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ABSTRACT

Pressure profiles of plasmas confined in the field of a dipole magnet

Matthew Stiles Davis

Understanding the maintenance and stability of plasma pressure confined by a strong

magnetic field is a fundamental challenge in both laboratory and space plasma physics.

Using magnetic and X-ray measurements on the Levitated Dipole Experiment (LDX), the

equilibrium plasma pressure has been reconstructed, and variations of the plasma pressure

for different plasma conditions have been examined. The relationship of these profiles to

the magnetohydrodynamic (MHD) stability limit, and to the enhanced stability limit that

results from a fraction of energetic trapped electrons, has been analyzed. In each case, the

measured pressure profiles and the estimated fractional densities of energetic electrons were

qualitatively consistent with expectations of plasma stability.

LDX confines high temperature and high pressure plasma in the field of a supercon-

ducting dipole magnet. The strong dipole magnet can be either mechanically supported or

magnetically levitated. When the dipole was mechanically supported, the plasma density

profile was generally uniform while the plasma pressure was highly peaked. The uniform

density was attributed to the thermal plasma being rapidly lost along the field to the me-

chanical supports. In contrast, the strongly peaked plasma pressure resulted from a fraction

of energetic, mirror trapped electrons created by microwave heating at the electron cyclotron

resonance (ECRH). These hot electrons are known to be gyrokinetically stabilized by the

background plasma and can adopt pressure profiles steeper than the MHD limit. X-ray

measurements indicated that this hot electron population could be described by an energy

distribution in the range 50-100 keV. Combining information from the magnetic reconstruc-



tion of the pressure profile, multi-chord interferometer measurements of the electron density

profile, and X-ray measurements of the hot electron energy distribution, the fraction of

energetic electrons at the pressure peak was estimated to be ∼ 35% of the total electron

population.

When the dipole was magnetically levitated the plasma density increased substantially

because particle losses to the mechanical supports were eliminated so particles could only

be lost via slower cross-field transport processes. The pressure profile was observed to

be broader during levitated operation than it was during supported operation, and the

pressure appeared to be contained in both a thermal population and an energetic electron

population. X-ray spectra indicated that the X-rays came from a similar hot electron

population during levitated and supported operation; however, the hot electron fraction

was an order of magnitude smaller during levitated operation (< 3% of the total electron

population).

Pressure gradients for both supported and levitated plasmas were compared to the MHD

limit. Levitated plasmas had pressure profiles that were (i) steeper than, (ii) shallower than,

or (iii) near the MHD limit dependent on plasma conditions. However, those profiles that

exceeded the MHD limit were observed to have larger fractions of energetic electrons. When

the dipole magnet was supported, high pressure plasmas always had profiles that exceeded

the MHD interchange stability limit, but the high pressure in these plasmas appeared to

arise entirely from a population of energetic trapped electrons.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

The Levitated Dipole Experiment (LDX) [1, 2] has been built to study the confinement of

plasmas in a magnetic dipole field. One of the principal research objectives of the experiment

is to test whether plasmas confined by a magnetically levitated current ring adopt the highly

peaked density and pressure profiles observed in planetary magnetospheres and predicted

by theory [3, 4, 5, 6]. The pressure profiles are predicted to relax to where the plasma is

marginally stable to the ideal magnetohydrodynamic (MHD) interchange mode [4, 7]:

δ (pV γ) = 0 (1.1)

where p is the plasma pressure, V is the differential flux-tube volume (V ≡
�
dl/B), and γ

is the ratio of specific heats (γ = 5/3 for a three dimensional system). Equation (1.1) states

that the entropy density factor (defined as G ≡ pV
γ) is a constant. Because the flux-tube

volume in a dipole increases dramatically with radius (V ∼ R
4) eq. (1.1) implies that the

pressure increases dramatically near the dipole. The density profiles are predicted to relax

to where the number of particles per unit flux-tube volume is constant [5, 6].
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Dipole confined plasmas have been extensively explored because of their presence in

nature, specifically, planetary magnetospheres, which have largely dipolar magnetic fields.

In the past century, man-made satellites have travelled through planetary magnetospheres

and observed trapped plasma with peaked density [5, 8, 9] and pressure profiles [4]. More

recent studies have brought interest in dipole confinement back to Earth with the possibility

of using a levitated dipole as a nuclear fusion reactor [3, 6, 10, 11].

An important idea behind plasma confinement by a dipole magnetic field is that the

plasma will tend toward invariant density and pressure profiles. Invariant profiles are pro-

files that remain unchanged during interchange motion [6]. For invariant pressure and den-

sity profiles plasma flux-tubes can exchange position without changing either the pressure

or the density profile. The remarkable feature of invariant profiles is that their invariant

nature reflects a flattening of gradients in magnetic flux-space, not real space. Therefore,

if the magnetic flux-tube volume varies greatly in real space, as it does in a dipole field,

the invariant profiles can be very peaked. Equation (1.1), which is derived under the colli-

sional assumption of ideal MHD, describes an invariant pressure profile. The same invariant

pressure profile can be derived with a collisionless gyrokinetic approach [6, 12].

The invariant density profile has an equal number of particles per flux-tube:

δ (nV ) = 0 (1.2)

where n is the plasma density and V is the differential flux-tube volume. For an invariant

density profile an exchange of flux-tubes does not change the density profile [5, 6].

The significance of invariant profiles is that they lack the density, temperature, and

pressure gradients (gradients in magnetic flux-space) that typically drive instabilities in

magnetized plasmas. Like tokamaks, dipole confined plasmas are potentially unstable to
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both pressure gradient driven MHD modes, and density or temperature gradient driven

drift modes. Theoretical studies have shown that stability to the MHD interchange mode

is sufficient for stability to MHD ballooning modes [13, 14]. Studies of drift modes [15, 16,

17, 18] have shown that the critical parameter for stability is η ≡ d lnT
d lnn = ∇T

T /
∇n
n , and the

most stable operating point is η = γ − 1 = 2/3, which combined with eq. (1.1) corresponds

to the invariant density and temperature profiles.

That the invariant profiles correspond to the marginal stability point for MHD inter-

change modes might cause concern since any violation of MHD stability leads to a rapid

loss of the plasma in most plasma confinement devices. However, in the dipole this stabil-

ity limit is viewed as a ‘soft’ limit. Rather than cause a catastrophic loss of the plasma,

MHD interchange modes drive convective cells that act to bring the plasma back to the

marginally stable profile. Quasilinear [19] and nonlinear [20] analyses show that a viola-

tion of the marginal stability criteria causes convective transport that restores the invariant

density and pressure profiles. Gyrokinetic simulations [21] show that entropy-mode driven

transport drives the density and pressure toward their invariant profiles (η = 2/3).

Levitation is critical to the formation of invariant profiles on LDX because it eliminates

losses along the magnetic field. When the magnetic dipole is mechanically supported invari-

ant profiles are not observed. The density profile tends to be flat because thermal particles

are lost along the magnetic field to the supports. The pressure tends to be highly peaked,

which is consistent with the pressure consisting of a hot, mirror trapped electron population

that forms as a result of electron cyclotron resonance heating (ECRH). When the dipole is

magnetically levitated particle losses to the supports are eliminated as particles are able to

travel along the field through the center of the dipole. Previous work on LDX has shown

that when the floating coil is levitated the plasma adopts a nearly invariant density profile
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[22, 23]. It is predicted that the turbulent mixing of flux-tubes that drives the plasma to

adopt the nearly invariant density profile will also drive the plasma toward the invariant

pressure profile.

The work in this thesis aims to (1) measure the pressure profile, (2) examine variations of

the plasma pressure for different plasma conditions, and (3) analyze the pressure gradient,

particularly its relation to the MHD stability limit: δ(pV γ) ≥ 0.

The pressure profile is measured by using magnetic sensors to reconstruct the diamag-

netic current distribution in the plasma [24, 25]. For a plasma in MHD equilibrium, the

gradient of the pressure profile is proportional to the current distribution (∇P = j × B).

Thus, with knowledge of the plasma boundary conditions (i.e., the pressure goes to zero

at the plasma edge) the pressure profile of the plasma can be deduced. Challenges unique

to performing a magnetic reconstruction of the pressure profile on LDX include accounting

for the changes in position and current of the magnetic-flux-conserving, superconducting,

levitated dipole magnet, and distinguishing between hot and thermal electron populations.

Hot electrons (> 50 keV) form on LDX as a result of the electron cyclotron resonance

heating (ECRH) that is used to create and heat the plasma. Distinguishing between the hot

and thermal populations is important because the hot electrons are subject to a different

stability limit than the thermal plasma. Specifically, gyrokinetic stabilization of the hot

electrons by the background plasma allows the hot electron pressure gradient to be steeper

than the MHD limit. The pressure measured by the magnetic reconstruction includes both

the hot electrons and the thermal plasma. Three methods for estimating the portion of

the pressure in the thermal plasma are (1) comparing supported and levitated plasmas, (2)

measuring the decay times of the stored energy [26], and (3) measuring the X-ray emission.

Measurements presented in this thesis show that levitated plasmas adopt pressure profiles



CHAPTER 1. INTRODUCTION 5

that are broader than the pressure profiles observed during supported operation. During

supported operation the plasma pressure gradient is observed to exceed the MHD limit and

X-ray measurements indicate the presence of hot electrons that can be described by a log-

linear energy distribution in the range 50-100 keV. The plasma pressure during supported

operation is interpreted to consist entirely of hot, mirror trapped electrons.

During levitated operation the plasma pressure gradient is less steep than it is during

supported operation. Dependent on plasma conditions the pressure gradient is observed to

exceed or not exceed the MHD limit. Levitated plasmas with pressure profiles that exceed

the MHD limit are interpreted to have a significant portion of the pressure in hot electrons.

X-ray measurements (serving as a proxy for the number of hot electrons) indicate that

plasmas with fewer hot electrons tend to have broader pressure profiles that do not exceed

the MHD limit.

This thesis is organized as follows: Chapter 2 discusses the dipole fusion reactor concept

and the invariant density and pressure profiles that are fundamental to plasma confinement

in a dipole. Chapter 3 describes the experiment and the experiment diagnostics. Chap-

ter 4 details the methodology used to reconstruct the pressure profile from the magnetic

measurements. Chapter 5 describes the results of magnetic reconstructions of the pressure

profile for a variety of plasma shots. Chapter 6 discusses X-ray measurements that are used

to characterize the hot electron population that is present in most LDX plasmas. Chapter 7

analyzes and interprets the observations presented in Chapters 5 and 6. Chapter 8 discusses

conclusions and potential future work.
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Chapter 2

Background

2.1 Fusion energy and the dipole

Designs for generating controlled fusion energy sort broadly into two categories: magnetic

confinement fusion (MCF) and inertial confinement fusion (ICF). The principal ICF design

uses multiple lasers to implode a small capsule of fusion fuel and is being tested at the

National Ignition Facility (NIF) in Livermore, California [27, 28]. The principal MCF

design is the tokamak. The tokamak has been extensively studied and tested over the past

half century and will have its grandest manifestation in ITER (International Thermonuclear

Experimental Reactor) which is currently under construction in Cadarache, France [29, 30,

31]. The promise offered by nuclear fusion, the promise of a practically inexhaustible and

comparatively clean and safe energy source, combined with the difficulty in attaining it, has

led to a plethora of alternative confinement designs in addition to these principal designs.

The dipole is one such alternative magnetic confinement design.

The idea of using a levitated superconducting magnetic coil and a large diameter dipole
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confined plasma as a fusion reactor is credited to Akira Hasegawa for his 1987 paper A Dipole

Field Fusion Reactor [6]. However, the study of dipole confined plasmas far predate this

paper. Interest in dipole confined plasmas has historically been related to their presence

in nature. Planetary magnetospheres have largely dipolar magnetic fields which confine

plasmas that originate in the solar wind. Investigations into the aurora by Birkeland (circa

1903-1909) led to early laboratory plasma experiments with a terrella, or ‘little Earth’ [32].

Later the space age drew considerable attention to plasmas in dipoles as spacecraft traveled

through the magnetospheres of Earth and other planets. These spacecraft discovered large

populations of trapped energetic particles with peaked density [5] and pressure profiles [4].

The dipole fusion reactor was first proposed by Bo Lehnert in 1958 [33, 34] and in the 1960s

Lehnert experimentally examined the possibility of a mechanically supported dipole fusion

device with magnetically shielded current leads [35].

The dipole fusion reactor as envisioned by Hasegawa [6, 10] eliminates losses to mechan-

ical supports and current leads by magnetically levitating a superconducting coil. Plasma

confined in the dipole field can then only be lost via radial, cross-field transport. This leads

to the confined plasma adopting density and pressure profiles that are highly peaked near

the levitated coil

n(R) ∼ R
−4 (2.1)

p(R) ∼ R
−4γ (2.2)

T (R) = p(R)/n(R) ∼ R
−4(γ−1) (2.3)

where γ is the ratio of specific heats (γ = 5/3 for a three dimensional system), R is the

radial coordinate, n(R) is the density, p(R) is the pressure, and T (R) is the temperature.
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From eqs. (2.1) and (2.2), the peak values of the density and pressure are related to the

density and temperature at the plasma edge

npeak = nedge

�
Redge

Rpeak

�4

(2.4)

ppeak = pedge

�
Redge

Rpeak

�4γ

(2.5)

Tpeak = Tedge

�
Redge

Rpeak

�4(γ−1)

. (2.6)

Thus, the basic design for a dipole reactor has a small coil levitated inside of a large vacuum

chamber.

A distinguishing feature of the dipole confinement design compared to other magnetic

confinement designs, such as the tokamak, is that the plasma is confined outside of the

coil. This allows for very good field usage and mitigates issues related to heat dissipation

in the diverter since the geometry allows for a large, cooling expansion of magnetic flux.

Additional merits of the dipole design are that it is inherently steady state and not prone to

major disruptions since it carries only diamagnetic current [3]. Furthermore, the formation

of adiabatic convective cells [36] may allow for the decoupling of the particle confinement

time, τP , from the energy confinement time, τE, such that τE > τP . This would allow for

the use of advanced fuels such as D-D that require the removal of fusion ash products that

can otherwise build up and quench the fusion reaction [11, 37]. The primary drawback to

the dipole design is the presence of the superconducting coil in the middle of the plasma.

However, this engineering difficulty is mitigated by the simplicity of the coil set and its lack

of interlocking coils which allows easy access to the coil for routine maintenance.
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2.2 Invariant profiles

The dipole fusion concept centers around the tendency for dipole confined plasmas to adopt

highly peaked density and pressure profiles. These profiles, which are peaked in real space,

correspond to flattened gradients in magnetic flux-space. For the invariant density profile,

there is an equal number of particles in tubes of equal magnetic flux. For the invariant

pressure profile, the pressure is constant within a magnetic flux-tube and the entropy density

factor (defined G ≡ pV
γ) is equal in tubes of equal magnetic flux. The profiles are termed

invariant because an exchange of flux-tubes leaves the profiles unchanged. The invariant

density and pressure profiles are

nV = constant =⇒ n(R) ∼ R
−4 (2.7)

pV
γ = constant =⇒ p(R) ∼ R

−4γ (2.8)

where γ is the ratio of specific heats (γ = 5/3 for a three dimensional system), and V is the

differential flux-tube volume (defined V ≡
�
dl/B, and for a dipole: V ∼ R

4).

From eqs. (2.7) and (2.8) the invariant temperature profile, T (R), is

T ∝ p(R)/n(R) =⇒ T (R) ∼ R
−4(γ−1)

. (2.9)

The invariant profiles also describe plasmas that are marginally stable to low-frequency

magnetic and electric fluctuations. From gyrokinetics the marginal stability condition is

∂F (µ, J, ψ)/∂ψ = 0, where the particle distribution function is written in terms of the

adiabatic invariants of the particle motion. This condition leads to the invariant profiles

for both the density and the pressure. From MHD, marginal stability to the interchange
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mode (δ(pV γ)=0) leads to the invariant pressure profile. MHD stability of a rotating plasma

corresponds to marginal stability to the centrifugally driven interchange mode (δ(nV ))=0).

Both the gyrokinetic approach and MHD approach are discussed further in the following

sections.

2.2.1 Particle motion in a dipole

A charged particle confined in a strong magnetic field, such as a dipole, performs three

periodic motions that occur on three different time scales. These periodic motions are the

cyclotron motion (ωC), the bounce motion (ωB), and the drift motion (ωD). The frequencies

of these motions are ordered ωC >> ωB >> ωD. The fastest of these motions, the cyclotron

motion, is the result of the Lorentz force causing the particle to gyrate in a small helical

orbit about a magnetic field line. The second motion occurs along the magnetic field line.

In a dipole, as a particle moves along the field it is reflected away from the magnetic poles

provided the ratio of the particle’s parallel and perpendicular energy is less than the mirror

ratio minus one (v2�/v
2
⊥ < Bmax/Bmin − 1, where Bmin and Bmax are the minimum and

maximum magnetic field strength along the particle trajectory) [38]. As a particle moves

along a field line toward the regions of higher field strength located at the poles it experiences

a magnetic mirror force that pushes it back toward the region of lower field strength. Thus

the particle streams along the field line bouncing between the two poles with the frequency

ωB. The slowest motion is the drift motion due to the magnetic field gradient and curvature.

The inhomogeneity of the field causes a small perturbation of the cyclotron orbit that can

be described as a drift of the cyclotron orbit center. The drift is in the azimuthal direction

causing the particle to orbit around the dipole.

From mechanics it is known that a strictly periodic motion has an associated conserved
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quantity. For example, energy is conserved in the periodic motion of a swinging pendulum.

The cyclotron, bounce, and drift motions are nearly periodic but are not strictly periodic.

As such, their nearly periodic motions have associated adiabatic invariants. Adiabatic

invariants are constants of the motion when the parameters of the motion vary slowly. The

classic illustration of an adiabatic invariant is a pendulum with a gradually shortening string.

Treating the shortening pendulum as a simple oscillator with a slowly increasing frequency

(ω =
�
g/l) the adiabatic invariant of the shortening pendulum is E/ω [39]. The important

aspect of adiabatic invariants is that they are conserved so long as the parameters of the

motion change on a time scale that is long compared to the time scale of the periodic motion

[40]. Table 2.1 summarizes the adiabatic invariants for particle motion in a magnetic dipole

and figs. 2.1 and 2.2 illustrate the particle motions. Table 2.2 shows a list of characteristic

times on LDX.

1. Gyro motion 2. Bounce motion

B

µ =
W⊥
B

J =

�
v� · ds

3. Drift motion

B

∇B

ψ =

�
B · da

B

Fast Medium Slow

Figure 2.1: Illustration depicting the periodic particle motions in the dipole and their asso-
ciated adiabatic invariants.



CHAPTER 2. BACKGROUND 12

Drift

Bounce

Gyro

Figure 2.2: Cartoon illustration depicting particle motions in the dipole.

Symbol Name Motion Definition

µ
First invariant or
Magnetic moment

Cyclotron
1
2mv2⊥
B

J
Second invariant or
Longitudinal invariant

Bounce
�
v� · ds

ψ
Third invariant or
Flux-invariant

Drift
�
B · da

Table 2.1: Adiabatic invariants of the motion in a dipole geometry.

Te ωD/2π νei ωB/2π ωC/2π
1 eV 11 Hz 28 MHz 260 kHz 2.5 GHz
10 eV 110 Hz 1.2 MHz 830 kHz 2.5 GHz
100 eV 1.1 kHz 48 kHz 2.6 MHz 2.5 GHz
1 keV 11 kHz 1.8 kHz 8.3 MHz 2.5 GHz
10 keV 110 kHz 68 Hz 26 MHz 2.5 GHz
100 keV 1.1 MHz 2.5 Hz 830 MHz 2.5 GHz

Table 2.2: Approximate frequencies (drift motion, ωD, electron-ion collision, νei, bounce
motion, ωB, and cyclotron motion, ωC) for an electron located at a radius of 80 cm with a
plasma density of 1018 m−3 in LDX.
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2.2.2 Particle distribution function

A particle can be labelled by any suitable set of coordinates. A standard set of coordinates

is the Cartesian coordinate system which can be used to describe a particle’s position, x,

and velocity, v. For a collection of many particles the distribution of the particles in the

coordinate space is described by a distribution function, f(v,x).

The distribution function can be written in terms of the adiabatic invariants [6, 12].

f(v,x) −→ f(µ, J, ψ) (2.10)

Here the phase space distribution is given by the µ and J coordinates and the spatial

distribution is given by the ψ coordinate [41]. The benefit of describing the distribution

function in terms of adiabatic invariants rather than velocities and spatial coordinates is

that it decouples the coordinates based on time scales. For a collisionless, non-interacting

plasma the distribution function does not change, ∂f(µ, J, ψ)/∂t = 0. If very low frequency

(ω, where ω << ωD << ωB << ωC) fluctuations are introduced the distribution function

will remain unchanged because all three of the adiabatic invariants are conserved. However,

if drift-resonant (ω ∼ ωD << ωB << ωC) fluctuations are introduced the flux-invariant, ψ,

is broken (i.e., it is not conserved) and the distribution function can change, ∂f(µ, J, ψ)/∂t �=

0. The change in the distribution function will only occur in the flux coordinate since µ

and J are still conserved during these low frequency fluctuations [42]. By allowing only low

frequency disturbances that cause small steps in phase space the change of the distribution

can be described as a diffusion in flux-space [12]

∂f(µ, J, ψ)

∂t
=

∂

∂ψ

�
Dψψ

∂

∂ψ
f(µ, J, ψ)

�
. (2.11)
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Thus, low-frequency fluctuations that break the flux-invariant while preserving µ and

J lead to a diffusion of particles in flux-space. This means that plasmas confined in a

magnetic dipole tend toward distributions that have an equal number of particles per flux-

tube. Because the flux-tube volume varies in real space as V ∼ R
4, the particle density is

very peaked in real space

n ∼ 1

V
∼ 1

R4
. (2.12)

Additionally, the conservation of µ and J cause particles to gain energy as they move

inward. The perpendicular energy increases in proportion to the magnetic field strength

E⊥ ∼ B ∼ 1/R3. Conservation of J causes the parallel energy to go as E� ∼ 1/R2 [6, 12].

2.2.3 Fluid description

Plasmas confined in a magnetic dipole can be modeled as a collection of plasma filled flux-

tubes. A flux-tube is a volume defined by the magnetic topology such that each flux-tube

contains an equal amount of magnetic flux, and magnetic field lines at the surface of the

flux-tube align parallel to the surface. The differential flux-tube volume is defined as

V ≡
�

dl

B
(2.13)

where the integration is along a magnetic field line and B is the magnetic field strength.

In the ideal MHD limit the plasma moves with the magnetic field so a rearrangement of

the plasma can be viewed as a rearrangement of the flux-tubes. In the dipole geometry

the magnetic field strength decreases rapidly as a function of radius (B ∼ 1/R3) and the

differential flux-tube volume increases rapidly with radius (V ∼ R
4, since

�
dl ∼ R). Thus,
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as a flux-tube moves radially its volume changes dramatically. This change in volume acts

to adiabatically heat or cool the plasma contained within the flux-tube.

The MHD interchange mode is a flute-like (k� = 0) instability. It can be thought

of visually as two flux-tubes interchanging positions. The outer flux-tube decreases in

volume as it moves in and heats the plasma within it; meanwhile, the inner flux-tube

expands as it moves outward and cools the plasma with in it. In their seminal 1957 paper,

Stability of Plasmas Confined by Magnetic Fields, Rosenbluth and Longmire [7] analyzed

the interchange instability from both the particle and MHD perspective. In their MHD

analysis they employed the energy principle. This principle states that a system will tend

to the lowest potential energy state available to it. In the process of moving to this lower

potential energy state the excess potential energy is converted into the kinetic energy of the

instability.

Thus, the stability of a plasma to the MHD interchange mode is determined by whether

the interchange of two neighboring flux-tubes results in a positive or negative change in

energy, ∆E. For ∆E > 0 the plasma is stable, for ∆E < 0 the plasma is unstable, and

∆E = 0 is a marginally stable point. The defining feature of the interchange mode is that

there is no change in the magnetic energy during rearrangement of the plasma so only the

energy of the plasma is examined. This leads to Rosenbluth and Longmire’s result that a

plasma is stable to the interchange mode if

∆E = V
−γ

δ(pV γ) δV > 0 . (2.14)

For a plasma to be stable the two differential quantities in eq. (2.14) must have the same

sign. In their analysis Rosenbluth and Longmire stated that δ(pV γ) < 0 since in most

plasma devices the pressure decreases away from the central axis (i.e., the pressure gradient
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is negative) and goes to zero at the edge (p −→ 0) such that the pressure gradient dominates

the flux gradient: ����
δp

p

���� >
����
γδV

V

���� . (2.15)

In this scenario stability requires δV < 0. This is the basis of the idea of favorable and un-

favorable magnetic field curvature in plasma confinement. Favorable curvature has δV < 0

which corresponds to magnetic field lines that are convex toward the plasma and is generally

stable. Unfavorable curvature has δV > 0 which corresponds to magnetic field lines that

are concave toward the plasma and is generally unstable.

Nevertheless, it is possible for a plasma to be stable in regions of unfavorable curvature

if the pressure gradient is sufficiently shallow and the magnetic flux gradient is sufficiently

steep. That is to say

δ(pV γ) > 0 . (2.16)

This is fundamental to plasma confinement in a dipole since a dipole has unfavorable cur-

vature in most of the plasma confining volume. In the scenario described by eq. (2.16) the

interchange of two flux-tubes requires a net positive change in energy because it takes more

energy to heat the inward bound, compressing flux-tube than is released by the outward

bound, expanding flux-tube. Thus, the plasma is said to be stabilized by compressibility.

The marginal stability point to the MHD interchange mode corresponds to the invariant

pressure profile

δ(pV γ) = 0 =⇒ p ∼ R
−4γ

. (2.17)

Similar MHD energy principle arguments describe the invariant density profile (δ(nV ) = 0)

for a plasma rotating in a dipole magnetic field [5].
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Figure 2.3: Cartoon illustration depicting the interchange of two flux-tubes in the dipole
geometry. The contours mark flux surfaces (or equivalently magnetic field lines) and the
yellow circle indicates the current location (the system is rotationally symmetric about the
left vertical box edge). The red and cyan flux-tubes contain equal amounts of magnetic
flux but the cyan flux-tube envelops a much larger physical volume. When the two flux-
tubes interchange position the cyan flux-tube decreases in physical volume compressing and
heating the plasma within it. Meanwhile the red flux-tube increases in physical volume
cooling the plasma within it.

2.2.4 Stability and a tendency toward invariant profiles

The invariant pressure and density profiles describe profiles that are unchanged during inter-

change motion; however, these stationary profiles are maintained by a turbulent, convective

mixing of the plasma. The turbulent mixing is driven by the instability of the plasma profile

to the MHD interchange mode and weaker entropy modes [15, 16, 17, 18, 21]. The invari-

ant profiles occur at the marginal stability point to MHD interchange modes but internal

plasma heating (by ECRH) continually drives the profiles unstable. Rather than cause a

catastrophic loss of the plasma, violations of the MHD limit drive convective cells in the
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plasma that bring the plasma back to the invariant profile. Theoretical quasilinear [19] and

nonlinear [20] analyses show that a violation of the marginal stability criteria causes convec-

tive transport that restores the invariant density and pressure profiles. Random mixing of

the plasma flux-tubes leads to profiles that have an equal number of particles per flux-tube

and an equal entropy density factor (G ≡ pV
γ) per flux-tube.

Additional theoretical studies have shown that stability to the MHD interchange mode

(k� = 0) is sufficient for stability to the MHD ballooning modes (k� > 0) [13, 14]. Stud-

ies of drift modes [15, 16, 17, 18] have shown that critical parameter for stability is η ≡
d lnT
d lnn = ∇T

T /
∇n
n , and the most stable operating point is η = γ − 1 = 2/3, which combined

with eq. (1.1) corresponds to the invariant density and temperature profiles. Gyrokinetic

simulations [21] show that entropy-mode driven transport drives the density and pressure

toward their invariant profiles (η = 2/3).

2.2.5 Observations of invariant density profiles on LDX

Previous work by Boxer, et al. [22] has shown that when the superconducting coil is mag-

netically levitated on LDX the density approaches the invariant profile in which there is an

equal number of electrons per flux-tube. This was shown using a four channel interferometer

to measure and reconstruct the density profile. The density profiles were observed to exhibit

‘profile consistency’ [23] meaning the shape of the profiles were consistent for a range of pa-

rameters (power, fueling, etc.) although the magnitude of the density varied. The timescale

of the formation of the density profiles was found to be consistent with a turbulent inward

pinch caused by random electric fluctuations. Random fluctuations in the azimuthal electric

field cause the plasma to take random E × B steps in the radial direction. The diffusion

coefficient of this process is Dψψ = R
2�E2

φ�τcor where R is the radial cylindrical coordinate,
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�E2
φ� is the mean-square of the azimuthal electric field fluctuations, and τcor is the correla-

tion time of the fluctuations [9]. An array of edge probes measured the azimuthal electric

field fluctuations and estimated the diffusion coefficient to be Dψψ ≈ 0.047(V · s)2s−1. The

time evolution of the density profile obeyed eq. (2.11) with a single diffusion coefficient with

the value measured by the edge probes [22]. This low-frequency E×B interchange mixing

should also cause diffusion in the entropy density factor (G ≡ pV
γ), which would produce

a peaked, invariant pressure profile.

2.2.6 Supported operation pressure measurements

Previous work on LDX [43, 44] magnetically reconstructed the pressure profile for plasmas

when the dipole was mechanically supported. During supported operation the plasma en-

ergy is stored entirely in a deeply mirror trapped hot electron population since any thermal

population is rapidly lost along the magnetic field to the mechanical supports. Reconstruc-

tions determined that the pressure profile was much steeper than the invariant profile. X-ray

measurements (see fig. 4.19) observed the pressure to be highly anisotropic, although, the

reconstructions were found to be incapable of measuring the level of anisotropy [43]. This

work motivated the installation of several internal flux loops that are closer to the plasma

in order to better constrain the pressure profile parameters, specifically, the pressure peak

location, the pressure profile steepness parameter, and the pressure anisotropy. The work

presented in this thesis uses the new flux loops and a new magnetic reconstruction code to

confirm the previous results for supported operation and more importantly it magnetically

reconstructs the pressure profile during levitated operation.
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2.2.7 Challenges to observing invariant pressure profiles on LDX

Plasmas created on LDX typically have a hot electron population in addition to a cooler

thermal plasma. The hot electron population forms as a result of the way the plasmas

are heated: electron cyclotron resonance heating (ECRH). ECRH transfers energy from an

electromagnetic wave to electrons at spatially localized resonance regions in the plasma. The

energy transfer increases the electron’s velocity perpendicular to the magnetic field. In a

magnetic mirror, such as a dipole, increasing the perpendicular velocity of a particle causes

it to be more deeply mirror trapped. Hot electron formation is most pronounced when

the resonance region is located at the magnetic minimum along a field line because all the

particles are heated and the ECRH causes pitch-angle diffusion and anisotropic pressures

peaked in the resonance region.

The hot electron population must be taken into account when interpreting the pressure

profiles on LDX because hot electron interchange modes can be stable with pressure gradi-

ents steeper than the MHD limit that characterizes the predicted invariant pressure profiles

of the background plasma. The gyrokinetic stability of the hot electron population is due

to its interaction with the background ions. The hot electron modes resonate with the hot

electron drift motion with a real frequency ω ∼ mωdh where m is the azimuthal mode num-

ber and ωdh is the drift frequency of the hot electrons. The ions have a much slower drift

motion so they observe the mode rapidly pass by them and the rapidly changing electric

field associated with the mode induces a stabilizing ion polarization current [45, 46].

For a sufficiently dense hot electron population the low-frequency hot electron inter-

change (HEI) mode [45, 46, 47, 48, 49, 50, 51] becomes unstable when [2]

− d ln n̄eh

d lnV
> 1 +

m
2
⊥

24

ωdh

ωci

n̄i

n̄eh
(2.18)
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where V =
�
dl/B, n̄eh is the flux-tube averaged hot electron density, n̄i is the flux-tube

averaged ion density, m⊥ is total perpendicular mode number [48], ωdh is the hot electron

drift frequency, and ωci is the ion cyclotron frequency. Equation (2.18) shows that the

plasma is unstable to the HEI if the spatial gradient of the hot electron density is too large

in the region of unfavorable magnetic field curvature. The HEI mode can be stabilized by

increasing the right side of eq. (2.18) by either decreasing the hot electron fraction (n̄eh/n̄i)

or increasing the hot electron temperature (since ωdh ∝ Teh). Both methods of stabilization

work by increasing the ion polarization current, which provides a stabilizing current to

oppose the perturbed diamagnetic current. Importantly, with sufficient background density

the hot electron population can be stable even when the hot electron pressure gradient is

much steeper than the MHD limit.

On LDX the hot electron population is very well confined and the hot electrons can

have a large energy content. In supported operation essentially all the plasma stored energy

is in the hot electrons. One of the primary difficulties in measuring the pressure profile

of the thermal plasma during levitation is discerning how much of the plasma energy is

stored in the hot electrons and how much is stored in the thermal plasma. Three methods

for estimating this are (1) comparing supported and levitated plasmas, (2) measuring the

decay times of the stored energy [26], and (3) measuring the X-ray emission.
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Chapter 3

Overview of the Levitated Dipole

Experiment

3.1 Experimental setup

The Levitated Dipole Experiment magnetically levitates a superconducting current ring,

which has been energized to 1.2 MA, in a large vacuum chamber.

The basic experiment setup is illustrated in fig. 3.1. The magnetic coil set consists of

three coils: the floating coil (F-coil), the levitation coil (L-coil), and the charging coil (C-

coil). The F-coil is the coil that is levitated in the middle of the vacuum chamber and

produces the dipole magnetic field that confines the plasma. It is a superconducting coil

made from single strand of Nb3Sn with 716 turns and is housed in a cryostat that levitates

with it in the vacuum chamber [1]. The F-coil typically operates with a total current of

1.2 MA·turns and is inductively charged by the C-coil. This is done by putting the F-coil

inside the C-coil while the F-coil is warm and is not in its superconducting state. The C-coil
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current is ramped up then held steady. This induces a current in the F-coil but the current

is rapidly lost via resistive heating. The F-coil is then cooled to its superconducting state.

The current in the C-coil is ramped down to zero. This again induces a current in the F-coil

but the current stays since the F-coil is now superconducting. The F-coil is mechanically

lifted in the center of the vacuum chamber where it can be magnetically levitated by the

L-coil. The L-coil is made from a copper wire with 80 turns, typically carries ∼ 3500 A (280

kA·turns), and sits on top of the vacuum vessel approximately 1.5 meters above the middle

of the vacuum vessel where the F-coil is positioned.

Figure 3.1: The LDX vacuum chamber and magnetic coil set.
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Figure 3.2: Locations of the fundamental and 1st harmonic electron cyclotron resonances
for the microwave heating sources on LDX. Solid lines mark the fundamental resonances
and dashed lines mark 1st harmonic resonances.

3.2 Creation of the plasmas

Plasmas on LDX are created and heated with electron cyclotron resonance heating (ECRH).

An electron in a magnetic field gyrates at the electron cyclotron frequency. When a wave
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with a frequency resonant with the electron’s cyclotron motion interacts with the electron,

energy can be transferred between the wave and the electron. Because the cyclotron fre-

quency depends only on the magnetic field strength and fundamental constants (electron

mass and charge) the spatial region where the wave can deposit energy into the electron

population is determined by the magnetic topology.

LDX has 5 ECRH sources at 4 different frequencies that provide a total of 28 kW of

microwave power. There are 2 sources at 2.45 GHz (2 kW and 3 kW), 1 source at 6.4 GHz

(3 kW), 1 source at 10.5 GHz (10 kW), and 1 source at 28 GHz (10 kW). Experiments begin

by puffing a small amount of neutral gas (typically deuterium or helium) into the vacuum

chamber. Then the ECRH is turned on. The small population of free electrons in the puffed

gas gains energy from the ECRH and ionizes much of the remaining gas through collisions.

The process of creating, sustaining, and dissipating a plasma is called an experimental shot.

Shots on LDX are pre-programmed to have a duration between 10-20 seconds.

3.3 Diagnostics

Table 3.1 provides a summary of the diagnostics on LDX. Figure 3.3 provides a cartoon

depiction of the approximate locations and views of a subset of the LDX diagnostic set.

The diagnostics used principally in this thesis are the magnetic flux loops, poloidal field

coils, and X-ray light detectors. These diagnostics are more completely discussed in the

following sections.
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Figure 3.3: A cartoon overview of a subset of the LDX diagnostic set.
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Magnetics Description
Flux loops 9 external, 4 internal, integrated change in flux
Poloidal field coils 18 external, integrated change in flux
Hall sensors 18 external, field strength
Mirnov coils 8 internal, change in flux

X-ray light detectors Description
Silicon drift detector (SDD) 2-20 keV, photon counting
Cadmium-Zinc-Telluride (CZT)
detector

10-650 keV, photon counting

Sodium Iodide (NaI) detector 15 keV - 3 MeV, integrated intensity

Microwave light detectors Description
Interferometer 4 chords, 60 GHz, density measurement
V-band radiometer 50-75 GHz, electron cyclotron emission (ECE)

Visible light detectors Description
Visible light camera
Spectrometer 340-550 nm, 0.3 nm resolution
Photodiodes with atomic line emission filters
Visible light fast cameras up to 40,000 frames per second

Probes Description
Probe array 24 probes spanning π/2 azimuthally, floating and

ion saturation
Movable probes 3 probes, operate as either swept-voltage, floating-

voltage, or ion saturation probes

Other Description
Vessel ion gauge 1-100 AMU, gas pressure

Table 3.1: Summary of the diagnostics on LDX.
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3.3.1 Magnetics

There are 27 magnetic sensors used to reconstruct the plasma pressure profiles: 12 flux loops

and 15 poloidal field coils. Both types of sensors are essentially loops of wire that measure

changes in the magnetic field. From Faraday’s law the time rate of change of the magnetic

field inside a wire loop induces a voltage at the ends of the loop:

Vloop =

�
∂B

∂t
· dA (3.1)

where Vloop is the voltage at the end of the wire loop, ∂B
∂t is the time rate of change of the

magnetic field, and the integration is over the area enclosed by the wire loop.

For the poloidal field coils the enclosed area is small enough that the magnetic field is

approximately constant over area of integration so eq. (3.1) can be approximated as

Vloop =
∂B

∂t
NA (3.2)

where B is the magnitude of the magnetic field normal to the integration surface, A is the

area enclosed by the loop, and N is the number of windings (loops).

For the flux loops the magnetic field cannot be assumed constant over the integration

surface; however, eq. (3.1) can be rewritten in terms of the magnetic flux,

Vloop =
∂

∂t

�
B · dA =

∂ψp

∂t
(3.3)

where the normal vector of the area enclosed by the loop is taken to be in the z-direction

so the enclosed flux can be written as the enclosed poloidal flux, ψp.

The flux loop and poloidal field coil loop voltages are proportional to the time rate of
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change of the magnetic flux and the magnetic field strength, respectively. For the magnetic

reconstruction of the equilibrium pressure profile the quantities of interest are the magnetic

flux and the magnetic field strength so the loop voltages are integrated over time. The loop

voltages are integrated with active analog integration circuits [43]. The output voltage from

the integration circuit is

Vout = − 1

RC

�
Vloop dt (3.4)

where R and C are the resistance and capacitance that characterize the integrator (the

integrator time constant: τ = RC).
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(a)

(b) (c)

Figure 3.4: Sensor locations and images [43]. (a) Poloidal field coil and external flux loops
locations. Illustration shows poloidal field coils at different azimuthal locations for aesthetic
reasons; however, all poloidal field coils are actually located at the same azimuthal angle.
(b) Picture of the internal flux loops located on the upper catcher structure. (c) Picture
showing the size of a poloidal field coil.
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3.3.2 X-ray detectors

Silicon Drift Detector (SDD)

The SDD measures soft X-rays in the energy range 1-20 keV. The detector used is the

XR-100SDD with a 0.5 mil beryllium window and is manufactured by Amptek [52]. The

detector is installed in vacuum on a port with a flexible baffle that allows the detector’s view

to be adjusted. The detector views at the mid-plane with different tangency radii, where

the tangency radius is the shortest distance between the central view chord and the center

of the vacuum chamber. Five view positions were used with tangency radii 77 cm, 83 cm,

93 cm, 105 cm, and 116 cm. Photon flux to the detector is restricted by a tungsten disk

with a 60 mil diameter pinhole (disk is 1 inch in diameter and 40 mil thick). The detector’s

distance behind the pinhole determines the photon fluence to the detector and the detector

view angle. The view angle of the detector was about 10◦ so there is considerable overlap

between the five different views. Figures 3.5(a) and 3.5(b) show the detector and the detector

installed in vacuum. Figures 3.6(a) and 3.6(b) show the detector’s central view lines and

the detector’s efficiency at detecting X-ray photons of different energies.
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(a) (b)

Figure 3.5: (a) The SDD X-ray detector. (b) The SDD X-ray detector mounted on a
vacuum port on LDX. The flexible bellows allows the detector to be pointed at different
radial positions.
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Figure 3.6: (a) Views lines for the SDD. (b) Detection efficiency for the SDD. At low
energies the beryllium window blocks photons. High energy photons pass through the thin
detector.
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Cadmium-Zinc-Telluride detectors (CZT)

The CZT detectors measure X-rays in the energy range 10-650 keV. The present data system

allows for 3 CZT detectors to be operated in addition to the SDD. The detectors view at

the mid-plane with tangency radii 30 cm, 72 cm, and 113 cm. In the experiment X-rays

have to pass through a 0.005” (127 µm) beryllium vacuum window, an air gap, and the

detector window which is 0.001” (25.4 µm) aluminum and 0.0005” (12.5 µm) stainless steel.

The CZT crystal is 5x5x5 mm with a density of 5.8 g/cm3and the relative composition 9

Cd, 1 Zn, 10 Te [53]. Figures 3.7(a) and 3.7(b) show the detectors’ central view lines and

the detectors’ efficiency at detecting X-ray photons of different energies.
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Figure 3.7: (a) Views lines for the CZT detectors [54]. Detector’s had views A, B, and C.
(b) Detection efficiency for the CZT detectors [53].

Pulse counting

The SDD and CZT detectors are pulse counting devices meaning that they count individual

photons. A photon incident on the detector causes the voltage at the detector’s preamplifier
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to increase by an amount proportional to the energy of the photon. The SDD has a reset

preamplifier. Thus as photons hit the detector the signal at the reset preamplifier increases

like a staircase but with steps of many different sizes. Once the reset preamplifier reaches its

maximum voltage it abruptly resets to its minimum value. By contrast the CZT detectors

have resistive-feedback preamplifiers which have characteristic decay times that prevent the

preamplifier voltage from reaching its maximum so long as the detector is not saturated by

photons.

The task of pulse counting is simply to bin the voltage steps according to size. One

method for performing the pulse counting is done with a pulse shaper and Multi-Channel

Analyzer (MCA), which is a programmable electronic device that counts pulses while doing

its best to avoid potential pitfalls (i.e., pulse pile-up). The disadvantage of this method is

that preamplifier signal is never seen, only the processed data is recorded. Concerns about

the detector performance in the LDX environment based on previous X-ray measurements

[53] made it desirable to use an alternative pulse counting method that allowed the detector

preamplifier signal to be recorded and perform the pulse counting as a post-process. A

fast digitizer board was acquired that can digitize 4 channels at 50 Msps (or 8 channels

at 25 Msps, or 16 channels at 15 Msps). This board allows the preamplifier signal to be

seen; however, to achieve sufficient energy resolution with the digitizer the signal was passed

through another preamplifier before being digitized.

Preamplifier board

The purpose of the preamplifier board is to increase the energy resolution of the digitized

signal. The signal from the SDD reset preamplifier is approximately 1 mV/keV. The digi-

tizer is 14-bit and has a minimum dynamic range of ± 2.5 V. Thus directly digitizing the
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signal from the reset preamplifier would result in very poor energy resolution (∼ 300 eV ).

The preamplifier board acts as a high-pass filter and amplifier that transforms the reset

preamplifier’s staircase signal into a series of pulses with a characteristic decay time. The

signal from the preamplifier board is digitized and stored for post-processing (pulse shaping

and counting).

The preamplifier board design is based closely on the first stage (the analog prefilter) of

the Amptek DP5 board [55]. The preamplifier is integrated into the DP5 board, which does

complete digital signal processing, and could not be purchased separately from Amptek.

Figure B.1 shows a schematic of the preamplifier that was built for use on LDX with both

the SDD and CZT X-ray detectors. There are 5 stages: a buffer isolates the board from

the input, a high-pass filter transforms the input signal, two stages of amplification increase

the signal strength, and a low-pass filter removes noise from the signal and provides power

to send the signal to the digitizer. Additional resistors in the high-pass stage allow the

board to be adapted for use with either the SDD (reset preamplifier) or the CZT detectors

(resistive feedback preamplifier). The output of the preamplifier board is a pulse with a fast

rise time and a slower exponential decay. The decay time of the output pulse is 3.2µs.
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Digitized Pre-filter Output
Two Fe55 X-ray pulses

Figure 3.8: Preamplifier board output showing the pulses caused by two Fe55 photons.

Pulse shaping

Pulse shaping is done as a post-process of the digitized preamplifier data. Pulses from the

preamplifier are shaped into trapezoidal pulses [56, 57]. Characteristics of the trapezoidal

pulse (rise time, flat top time) are parameters of the shaping algorithm. Figure 3.9 illustrates

a preamplifier pulse shaped into both a short and long trapezoidal pulse.
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Figure 3.9: Pulses from the preamplifier board can be shaped into both short and long
trapezoidal pulses.

Pile-up rejection

Pile-up refers to multiple photons entering the detector at nearly the same time causing

errors in the measurement. For example, if two low energy photons hit the detector too

close in time the shaping and counting algorithms may misinterpret the two photons as a

single higher energy photon. This can cause distortions in the measured spectra. To avoid

errors due to pile-up, photon counting algorithms are designed to recognize when pile-up

may be occurring and reject data collected during that time. This is called pile-up rejection.

It results in some data being thrown away on the assumption that it is better to have some

data that can be trusted than a lot of data that cannot. If the flux of photons to the detector

is too high pile-up rejection can result in all the data being rejected so it is important to
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limit the photon flux to a rate the system can handle.

Limitations to the maximum input rate is a common feature of pulse counting systems. A

classical example of a pulse counting system being overloaded occurred during the discovery

of the Van Allen radiation belts by the Explorer I and Explorer III satellite missions. Geiger

counters installed on the satellites measured times with zero counts surrounded by times

with high count rates. It was discovered that the zero count times corresponded to times

when the Geiger tubes were being saturated by a high flux of radiation [58, 59]. These

regions of high radiation became known as the Van Allen radiation belts.

The pile-up rejection algorithm that is implemented with the SDD and CZT detectors

uses both a fast (short) and a slow (long) trapezoidal shaping of the input pulses. There

is a tradeoff when performing the trapezoidal shaping. Long trapezoidal pulses offer better

energy resolution but are more likely to overlap in time with other long pulses than are

shorter pulses. The pile-up rejection algorithm uses fast pulses to determine the pulse

arrival times and determine if a pulse is isolated enough in time to be cleanly counted.

Pulses that have been deemed countable by the fast shaping have their energy calculated

from the slow shaping.

To summarize the pulse counting process: a photon enters detector, the voltage at the

detector preamplifier increases a step proportional to the photon energy, the step is shaped

into a pulse by another preamplifier board, the signal is digitized, post-processing performs

trapezoidal shaping, pile-up rejection and sorting of pulses by energy to form a spectrum.

Calibration

The SDD and CZT spectra are calibrated using the iron radionuclide Fe55 and the americium

radionuclide Am241. Table 3.2 lists the atomic transitions for the lines used in the calibration
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[60].

Radionuclide Energy [keV]
Fe55 5.90
Fe55 6.50
Am241 7.48
Am241 8.26
Am241 11.87
Am241 13.94
Am241 16.11
Am241 17.06
Am241 17.75
Am241 20.83
Am241 21.51
Am241 59.54

Table 3.2: X-ray lines used for calibrating the SDD and CZT detectors.
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Figure 3.10: SDD calibration spectrum with (a) Fe55 and (b) Am241.
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Figure 3.11: Zoomed view of the lower energy SDD spectrum with Am241.

Figure 3.12: SDD calibration line from least squares fit to observed lines from Am241 and
Fe55.
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CZT calibration: 9716
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Figure 3.13: CZT detector calibration spectrum with Am241.
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Chapter 4

Magnetic reconstructions: Method

In an equilibrium state there is no net force, which is to say all forces balance. For a plasma

in magnetohydrodynamic equilibrium the forces that balance are the force from the pressure

gradient, ∇P , and the j × B force [38, 61]. Thus, if the current density, j, and magnetic

field, B, are known throughout a plasma in equilibrium, then the gradients of the pressure

throughout the plasma are also known. With knowledge of the plasma boundary conditions

(i.e., the pressure goes to zero at the plasma edge) the pressure profile of the plasma can be

deduced.

Magnetic reconstruction of the pressure profile on LDX is an inverse problem. Mea-

surements of the magnetic field outside of the plasma are used to deduce the currents and

magnetic field inside of the plasma [24, 25, 62, 63]. This chapter discusses how measure-

ments of the magnetic field are used to perform a model-based reconstruction of the pressure

profile on LDX.
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4.1 Magnetohydrodynamic equilibrium

Magnetohydrodynamic equilibrium is defined by the relation:

∇P = J×B (4.1)

where P is the plasma pressure, J is the current density and B is the magnetic field. In this

definition the pressure is isotropic; however, a more general form may be used:

∇ · P̄ = J×B (4.2)

where P̄ is the pressure tensor. In LDX plasmas there is often a pressure anisotropy because

the plasma is heated with ECRH and is deeply mirror trapped. The pressure tensor may

be represented as

P̄ =





P⊥ 0 0

0 P⊥ 0

0 0 P�




= P⊥Ī+ (P� − P⊥)b̂b̂ (4.3)

where P⊥ and P� denote the perpendicular and parallel pressure components, respectively,

Ī is the identity matrix, and b̂ is a unit vector along the magnetic field (B = Bb̂). The

degree of anisotropy on LDX is likely limited by stability to mirror modes [64].

4.1.1 Grad-Shafranov equation

In many plasma experiments, including LDX, the plasma can be approximated as being

azimuthally symmetric. Using this assumption of azimuthal symmetry as well as two con-

straints regarding the behavior of currents and magnetic fields (Ampere’s Law and the
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∇ · B = 0 law) eq. (4.1) can be rewritten as a partial differential equation named the

Grad-Shafranov equation [61]:

∆∗
ψ = −µoR

2∂P

∂ψ
− F

∂F

∂ψ
(4.4)

where ∆∗ is an elliptic operator defined by

∆∗
ψ ≡ R

2∇ ·
�
∇ψ

R2

�
= R

∂

∂R

�
1

R

∂ψ

∂R

�
+

∂
2
ψ

∂Z2
. (4.5)

As eq. (4.4) looks little like eq. (4.1) some explanation is in order. This explanation is

important because the Grad-Shafranov equation represents the condition of radial force

balance and is at the heart of the magnetic reconstruction.

First note that eq. (4.4) is a function of the variable ψ, which is defined ψ = RAφ,

where R is the radial coordinate in a cylindrical coordinate system, (R, φ, Z), and Aφ is

the toroidal component of the vector potential. A more intuitive sense of the variable ψ

can be found from its close relation to the poloidal flux, ψp, passing through a circular disk

aligned normal to the Z direction, specifically ψp = 2πψ [61]. Thus, ψ is a magnetic flux

coordinate and, as such, labels surfaces of constant magnetic flux.

P (ψ) and F (ψ) are flux functions, meaning they have constant values on flux surfaces.

The function P (ψ) is the pressure seen in eq. (4.1). The function F is defined F = RBφ.

On LDX there is no toroidal component to the magnetic field (Bφ = 0) so F = 0. Thus,

the second term on the right of eq. (4.4) can be eliminated:

∆∗
ψ = −µoR

2∂P

∂ψ
. (4.6)
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Equation (4.6) can also be written in terms of the toroidal current density:

∆∗
ψ = −µoRJφ (4.7)

Jφ = R
∂P

∂ψ
. (4.8)

4.1.2 Magnetic field of a current loop

The azimuthal symmetry of LDX allows currents in the machine to be modeled as a collection

of circular current loops. The analytic form of the magnetic field of a current loop is written

down here because of its ubiquity in calculating mutual inductances, boundary conditions

for magnetic reconstructions, and magnetic flux and field values on LDX. The analytic form

is expressed in terms of elliptic functions of the first and second kind

K(k) =

� π/2

0

�
1− k

2 sin2
y
�1/2

dy (4.9)

E(k) =

� π/2

0

dy
�
1− k2 sin2

y
�1/2 . (4.10)

The derivatives of the elliptical functions are:

dK(k)

dk
=

E(k)

k(1− k2)
− K(k)

k
(4.11)

dE(k)

dk
=

E(k)−K(k)

k
. (4.12)

The vector potential in cylindrical coordinates, (R, φ, Z), for a circular loop of current with

radius a, height h, and current I is

Aφ =
µoI

2πk

�
a

R

�
(2− k

2)K(k)− 2E(k)
�

(4.13)
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where

k
2 =

4aR

(R + a)2 + (Z − h)2
(4.14)

and µo is the permeability of free space. The magnetic field has only an R and Z component

BR =− ∂Aφ

∂Z
= −µoIk(Z − h)

4π
√
aR3

�
K − 2− k

2

2(1− k2)
E

�
(4.15)

BZ =
∂(RAφ)

R∂R
=

�
µoIk

4π
√
aR

��
K + E

�
k
2(R + a)− 2R

2R(1− k2)

��
. (4.16)

4.2 Errors in the magnetics measurements

There are two primary sources of error in the magnetics measurements: uncertainty from the

sensor properties, such as the electronic gain from the integrator, and the physical location

of the sensors. From eqs. (3.2) to (3.4) the poloidal field and flux loop measurements can

be expressed as

∆B =
τ Vout

NA
(4.17)

∆ψ = τ Vout . (4.18)

Thus, the errors in the measurements due to uncertainty about the sensors can be approx-

imated as

σ∆B,s ≈
�

τ 2

(NA)2
σ
2
Vout

+
V

2
out

(NA)2
σ2
τ +

τ 2 V 2
out

(NA)4
σ
2
NA (4.19)

σ∆ψ,s ≈
�

τ 2 σ2
Vout

+ V
2
out σ

2
τ . (4.20)
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The errors in the measurement due to uncertainty about the location of the sensors can be

approximated as

σ∆B,p ≈
�

∂B

∂R
σ
2
R0

+
∂B

∂Z
σ
2
Z0

+
∂B

∂Θ
σ
2
θ0

(4.21)

σ∆ψ,p ≈
�

∂ψ

∂R
σ
2
R0

+
∂ψ

∂Z
σ
2
Z0

. (4.22)

The total uncertainty of the measurements is then

σ∆B ≈
�
σ
2
∆B,s + σ

2
∆B,p (4.23)

σ∆ψ ≈
�
σ
2
∆ψ,s + σ

2
∆ψ,p . (4.24)

Table 4.1 summarizes the magnitudes and sources of the uncertainties that go into eqs. (4.23)

and (4.24). A more complete inventory of the errors in each sensor is listed in Appendix A.

The measurement error is calculated for each shot.

Error Magnitude Source of error
σVout 0.2 mV digitizer resolution
στ ∼ 2% of τ uncertainty in time constant,

estimated from “copper plasma” calibration
shots

σNA ∼ 0.02m2 measurement of Bp coil dimensions
σR0 3 mm uncertainty in measurement of sensor location
σZ0 3 mm uncertainty in measurement of sensor location
σΘ0 1◦ uncertainty in measurement of sensor location

Table 4.1: Summary of magnitudes and sources of magnetic measurement errors. A more
complete inventory of the errors in each sensor is listed in Appendix A.
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4.3 Calibration with ‘copper plasma’

In the summer of 2009 visiting graduate student Dennis Boyle attempted to reduce the

measurement errors on the positions and gains of the magnetic sensors by using a copper

coil installed inside the LDX vacuum vessel [65]. The calibration shots performed with this

copper coil are referred to as the ‘copper plasma’. To be clear, the ‘copper plasma’ shots

are not plasma shots; they are shots taken with a copper coil positioned at the approximate

location where the plasma ring current is during LDX plasma shots.

For the work done in this thesis, the ‘copper plasma’ was used to calibrate the gains of

the magnetic measurements and estimate the measurement errors. The calibration used 36

shots with the coil in 6 different positions (R ={0.762 m, 0.915 m}, Z={-0.06 m, 0.00 m,

+0.05 m} where the positions are relative to the vacuum vessel center) and with the current

run in both polarities. Most magnetic measurements agreed with the calculated values to

within 1-2% for all the shots. This is illustrated in figs. 4.2(a) and 4.2(b).

In addition to calibrating the magnetic measurements, the ‘copper plasma’ provides the

opportunity for verification of some of the code that is used in the magnetic reconstructions

of plasma shots. This includes verification of the code’s basic calculations, models and

minimization algorithms used to find best fits to the magnetics data. Figure 4.3(a) shows

that the χ
2 minimization algorithm works well at determining the location and magnitude

of the current ring in the simple case of the ‘copper plasma’.
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Figure 4.1: Rick Lations and Darren Garnier install the ‘copper plasma’ for calibrations.
The 76 cm and 92 cm coils can be seen in green and red, respectively.
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(a)

(b)

Figure 4.2: Using 36 calibration shots with the ‘copper plasma’ in 6 different positions (2
radial, 3 vertical) the magnetic flux loops and poloidal field coils were calibrated and the
errors in the measurements estimated. The ratio of the calculated value of the measurement
to the measurement for (a) the flux loops and (b) the poloidal field coils. For the ‘copper
plasma’ the measured valued was with in 1-2% for almost all the magnetic sensors. The
large variation in Bp coil 6N is simply due to the very small signal that the coil observes in
this current configuration.
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Start position for 
!2 minimization

(a)

Start current for !2 minimization

25 turns * 60.5 Amps

28 turns * 60.5 Amps

(b)

Figure 4.3: The position and magnitude of the ‘copper plasma’ ring current for 36 different
shots found via a χ

2 minimization with 3 free parameters: radial location (R), vertical
position (Z), and current (I). (a) Locations of the current ring. The approximate measured
positions of the ‘copper plasma’ coil are indicated by the intersections of the dotted lines (R
={0.762 m, 0.915 m}, Z={-0.06 m, 0.00 m, +0.05 m} where the positions are relative to the
vacuum vessel center). The start location of the minimizations is marked by an ‘x’ located
at [0.84, 0.0]. (b) Magnitude of the ring current. The approximate measured current for
the 25 turn setup (1512 A) and the 28 turn setup (1694 A) are shown by the dashed lines.
The start current for the minimizations is marked by the dotted line at 1600 A.
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4.4 Vacuum magnetic reconstructions

Vacuum magnetic shots provide another verification of the models and code that are used

in the magnetic reconstructions. There are two types of vacuum magnetic shots: L-coil only

and F-coil jogs. In the L-coil only shots the F-coil is neither not charged nor in the vacuum

chamber. The L-coil current is ramped up to a level, held steady for a duration, then ramped

back down. These shots allow verification of the L-coil model and the measurement of the

L-coil current. F-coil jog shots are more complicated because they involve the levitated

F-coil. In these shots the levitation feedback control system is used to lift the F-coil about

4 mm, hold it at this new position for a duration, then return the F-coil to its original

position. These shots allow verification of the F-coil model and the measurement of the

F-coil position.

It is more difficult to model the F-coil jog than it is to model the L-coil alone. Part

of the difficulty is that it requires a more complicated model (two coils, one of which is a

flux conserving superconductor) but the primary difficulty is knowing the position of the

F-coil. The levitation system uses multiple lasers to determine the location and velocity

of the F-coil. These lasers can be used as a measurement of the F-coil position; however,

they must be calibrated for every lift of the F-coil. The absolute measurement of the F-

coil position based on the lasers can be off by as much as 1 cm. The relative position

(movement from the established zero point on a lift) is sensitive to how the lasers have been

tuned (with a screwdriver) but can be reasonably calibrated with a linear scale factor (i.e.,

zreal = Azlaser + B). The calibration of the absolute and relative position of the F-coil are

done with the magnetics using a vacuum F-coil jog shot.

It is important to emphasize some of the scales involved here. The F-coil is about 1

meter in diameter, weighs about 565 kg, carries about 1.2 MA of current, and is suspended
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magnetically about 1.5 m below the L-coil. The calibrations of the laser positions are

necessary because the magnetics are sensitive to as little as a 0.1 mm change in the relative

position of the F-coil (that is a tenth of a millimeter change in the F-coil position during the

shot, not a tenth of a millimeter change in the absolute position). A Monte Carlo estimation

of the errors in the calibrated position of the F-coil shows that the changes in the vertical

position of the F-coil are measured to an accuracy of less than 0.1 mm.
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(a)

(b)

Figure 4.4: The magnetic measurements agree well with the model for a vacuum magnetics
shot 100723004 in which the L-coil current is ramped up to a steady level and there is no
F-coil: (a) the flux loops and (b) the poloidal field coils. Bp coils 1N, 1P, and 2N have been
omitted because they are close to the L-coil so the assumption that the magnetic field is
constant across the coil is not correct. Also, the integrator on flux loop 10 railed on this
shot so it has been omitted.
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(a)

(b)

Figure 4.5: The magnetic measurements agree well with the model for a vacuum magnetics
shot 100805052 in which the F-coil is vertically displaced (jogged) 4mm: (a) the flux loops
and (b) the poloidal field coils. Bp coils 1N, 1P, and 2N have been omitted because they
are close to the L-coil so the assumption that the magnetic field is constant across the coil
is not correct.
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4.5 Python based magnetic reconstruction code

4.5.1 The Finite Volume Method (FVM)

The FVM is a numerical technique that transforms a partial differential equation applied on

a discrete domain into a set of algebraic equations. As an illustrative example the Poisson

equation, which has structural similarity to the axisymmetric Ampere’s equation shown in

eq. (4.7), can be solved on a simple cartesian domain with the FVM. Begin with the Poisson

equation:

∇2
V = ∇ · ∇V = − ρ

�0
. (4.25)

Integrate eq. (4.25) over a cell volume (A = ∆x∆y) and apply the divergence theorem:

�
∇ · ∇V dA =

�
∇V · n̂dS = −

�
ρ

�0
dA (4.26)

where n̂ is a vector normal to the cell surface and dS is a unit area of the surface.

Figure 4.6 illustrates the computational domain. Referencing this illustration, an explicit

form for the middle term in eq. (4.26) is

�
∇V · n̂dS ≈

�
∂V

∂x

�

A

∆y −
�
∂V

∂x

�

B

∆y +

�
∂V

∂y

�

C

∆x−
�
∂V

∂y

�

D

∆x. (4.27)

The derivatives can be approximated from the volume averaged values of the adjacent cells:

�
∂V

∂x

�

A

=
Vi+1,j − Vi,j

∆x
,

�
∂V

∂x

�

B

=
Vi,j − Vi−1,j

∆x�
∂V

∂y

�

C

=
Vi,j+1 − Vi,j

∆y
,

�
∂V

∂y

�

D

=
Vi,j − Vi,j−1

∆y
.

(4.28)
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Figure 4.6: For the FVM the computational domain is broken into discrete volumes. Here
the domain is broken into a cartesian grid with Nx cells in the x-direction and Ny cells in the
y-direction. The volume averaged value of V in cell (i, j), which is named Vi,j, is calculated
by using the values of the adjacent cells to calculate the flux through the edges of cell (i, j).

Combining eqs. (4.26) to (4.28) the equation for the value of the volume averaged electric

potential in cell (i, j) can be written as

(Vi+1,j − 2V i, j + Vi−1,j)

�
∆y

∆x

�
+ (Vi,j+1 − 2V i, j + Vi,j−1)

�
∆x

∆y

�
= − ρ̄∆x∆y

�0
. (4.29)

where ρ̄ is the volume averaged charge density. Equation (4.29) is a set of NxNy linear

equations for the volume averaged electric potential in each the NxNy cells. Boundary

terms that appear on the left side of eq. (4.29) can be moved to the right side and the

equation can be cast as the linear algebra standard: Ax = b.
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(a) (b)

Figure 4.7: A simple Python implementation of the finite volume method with a 100× 100
grid to solve (a) the electric potential of an infinite line of charge and (b) solutions to
the axis-symmetric Ampere’s equation for a single loop of current. Solid yellow contours
indicate solutions from the FVM; red dashed contours indicate solutions calculated directly
from the analytic form. The FVM solver used for this figure was not used for the magnetic
reconstructions in this thesis, instead, a more robust solver developed at NIST called FiPy
was used for the magnetic reconstructions. FiPy is discussed in the next section.

4.5.2 FiPy

The finite volume solver used in this thesis to solve the axis-symmetric Ampere’s equation

on a computational domain is call FiPy and was developed at NIST. The developers describe

FiPy as “an object oriented, partial differential equation (PDE) solver, written in Python,

based on a standard finite volume (FV) approach” [66, 67].
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(a) (b)

Figure 4.8: Fipy implementation of the finite volume method with a 200×200 grid to solve
(a) the electric potential of an infinite line of charge and (b) solutions to the axis-symmetric
Ampere’s equation for a single loop of current. Solid yellow contours indicate solutions from
the FVM; red dashed contours indicate solutions calculated directly from the analytic form.
There is strong agreement between the FVM solution and the analytic solution.

4.5.3 Magnetic reconstruction code overview

The magnetic reconstruction code is written in Python [66, 67, 68, 69]. Figure 4.9 is a

block diagram describing the basic flow of the magnetic reconstruction code. The magnetic

reconstruction of a shot begins with a sampling of the data. The data sampled includes the

magnetic flux loop and poloidal field coil data and parts of the levitation control system

data (namely, the levitation coil current and floating coil position information). The data is

sampled at three times (before the shot, at the time of interest for the reconstruction, and

after the shot) so that the data can be calibrated. The calibration of the magnetics signals

involves removing known integrator gains from the raw signals, and removing calculated

integrator drifts in such a manner as to account for a change in the position of the floating
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coil between the beginning and end of the shot.

Figure 4.9 breaks the reconstruction into two blocks: χ
2 minimization and ldxgrid.py.

The blocks interact as follows. The χ
2 minimization block passes a model and a set of

parameters to the ldxgrid.py block. The ldxgrid.py block simulates a set of measurements

using the received model and parameters and passes this model data back to the χ
2 mini-

mization block. The χ
2 minimization block then compares the simulated measurements to

the real, calibrated measurements to determine if the model and parameters were good. If

the model is good, success is declared. If the model is not good, then the χ
2 minimization

block selects another model and/or set of parameters and sends it to the ldxgrid.py block.

Thus, the essential task of the χ2 minimization block is to find the model and parameter set

that brings the best agreement between the calibrated data and model data. The essential

task of the ldxgrid.py block is to properly simulate the measurements when given a model

and parameter set.

The details of the χ2 minimization block (such as the definition of χ2, the pressure model,

the upper mirror plasma, and methods for finding the global minimum χ
2) are discussed in

the following sections (see sections 4.6 to 4.8).

The details of the ldxgrid.py block distinguish the magnetic reconstruction of the pres-

sure profile on LDX. A unique aspect of the magnetic reconstructions on LDX is that there

is a flux conserving, superconducting, levitated magnetic dipole in the middle of the plasma.

The current in the levitated dipole (alias, F-coil) is calculated at the beginning the shot

before the creation of the plasma by force balance (i.e., the force between the F-coil and the

L-coil needed to levitate the F-coil in the middle of the vacuum vessel). The current in the
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F-coil at later times is calculated by conservation of the magnetic flux inside the F-coil:

IF0L+ IL0MFL0 = IF1L+ IL1MFL1 +
n2�

i

IPiMFPi (4.30)

where IF0 is the initial F-coil current (calculated from force balance), L is the self-inductance

of the F-coil, IL0 is the initial current in the L-coil, MFL0 is the initial mutual inductance

between the F-coil and the L-coil, IF1 is the new F-coil current (quantity to be solved for),

IL1 the new L-coil current, MFL1 the new mutual inductance between the F-coil and L-coil

(necessary if F-coil moves), IPi is the i
th of n2 plasma currents (determined by pressure

model where the model determines the currents on an n× n grid), and MFPi is the mutual

inductance between the i
th plasma current and the F-coil.
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ldxgrid.py : 
the heart of the reconstruction code

• contains LDX geometry info
• calculates boundary values, 

measurements, self and mutual 
inductances

• sets up computation mesh and 
calls FiPy to solve G-S

• iterates G-S to stable magnetic 
geometry/boundary

• plots outputs and plasma 
parameters

Sample data

• data saved to file

 χ2 minimization

Pressure model

• with initial 
parameter values

Calibrated data

Model and parameters

Model data

χ2 calculation

New model and/or parameters

FiPy

• solve G-S

Setup

• apply model 
to mesh/
geometry

• set FVM 
boundary 
conditions

Boundary 
test

• test if 
magnetic 
geometry/
boundary has 
converged

Get model data

no

yes

• converged?

Success!

no

yes

Figure 4.9: A block diagram depicting the basic magnetic reconstruction algorithm.
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IM1 IM2

Figure 4.10: Plasma currents (shown as blue dots) are placed on grid nodes between the
seperatrix (outer red contour) and the limited inner most flux surface (inner red contour)
based on a pressure model. Additionally, currents are added in the upper mirror region.
Two currents (IM1 and IM2) are evenly distributed over a finite set of points in the upper
mirror.
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4.6 The upper mirror plasma

Magnetic measurements and images from a visible light camera show that often on LDX a

plasma is confined in the a region referred to here as the upper mirror. The upper mirror

is the magnetic mirror that exists between the F-coil and the L-coil. All magnetic field

lines in this region are open so any plasma confined in the region must be trapped in the

magnetic well. This thesis addresses the upper mirror plasma primarily to assess whether

the currents in upper mirror plasma significantly effect the magnetic reconstructions. It is

found that often there are significant currents in the upper mirror plasma thus requiring

the upper mirror plasma to be incorporated into any current/pressure model. Figure 4.11

shows the upper mirror plasma seen on a visible light camera.

The upper mirror plasma is seperated by the mechanical upper catcher into an inner

region (inside the catcher) and an outer region (outside the catcher). Figure 4.12 shows

the electron cyclotron resonances zones for a typical magnetic configuration on LDX. The

locations of the resonances indicate that the inner upper mirror plasma should only form

when the 10.5 GHz and/or 6.4 GHz power sources are on (it should not form with just the

2.45 GHz power source). Figures 4.13(a) and 4.13(b) show that the inner plasma is seen on

the visible light camera when all power sources are on but is not seen when only the 2.45

GHz source is on.

Instability, or some other unknown event, often causes the inner upper mirror plasma to

be rapidly lost. When this loss occurs there is a rapid change in the flux measured by flux

loop 11 that coincides with a simultaneous decrease in the visible light emitted from the

region. Figure 4.14(b) shows this correlation between sudden changes in flux loop 11 and

decreases in the visible light. A simple estimate of how much plasma current is in the inner

upper mirror region can be made by looking at the change in flux loop 11. The inner upper
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In the last set of levitated and supported 
shots (100805033-51) the upper mirror 
plasma was significant

Upper mirror plasma is 
modeled as two currents, 
Im1 and Im2, that are 
evenly distributed across 
two sets of filaments.

Central mirror plasma, 
Im1, can be several kA.  
Outer mirror plasma is 
always less than a couple 
hundred amps.
 

Figure 4.11: A grayscale visible light image of a plasma shot with magnetic field lines
overlaid in yellow, separatrix in red, and current density contours in blue. The upper mirror
plasma current is modeled as 2 currents (IM1 and IM2) distributed over a finite set of points
in the upper mirror.

mirror plasma can be modeled as a simple current ring concentric with flux loop 11 and

with a diameter estimated from the visible light and the locations of the electron cyclotron

resonances (see fig. 4.15). A further assumption is made that the sudden change in the flux

at flux loop 11 is entirely due to the change in this ring current. Using this model the 0.3

mV s change in flux observed in the top panel of fig. 4.14(b) is a result of the loss of ∼ 500

A of current. Thus there can be kiloamps of current in the inner upper mirror plasma which

is an amount that cannot be neglected in magnetic reconstructions of current profile. In

supported shot 100805045 a significant upper mirror plasma can be seen on the visible light

camera and magnetic reconstructions estimate the inner upper mirror plasma to be 2.5 kA.
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ECRH Resonances

Fundamental, 1st 
& 2nd Harmonics

10.5 GHz

6.4 GHz
2.45 GHz

Figure 4.12: Electron cyclotron resonances for a typical magnetic configuration on LDX.
The location of flux loop 11 is marked with a red dot and is located on the upper catcher
and thus provides an indication of the inner and outer upper plasma regions.

(a) (b)

Figure 4.13: Supported shot 100805045: (a) the inner upper mirror plasma is visible at
time 9.9 sec when the 10.5 GHz, 6.4 GHz, and 2.45 GHz power sources are on, (b) the inner
upper mirror plasma is not visible at time 11.9 sec when only the 2.45 GHz power sources
are on.
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Rapid loss of central mirror plasma

The rapid loss of the central 
mirror plasma can be 
clearly seen on flux loop 11 
and on the Sony camera

The region averaged is 
indicated by the cyan box 
in the image on the right.

100805044: supported

(a)

(b) (c)

Figure 4.14: Observed instability of inner upper mirror plasma. (a) Visible light at three
different times (indicated in (b) by red, green, and blue dots). (b) Time traces of the
magnetic flux measured at flux loop 11, the intensity of the visible light emitted from the
inner mirror region, and the position of the F-coil. (c) The cyan box marks the region of
the visible camera view that was integrated to get the emitted light shown in the middle
trace of (b).
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How much current is lost?

flux loop 11 central mirror plasma 
ring current

If we approximate the central mirror plasma as a current ring  
concentric with flux loop 11 we can get a crude estimate of how 

much current is dumped with the mirror plasma.

Answer: A lot!

∆flux  0.3 mV s 500 A

Thus during shots we can expect order kA in the central mirror plasma.

Figure 4.15: A very simple model for the inner upper mirror current shows that the inner
upper mirror current can have kiloamps of current.
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4.7 Pressure models

Magnetic reconstruction of the pressure profile in LDX is an inverse problem. With a finite

number of measurements it is not possible to determine an arbitrary current distribution

in the plasma so a model-based reconstruction is performed. The model constrains the

number of possible current distributions. Because the current distribution is proportional

to the gradient of the pressure distribution the model can be defined in terms of a continuous

pressure profile. The boundary conditions of the pressure model are: the pressure goes to

zero at the F-coil, the pressure has a positive peak between the F-coil and the separatrix, the

pressure goes to a small value at the separatrix, and the pressure is azimuthally symmetric

but can be anisotropic along the magnetic field. Also, as discussed in the previous section,

the pressure model must account for the plasma current in the upper mirror region.

The model used in the magnetic reconstructions has 6 parameters: the pressure param-

eter (p0), the radial location of the pressure peak (r0), the profile steepness parameter (g),

the anisotropy parameter (a), and the upper mirror currents (IM1 and IM2). The focus

of this thesis is the steepness parameter (g). This parameter quantifies how rapidly the

pressure profile decreases between the pressure peak and the separatrix.

For an isotropic distribution the pressure is a flux function (P⊥ = P� ≡ G(ψ)). LDX

plasmas tend to have anisotropic pressure distributions (P⊥ �= P�) because electrons are

heated with ECRH, which adds energy only the perpendicular component of the electron

pressure, and the ratio of the trapped to passing particles can be very large (> 10).

The pressure anisotropy produces a variation of the pressure along the magnetic field

so the pressure is no longer a flux function. Instead the pressure can be expressed as a

function of two variables one across the field (ψ) and one along the field (B(ψ, χ), where χ

is a coordinate marking the position on the field line) [70]. The anisotropic plasma equilib-
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rium momentum equation implies P⊥ = P⊥(ψ,B) and P� = P�(ψ,B) [71]. A simple model

then defines the pressure as the product of two functions: P⊥(ψ,B) = G(ψ)H(ψ,B). The

anisotropic pressure model employed here was introduced by Connor and Hastie [72] in their

work on the stability of anisotropic plasmas confined in tokamaks. More recently the model

was applied to the dipole geometry for equilibrium [73] and stability [71] studies. These stud-

ies make the simplifying assumption that the anisotropy is constant throughout the plasma

and is parameterized as P⊥ = (1+ 2a)P� where a is the anisotropy parameter mentioned in

the previous paragraph. This simplification is implemented by defining H(B) ≡ (B0/B)2a,

where B0 is the minimum magnetic field strength on a field line. Thus, H(B(ψ, χ)) can be

viewed as an anisotropic modification to an isotropic distribution G(ψ). The effect of H(B)

is that the pressure is highest at the minimum magnetic field regions where the ECRH can

be most efficient, and the pressure decreases in regions of high magnetic field near the dipole

poles.

The equilibrium diamagnetic current from an anisotropic distribution is found from the

anisotropic momentum balance, eq. (4.2),

J =
B×∇ · P̄

B2
=

B×∇ · P⊥

B2
+

B× κ

B2

�
P� − P⊥

�
(4.31)

where κ = b · ∇b is the magnetic curvature. By using the vacuum field approximation of

the curvature vector, κ ≈ (∇⊥ B)/B, the azimuthal component of the current density can

be written in cylindrical coordinates as

Jφ = −2πR
∂P⊥

∂ψ
− 2πR

�
P� − P⊥

� ∂

∂ψ
(lnB) . (4.32)

Using the definitions described above, P⊥ = (1 + 2a)P� = GH, the current density for the
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pressure model is defined by

Jφ = −2πRH
dG

dψ
− 2πRGH

2a

1 + 2a

�
2 (1 + a)

∂ ln
�
B0
B

�

∂ψ
− ∂ lnB0

∂ψ

�
. (4.33)

where B0 is the minimum value of the magnetic field strength along a field line, B is the mag-

netic field, and a is the anisotropy factor. The functions G and H define an isotropic pressure

distribution and anisotropic modification to the pressure profile: P⊥ = G(ψ)H(B(ψ, χ)). H

is defined as:

H =

�
B0

B

�2a

. (4.34)

The isotropic pressure profile is trifurcated

G = P (ψ) =






p0

�
ψ−ψfcoil

ψ0−ψfcoil

�α
, ψ > ψ0 + δψ

Aψ
2 +Bψ + C , ψ0 + δψ > ψ ψ0 − δψ

p0

�
ψ
ψ0

�4g
, ψ ≤ ψ0 − δψ

(4.35)

where ψ0 = ψ(r0), ψfcoil is the value of ψ at the F-coil, and α = 4g (|ψfcoil/ψ0| − 1). The

coefficients A, B, and C are defined such that G and dG/dψ are continuous. The width δψ

is a fixed value that typically spans about a 5 cm radial distance at the mid-plane.

The upper mirror plasma currents are modeled as 2 currents distributed over a spatially

distributed set of filaments. The location of these filaments was chosen based on light viewed

from the region on a visible camera and the calculated locations of the heating resonances.

Figure 4.11 illustrates the location of the upper mirror filaments.

The motivation for the trifurcated pressure profile chosen is that it satisfies the basic

physical requirements (pressure is zero at the F-coil, etc.) and has a parameterization
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Figure 4.16: Illustration of the trifurcated pressure model at the mid-plane. The blue and
red sections mark the different regions defined by eq. (4.35) (note: ψ ∼ 1/r). The solid
black line marks the pressure peak. The dashed lines mark the tangency radii of the SDD
X-ray detector views.

that tests whether the plasma assumes an invariant profile outside of the pressure peak.

In choosing a pressure profile there is a natural bifurcation between the regions inside and

outside of the pressure peak. Inside the peak there is favorable magnetic field curvature thus

the plasma may be stable even with a steep pressure gradient. Outside the pressure peak

there is unfavorable magnetic field curvature and the steepness of the thermal pressure

profile is limited by stability to the MHD interchange mode. A trifurcated model was

chosen because it provides a smooth transition between the inside and outside regions. The

parabolic pressure profile provides a linear transition between the negative azimuthal current

density inside the pressure peak to the positive azimuthal current density outside the peak.

The current profile is illustrated in fig. 4.17.
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The trifurcated model is used in the reconstructions in this thesis but other models were

examined [43]. Models that satisfied the basic physical requirements generally produced

results that were qualitatively similar to the trifurcated model (i.e., supported shots had

much steeper pressure profiles outside the peak than levitated shots); however, these models

were less extensively examined.

Figure 4.17: Illustration of the trifurcated current model at the mid-plane. The dashed
black line marks the pressure peak.

The anisotropy factor constrains the pressure (and current) to the region near the min-

imum of the magnetic field strength along a magnetic field line. In supported operation

the plasma is anisotropic in part because particles that are scattered into the loss cone

are lost to the mechanical supports. In levitated operation the plasma is expected to be

more isotropic because the mechanical supports are removed so a drive for the anisotropy



CHAPTER 4. MAGNETIC RECONSTRUCTIONS: METHOD 76

is removed; however, anisotropy drives still exist in levitated operation. The ECRH drives

drives some anisotropy since it only heats the perpendicular component of the electron mo-

mentum. Additionally, some heating sources (6.4 GHz and 10.5 GHz) have their primary

mid-plane heating resonance located on field lines that terminate on the F-coil itself, so

levitation does not close these field lines and the populations created by these sources may

be very anisotropic. Previous work on LDX supported plasmas used an X-ray camera to

image the anisotropy by looking at the X-ray emission from the mirror-trapped, energetic

electrons. The anisotropy calculated from those measurements corresponds to an anisotropy

parameter of 2 (P⊥/P� = 5). The X-ray camera was not operational for more recent levi-

tated experiments but it is reasonable to assume that the anisotropy measured in supported

operation provides an upper bound to the anisotropy that may be observed in levitated

operation. Figure 4.18 illustrates the current distributions for several different anisotropy

factors. Figure 4.19 shows the X-ray imaging of the anisotropy for a supported LDX plasma

[74].
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Figure 4.18: Illustration of current density for different anisotropy factors: 0, 2, and 5.
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Figure 4.19: X-ray camera image showing the pressure anisotropy for a supported plasma
without the L-coil current [74].

4.7.1 Relating the steepness parameter, g, to the profile stability

The thermal plasma pressure is marginally stable to the MHD interchange mode when

pV
γ = constant. Thus, the MHD stability of a reconstructed pressure profile can be eval-

uated by multiplying it by the magnetic flux-tube volume taken to the power of γ. If

the quantity p(ψ)V (ψ)γ increases with radius the pressure profile is MHD stable; if the

quantity p(ψ)V (ψ)γ decreases with radius the pressure profile is MHD unstable (and the

reconstructed pressure likely includes pressure from a gyrokinetically stablized hot electron

population).

When evaluating p(ψ)V (ψ)γ an artifact of the pressure model described in the previous

section should be noted. The model fits the pressure outside the pressure peak to a function

that goes as p(ψ) ∝ ψ
4g. For the geometry of a point dipole (in which V ∼ ψ

−4) the

steepness parameter is nearly (but not exactly) equal to the ratio of specific heats, γ, for

a marginally MHD stable pressure profile. The actual flux-tube volume on LDX has a

more complicated radial dependence with V ∼ ψ
−4.5 at small radii and V ∼ ψ

−5.5 for radii
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nearer the separatrix. The effect of this variation in the flux-tube volume is that even

for a marginally MHD stable reconstructed pressure profile the quantity p(ψ)V (ψ)γ will

deviate some from a constant value, specifically, it will increase at large radius (R > 1.5

m). Figure 4.20 illustrates p(ψ)V (ψ)γ for a pressure profile that is marginally stable to the

MHD interchange mode for both the ideal case and for a hypothetically reconstructed case.
F-

co
il

Radius

pV
γ

pressure peak location

Figure 4.20: Illustration of p(ψ)V (ψ)γ for a marginally MHD stable pressure profile.
The blue curve illustrates an ideal pressure profile for which the entropy density factor,
p(ψ)V (ψ)γ, is a constant outside the pressure peak. The red curve illustrates the entropy
density factor as a function of radius for a hypothetical fit to the pressure profile. The
entropy density factor is constant for much of the radial profile but increases at large radius
because the flux-tube volume increases rapidly in a manner not accounted for in the pressure
model.

4.8 Model fitting: χ
2 minimization

The plasma pressure profile on a shot is determined by comparing the magnetic flux loop

and poloidal field coil measurements to the values predicted by the parameterized pressure

model. This is done by a nonlinear χ2 minimization where the figure of merit, χ2, is defined

χ
2 =

N�

i=1

(Mi − Ci)
2

σ
2
i

(4.36)
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where the summation is over the N measurements, Mi is the i
th measurement, Ci is the

modeled i
th measurement, and σ

2
i is the variance of the ith measurement. Clearly, the closer

the model matches the measurement the lower the value of χ2; however, too low a value of

χ
2 may indicate that the measurement error bars have been over estimated [75].

A number of methods have been implemented to gain a sense of the parameter space. The

two most straight forward will be mentioned here: a parameter scan to map the variation

of χ2 in the parameter space and the Nelder-Mead downhill simplex method (alias, amoeba

method) [76]. The two techniques have diametric advantages and disadvantages. The

parameter scan gives a broad but coarse perspective of the parameter space. The simplex

method finds a local minimum through many fine steps but is oblivious to the global features

of the parameter space (i.e., there is no assurance that the local minimum found is a global

minimum). By combining both methods the global minimum can be found with reasonable

confidence.

4.9 Monte Carlo estimation of parameter errors

A Monte Carlo method is used to estimate the errors in the parameter values calculated

by the magnetic reconstruction [75]. Analytically propagating the measurement errors to

determine the errors in the calculated parameter values would be a cumbersome and poten-

tially unfruitful task due to the iterative, nonlinear nature of the minimization algorithm.

The Monte Carlo method provides a straightforward means of estimating the uncertainties

in the parameter values due to the uncertainties in the measurements.

The method is performed by analyzing many synthetic datasets that are generated from

the real dataset and knowledge of the model and measurement errors. In a fantastic world
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the experimenter would know the true model parameters, Ptrue. Synthetic datasets, Mi,

could then be generated by randomly sampling the measurement distribution appropriate

for the true model parameters. Analyzing the datasets Mi would then lead to the sets of

parameters Pi. The distribution Pi−Ptrue would then show the variation of the parameters

due to the uncertainty in the measurements.

Alas, the experimenter is destined to never know Ptrue! Only nature knows Ptrue. The

experimenter must settle for the set of parameters P0 that has been deduced from the set

of real measurements M0. The key assumption of the Monte Carlo method is that P0 is

similar enough to Ptrue that it can act as a surrogate. Specifically, the method assumes

that the measurements are good enough that P0 is near Ptrue, and that the way random

errors propagate in the system is not a strong function of Ptrue. Thus, when the procedure

described in the previous paragraph is performed with P0 instead of Ptrue the distribution

Pj −P0 will have a distribution similar to Pi −Ptrue.

4.10 Magnetic reconstruction: A test case

In this section the magnetic reconstruction process is evaluated for an artificial test case.

The measurement data for the test case is generated from the model profile with ran-

dom measurement errors. Table 4.2 shows the model parameters used to generate the test

case measurements. Figures 4.21 and 4.22 show that the magnetic reconstruction correctly

calculates the the values of the measurement parameters. Figure 4.23(a) shows how the

reconstructed steepness parameter and pressure peak location vary for different values of

the anisotropy parameter. Figure 4.23(b) shows that the anisotropy parameter is resolved

in the test case.
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Test case
Model Parameters

Pressure parameter, p0 500 Pa

Pressure peak location, r0 0.75 m

Profile steepness parameter, g 1.7
Anisotropy parameter, a 0.5
Upper mirror inner current, IM1 0A
Upper mirror outer current, IM2 -150A

Plasma Parameters
Peak pressure 361 Pa

Plasma energy 321 J

Beta at pressure peak 7.0 %
Total plasma current 3.4 kA

Plasma dipole moment 15.6 kA ·m2

Table 4.2: Pressure profile parameters for magnetic reconstruction test case.
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g

Figure 4.21: χ
2 contours in yellow for the test case. The underlaid image shows the χ

2

values with blue indicating small χ2 and red indicating large χ2. The contours of minimum
χ
2 are closed and surround the model parameters showing that the magnetic reconstruction

correctly determined the parameter values.
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77 ±  4 cm

1.75 ±  0.15

g

Figure 4.22: Monte Carlo estimation of parameter errors for levitated test case. The value
of the steepness parameter is 1.75 with a standard deviation of about 0.15. The ’x’ marks
indicate the value of the steepness parameter, g, and the pressure peak location for χ

2

minima found for different synthetic data sets. The black contours are χ2 contours from the
initial synthetic data set. The inner contour is defined by χ

2 = χ
2
min+ δχ

2 where χ2
min = 14

and δχ
2 = 1.
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(a)

(b)

Figure 4.23: (a) Contours illustrating how the χ
2 minimum moves in the parameter space

for different values of the anisotropy parameter. (b) A scan of the anisotropy parameter
showing that the model and minimization algorithm find the correct anisotropy parameter
(a = 0.5) for the test case. However, the sensitivity to the anisotropy parameter is low.
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Chapter 5

Magnetic reconstructions: Results

This section presents results from magnetic reconstructions of the plasma pressure profile.

One important aim of this thesis is to evaluate whether thermal plasmas confined in the

magnetic field of a levitated dipole adopt invariant pressure profiles (pV γ = constant). For

this reason, the analysis here focuses on the steepness of the pressure profile gradient that

best fits the measurements. This is quantified by the steepness parameter, g (see section 4.7).

The relation between the steepness parameter and the thermal plasma MHD stability is

shown by plotting the entropy density factor, p(ψ)V (ψ)γ. If the entropy density factor

increases with radius the plasma is MHD stable; if the entropy density factor decreases with

radius the pressure gradient is steeper than the MHD limit. Pressure profiles with gradients

steeper than the MHD limit for a thermal plasma are observed on LDX because of the

presence of a gyrokinetically stabilized hot electron population that is created by the ECR

heating sources.

Table 5.1 summarizes a variety of reconstructed shots. First a comparison is made

between levitated and supported operation. It is found that during supported operation
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the pressure profile is very peaked (g > 3). When the coil is levitated the pressure profile

broadens (g ∼ 2). The next reconstructed shots were examined to explore the conditions

that produce broader pressure profiles. It is generally found that denser plasmas with fewer

hot electrons have broader profiles.

Shot number Power sources Comment
100805046 (levitated)
100805045 (supported)
[Deuterium]

2.45 GHz (5 kW)
6.40 GHz (3 kW)
10.5 GHz (10 kW)

Compare levitated and supported opera-
tion: Pressure profile is broader when levi-
tated (g ∼ 2) than when supported (g ∼ 5)

100805046 (levitated)
100805045 (supported)
[Deuterium]

2.45 GHz (5 kW)

Compare levitated and supported opera-
tion: Pressure peak moves outward dur-
ing levitation but pressure gradient is sim-
ilar in levitated and supported operation
(g ∼ 3.5)

100804017 (levitated)
[Deuterium]

10.5 GHz (5 kW)
———————
10.5 GHz (5 kW)
28 GHz (5 kW)

Compare with and without 28.0 GHz
source: Pressure profile is broader with
28.0 GHz source.

100805028 (levitated)
[Deuterium]

2.45 GHz (5 kW)
6.40 GHz (3 kW)
10.5 GHz (10 kW)
———————
2.45 GHz (5 kW)
6.40 GHz (3 kW)
10.5 GHz (10 kW)
28.0 GHz (10 kW)

Compare with and without 28.0 GHz
source: Pressure profile is broader with
28.0 GHz source.

100806016 (levitated)
[Helium]

2.45 GHz (5 kW)
Pressure profiles with only 2.45 GHz
source in helium gas: Helium plasmas are
the densest plasmas on LDX.

100804018 (levitated)
[Deuterium]

28.0 GHz (10 kW)
Pressure profiles with only 28.0 GHz
source: Pressure profile is very broad (g ∼
1.2) and has little stored energy.

Table 5.1: A summary of the magnetically reconstructed shots.
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5.1 Comparison of plasmas during levitated and sup-

ported operation

5.1.1 Overview of reconstructed shots

Supported shot number 100805045 and levitated shot number 100805046 are used to com-

pare supported and levitated operation. For these shots the shot conditions were pro-

grammed to be identical with the exception that the dipole is supported in one case and

levitated in the other. Because the shots occurred consecutively (within a number of min-

utes of each other) variations in uncontrolled parameters (i.e., vacuum wall conditioning)

are minimal. Thus, these shots allow for a careful and systematic comparison between

supported and levitated operation.

Figure 5.1 provides an overview of shots 100805045 and 100805046. The power and

fueling are similar for the two shots; however, during levitation an outer flux loop measures

twice the magnetic flux and the interferometer measures the density to be much higher and

more centrally peaked. Here both shots are reconstructed at two different times: (1) with

multiple ECRH sources on, and (2) with only the 2.45 GHz source on. The times with

multiple ECRH sources on are are denser and likely to be more thermal, with less neutral

penetration from the edge. The times with only the 2.45 GHz heating source are of interest

because there is a more significant difference between supported and levitated operation

with just this source (see fig. 5.7).
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Supported shot 100805045

2.45 GHz  on

6.4 GHz  on

10.5 GHz  on 10.5 GHz  off

6.4 GHz  off

2.45 GHz  off

Time [sec]

2.45 GHz  on

6.4 GHz  on

10.5 GHz  on 10.5 GHz  off

6.4 GHz  off

2.45 GHz  off

Levitated shot 100805046

Time [sec]

Figure 5.1: Overview of supported shot 100805045 and levitated shot 100805046. The top
row shows that the heating power profile was the same in both shots. The second row
shows that the vessel pressure was similar on both shots. The third row shows that during
levitation the change in the magnetic flux measured by a flux loop at the outer mid-plane
(diameter 5 m) is nearly a factor of two greater than during supported operation. The last
row shows the phase measurement of the 4 chord interferometer: black (77 cm tangency
radius), red (86 cm), green (96 cm), and blue (125 cm). The large phase change on the
inner chords during levitation show that the electron density is much higher and centrally
peaked during levitated operation. The light red and light blue vertical lines indicate the
times used in the reconstructions described in the next sections. The vertical black lines
mark times when the input power changes.
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5.1.2 Pressure profiles with 2.45 GHz, 6.4 GHz, and 10.5 GHz

ECRH sources (18 kW)

The electron pressure profile is broader when the F-coil is levitated than it is when the

F-coil is supported. Figure 5.2 shows that the steepness parameter, g, is about 2 when the

F-coil is levitated and multiple ECRH sources are on. The figure shows the value of χ2

as a function of the parameters g and the location of the pressure peak for a fixed value

of the pressure anisotropy (a0 = 0.5). Small values of χ2 (blue) indicate good agreement

between the measurement and model. The yellow contours mark levels of constant χ2 and

show that there is a constrained minimum. Figure 5.3 shows that the estimated error in the

measurement of g is about ±0.2 based on a Monte Carlo simulation of the parameter errors.

Thus, the estimated value of g for this shot is 2.1±0.2. Figures 5.4(a) and 5.4(b) show that

the magnetic reconstruction tends toward anisotropic pressure profiles; however, fig. 5.4(a)

shows g does not vary strongly with the anisotropy factor and has a value between 2 and

2.2 for anisotropy factors from 0 to 2. Figure 5.5 shows that for a supported plasma with

multiple ECRH sources g > 5 indicating a very steep pressure profile. Table 5.2 compares

both the model and plasma parameters for supported and levitated operation. Figure 5.6

shows contour plots of the pressure and current density profiles for both levitated and

supported operation.
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g

Figure 5.2: χ2 contours for levitated shot 100805046 with multiple ECRH sources on. The
underlaid image shows the χ

2 values with blue indicating small χ2 and red indicating large
χ
2. The contours of minimum χ

2 are closed and indicate a that the pressure profile has its
peak at about 80 cm and has a steepness parameter, g, of about 2.
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81 ±  5 cm

2.1 ±  0.2

g

Figure 5.3: Monte Carlo simulation of parameter errors for levitated shot 100805046. The
value of the steepness parameter is 2.1 with a standard deviation of about 0.2. The black
contours mark values of constant χ2. The inner contour is defined by χ

2 = χ
2
min+δχ

2 where
χ
2
min = 19.4 and δχ

2 = 0.9.
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g

(a)

(b)

Figure 5.4: Variation of χ
2 minima with anisotropy factor for levitated plasma shot

100805046. (a) Contours illustrating how the χ2 minimum moves in the parameter space for
different values of the anisotropy parameter. (b) A scan of the anisotropy parameter showing
that the model and minimization algorithm tend toward large anisotropy parameters.
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!2 contours
Supported : 100805045

g

Figure 5.5: χ2 contours for supported shot 100805045 with multiple ECRH sources on. The
underlaid image shows the χ

2 values with blue indicating small χ2 and red indicating large
χ
2. The contours of minimum χ

2 indicate a steepness parameter of greater than 5. The
anisotropy is fixed in the minimization to the value of 2.
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Model Parameters
Levitated (100805046)
t = 8.2 sec

Supported (100805045)
t = 9.5 sec

Pressure parameter, p0 426 Pa 4430 Pa

Pressure peak location, r0 0.81 m 0.80 m

Profile steepness parameter, g 2.1 6.3
Anisotropy parameter, a 0.5† 2.0†

Upper mirror inner current, IM1 -1 A -2630 A

Upper mirror outer current, IM2 -155 A -6 A

Plasma Parameters Levitated (100805046) Supported (100805045)
Peak pressure 268 Pa 880 Pa

Plasma energy 250 J 196 J

Beta at pressure peak 8.6 % 27.2 %
Total plasma current 3.0 kA 2.4 kA

Plasma dipole moment 12.1 kA ·m2 7.1 kA ·m2

Global energy confinement 14 ms 11 ms

Table 5.2: Pressure profile parameters and plasma parameters for magnetic reconstructions
of levitated shot 100805046 and supported 100805045 with multiple ECRH sources on (18
kW). The global energy confinement time is the plasma energy divided by the total mi-
crowave input power.
† Parameter held fixed during χ

2 minimization.
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Pressure: Supported (100805045)Pressure: Levitated (100805046)

Current: Supported (100805045)Current: Levitated (100805046)

Figure 5.6: Pressure and current density contours for a supported (100805045) and a lev-
itated (100805046) shot. In the top figures the pressure is shown with green contours
indicating higher pressure and black contours indicating lower pressure (the same pressure
contours levels are plotted for levitated and supported operation). The bottom figures show
the current density with solid blue indicating high positive current density, solid black low
positive current density, dotted black low negative current density, and dotted yellow high
negative current density (the same current density contour levels are plotted in levitated
and supported operation). The red contour marks the separatrix. During levitation the
pressure and current density profiles are broader with lower maximum values.
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5.1.3 Pressure profiles with only 2.45 GHz ECRH source (5 kW)

Magnetic reconstruction of the pressure profile during supported operation with only the

2.45 GHz source provides the opportunity to compare the new magnetic reconstruction code

with previous work [43]. The reconstructed pressure profile is consistent with previous work.

Figure 5.8(a) shows that the pressure profile is steep (g ∼ 3.5) with its peak near the 2.45

GHz fundamental resonance located at 82 cm. Figure 5.8(b) shows that during levitation

the pressure profile has a steepness parameter similar to that in supported operation but

the pressure peak has moved out in radius.

Δ ~ 1.3 mV s

Δ ~ 1.3 mV s

Δ ~ 0.35 mV s

Δ ~ 1.2 mV s

10.5 GHz on

2.45 GHz on

levitated
supported

100805046
100805045

Figure 5.7: Comparison of the flux measured by flux loop 5 for a levitated and supported
shot. Levitation makes a significant difference when the 2.45 GHz source is turned on at t
= 0 s. By contrast levitation does not appear to make a significant difference when the 10.5
GHz source is turned on a t = 2 s. This is likely a result of the pressure peak moving out in
radius as a result of the 2.45 GHz fundamental resonance being shielded by the increased
density during levitation. Another factor maybe that the 2.45 GHz source has its first mid-
plane resonance (its fundamental) on closed field lines during levitation while the 10.5 has
its first mid-plane resonance (its 1st harmonic) on open field lines (field lines that connect
to the F-coil).
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Figure 5.8: Comparison of levitated and supported operation with only the 2.45 GHz source.
(a) Supported shot 100805045. The pressure profile is steep and peaks near the fundamental
resonance of the 2.45 GHz source. (b) Levitated shot 100805046. The pressure profile is
broader and peaks at larger radius possibly because the increased density during levitation
has cutoff access to the 2.45 GHz fundamental resonance.

5.2 Levitated, high density electron pressure profiles

5.2.1 10.5 GHz ECRH source with and without 28 GHz ECRH

source (10 kW and 5 kW)

Figure 5.11 shows an overview of a shot with the 10.5 GHz heating source during which the 28

GHz source is turned on and off. The 28 GHz heating source increases the plasma density an

amount similar to the 10.5 GHz heating source; however, it has a much smaller effect on the
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magnetic flux measured by an outer flux loop (the large rise in the flux that peaks at about

2 seconds is due primarily to the movement of the F-coil). Figures 5.10(a) and 5.10(b) show

magnetic reconstructions of the pressure profile at times with (6.25 seconds) and without

(11.5 seconds) the 28 GHz heating source on. With the addition of the 28 GHz heating

source the pressure peak moves slightly inward and the steepness parameter, g, decreases

from about 3.5 to 2.5 indicating a broadening of the pressure profile.

10.5 GHz  on 10.5 GHz  off

Levitated shot 100804017

28 GHz  ramp off

Time [sec]

28 GHz  ramp on

Figure 5.9: Overview of a 10.5 GHz shot (100804017) with and without the addition of the
28 GHz source. Magnetic reconstructions of the pressure profile at 6.25 seconds and 11.5
seconds (indicated by the light blue lines) show that the pressure profile is broader when
the 28 GHz source is on in addition to the 10.5 GHz source.
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Figure 5.10: Comparison of levitated plasmas with and without the 28 GHz. Levitated shot
100804017 with (a) 10.5 GHz source (5 kW) only and (b) 10.5 GHz source (5 kW) and 28
GHz source (5 kW)
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Model Parameters
with 28 GHz source
t = 6.25 sec

without 28 GHz source
t = 11.5 sec

Pressure parameter, p0 854 Pa 967 Pa

Pressure peak location, r0 0.60 m 0.64 m

Profile steepness parameter, g 2.5 3.5
Anisotropy parameter, a 2.0† 2.0†

Upper mirror inner current, IM1 -404 A -160 A

Upper mirror outer current, IM2 0† A 0† A
Plasma Parameters with 28 GHz source without 28 GHz source
Peak pressure 530 Pa 515 Pa

Plasma energy 56 J 55 J

Beta at pressure peak 2 % 3%
Total plasma current 0.44 kA 0.45 kA

Plasma dipole moment 1.1 kA ·m2 1.0 kA ·m2

Global energy confinement 6 ms 11 ms

Table 5.3: Pressure profile parameters and plasma parameters for magnetic reconstructions
of levitated shot 100804017 for times with (10 kW total ECRH power) and without (5 kW
total ECRH power) the 28 GHz source.
† Parameter held fixed during χ

2 minimization.
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5.2.2 Full ECRH power (28 kW)

Full power shots on LDX have 28 kW of power distributed over 4 frequencies ranging from

2.45 GHz to 28 GHz. The density during levitated full power shots can exceed 1 × 1012

cm
−3. Figure 5.11 shows shot 100805028 in which the 28 GHz source is abruptly turned

off (typically the 28 GHz source must be slowly ramped up and down). Shutting off the

28 GHz source causes an abrupt decrease in the plasma density, although, as in shown in

fig. 5.12 the invariant density profile is maintained. Notably, the diamagnetic flux actually

increases when the the 28 GHz source is shut off though a closer look at the shut off reveals

that the diamagnetic flux initially decreases briefly before increasing.

Magnetic reconstructions of the pressure profile before and after the shut off of the 28

GHz heating source show that the pressure profile is broader when all power sources are

on; the pressure profile becomes steeper after the 28 GHz source is turned off (see table 5.4

and fig. 5.14). Figures 5.15(a) and 5.15(b) show the time evolution of the pressure profile

around the shut off as the pressure profile smoothly transitions from a broad pressure profile

(g ∼ 1.6) to a steeper pressure profile (g > 2).
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2.45 GHz  on

6.4 GHz  on

10.5 GHz  on 10.5 GHz  off

6.4 GHz  off

2.45 GHz  off

Levitated shot 100805028

28 GHz  off

Time [sec]

Figure 5.11: Overview of full power shot 100805028. At 8 seconds the 28 GHz source is
turned off. Magnetic reconstructions of the pressure profile at 6.25 seconds and 9.1 seconds
(indicated by the light blue lines) show that the pressure profile is much broader (g = 5/3)
when the 28 GHz source is on in addition to the other sources.



CHAPTER 5. MAGNETIC RECONSTRUCTIONS: RESULTS 103

Interferometer chord ratio: ch2/ch3
Levitated shot 100805028

Time [sec]

R
at

io
 c

h2
/c

h3

6.4 GHz  on

10.5 GHz  on 10.5 GHz  off
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Figure 5.12: For an invariant density profile on LDX the ratio of 2nd and 3rd interferometer
chord phase measurement is approximately 1.5. The plasma maintains a chord ratio consis-
tent with an invariant density profile even when a sudden turn off of the 28 GHz source (10
kW) causes a dramatic reduction in the the absolute density (see fig. 5.11 bottom panel).

Model Parameters
with 28 GHz source
t = 6.25 sec

without 28 GHz source
t = 9.1 sec

Pressure parameter, p0 200 Pa 222 Pa

Pressure peak location, r0 0.83 m 0.95 m

Profile steepness parameter, g 1.55 2.45
Anisotropy parameter, a 2.0† 2.0†

Upper mirror inner current, IM1 -2042 A -1786 A

Upper mirror outer current, IM2 -397 A -408 A

Plasma Parameters with 28 GHz source without 28 GHz source
Peak pressure 178 Pa 185 Pa

Plasma energy 116 J 109 J

Beta at pressure peak 7.0 % 19.5%
Total plasma current 1.5 kA 1.7 kA

Plasma dipole moment 7.9 kA ·m2 9.2 kA ·m2

Global energy confinement 4 ms 6 ms

Table 5.4: Pressure profile parameters and plasma parameters for magnetic reconstructions
of levitated shot 100805028 for times with and without the 28 GHz source.
† Parameter held fixed during χ

2 minimization.
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Figure 5.13: (a) χ
2 contours for magnetic reconstruction of a shot (100805028) with full

ECRH power (28 kW) and with the anisotropy factor fixed at a value of 2. (b) χ2 contours
for different anisotropy factors. The magnetics agree best with the larger anisotropy factor
(ao = 2.0, χ2 ∼ 25 whereas ao = 0.5, χ2 ∼ 41) indicating that even when levitated LDX
plasmas are anisotropic. Comparing this shot (100805028) to the shot in a previous section
(100805046, fig. 5.2) the addition of the 10 kW at 28 GHz increases the plasma density and
causes the pressure profile to broaden toward the invariant profile.
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Figure 5.14: χ2 contours comparing levitated plasmas with and without the 28 GHz source
(10 kW). The 28 GHz source (10 kW) significantly increases the plasma density. Magnetic
reconstructions indicate that the pressure profile is broader with the 28 GHz source on.
This is shown by the smaller value of the steepness parameter determined by the magnetic
reconstructions when the 28 GHz source is on.
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Figure 5.15: (a) χ2 contours showing time evolution of the pressure profile with the 28 GHz
source shutoff. (a) Time traces showing the magnetic flux measured at and outside flux loop
and the phase measurement made by the interferometer. At 8 seconds the 28 GHz source
shuts off causing a rapid decrease in the density measured by the interferometer. The grey,
red, and blue vertical bars indicate times when the magnetic reconstructions where done.
With the 28 GHz source on the pressure profile is near the invariant profile. When the 28
GHz source is turned off the pressure profile steepens, which would be consistent with a
building hot electron population.
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5.2.3 Helium plasma (2.45 GHz ECRH only, 5 kW)

Helium plasmas on LDX are typically denser (by about a factor of 2) than deuterium

plasmas. Magnetic reconstruction of the pressure profile for a helium shot with just the

2.45 GHz source shows that the pressure profile steepness parameter, g, is approximately

1.5 (see fig. 5.16). Additionally, the plasma is very isotropic as indicated by the anisotropy

factor (a = 0, see fig. 5.17). Table 5.5 shows the model and plasma parameters for the

magnetic reconstruction of the helium shot for both the isotropic and anisotropic cases.
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Figure 5.16: χ2 contours indicating the best fit pressure profile parameters for a helium shot
with just the 2.45 GHz source. The steepness parameter, g, is about 1.5.
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Figure 5.17: χ2 contours indicating the best fit pressure profile parameters for a helium shot
with just the 2.45 GHz source for different values of the anisotropy factor. The best fit is
for a = 0 which indicates an isotropic pressure.

Model Parameters
Isotropic (a = 0)
t = 11.9 sec

Anisotropic (a = 0.5)
t = 11.9 sec

Pressure parameter, p0 9 Pa 20 Pa

Pressure peak location, r0 1.10 m 1.01 m

Profile steepness parameter, g 1.4 1.55
Anisotropy parameter, a 0.0† 0.5†

Upper mirror inner current, IM1 0 A
† 0 A

†

Upper mirror outer current, IM2 -159 A -161 A

Plasma Parameters Isotropic (a = 0) Anisotropic (a = 0.5)
Peak pressure 9 Pa 18 Pa

Plasma energy 50 J 42 J

Beta at pressure peak 2.4 % 2.8 %
Total plasma current 0.53 kA 0.55 kA

Plasma dipole moment 3.2 kA ·m2 3.2 kA ·m2

Global energy confinement 10 ms 8 ms

Table 5.5: Pressure profile parameters and plasma parameters for magnetic reconstructions
of levitated helium shot 100806016 with only the 2.45 GHz ECRH source on.
† Parameter held fixed during χ

2 minimization.
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5.2.4 28 GHz ECRH source only (10 kW)

Figure 5.18 shows that the 28 GHz heating source creates a peaked density profile (similar

to other ECRH sources) but little diamagnetic flux (compared to other ECRH sources).

Figure 5.19 shows that the density profile is near the invariant profile for most of the shot.

Magnetic reconstructions of the pressure profile show that the pressure profile is very broad

with g < 1.5. Figure 5.20(a) shows that for an isotropic pressure the steepness parameter

is very broad (g ∼ 1.2) with a pressure peak near the F-coil. Figure 5.20(b) shows that for

a more anisotropic pressure the profile is steeper (g ∼ 1.5). Importantly, table 5.6 shows

that there is less plasma stored energy per heating power during levitation with only the 28

GHz heating source.

Model Parameters
28 GHz only, (a = 0.0)
t = 8.5 sec

28 GHz only, (a = 2.0)
t = 8.5 sec

Pressure parameter, p0 15 Pa 67 Pa

Pressure peak location, r0 0.6 m 0.6 m

Profile steepness parameter, g 1.2 1.5
Anisotropy parameter, a 0.0† 2.0†

Upper mirror inner current, IM1 65 A 63 A

Upper mirror outer current, IM2 0† A 0† A
Plasma Parameters 28 GHz only, (a = 0.0) 28 GHz only, (a = 2.0)
Peak pressure 13 Pa 56 Pa

Plasma energy 13 J 11 J

Beta at pressure peak 0.05 % 0.2 %
Total plasma current 0.12 kA 0.12 kA

Plasma dipole moment 0.4 kA ·m2 0.4 kA ·m2

Global energy confinement 1 ms 1 ms

Table 5.6: Pressure profile parameters and plasma parameters for magnetic reconstructions
of levitated shot 100804018 for times with only the 28 GHz source.
† Parameter held fixed during χ

2 minimization.
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Levitated shot 100804018

28 GHz

Time [sec]

Figure 5.18: Overview of 28 GHz source only shot 100804018. The interferometer shows that
the 28 GHz source creates significant density and the density adopts an invariant profile.
However, flux loop measurements show little change in the magnetic flux indicating little
plasma current. Magnetic reconstruction of the pressure profile at 8.5 seconds (indicated
by the light blue line) shows that there is little plasma pressure though the pressure adopts
a profile with a gradient slightly more shallow than the invariant profile.
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Figure 5.19: For an invariant density profile (n ∝ 1/V ) on LDX the ratio of 2nd and 3rd

interferometer chord phase measurement is approximately 1.5. This ratio shows that with
only the 28 GHz source on (shot 100804018) the density profile adopts the invariant profile.
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Figure 5.20: χ2 contours for levitated shot 100804018 with only the 28 GHz source on. The
underlaid image shows the χ

2 values with blue indicating small χ2 and red indicating large
χ
2 for (a) an anisotropy factor of 0.0 and (b) an anisotropy factor of 2.0. For both cases the

contours of minimum χ
2 indicate a broad profile.
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Chapter 6

X-ray measurements

On LDX the X-rays appear to come primarily from a minority hot electron population.

The X-ray measurements indicate that the hot electrons can be described by a log-linear

energy distribution in the range 50-100 keV. Additionally, the X-ray measurements provide

information about the radial location of the hot electron peak and provide a means for

estimating the hot electron fraction (neh/ne, where neh is the hot electron density and ne

is the total electron density). On LDX the X-ray spectrum from 2-20 keV (often called

soft X-rays in contrast hard X-rays which have greater energy) is observed with a silicon

drift detector. Higher energy X-rays (10-650 keV) are observed with several cadmium-zinc-

telluride detectors.

6.1 Thermal bremsstrahlung

Bremsstrahlung, which is German for ‘braking radiation’, most commonly refers to the ra-

diation emitted when electrons are slowed down in matter, such as in the X-ray tubes first

discovered by Wilhelm Röntgen. However, it technically refers to all radiation emitted by ac-
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celerated charged particles including cyclotron radiation and thermal bremsstrahlung. Ther-

mal bremsstrahlung, sometimes referred to as free-free radiation, occurs in plasmas where

collisions between free electrons and ions produce radiation. The thermal bremsstrahlung

spectrum is a continuum

Pbrem(ω) ∝
neni√
Te

e
−�ω/Te (6.1)

where ne is the electron density, ni is the ion density, Te is the electron temperature, �

is the reduced Planck’s constant (h/2π), and ω is the light frequency. The intensity of

the bremsstrahlung emission has an exponential dependence on the electron temperature.

When �ω > Te, the electron temperature can be deduced by fitting a line to the logarithm

of the bremsstrahlung intensity spectrum [77, 78].

6.2 Spectral lines

The soft X-ray spectrum has several prominent impurity lines (see fig. 6.1(a)). The chromium

(5.4 keV) and iron (6.5 keV) are commonly seen in X-ray spectra since most vacuum cham-

bers are made of stainless steel which contains both chromium and iron. The xenon impurity

is less common but it was identified by multiple lines in the soft X-ray spectra (4.1 keV,4.4

keV, and 29.5 keV) and multiple lines viewed with a visible spectrometer. The presence

of xenon in the machine was traced back to a experiment run in July 2009 by looking at

visible spectrometer data. In July 2009, xenon plasmas were being created and a valve stuck

releasing a large amount of xenon into the vacuum chamber. The argon line (∼3 keV) is

the least confidently identified line as there is no expected source. Another possibility for

that line is silver. There is a silver strip on the F-coil that is used by the levitation lasers.

However, corroborating silver lines were not identified.
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Figure 6.1: (a) Impurity lines seen on LDX with SDD include xenon, chromium, iron, and
argon. (b) The xenon Kα line corroborates the identification of the xenon lines seen near 4
keV.

6.3 Support versus levitated operation

The X-ray spectra in supported and levitated operation are similar. In both cases the

spectra indicate the presence of a high energy electrons. Figures 6.2(a) and 6.2(b) show

that this population can be fit to a pseudo-temperature in the range 50-100 keV.

Figures 6.3(a), 6.3(b) and 6.4 show that there is a variation of the X-ray spectra with

the detector view’s tangency radius. Specifically, fig. 6.4 shows that with just 2.45 GHz

souce on the X-ray signal slightly peaks at larger radius (solid lines) during both levitated

and supported operation. When higher frequency sources are turned on the X-ray signal
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peaks at smaller radius (dotted lines). This is either due to the X-ray detector observing the

hot electron peak in the plasma or observing target X-rays that are emitted when lost hot

electrons hit the dipole magnet or its supports. The X-ray views were adjusted to get a high

photon flux, rather than a narrow view (see section 3.3.2). The X-rays provide information

about the energy distribution of the hot electrons, and, perhaps more importantly indicate

whether there are relatively many or few hot electrons in a given plasma shot.

Summed Supported (100805038-40,43-45)
Full Power: 4-8 sec

108 keV

79 keV

CZT 3 at 72 cm
CZT 4 at 113 cm

(a)

Summed Levitated (100805046-51)
Full Power: 4-8 sec

87 keV

52 keV

CZT 3 at 72 cm
CZT 4 at 113 cm

(b)

Figure 6.2: Summed spectra from CZT detectors with tangency radii 72 cm (CZT 3) and
113 cm (CZT 4). Spectra are corrected for the transmission efficiency and sensitivity of the
CZT detectors. (a) supported shots, (b) levitated shots.
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Figure 6.3: Spectra from SDD detector with tangency radii 77 cm, 83 cm, 93 cm, 105 cm,
and 116 cm (the detector’s view angle was changed between shots). Signals are integrated
during the stable, full power period from 4 to 8 seconds. (a) supported shots (100805038-
40,43-45), (b) levitated shots (100805046-50).
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2.45 GHz only, t=[0,1]
supported (100805049-40,43-45)

2.45 GHz only, t=[0,1]
levitated (100805046-50)

2.45, 6.4 & 10.5 GHz, t=[2,3]
supported (100805049-40,43-45)

2.45, 6.4 & 10.5 GHz, t=[2,3]
levitated (100805046-50)

SDD X-ray Intensity
Integrated 10-15 keV

Figure 6.4: Continuum X-ray intensity measured by the SDD as a function of radius in
supported and levitated operation. Intensity values at each radial point are calculated by
integrating the X-ray spectrum between 10 and 15 keV (the region marked by the vertical
dotted lines in figs. 6.3(a) and 6.3(b))
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6.4 Spectra for higher density plasmas

Fewer X-rays are observed during plasmas created with only the 28 GHz heating source.

Additionally, a fewer number of X-rays are observed during high density, helium plasmas.

Figure 6.6 shows the decreased X-ray flux observed with a plasma generated with only the

28 GHz ECRH source (10 kW) compared to a plasma created with both the 28 GHz ECRH

source (5 kW) and the 10.5 GHz ECRH source (5 kW). Figure 6.5 shows the decreased

X-ray flux observed for a helium plasma compared to deuterium plasmas.

Supported, deuterium
Levitated, deuterium
Levitated, helium

Supported, deuterium
Levitated, deuterium
Levitated, helium

Figure 6.5: Few X-rays are observed during helium plasmas indicating that there are few hot
electrons. Radial intensity profiles are constructed by integrating a section of the continuum
spectrum for shots with different radial views (see fig. 6.4).
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Figure 6.6: During the 28 GHz ECRH source only shot there is a significantly reduced
amount of X-ray emission compared with other sources indicating fewer hot electrons; how-
ever, there is still some X-ray emission indicating some hot electrons. The panels show the
X-ray spectra for the SDD and CZT detectors. The red traces are for a 28 GHz ECRH
source only (10 kW) shot (100804018) and the black traces are for a shot (100804017) with
both the 28 GHz ECRH source (5 kW) and the 10.5 GHz ECRH source (5 kW).

6.5 Estimation of the hot electron fraction

An estimate of the hot electron fraction (the ratio of the hot electron density over the

total electron density) can be made using the pressure profiles calculated from the magnetic
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reconstructions and the pseudo-temperature calculated for the hot electron population from

the X-ray spectra. Comparing supported (100805045) and levitated (100805046) shots with

multiple ECRH sources (see table 5.2) it is found that levitation decreases the hot electron

fraction. This is believed to be due to both an increase in the thermal electron density

(because levitation removes losses to supports) and a decrease of the hot electron number

(because the greater density causes more scattering, which reduces the energetic population).

For the supported shot, the hot electron energy is approximated as 100 keV. The maximum

hot electron density is calculated by dividing the peak pressure by the hot electron energy.

The interferometer measures the total electron density, which for supported operation is

quite flat. The hot electron fraction is ∼ 35% for supported operation. For levitated

operation, the partition of the plasma pressure between the hot electrons and a cooler,

thermal population is not known so the extreme case is evaluated where all the pressure is

in the hot electrons. Again the hot electron energy is taken to be 100 keV and the peak

of the total electron density is obtained by inverting the interferometer measurements. The

maximum hot electron fraction during levitated operation is ∼ 3%. However, magnetic

measurements indicate that as much as half of the plasma pressure is in the thermal plasma

[26]. Furthermore, the X-ray intensity (from energetic electrons) is lower during levitated

operation (see fig. 6.4) although the plasma energy is greater (see table 5.2). Thus, the hot

electron fraction during levitated operation is less than 3 %.

6.6 Soft X-ray conclusions

The X-rays detected by the Silicon Drift Detector and the CZT detectors are from a hot

electron population and indicate that the hot electron population can be described by a
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log-linear energy distribution in the range 50-100 keV. Because the X-rays come from a hot

electron population, the X-ray signal provides a good indicator as to whether a plasma shot

has relatively many or few hot electrons.

Measurements of the X-ray intensity for different radial sight lines show that the hot

electron population is much more centrally peaked during supported operation than it is

during levitated operation.

Combining information from the magnetic reconstruction of the pressure profile, interfer-

ometry, and the X-ray spectroscopic measurement of the hot electron energy shows that the

fraction of hot electrons can reach 35% of the total electron density during supported oper-

ation. The hot electron fraction during levitated operation is at least an order of magnitude

smaller (i.e., < 3%) than the fraction during supported operation.
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Chapter 7

Analysis and interpretation

This chapter collects and interprets the observations described in the preceding two chapters.

The magnetic reconstructions presented in Chapter 5 provide a measurement of the total

pressure profile. The total pressure may include contributions from multiple populations. A

simple model that is used here is that the total pressure is a combination of the pressure from

a small, hot electron population and a larger, thermal electron population. As discussed

in Chapter 2, the hot electron population is subject to different stability criteria than the

thermal electron population. Provided that there is a sufficient density of cooler plasma

present, the hot population can be stable with a pressure gradient that is steeper than

the maximum pressure gradient for stability to the MHD interchange mode, δ(pV γ) ≥ 0.

The internally heated thermal electron population is predicted to relax to a profile that

is marginally stable to MHD interchange. As such, plasmas with fewer hot electrons are

of particular interest because in those plasmas the pressure measured by the magnetics is

composed primarily of pressure contained in a thermal population. The X-ray measurements

presented in Chapter 6 were found to come from the hot electrons and thus provide a
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qualitative measure of the relative size of the hot electron population for a particular plasma.

In this chapter, an analysis of a variety of plasma shots is presented to better understand

the steepness of the thermal plasma pressure.

7.1 Turbulent diffusion

As discussed in section 2.2.5, random fluctuations of the azimuthal electric field cause the

plasma to take random E×B steps in the radial direction, and the diffusion coefficient of

this process is Dψψ = R
2�E2

φ�τcor where R is the radial cylindrical coordinate, �E2
φ� is the

mean-square of the azimuthal electric field fluctuations, and τcor is the correlation time of

the fluctuations [9].

For µ and J (the 1st and 2nd adiabatic invariants) and for Dψψ independent of µ, J , and

ψ (the 3rd adiabatic invariant), the time evolution of the density and pressure profiles (due

to this turbulent process) are given by the turbulent diffusion equations:

d

dt
(nV ) =

∂

∂ψ

�
Dψψ

∂

∂ψ
(nV )

�
+ �S� (7.1)

d

dt
(pV γ) =

∂

∂ψ

�
Dψψ

∂

∂ψ
(pV γ)

�
+ �H� (7.2)

where n is the plasma density, p is the plasma pressure, V is the differential flux-tube

volume, γ is the ratio of specific heats, Dψψ is the turbulent diffusion coefficent, and �S�

and �H� are flux-tube averaged source/sink terms.

The invariant density and pressure profiles are steady state solutions to the turbulent

diffusion equations for a specific set of sources, sinks, and boundary conditions. In the ideal

model of LDX, turbulent diffusion is driven in the region outside the pressure peak (in the
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region of unfavorable magnetic curvature) by internal ECR heating. Inside the pressure peak

(in the region of favorable magnetic curvature) transport may be slower. Thus, invariant

profiles are only expected to form in the region between the pressure peak and the plasma

separatrix. From eqs. (7.1) and (7.2) it can be seen that the invariant profiles make several

assumptions: (1) there are no sources or sinks, (2) the diffusion coefficient is a constant, and

(3) suitable boundary conditions are used (e.g., (nV )A = (nV )B). Baker, et al. [79] derive

eqs. (7.1) and (7.2) for a more general form of the diffusion coefficient (which is expected in

a tokamak).

Observations of invariant density profiles with the interferometer [23] suggest that the

latter two assumptions are probably true for many levitated plasmas on LDX. However, it

is likely that the ECR heating deposits energy throughout the plasma volume in a complex

manner such that �H� �= 0. Additionally, charge exchange losses may provide further sink

terms to eq. (7.2).

7.2 Levitated versus supported operation

During supported operation all the plasma pressure is contained in the mirror trapped hot

electron population because thermal (more collisional) plasma is more rapidly lost along

the magnetic field lines to the mechanical supports. Magnetic reconstructions confirm this

picture by showing the pressure profile to be extremely peaked (see fig. 5.5). X-ray measure-

ments indicate the presence of an electron population that can be described by a log-linear

energy distribution in the range 50-100 keV. When the dipole is magnetically levitated the

X-ray spectra remain similar to the spectra observed in supported operation indicating that

the X-ray source is still a hot electron population. However, magnetic reconstructions of the
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plasma pressure during levitation with multiple ECRH sources show that the total pressure

profile is much broader than it is during supported operation (see figs. 5.2 and 5.3). This

indicates that a portion of the total plasma pressure represents a thermal population.

To evaluate whether the reconstructed total pressure profile is MHD stable the entropy

density factor, p(ψ)V (ψ)γ, is plotted as a function of radius (see fig. 7.1). If the entropy

density factor increases with radius the pressure profile is MHD stable. If the entropy density

factor decreases with radius the pressure profile is steeper than the MHD limit. Because

the plasma is observed to be in a stable steady-state, a pressure profile that exceeds the

MHD limit indicates a portion of the pressure is in a gyrokinetically stabilized hot electron

population.

The blue trace in fig. 7.1 shows that for γ = 5/3 the reconstructed pressure profile

describes a profile with a constant entropy density factor outside the pressure peak. This

pressure profile is near the marginal stability point to the MHD interchange mode. This

profile is consistent with a turbulent adiabatic mixing of flux-tubes driven by an internal

heating source. In contrast, the red trace in fig. 7.1 shows that in supported operation the

pressure profile is much steeper than the MHD limit. This indicates that during supported

operation a majority of the plasma pressure is contained in a hot electron population.

Stability of the plasma to the hot electron interchange mode (HEI) is determined by the hot

electron density profile (see eq. (2.18)). An estimate of the hot electron density profile can

be made by combining X-ray measurements of the hot electron energy distribution with the

supported pressure profile. The supported pressure profile is qualitatively consistent with

HEI stability, which is consistent with other diagnostic observations on LDX.

Figures 7.2(a) and 7.2(b) compare the density and temperature profiles during supported

and levitated operation. The density profiles are deduced from the interferometer measure-
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ments. The inner most view of the interferometer has a tangency radius of 77 cm so no

information about the density profile inside 77 cm is known. The density profile during sup-

ported operation is relatively flat. During levitation the density profile is centrally peaked

though it is less peaked than an invariant density profile. The temperature profile is obtained

by dividing the pressure profile deduced from the magnetics by the density profile. Thus,

it is an average or effective temperature profile. In supported operation the temperature is

highly peaked with peak electron energies of about 40 keV (this is consistent with X-ray

measurements of the hot electron population). During levitation the temperature profile is

much broader and the peak electron energy is much lower (about 4 keV). This indicates

that there is a portion of the plasma pressure in a hot or warm electron population, but

the broadening of the profile shows that there is also a portion of the plasma pressure in a

thermal population.

Magnetic reconstructions of the pressure profile with only the 2.45 GHz ECRH source

indicate that the pressure profile in supported and levitated operation is similarly steep

(g ∼ 3.5, this steepness parameter corresponds to a pressure profile steeper than the MHD

limit). In supported operation the pressure peak is near the 2.45 GHz mid-plane heating

resonance at 82 cm, but during levitation the pressure peak moves out in radius to 95-100

cm (see figs. 5.8(a) and 5.8(b)). A possible reason for the pressure peak moving out is

that the increased density is shielding the fundamental 2.45 GHz resonance (located at 82

cm). If the density is too high electromagnetic waves will reflect off the plasma rather than

propagate through it. The density at which waves will no longer propagate in a plasma

is called the cutoff density and for 2.45 GHz waves the cutoff density is 7.4 × 1010 cm−3.

An inversion of the 4 chord interferometer measurements indicates that the plasma density

inside of 90 cm is greater than 1011 cm−3. Therefore, with the fundamental resonance cutoff
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Figure 7.1: For levitated shot 100805046 with multiple ECRH sources on the entropy den-
sity factor is constant with radius outside the pressure peak (at radius 81 cm). This is
consistent with a pressure profile that is marginally stable to the MHD interchange mode.
For supported shot 100805045 with multiple ECRH sources on the entropy density factor
decreases with radius outside of the pressure peak (at radius 80 cm) indicating a pressure
profile that is steeper than the MHD limit.

more heating may be occurring at the mid-plane 1st harmonic of the 2.45 GHz heating

source (see fig. 3.2) at about 1 m or at the upper hybrid resonance.
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Figure 7.2: Density and temperature profiles for a levitated (100805046) and a supported
(100805045) shot. (a) Reconstructed density profile from the interferometer measurements.
(b) Temperature profile deduced from the magnetically reconstructed pressure profile and
the density profile.

7.3 Levitated, high density plasmas

The comparison of levitated and supported plasmas shows that during levitation a portion

of the plasma pressure is contained in a thermal population but a portion is also contained in

a mirror trapped hot population. For the shots analyzed in this section it is generally found
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that higher density shots correlate with fewer X-rays and broader pressure profiles. This is

interpreted to mean that higher density plasmas are more thermal with a smaller fraction

of the plasma pressure contained in a gyrokinetically stabilized hot electron population. To

compare high and low density plasmas the 28 GHz ECRH source is used. The 28 GHz

heating source is unique from the other power sources on LDX in that it creates density

(similar to other ECRH sources) but little diamagnetic flux (compared to other ECRH

sources). This is likely because its lowest mid-plane resonances are at its 3rd and 4th

harmonics and very little power should be deposited at these high harmonic resonances.

7.3.1 10.5 GHz ECRH source with and without the 28 GHz ECRH

source

The 10.5 GHz heating source has a higher cutoff density than the 2.45 GHz heating source

so in most plasma shots the primary mid-plane resonance is not shielded during levitation

and the pressure peak remains near the resonance. The effect of the 28 GHz heating source,

which increases the plasma density, but not beyond the 10.5 GHz cutoff density, is to broaden

the pressure profile. Figures 5.10(a) and 5.10(b) show the pressure profile is broader with

the 28 GHz ECRH source on than it is with the 28 GHz ECRH source off. Figure 7.3

shows the normalized entropy density factor as a function of radius at a time with both

the 10.5 GHz heating source and the 28 GHz heating source, and at a time with just the

10.5 GHz heating source. In both cases the entropy density factor decreases with radius

indicating that the profile is steeper than the limit set by stability to the MHD interchange

mode; however, with the 28 GHz heating source on the profile is broader. Figures 7.4(a)

and 7.4(b) show the density and temperature profiles for both cases. With the 28 GHz

heating source on the density is higher and density profile is broader, and the temperature
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is lower and temperature profile is broader.

Normalized entropy density factor
Levitated plasma with 10.5 GHz source

Radius [m]

pV
γ
/|
|p
V

γ
||

with 28 GHz

without 28 GHz
γ = 5/3

Figure 7.3: For levitated shot 100804017 with just the 10.5 GHz ECRH source on the
entropy density factor decreases with radius indicating a pressure profile that is steeper
than the MHD limit. On the same shot during a time with additional heating from the 28
GHz ECRH source the entropy density factor decreases less rapidly with radius but still
indicates a pressure profile that is steeper than the MHD limit.
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Density profiles
for levitated shot with 10.5 GHz source
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Figure 7.4: Density and temperature profiles for a levitated plasma with the 10.5 GHz
source. (a) Reconstructed density profiles from the interferometer measurements. (b) Tem-
perature profiles deduced from the magnetically reconstructed pressure profile and the den-
sity profile.

7.3.2 Full ECRH power, 28 GHz ECRH source shutoff

Shot 100805028 offers a particularly clear view of the effect of 28 GHz heating source on

the pressure profile. On this shot the 28 GHz heating source was abruptly turned off at 8

seconds (normally the 28 GHz heating source is slowly ramped up and down over several
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seconds). Interferometer measurements show an immediate decrease in density when the 28

GHz heating source is shutoff while the magnetics show a slower evolution of the pressure

profile. Figure 5.14 shows that after the shutoff the pressure profile is steeper than before

the shutoff when the density was higher. Figures 5.15(a) and 5.15(b) show a series of

magnetic reconstructions performed at times around the shutoff. After the shutoff the

pressure profile smoothly transitions from a broad profile (g ∼ 1.55) to a steeper profile

(g > 2). Figure 7.5 shows the normalized entropy density factor before and after the shutoff

of the 28 GHz heating source. With the 28 GHz heating source on (t = 7 seconds) the

entropy density factor increases with radius indicating that the pressure profile is less steep

than the limit set by stability to the MHD interchange mode. After the shutoff of the 28

GHz heating source (t = 9 seconds) the entropy density decreases with radius indicating

that the pressure profile is steeper than the MHD limit. This suggests that at the time

without the 28 GHz heating source a larger portion of the plasma pressure is stored in a

hot electron population. The presence of this population after the shutoff is shown by the

increase in hot electron interchanges (HEIs) that reveal themselves as abrupt changes in the

magnetic signals coupled with bursts of X-rays. Figures 7.6(a) and 7.6(b) show the density

and temperature profiles. With the 28 GHz heating source on the density is higher and the

temperature is lower.
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γ = 5/3
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Figure 7.5: For levitated shot 100805028 with the 28 GHz source (and all other sources
at time = 7 seconds) the entropy density factor increases with radius indicating a pressure
profile that is stable to the MHD interchange mode. At time = 9 seconds the 28 GHz source
is off (all other sources are still on) and the entropy density factor decreases with radius
indicating a pressure profile that is steeper than the MHD limit.
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Density profiles for shot 100805028
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Figure 7.6: Density and temperature profiles for shot 100805028 with (time = 7 sec) and
without (time = 9 sec) the 28 GHz source. (a) Reconstructed density profile from the
interferometer measurements. (b) Temperature profile deduced from the magnetically re-
constructed pressure profile and the density profile.
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7.3.3 Helium plasma

Helium plasmas on LDX are typically denser (by about a factor of 2) than deuterium plas-

mas. The peak density is often well over 1018 m−3 which is sufficient to reduce transmission

of interferometer microwave signal to receiver horn and distort the interferometer measure-

ments. Also, there are typically many fewer measured X-rays with helium plasmas (see

fig. 6.5) which indicates that there are fewer hot electrons.

Additionally, the time evolution of the diamagnetic current suggests that helium plasmas

do not contain many hot electrons. During levitated plasmas the decay of the diamagnetic

current after all the ECRH power is shut off, as measured by an outer magnetic flux loop,

often shows two distinct decay times that have been attributed to the decay of the hot

electron population (slow) and the decay of a warmer population (fast) [26]. During sup-

ported operation only the hot electron decay is observed. Figure 7.7 shows that for the

helium plasma only the fast decay is observed. This suggests that the total plasma pressure

consists primarily of a thermal population and there is little pressure in the hot electron

population.

Magnetic reconstructions indicate that the total plasma pressure profile has a steepness

parameter, g, of about 1.5. Figure 7.8 shows that the normalized entropy density factor

increases with radius indicating that the steepness of the pressure profile is below the sta-

bility limit set by the MHD interchange mode. Figures 7.9(a) and 7.9(b) show the density

and temperature profiles. The mild peaking of the density may indicate the presence of a

weak particle pinch caused by relatively weak (entropy mode [18, 80]) turbulence but not an

MHD driven turbulent pinch. This interpretation is consistent with the p(ψ)V (ψ)γ profile

(see fig. 7.8).
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Figure 7.7: After the all power is shut off the decay of the diamagnetic current is observed
by an outer flux loop. During supported operation a single decay time is observed and is
attributed to the decay of the hot electron population. During levitated deuterium plasma
two decay times are frequently observed [26] and are attributed to the decay of the hot
electron population (slow) and a cooler, thermal population (fast). During levitated helium
plasmas only the fast decay is observed suggesting most the pressure is in a cooler, thermal
population and there is little pressure in the hot electrons.
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Normalized entropy density factor
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Figure 7.8: For helium shot 100806016 with just the 2.45 GHz ECRH source on the entropy
density factor increases with radius for both an isotropic and isotropic pressure indicating
a pressure profile that is MHD stable.
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Density profiles
for helium shot 100806016
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Figure 7.9: Density and temperature profiles for a helium plasma. (a) Reconstructed density
profile from the interferometer measurements. Inside of 86 cm the density rolls over (has a
lower value) so the density profile is fit to the outer interferometer chords. The dashed line
indicates the projection of the fit inside of 86 cm. (b) Temperature profile deduced from
the magnetically reconstructed pressure profile and the density profile.
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7.3.4 28 GHz ECRH source only

The 28 GHz heating source tends to create plasma density without creating a large hot

electron population (see fig. 6.6). As such, 28 GHz heating source only shots are the coolest

plasmas created on LDX. These plasmas are likely to have the smallest hot electron pres-

sure. Magnetic reconstructions (see figs. 5.20(a) and 5.20(b)) indicate that pressure profile

for the 28 GHz heating source only plasma is broad (g = 1.2−1.5). Table 5.6 shows that the

reconstructed pressure contains relatively less plasma energy (10−15 J). Figure 7.10 shows

that the normalized entropy density factor increases with radius indicating that the steep-

ness of the pressure profile is below the stability limit set by the MHD interchange mode.

Figures 7.11(a) and 7.11(b) show the density and temperature profiles. The reconstructed

pressure profile is in reasonable agreement with measurements of the bulk temperature and

density made with probes at the plasma edge (see figs. 7.12(a) and 7.12(b)). Similar to the

helium plasma described in the previous section, the mild peaking of the density with an

MHD stable p(ψ)V (ψ)γ profile may indicate the presence of a weak particle pinch caused

by relatively weak (entropy mode [18, 80]) turbulence, but not an MHD driven turbulent

pinch.

Edge probe analysis

Edge probe sweeps on plasmas heated with only the 28 GHz heating source are generally

relatively easy to interpret (see figs. 7.12(a) and 7.12(b)). The temperature and density

measured by the edge probe during the middle of the heating at about 8.5 seconds are 4.4 eV

and 3.1×1016 m−3. The probe edge density measurement agrees with the edge density from

the density profile reconstructed from the interferometer measurement to within a factor

of 2 (see fig. 7.11(a)). The probe edge temperature measurement agrees with the edge
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Figure 7.10: For levitated shot 100804018 with only the 28 GHz heating source the entropy
density factor increases with radius indicating a pressure profile that is stable to the MHD
interchange mode.

temperature from the temperature profile deduced from the magnetic reconstruction of the

pressure and interferometer density profile to within a factor of 3 or 4 (see fig. 7.11(b)).
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Figure 7.11: (a) Reconstructed density profile from the interferometer measurements. (b)
Temperature profile deduced from the magnetically reconstructed pressure profile and the
density profile.
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(a)

(b)

Figure 7.12: (a) Time trace of the swept NE TOP probe. (b) I-V curve of the NE TOP
probe at about 8.5 sec. The temperature from the fit shown by the red line is 4.4 eV and
the density is 3.1× 1016 m−3.
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Visible light

Figures 7.13(a) to 7.13(c) show that on shots with single frequency ECRH the visible light

camera observes light around magnetic flux surfaces that contain the lowest harmonic, mid-

plane resonance of the heating source. One interpretation of this is that because heating is

most efficient at the mid-plane resonance the flux-surface containing this resonance becomes

completely ionized (so the flux surface appears darker on the visible camera). The bright

regions around the resonance surfaces are ionization edges. This suggests that with only

the 28 GHz heating source some hot electrons may form at the 4th harmonic mid-plane

resonance despite the lower efficiency of heating at that high harmonic.
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(a) (b)

(c)

Figure 7.13: (a) 2.45 GHz only, (b) 10.5 GHz only, (c) 28 GHz only. The green, cyan, and
red dots indicate the approximate locations of the 2.45 GHz fundamental resonance, the
10.5 GHz 1st harmonic resonance, and the 28 GHz 4th harmonic resonance, respectively.
The color scale is adjusted to show the resonances and is not the same between the different
heating cases.
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Chapter 8

Conclusion

One of the research goals of LDX is to determine whether a laboratory plasma confined in

the field of a levitated dipole magnet can adopt a specific type of centrally peaked pressure

profile, called an invariant pressure profile, in which an exchange of plasma flux-tubes does

not change the profile. Interest in the invariant pressure profile is twofold: (1) there is

fundamental interest in a system that develops an averaged peaked profile, rather than a

flat profile, when it undergoes a turbulent mixing process, and (2) the peaked profile is a

requirement for a magnetic dipole confinement system, in which a hot, dense plasma is used

for the production of fusion energy.

The work done in this thesis has shown that for microwave heated plasmas confined in

the field of a dipole magnet the pressure profiles can be well described by centrally peaked

pressure profiles. These dipole-confined plasmas can have peaked pressure profiles that are

(i) steeper than, (ii) shallower than, or (iii) near the invariant profile dependent on plasma

conditions. The variability is attributed to the presence of an energetic electron population

created by ECRH and the complex heating profile of the ECRH.
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In this work, magnetic and X-ray measurements have been used to (1) reconstruct the

plasma pressure profile on the Levitated Dipole Experiment (LDX), (2) examine variations

of the plasma pressure for different plasma conditions, and (3) analyze the plasma pressure

gradient and its relation to both the invariant pressure profile and the MHD marginal

stability point: δ(pV γ) = 0. In particular, the pressure profiles that corresponded to the

configuration of a mechanically supported dipole and a magnetically levitated dipole were

compared.

It was found that during supported operation the plasma pressure was highly peaked.

X-ray measurements showed that high plasma pressures developed in supported shots due to

the formation of a hot, mirror trapped electron population that was created by the electron

cyclotron resonance heating. These hot electrons are known to be gyrokinetically stabilized

by the background plasma and can adopt pressure profiles steeper than the MHD limit.

X-ray measurements indicated that this hot electron population could be described by a

log-linear energy distribution in the range 50-100 keV. Combining information from the

magnetic reconstruction of the pressure profile, interferometer measurements of the electron

density profile, and X-ray measurements of the hot electron energy distribution, the hot

electron fraction at the pressure peak was estimated to be ∼ 35% of the total electron

population.

When the superconducting dipole magnet was magnetically levitated the plasma pressure

profile was broader than it was during supported operation, and the pressure appeared to be

contained in both a thermal population and an energetic electron population. X-ray spectra

were similar during levitated and supported operation indicating that the X-ray source in

both cases was a hot electron population. However, in levitated operation the hot electron

fraction at the pressure peak was estimated to be less than ∼ 3% of the total electron
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population. Because the X-rays came from the hot electron population, the X-ray signal

provided a good qualitative indicator as to whether a plasma shot had relatively many or

few hot electrons. It was found that plasmas with fewer hot electrons (i.e., fewer X-rays)

had broader pressure profiles.

To compare the magnetically reconstructed pressure profiles to the MHD stability limit

the entropy density factor, p(ψ)V (ψ)γ, was plotted as a function of radius. Dependent

on shot conditions the pressure gradients of levitated plasmas were observed to be either

MHD stable or unstable. Those profiles that exceeded the MHD limit were observed to

have larger fractions of energetic electrons. When the dipole magnet was supported, high

pressure plasmas always had profiles that exceeded the MHD interchange stability limit, and

the high pressure in these plasmas appeared to arise entirely from a population of energetic

trapped electrons.

8.1 Future work

The work done in this thesis suggests several future experiments that can be done on LDX.

Experiments that can be done given the current funding constraints:

1. Baffle the upper mirror plasma. A mechanical baffle placed in the vacuum cham-

ber between the F-coil and the L-coil would remove the upper mirror plasma discussed

in section 4.6. Removal of this plasma would simplify and improve the magnetic re-

constructions and potentially improve the levitation system. Additionally, this should

reduce the microwave heating power deposited outside the dipole confinement region.

2. Create high density plasmas to limit the hot electron population. Observa-

tion of the thermal pressure profile is complicated by the presence of a gyrokinetically
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stabilized hot electron population. Thus, plasmas with fewer hot electrons may pro-

vide better measurements of the thermal pressure profile, which is predicted to adopt

the invariant pressure profile and be subject to the MHD stability limit. In this thesis

it was observed that high density plasmas with few hot electrons were created when he-

lium gas was used and/or when the only the 28 GHz heating source was used. Several

potential experiments with the 28 GHz heating source include (1) levitated/supported

comparison with a crowbarring (quick shut off) of the heating source, (2) turning on

the 28 GHz heating source before other sources to create a background density that

may suppress the growth of a hot electron population, and (3) use the 28 GHz heating

source in conjunction with single other sources at variable power that can provide rel-

atively localized internal mid-plane heating, particularly the 10.5 GHz heating source

since it has a higher density cutoff.

3. Dynamic limiter. Install a dynamic limiter (or simply use the launcher) that allows

a transition from levitated to supported operation during a shot. The rapid removal of

the thermal plasma would allow its signature on the diagnostics to be deduced before

the hot electron population has time to rebuild.

4. Use Helmholtz coils to create smaller plasma volume. A smaller plasma volume

may make more efficient use of the 28 kW of microwave heating power currently

available on LDX.

Experiments that are presently not financially feasible are listed below. However, scientific

opportunities motivate these more costly experiments.

1. Multi-point Thomson scattering. Shining a laser through the plasma and ob-

serving the perpendicularly scattered light at multiple locations along the laser beam
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would provide multiple local measurements of the electron density and temperature.

This would decisively determine the thermal electron pressure and density profiles.

2. Ion cyclotron resonance heating (ICRH). A 1 MW VHF band transmitter is

already on site. This has the potential to create a much denser and more thermal

plasma without a hot electron population.

3. More heating power. LDX is currently power limited meaning that there is sig-

nificant neutral penetration into the plasma. Greater heating power is expected to

increase the plasma density (consistent with previous experimental observations) re-

sulting in less neutral penetration into the plasma.

4. Other non-ECRH heating sources. Plasma injectors at the edge of LDX could

create plasmas well suited for observing the pressure pinch. For an internally heated

plasma (e.g., an ECRH plasma) the pressure profile relaxes from an overly peaked,

unstable profile to a less peaked, stable profile. For a plasma created with plasma

injectors the pressure source is on the outside so any peaking of the pressure profile

requires an external drive such as RF or plasma pulsing; however, this also means

that any peaking of the pressure profile would indicate a pressure pinch. The plasma

injectors could be pulsed to simulate the solar wind impact on the magnetosphere.

5. Pellet injection. A lithium pellet injector originally built by Darren Garnier for

work on Alcator C-mod still exists at the PSFC at MIT and is being considered for

use on future LDX experiments. Pellet injection experiments will involve shooting a

lithium pellet into the dipole confined plasma. It is expected that when the pellet

reaches the locally trapped, hot electron population it will absorb nearly all the hot

electron population’s energy and will be rapidly ionized. This will create an unstable,
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high-β flux-tube that will quickly expand outward.
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Appendix A

Magnetics

A.1 Parameters for the magnetic measurements

Number R
[m]

Z
[m]

σR, σZ

[mm]
τ

[ms]
στ [ms]
(1% τ)

# Turns Gain
(#Turns

τ )

1 0.805 1.428 3 -5.082 0.05 1 -196.8
2 0.905 1.408 3 4.965 0.05 1 201.4
3 1.110 1.361 3 5.325 0.05 1 187.8
4 2.486 0.695 3 21.43 0.21 1 46.67
5 2.515 0.229 3 19.83 0.20 1 50.43
7 1.260 -1.324 3 10.10 0.10 1 99.05
8 1.042 -1.368 3 -10.41 0.10 1 -96.02
9 0.781 -1.425 3 5.029 0.05 1 198.8
10 0.745 1.413 3 -7.702 0.08 5 -649.2
11 0.395 0.863 3 8.382 0.08 10 1193
13 0.169 0.295 3 -7.551 0.08 30 -3973
14 0.100 0.108 3 7.524 0.08 50 6646

Table A.1: Flux loop locations, gains and errors.
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Appendix B

X-rays

B.1 Pre-filter board schematics for X-ray pulse count-
ing

Buffer High pass 
filter Amplifier Amplifier Low pass filter

and line driver

Figure B.1: Schematic of the preamplifier board used with both the SDD and CZT X-ray
detectors.
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(a)

(b)

Figure B.2: (a) Design layout for the preamplifier board. (b) Photograph of the completed
preamplifier board.


