
Algorithms for Minimum Risk Chunking

Martin Jansche

Center for Computational Learning Systems
Columbia University, New York

Abstract. Stochastic finite automata are useful for identifying sub-
strings (chunks) within larger units of text. Relevant applications include
tokenization, base-NP chunking, named entity recognition, and other in-
formation extraction tasks. For a given input string, a stochastic automa-
ton represents a probability distribution over strings of labels encoding
the location of chunks. For chunking and extraction tasks, the quality of
predictions is evaluated in terms of precision and recall of the chunked/
extracted phrases when compared against some gold standard. However,
traditional methods for estimating the parameters of a stochastic finite
automaton and for decoding the best hypothesis do not pay attention to
the evaluation criterion, which we take to be the well-known F -measure.
We are interested in methods that remedy this situation, both in training
and decoding. Our main result is a novel algorithm for efficiently eval-
uating expected F -measure. We present the algorithm and discuss its
applications for utility/risk-based parameter estimation and decoding.

1 Introduction

Finding regions of interest in texts is a fundamental task in Natural Language
Processing. Typical regions of interest include noun phrases [1–4], subject-verb
phrases [5], named entities [6, 7], and word tokens [8], among others. We consider
this task abstractly and speak of chunks or phrases to be located inside larger
strings. Phrase chunking – the process of finding chunks/phrases – is evaluated
like an information retrieval task, in terms of precision and recall: we compare
the set of chunks found by a system against a given “gold standard” dataset
annotated with chunk information. Precision refers to the number of true positive
chunks divided by the number of hypothesized chunks (fraction correct). Recall
refers to the number of true positive chunks divided by the number of true
chunks according to the gold standard (fraction found). Precision and recall
values are combined into a single quantity, either the risk-like E-measure [9], or
the utility-like F -measure.

Our larger goal is to formulate a stochastic approach to phrase chunking that
is informed by these evaluation criteria: we want to minimize E-measure (risk)
or maximize F -measure (utility) during training and decoding. In this paper we
focus on the foundational aspects of this approach and on algorithmic issues
surrounding minimum-risk/maximum-utility estimation in particular. The main
result is a novel algorithm for evaluating the expected utility of a hypothesis. The

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161444453?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

key insight is that the number of true positives (matched chunks) of a hypothesis
string compared to a gold standard label string can be computed by a weighted
infinite transducer. This infinity poses no problems, since transducers can be
implemented in a lazy fashion [10] and only finite prefixes have to be considered.
The algorithm also makes use of weighted transducer composition and algebraic
path computations (not discussed here).

Building automatic chunkers is simplified by the use of supervised machine
learning. In this scenario, a learner is presented with examples of strings together
with a set of chunks1 occurring in those strings and asked to infer regularities
that will allow similar chunks to be found inside previously unseen strings. Since
this is not a standard learning task, it is transformed into a more conventional
sequence learning task. Learning with sequential data is ubiquitous in Natural
Language Processing and well understood [11–13].

Several reductions from the real learning task to sequence learning tasks
are possible. The most common schemes annotate each string of words with
an equally long string of labels, which indicate, directly or indirectly, whether a
symbol is part of a chunk, and whether it occurs at the start, in the middle, or at
the end of a chunk. Tjong Kim Sang et al. [4] compare several labeling schemes.
The examples and techniques in this paper are based on what they refer to as the
iob2 scheme. This choice is convenient, but not essential; our techniques could
be adapted to work with other schemes as well. The iob2 scheme goes back to
Ratnaparkhi ([14], pp. 57ff.), who used the labels ‘Start’, ‘Join’, and ‘Other’,
which are known here as as b, i, and o, respectively. Their function is perhaps
best illustrated by an example.

Example 1. The following sentence appears in the Dutch language training data
provided for the Shared Task of the 2002 Workshop on Computational Natural
Language Learning [15], in which named entity chunks are indicated by square
brackets (we do not care about entity sorts here):

De liberale minister van [Justitie] [Marc Verwilghen] is geen kandidaat
op de lokale [VLD-lijst] bij de komende gemeenteraadsverkiezingen in
[Dendermonde].2

The same sentence is represented in the iob2 scheme as follows:

〈De,o〉 〈liberale,o〉 〈minister,o〉 〈van,o〉 〈Justitie,b〉 〈Marc,b〉
〈Verwilghen, i〉 〈is,o〉 〈geen,o〉 〈kandidaat,o〉 〈op,o〉 〈de,o〉 〈lokale,o〉
〈VLD-lijst,b〉 〈bij,o〉 〈de,o〉 〈komende,o〉
〈gemeenteraadsverkiezingen,o〉 〈in,o〉 〈Dendermonde,b〉 〈.,o〉

1 In the simplest case, a chunk is a substring of the string of words. This is the definition
we will assume throughout this paper. More complex scenarios where chunks come
in different varieties are easily accommodated.

2 [Marc Verwilghen], the liberal minister of [Justice], is not on the local [VLD (the
Flemish liberal democrats) list] as a candidate in the upcoming city council elections
in [Dendermonde].

In the iob2 scheme, the label b signals the beginning of a chunk, i marks the
inside (continuation) of a chunk, and o denotes that a word is outside of any
chunk. Note that an i label cannot occur immediately after an o label. A total of
three types of labels is needed in order to encode adjacent chunks, as in ‘minister
van [Justitie] [Marc Verwilghen]’.

Formally, an unsupervised instance is a nonempty string w ∈ Σ+ over some
finite alphabet Σ (Dutch words, in the above example). Let Γ = {i,o,b} be the
set of iob2 labels. A supervised instance is then a pair 〈w, x〉 consisting of a
word string w ∈ Σ+ of length |w| = ` > 0 together with a label sequence x of
the same length |x| = `. The language of valid label sequences, of which x is a
member, is the local language Llbl = {o,b}Γ∗ − Γ∗{oi}Γ∗ . Excluded from Llbl

are label strings that either start with the label i or contain oi as a substring. A
pair 〈w, x〉 of same-length strings is isomorphic to a string of pairs, which was
the representation used in the example.

2 Two Related Processing Tasks

2.1 Minimum Risk Decoding

Thanks to the iob2 encoding of chunks, we are now dealing with a familiar
sequence labeling problem: instead of finding chunks in an instance w, we have
to find a label string x corresponding to w in the transformed problem. However,
we also need to recover a solution to the original information extraction problem
from a solution to the sequence labeling problem. This is known as decoding.

Say a sequence labeling module is presented with a word string w ∈ Σn and
produces a probability distribution over label string hypotheses y ∈ Γn ∩ Llbl.
A naive decoding approach might consider only the most likely label string and
read chunks off that string. This does not use information from runners-up,
which might contradict the most likely string and collectively outweigh it.

The Bayes Decision Rule [16] tells us that the best hypothesis x̂w is one with
minimum average cost under the distribution of label strings (this is also known
as minimum risk decoding):

x̂(w) = argmin
x

R(x | w) = argmin
x

∑

y

λ(x | y) Pr(y | w), (1)

where x, y ∈ Γ|w| ∩ Llbl range over valid label strings such that |w| = |x| = |y|.
The loss function λ is a task-dependent function into the nonnegative rational
numbers; λ(x | y) is the loss incurred for choosing hypothesis x when the true
state of affairs is y. Finally, R(x | w) is the conditional risk, or expected loss, of
hypothesis x under a probability distribution conditional on w.

Instead of minimizing the expectation of a loss function, we can also maxi-
mize the expectation of the negative loss function, which we call the expected
utility.3 In general, the choice of loss or utility function depends on the applica-
tion. In Natural Language Processing, various loss/utility functions have been

3 Maximizing expected utility and minimizing expected loss amount to the same if
optimization is exact. In the rest of this paper we will treat them as equivalent.

proposed for decoding and evaluation of chunking [5, 17–19] and other tasks (for
example [20, 21] among many others). For the phrase chunking applications we
are concerned with, the evaluation criteria are based on the concepts of pre-
cision and recall from Information Retrieval. Both of these criteria compare a
hypothesis h against a gold standard g. Precision is defined as the number of
correctly identified chunks (true positives, or tp(g, h)) divided by the number of
hypothesized chunks (positive margin, or m(h)). We write this as

P (h | g) =

tp(g, h)

m(h)
if m(h) > 0

1 if m(h) = 0
(2)

Recall is conversely defined as the number of correctly identified chunks
tp(g, h) divided by the true number of chunks m(g) (true margin): R(h | g) =
P (g | h). Note that a special case arises when the denominator is zero, in which
case the numerator tp(g, h) is also necessarily zero.

Precision and recall are combined into a single loss function, namely van
Rijsbergen’s ([9], p. 372) effectiveness measure E with parameter α ∈ (0; 1):

Eα(h | g) = 1 −
[

α
1

P (h | g)
+ (1 − α)

1

R(h | g)

]−1

An analogous, and much more familiar, utility function can be defined in
terms of 1 − Eα(h | g). This is the α-weighted harmonic mean of precision and
recall, also known as the F -measure and often mistakenly attributed to [22].
Letting α = 1/(β + 1) with β > 0, the Fβ-measure is defined as follows:

Fβ(h | g) = 1 − Eα(h | g) =
(β + 1) P (h | g) R(h | g)

β P (h | g) + R(h | g)

It is more convenient to express the Fβ-measure in terms of the number of
matched chunks tp(g, h), hypothesized chunks m(h), and actual chunks m(g):

Fβ(h | g) =

(β + 1) tp(g, h)

m(h) + β m(g)
if m(h) + m(g) > 0

1 otherwise
(3)

This equation gives us the parametric family of utility functions Fβ that will
be used throughout the rest of this paper for the phrase chunking task. The
optimization tasks underlying decoding and parameter estimation involve max-
imizing the expectation of the utility Fβ(h | g), or, equivalently, minimizing the
expectation of the loss 1 − Fβ(h | g). Observe the following symmetry. Because
α = 1/(β + 1), therefore 1 − α = β/(β + 1) = 1/(1 + 1/β) and so

Fβ(h | g) = F1/β(g | h). (4)

With these definitions in place, we return to the specifics of the decoding prob-
lem for the phrase chunking task. The hypothesis with minimum expected loss

(minimum risk) or maximum expected utility (meu) is now

x̂meu(w) = argmax
x

∑

y

Fβ(x | y) Pr(y | w) = argmax
x

Uβ(x | w). (5)

The conditional expectation of Fβ will also be written as Uβ(x | w). In order
to carry out the discrete optimization of the decoding task (5), we need an
efficient algorithm for evaluating the expected utility U . We will show that U
can be represented as a weighted transducer whenever the probability model is
provided by a stochastic finite automaton.

2.2 Parameter Estimation by Empirical Risk Minimization

A second task in which the expected utility U plays a role is the estimation of
parameters of the underlying probability model of a chunker given a sequence
of supervised instances 〈w1, x1〉, . . . , 〈wn, xn〉. We assume that the probability
model is parameterized by a vector θ. In Empirical Risk Minimization, our es-
timate of θ is one which minimizes the average risk on the training data. We
reformulate this again as maximizing the average utility (using Fβ as the utility
function) instead of minimizing expected loss:

θ̂ = argmax
θ

1

n

n
∑

i=1

Fβ(x̂(wi; θ) | xi).

For simplicity, we use as the decoded hypothesis x̂ the maximum a posteriori
(map) hypothesis (6) instead of the meu hypothesis (5).

x̂(w; θ) = argmax
x

Pr(x | w; θ). (6)

The factor 1/n does not depend on θ and can be ignored in the maximization.
The parameter estimation task is then the following optimization problem:

θ̂ = argmax
θ

n
∑

i=1

Fβ(argmax
z

Pr(z | wi; θ) | xi). (7)

Because of the nested discrete maximization step involving z, the outer maxi-
mization problem involving θ is not well-behaved: the outer optimization objec-
tive is a piecewise constant function of θ whose gradient is zero almost every-
where. We reformulate this problem and approximate the inner maximization in
a way that will regularize the outer optimization problem. Let δ be the Kronecker
delta, whose value is one if its two arguments are equal, and zero otherwise. Then:

θ̂ = argmax
θ

n
∑

i=1

∑

y

Fβ(y | xi) δ(y, argmax
z

Pr(z | wi; θ))

≈ argmax
θ

n
∑

i=1

∑

y

Fβ(y | xi)
Pr(y | wi; θ)

maxz Pr(z | wi; θ)

= argmax
θ

n
∑

i=1

1

maxz Pr(z | wi; θ)
U1/β(xi | wi; θ)

The approximate equality between the first and second line holds because

δ(y, argmax
z

Pr(z)) = lim
γ→∞

(

Pr(y)

maxz Pr(z)

)γ

We chose a fixed sharpening parameter γ = 1 to approximate this limit in the
above derivation; larger values of γ can be used with minor changes. We again
encounter the expected utility U , whose parameter 1/β is due to the symmetry
(4) observed earlier. The net result is that the outer optimization objective
depends continuously on θ so that an iterative numerical optimization can be
carried out4 provided that U can be evaluated efficiently.

2.3 A Common Subexpression: Expected Utility

The conditional expected utility U occurs both in the Maximum Expected Util-
ity (or Minimum Risk) decoding task and in the Empirical Risk Minimization
parameter estimation task. It can be expressed as follows:

Uβ(x | w; θ) =

(β + 1)
∑

y

tp(x, y)

m(x) + β m(y)
Pr(y | w; θ) if m(x) > 0

Pr(x | w; θ) if m(x) = 0

(8)

The special case is due to the fact that m(x) + m(y) = 0 iff both x and y are
comprised exclusively of o labels, in which case x = y.

Expected utility cannot be evaluated efficiently by direct summation, since
there are exponentially many label strings y one has to sum over. length ` (recall
that ` = |w| = |x| = |y|) be known as N(`) = |Γ`∩Llbl|. It is easy to show that the
asymptotic growth of N is exponential in `: observe that {o,b}` ((Γ` ∩Llbl) (

Γ` for ` ≥ 2, and therefore N(`) ∈ ω(2`) and N(`) ∈ o(3`). The tight bound is
Θ((1 + φ)`) where φ = (1 +

√
5)/2; hence 1 + φ ≈ 2.618. The hidden constant of

proportionality in the tight bound is 1/2+
√

1/20, and so for a moderately long
sentence with 21 words (including punctuation) like in Example 1, one would
have to sum over 433 494 437 distinct label strings. The longest “sentence” in
the dataset which Example 1 was taken from [15] is 859 words in length – it is a
linearized table – and corresponds to about 79 centumoctodecillion (79× 10357)
potential label strings.

3 Algorithms

3.1 Computing Expected Precision

Consider the problem of evaluating the expectation of precision (2) for fixed w,
x and θ:

∑

y

P (x | y) Pr(y | w; θ) =

1

m(x)

∑

y

tp(x, y) Pr(y | w; θ) if m(x) > 0

1 if m(x) = 0

4 This involves holding the factor maxz Pr(z | wi; θ) constant in each iteration.

b:b o:o, o:b,

b:o, b:b

i:iΓ × Γ Γ × Γ

Fig. 1. Nondeterministic finite transducer that counts true positive chunks.

Computing expected precision boils down to evaluating the expected number of
true positives,

∑

y

tp(x, y) Pr(y | w; θ). (9)

The significance of (9) is that it also occurs in the derivation of the expected
utility (8). The technique developed in this section for evaluating expected true
positives will be generalized in Sec. 3.2 to apply to expected utility.

In general, sums of products of the form
∑

y f(x, y) g(y, z) can be calculated
efficiently for certain forms of f and g even when naive summation would be
inefficient. This holds in particular when f and g can be computed by finite state
transducers, in which case the summation corresponds to weighted transducer
composition [23].

The expected number of true positives as expressed in (9) is of the requisite
form. In order for transducer composition to be applicable, we need to show that
we can compute tp by a finite state transducer.5 Since we require the evaluation
algorithm to be efficient, we also need to demonstrate that the size of all finite
state machines involved in the computation is small enough to enable the eval-
uation to be carried out in polynomial time. We begin by formulating a finite
state machine for computing tp.

A transducer that computes tp is a two-tape automaton that maps a pair
of strings x, y ∈ Γn to a count of the number of chunks that x and y agree on
(true positives). An individual true positive chunk is described by the regular
expression b:b (i:i)∗ ($:$ | o:o | o:b | b:o | b:b). This expression describes all
pairs of string that both start with b followed by an equal amount of i’s, and
then both signal the end of the chunk. A chunk ends on either tape if the end
of the string is reached ($), or if i is followed by a label other than i.

From this regular expression one can then construct a nondeterministic trans-
ducer that counts the number of occurrences of true positive chunks, using the
generalized counting technique of Allauzen et al. [24]. The resulting weighted
transducer over the real semiring, call it Tnd, is shown in Fig. 1 (all edge weights
and final weights are one). The crucial observation is that tp(x, y) = t if and
only if there are precisely t paths through Tnd labeled with 〈x, y〉. For further
background on weighted transducers see [24] and references cited therein.

5 We also need to formulate a suitable probability model Pr(y |w; θ) that can likewise
be expressed as a weighted finite state transducer. It is clear that HMMs, CMMs,
MEMMs and related models have this property.

Assume that there is a transducer Mθ over alphabets Γ and Σ with behavior
[Mθ](y, w) = Pr(y |w; θ). The composition of Tnd with Mθ then has the following
behavior, as desired: [Tnd ◦ Mθ](x, w) =

∑

y tp(x, y) Pr(y | w; θ).

The next issue is to show how this calculation can be done for fixed 〈x, w〉.
We write Str(x) to denote a transducer6 that maps the string pair 〈x, x〉 to 1
and all other pairs to 0. In order to evaluate (9) for fixed 〈x, w〉, construct the
transducer

Str(x) ◦ Tnd ◦ Mθ ◦ Str(w), (10)

which has the property that all paths leaving its start state are labeled with
〈x, w〉. Its behavior can be computed efficiently by a single-source algebraic path
algorithm on the acyclic transition graph of the transducer (10) (see [25], §25.4).

We can simplify the construction of (10). When we build Str(x) ◦ Tnd, we
do not actually care about the first tape of the composed transducer and can
eliminate it by projection/marginalization. Notice that the second projection
π2(Str(x) ◦ Tnd) does not generally result in a deterministic automaton. How-
ever, we can directly construct a deterministic automaton that is equivalent to
π2(Str(x) ◦ Tnd). The reason for doing so is to obtain a simple upper bound on
the state and arc complexity of a transducer that carries out essentially the same
computation as Str(x) ◦ Tnd.

We construct a complete and unambiguous transducer Tua that is equiva-
lent to Tnd, meaning for each pair of same-length strings 〈x, y〉 there is precisely
one accepting path through Tua. Furthermore, the composition Str(x) ◦ Tua is
an output-deterministic transducer: its second projection is a deterministic au-
tomaton. Note that it is possible to have an unambiguous transducer for counting
matching chunks in string pairs of a known length, but disambiguation of Tnd

is impossible because Tnd can be used to count matching chunks in strings of
unbounded length. In fact, the path multiplicity of Tnd is at the core of its design
as a counter. However, an unambiguous version of Tnd can be constructed if we
allow the set of states to be countably infinite. The initial portion of Tua is shown
in Fig. 2 (all edge weights are one; final weights are as indicated). In order to
understand the correctness of Tua (Fig. 2), observe its similarity to Tnd (Fig. 1).
In both cases there are b:b transitions from the start state to a state with an
i:i loop, as well as o:o, o:b and b:o transitions out of that state. However,
whereas the b:b transition out of the second state of Fig. 1 signals the end of a
chunk, it simultaneously signals the beginning of a new chunk (this is precisely
the rationale for the b label – to encode adjacent junks), hence the vertical b:b

transitions in Fig. 2. The final weight of each state corresponds to the number
of matching chunks encountered. The states there are organized in two columns,
with those on the left indicating that the inside of a matching chunk is being
processed. The only way to get to the left column is to take a diagonal b:b tran-
sition that signals the beginning of a potential matching chunk. The two ways to
proceed from the left column to the right column are to take an upward diagonal

6 The construction of Str(x) is a special case of the prefix tree (a. k. a. “trie”) repre-
sentation of a finite dictionary.

i:o, i:b,
o:i, b:i

i:i
i:i, i:o, i:b,
o:i, o:o, o:b,
b:i, b:o

o:o, o:b, b:o

b:b

1 1

i:o, i:b,
o:i, b:i

i:i

b:b

i:i, i:o, i:b,
o:i, o:o, o:b,
b:i, b:o

o:o, o:b, b:o

b:b

2 2

i:o, i:b,
o:i, b:i

i:i

b:b

i:i, i:o, i:b,
o:i, o:o, o:b,
b:i, b:o

o:o, o:b, b:o

b:b

3 3

i:i, i:o, i:b,
o:i, o:o, o:b,
b:i, b:o

0

Fig. 2. Initial portion of Tua.

transition, which indicates a failed potential match, or a horizontal transition,
which successfully completes a true positive match.

In an implementation of finite state machines based on lazy data structures
(e.g. [10]), infinite transducers like Tua can be represented directly. For simplicity
we will present a more traditional algorithm, shown in Fig. 3 (a+b), which
constructs a deterministic finite automaton Tdet(x) = π2(Str(x)◦Tua). The states
of Tdet(x) can be thought of as triples 〈k, o, t〉 where k is an index into x; o is a
boolean variable that indicates if the state is part of a matching chunk; and t is
the number of matching chunks encountered so far (equal to the final weights).
Conceptually, k is a state of Str(x) and 〈o, t〉 is a state of Tua, where o selects
the left (o = ⊥) or right (o = >) column of states in Fig. 2. There are at most
(|x| + 1) × (2 |x|+ 1) states and a constant number of outgoing edges per state.

This is sufficient to guarantee that (10) can be evaluated efficiently. Mθ ◦
Str(w) has Θ(3j|w|) states when Mθ is a jth-order Markov model. Since j is fixed
and x and w are of the same length and thus do not require separate indices,
the composed automaton (10) has O(|x|2) states. Because the algebraic path
computation runs in linear time, the overall computation of the expected number
of true positives (9) runs in quadratic time. Moreover the hidden constant of
proportionality is small when j is small and when there are few b labels in a
label sequence, as is typically the case.

Tdet(x):

1: 〈x0, . . . , x`−1〉 ← x
2: S ← {} // set of states
3: F ← {} // set of final states
4: E ← {} // set of transitions
5: Q← new Queue() // an empty queue
6: Q.enqueue(〈0,>, 0, 0〉) // push start state
7: while ¬Q.isEmpty() do
8: q ← Q.dequeue()
9: if q ∈ S then

10: continue // already visited q
11: S ← S ∪ {q}
12: k ← q[0] // index
13: if k = ` then
14: F ← F ∪ {q}
15: continue // final state
16: outside ← q[1] // outside a match?
17: tp ← q[2] // num. matching chunks so far
18: if xk = b ∨ xk = o ∨ (outside ∧ xk = i)

then
19: addEdge(E, Q, q, o,>, 0)
20: if xk = b then
21: addEdge(E, Q, q, b,⊥,+1)
22: else
23: addEdge(E, Q, q, b,>, 0)
24: if outside = > then
25: addEdge(E, Q, q, i ,>, 0)
26: else if xk = i then
27: assert tp > 0
28: addEdge(E, Q, q, i ,⊥, 0)
29: addEdge(E, Q, q, o,>,−1)
30: addEdge(E, Q, q, b,>,−1)
31: else
32: assert tp > 0
33: addEdge(E, Q, q, i ,>,−1)
34: return 〈S, 〈0,>, 0, 0〉, F, E〉

(a) Construction of Tdet.

addEdge(E, Q, q, osym, outside , ∆tp):

1: k ← q[0] + 1
2: tp← q[2] + ∆tp

3: r ← 〈k, outside , tp, 0〉 // target
4: E ← E ∪ {〈q, osym, r〉}
5: Q← Q ∪ {r}

(b) Computing exp. true positives.

addEdge(E, Q, q, osym, outside , ∆tp):

1: k ← q[0] + 1
2: tp← q[2] + ∆tp

3: if osym = b then
4: pm ← q[3] + 1
5: else
6: pm ← q[3]
7: r ← 〈k, outside , tp, pm〉 // target
8: E ← E ∪ {〈q, osym, r〉}
9: Q← Q ∪ {r}

(c) Computing expected utility.

U(x,w, θ, β):

1: mx ← num. occurrences of b in x
2: if mx = 0 then
3: return Pr(x | w; θ)
4: T ← Tdet(x)
5: 〈D, F 〉 ← algPathCompose(T, θ)
6: u← 0
7: for each q ∈ F do
8: tp ← q[2]
9: my ← q[3]

10: u← u + D[q] tp/(mx + β my)
11: return (β + 1) u

(d) Overall computation.

Fig. 3. Algorithm for constructing Tdet.

3.2 Computing Expected Utility

Evaluating expected Fβ also involves computing the expected number of hy-
pothesized chunks

∑

y m(y) Pr(y | w; θ). This is straightforward: whenever one
encounters the label b, one increments a counter. An FST which counts (up to
a fixed threshold of n) the chunks it sees on its second tape is shown in Fig. 4.

Γ:b

Γ:i, Γ:oΓ:i, Γ:o

Γ:b

Γ:i, Γ:o

Γ:b

Γ:i, Γ:o

0 1 n

Fig. 4. Output-deterministic transducer that counts hypothesized chunks.

An FST that computes 〈tp(x, y), m(y)〉 in parallel can be obtained7 by a
composition-like combination of the transducers in Fig. 2 and Fig. 4. This is
quite simple: the algorithm in Fig. 3 (a+b) can be extended by making states
quadruples instead of triples, changing only the function “addEdge”, so that the
number of hypothesized chunks can be tracked directly. The extended algorithm
in Fig. 3 (a+c) constructs a transducer with at most (|x|+1)2×(2 m(x)+1) states,
whose behavior can therefore be computed in cubic time. The corresponding
algorithm is shown in Fig. 3 (a+c+d) and requires a subroutine (not shown for
reasons of space) that computes (i) the composition of Tdet with the automaton
Mθ◦Str(y) representing the probability model and (ii) the algebraic path weights
for the final states of the composed transducer. The key insight here is that these
final states partition the probability mass of the probability model in such a way
that all label strings with the same number of true positive matches and the same
number of predicted chunks contribute to just one final state. Whereas there
are exponentially many label sequences, there are only quadratically many final
states. Therefore the expected utility U can be evaluated efficiently in polynomial
time.

4 Conclusion

We have presented an algorithm for efficiently computing the expected utility of
hypotheses produced by a stochastic chunker within the framework of weighted
transducers and automata. This has direct applications in loss-sensitive training
of stochastic chunker models, and in decoding procedures that seek to maximize
the F -measure. The key insight is that the number of matching chunks in two
label sequences can be counted efficiently using an unambiguous infinite state
transducer. This does not transcend the boundaries of finite state computations,
since only finite prefixes and finitely many hypotheses are considered at all times.
Expressing the machine for counting matching chunks as an infinite state trans-
ducer enabled us to state simple bounds on the size of derived machines. The
chunk counting transducer was extended trivially to also keep track of predicted
chunks, thus computing matching and predicted chunks in parallel, as required
for the computation of expected utility.

7 More precisely, since this computation involves pairs of real numbers, the weights of
the component transducers must be thought of as having been mapped into a direct
product of the real semiring with itself. Composition takes place in that product
semiring. The final weights are tuples 〈tp, pm〉.

References

1. Church, K.W.: A stochastic parts program and noun phrase parser for unrestricted
text. In: ANLP. (1988) 136–143

2. Voutilainen, A.: NPtool, a detector of English noun phrases. In: WVLC. (1993)
48–57

3. Ramshaw, L.A., Marcus, M.P.: Text chunking using transformation-based learning.
In: WVLC. (1995) 82–94

4. Tjong Kim Sang, E.F., Veenstra, J.: Representing text chunks. In: EACL. (1999)
173–179

5. Punyakanok, V., Roth, D.: The use of classifiers in sequential inference. In: NIPS.
(2000) 995–1001

6. Bikel, D.M., Miller, S., Schwartz, R., Weischedel, R.: Nymble: A high-performance
learning name-finder. In: ANLP. (1997) 194–201

7. Freitag, D.: Toward general-purpose learning for information extraction. In:
COLING-ACL. (1998) 404–408

8. Zhou, G.: Chunking-based Chinese word tokenization. In: SIGHAN. (2003)
9. van Rijsbergen, C.J.: Foundation of evaluation. Journal of Documentation 30

(1974) 365–373
10. Mohri, M., Pereira, F., Riley, M.: The design principles of a weighted finite-state

transducer library. Theoretical Computer Science 231 (2000) 17–32
11. Bengio, Y.: Markovian models for sequential data. Neural Computing Surveys 2

(1999) 129–162
12. Dietterich, T.G.: Machine learning for sequential data: A review. Lecture Notes

in Computer Science 2396 (2002)
13. Collins, M.: Machine learning methods in natural language processing. Tutorial

presented at COLT (2003)
14. Ratnaparkhi, A.: Maximum Entropy Models for Natural Language Ambiguity

Resolution. PhD thesis, University of Pennsylvania (1998)
15. Tjong Kim Sang, E.F.: Introduction to the CoNLL-2002 shared task. In: CoNLL.

(2002) 155–158
16. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. 2nd edn. Wiley (2000)
17. Zhang, T., Damerau, F., Johnson, D.: Text chunking using regularized winnow.

In: ACL. (2001) 539–546
18. Zhang, T., Damerau, F., Johnson, D.: Text chunking based on a generalization of

winnow. Journal of Machine Learning Research 2 (2002) 615–637
19. Zhang, T., Johnson, D.: A robust risk minimization based named entity recognition

system. In: CoNLL. (2003) 204–207
20. Stolcke, A., König, Y., Weintraub, M.: Explicit word error minimization in n-best

list rescoring. In: EuroSpeech. (1997)
21. Kumar, S., Byrne, W.: Minimum Bayes-risk decoding for machine translation. In:

HLT-NAACL. (2004) 169–176
22. van Rijsbergen, C.J.: Information Retrieval. 1st edn. Butterworths (1975)
23. Mohri, M., Pereira, F., Riley, M.: Weighted automata in text and speech processing.

In: ECAI’96 Workshop on Extended Finite State Models of Language. (1996) 46–50
24. Allauzen, C., Mohri, M., Roark, B.: Generalized algorithms for constructing lan-

guage models. In: ACL. (2003) 40–47
25. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. 1st edn.

MIT Press (1990)

