energy to electricity.

The thin PV layer improves the heat conduction and structural integrity within the panel,

and protects the polymer materials underneath from UV radiation. The high percentage of

aluminum (Al) powder in top surafce of the FGM makes rapidly heat transfer into the water

tubes, but below them the heat conduction is blocked by the HDPE and the plastic lumber

substrate. The hot water, whose temperature is partially controlled by the �ow rate, can be

directly utilized by water heating systems for domestic usage.

6.2.2 Testing Method

Eight T type thermal couples (+=�1�C) are attached on the panels to detect the temperature
distribution of the PV cells and water. The solar panels are tested in a solar room equipped

with a metal halide lamp, which can provide irradiation up to 4 KW=m2. The panel is

�xed on a wood frame with 45 degree tilt angle so that the panel surface is normal to the

irradiation. A pyranometer is used to measure and calibrate the solar irradiation. A mass

�ow meter is used to control the cooling water �ow rate. The experimental data is collected
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with the data acquisition system. The whole system testing set up is shown in Figure 6.2.1.

Figure 6.2.1: Solar panel testing setup

The performance of the solar panels are characterized in the following way: The solar

panels are put in the solar room under di�erent irradiations of 850 W=m2 and 1100 W=m2.

Before the water �ow starts, the solar panel surface temperature is automatically measured

with an interval of 2 seconds until the panel reaches a stabilized temperature. Then the water

�ow is introduced with the inlet water temperature at 20�C. The �ow rate is controlled by

the mass �ow meter at 33ml=min and 66ml=min for the irradiations of 850W=m2 and 1100

W=m2, respectively. These water �ow rates are determined by some trial-error tests so that

the panel can be e�ectively cooled and the outlet water temperature keeps in a range between

32� 34�C. The irradiation levels are chosen to cover a small range around the AM1.5 (1000

W=m2) condition. The PV cell and water temperatures are recorded continuously until the

panel temperature stabilizes again.
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6.3 Results and Discussions

6.3.1 Irradiation Space Uniformity

During the tests, we use a metal halide lamp to simulate solar irradiation. The space uni-

formity of the irradiation is examined through 25 point measurement on the panel surface

where is equally divided into 25 square areas. The 25 measuring points are uniformly dis-

tributed in the 25 square areas. Two di�erent irradiation settings of 850 W=m2 and 1100

W=m2 are tested. The two dimensional irradiation contour maps are shown in Figure 6.3.1.

Irradiation maps are approximately symmetric within the panel with respect to the center

point which receives the highest irradiations. It is reasonable as the panel surface is normal

to the irradiation with the center aligned to the lamp. The coe�cients of variation of the

25 point measurements are 2.9% and 3.3% for the irradiation of 850 W=m2 and 1100 W=m2,

respectively.

(a) (b)

Figure 6.3.1: Contour map of the solar irradiation on the panel surface for (a) 850 W=m2

and (b) 1100 W=m2
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6.3.2 Temperature Distribution

Seven thermal couples are attached on the surface of the solar panel to evaluate the temper-

ature distribution, as shown in Figure 6.3.2, which also indicates the direction of water �ow

along the water tube by the arrows. For the data analysis conveniences, the sensor point

number sequence follows the water �ow direction. The eighth thermal couple is attached in

the outlet water tube to test the outlet water temperature.

Figure 6.3.2: Position of thermal couples and water �ow direction

Figure 6.3.3(a) shows the equilibrium temperature of the 8 points without and with water

�ow of 33 ml=min under the irradiation of 850 W=m2, and Figure 6.3.3(b) without and with

water �ow of 66 ml=min under the irradiation of 1100 W=m2. It can be seen that even the

irradiation map has the center high pattern, most region of solar panel still can be uniformly

heated up, as the variation of the high equilibrium temperatures among the 7 points is within

+=� 2�C. With the water �ow introduced, the temperatures of the 7 points monotonically

increase with the point number sequence. As the higher the point number, the more thermal

energy the water absorbed, and the less the cool e�ect. Figure 6.3.4 shows the temperature
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variation with time at two di�erent irradiations and water �ow conditions. Before the water

�ow starts, the solar panel surface temperatures increase fast with time and then gradually

saturate at around 50�C and 55�C at the time around 7700 s ~ 8100 s for the irradiation of

850 W=m2 and 1100 W=m2, respectively. With the water �ow introduced, the temperatures

sharply dropped and then stabilized at around 32�C ~ 38�C. The outlet water temperature

is around 32�C ~ 34�C. These results show that water tubes integrated with FGM layers

can e�ectively cool the PV cells.

(a) (b)

Figure 6.3.3: Equilibrium temperatures of each point at conditions of (a) irritation: 850
W=m2, water �ow rate: 33 ml=min, (b) irritation: 1100 W=m2, water �ow rate: 66 ml=min

6.3.3 Finite Element Simulation

FEM Model and multilayer discretization

A commercial software package ABAQUS is used to simulate heat transfer across the solar

panel. The model and grid generation of solar panel is shown in Figure 6.3.5. The panel is

discretized into eight layers in vertical direction including PV cells, thermal conductive paste,

and six FGM layers with gradient variation of percentage of HDPE and aluminum. Within

layer 4 and 5, there are 11 water tubes uniformly distributed. The thickness of copper tube

is 1 mm and inner diameter is 4 mm. More grids are generated around tube area for better
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(a) (b)

Figure 6.3.4: Temperature variation with time diagram for (a) irritation: 850 W=m2, water
�ow rate: 33 ml=min, (b) irritation: 1100 W=m2, water �ow rate: 66 ml=min

accuracy due to the curvature of water tube and �uid heat transfer characteristics.

Material speci�cation

Within each FGM layer, material is assumed to be homogeneous, and the e�ective thermal

conductivity can be calculated based on following equation (Yin et al., 2005).

k = kB
��
h
1 + ��2

4

i
+ (1� �)

�kB
kA
�
h
1 + ��2

4

i
+ (1� �)

(6.3.1)

where kA, kB is the thermal conductivity of particle phase A and matrix B, respectively,

which stand for two constitution particulate materials for the FGM layer, e. g. the Al and

HDPE powders. � is volume fraction of particle phase A, and �, � are de�ned as (Yin et al.,

2005)

� =
3kA

kA + 2kB
; � =

kA � kB
kA + 2kB

(6.3.2)

By using the thermal conductivity values of 238 W=m:K and 0.26 W=m:K for Al and

HDPE, respectively, the e�ective thermal conductivity of HDPE/Al matrix with di�erent

volume fraction can be calculated. Table 6.1 lists the dimension and properties of each layer
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Figure 6.3.5: FEM Model and grid generation for (a) whole of solar Panel, (b) close up of
the cross section, and (c) close up of a water tube

and material that are used in the �nite element simulation.

Thermal energy circulation

The total input solar energy Ein is simulated using the numerical integration of the 25 point

irradiation value shown in Figure 6.3.1. A one dimensional thermal conduction model is used

to simulate the heat transfer between and within each layer. The radiation and convection

heat loss can be calculated as:

Erad = � � s � �T 4
pv � T 4

am

�
(6.3.3)

Econ = hc � (Tpv � Tam) (6.3.4)

where �, s, hc, Tpv and Tam are the average surface emissivity of silicon ~ 0.6, Stefan-

Boltzmann Constant ~ 5:67 � 10�8 W=m2:K4, convection coe�cient of air ~ 5 W=m2:K,

panel surface temperature and ambient temperature, respectively (Wieder, 1982; Sopori

et al., 1999). The solar room ambient temperature, Tam., is also continuously recorded with

the range from 25�C to 35�C. A forced convention model is used to describe the heat transfer
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Table 6.1: Thickness and properties of each material used in FEM simulation

between the water and the FGM layers. The Nusselt number is de�ned as (Bejan, 2004)

Nu =
hwD

k
(6.3.5)

where hw is convection heat transfer coe�cient of water , D is water tube diameter, and k

is thermal conductivity of water, which is approximately 0.58 W=m:K. Normally, for fully

developed pipe �ow with uniform wall heat �ux, Nusselt number is given by Nu = 48/11 =

4.36 (Bejan, 2004). For this model, D is the copper pipe diameter of ~ 4 mm, so the heat

convection transfer coe�cient of water is

hw =
Nu � k
D

= 632:2 W=m2:K (6.3.6)

For simplicity, we assume the water temperature increases linearly along the water �ow

path, which can be e�ectively justi�ed by the data in Figure 6.3.3. Once we know the

temperatures of inlet water and outlet water at one time, the temperature distribution of
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water �ow along the full path within the FGM layer can be approximated for heat transfer

simulation in the FEM model.

Simulation results

Figure 6.3.6 shows the equilibrium temperature space distribution in the panel at the con-

dition of the irradiation at 1100 W=m2 and the water �ow rate at 66 ml=min. The red

color and blue color stand for high and low temperatures, respectively. Before the water �ow

starts, the whole panel surface is uniformly heated up, as depicted in Figure 6.3.6(a). When

the water �ow was introduced, the overall panel surface temperature decreased and linearly

distributed from the inlet to outlet position, as shown in Figure 6.3.6(b), which is consistent

with the experimental observations in Figure 6.3.3, where the temperatures of point 1~7

monotonically increase with the point number.

The temperature variation with time of the 7 points on the panel are also simulated

and compared to the experimental results. As the data pro�les of both experiment and

simulation for the 7 points are practically the same, only the results of point 4 are shown

in Figure 6.3.7. Basically, the FEM simulation results well �t to the experiments. There

is a gap (8 % mismatch) between the FEM simulations and experiment data at the initial

stage of the temperature increment. This can probably be related to the non-stability of

the solar room conditions, such as the air circulation or solar irradiation power, which may

contribute to the lower surface temperature of the solar panel compared to simulations. At

the equilibrium conditions without water �ow, the FEM simulations have good agreement

with the experiment data with less than 2.5 % di�erence. At the temperature falling region

after the water �ow introduced, the temperature �uctuation of the experiment data is due

to the variations of the water �ow rate, which is di�cult to control at low �ow rate. Better

�ttings in Figure 6.3.7(b) can be achieved at high water �ow rate, e.g. 66 ml/min, which

normally is more stable compared to 33 ml/min.
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6.3.4 Energy E�ciency Analysis

From the simulation and experimental data, it is found that FGM based water tubes can

e�ectively reduce the panel temperature. For the case of 1100 W=m2 irradiation with 66

ml=min water �ow, the panel temperature can be reduced from 55�C to 35�C (average from

32�C to 38�C). The single crystalline Si solar cell e�ciency is 13 % at room temperature and

normally decreases with temperature. Based on the crystalline Si cell e�ciency temperature

coe�cient of �0:54%=�C characterized in another work (Yang and Yin, 2011), the e�ciency

of the PV cell will downgrade to 10.8% at 55�C and recover to 12.3% at 35�C with the

FGM cooling function. So that the PV cell performance can keep around 95% of that at

room temperature even under 1100 W=m2 irradiation. Using the 25 point irradiation value

in Figure 6.3.1, the total input solar energy Ein on the panel can be numerically calculated

to be 93.9 W and electric energy generated from PV cell is Epv = Ein�12:3% = 11:5W .

In addition, the thermal energy collected by water per second is around Ewater = mwater �
Cwater � �Twater = 1:1 g � 4:18W=g:�C � 12�C = 55:2W . (The outlet water temperature

in around 32�C based on Figure 6.3.4(b)). Thus the overall e�ciency of the panel is � =

(Ewater + Epv) =Ein = (55:2 + 11:5) =93:9 = 71%, which are very promising results compared

to those of traditional PV thermal hybrid solar panels. The energy e�ciency analysis and

comparisons with traditional panels are summarized in Table 6.2.

Table 6.2: Energy and e�ciency summary and comparisons
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(a)

(b)

Figure 6.3.6: Temperature space distributions of the panel at (a) 1100 W=m2 irradiation
without water �ow, (b) 1100 W=m2 irradiation with water �ow of 66 ml=min
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(a)

(b)

Figure 6.3.7: FEM simulation and experimental data of the temperature distribution under
(a) 850 W=m2 irradiation and 33 ml=min water �ow rate (point 4), and (b) 1100 W=m2

irradiation and 66 ml=min water �ow rate (point 4)
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Chapter 7

Conclusions and Future Works

7.1 Summary

This dissertation investigates the fabrication, characterization, and modeling of aluminum

and high-density polyethylene functionally graded material (Al-HDPE FGM), which is in-

tegrated in our novel hybrid solar roo�ng panel system. The major research methods and

results are summarized as follows. Firstly, a simple, economical, and scalable material man-

ufacturing method of sedimentation was successfully employed to fabricate the deposition of

AL-HDPE FGM, and the Stokes' law based modeling was developed to predict the settling

motion of mixed particles of aluminum and high-density polyethylene at a small Reynolds

number. Secondly, in order to improve the simulation of particle sedimentation, the Eshelby's

equivalent inclusion method was initially used to derive the Stokes �ow of an ellipsoidal drop

moving in a viscous �uid. Then, this method was extended to the cases of two or more

spherical drops to discuss the interaction between drops. Thirdly, the vibration method,

which is more e�cient and economical, was introduced as a suitable fabrication method for

mass production of the AL-HDPE FGM. The cylindrical thin �lm of gradient slurry was

successfully created with appropriate experimental parameters and was then sintered into

solid specimens. Finally, the performance analysis of the novel hybrid solar roo�ng panel
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was demonstrated by the experiments and �nite element simulation. The electrical e�ciency

of photovoltaic cells was enhanced due to the integration of an aluminum and high-density

polyethylene functionally graded material (Al-HDPE FGM) interlayer with water tubes cast

inside.

7.2 Key Results

This dissertation has contributed to the following four main aspects related to the fabrica-

tion, characterization, and modeling of aluminum and high-density polyethylene functionally

graded materials:

Fabrication of Al-HDPE FGM by the sedimentation method

The sedimentation behavior of the spherical aluminum powder and the mix of aluminum and

HDPE powder settling in ethanol is investigated. When pure aluminum particles were used,

they were divided into three groups with respect to the particle size. The volume fraction of

each group was measured by the particle analyzer layer by layer along the thickness direction

after the completion of sedimentation and air drying. Similarly, when both aluminum and

HDPE particles were used, the volume fraction of aluminum was determined by the Rice

density measurement. The numerical simulation based on Stokes' law was developed to pre-

dict the sedimentation behavior, which was validated by experimental results. The following

conclusions can be made through the experiments and simulation:

� The present model produces very good prediction of particle size distribution in the

depth direction of the deposition for pure Al-104 particles. Larger solid load and lower

suspension depth (settling distance) of the suspension decrease the material gradation.

� For the case of Al-104 particle mixed with HDPE powder, the complex interaction

between �ner aluminum and larger HDPE particles produces an unstable sedimentation
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process which is not very predictable even with the proposed modeling using a single

particle settling in a �uid with a Stokes �ow.

� For the case of Al-101, very good agreement between the testing and modeling results

is obtained. The results indicate that the sedimentation behavior of particle under

laminar �ow can be predicted by the numerical model based on the Stokes' law.

� For the case of Al-111, the bi-layered microstructure of the deposition is obtained for

the present solid load in suspensions. The proposed modeling may not be applicable

if the whole particle system is not under the laminar �ow.

Based on the modeling and testing results, the following recommendations for future manu-

facture of FGMs in solar roo�ng panels are provided:

1. To make a stable sedimentation process, aluminum particle size should be no less than

the HDPE.

2. To make a rapid sedimentation process, larger aluminum particles and higher solid

load should be used.

3. When the particles are too large, bi-layered microstructures are produced, which should

be avoided. In the current solid load, Al-101 exhibits the best performance for FGM

fabrication. However, the optimal particle size depends on the solid load.

The present numerical simulation and modeling framework provides a reliable and e�ective

tool for future design and optimization of FGM manufacturing for the novel solar panels.

Eshelby's equivalent inclusion method for sedimentation

A new approach using the Eshelby's equivalent inclusion method was presented to study

the mechanical �elds of one ellipsoidal drop moving in a di�erent viscous �uid. The exact

solution of the velocity �eld was obtained in terms of elliptic integrals. The drag force of

the drop can be derived at an given e�ective velocity. When the drop shape is spherical the
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results of the drag force for a single sphere, such as a solid particle, a drop, or an air void

moving in a �uid, are consistent with Stokes' law. The explicit solution of the velocity and

pressure �elds were obtained for both the interior and exterior region of the drop, which is

consistent with the classic solution (Batchelor, 1967).

Furthermore, the present method can be extended to a complicated condition - the in-

teraction of two spherical drops. A similar algorithm, the eigenstrain rate, is assumed as the

polynomial form in the position coordinates, and this was introduced to solve the equation

system due to pair of drops. The e�ect on the translational velocity of each drop produced

by the change of parameter are studied and concluded as follows:

1. For the case of two identical arbitrary oriented solid spheres, the longer interval will

generate less interaction, including smaller translational velocity and body rotation

(no rotation for two vertically oriented drops) of the drops. Moreover, The results

of translational velocity from the present method are almost as same as Batchelor's

solution.

2. For the case of one solid sphere horizontally oriented with another spherical drop, the

change in viscosity of the drop only slightly a�ected the velocity of the solid sphere.

3. For the case of one �xed-size spherical drop horizontally oriented with another varied-

sized spherical drop, the expansion of the varied-sized drop was a signi�cant e�ect on

the velocity of �xed-size drop.

Fabrication of Al-HDPE FGM by the vibration method

The aluminum and high-density polyethylene functionally graded material (Al-HDPE FGM)

has successfully been produced by vibration method. Under high-frequency vertical vibra-

tion, the particle segregates as demonstrated as reverse Brazil-nut e�ect (RBN), where larger

and heavier aluminum particles tend to settle down to the bottom. The density measure-

ment (Rice method) was used to determine the gradation of the volume fraction of aluminum
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along the depth direction of deposition. Di�erent textures of deposition including uniform-

like, graded and bi-layered were created according to di�erent vibration parameters. The

graded deposition of Al-HDPE mixture, in which the volume fraction of aluminum gradually

changes from 0 to 50%, can be stably fabricated when it is subjected to level 3 vibration

(-10~8.5 g; 113.33 Hz) for 30 seconds. This quick and economical method will be extend to

manufacture the original size (2
0 � 2

0

) of Al-HDPE FGM interlayer for solar roo�ng panel

system. Also, it is more suitable for mass production compared with the sedimentation

method.

Performance of novel hybrid solar roo�ng panel

A novel solar panel integrated with photovoltaic cells and water tubes embedded in func-

tionally graded material (FGM) was fabricated. The FGM layer can e�ectively transfer heat

from the PV cells to water tubes and prevent heat transfer to the substrate. The hybrid solar

panel exhibits promising performance with PV cells working at relatively low temperatures.

Considering electricity and thermal energy collection, the overall panel e�ciency is around

71%, which compares favorably with those of traditional PV thermal hybrid solar panels.

A �nite element model was successfully built to simulate the heat transfer characteristics in

the hybrid solar panel prototype and the simulation results were consistent with the exper-

imental data. It provides a general approach for future FGM based solar panel design and

optimization.

7.3 Future Works

In the near future, the characterization of aluminum and high-density polyethylene function-

ally graded material (Al-HDPE FGM) will be continued. After obtaining the graded speci-

men, the thermal properties including the expansion coe�cient, conductivity and di�usivity

along the depth direction can be measured by a thermal dilatometer (Orton, Model 2010C
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Dilatometer) and a NanoFlash thermal di�usivity analyzer (Netzsch, LFA 447 NanoFlash)

layer by layer. Meanwhile, the concepts of Representative Volume Elements (RVE), Eshelby's

equivalent inclusion method (EIM) and homogenization method can be used to inversely de-

termine the volume fraction of aluminum (or polyethylene) according to di�erent e�ective

thermal properties, which are determined by a equipment.

Theoretical study of the Eshelby's equivalent inclusion method will be explored further.

In the simulation of sedimentation, it can be pushed forward into more complicated cases,

such as the many-drops system with di�erent shapes or bounded boundary condition. Fur-

thermore, the e�ective material properties of structural materials, such as concrete and

asphalt, investigated by EIM will be an attractive challenge.

In the long-term, improving the e�ciency of the solar roo�ng panel system will be consid-

ered. Inventing a novel, economical and sustainable manufacturing methodology for FGMs

with high-quality targeted material properties will be a priority. Moreover, the application

of FGM will be extended to the promising materials of structures and infrastructures for

functional purposes of sound resistance, heat insulation and �reproo�ng.
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Finite element simulation, 22, 91, 98, 100, 107
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High-density polyethylene, 1, 9, 16, 20, 22,
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Hydraulic jack, 132, 134, 143�145

Hyper-geometric functions, 140, 141

Modi�ed Green's function, 68, 71

Mura's extended index notation, 157

NanoFlash, 111

Navier-Stokes equation, 9, 48

Numerical method, 50, 64, 70, 72, 74, 142,

143

Particle analyzer, 27, 29, 30, 84, 107

Photovoltaic cells, 3, 16, 22, 25, 91, 94, 107,

110

Representative Volume Elements, 111

Reverse Brazil-nut e�ect, 82, 109

Reynolds Number, 7, 8, 40, 42, 47, 48, 67, 68,

106

Rice Density Measurement, 28, 33, 83, 88,

107, 109

Sedimentation method, 3, 20, 24, 26, 83, 89,

110

Self-consistent method, 10, 36

SEM, 29�31, 33, 34, 84, 86

Stokes' law, 7, 9, 10, 24, 27, 33, 37, 38, 40,
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Stokeslet, 10, 48, 49, 53
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Nomenclature

� Surface emissivity of silicon

� Viscosity of suspension

�0 Viscosity of the pure ethanol solution

�ijk Modi�ed Green's function

hvii Overall velocity of the drop in the direction i

DT Temperature di�erence


 A subdomain of inhomogeneity

k E�ective thermal conductivity

� Volume fraction of particles

� Density of the materials (ethanol, Al and HDPE)

C Speci�c heat

D An in�nite domain of homogeneous �uid

Econ Convection heat loss

eij Strain rate in an in�nite domain D

e�ij Eigenstrain strain rate applied on subdomain 


Ein Input solar energy

Epv Photovoltaic (PV) cell energy

Erad Radiation heat loss
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Ewater Thermal energy from water

F (r) Cumulative particle size distribution of Al powder with size no less than r

fi Body force applied on a subdomain 
 in the direction i

hc Convection coe�cient of air

htotal Height of suspension

hw Convection coe�cient of water

Isc Short circuit current

k Thermal conductivity

n Number of sections in discretization

Nu Nusselt number

P Total momentum of particles

p(x) Pressure �eld in an in�nite homogeneous �uid D

Re Reynolds number

S Cross-section area of tube

s Stefan-Boltzmann Constant

Tam Ambient temperature

Tpv Photovoltaic (PV) cell temperature

vi(x) Velocity �eld in an in�nite homogeneous �uid D

Voc Open circuit voltage
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Appendix A

Hollow Cylinder Test for Bamboo

Bamboo, which has become increasingly popular as a renewable structural material in past

decades, is a natural functionally graded material whose elastic modulus gradually increases

from the inner to the outer surfaces. A hollow cylinder test has been developed to characterize

the strength and sti�ness of bamboo specimens in the cross sectional plane. A hydraulic jack

is used to in�ate rubber hose, which is inserted into a bamboo specimen to apply an inner

pressure. The strains on the inner and outer surfaces of the bamboo are measured under an

increasing inner pressure until that the bamboo specimen splits. The e�ective elastic modulus

of bamboo varies continuously in the radial direction that is tentatively approximated by a

power, exponential and linear function, respectively, each of which includes two parameters

to be determined experimentally. Given an inner pressure, the stress and strain distributions

along the radial direction can be analytically derived for the three forms of elastic modulus

distribution functions, respectively. Fitting the test data with the formulation, we can obtain

the two parameters for each elastic modulus distribution function. Based on the cellular

microstructure and comparison of the elastic modulus distribution, the exponential function

of elastic modulus provides the most reasonable results and is thus recommended for a future

standard test method, which is proposed for bamboo material characterization and quality

control.
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A.1 Overview

The environmental impact of civil engineering infrastructure construction has brought sig-

ni�cant attention to the research community in the last decade (Meyer, 2009). In order to

relieve this burden, researchers, engineers and the construction industry have been highly

interested in non-polluting and sustainable materials for engineering applications (Ghavami,

2009). Bamboo, as a typical natural and renewable material, became increasingly popular as

a structural material in past decades (van der Lugt et al., 2006; Flander and Rovers, 2009;

Panganayi et al., 2010; Pacheco-Torgal and Jalali, 2011; Lee et al., 2012; Mahdavi et al.,

2012). In addition to its environmental considerations, bamboo also has outstanding physi-

cal and mechanic properties, such as excellent strength, good �exibility and lightweight. The

tensile strength of bamboo �ber can be comparable to that of steel (Nogata and Takahashi,

1995), and the average fracture toughness of bamboo can be higher than that of aluminum

alloy (Amada and Untao, 2001). Furthermore, bamboo grows at amazing speeds; it almost

grows to its full size in a few months and �nishes developing within �ve years (Liese, 1995).

In some tropical and subtropical counties, such as China and India, bamboo has al-

ready been used as a practical and economical structural material (Amada and Untao, 2001;

Ghavami, 1988). Thus, analysis for the mechanic properties of bamboo attracts great re-

search interest (Amada et al., 1996, 1997; Chung and Yu, 2002; Yu et al., 2003; Lo et al.,

2004; Silva et al., 2006; Yu et al., 2007; Lo et al., 2008; Shao et al., 2010; Li and Shen, 2011;

Tan et al., 2011; Garcia et al., 2012; Mena et al., 2012). However, bamboo is a natural

FGM and its properties are not as simple as other homogenous material. For example, the

elastic modulus and tensile strength may signi�cantly change in the radial direction. Gener-

ally, the mechanical properties of bamboo depend on �ber volume fraction and distribution.

Because the density of �ber continuously increases from the inner to outer surfaces, the

elastic modulus and tensile strength distribution will follow the similar trend (Nogata and

Takahashi, 1995; Amada and Untao, 2001; Lo et al., 2008). Furthermore, the anisotropy

is another signi�cant characteristic of bamboo. The longitudinal modulus is more than ten
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times the radial and circumferential modulus in some empirical studies (Torres et al., 2007;

U.S. Department of Agriculture Forest Service, 1999).

To appropriately use bamboo in structures, it is crucial to quantify the mechanical prop-

erties of bamboo, including the modulus distribution and loading capacity. Due to the

continuously graded properties in the radial direction and heterogeneous microstructure, it

is di�cult to accurately test mechanical constants point by point. We generally introduce

a prede�ned distribution function of elastic moduli. Through the stress-strain relation at a

few points, we can approximately determine the elastic modulus distribution. To simplify

the analysis of the approximate elastic modulus distribution, bamboo can be assumed to be

a hollow and thick-walled FGM cylinder with axisymmetry. Several research papers have

provided the analytical solution for the stress and displacements distribution of this FGM

cylinder under inner and outer uniform pressures based on di�erent assumptions of elastic

moduli (Tutuncu and Ozturk, 2001; Xiang et al., 2006; Tutuncu, 2007). However, exper-

imental characterization of the FGM material properties of bamboo is still a challenging

problem. A standard test method based on an analytical solution will provide a very useful

approach in understanding the materials and promote their applications by establishing a

uniform standard for safety. The development of the test method can be a good reference of

test methods for other FGM materials or structural members.

This appendix aims to investigate the elastic modulus distribution in the radial direc-

tion of bamboo's cross section and determine the ultimate strength of a bamboo sample. A

hollow cylinder test is developed to characterize the strength and sti�ness of bamboo spec-

imens. A hydraulic jack, an instrument which can in�ate the diameter of rubber hose, is

used to apply pressure along the inner surface of a bamboo specimen during the experiment.

The hoop strains on the inner and outer surfaces of the bamboo specimen are measured by

strain gauges. Assuming the elastic modulus distribution in the radial direction as a con-

tinuous function, we can determine the function by �tting the loading-deformation curves.

The selection of the elastic modulus distribution function should be based on the actual mi-
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crostructure and mechanical characterization. However, because bamboo's cross section is

of a very heterogeneous microstructure, such as varying size and density of bamboo cellulose

�bers with fuzzy boundary, it is di�cult to accurately characterize the microstructural gra-

dation. In addition, the mechanical properties of �bers also vary with its age and location.

Furthermore, because the thickness of bamboo wall is relevantly small compared with the

bamboo culm diameter, di�erent functions may provide comparable results. The selection

of elastic modulus distribution functions should be based on the physical observation and

mathematical soundness. In this work, we investigate three forms of elastic modulus distri-

bution functions as the power, exponential and linear functions, i.e. E (r) = Ei (r=ri)
n; and

E (r) = Eie
�
r�ri
t , respectively. Fitting the test data with the formulation, we can estimate

the two parameters, namely the elastic modulus at the inner surface Ei and gradation pa-

rameter n, � or � of the three distribution functions, respectively, for the elastic modulus

distribution in the thickness direction. We found that the exponential function provides the

most reasonable prediction considering the microstructure and experimental results. There-

fore, it is recommended for the future standard test method. Notice that in the literature, the

exponential distribution of bamboo mechanical properties has been used by several authors

(Nogata and Takahashi, 1995; Amada and Untao, 2001; Silva et al., 2006).

A.2 Formulation

Bamboo is an anisotropic material with micro�bers along the axial direction. Because the

density of micro�bers gradually changes in the radial direction, as shown in Figure A.2.1(a),

the elastic modulus also varies in a similar fashion. This appendix is to investigate the

elastic modulus distribution in the radial direction of the cross sectional plane. The in-

plane Poisson's ratio generally also varies in bamboo stem. Previous studies focused on the

variation in the longitudinal direction (Garcia et al., 2012). Because the variation of the in-

plane Poisson's ratio in the same cross sectional plane is uncertain in a small range, commonly
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a single value of the e�ective Poisson's ratio is used in analysis and simulation for simplicity

(Silva et al., 2006; Torres et al., 2007). In this study, a plane stress problem is considered for

the test con�guration in Figure A.2.1(b), where no constraint in the longitudinal direction

is applied and the stress associated with that direction is assumed to be zero. Furthermore,

in the experimental part, uniform pressure is applied on the inner surface of bulk bamboo

specimen. For simplicity, a single value of the in-plane Poisson's ratio in the cross section

of bamboo specimen will be used for convenience of formulation and implementation of the

test method. It is chosen as the average of in-plane Poisson's ratio in the cross section of the

specimen, which can be obtained by a uniaxial compression test in the radial direction of a

small bamboo specimen taken from the split piece of the bamboo. The e�ect of the in-plane

Poisson's ratio will be discussed later. Without speci�c note, the Poisson's ratio of bamboo

is assumed to be constant at a value of 0.22 following previous work (Garcia et al., 2012).

However, the present work is applicable to the Poisson's ratio at di�erent values. The e�ect

of the varying Poisson's ratio in the radial direction is still open to future investigation.

Figure A.2.1: The cross-section of a bamboo specimen: (a) partial cross section of bam-
boo microstructure, (b) schematic illustration of a hollow cylinder test with uniform inner
pressure q applied to the inner surface

The stress distribution in a hollow thick-walled cylinder, which is predicted by three

di�erent assumptions of elastic modulus distributions, has been investigated. In all of these
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three cases, Ei , ri and t = ro � ri denote the elastic modulus at the inner surface, inner

radius and average thickness of bamboo, respectively. Besides, n, � and � are the material

gradation parameters to show three di�erent types of elastic modulus distribution functions,

respectively.

For an elastic material with the axisymmetry and plain strain assumptions, the strain-

displacement equations are

�r =
dur
dr

; �� =
ur
r
; r� = 0; (A.2.1)

The constitutive law for plane stress problems is written as

�r = C11�r + C12��

�� = C12�r + C11��

(A.2.2)

where C11 and C12 change with r as follows:

C11 =
E (r)

1� �2
; C12 =

E (r) �

1� �2
(A.2.3)

in which the elastic modulus changes in the radial direction and the in-plane Poisson's ratio

� is considered to be constant in the cross section.

The commonly used value of the in-plane Poisson's ratio has been found in the literature

in the range of 0.12 ~ 0.43 (Silva et al., 2006; Garcia et al., 2012; Yu et al., 2011).

Without considering body forces, the equilibrium equation is

d�r
dr

+
�r � ��

r
= 0 (A.2.4)

Substituting Eqs.(A.2.1) and (A.2.3) into Eq.(A.2.2) and then into Eq.(A.2.4), the gov-



139

erning equation in terms of the radial displacement ur and the elastic modulus E (r) becomes

E (r)
h
rur;rr + ur;r � ur

r

i
+ E

0

(r) [rur;r +mur] = 0 (A.2.5)

in which m = � for the plane stress condition. Notice that, if the specimen is long, and the

end is constrained, the formulation can be easily transferred to the plane strain condition by

rede�ning m with m = �
1��

and the corresponding elastic moduli.

For the hollow cylinder with a uniform inner pressure q in Figure A.2.1(b), the boundary

conditions are expressed as

�r jr=ri= �q; �r jr=ro= 0 (A.2.6)

For di�erent types of elastic modulus distribution of E (r), the stress distribution can be

signi�cantly di�erent. In what follows, the three di�erent distribution functions of elastic

modulus will be investigated.

A.2.1 Case I: Power Function Distribution

In this case, the elastic modulus is de�ned as

E (r) = Ei

�
r

ri

�n
(A.2.7)

thus, the �rst derivative of E (r) with respect to r is

E
0

(r) =
nEi
ri

�
r

ri

�n�1
(A.2.8)

By substituting Eqs.(A.2.7) and (A.2.8) into Eq.(A.2.5) to obtain the governing equation

r2ur;rr + r (n+ 1)ur;r + (nm� 1)ur = 0 (A.2.9)
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The displacement for this equation can be solved as

ur = I1r
�(n+k)

2 + I2r
(�n+k)

2 (A.2.10)

where k =
p
n2 + 4� 4nm

Using Eqs.(A.2.1), (A.2.2a) and (A.2.10), constants I1 and I2 are determined with bound-

ary condition Eq.(A.2.6) as

I1 = � 2q(1��2)r
n+k+2

2
i rko

Ei(2m�n�k)(rko�rki )

I2 = � 2q(1��2)r
n+k+2

2
i

Ei(2m�n+k)(rko�rki )

(A.2.11)

in which ri and ro are inner and outer radii, respectively.

Therefore, the stress components are described as

�r =
qr

�n+k+2
2

i

rko�r
k
i

h
r
n+k�2

2 � rkor
n�k�2

2

i
�� =

qr
�n+k+2

2
i

rko�r
k
i

h
2�nm+km
2m�n+k

r
n+k�2

2 � 2�nm�km
2m�n�k

rkor
n�k�2

2

i (A.2.12)

A.2.2 Case II: Exponential Function Distribution

For this case, Xiang et al. reported the exact solution using the Whittaker functions (Xiang

et al., 2006). The conclusions, with modi�cation on assumption of radial elastic modulus,

are listed as below. First, the elastic modulus is de�ned as

E (r) = Eie
�
r�ri
t =

�
Eie

�
�
t
ri

�
e
�
t
r (A.2.13)

Furthermore, the coe�cients from Eq.(A.2.3) are assumed as

C11 = C0
11e

�
t
r; C12 = C0

12e
�
t
r (A.2.14)
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where

C0
11 =

Ei

(1� �2) e
�
t
ri
; C0

12 =
�Ei

(1� �2) e
�
t
ri

(A.2.15)

Substitute Eq.(A.2.13) into Eq.(A.2.5), the governing equation can be written as

ur;rr +

�
�

t
+

1

r

�
ur;r +

�
m�

tr
� 1

r2

�
ur = 0 (A.2.16)

Thus, the general solution for this equation is obtained as

ur =
D1Ma;1

�
�
t
r
�
+D2Wa;1

�
�
t
r
�

p
re

�
t
r

(A.2.17)

whereM�;1

�
�
t
r
�
andW�;1

�
�
t
r
�
are the Whittaker functions (George et al., 2000) with a non-

integer index � ; D1 and D2 are constants to be determined by the boundary conditions;

a = m� 1
2
.

Substituting Eq.(A.2.17) into Eqs.(A.2.1) and (A.2.2) give the expressions of stress dis-

tribution

�r = D1M (r) +D2W (r)

�� = D1M (r) +D2W (r)
(A.2.18)

where

M (r) = C0
11 (1 +m) r�

3
2

p
e
�
t
rMb;1

�
�
t
r
�

W (r) = �C0
11r

�
3
2

p
e
�
t
rWb;1

�
�
t
r
�

M (r) = C0
11 (1 +m) r�

3
2

p
e
�
t
r
�
mMb;1

�
�
t
r
�
+ (1�m)Ma;1

�
�
t
r
��

W (r) = �C0
11r

�
3
2

p
e
�
t
r
�
mWb;1

�
�
t
r
�
+ (m2 � 1)Wa;1

�
�
t
r
��

(A.2.19)

Here b = m+ 1
2
. Fitting with the boundary conditions in Eq.(A.2.6), D1 and D2 can be

calculated as

D1 = qW (ro)
W (ri)M [33](ro)�W (ro)M(ri)

D2 = � qM(ro)
W (ri)M(ro)�W (ro)M(ri)

(A.2.20)
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A.2.3 Case III: Linear Function Distribution

The exact solution for linear distribution is also studied by Xiang et al. (2006) The dis-

placement and the stress distributions are in terms of hyper-geometric functions. The major

features of the procedure to obtain the solution are summarized as follows. The elastic

modulus with slight modi�cation is expressed as

E (r) = Ei + � (r � ri) = Ar +B (A.2.21)

Substitute Eq.(A.2.21) into Eq.(A.2.5), the ordinary di�erential equation of radial dis-

placement can be written as

ur;rr +

�
A

Ar +B
+

1

r

�
ur;r +

�
mA

Ar2 +Br
� 1

r2

�
ur = 0 (A.2.22)

The general solution of Eq.(A.2.22) is determined

ur = C1F

�
�; �; ;� B

Ar

�
r�+C2F

�
��  + 1; � � ; 2� ;� B

Ar

�
r� = C1F1 (r) r

�+C2F2 (r) r
�

(A.2.23)

where F1 (r) and F2 (r) are the hyper-geometric functions (2000), C1 and C2 are constants

to be determined by boundary conditions and

8>><
>>:

 = 1 +
p
5� 4m ; � = �

2

� = 

2
+ 1 ; � = 

2
� 1

(A.2.24)

Substituting Eq.(A.2.23) into Eqs.(A.2.1) and (A.2.2) give the expressions of stress dis-

tribution

�r = C1P (r) + C2N (r)

�� = C1P (r) + C2N (r)
(A.2.25)
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where

P (r) = C11 (r)
�
F

0

1 (r) r
� + (m+ �)F1 (r) r

��1
�

N (r) = C11 (r)
�
F

0

2 (r) r
� + (m+ �)F2 (r) r

��1
�

P (r) = C11 (r)
�
mF

0

1 (r) r
� + (1 +m�)F1 (r) r

��1
�

N (r) = C11 (r)
�
mF

0

2 (r) r
� + (1 +m�)F2 (r) r

��1
�

(A.2.26)

Fitting with boundary condition Eq.(A.2.6), C1 and C2 can be calculated as

C1 = qN(ro)
N(ri)P (ro)�N(ro)P (ri)

C2 = � qP (ro)
N(ri)P (ro)�N(ro)P (ri)

(A.2.27)

A.2.4 Derivation of Two Parameters for Exponential Assumption

of Elastic Modulus

In above subsections of three di�erent cases, the radial displacement ur is expressed in terms

of two parameters for three cases of elastic modulus assumptions. Fitting the expression of

displacement with the experimental data, which are inner and outer hoop strains, the two

parameters can be solved by numerical method . The following is one example of the explicit

derivation for the exponential assumption of the elastic modulus.

For case II, where E (r) = Eie
�
r�ri
t , the radial displacement could be obtained and have

been shown in Eq.(A.2.17) as

ur =
D1Ma;1

�
�
t
r
�
+D2Wa;1

�
�
t
r
�

p
re

�
t
r

where D1 and D2 have been calculated in Eq.(A.2.20), M�;1

�
�
t
r
�
and W�;1

�
�
t
r
�
are the

Whittaker functions and a = m� 1
2
.

Substituting Eq.(A.2.17) into �� =
ur
r
, the hoop strain can be rewritten as

�� =
D1Ma;1

�
�
t
r
�
+D2Wa;1

�
�
t
r
�

p
r3e

�
t
r

(A.2.28)
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From the test data, the inner and outer hoop strain with relative internal pressure is

plotted in Figure A.4.1. Here, K is de�ned as the ratio of hoop strain increment to internal

pressure increment, and Ki and Ko are the ratios for inner and outer surface, respectively.

The optimal Ki and Ko are the slope of lines in Figure A.4.1 and could be solved by least

square method; the de�nition have also mentioned as Eq.(A.4.1)

Ki =
��� jr=ri

�q
; Ki =

��� jr=ro
�q

Substituting Eq.(A.2.20) into Eq.(A.2.28) and then into Eq.(A.4.1) give another expres-

sions of Ki and Ko

Ki =
G1Ma;1(�t ri)+G2Wa;1(�t ri)q

r3i e
�
t ri

Ko =
G1Ma;1(�t ro)+G2Wa;1(�t ro)q

r3oe
�
t ro

(A.2.29)

where

G1 = D1

q
= W (ro)

W (ri)M(ro)�W (ro)M(ri)
=

(1��2)r
3
2
i

p
e
�
t riWb;1(�t ro)

Ei(1+m)[Wb;1(�t ri)�Mb;1(�t ro)�Wb;1(�t ro)�Mb;1(�t ri)]

G2 = D2

q
= M(ro)

W (ri)M(ro)�W (ro)M(ri)
=

(1��2)r
3
2
i

p
e
�
t riMb;1(�t ro)

Ei[Wb;1(�t ri)�Mb;1(�t ro)�Wb;1(�t ro)�Mb;1(�t ri)]
(A.2.30)

Substituting Eq.(A.2.30) into Eq.(A.2.29), Ki and Ko can be rewritten as

Ki =
(1��2)[Wb;1(�t ro)�Ma;1(�t ri)+(1+m)Mb;1(�t ro)�Wa;1(�t ri)]
Ei(1+m)[Wb;1(�t ri)�Mb;1(�t ro)�Wb;1(�t ro)�Mb;1(�t ri)]

Ko =
(1��2)[Wb;1(�t ro)�Ma;1(�t ro)+(1+m)Mb;1(�t ro)�Wa;1(�t ro)]

Ei(1+m)[Wb;1(�t ri)�Mb;1(�t ro)�Wb;1(�t ro)�Mb;1(�t ri)]

�
ri
ro

� 3
2

e
�(ri�ro)

2t

(A.2.31)

Thus, Ei and � can be calculated from Eq.(A.2.31), the nonlinear system of equations

which only includes two parameters, by numerical method .
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A.3 Experiment

The experiment is designed to measure the ultimate radial strength of bamboo by means of

a hydraulic jack. This instrument is used to apply pressure on the inner surface of bamboo

specimens. As the increment of pressure, the inner and outer hoop strains are measured by

strain gauges; and the testing data is used in the following analysis of sti�ness. A hollow

cylinder test setup has been developed by Brovold and Buttlar for asphalt materials, which

is seemly similar to the present test (Brovold and Buttlar, 2001). However, because the size

and material properties of bamboo are signi�cantly di�erent from those of asphalt specimens

that are considered with a unique elasticity, the formulation and test con�guration in the

present test are totally di�erent from the previous one.

A.3.1 Apparatus

A hydraulic jack (Figure A.3.1(a)) is an instrument used to supply uniform inner pressure to

bamboo while the tubing was inserted into the bamboo specimen. By up and down movement

of handle, oil will be pushed away from hydraulic bag to in�atable rubber hose and pressure

gauge through metal tubing, which includes holes in the region contacting with rubber hose

so that the oil can move from the metal tube to the rubber hose; in consequence, rubber

hose will be in�ated to apply uniform pressure to inner surface of bamboo. Hose clamps on

the both side right out of bamboo are used to block the oil inside the hose from leaking. The

value of pressure provided by the jack is displayed by a dial pressure gauge, which is set on

the instrument. In order to avoid damaging the instrument, pressure is gradually increased.

A.3.2 Specimen Preparation

To insert rubber hose into the bamboo specimens smoothly, there is a criterion for specimen

dimensions. The inner diameter of the bamboo should be more than 28 mm and consistent
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Figure A.3.1: The hollow cylinder test con�guration: (a) outlook of hydraulic jack, (b) cross
section of hydraulic jack

around the cylinder within 1.5 mm; also, the length of bamboo can be in a range of 40-70

mm. Notice that due to the plane stress assumption, it is important to keep the specimen

no more than 70 mm to approximately keep the longitudinal stress at zero. The dimensions

of two bamboo specimens are listed in Table A.1. Moreover, strain gauges are attached on

the inner and outer surface of testing specimens to obtain the longitudinal and hoop strain.

Table A.1: Dimensions and ultimate radial strength of bamboo specimens

A.3.3 Test Procedure and Results

After preparation of the bamboo sample shown in Figure A.3.2, tightening up the hose clamp

on the both side right out of bamboo and pressure valve on hydraulic jack are important for

the accuracy of experiment. Slowly increase pressure on the instrument and record the strain

at every increment of 20 psi (0.138MPa). Due to the installation of hose clamp, the sti�ness

of rubber hose might slightly varies from edge to middle, which results in the non-uniform
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pressure distribution on the tubing if there is no restraint of tubing expansion. However, in

this experiment, the bamboo specimen is polished, so that the rubber hose may be well �tted

into the bamboo specimens with minimal space; and the sti�ness of bamboo is much higher

than rubber hose. Considering the sti� constraint of the bamboo and low sti�ness of the

rubber, the stress state in the rubber can be approximated as a hydrostatic stress state under

the hydraulic pressure. Even though the middle of rubber hose will �rst touch with inner

surface of bamboo specimen, the pressure in the middle part applied on bamboo inner surface

may not keep increasing signi�cantly until the rubber hose completely �ts with the bamboo

inner surface. Therefore, a small initial pressure will be required to make a good contact,

and then the inner hydrostatic pressure will uniformly pass to the bamboo specimen. The

e�ect of this initial pressure will be carefully addressed in the calculation of elastic modulus

and strength. The test data is the basis for estimating the unknown parameters (Ei , and

n, � or � ) for elastic modulus distribution in the later analysis. Finally, the ultimate radial

strength will be measured and recorded in Table A.1. Due to lack of perfect axisymmetry

for thickness and microstructure of bamboo, the specimens are always split at the weakest

point, such as the thinnest part. Thus, it is seen that there is no direct relation between the

dimension and ultimate radial strength of the bamboo specimen.

Figure A.3.2: Installation of a bamboo specimen for the hollow cylinder test



148

A.4 Results and Discussion

The test data of hoop strain with relative inner pressure for sample #1 and #2 are plotted

in Figure A.4.1. Here,Ki and Ko are de�ned as the slope, and the ratio of hoop strain

increment to inner pressure increment, of linear �tting line. The relation between hoop

strains and constants Ki and Ko are as below

Ki =
��� jr=ri

�q
; Ko =

��� jr=ro
�q

(A.4.1)

The �tting lines in Figures A.4.1(a) and (b) do not pass and start from origin, which is

di�erent with normal stress-strain diagram. At the beginning of the test, the in�atable

rubber hose did not touch with inner surface of bamboo specimen completely. Consequently,

in the process of fully �tting hose with inner surface of specimen, the hoop strain may be still

zero even there are some pressure already applied. Therefore, only the slope of the �tting

line is used in the data analysis for elastic modulus distribution.

Figure A.4.1: Variation of inner and outer hoop strain increasing with the inner pressure
for: (a) sample #1 and (b) sample #2

Using Eq.(A.4.1) with the slopes of the curves in Figure A.4.1, two unknown parameters

for each elastic modulus distribution function, Ei and n for E (r) = Ei (r=ri)
n, Ei and � for

E (r) = Eie
�
r�ri
t and Ei and � for E (r) = Ei + � (r � ri), can be determined numerically.
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For example, the detail steps for the exponential function are included in Section A.2.4. The

results for two samples in three cases are listed in Table A.2. The calculated elastic modulus

distributions of sample #1 and #2 produced by the three functions are plotted in Figure

A.4.2. The distributions with the power function and the exponential function provide very

close results; whereas the linear function considerably deviates from them.

Table A.2: Determined parameters for three di�erent elastic modulus functions

Figure A.4.2: In-plane elastic modulus distribution �tted by the three functions for: (a)
sample #1, (b) sample #2 with Poisson's ratios at 0.22

Moreover, utilizing Eqs.(A.2.12), (A.2.18), (A.2.25) and the Hooke's Law with these

calculated elastic modulus distributions, the hoop and radial stress and strain distributions

can be predicted under any inner and outer pressure. The predictions of stress and strain are

plotted in Figures A.4.3 and A.4.4, where the specimen is under speci�c internal pressure.

The three elastic modulus distribution functions provide very close predictions of radial
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stress and hoop strain. However, as for hoop stress and radial strain, the prediction of linear

function deviates from the other two considerably.

To verify the accuracy of the analysis for determining the elastic modulus, the theoretical

results are compared with the experimental data. For specimen #1 and #2, the test data of

hoop strain with relative inner pressure is shown in Figure A.4.1. However, the actual inner

pressure applied to the bamboo specimen is lower than the relative inner pressure, because

the initial pressure is not zero when the in�ating tubing just touches the inner surface of the

bamboo. Thus, after zeroing out the initial pressure, test data of hoop strain with actual

pressure are given in Table 3. It is found that there is a good consistency between the

reorganized test data and the theoretical analysis. For specimen #1, the theoretical solution

of the hoop strains on the inner and outer surfaces produced by three methods are all 0.0036

and 0.0022.

Figure A.4.3: Radial and hoop stress distribution using the three elastic modulus distribution
functions under speci�c internal pressures for: (a) sample #1 under 0.84 internal pressure
(MPa), (b) sample #2 under 0.71 internal pressure (MPa)

However, the most accurate and reasonable assumption should be chosen and adopted in

future testing. The microstructure in Figure A.2.1(a) shows the bamboo is made of �bers and

the matrix, which exhibit signi�cantly di�erent strength and elastic modulus (Nogata and

Takahashi, 1995; Amada and Untao, 2001). The density of �ber plays the dominate role on

the e�ective strength and elastic moduli of bamboo; it also becomes the basis for choosing an
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Figure A.4.4: Radial and hoop strain distribution using the three elastic modulus distribution
functions under speci�c internal pressures for: (a) sample #1 under 0.84 internal pressure
(MPa), (b) sample #2 under 0.71 internal pressure (MPa)

Table A.3: Test data of hoop strain with actual internal pressure

appropriate elastic distribution function. It is also mentioned that the volume fraction of �ber

along the radial direction is not linear but curved from the inner to the outer surface in these

studies, for example of Figure A.2.1(a). Thus, for elastic modulus distribution, the power and

exponential functions in terms of radius should be more trustworthy. As shown in Figures

A.4.2~A.4.4, the theoretical solutions for the modulus and the prediction of stress and strain

for the �rst two methods are quite similar. However, because the power function always starts

at zero when , when the bamboo wall is very thick, it may produce non-physical prediction.

Considering the growth curve and microstructure of bamboo (Nogata and Takahashi, 1995),

the exponential distribution function is recommended for future testing. However, the other

two functions can be useful for quality control tests for some FGM composites which are
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designed with the two distribution functions.

As mentioned in Section A.2, the variation of in-plane Poisson's ratio can be in the range

from 0.12 to 0.43 (Silva et al., 2006; Garcia et al., 2012; Yu et al., 2011). To investigate

the e�ect of Poisson's ratio on elastic modulus prediction, di�erent Poisson's ratio, which

the value is 0.15, 0.22 and 0.30, are adopted in the calculation. The comparison of elastic

modulus distribution with exponential function between di�erent Poisson's ratios for each

sample is showed in Figure A.4.5. Considerable di�erences of elastic modulus predictions

are observed at the inner and outer surfaces. In the middle range, di�erent Poisson's ratios

provide the similar results of elastic modulus predictions. Therefore, to accurately predict

the elastic modulus at the inner and out surfaces, rigorous characterization of the in-plane

Poisson's ratio of bamboo is necessary. Otherwise, a commonly used Poisson's ratio, say

0.22, may produce a usable prediction. In addition, the sensitivity of the Poisson's ratio on

elastic modulus prediction depends on the measurements of strains. Obviously, the sample

#2 exhibits a much lower sensitivity than the sample #1.

The maximum in-plane elastic modulus of sample #1 and #2 from analysis are about

1.88and 2.63 GPa. Compared with the elastic modulus, the maximum longitudinal elastic

modulus is much higher; sample #1 and #2 are also tested by uniaxial compression, and

their longitudinal elastic moduli are 29.82 and 35.21 GPa, respectively. The average ratio

between the in-plane elastic modulus and the longitudinal elastic modulus is 0.069. This

anisotropy, where the longitudinal modulus is more than ten times the value of other elastic

constants, is also presented by previous research (Torres et al., 2007; U.S. Department of

Agriculture Forest Service, 1999).

A.5 Summary

This appendix investigates the elastic modulus distribution in the radial direction of bamboo

samples. A hollow cylinder test has been developed and the analytical formulation for the
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Figure A.4.5: Predictions of the in-plane elastic modulus distribution using the exponential
function with Poisson's ratios at 0.15, 0.22 and 0.30, respectively, for: (a) sample #1, (b)
sample #2

elastic �elds has been derived for the axisymmetric problem. Furthermore, experimental

tests and data analysis demonstrate that the radial stress and hoop strain on the inner and

outer surface predicted by three assumptions �t the test data quite well. Combining this

comparison with the consideration of the volume fraction distribution of bamboo �ber along

the radial direction, the exponential distribution function E (r) = Eie
�
r�ri
t is recommended

in future testing.

The anisotropy of bamboo has been mentioned in some empirical studies, and our �nd-

ings are in agreement with them. The average ratio between the radial modulus and the

longitudinal modulus is 0.069, which is in a reasonable range. This analysis and test results

demonstrate the reliability of the proposed hollow cylinder test method. Despite the ad-

vantages of the modulus analysis and hollow cylinder test, it does have its limitation. The

dimensions of bamboo specimens are limited; the inner diameter of specimens has to be

larger than that of the rubber hose and within the range of tubing in�ation. For di�erent

applications of bamboo species, di�erent sizes of the test equipment are recommended in

future implementation.

Based on the demonstrated experiments and formulation, a standard test method is

proposed for investigation of the elastic modulus distribution and the ultimate split strength



154

of bamboo. This study also provides a basis for research on analysis of elastic modulus and

prediction of stress and strain for others hollow FGM cylinders. Further investigation of the

variation of Poisson's ratio in the cross section is underway.
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Appendix B

Derivation of the Velocity and Pressure

Fields Caused by a Concentrated Force

Consider a concentrated force F at a given point x', the above equation can be changed to

�0
@2vj
@xi@xi

� @p

@xj
= �Fjd(x� x

0

); vi;i = 0 (B.0.1)

Following the Papkovich-Neuber general solution (Nemat-Nasser and Hori, 1999), the solu-

tion of the above equation can be constructed as

vi =
bi
�0
� 1

2�0

@ [xjbj + b0]

@xi
(B.0.2)

and

p =
1

2

@2 [xjbj + b0]

@xi@xi
(B.0.3)

where b and b0 are a vector �eld and a scalar �eld, respectively. Substituting Eqs.(B.0.2)

and (B.0.3) into Eq.(B.0.1), one can obtain

bi;jj = �Fid(x� x
0

); and b0;ii = x0iFid(x� x
0

)
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Therefore, the potential theory provide

bi =
1

4�

Fi
jx� x

0j ; and b
0 = � 1

4�

x0iFi
jx� x

0 j (B.0.4)

Using the de�nition in Eqs.(3.2.8) and (3.2.9), one can write

vi =
1

4��0

"
�ij

jx� x
0j �

1

2

@2
��x� x

0
��

@xi@xj

#
Fj = GijFj (B.0.5)

and

p = � 1

4�

@

@xj

Fj
jx� x

0j = � 1

4�

@�

@xj
Fj (B.0.6)
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Appendix C

Expression of the Integral Terms of �, 	,

�p and 	p and Their Derivatives

By following the concept from Mura (1987), Sun and Ju (1999) and Yin's dissertation (2004),

� and 	 denote the integral of the functions � and  over an ellipsoidal inclusion 
 as

8>><
>>:

� =
�


� dx0

	 =
�


 dx0

(C.0.1)

where � and  are de�ned in Eq.(3.2.8). In the following, �p and 	p denote the integral of

�x
0

p and  x
0

p

The the integral terms of �, 	, �p, and 	p and their derivative terms over an ellipsoidal

domain can be derived and expressed as

� =
1

2
[I (�)� xrxrIR (�)] (C.0.2)

�;i = �xiII (�) (C.0.3)
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�;ij = ��ijII (�)� xiII;j (C.0.4)

�p =
1

2
a2pxp [Ip (�)� xrxrIRP (�)] (C.0.5)

�p;i =
1

2
a2P f�ip [IP (�)� xrxrIRP (�)]� 2xp [xiIIP (�)]g (C.0.6)

�p;ij = �a2P [�ipxjIJP (�) + �jpxiIIP (�) + �ijxpIIP (�) + xixpIIP;j (�)] (C.0.7)

	;ij =

8><
>:

1
2
�ij [I (�)� xrxrIR (�)]� 1

2
�ija

2
I [II (�)� xrxrIRI (�)]

�xixj [IJ (�)� a2IIIJ (�)]

9>=
>; (C.0.8)

	;ijk =

8><
>:

��ijxk [IK (�)� a2IIIK (�)]� (�ikxj + �jkxi) [IJ (�)� a2IIIJ (�)]

�xixj [IJ (�)� a2IIIJ (�)];k

9>=
>; (C.0.9)

	;ijkl =

8>>>><
>>>>:

��ij�kl [IK (�)� a2IIIK (�)]� �ijxk [IK (�)� a2IIIK (�)];l

� (�ik�jl + �jk�il) [IJ (�)� a2IIIJ (�)]� (�ikxj + �jkxi) [IJ (�)� a2IIIJ (�)];l

� (�ilxj + �jlxi) [IJ (�)� a2IIIJ (�)];k � xixj [IJ (�)� a2IIIJ (�)];kl

9>>>>=
>>>>;

(C.0.10)

	p;ij =
1

2
a2P

8>>>>>>><
>>>>>>>:

�ipxj [IJ (�)� xrxrIRJ (�)]� �ipxja
2
P [IJP (�)� xrxrIRJP (�)]

+ (�jpxi + �ijxp) [II (�)� xrxrIRI (�)]

�a2P (�jpxi + �ijxp) [IIP (�)� xrxrIRIP (�)]

+2xixjxp (�IIJ + a2P IIJP )

9>>>>>>>=
>>>>>>>;

(C.0.11)
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	p;ijk = a2P

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

1
2
�ip�jk [IJ (�)� xrxrIRJ (�)]

�1
2
�ip�jka

2
P [IJP (�)� xrxrIRJP (�)]

+�ipxj [�xkIKJ (�) + a2PxkIKJP (�)]

+1
2
(�jp�ik + �ij�kp) [II (�)� xrxrIRI (�)]

�1
2
(�jp�ik + �ij�kp) a

2
P [IIP (�)� xrxrIRIP (�)]

+ (�jpxi + �ijxp) [�xkIKI (�) + a2PxkIKJP (�)]

+ (�ikxjxp + �jkxixp + �kpxixj) [�IIJ (�) + a2P IIJP (�)]

+xixjxp [�IIJ (�) + a2P IIJP (�)];k

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

(C.0.12)

	p;ijkl = a2P

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

�ip�jkxl (�ILJ + a2P ILJP ) + (�ip�jlxk + �ip�klxj) (�IKJ + a2P IKJP )

+ (�ij�kpxl + �ik�jpxl) (�ILI + a2P ILIP )

+ (�ij�klxp + �ij�lpxk + �il�jpxk + �jp�klxi) (�IKI + a2P IKIP )

+ (�ik�jlxp + �ik�lpxj + �il�jkxp) (�IJI + a2P IJIP )

+ (�il�kpxj + �jk�lpxi + �jl�kpxi) (�IJI + a2P IJIP )

+�ipxjxk (�IKJ + a2P IKJP );l + (�jpxixk + �ijxkxp) (�IKI + a2P IKIP );l

+(�ikxjxp + �jkxixp + �kpxixj) (�IJI + a2P IJIP );l

+(�ilxjxp + �jlxixp + �lpxixj) (�IJI + a2P IJIP );k

+xixjxp (�IJI + a2P IJIP );kl

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

(C.0.13)

where Mura's extended index notation (1987) is used, namely, repeated lower case indices

are summed up as usual index notation, and; upper case indices take on the same numbers as

the corresponding lower case ones but are not summed. In the above equation, the following

elliptic integrals are used:
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8>>>>>>>>>><
>>>>>>>>>>:

I (�) = 2�a1a2a3
�
1

�
ds

�(s)

Ii (�) = 2�a1a2a3
�
1

�
ds

(a2i+s)�(s)

Iij (�) = 2�a1a2a3
�
1

�
ds

(a2i+s)(a2j+s)�(s)

�(s) =
p
(a21 + s) (a22 + s) (a23 + s)

(C.0.14)

and � is the largest root of the equation

x21
(a21 + �)

+
x22

(a22 + �)
+

x23
(a23 + �)

= 1 (C.0.15)

For a spherical domain, i.e. a1 = a2 = a3 = a, the the integral terms of �, 	, �p, and

	p and their derivative terms can be explicitly derived and expressed as

� =

8>><
>>:

4�
3
�a2 for x > a

2�
�
a2 � 1

3
x2
�

for x � a

(C.0.16)

�;i =

8>><
>>:
�4�

3
�2ani for x > a

�4�
3
xi for x � a

(C.0.17)

�;ij =

8>><
>>:
�4�

3
�3 (��ij + 3ninj) for x > a

�4�
3
�ij for x � a

(C.0.18)

�p =

8>><
>>:

4�
15
�2a3np for x > a

2�
�
1
3
a2 � 1

5
x2
�
xp for x � a

(C.0.19)

�p;i =

8>><
>>:

�4�
15
�3a2 (��ip + 3ninp) for x > a

�2�
15

[� (5a2 � 3x2) �ip + 6xixp] for x � a

(C.0.20)
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�p;ij =

8>><
>>:

4�
5
�4a (��ijnp � �ipnj � �jpni + 5ninjnp) for x > a

4�
5
[��ijxp � �ipxj � �jpxi] for x � a

(C.0.21)

	;ij =

8>><
>>:

4�
15
�a2 [(5� �2) �ij + (�5 + 3�2)ninj] for x > a

4�
15

[(5a2 � x2) �ij � 2xixj] for x � a

(C.0.22)

	;ijk =

8>>>>>><
>>>>>>:

4�
15
�2a

2
664 � (5� 3�2) (�ijnk + �iknj + �jkni)

+15 (1� �2)ninjnk

3
775 for x > a

�8�
15

(�ijxk + �ikxj + �jkxi) for x � a

(C.0.23)

	;ijkl =

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

4��3

15

2
66666666664

� (5� 3�2) (�ij�kl + �ik�jl + �il�jk)

+15 (1� �2) �ijnknl + 15 (1� �2) �klninj

+15 (1� �2) (�iknjnl + �ilnjnk + �jkninl + �jlnink)

�15 (3� 7�2)ninjnknl

3
77777777775

for x > a

�8�
15

(�ij�kl + �ik�jl + �il�jk) for x � a

(C.0.24)

	p;ij =

8>>>>>><
>>>>>>:

4�
105
a3�2

2
664 (7� 3�2) (�ijnp + �ipnj + �jpni)

�3 (7� 5�2)ninjnp

3
775 for x > a

4�
105

[(7a2 � 3x2) (�ijxp + �ipxj + �jpxi)� 6xixjxp] for x � a

(C.0.25)
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	p;ijk =

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

4�
105
�3a2

2
66666666664

(7� 3�2) (�ij�kp + �ik�jp + �jk�ip)

�3 (7� 5�2) (�ijnknp + �kpninj + �iknjnp)

�3 (7� 5�2) (�ipnjnk + �jkninp + �jpnink)

+105 (1� �2)ninjnknp

3
77777777775

for x > a

4�
105

2
6666664

(7a2 � 3x2) (�ij�kp + �ik�jp + �jk�ip)

�6 (�ijxkxp + �kpxixj + �ikxjxp)

�6 (�ipxjxk + �jkxixp + �jpxixk)

3
7777775

for x � a

(C.0.26)
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	p;ijkl =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

4�
35
�4a

2
6666666666666666666666666666664

� (7� 5�2) (�ij�kl + �ik�jl + �il�jk)np

� (7� 5�2) (�jp�kl + �kp�jl + �lp�jk)ni

� (7� 5�2) (�ip�kl + �ik�lp + �il�kp)nj

� (7� 5�2) (�ij�lp + �ip�jl + �il�jp)nk

� (7� 5�2) (�ij�kp + �ik�jp + �ip�jk)nl

+35 (1� �2) (�ijnknlnp + �iknjnlnp + �ilnknknp)
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for r > a
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3
777777777777775

for r � a

(C.0.27)

where 8>>>>>><
>>>>>>:

x = (xixi)
1
2

� = a
x

ni =
xi
x

(C.0.28)
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