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An unmixing algorithm for remotely sensed soil moisture

Amor V. M. Ines,'? Binayak P. Mohanty,' and Yongchul Shin'
Received 10 May 2012; revised 12 December 2012 ; accepted 12 December 2012 ; published 26 January 2013.

[1] We present an unmixing method, based on genetic algorithm-soil-vegetation-
atmosphere-transfer modeling to extract subgrid information of soil and vegetation from
remotely sensed soil moisture (downscaled; e.g., soil hydraulic properties, area fractions of
soil-vegetation combinations, and unmixed soil moisture time series) that most land surface
models use. The unmixing method was evaluated using numerical experiments comprising

mixed pixels with simple and complex soil-vegetation combinations, in idealized case
studies (with or without uncertainty) and under actual field conditions (Walnut Creek
(WC11) field, Soil Moisture Experiment 2005, lowa). Additional validation experiments
were conducted at an airborne-remote sensing footprint (Little Washita (LW21) site,
Southern Great Plains 1997 hydrology campaign, Oklahoma) using Electronically Scanning
Thin Array Radiometer (ESTAR). Results of the idealized experiments suggest that the
unmixing method can extract optimal or near-optimal solutions to the inverse problem
under different hydrologic and climatic conditions. Errors in soil moisture data and initial
and boundary conditions can compound uncertainty in the solution. The solutions generated
under actual field conditions (WC11 field) were able to match soil moisture observations.
Analysis showed that typical soil moisture retention curves of cataloged dominant soils in
WC11 field did not match well with the measurements, but those derived from actual field-
scale soil moisture inversion matched better. The unmixing method performed well in
replicating soil hydraulic behavior at the ESTAR footprint. Unlike in WC11 field, the
typical soil moisture retention curves of cataloged soils in LW21 field matched better with
the measurements. We envisaged that the unmixing method can provide quick and easy way
of extracting subgrid soil moisture variability and soil-vegetation information in a pixel.

Citation:
Res., 49, doi:10.1029/2012WR012379.

1. Introduction

[2] Soil moisture is critical for many applications in agri-
culture, hydrology, and climate. Thus, its measurement at
different (spatial) scales (from point, field to remote sens-
ing (RS) footprint) is important to better understand soil
moisture dynamics at the critical zone [Brantley et al.,
2006] and develop sustainable ways on how to use and
manage our land and water resources.

[3] Soil moisture is measured in the field using direct
or indirect methods. However, point-scale observations
have small spatial extent that their uses in large-scale appli-
cations are rather limited [Hollinger and Isard, 1994,
Robock et al., 2000]. RS has paved the way for measuring
soil moisture at larger scales resulting to availability of
global soil moisture products (e.g., Advanced Microwave
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Scanning Radiometer—-EOS, Soil Moisture and Ocean
Salinity, advanced scatterometer, and Soil Moisture Active
Passive, in the near future) that can be used for various
applications [Kerr et al., 2001 ; Njoku et al., 2003 ; Jackson
et al., 2005a, 2005b; Bartalis et al., 2008 ; Entekhabi et al.,
2010; Das et al., 2011]. RS soil moisture has been used to
initialize soil-vegetation-atmosphere-transfer (SVAT) mod-
els and climate models [e.g., Das and Mohanty, 2006;
Ni-Meister et al., 2006], to estimate soil hydraulic proper-
ties for large-scale hydroclimatic applications [e.g., Ines
and Mohanty, 2008a, 2009], in agricultural and water man-
agement [e.g., Scott et al., 2003], among others.

[4] Apparently, soil moisture data from airborne/satellite
platforms are very promising to support large-scale applica-
tions because of their spatial and temporal extents [Kerr
et al., 2001; Njoku et al., 2003; Entekhabi et al., 2010;
Das et al., 2011]. However, to realize their fullest potential,
it is necessary to downscale to the highest possible resolu-
tion [e.g., Merlin et al., 2008; Das et al., 2011]. Note how-
ever that there is a limit of how far we can downscale RS
soil moisture, and after downscaling we can expect still ag-
gregate information in the pixel. Many land surface models
used for decision support require this subgrid information
about the soil and vegetation to estimate better fluxes.
Quantifying such subgrid information from RS soil mois-
ture is therefore important but entails the development of
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efficient unmixing algorithms capable of performing
unmixing of soil moisture at different spatial extents,
including satellite data at the global scale.

[5] In this paper, we present an unmixing method based
on a combined simulation-optimization scheme, using an
integrated inverse Soil-Water-Atmosphere-Plant (SWAP)
model and genetic algorithm (GA), that aims to extract
value-added information from RS soil moisture data, e.g.,
subgrid soil moisture, effective soil hydraulic properties,
and soil and vegetation fractions. The method was eval-
uated and validated using (i) idealized numerical studies
and (ii) actual field-scale case studies at Walnut Creek
(WC) watershed, lowa, during the Soil Moisture Experi-
ment 2005 (SMEXO05) campaign and at an airborne-RS
footprint in Little Washita (LW) watershed, Oklahoma,
during the Southern Great Plains 1997 (SGP97) hydrology
experiments.

2. Materials and Methods

2.1. Mixed-Pixel Model

[6] Let us consider a simple mixed pixel (flat surface)
containing three soils similar to the modeling domain pre-
sented in Figure 1 but containing one vegetation only (uni-
form cover). We can write the mixed near-surface soil
moisture in the pixel for a period of time as follows:

N
9t(k) - Zaioir + €, Vt7 (])
i=1

where (k) (cm® cm ™) is the approximated pixel-based
near-surface soil moisture for given &, a; (-) stands for the
area fraction of soil i in the pixel, §; (cm® cm ) is the repre-
sentative local-scale near-surface soil moisture at soil i,
N (=3) is the number of soil types encompassed within a
pixel, ¢ is the index for time, and ¢, is an error term. Terms
inside the summation operator at the right-hand side of equa-
tion 1 are called the scaled (weighted) near-surface soil mois-
tures indicating the contributions of particular soil types to the
resultant pixel-based soil moisture. The variable k, termed

I Y
Vi V2

Figure 1. Hypothetical modeling domain (three soils
and two vegetations) used in the numerical experiments.
Note: sy, soill; s,, soil2; sz, soil3; vy, vegetation 1; v,,
vegetation 2.

unmixing variable, is defined by k = {si—1, . v,ai-1,.. n},
where s; component is an array of effective soil hydraulic
properties for soil i contained within the pixel, and g; is the
area fraction of soil i as defined above. The components of &
are considered to be the most sensitive parameters influencing
the resultant pixel-based soil moisture. In reality, however,
there are other sources of soil moisture variability, e.g., topog-
raphy and rainfall gradients. Topography affects soil moisture
variability due to its influence on rainwater movement across
the landscape: valley is wetter than hilltop, whereas hillslope
is intermediate. Rainfall gradient controls soil moisture varia-
tion across the landscape, if not considered could lead to
model bias when station rainfall did not capture the extent of
rainfall event. In this study, we limited our scope to soil and
vegetation affecting soil moisture variability in a flat surface.

[7] Let the Mualem-Van Genuchten functions [Van Gen-
uchten, 1980; Mualem, 1976] define the soil hydraulic
properties (equations 2 and 3), s could be composed of an
array of effective soil hydraulic parameters {«, 1, Orcs, Ogar,
Kga, A} for all soil i contained inside the pixel,

=g = e @
K(h) :Ksmsj[l - (1 —S;/m)mr, 3)

where S, () is the relative saturation; K (cm d~') is the
soil hydraulic conductivity; 4 is the pressure head (—cm);
o (cm™') is defined as a shape parameter equivalent to the
inverse of the bubbling pressure; n (-) is a shape parameter
that accounts for the pore size distribution; 6, (cm3 cm73)
and 0y (cm® cm ) are the residual and saturated soil
moisture content, respectively; K, (cm d™") is the satu-
rated hydraulic conductivity; and A (-) is a shape parame-
ter that accounts for tortuosity in the soil. Van Genuchten
[1980] proposed m to be equal to 1 — 1/n. An extended for-
mulation using multiple vegetation-soil combinations (see
Figure 1) is presented later in this paper.

[8] Linear mixture models (equation 1) have been used
successfully in RS subpixel analyses [Shimabukuro and
Smith, 1991; Holben and Shimabukuro, 1993; Ferreira
et al., 2007] to produce area fractions of land use/land
cover within a pixel in which their applications were gener-
ally confined at the spectral level of a RS image. Recent
applications using temporal unmixing on state variables
instead of spectral signatures have been shown to be prom-
ising [Tateishi et al., 2004 ; Ines and Honda, 2005].

2.2. Unmixing Algorithm

[¢] We designed an unmixing method to solve k in equa-
tion (1) by employing a GA within a dynamic inverse simu-
lation-optimization framework [/nes and Honda, 2005; Ines
et al., 2006; Ines and Mohanty, 2008a, 2008b, 2008c, 2009].
For completeness, we describe the GA search process
briefly. GAs are powerful search techniques combining the
survival of the fittest mechanism with a structured yet
randomized information exchange to search for solutions of
complex search and optimization problems [Holland, 1975;
Goldberg, 1989]. The search spaces of the unknown parame-
ters (in this study, s; and a;) are discretized into finite lengths
and then coded as sets of binary substrings (in binary GAs)
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to form a string structure called a chromosome. The proce-
dure starts by randomly generating a set of chromosomes
(called a population) serving as starting search positions at
the search surface. The chromosomes are individually eval-
uated (here, the simulation model is invoked using s; and «;)
to determine their suitability based on a given fitness func-
tion. The chromosomes then go through the process of selec-
tion, crossover, and mutation. Based on their fitness, they
compete to be selected, mate, and reproduce for the next
generation. During selection, the fitter chromosomes survive
and the weaker chromosomes die. The selected chromo-
somes then randomly mate to exchange genetic information
through the process of crossover and produce offspring. The
resulting new chromosomes are subjected to mutation to
infuse fresh genetic materials for the new generation and to
restore certain genetic characteristics that were lost due to
degeneracy. The processes of selection, crossover, and muta-
tion are repeated for many generations until the best possible
solution is achieved. This solution is the fittest chromosome
that evolved after many generations. We chose GAs to solve
the mixed-pixel problem (equation (1)) over traditional opti-
mization techniques [e.g., Shimabukuro and Smith, 1991],
because they are easy to handle and implement, and they are
proven to be very powerful for solving highly nonlinear, dis-
continuous combinatorial problems [Goldberg, 1989; Ritzel
et al., 1994; Cieniewski et al., 1995; Cai et al., 2001; Ines
and Honda, 2005 ; Wang and Cai, 2007]. Details of the GAs
can be found in Goldberg [1989].

[10] We used a modified micro-GA as our search algo-
rithm. This GA uses a micropopulation to explore the
search surface. Its micropopulation restarts when most of
the chromosomes are similar using a lesser degree of bit
positioning-similarity criterion [Krishnakumar, 1989; Car-
roll, 1998; Ines and Droogers, 2002]. It applies a creep
mutation operator to alter the chromosomes at the real
space (base 10) and allows an intermittent jump mutation
to occur with the binary chromosomes (base 2). Other
details of the algorithm can be found elsewhere [e.g., Ines
and Honda, 2005; Ines and Mohanty, 2008b, 2008c].
Micro-GA is suited well for this application because it
improves computational efficiency, which is very important
in coupled dynamic model (GA systems).

[11] The inverse model is composed of a dynamic field-
scale simulation model SWAP [Van Dam et al., 1997; Van
Dam, 2000] that simulates the SWAP interactions combined
with the GA. SWAP is a well validated [Wesseling and
Kroes, 1998; Sarwar et al., 2000; Droogers et al., 2000,
Ines and Droogers, 2002 ; Singh et al., 2006a, 2006b], varia-
bly saturated flow model that solves the 1-D Richards equa-
tion to simulate the soil moisture dynamics in a vertical soil
column using a robust implicit finite difference scheme
[Belmans et al., 1983]. It uses the Mualem-Van Genuchten
equations (equations (2) and (3)) [Van Genuchten, 1980;
Mualem, 1976] to define the soil hydraulic properties.
SWAP considers the time-dependent top boundary condi-
tions in terms of either a flux or a given head, controlled
dynamically based on a given set of nested criteria [Van
Dam et al., 1997] related to the atmospheric forcings and
hydrologic conditions at the soil surface. The bottom-bound-
ary condition can be imposed in various forms (Dirichlet,
Neumann, or Cauchy type). The SWAP model is an inte-
grated water management tool containing irrigation and

drainage modules as well as process-based crop growth
models for simulating the impacts of weather, soil type,
plant type, and water management practices on the growth
and development of crops. Detailed descriptions of SWAP
can be found in Van Dam et al. [1997] and Van Dam [2000].
[12] We designed the unmixing algorithm as follows. The
observed (]greferably, downscaled) RS near-surface soil
moisture 6 in a pixel at any time ¢ can be expressed by

O =0,(k) +e, Vit 4)

The unmixing process can then be framed as an optimization
problem where the objective is to minimize the total error
O (k) (equation (5)) between the simulated and observed
pixel-based near-surface soil moistures to find k. The opti-
mization problem is bounded by equations (6) and (7) and
the allowable minimum and maximum values of the s; com-
ponents of k (equation (8))

T
Mm{ Z e,|} = Min {;Zlei‘s 0t<k)|}, )
t=1

subject to
N
Y a=10 (6)
i=1
0<aq; <10, Vi 7
sMin <5 <sM0 v ®)

where 0,(k) (cm® cm ™) is the simulated resultant pixel-

based soil m01sture for given k at time ¢ (see equation 1),
GRS (cm® cm ) is the corresponding observed RS near-
surface soil moisture data, and 7 is the total number of time
steps (days).

[13] The unmixing process works as follows: GA
searches for k, whereas SWAP uses the § component of k
sentative (local) temporal near—surface soil moistures of all
soil types contained within the pixel. The a; components of
k are applied to the correspondmg 0;;, summed across all
soil types to be compared with 9 for time ¢.

[14] The GA search is 1mp1emented using the following
formalism. A penalized form of the objective function
(equation (5)) using the modified penalty method of Chan-
Hilton and Culver [2000] is formulated as follows:

Mln{ Z\HRS -0

X (1 + Penalty (k ))} 9)

where

Penalty (k (10)

and O, is the set of constraints and ¢, is the corresponding
penalty coefficient if the constraints are violated.
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from different sources: HYPRES, Staring series, UNSODA, USDA-SCS (Soil Survey), and Rosetta.

[15] Since equations (7) and (8) are interval constraints,
which can be directly coded in the GA as search spaces for
s and a, only the equality constraint (equation (6)) was con-

Table 1. Area Fractions of Soil-Vegetation Combinations Used
in the Numerical Experiments® (See Figure 1)

Soil-Vegetation Area Fractions (aij)b

(1) 1 Vegetation-3 Soils Combinations®

Soils
S 0.333...
2 0.333...
S3 0.333...
Total (sg, Sz, S3) 1.0
Vegetation
Vi 1.0
Total (vy) 1.0
s-v combinations
S$1Vy 0.333...
SHVy 0.333...
S3Vy 0.333...
Total (s;vy, ..., S3Vy) 1.0

(2) 2 Vegetations-3 Soils Combinations (Depicted in Figure 1)
Soils

Sy 0.30556
S5 0.34444
S3 0.35
Total (sy, S, 53) 1.0
Vegetations
vy 0.5333
Vs 0.4667
Total (V], Vz) 1.0
s-v combinations
S1Vy 0.00556
SHVy 0.31667
S3V) 0.21111
S1Vo 0.30
SHVa 0.02778
S3V3 0.13889
Total (S]V], ey S3V2) 1.0

s, sandy loam (ID = 1); s,, silt loam (ID = 33); s3, clay loam (ID = 40);
vy, wheat (Triticum aestivum); v,, soybean (Glycine max). Soil IDs are
derived from the lookup table of soil hydraulic properties (not shown).

bSee section 2.2; i, index for soils; J, index for vegetations.

Area fractions of soils under the simple case are slightly different from
the complex case (Figure 1) to further test the robustness of the GA-based
unmixing method. Area fraction of one means 100% of the pixel.
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sidered in equation (10) as shown below (hence R = 1,
where r is the index for constraints):

(an

N 2
0, = {l —Za,} (r=1).
=1

[16] If a chromosome (denoted by p (p # k)) violates the
constraint of area fractions within the pixel the following
rule is applied:

N
if(l =Y a# 0) .6, = 20; otherwise, 6, = 0 (r = 1).  (12)
i=1

i=

Table 2. Representations of the Unmixing Parameters in the GA

Search Space

Unmixing Minimum Maximum Number of
Parameter Values Values Bits (L) 2k

(1) 1 Vegetation-3 Soils Combinations
S 64° 6 64
Sz 1 64 6 64
S3 1 64 6 64
a 0 1.0 8 256
a 0 1.0 8 256
as

(2) 2 Vegetations-3 Soils Combinations
S 1 64 6 64
Sz 1 64 6 64
S3 1 64 6 64
apg (S]V]) 0 1.0 8 256
azy (S2vy) 0 1.0 8 256
asy (S3V1) 0 1.0 8 256
a2 (s1v2) 0 1.0 8 256
any (Ssz) 0 1.0 8 256

as° (83V2)

“The total number of soil units considered in the lookup table of soil hy-
draulic properties.
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Table 3. GA Parameters and SWAP Modeling Scenarios Used in the Unmixing Experiments®

Experiments Under Uncer-

SMEXO0S5 Field Experiments

SGP97 Airborne-RS Foot-

Numerical Experiments tainty (Numerical) (Actual) print (Actual)
GA Parameters
Number of population 10, 20, 30 30 30 30
Dereep 0.1,0.2, ...,1.0 0.1,0.2, ...,1.0 0.1,0.2, ...,1.0 0.1,02, ..., 1.0
Peross 0.5 0.5 0.5 0.5
Seed —1000 —1000 —1000 —1000
Intermittent ppuae’ 0.05 0.05 0.05 0.05
Number of generations 5000/search restart® 5000/search restart 5000/search restart 5000/search restart
Number of search restarts 8 8 8 5
Modeling Conditions

Top boundary conditions®

Bottom-boundary
conditions

Initial conditions

Time-dependent
flux/head

Free drainage (FD)
oH _ 00iZ) _ 4

Oz

0z

h(z,t =0)=—100 cm;
0 <z < zmax

Time-dependent flux/head
(1)FD

(2) Variable groundwater
table depths (GWL)
(varied from 100, 150,
200 cm below soil
surface)

(1) FD case: A(z,t = 0) =
—100, =500, —1000 cm;
0 <z < Zzma

(2) GWL case: h(z,t = 0) ~
equilibrium with initial
groundwater table depths;
0<z<zmax

Time-dependent flux/head
(1) FD

(2) Variable groundwater
table depths (GWL)
(varied from 100, 150,
200, 250, 300, 390 cm
below soil surface)

(1) FD case: A(z,t = 0) =
—100, —500, —1000 cm;
0 <z < Zzma

(2) GWL case: A(z,t = 0) ~
equilibrium with initial
groundwater table depths;
0 <z < zma

Time-dependent flux/head
(1) FD

(2) Variable groundwater ta-
ble depths (GWL) (varied
from 100, 150, 200, cm
below soil surface)

(1) FD case: A(z,t = 0) =
—100, —500, —1000 cm;
0 <z < zmax

(2) GWL case: A(z,t = 0) ~
equilibrium with initial
groundwater table depths;
0 <z < Zzma

2H, total hydraulic head (cm); &, pressure head (—cm); z, soil depth (cm; positive upward); ¢, time (days).

*Occurring at the 25th, 50th, 75th, and 85th percentiles of the maximum number of generations per search restart.

“Based on a given nested criteria [Van Dam et al., 1997] related to atmospheric forcings and hydrologic conditions at the soil surface.

dSearch restart is different from micropopulation restarts (see section 2.2). In every search restart, the converging population of the 5000th generation
is used as the initial population for the next new 5000 generations [see Goldberg, 2002].

The penalty coefficient (6,) value was chosen arbitrarily in
this study; this can be chosen by sensitivity analysis. A too
large value of 6, will penalize heavy (hence killed) chro-
mosomes with below average fitness but may contain
genetic information that when shared with other chromo-
somes could trigger generation of the solution. The purpose
is to promote diversity while exploiting good genetic traits
among all individuals in the population.
[17] We defined the fitness function as follows:

fitness (p) = Max [Z(k)] ", (13)

which indicates that fitness (p) is maximized if Z(k) is
minimized.

[18] The chromosome p was designed to reduce the
dimensionality [Michalewicz, 1996] of the unmixing prob-

N N-1
lem. Since a; =1, we can express ay = 1 — Zai. We
i=1 i=1
can then design p = {si—1...v,ai-1..n-1}, thus reducing
the number of unknown parameters (in p), consequently
k ={p,a;—y}. The chromosome p was coded as a binary
string structure in GA using the linear mapping technique
(from base 2 to base 10) of Goldberg [1989].

[19] The unmixing problem described in equations (5)—8)
was extended into multiple soil-vegetation combinations
(see Figure 1). The number of area fractions (i.e., the combi-
nations of soils and vegetations) within the pixel would
increase to N x M, where N and M are the number of soil

types and vegetation types, respectively, considered in the
pixel. The simulated resultant pixel-based soil moisture
0,(k) for time ¢ is extended as follows:

aiby +e;, VI,
1

(14)

B N
et(k) = Z a

=1 i

and p = {s1,_n,ai-1. N-1y-1,.m—1}. Therefore, k=
{p.ai_ny—m}, where i and j are the indices for soil types
and vegetation types, respectively. The remaining parts of
the unmixing algorithm were adjusted to accommodate the
extended unmixing problem.

[20] Analyzing the components of equation (14) can give
us an idea to the contributions of vegetations and soils
(Figure 1) into the resultant pixel-based soil moisture
(shown in equation (15)):

(].:1.,1217 7]V) alvl(.)+az‘](.)+ +[1N,|‘](.)
+an1(.) +e

(j=2i=1,...,N) aia() taa() + o +av-ia()
+aya() +e

(j:M— l,l: 17 ,N) al‘M,l(.)—Q—ath,l(.)—ﬁ—
+ay-1m—1() +avm-1(.) +e
ar () + aZ,M(~) + ...

+aN71,M(~) + aN,M(~) +e

(G=Mi=1,...,N)

(15)
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Synthetic soil moisture data used in the numerical experiments under (a—c) simple and (d—f)

complex soil-vegetation combinations under (a, d) dry, (b, e) relatively wet, and (c, f) wet years. Note:
81, sandy loam; s, silt loam; s3, clay loam; v, wheat; v,, sorghum.

where (-) denotes the 6;,. The row components (j=1, ..., M)
in equation 15 suggest the contributions of vegetation types
to the resultant pixel-based soil moisture, whereas the col-
umn components (i = 1, ..., N) suggest the contributions of
soil types.

2.3. Soil Hydraulic Database: Lookup
Table Approach

[21] Let us consider the one vegetation-three soils mixed-
pixel problem (equations (5)—(8)) and define s; in a traditional

04

e %
o 031
€
[&]
g
S
%
[e]
£ 02
’ %
(]
o areal-average
0.1 : ; : ; . : : :
167 169 171 173 175 177 179 181 183
Day of Year
Figure 4. In situ near-surface (0—5 cm) soil moisture data

in WC11 field during SMEXO05 campaign. Error bars indi-
cate one standard deviation.

way, s could comprise 18 Mualem-Van Genuchten soil hy-
draulic parameters (i'e-’ {Oéi, N, eresis esatb Ksatia Ai}i:l AAAAA 3)s
this would lead to a very large combinatorial problem. To
simplify s; and to reduce dimensionality of the unmixing
problem, we applied a lookup table method to represent an
array of soil hydraulic properties of local-scale (homogenous)
soil units. The lookup table was developed using existing soil
hydraulic databases from the literature, namely, Unsaturated
Soil Database (UNSODA) [Leij et al., 1999], United States
Department of Agriculture - Soil Conservation Service

AREITI. ¥

04

o
w
L

Soil moisture, cm® cm™
(en]
N
\

0.1 1 o
0 ESTAR
O areal-average
¢+
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Figure 5. In situ and ESTAR near-surface (0—5 cm) soil

moisture data in LW21 field during SGP97 campaign. Error
bars indicate one standard deviation.
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Table 4. Solutions of the Unmixing Problem Under Simple Soil-Vegetation Case (Three Soils-One Vegetation) in Idealized Modeling

Effective Soil Hydraulic Parameters

Average Area Standard Deviation

Categories o n Ores Osat Kot A Fraction (s;v{) (SD) Area Fraction
Base Values
s;: sandy loam 0.021 1.61 0.067 0.37 41.6 0.5 0.333
s silt loam 0.012 1.39 0.061 0.43 30.5 0.5 0.333
s3: clay loam 0.030 1.37 0.129 0.47 1.8 0.5 0.333
(a) Dry Year
8 0.021 1.61 0.067 0.37 41.6 0.5 0.332 0.004
Sy 0.012 1.39 0.061 0.43 30.5 0.5 0.333 0.005
S3 0.030 1.37 0.129 0.47 1.8 0.5 0.334 0.006
(b) Relatively Wet Year
8 0.021 l1.61 0.067 0.37 41.6 0.5 0.331 0.003
S2 0.012 1.39 0.061 0.43 30.5 0.5 0.333 0.001
S3 0.030 1.37 0.129 0.47 1.8 0.5 0.337 0.003
(c) Wet Year
8 0.021 1.61 0.067 0.37 41.6 0.5 0.330 0.021
Sy 0.012 1.39 0.061 0.43 30.5 0.5 0.333 0.011
S3 0.030 1.37 0.129 0.47 1.8 0.5 0.337 0.012

(USDA-SCS) (Soil Survey) [Carsel and Parrish, 1988], Hy-
draulic Properties of European Soils (HYPRES) [Wisten
et al., 1999], Staring soil database [Wdsten et al., 1994], and
Rosetta [Schaap et al., 1999], whose soil-water retention 6(/)
and hydraulic conductivity K(%) curves are depicted in Figure
2; each of the soils represented by the soil hydraulic curves
[6(h), K(h)] is assigned an ID (identification number). By
using a lookup table, we can redesign s; to consist only of
three unknown parameters, corresponding to the unit ID of
the three soils from the lookup table of soil hydraulic proper-
ties; this process is called regularization.

2.4. Case Studies

[22] We tested the unmixing method using idealized
experiments that include simple and complex mixed pixels.
Idealized experiments include running the SWAP model in

1000 X

100 A
E =sandy loam (0.333)
g — silt loam (0.333)
o 10 4
= — clay loam {0.333)
= A soil 0332
:t: O soil2 (0.333)
. 1 O soi3 (0.334)

0.05 0.25 0.45

Sail maisture, cm® cm'™

forward mode for known soils, vegetations, management
(these case studies are rainfed), initial/boundary conditions,
and climate forcings in the synthetic pixel and then aggregat-
ing the simulated near-surface soil moistures based on the
known area fractions of soils-vegetations in the pixel, and
then use it to inversely estimate the original subgrid pixel
properties. Afterward, we validated the method using actual
soil moisture data from a field and an airborne-RS footprint
if it works under real-world conditions. Weather data
required by SWAP include daily rainfall, maximum and
minimum temperature, solar radiation, humidity, and wind.
[23] Table 1 shows the area fractions of soils and vegeta-
tions, contained within the modeling domains, used for the
simple and complex soil-vegetation cases. The unmixing
method aims to calculate back those area fractions using in-
formation from soil moisture time series. Table 2 also

100
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o
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2
g
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Figure 6. Sample results of unmixed (a) soil-water retention curve, 6(%), and (b) hydraulic conductiv-

ity curve, K(%) in idealized modeling under simple

soil-vegetation case (three soils-one vegetation) dur-

ing dry year. Notes: sandy loam, silt loam, and clay loam are the reference soils; soill, soil2, and soil3
are the corresponding solutions, respectively. Area fractions are given in parentheses.
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Figure 7. Sample results of unmixed soil moisture in
idealized modeling under simple soil-vegetation case (three
soils-one vegetation) during dry year. Nofes: sandy loam,
silt loam, and clay loam are the reference soils; soill, soil2,
and soil3 are the corresponding solutions, respectively.
Area fractions are given in parentheses.

shows how the unmixing parameters were represented in
GA. These are the range of search spaces used for each
unmixing parameters, and the length of strings used to rep-
resent the value of each parameter. For simple soil-vegeta-
tion scenario (three soils and one vegetation), six unmixing
parameters were determined but only five of them were

. . N
coded in the GA, since E = 1; hence, one area frac-
i

tion can be expressed as a residual of the expression above
(section 2.2). Similarly, with complex soil-vegetation sce-
nario (three soils and two vegetations), nine unmixing pa-
rameters were determined, but only eight (i.e., components
of p) of these parameters were coded as binary substrings
in GA. Table 3 summarizes the GA parameters used in the
unmixing method runs and SWAP initial and boundary
conditions used during those runs under the idealized and
actual validation experiments.

2.4.1. Idealized Numerical Experiments

2.4.1.1. Simple Soil-Vegetation Combination

(One Vegetation-Three Soils)

[24] The simple case includes a modeling domain con-
taining one vegetation-three soils combination, and the
complex one includes a two vegetations-three soils combi-
nation (see Figure 1). Figures 3a—3c show the simulated
representative (local-scale) near-surface soil moistures
used in the unmixing of the one vegetation-three soils com-
bination problem. These representative near-surface soil
moisture data were simulated within a modeling domain con-
taining three soil textures (sandy loam, silt loam, and clay
loam) with one vegetation cover (wheat) for the whole do-
main during a cropping season (March—July) in a dry, rela-
tively wet, and wet year (classification based on Northern
Texas climate) under nonirrigated conditions. The vertical soil
column was assumed to be 2 m depth; other conditions used
in the simulations are given in Table 3. Details of the simula-
tions can be found in Ines and Mohanty [2008a, 2008b].

[25] The lookup table search implementation for soil
hydraulic properties (representing s;) allowed the development
of a GA dynamic-static chromosome evaluation to generate a
data cube that serves as a meta-model for the inverse problem.
The usual approach used for evaluating chromosomes in

coupled methodologies like SWAP-GA is by a dynamic
model linkage where the proposed chromosome p is directly
transferred to SWAP for simulating the modeled physical sys-
tem responses. This dynamic interaction between model and
the search algorithm is often costly (in terms of computational
time) for population-based search methods like GA, unless
designed under a parallel infrastructure [Ines and Honda,
2005]. The proposed hybrid-chromosome evaluation is envis-
aged to save computational time in solving the unmixing
problem without sacrificing accuracy of results. The mechan-
ics of the hybrid-dynamic-static chromosome evaluation are
described below.

[26] A 3-D table (data cube) of soil-vegetation response
(i.e., near-surface soil moisture) was developed to store
modeled system responses to a particular s,v; combination,
given the climatic and environmental forcings and bound-
ary conditions. The soil-vegetation-response data cube is
filled dynamically with simulated near-surface soil mois-
ture data, as SWAP simulates an s-v combination (see
Table 1). Until data space in the data cube is available for
an s-v combination, SWAP is used to simulate specific s-v
combination to evaluate p. Otherwise, GA will use the data
cube to get the modeled response for p. The data cube com-
prises rows, containing time elements of soil moisture, and
columns, containing the soil elements (soil ID) and, at the
transverse direction, the vegetation elements.

[27] Together with the built-in time-saving scheme in the
modified micro-GA [Ines and Honda, 2005; Ines and
Mohanty, 2008b], the dynamic-static chromosome evalua-
tion made the search process more efficient, allowing us to
explore better the unmixing problem by considering more
scenarios in the experiments (see Table 3).
2.4.1.2. Complex Soil-Vegetation Combination (Two
Vegetations-Three Soils)

[28] Two vegetations (wheat and soybean) were used for
the complex soil-vegetation scenario (Figure 1). The repre-
sentative soil moisture data for each s-v combination in the
complex scenario (see Table 1) are shown in Figures 3d-3f
in which the mixed soil moisture was used to estimate the
components of extended k variable (see section 2.2).

Table 5. Performance of the Unmixing Solutions Under Simple
and Complex Soil-Vegetation Cases in Idealized Modeling®

Statistics

Categories R RMSE

(1) Simple Soil-Vegetation Case (3 Soils-1 Vegetation)
(a) Dry year

Si=1,...3:V1 0.999 8.69E—05
(b) Relatively wet year

Si—1,...,3:V1 0.999 4.65E—04
(c) Wet year

Si—1....3:V1 0.999 2.07E—04

(2) Complex Soil-Vegetation Case (3 Soils-2 Vegetations)
(a) Dry year

Si=1,...3:V1,V2 0.999 5.48E—04
(b) Relatively wet year

Si=1,...3V1,V2 0.999 5.13E—04
(c) Wet year

Si=1,...3:V1,V2 0.999 2 64E—04

vi, wheat; v,, soybean. Individual s,v; performance is not shown as
their R and RMSE values are approximately 1.0 and approximately 0.0,
respectively.
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Table 6. Solutions of the Unmixing Problem Under Complex Soil-Vegetation Case in ldealized Modeling (Three Soils-Two

Vegetations)
Effective Soil Hydraulic Parameters Vegetation 1, v; (Wheat) Vegetation 2, v, (Soybean)
Average Area SD Area Average Area SD Area
Categories @ n Ores Osat Ko A Fraction (s;vy) Fraction Fraction (s;v2) Fraction

Base Values

s;: sandy loam 0.021 1.61 0.067 0.37 41.6 0.5 0.006 0.30

s silt loam 0.012 1.39 0.061 0.43 30.5 0.5 0.32 0.03

s3: clay loam 0.030 1.37 0.129 0.47 1.8 0.5 0.21 0.14
(a) Dry Year

S 0.021 1.61 0.067 0.37 41.6 0.5 0.012 0.010 0.280 0.014

2 0.012 1.39 0.061 0.43 30.5 0.5 0.325 0.009 0.032 0.005

S3 0.030 1.37 0.129 0.47 1.8 0.5 0.204 0.016 0.148 0.011

(b) Relatively Wet Year

S 0.021 1.61 0.067 0.37 41.6 0.5 0.003 0.002 0.284 0.002

Sy 0.012 1.39 0.061 0.43 30.5 0.5 0.329 0 0.027 0

83 0.030 1.37 0.129 0.47 1.8 0.5 0.217 0.005 0.140 0.002
(c) Wet Year

8 0.021 1.61 0.067 0.37 41.6 0.5 0.004 0 0.294 0

2 0.012 1.39 0.061 0.43 30.5 0.5 0.318 0 0.027 0

S3 0.030 1.37 0.129 0.47 1.8 0.5 0.216 0 0.141 0

——SL-WHT (0.006) ——STL-WHT (0.320) —— CL-WHT (0.210)

2.4.1.3. Unmixing Under Uncertainty

[29] Data and modeling errors are inevitable in the real
world. For this reason, we tested the GA-based unmixing
method under uncertainty conditions. To account for data
errors in the mixed soil moisture, we perturbed the “error-
free” area-weighted soil moisture data from the idealized
numerical experiment (only wet year scenario) applying
0 =0x(14+x£);x~N(0,1); =1 <x <1, where § and
0 are perturbed and “error-free” soil moistures, respec-
tively; x is a normal random deviate with mean and stand-
ard deviation equal to 0 and 1, respectively; £ is the error
term. An error (§) of 30% was applied across the time se-
ries of noise-free mixed soil moisture. Ten perturbed soil
moisture series were generated. The error term in the per-
turbation equation could be associated with measurement
errors incurred during field data collection.

[30] To account for modeling errors, we consider that the
initial and bottom-boundary conditions are both uncertain
(Table 3). The top boundary condition was considered as
time-dependent flux/head based on prevailing hydrocli-
matic conditions at the surface [see Van Dam et al., 1997].
The bottom-boundary conditions were either considered as
free draining (i.e., d(h + 2)/0z = 1; thus, gpr = —K(h),
where z is the depth, g is the bottom flux) or governed by
water table dynamics [Van Dam et al., 1997]. Under a
free-drainage condition, the soil profile was initialized
using three different initial conditions at A(zpin, <z <
Zmax, t = 0) = —100, =500, and —1000 cm. When water ta-
ble depths were used as bottom boundaries, initial condi-
tions were calculated in equilibrium with initial water table
depths and were varied from 100, 150, and 200 cm from
the soil surface.

[31] All 10 perturbed mixed soil moisture time series
were used for solving the unmixing variable k (see section
2.2). For each perturbed-time series, SWAP is subjected to
combinations of initial and boundary conditions to account
for both data and modeling errors in the unmixing
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Figure 8. Sample results of (a) wheat and (b) soybean
unmixed soil moisture in idealized modeling under com-
plex soil-vegetation case (three soils-two vegetations) dur-
ing relatively wet year. Nofes: SL-WHT, sandy loam-
wheat; STL-WHT, silt loam-wheat; CL-WHT, clay loam-
wheat; SL-SOY, sandy loam-soybean; STL-SOY, silt
loam-soybean; CL-SOY, clay loam-soybean; soil#-WHT,
corresponding solutions under wheat crops; soil#-SOY,
corresponding solutions under soybean crops (see equation
(15)); Area fractions are given in parentheses.
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Table 7. Solutions of the Unmixing Problem Under Uncertainty in Simple Soil-Vegetation Case in ldealized Modeling During Wet

Year (Three Soils-One Vegetation)®

Effective Soil Hydraulic Parameters

Average Area SD Area
Categories @ n Ores Osat Kot A Fraction (s;v;) Fraction
Base Values (FD Bottom Boundary, Initial Condition h(z,t = 0) = —100 cm)
s1: sandy loam 0.021 1.61 0.067 0.37 41.6 0.5 0.333
s: silt loam 0.012 1.39 0.061 0.43 30.5 0.5 0.333
s3: clay loam 0.030 1.37 0.129 0.47 1.8 0.5 0.333
(a) FD Bottom-Boundary Conditions
Initial condition A(z, t = 0) = —100 cm
S 0.022 1.60 0.066 0.37 40.1 0.49 0.316 0.063
2 0.016 1.39 0.064 0.42 252 0.12 0.372 0.087
S3 0.029 1.36 0.123 0.47 23 0.54 0.312 0.056
Initial condition A(z, t = 0) = —500 cm
S 0.007 1.68 0.050 0.49 43.8 0.62 0.489 0.011
2 0.010 1.23 0.072 0.43 2.0 0.35 0.158 0.163
S3 0.011 1.22 0.079 0.43 3.1 0.29 0.353 0.163
(b) Variable Groundwater Conditions
GWL = —100 cm; initial condition A(z,t = 0): equilibrium with initial GWL
S1 0.039 1.54 0.053 0.40 45.6 0.84 0.504 0.191
S> 0.021 1.37 0.067 0.42 17.6 0.43 0.165 0.162
S3 0.017 1.29 0.110 0.44 5.8 0.33 0.332 0.170
GWL = —150 cm; initial condition A(z,t = 0): equilibrium with initial GWL
S1 0.033 1.38 0.047 0.42 47.6 0.86 0.438 0.033
S> 0.028 1.40 0.080 0.44 30.0 0.37 0.407 0.053
S3 0.011 1.16 0.078 0.40 4.6 0.44 0.155 0.057
GWL = —200 cm; initial condition A(z,t = 0): equilibrium with initial GWL
S1 0.028 1.49 0.041 0.38 44.6 0.27 0.369 0.118
S> 0.022 1.31 0.061 0.44 29.1 0.50 0.269 0.132
S3 0.022 1.25 0.090 0.43 7.9 —0.29 0.362 0.124

Cases (a) and (b) are subjected with 30% data error.

experiments. The solutions from all the unmixing runs
were analyzed to get the final results (i.e., soil and vegeta-
tion area fractions).
2.4.2. Field Experiments and Validation
2.4.2.1. Field Scale

[32] We also conducted unmixing experiments using
actual in situ soil moisture data collected from WC11 field
within the WC watershed, lowa, during SMEXO05 cam-
paign [see Ines and Mohanty, 2008a, Figure 5]. According
to Soil Survey Geographic Database (SSURGO) (http://
soildatamart.nrcs.usda.gov), the soils in WC11 field bound-
ary comprise loam, silt loam, and clay loam. Maize is the
dominant crop. Soil moisture was measured from 62 loca-
tions using hand-held theta probes from 17 June to 2 July
2005. Because of weather related conditions, no data were
collected on 23, 25, 28-30 June, resulting to 10 near-surface
(0-5 cm) soil moisture data (62 sampling points across the
field) available for WCI11 field (Figure 4). Longer time
series of soil moisture (hence, information) is, however,
desired to capture the full range of soil moisture dynamics.

[33] In situ soil moisture data were mixed by arithmetic
averaging to produce field-scale average soil moisture time se-
ries (see Figure 4). In the soil moisture unmixing experiments,
we set three soils encompassing WC11 field based on a priori
information from SSURGO. All simulations (Table 3) were
done from January to December 2005, and only the simulated
mixed soil moisture data coinciding with the SMEX05 cam-
paign period (17 June to 2 July) were compared with the
observations during unmixing. Simulations made prior to
June 2005 were used for model spinning. The field was under

corn cover during SMEXO05 campaign. Daily weather data
including rainfall, minimum and maximum temperature, wind
speed, humidity, and solar radiation were collected from a
nearby Soil Climate Analysis Network (SCAN) site at Ames,
Iowa (http://www.wcc.nrcs.usda.gov/scan/).
2.4.2.2. Airborne-RS Scale

[34] We also conducted unmixing experiments (Table 3)
at the scale of airborne-RS Electronically Scanning Thin
Array Radiometer (ESTAR) at a selected grid (LW21) in
LW watershed in Oklahoma during SGP97 [see Ines and
Mohanty, 2009, Figure 2]. ESTAR pixel-based (800 m X
800 m) soil moisture products [Jackson et al., 1995, 1999]
at the LW21 site were extracted and used for the inverse
modeling. In situ soil moisture (0—5 cm) across the field
(49 sampling points) were measured from 18 June to 18
July 1997 [Mohanty et al., 2002] and used for validation
(Figure 5). The LW21 site is composed of silt loam, sandy
loam, and loam soils according to SSURGO and covered
by winter wheat (during SGP97 campaign) and short native
grass. The growing period was set in SWAP model as 1
March to 27 June, although simulations were started 1 Jan-
uary for model spinning. Only those dates when ESTAR
data are available were extracted and used in the inverse
modeling. Daily weather data used in modeling were
collected from the USDA-Agricultural Research Service
micronet weather station (ARS 149) in Oklahoma.

2.5. Analysis of Results

[35] A filter was used to extract the most probable solu-
tions from the converged GA populations. The filter was
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Table 8. Performance of the Unmixing Solutions Under Uncer-
tainty in Simple Soil-Vegetation Case in Idealized Modeling Dur-
ing Wet Year (Three Soils-One Vegetation)”

Statistics
Categories R RMSE
(a) FD Bottom-Boundary Conditions
Initial condition /A(z,t = 0) = —100 cm
S1,V1 0.985 0.028
$2,V1 0.998 0.014
S3,V1 0.970 0.028
Si=1,..., 3,V1 0.998 0.007
Initial condition A(z, t = 0) = —500 cm
S$1,V1 0.925 0.035
$2,V1 0.910 0.074
$3,V1 0.975 0.030
Si—1....3V1 0.996 0.010

(b) Variable Groundwater Conditions
GWL = —100 cm; initial condition A(z, t = 0): equilibrium with initial
GWL

S1,V1 0.994 0.021
$2,V1 0.970 0.047
$3,V1 0.998 0.010
Si=1,....3:V1 0.996 0.010

GWL = 150 cm; initial condition A(z, t = 0): equilibrium with initial
GWL

S1,V1 0.975 0.023
$2,Vy 0.969 0.032
$3,V) 0.975 0.041
Si—1,...3V1 0.998 0.008

GWL = 200 cm; initial condition /(z, f = 0): equilibrium with initial
GWL

S1,V1 0.985 0.035
$2,V1 0.975 0.041
$3,V] 0.991 0.023
Si=1,....3:V1 0.997 0.009

Cases (a) and (b) are subjected with 30% data error.

implemented by log-transforming the fitness of the final
populations (collected from all cases of varying population
SiZes, Pereep Mutations, and number of generation restarts
under an experiment, see Table 3); then those chromo-
somes whose log-fitness are above a threshold are
extracted. Under the idealized numerical experiments, we
used the top 1% (99% filter) as representative solutions to
the inverse problem. Under uncertainty scenarios, we con-
sidered the top 5% (95% filter) as best possible solutions.
For the actual field experiments, we applied a less strict fil-
ter [>(n + lo)], since there were significant uncertainties
involved in the simulations. Correlation (R) and error anal-
yses (root-mean-square error (RMSE)) were also used to
evaluate the performance of the solutions.

3. Results and Discussion

3.1.

3.1.1. Simple Vegetation-Soil Combination

[36] This case exemplifies a pixel under full coverage by
single vegetation, with three soils bounded by the pixel
boundary. Under known modeling conditions, we run
SWAP in forward mode for the one vegetation-three soils
combinations to develop a time series of mixed near-surface
soil moisture (Table 1), which were then used to unmix
back the soils, and soil-vegetation fractions of the said pixel

Idealized Experiments

applying the unmixing algorithm presented here. To verify
the robustness of the method, the experiments were repli-
cated under a dry, relatively wet, and wet year. The vegeta-
tion cover for this synthetic experiment is wheat. The
reference soils are sandy loam (s;), silt loam (s;), and clay
loam (s3), designated as soil IDs 1, 33, and 40 from the
lookup table (not shown), whose corresponding Mualem-
Van Genuchten soil hydraulic parameters are also contained
in the lookup table. The objective is to estimate back these
soil properties and their combinations within the study pixel
based on the time series of mixed near-surface soil
moisture.

[37] Table 1 shows the exact solutions for area fractions
of the one vegetation-three soils unmixing problem, s;v; =
s>vi = s3vp = 0.333. The ability of the method to unmix
the near-surface soil moisture and infer information about
the soils in the pixel under this idealized case is shown in
Table 4. For all replications, it can be seen that the soil sig-
natures were exactly determined. This indicates that the
unmixing algorithm was able to determine the soils whose
soil hydraulic properties behave exactly as the soils
bounded by the pixel contributing to the mixed near-sur-
face soil moisture. In terms of eliciting the area fractions of
soils bounded by the pixel, it can be seen that, on average,
the unmixing algorithm was able to approximate the area
fractions of soils associated with sy, s,, and ss. It is interest-
ing to note that under dry and relatively wet years, the
determination of soil area fractions are more consistent
(lower standard deviations) than during the wet year. Area
fraction determination is critical, because it dictates the
weight of a pure (i.e., downscaled) soil moisture time series
to the overall pixel-based soil moisture.

[38] Figure 6 shows sample unmixed 6(/4) and K(%) solu-
tions of the idealized one vegetation-three soils combina-
tion problem during the dry year. Since the derived sets of
soil hydraulic properties behave exactly as the re