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Abstract

We present an empirically grounded method
for evaluating content selection in summariza-
tion. It incorporates the idea that no single best
model summary for a collection of documents
exists. Our method quantifies the relative im-
portance of facts to be conveyed. We argue that
it is reliable, predictive and diagnostic, thus im-
proves considerably over the shortcomings of
the human evaluation method currently used in
the Document Understanding Conference.

1 Introduction

Evaluating content selection in summarization has proven
to be a difficult problem. Our approach acknowledges
the fact that no single best model summary exists, and
takes this as a foundation rather than an obstacle. In ma-
chine translation, the rankings from the automatic BLEU
method (Papineni et al., 2002) have been shown to corre-
late well with human evaluation, and it has been widely
used since and has even been adapted for summarization
(Lin and Hovy, 2003). To show that an automatic method
is a reasonable approximation of human judgments, one
needs to demonstrate that these can be reliably elicited.
However, in contrast to translation, where the evaluation
criterion can be defined fairly precisely it is difficult to
elicit stable human judgments for summarization (Rath
et al., 1961) (Lin and Hovy, 2002).

Our approach tailors the evaluation to observed dis-
tributions of content over a pool of human summaries,
rather than to human judgments of summaries. Our
method involves semantic matching of content units to
which differential weights are assigned based on their fre-
quency in a corpus of summaries. This can lead to more
stable, more informative scores, and hence to a meaning-
ful content evaluation. We create a weighted inventory of
Summary Content Units–a pyramid–that is reliable, pre-
dictive and diagnostic, and which constitutes a resource
for investigating alternate realizations of the same mean-
ing. No other evaluation method predicts sets of equally
informative summaries, identifies semantic differences
between more and less highly ranked summaries, or con-
stitutes a tool that can be applied directly to further anal-
ysis of content selection.

In Section 2, we describe the DUC method. In Sec-
tion 3 we present an overview of our method, contrast
our scores with other methods, and describe the distribu-
tion of scores as pyramids grow in size. We compare our
approach with previous work in Section 4. In Section 5,
we present our conclusions and point to our next step, the
feasibility of automating our method. A more detailed
account of the work described here, but not including the
study of distributional properties of pyramid scores, can
be found in (Passonneau and Nenkova, 2003).

2 Current Approach: the Document
Understanding Conference

2.1 DUC

Within DUC, different types of summarization have been
studied: the generation of abstracts and extracts of differ-
ent lengths, single- and multi-document summaries, and
summaries focused by topic or opinion. Evaluation in-
volves comparison of apeersummary (baseline, or pro-
duced by human or system) by comparing its content to
a gold standard, ormodel. In 2003 they provided four
human summaries for each of the 30 multi-document test
sets, any one of which could serve as the model, with no
criteria for choosing among possible models.

The four human summaries for each of the 2003 docu-
ment sets made our study possible. As described in Sec-
tion 3, we used three of these sets, and collected six addi-
tional summaries per set, in order to study the distribution
of content units across increasingly many summaries.

2.2 DUC evaluation procedure

The procedure used for evaluating summaries in DUC is
the following:

1. A human subject reads the entire input set and cre-
ates a 100 word summary for it, called a model.

2. The model summary is split into content units,
roughly equal to clauses or elementary discourse
units (EDUs). This step is performed automatically
using a tool for EDU annotation developed at ISI.1

3. The summary to be evaluated (a peer) is automat-
ically split into sentences. (Thus the content units
are of different granularity—EDUs for the model,
and sentences for the peer).

1http://www.isi.edu/licensed-sw/spade/.
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4. Then a human judge evaluates the peer against the
model using the following instructions: For each
model content unit:

(a) Find all peer units that express at least some
facts from the model unit and mark them.

(b) After all such peer units are marked, think about
the whole set of marked peer units and answer
the question:

(c) “The marked peer units, taken together, express
aboutk% of the meaning expressed by the cur-
rent model unit”, wherek can be equal to 0, 20,
40, 60, 80 and 100.

The final score is based on the content unit coverage.
In the official DUC results tables, the score for the entire
summary is the average of the scores of all the content
model units, thus a number between 0 and 1. Some par-
ticipants use slightly modified versions of the coverage
metric, where the proportion of marked peer units to the
number of model units is factored in.

The selection of units with the same content is facili-
tated by the use of the Summary Evaluation Environment
(SEE)2 developed at ISI, which displays the model and
peer summary side by side and allows the user to make
selections by using a mouse.

2.3 Problems with the DUC evaluation

There are numerous problems with the DUC human eval-
uation method. The use of a single model summary is
one of the surprises – all research in summarization eval-
uation has indicated that no single good model exists.
Also, since not much agreement is expected between two
summaries, many model units will have no counterpart
in the peer and thus the expected scores will necessarily
be rather low. Additionally, the task of determining the
percentage overlap between two text units turns out to be
difficult to annotate reliably – (Lin and Hovy, 2002) re-
port that humans agreed with their own prior judgment in
only 82% of the cases.

These methodological anomalies lead to unreliable
scores. Human-written summaries can score as low as
0.1 while machine summaries can score as high as 0.5.
For each of the 30 test sets, three of the four human-
written summaries and the machine summaries were
scored against the fourth humanmodelsummary: each
human was scored on ten summaries. Figure 1 shows
a scatterplot of human scores for all 30 sets, and illus-
trates an apparently random relation of summarizers to
each other, and to document sets. This suggests that the
DUC scores cannot be used to distinguish a good human
summarizer from a bad one. In addition, the DUC method
is not powerful enough to distinguish between systems.

2http://www.isi.edu/∼cyl/SEE.
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Figure 1: Scatterplot for DUC 2003 Human Summaries

3 The Pyramid Approach

Our analysis of summary content is based on Summa-
rization Content Units, or SCUs and we will now pro-
ceed to define the concept. SCUs emerge from annota-
tion of a corpus of summaries and are not bigger than a
clause. Rather than attempting to provide a semantic or
functional characterisation of what an SCU is, our anno-
tation procedure defines how to compare summaries to
locate the same or different SCUs.

The following example of the emergence of two SCUs
is taken from a DUC 2003 test set. The sentences are
indexed by a letter and number combination, the letter
showing which summary the sentence came from and the
number indicating the position of the sentence within its
respective summary.

A1 In 1998 two Libyans indicted in 1991for the Locker-
bie bombing were still in Libya.
B1 Two Libyans were indicted in 1991for blowing up a
Pan Am jumbo jet over Lockerbie, Scotland in 1988.
C1 Two Libyans, accusedby the United States and
Britain of bombing a New York bound Pan Am jet over
Lockerbie, Scotland in 1988, killing 270 people, for 10
years were harbored by Libya who claimed the suspects
could not get a fair trail in America or Britain.
D2 Two Libyan suspects were indicted in 1991.

The annotation starts with identifying similar sen-
tences, like the four above, and then proceeds with
finer grained inspection that can lead to identifying
more tightly related subparts. We obtain two SCUs
from the underlined portions of the sentences above.
Each SCU has a weight corresponding to the number of
summaries it appears in; SCU1 has weight=4 and SCU2
has weight=33:

3The grammatical constituents contributing to an SCU are
bracketed and coindexed with the SCU ID.



SCU1 (w=4): two Libyans were officially accused of the
Lockerbie bombing
A1 [two Libyans]1 [indicted]1
B1 [Two Libyans were indicted]1
C1 [Two Libyans,]1 [accused]1
D2 [Two Libyan suspects were indicted]1

SCU2 (w=3): the indictment of the two Lockerbie
suspects was in 1991
A1 [in 1991]2
B1 [in 1991]2
D2 [in 1991.]2

The remaining parts of the four sentences above end up
as contributors to nine different SCUs of different weight
and granularity. Though we look at multidocument sum-
maries rather than single document ones, SCU annotation
otherwise resembles the annotation of factoids in (Hal-
teren and Teufel, 2003); as they do with factoids, we find
increasing numbers of SCUs as the pool of summaries
grows. For our 100 word summaries, we find about 34-
40 distinct SCUs across four summaries; with ten sum-
maries this number grows to about 60. A more complete
comparison of the two approaches follows in section 4.

An SCU consists of a set of contributors that, in their
sentential contexts, express the same semantic content.
An SCU has a unique index, a weight, and a natural
language label. The label, which is subject to revision
throughout the annotation process, has three functions.
First, it frees the annotation process from dependence on
a semantic representation language. Second, it requires
the annotator to be conscious of a specificmeaningshared
by all contributors. Third, because the contributors to an
SCU are taken out of context, the label serves as are-
minderof the full in-context meaning, as in the case of
SCU2 above where the temporal PPs are about a specific
event, the time of the indictment.

Our impression from consideration of three SCU in-
ventories is that the pattern illustrated here between
SCU1 and SCU2 is typical; when two SCUs are seman-
tically related, the one with the lower weight is semanti-
cally dependent on the other. We have catalogued a vari-
ety of such relationships, and note here that we believe it
could prove useful to address semantic interdependencies
among SCUS in future work that would involve adding a
new annotation layer.4 However, in our approach, SCUs
are treated as independent annotation values, which has
the advantage of affording a rigorous analysis of inter-
annotator reliability (see following section). We do not
attempt to represent the subsumption or implicational re-

4We are currently investigating the possibility of incorporat-
ing narrative relations into SCU pyramids in collaboration with
cognitive psychologists.
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Figure 2: Two of six optimal summaries with 4 SCUs

lations that Halteren and Teufel assign to factoids (Hal-
teren and Teufel, 2003).

After the annotation procedure is completed, the final
SCUs can be partitioned in a pyramid. The partition is
based on the weight of the SCU; each tier contains all
and only the SCUs with the same weight. When we use
annotations from four summaries, the pyramid will con-
tain four tiers. SCUs of weight 4 are placed in the top tier
and SCUs of weight 1 on the bottom, reflecting the fact
that fewer SCUs are expressed in all summaries, more
in three, and so on. For the mid-range tiers, neighbor-
ing tiers sometimes have the same number of SCUs. In
descending tiers, SCUs become less important informa-
tionally since they emerged from fewer summaries.

We use the term “pyramid of ordern” to refer to a pyra-
mid with n tiers. Given a pyramid of ordern, we can
predict the optimal summary content–it should contain
all the SCUs from the top tier, if length permits, SCUs
from the next tier and so on. In short, an SCU from
tier (n − 1) should not be expressed if all the SCUs in
tier n have not been expressed. This characterization of
optimal content ignores many complicating factors (e.g.,
ordering, SCU interdependency). However, it is predic-
tive: among summaries produced by humans, many seem
equally good without having identical content. Figure
2, with two SCUs in the uppermost tier and four in the
next, illustrates two of six optimal summaries of size 4
(in SCUs) that this pyramid predicts.

The score we assign is a ratio of the sum of the weights
of its SCUs to the sum of the weights of an optimal sum-
mary with the same number of SCUs. It ranges from 0
to 1, with higher scores indicating that relatively more of
the content is as highly weighted as possible.

The exact formula we use is computed as follows. Sup-
pose the pyramid hasn tiers,Ti, with tier Tn on top and
T1 on the bottom. The weight of SCUs in tierTi will be
i.5 Let |Ti| denote the number of SCUs in tierTi. Let Di

be the number of SCUs in the summary that appear inTi.
SCUs in a summary that do not appear in the pyramid are
assigned weight zero. The total SCU weightD is:
D =

∑n
i=1 i×Di

5This weight is not fixed and the method does not depend
on the specific weights assigned. The weight assignment used
is simply the most natural and intuitive one.



The optimal content score for a summary withX SCUs
is:

Max =
n∑

i=j+1

i× |Ti|+ j × (X −
n∑

i=j+1

|Ti|)

wherej = max
i

(
n∑

t=i

|Tt| ≥ X) (1)

In the equation above,j is equal to the index of the
lowest tier an optimally informative summary will draw
from. This tier is the first one top down such that the
sum of its cardinality and the cardinalities of tiers above
it is greater than or equal toX (summary size in SCUs).
For example, ifX is less than the cardinality of the most
highly weighted tier, thenj = n and Max is simplyX×n
(the product ofX and the highest weighting factor).

Then the pyramid scoreP is the ratio ofD to Max.
BecauseP compares the actual distribution of SCUs to
an empirically determined weighting, it provides a direct
correlate of the way human summarizers select informa-
tion from source texts.

3.1 Reliability and Robustness

We aimed for an annotation method requiring relatively
little training, and with sufficient interannotator reliabil-
ity to produce a stable pyramid score. Here we present re-
sults indicating good interannotator reliability, and pyra-
mid scores that are robust across annotations.

SCU annotation involves two types of choices: extract-
ing a contributor from a sentence, and assigning it to an
SCU. In a set of four summaries about the Philippine Air-
lines (PAL), two coders (C1 and C2; the co-authors) dif-
fered on the extent of the following contributor:{C1after
{C2the ground crew union turned down a settlement}C1

which}C2. Our approach is to separate syntactic from se-
mantic agreement, as in (Klavans et al., 2003). Because
constituent structure is not relevant here, we normalize all
contributors before computing reliability.

We treat every word in a summary as a coding unit, and
the SCU it was assigned to as the coding value. We re-
quire every surface word to be in exactly one contributor,
and every contributor to be in exactly one SCU, thus an
SCU annotation constitutes a set of equivalence classes.
Computing reliability then becomes identical to compar-
ing the equivalence classes constituting a set of corefer-
ence annotations. In (Passonneau, 2004), we report our
method for computing reliability for coreference annota-
tions, and the use of a distance metric that allows us to
weight disagreements. Applying the same data represen-
tation and reliability formula (Krippendorff’s Alpha) as
in (Passonneau, 2004), and a distance metric that takes
into account relative SCU size, to the two codings C1
and C2 yieldsα = 81. Values above .67 indicate good
reliability (Krippendorff, 1980).

A H C J
C1 .97 .87 .83 .82
C2 .94 .87 .84 .74
Consensus .95 .89 .85 .76

Table 1: Pyramid scores across annotations.
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Figure 3: Min, max and average scores for two sum-
maries – one better than the other.

More important than interannotator reliability is the ro-
bustness of the pyramid metric, given different SCU an-
notations. Table 1 gives three sets of pyramid scores for
the same set of four PAL summaries. The rows of scores
correspond to the original annotations (C1, C2) and a
consensus. There is no significant difference in the scores
assigned across the three annotations (between subjects
ANOVA=0.11, p=0.90).

3.2 Pyramid Scores of Human Summaries

Here we use three DUC 2003 summary sets for which
four human summaries were written. In order to provide
as broad a comparison as possible for the least annotation
effort, we selected the set that received the highest DUC
scores (D30042: Lockerbie), and the two that received
the lowest (D31041: PAL; D31050: China). For each set,
we collected six new summaries from advanced under-
graduate and graduate students with evidence of superior
verbal skills; we gave them the same instructions used by
NIST. This turned out to be a large enough corpus to in-
vestigate how many summaries a pyramid needs for score
stability. Here we first compare pyramid scores of the
original summaries with DUC scores. Then we present
results demonstrating the need for at least five summaries
per pyramid, given this corpus of 100-word summaries.

Table 2 compares DUC and pyramid scores for all
three sets. The first two rows of pyramid scores are for
a pyramid of order 3 using a single pyramid with the re-
maining three original DUC summaries (n=3) versus an



Lockerbie (D30042)
Method A B C D
DUC n.a. .82 .54 .74
Pyramid (n=3) .69 .83 .75 .82
Pyramid (Avg. n=3) .68 .82 .74 .76
Pyramid (n=9) .74 .89 .80 .83

PAL (D31041)

Method A H I J
DUC .30 n.a. .30 .10
Pyramid (n=3) .76 .67 .59 .43
Pyramid (Avg. n=3) .46 .50 .52 .57
Pyramid (n=9) .52 .56 .60 .63

China (D31050)
Method C D E F
DUC n.a. .28 .27 .13
Pyramid (n=3) .57 .63 .72 .56
Pyramid (Avg. n=3) .64 .61 .72 .58
Pyramid (n=9) .69 .67 .78 .63

Table 2: Comparison of DUC and Pyramid scores; capital
letters represent distinct human summarizers.

average over all order-3 pyramids (Avg. n=3); the third
row of pyramid scores are for the single pyramid of or-
der 9 (n=9; note that the 10th summary is the one being
scored). Compared to the DUC scores, pyramid scores
show all humans performing reasonably well. While the
Lockerbie set summaries are better overall, the difference
with the PAL and China sets scores is less great than with
the DUC method, which accords with our impressions
about the relative quality of the summaries. Note that
pyramid scores are higher for larger pyramid inventories,
which reflects the greater likelihood that more SCUs in
the summary appear in the pyramid. For a given order
pyramid, the scores for the average and for a specific
pyramid can differ significantly, as, for example, PAL A
and PAL J do (compare rows n=3 and n=9).

The pyramid rows labelled ”n=3” are the most compa-
rable to the DUC scores in terms of the available data.
For the DUC scores there was always a single model, and
no attempt to evaluate the model.

Pyramid scores are quantitatively diagnostic in that
they express what proportion of the content in a summary
is relatively highly weighted, or alternatively, what pro-
portion of the highly weighted SCUs appear in a sum-
mary. The pyramid can also serve as a qualitative diag-
nostic tool. To illustrate both points, consider the PAL A
summary; its score in the n=3 row of .76 indicates that
relatively much of its content is highly weighted. That
is, with respect to the original pyramid with only three
tiers, it contained a relatively high proportion of the top
tier SCUs: 3/4 of the w=3 facts (75%). When we av-
erage over all order-3 pyramids (Avg. n=3) or use the

largest pyramid (n=9), the PAL A score goes down to .46
or .52, respectively. Given the nine-tier pyramid, PAL A
contains only 1/3 of the SCUs of w≥6, a much smaller
proportion of the most highly weighted ones. There are
four missing highly weighted SCUs and they express the
following facts: to deal with its financial crisis, Pal nego-
tiated with Cathay Pacific for help; the negotiations col-
lapsed; the collapse resulted in part from PAL’s refusal to
cut jobs; and finally, President Estrada brokered an agree-
ment to end the shutdown strike. These facts were in the
original order-3 pyramid with relatively lower weights.

The score variability of PAL A, along with the change
in status of SCUs from having low weights to having high
ones, demonstrates that to use the pyramid method reli-
ably, we need to ask how many summaries are needed
to produce rankings across summaries that we can have
confidence in. We now turn to this analysis.

3.3 Behavior of Scores as Pyramid Grows

Here we address two questions raised by the data from
Table 2, i.e., that scores change as pyramid size increases:

1. How does variability of scores change as pyramid
order increases?

2. At what order pyramid do scores become reliable?

To have confidence in relative ranking of summaries by
pyramid scores, we need to answer the above questions.

It has often been noted that different people write dif-
ferent summaries; we observe that with only a few sum-
maries in a pyramid, there is insufficient data for the
scores associated with a pyramid generated from one
combination of a few summaries to be relatively the same
as those using a different combination of a few sum-
maries. Empirically, we observed that as pyramids grow
larger, and the range between higher weight and lower
weight SCUS grows larger, scores stabilize. This makes
sense in light of the fact that a score is dominated by the
higher weight SCUS that appear in a summary. However,
we wanted to study more precisely at what point scores
become independent of the choice of models that pop-
ulate the pyramid. We conducted three experiments to
locate the point at which scores stabilize across our three
datasets. Each experiment supports the same conclusion,
thus reinforcing the validity of the result.

Our first step in investigating score variability was to
examine all pairs of summaries where the difference in
scores for an order 9 pyramid was greater than 0.1; there
were 68 such pairs out of 135 total. All such pairs ex-
hibit the same pattern illustrated in Figure 3 for two sum-
maries we call ’b’ and ’q’. The x-axis on the plot shows
how many summaries were used in the pyramid and the
y-axis shows the min, max and average score scores for
the summaries for a given order of pyramid,6 Of the two,

6Note that we connected data points with lines to make the
graph more readable.



’b’ has the higher score for the order 9 pyramid, and is
perceivably more informative. Averaging over all order-
1 pyramids, the score of ’b’ is higher than ’q’ but some
individual order-1 pyramids might yield a higher score
for ’q’. The score variability at order-1 is huge: it can
be as high as 0.5. With higher order pyramids, scores
stabilize. Specifically, in our data, if summaries diverge
at some point as in Figure 3, where the minimum score
for the better summary is higher than the maximum score
for the worse summary, the size of the divergence never
decreases as pyramid order increases. For pyramids of
order> 4, the chance that ’b’ and ’q’ reverse ranking
approaches zero.

For all pairs of divergent summaries, the relationship
of scores follows the same pattern we see in Figure 3 and
the point of divergence where the scores for one summary
become consistently higher than those of the othere, was
found to be stable – in all pair instances, if summary A
gets higher scores than summary B for all pyramids of
ordern, than A gets higher scores for pyramids of order
≥ n. We analyzed the score distributions for all 67 pairs
of ”divergent” summaries in order to determine what or-
der of pyramid is required to reliably discriminate them.
The expected value for the point of divergence of scores,
in terms of number of summaries in the pyramid, is 5.5.

We take the scores assigned at order 9 pyramids as be-
ing a reliable metric on the assumption that the pattern
we have observed in our data is a general one, namely
that variance always decreases with increasing orders of
pyramid, and that once divergence of scores occurs, the
better summary never gets a lower score than the worse
for any model of higher order.

We postulate that summaries whose scores differ by
less than 0.06 have roughly the same informativeness.
The assumption is supported by two facts. First, this cor-
responds to the difference in PAL scores (D31041) we
find when we use a different one of our three PAL an-
notations (see Table 1). Second, the pairs of summaries
whose scores never clearly diverged had scores differing
by less than 0.06 at pyramid order 9.

Now, for each pair of summaries(sum1, sum2), we
can say whether they are roughly the same when evalu-
ated against a pyramid of ordern and we will denote this
as|sum1| ==n |sum2|, (scores differ by less than 0.06
for some pyramid of ordern) or different (scores differ
by more than 0.06 for all pyramids of ordern) and we
will use the notation|sum1| <n |sum2| if the score for
sum2 is higher.

When pyramids of lower order are used, the following
errors can happen, with the associated probabilities:

E1: |sum1| ==9 |sum2| but |sum1| <n |sum2| or
|sum1| >n |sum2| at some lower ordern pyramid.
The conditional probability of this type of error is

p1 = P (|sum1| >n |sum2|||sum1| ==9 |sum2|).

E2: |sum1| <9 |sum2| but at a lower order
|sum1| ==n |sum2|. This error corresponds to
”losing ability to discern”, which means one can tol-
erate it, as long as the goal is not be able to make fine
grained distinctions between the summaries. Here,
p2 = P (|sum1| ==n |sum2|||sum1| <9 |sum2|).

E3: |sum1| <9 |sum2| but at lower level
|sum1| >n |sum2| Here, p3 = P (|sum1| >n

|sum2|||sum1| <9 |sum2|) + P (|sum1| <n

|sum2||sum1| >n |sum2|). This is the most
severe kind of mistake and ideally it should never
happen–the two summaries appear with scores
opposite to what they really are.7

The probabilitiesp1, p2 andp3 can be computed di-
rectly by counting how many times the particular error
occurs for all possible pyramids of ordern. By taking
each pyramid that does not contain either ofsum1 or
sum2 and comparing the scores they are assigned, the
probabilities in Table 3 are obtained. We computed prob-
abilities for pairs of summaries for the same set, then
summed the counts for error occurrence across sets. The
order of the pyramid is shown in columnn. “Data points”
shows how many pyramids of a given order were exam-
ined when computing the probabilities. The total proba-
bility of error p = p1 ∗P (|sum1| ==9 |sum2|)+ (p2 +
p3) ∗ (1− P (|sum1| ==9 |sum2|)) is also in Table 3.

Table 3 shows that for order-4 pyramids, the errors of
type E3 are ruled out. At order-5 pyramids, the total prob-
ability of error drops to 0.1 and is mainly due to error E2,
which is the mildest one.

Choosing a desirable order of pyramid involves balanc-
ing the two desiderata of having less data to annotate and
score stability. Our data suggest that for this corpus, 4 or
5 summaries provide an optimal balance of annotation ef-
fort with reliability. This is reconfirmed by our following
analysis of ranking stability.

n p1 p2 p3 p data points
1 0.41 0.23 0.08 0.35 1080
2 0.27 0.23 0.03 0.26 3780
3 0.16 0.19 0.01 0.18 7560
4 0.09 0.17 0.00 0.14 9550
5 0.05 0.14 0.00 0.10 7560
6 0.02 0.10 0.00 0.06 3780
7 0.01 0.06 0.00 0.04 1080
8 0.00 0.01 0.00 0.01 135

Table 3: Probabilities of errors E1, E2, E3 and total prob-
ability of error

7Note that such an error can happen only for models of order
lower than their point of divergence.



In order to study the issue of how the pyramid scores
behave when several summarizers are compared, not just
two, for each set we randomly selected 5 peer summaries
and constructed pyramids consisting of all possible sub-
sets of the remaining five. We computed the Spearman
rank-correlation coefficient for the ranking of the 5 peer
summaries compared to the ranking of the same sum-
maries given by the order-9 pyramid. Spearman coef-
ficent rs (Dixon and Massey, 1969) ranges from -1 to
1, and the sign of the coefficent shows whether the two
rankings are correlated negatively or positively and its
absolute value shows the strength of the correlation. The
statisticrs can be used to test the hypothesis that the two
ways to assign scores leading to the respective rankings
are independent. The null hypothesis can be rejected with
one-sided test with level of significanceα = 0.05, given
our sample sizeN = 5, if rs ≥ 0.85.

Since there are multiple pyramids of ordern ≤ 5, we
computed the average ranking coefficient, as shown in
Table 4. Again we can see that in order to have a ranking
of the summaries that is reasonably close to the rankings
produces by a pyramid of ordern = 9, 4 or more sum-
maries should be used.

n averagers # pyramids
1 0.41 15
2 0.65 30
3 0.77 30
4 0.87 15
5 1.00 3

Table 4: Spearman correlation coefficient average for
pyramids of ordern ≤ 5

3.4 Rank-correlation with unigram overlap scores

Lin and Hovy (2003) have shown that a unigram co-
occurrence statistic, computed with stop words ignored,
between a summary and a set of models can be used to
assign scores for a test suite that highy correlates with the
scores assigned by human evaluators at DUC. We have
illustrated in Figure 1 above that human scores on human
summaries have large variance, and we assume the same
holds for machine summaries, so we believe the approach
is built on weak assumptions. Also, their approach is not
designed to rank individual summaries.

These qualifications aside, we wanted to test whether it
is possible to use their approach for assigning scores not
for an entire test suite but on a per set basis. We computed
the Spearman rank-coefficentrs for rankings assigned by
computing unigram overlap and those by pyramid of or-
der 9. For computing the scores, Lin’s original system
was used, with stop words ignored. Again 5 summaries
were chosen at random to be evaluated against models
composed of the remaining five summaries. Composite

models were obtained by concatenating different combi-
nations of the initial five summaries. Thus scores can be
computed using one, two and so on up to five reference
summaries. Table 5 shows the average values ofrs that
were obtained.

# models averagers # model combinations
1 0.12 15
2 0.27 30
3 0.29 30
4 0.35 15
5 0.33 3

Table 5: Spearman correlation coefficient average for un-
igram overlap score assignment

As noted above, in order to consider the two scoring
methods as being substitutable,rs should be bigger than
0.85, given our sample size. Given the figures shown in
Table 5, we don’t have reason to believe that unigram
scores are correlated with pyramid scores.

4 Comparison with previous work

The work closest to ours is (Halteren and Teufel, 2003),
and we profited from the lessons they derived from an
annotation of 50 summaries of a single 600-word docu-
ment into content units that they refer to asfactoids. They
found a total of 256 factoids and note that the increase in
factoids with the number of summaries seems to follow a
Zipfian distribution.

We identify four important differences between fac-
toids and SCUs. First, an SCU is a set of contributors
that are largely similar in meaning, thus SCUs differ from
each other in both meaning and weight (number of con-
tributors). In contrast, factoids are semi-formal expres-
sionsin a FOPL-style semantics, which are composition-
ally interpreted. We intentionally avoid creating a rep-
resentation language for SCU labels; the function of an
SCU label is to focus the annotator’s attention on the
shared meaning of the contributors. In contrast to Hal-
tern and Teufel, we do not believe it is possible to arrive
at the correct representation for a set of summaries; they
refer to the observation that the factoids arrived at depend
on the summaries one starts with as adisadvantagein that
adding a new summary can require adjustments to the set
of factoids. Given the different knowledge and goals of
different summarizers, we believe there can be nocor-
rect representation of the semantic content of a text or
collection; a pyramid, however, represents an emergent
consensus as to the most frequently recognized content.
In addition to our distinct philosophical views regarding
the utility of a factoid language, we have methodological
concerns: the learning curve required to train annotators
would be high, and interannotator reliability might be dif-
ficult to quantify or to achieve.



Second, (Halteren and Teufel, 2003) do not make di-
rect use of factoid frequency (our weights): to construct
a model 100-word summary, they select factoids that oc-
cur in at least 30% of summaries, but within the resulting
model summary, they do not differentiate between more
and less highly weighted factoids. Third, they annotate
semantic relations among factoids, such as generalization
and implication. Finally, they report reliability of the an-
notation using recall and precision, rather than a reliabil-
ity metric that factors in chance agreement. In (Passon-
neau, 2004), we note that high recall/precision does not
preclude low interannotator reliability on a coreference
annotation task.

Radev et al. (2003) also exploits relative importance of
information. Evaluation data consists of human relevance
judgments on a scale from 0 to 10 on for all sentences in
the original documents. Again, information is lost rela-
tive to the pyramid method because a unique reference
summary is produced instead of using all the data. The
reference summary consists of the sentences with highest
relevance judgements that satisfy the compression con-
straints. For multidocument summarization compression
rates are high, so even sentences with the highest rele-
vance judgments are potentially not used.

Lin and Hovy (2002) and Lin and Hovy (2003) were
the first to systematically point out problems with the
large scale DUC evaluation and to look to solutions by
seeking more robust automatic alternatives. In their stud-
ies they found that multiple model summaries lead to
more stable evaluation results. We believe a flaw in their
work is that they calibrate the method to the erratic DUC
scores. When applied to per set ranking of summaries, no
correlation was seen with pyramid scores.

5 Conclusions

There are many open questions about how to parameter-
ize a summary for specific goals, making evaluation in
itself a significant research question (Jing et al., 1998).
Instead of attempting to develop a method to elicit reli-
able judgmentsfrom humans, we chose to calibrate our
method to human summarizationbehavior.

The strengths of pyramid scores are that they are re-
liable, predictive, and diagnostic. The pyramid method
not only assigns a score to a summary, but also allows the
investigator to find what important information is miss-
ing, and thus can be directly used to target improvements
of the summarizer. Another diagnostic strength is that it
captures the relative difficulty of source texts. This allows
for a fair comparison of scores across different input sets,
which is not the case with the DUC method.

We hope to address two drawbacks to our method in
future work. First, pyramid scores ignore interdependen-
cies among content units, including ordering. However,
our SCU annotated summaries and correlated pyramids

provide a valuable data resource that will allow us to in-
vestigate such questions. Second, creating an initial pyra-
mid is laborious so large-scale application of the method
would require an automated or semi-automated approach.
We have started exploring the feasibility of automation
and we are collecting additional data sets.
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