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ABSTRACT 

Penalized Joint Maximum Likelihood Estimation Applied to Two Parameter Logistic Item 

Response Models 

Jon-Paul Paolino 

 

         Item response theory (IRT) models are a conventional tool for analyzing both small scale 

and large scale educational data sets, and they are also used for the development of high-stakes 

tests such as the Scholastic Aptitude Test (SAT) and the Graduate Record Exam (GRE). When 

estimating these models it is imperative that the data set includes many more examinees than 

items, which is a similar requirement in regression modeling where many more observations than 

variables are needed. If this requirement has not been met the analysis will yield meaningless 

results. Recently, penalized estimation methods have been developed to analyze data sets that 

may include more variables than observations. The main focus of this study was to apply LASSO 

and ridge regression penalization techniques to IRT models in order to better estimate model 

parameters. The results of our simulations showed that this new estimation procedure called 

penalized joint maximum likelihood estimation provided meaningful estimates when IRT data 

sets included more items than examinees when traditional Bayesian estimation and marginal 

maximum likelihood methods were not appropriate. However, when the IRT datasets contained 

more examinees than items Bayesian estimation clearly outperformed both penalized joint 

maximum likelihood estimation and marginal maximum likelihood. 
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Chapter 1: Introduction 

 

1.1 Background of Item Response Theory 

              Item response theory (IRT) models are a conventional tool for analyzing both small 

scale and large scale educational data sets, and they are also used for the development of high-

stakes tests such as the Scholastic Aptitude Test (SAT) and the Graduate Record Exam (GRE). 

As the name suggests there is a heavy focus on the development of test construction at the item 

level, which differentiates it from classical test theory (Fan, 1998). They are a class of statistical 

models used for repeated responses to items which assume an ordinal outcome measure. These 

models are primarily employed in psychometrics, but due to their increasing popularity are now 

being used in other academic disciplines such as social sciences (e.g., Spergel and Curry, 2005) 

and public health ( e.g., Shea, Tennant, and Pallant, 2009). 

             The IRT models used in this study are related in structure and usage to logistic 

regression in two respects. Structurally speaking, both types of models have a monotonic 

increasing "S" shaped function that takes on real number domain values and are bounded 

between a range of zero and one. They are also similar because they aim to model the probability 

of an event happening. IRT models in educational data analysis are used to model the probability 

of an examinee answering a test item correctly as a function of the latent ability of the examinee 

and characteristics of the individual test item. In addition statistical models have certain 

assumptions that must be fulfilled in order for the results to be valid. The results may be 

questionable if these assumptions are not met. The same rules apply for IRT models. 

1.2 Shortcomings in Estimating IRT Models and Linear Models 
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          In order to properly estimate the item parameters of IRT models the data set needs to 

include many more examinees than items. This is similar to regression modeling where more 

observations than variables are needed for the analysis. In both circumstances when this 

stipulation has not been met it may be impossible to accomplish the analysis or the analysis may 

render results that are impossible to interpret. In certain instances it may not be possible to obtain 

an adequate sample size to accomplish the analysis. For example, a small classroom of twenty 

examinees could in theory be given an assessment of fifty items. Under this scenario item 

parameters would be not be estimable because the IRT model is not identified. This study 

investigated a method for estimating IRT models when traditional methods were not appropriate. 

1.3 Application of Penalized Estimation Methods 

          Penalized estimation methods have become an invaluable resource in statistical modeling 

when certain model requirements have not been fulfilled. This is important because real world 

data sets do not always satisfy all assumptions of statistical models. For example, one 

requirement in regression analysis is that the independent variables are not multicollinear. When 

this requirement has not been met certain statistical inferences become impossible to accomplish. 

Ridge regression or L2 penalization (Hoerl & Kennard, 1970) was first introduced as a way to 

obtain regression coefficients and to make accurate predictions even though the independent 

variables may be linearly dependent. Another example where a data set can violate assumptions 

is when the data set has many more variables than observations. Tibshirani (1996) introduced 

LASSO regression or L1 penalization for scenarios when there are many more variables than 

observations. This method has the built in advantage that it automatically selects the variables 
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that are most influential. A more detailed description of L1 penalization and L2 penalization is 

presented in Chapter 2. 

1.4 Applying Penalization Techniques to IRT 

         The main focus of this study was to apply L1 and L2 penalization techniques to IRT models 

in order to better estimate model parameters. Particular interest was in applying these techniques 

to situations where the number of items greatly outnumbered the examinees. As previously stated 

this is a limitation in traditional regression and IRT estimation methods where dimensionality 

assumptions impose restrictions. In the context of IRT, this study looked at parameter estimation 

when the number of items was far greater than the number of examinees, as well as scenarios 

when the number of examinees outnumbered the number of items. 

               Another purpose of the study was to investigate if using L1 and L2 penalization yielded 

item parameters and ability estimates with smaller mean squared errors. Based on maximum 

likelihood parameter estimates of certain examinee response patterns can yield estimates that are 

very large (in some cases infinity). Over-inflating of parameter estimates causes problems when 

attempting to interpret parameters. We hypothesized that by imposing a penalized model it 

prevents this over-inflating of item parameter estimates and should in theory shrink the total 

mean squared error of these estimates. In addition, we hypothesized that this new penalization 

technique would yield estimates with higher bias measures compared to traditional estimation 

techniques. 

1.5 Overview of the Dissertation 
 

      The dissertation proceeds with a review of literature discussing frequently used 

dichotomous IRT models, estimation of these models, and popular penalization techniques. Next, 
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the methodology for applying penalization techniques to IRT is developed. The methods chapter 

includes a description of how the data sets were simulated and an explanation of the marginal 

maximum likelihood estimation method, the Bayesian maximum likelihood estimation method, 

and the penalized joint maximum estimation method. Due to a lack of consensus regarding 

proper nomenclature for the Bayesian procedure it is called Bayesian maximum likelihood 

estimation in this dissertation. The algorithm for computing the penalized joint maximum 

likelihood is described along with the equations for computing the average RMSE, the average 

bias, and the average absolute bias of the simulations in each condition. The results chapter 

begins with a real world data example. The data used was the fraction subtraction data set from 

Tatsuoka (1984). Next the diagnostic information from the simulations of the study is presented 

in the results chapter. A summary of the results is displayed according to the research evaluation 

criteria. The results section concludes with a discussion about the findings of the study including 

which research hypotheses have been confirmed and which have not. The discussion section 

addresses limitations of the study and possible future work in the area of penalized IRT. 
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Chapter 2: Review of Literature 

2.1 Assumptions of Item Response Theory 

             As in any other statistical model, IRT models carry their own set of assumptions that 

must be satisfied for the results to be valid. They involve more statistically sophisticated 

computation and therefore have more stringent assumptions than Classical Test Theory. First is 

the unidimensionality assumption, which states that the item pool (all items on the assessment) 

must measure only one latent trait. Examples of this one latent ability are mathematical ability, 

reading comprehension, or science knowledge. Research indicates that IRT models are robust 

against minor to moderate violations of this assumption (Hulin, C. L., Drasgow, F., & Parsons, 

C. K. 1983). This is a nice luxury because empirical data does not always satisfy the assumptions 

of statistical models. The second assumption is local independence, which states that the 

probability of a correct response from the examinee is based solely on the ability of the examinee 

and each individual item, and not the interrelationship between multiple items. The third 

assumption that is made is monotonicity, which describes the functionality between an 

examinee's ability and performance on each item of the assessment. It states that there exists a 

monotonic non-decreasing relationship between examinee ability and the probability of giving a 

correct on the item. In other words, as examinee ability increases so does the probability of 

providing a correct response. 

                     Sometimes it is useful to obtain a graphical illustration of IRT functions. This is 

achieved through an item characteristic curve (ICC). The ICC shows the functional relationship 

between the actual probability of an examinee correctly answering the item, given the ability of 

the examinee and other parameters of the item. It can display IRT functions that are specified by 
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one, two, or three parameters. Through various types of approximations parameter estimates are 

calculated to give information of the test items.  

2.2 Dichotomous Items and Data Matrix Structure. 

            Only IRT models that assume a dichotomous item response structure were investigated in 

this study. They are among the most heavily researched topics in all of IRT. A dichotomous item 

in educational assessment takes on a value of zero for an incorrect response and one for a correct 

response. Examples of these items are multiple choice or True and False questions, as long as 

there is one and only one correct answer. Assume an assessment consisting of J dichotomously 

scored items is given to a group of N examinees, so that an N by J response matrix of zeros and 

ones can be constructed. When data collection has been completed one can impose IRT models 

on this N by J matrix to gain information about the items, and build item response functions from 

these estimates. 

2.3 Review of Dichotomous Item Response Theory Models 

           In an academic setting, IRT models look to model the probability of a student answering 

an item correctly based on the characteristics of the item and the underlying latent ability of the 

examinee. IRT models have slightly different structures from each other. The fundamental 

structure of the unidimensional models used in this study is the logistic function shown in 

Equation 1. 

                                                          ( )
1

x

x

e
f x

e



                                                                     (1) 

           As mentioned previously, the function takes on a range of values between zero and one, 

so it is mathematically valid to use in order to estimate probability values.  It is also assumed that 

each examinee answers each of the items so that an N by J matrix of zeros and ones can be 
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formed. An entry of one (Yij = 1) indicates that the item was answered correctly and an entry of 

zero (Yij = 0) indicates that it was answered incorrectly.  The models discussed in this review of 

literature are the one-parameter model, two-parameter model, and three-parameter model. Each 

is specified by the number of item parameters and they all assume an underlying examinee latent 

ability.  A parameter with j in the subscript is a reference to an item parameter, the ability 

parameter of examinee i will always be denoted by θi , and the response of individual  i  to item  j 

will be Yij .  

           The first model discussed is the one-parameter model suggested by Rasch (1960). It is 

specified by one item parameter (known as the difficulty and denoted βj), the latent ability of the 

examinee θi and a scaling constant α (also known as the discrimination parameter). The 

mathematical form is represented below in Equation 2. 

 

                                                    
( )

( )

Pr( 1| , , )
1

i j

i jij j i

e
Y

e
  

  

  




 
                                                   (2) 

              Notice that it looks similar to the logistic regression function except  α(θi - βj) is 

substituted in for x. According to this model the probability of a correct response to any item 

depends on the signed difference on the latent continuum between ability estimate θi and the 

difficulty estimate βj . Mathematically, when θi is greater than βj the examinee has a greater than 

50% chance of answering the item correctly, and when θi is less than βj the examinee has a worse 

than 50% chance of answering the item correctly. Therefore the item difficulty parameter βj can 

be thought of as the location on the latent continuum where the examinee has exactly a 50% 

chance of answering the item correctly. Also the one-parameter logistic model has a scaling 

parameter α, this is known as the item discrimination constant. In the one-parameter model and 
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Rasch Model it is forced to be equal across all the test items, meaning that each item has equal 

ability to discriminate amongst examinees. There are a couple of ways to include it when 

modeling a data set. In the Rasch Model α is forced to be one, and it is not estimated along with 

the abilities and difficulties. Equation 3 shows how the Rasch Model is written in IRT literature. 

                                                       
( )

( )

Pr( 1| , )
1

i j

i jij j i

e
Y

e
 

 

 




 
                                                       (3) 

                                                          

            Equation 3 shows a one-parameter model that does set α to equal one a priori. It is not 

estimated along with the abilities and difficulties and can take on any real number. 

Mathematically the models are exactly the same except in the one parameter model one 

additional parameter is being estimated, so the Rasch Model can be thought of as a more 

restrictive model (de Ayala, 2009). Figure 1 below illustrates item response functions fit using a 

one parameter model. The graph shows IRF’s that all are parallel but have different difficulty 

location. 
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Figure 1. Item response functions under the one parameter logistic model 

            In many cases it is not reasonable to assume that all items discriminate equally well 

between all examinees. For this reason, the two-parameter logistic model is a popular option 

because it allows for varying levels of item discrimination (Birnbaum, 1968). Equation 4 shows a 

two parameter model with varying discrimination parameters. The discrimination parameter is 

related to the steepness of the IRF slope, larger αj’s produce IRF’s with a steeper slope than do 

smaller αj’s. In understanding, IRF’s with larger αj’s have a better ability to discriminate between 

different students. Under the two-parameter logistic model, the probability of a correct response 

is dependent on two item parameters, the discrimination and the difficulty of the item. Notice in 

Figure 2 below the two parameter model produces IRF’s that are not parallel to each other. 
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e
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                                                          (4) 

 

Figure 2. Item response functions under the two parameter logistic model. 

             Finally, the last model is the three parameter logistic model (Lord, 1980). The three 

parameter logistic model was developed to take into account the influence of guessing, which the 

Rasch Model and the two-parameter logistic do not. It does this by raising the lower asymptotic 

bound of the two-parameter logistic from zero to a new parameter ϛj . Equation 5 shows a three 

parameter model with varying difficulty parameters, discrimination parameters, and guessing 

parameters. 
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            The intuition behind this is that examinees with lower abilities have a higher probability 

of obtaining a correct response because guessing is now being accounted for. A downside is that 

a larger sample of examinees is required to estimate all three item parameters (Foley, 2010). A 

classic example where the guessing parameter maybe very high is in the case of “True or False” 

items, if the examinees had no intellectual knowledge on how to answer the question guessing 

would give them a 50% chance of a correct response. However, on most standardized 

assessments, there are usually four or five answer options to choose from, so the probability of a 

correct response just by guessing alone is a lot lower, closer to 25% and 20% respectively. 

Finally, an open ended item such as a “fill in the blank” item which the examinee has a lower 

chance of a correct response by guessing may have ϛj closer to but not exactly zero. Illustrations 

of the ICC’s of the three parameter model are shown below as Figure 3. 
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Figure 3. Item response functions under the three parameter logistic model. 

 

2.4 Estimating Parameters of Item Response Theory Models 

           As stated in Chapter 1, the main purpose of the study was to develop a new methodology 

for improving item parameter estimation when the number of items is much larger than the 

number of examinees. With this in mind, it is useful to review some of the most frequently used 

techniques in IRT parameter estimation. When analyzing dichotomous data the most widely used 

techniques are: Conditional Maximum Likelihood, Marginal Maximum Likelihood, Joint 

Maximum Likelihood, and Bayesian Maximum Likelihood. Each method has its own special 

properties and limitations. There are other newer methods of parameter estimation such as 
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nonparametric estimation and multilevel estimation methods that are available to use under 

specific conditions.  

          The main idea behind IRT parameter estimation is the concept of maximizing different 

types of likelihood functions. In the context of IRT a likelihood function can be the probability 

of observing a particular pattern of responses from an individual, or it can be the probability of 

observing a particular response matrix.  Since only dichotomous items are discussed only 

binomial likelihood functions are presented. Equation 6 represents the likelihood function of 

observing a particular response matrix. 

                                                     1

1 1

( , ) ( ) (1 ( ))ij ij

N J
y y

j i j i

i j

L B P P  


 

                                            (6) 

 

        The first type of estimation is conditional maximum likelihood (CML) Andersen (1970), 

which is specific only to the Rasch model. CML aims to model the probabilities of a particular 

item response pattern conditional on the total score of the individuals test, also known as the raw 

score. In this case the total score Ti, where Ti = Yi1+Yi2+…+Yij, serves as a sufficient statistic for 

θi.  

                                                          *
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                                            (7) 

             Equation 7 displays the Conditional Likelihood Function that gets maximized with 

respect to the β’s to get item difficulty estimates. In CML the θ’s are treated as nuisance 

parameters and therefore only estimates of the β’s are obtained (notice the conditional likelihood 

function does not depend on θ). This method has very useful statistical properties in that 
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parameter estimates are unbiased and consistent. However, due to the restrictive nature of The 

Rasch Model, CML is very seldom used. 

            The next type of estimation is called marginal maximum likelihood (MML). MML treats 

the N individuals as observational units and assumes that they are random effects sampled from a 

mixing distribution f(θ|v) (Johnson, 2007). The mixing distribution describes how θ is distributed 

in the population, and it is usually assumed to have a standard normal distribution. Together the 

IRT model and the mixing distribution allows for the calculation of the marginal probability of a 

particular response pattern. Below is how the marginal likelihood function is defined (de Ayala, 

2009). 
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            The marginal likelihood function (Equation 9) is now unconditional on θ because 

Equation 8 integrates over all possible values of θ. The next step would be to maximize this 

likelihood function with respect to the item parameters to derive the MML estimates (Johnson, 

2007). Equation 10 is an example of a marginal probability function of a two-parameter logistic 

model with a mixing distribution of θ~N(0,1). Suffice it to say that it is a very difficult problem 

to solve analytically and it must be approximated by numerical quadrature (Johnson, 2007). 
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             The next type of parameter estimation is joint maximum likelihood (JML). Instead of 

treating the N individuals as the observational units as in MML, JML treats the N x J item 

responses as the observational units (Johnson, 2007). In addition, this method treats the item 

parameters and examinee abilities as fixed parameters and thus the procedure yields estimates for 

both. Essentially, the method of JML estimation is based on logistic regression with dummy 

variables for the item parameters and examinee abilities. The procedure begins with provisional 

estimates of examinee ability locations and these are treated as known for estimating the items’ 

parameters via Newtons method (de Ayala, 2009). Once convergence is obtained for the item 

parameter estimates, these estimated item parameters are treated as “known” and the person 

locations are re-estimated again via Newton’s method. This method goes back and forth until the 

difference between successive iterations is sufficiently small. The improved examinee ability 

estimates are treated as “known” and the item parameters are considered reestimated (de Ayala, 

2009). The item parameter estimation techniques were based on the JML procedure. For 

simplicity, I referred to this novel estimation technique as Penalized Joint Maximum Likelihood 

(PJML). 

          The last type of parameter estimation is Bayesian maximum likelihood (BML). In 

Bayesian maximum likelihood estimation a posterior distribution for each item parameter is 

calculated by multiplying the likelihood function by a prior distribution function. Once the 

posterior distribution has been obtained, a procedure known as Maximum A Posteriori (MAP) is 

used to find the mode of the posterior distribution, this measure serves as the Bayesian estimate 

for the item or person parameter. One could also use an estimation procedure called Expected A 

Posteriori (EAP), which computes the expected value of the posterior distribution. However, it is 

more computationally intense so it is not as popular. Equation 11 illustrates a formula to compute 
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a posterior distribution function which is obtained by the product of the likelihood function and 

the prior distribution on the discriminations. 

                                                  ( , , | ) ( | , , ) ( )f X f X f                                                  (11) 

2.5 Background Literature In Small Sample IRT 

           Although no novel parameter estimation techniques have been developed so far when the 

number of items outnumbers the number of examinees, significant progress has been made in 

IRT when the sample of examinees and/or items is “small.” Many small sample methods involve 

applying Bayesian estimation methods. The main idea of this method is to include prior 

information about item parameters to the likelihood functions. This prior information is also 

known as a prior distribution function. Swaminathan and Gifford (1982, 1985, 1986) provide 

extensive empirical evidence that when the number of examinees and/or items is small, Bayesian 

estimates correlate higher with true values than do traditional maximum likelihood estimates. 

These results hold true for the one-parameter model, two-parameter model, and three-parameter 

model. The efficacy of Bayesian methods is further evidenced by Setiadi (1997) where it was 

concluded that not only were Bayesian estimation methods comparable to regular likelihood 

methods, they consistently outperformed standard nonparametric estimation procedures. 

            Foley (2010) investigated Bayesian parameter estimation using a data augmentation 

technique called the “DupER.” This method generates additional plausible response vectors 

based on observed response patterns from the original data. Additional responses and original 

responses were combined to fit a three-parameter model then parameter diagnostics were 

analyzed. The results of the analysis were mixed and inconclusive. The data augmentation 
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algorithm tended to result in larger root mean squared errors and lower correlations between 

estimates and parameters for both item and ability parameters. 

            Cho and Rabe-Hesketh (2012) proposed a method of shrinking item discrimination 

parameters towards the mean of the overall discrimination parameters (indicated by γ in 

Equation 12). Their method of random item discrimination marginal maximum likelihood 

estimation is achieved through an algorithm called alternating imputation posterior (AIP). Recall 

in marginal maximum likelihood, it is assumed that the θi come from a mixing distribution 

N(0,1), and the marginal maximum likelihood function is obtained by integrating over all 

possible values of θi. The integrating over all possible values of  θi allows the resulting likelihood 

function to become unimodal, which is then approximated by numerical quadrature. 

 

           They proposed treating the discriminations as a latent random variable that gets integrated 

out along with the abilities. It starts by assuming that the abilities come from a standard normal 

distribution and the discriminations come from the distribution : 

 

                                                                αi = γ + ai                                                                      (12) 

 

  

            In Equation 12, the discriminations are denoted by ai which come from a N(0, ψ).  The 

goal is to estimate γ, ψ, and ai  simultaneously with βj  and  θi  . As the name suggests there is an 

alternating between two stages until convergence has been achieved. Cho and Rabe-Hesketh 

(2012) thoroughly explain the algorithm. They showed using real data and simulations, that AIP 

yields more stable and accurate discrimination parameter estimates than marginal maximum 

likelihood estimation, marginal Bayes modal estimation, and Markov chain Monte Carlo 

estimation. 
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2.6 Overview of Penalized Regression Techniques 

           L1 penalization or LASSO (Tibshirani, 1996) is a type of regression technique that places 

a penalty on the absolute value of the regression coefficients. This approach shrinks the overall 

vector of regression parameter estimates, and sets a number of them equal to zero yielding a 

“sparse” solution. This in effect is a form of continuous variable selection, with the zeroed 

coefficients being removed from the model. The main attraction of LASSO and other 

penalization techniques is that solutions exist when the number of variables outnumbers the 

sample size (p>n). When p>n traditional regression methods can not be utilized because of 

dimensionality restrictions. In the context of linear regression, the LASSO procedure seeks to 

minimize the function: 

                                               2

0

1 1 1

( ( )) | |
p pn
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i j ij j

i j j

Q Y X    
  

                                                          (13) 

           No closed form solution to L1 penalization exists because the objective function is not 

differentiable (Tibshirani, 1996). However, quadratic programming procedures can be applied to 

arrive at a solution. Also note there is a tuning parameter λ which determines how much 

shrinkage is applied. Choosing the tuning parameter λ will be discussed later on. In terms of 

Bayesian estimation, LASSO can be thought of as putting a Laplace prior on the standardized 

regression coefficients with normal likelihood function. 
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( ( )) | |
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i j j
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   
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   
                                                     (14) 

           L2 penalization or ridge regression (Hoerl & Kennard,1970), is a technique that places a 

penalty on the squared values of the regression coefficients. This approach shrinks the overall 
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vector of regression parameter estimates, but does not yield a sparse solution. For the n>p case 

ridge regression outperforms the LASSO in terms of predictive performance when there is high 

correlation among the independent variables. However, the set of parameter estimates in ridge 

regression is very difficult to interpret, so usually LASSO is the more sensible option. In the 

context of linear regression, the ridge regression procedure seeks to minimize the function: 

 

                                                           2 2

0

1 1 1

( ( ))
p pn

Ridge

i j ij j

i j j

Q Y X    
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                                                (15) 

 

          One redeeming quality of L2 penalization is that a closed form solution does exist, because 

no absolute values are included. Again the tuning parameter λ determines how much shrinkage is 

applied. In terms of Bayesian estimation, ridge regression can be thought of as putting a normal 

prior on the standardized regression coefficients with normal likelihood function. 
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         The last type of penalization technique is called elastic net estimation (Zou & Hastie, 

2005). Elastic net is a compromise between L1 and L2 penalization, the distinguishing feature is 

how it deals with groups of variables that are correlated. Groups of highly correlated variables 

are either entirely left of the model or entirely left in (Zou & Hastie, 2005). LASSO will tend to 

discard part of the group, making interpretation difficult. In addition, elastic net gets potentially 

allows all the predictors to be included in the model. The elastic net procedure seeks to minimize 

the function: 
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                Notice the penalized models are  examples given in the context of least squares 

regression. Penalization techniques can be conveniently applied to many generalized linear 

models. For example, in logistic regression function adding an L1-penalty to the binomial 

likelihood functions gives the following equation:  

             Q
Lasso

 = 
0 0

1 1 1 1

arg min
( ( )) [1 exp( )] | |

p p pN N

i j ij e j ij j

i i j i j j
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                       (18) 

 

2.7 Choosing Tuning Parameters 

         The ultimate goal of statistical modeling is to produce a model that can predict well. 

Traditional linear and logistic regression methods have the advantage of producing parameter 

estimates with good statistical properties (unbiasedness and consistency). However, research has 

shown that imposing an unbiased model on the data does not always produce estimates with 

optimal prediction potential as measured by mean squared error (linear regression)  or binomial 

deviance (logistic regression). The process of finding a model with the lowest MSE or binomial 

deviance is known as variance-bias tradeoff. The amount of bias to include as indicated by λ can 

be found through AIC, BIC, or k-fold cross validation. The problem with using AIC and BIC is 

that both are not defined for p>n, so they are rarely used for penalization purposes. Therefore, 

cross-validation is most often the favorable choice for choosing λ and it was the only method 

used in the study.   

        Different values of the penalty λ lead to different parameter estimates (Johnson, 2011). One 

approach to selecting a penalty term is to try a sequence of λ values and then select the λ value 

that leads to the smallest prediction error (Tibshirani, 2001). K-fold cross validation (which is 
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one way to measure prediction error) splits the data into k non-overlapping 

partitions(T1,T2,…Tk), which is then broken down into k-1 partitions used for training and one 

partition used for testing. The penalized regression model with a particular value for λ is then 

imposed on each of the k-1 training partitions then finally on the testing partition. Within each 

partition estimated values are computed from the data for a particular λ then they are subtracted 

from the actual response values, and finally squared. The next step is to divide the sum squared 

error by the sample size of each partition nk to get an average mean squared error for the k
th

 fold. 

This is then averaged again over the k partitions and for a particular λ value. The model would 

then have an overall cross validation error expressed by the following Equation 19 (Tibshirani, 

2001). 
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           One should choose the λ value that minimizes the above function. Typically, this is 

illustrated by a cross-validation plot where different values of λ are shown on the horizontal axis 

and the prediction error rate (MSE or deviance) is displayed on the vertical axis. Statistical 

packages now include user friendly methods for obtaining cross validation plots. Once a 

satisfactory λ is chosen, one may refit the entire data based on the chosen λ and compare the 

errors rates of the penalized model compared to the full non-penalized model simply for 

comparison. Unfortunately, no reference distributions exist for penalized models so there can be 

no formal model comparison. Figure 4 is example of a cross-validation plot which was obtained 

from the R help file. The numbers at the top of the plot indicate how many variables will be left 

in the model. The vertical axis indicates the mean-squared error and the horizontal axis indicates 

the logarithm of the different λ values. 
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____________________________________________________________________________________   

Figure 4. Example of a cross-validation plot obtained from the R help file                                                     

         As far as choosing λ1 and λ2 for elastic net penalization is concerned it is done in a similar 

way. However, instead of using a two dimensional plot with a cross-validation curve, a three 

dimensional plot (λ1 on one axis, λ2 on another axis, and prediction error on the vertical axis) 

with a cross-validation region is used (Zou & Hastie, 2005). Again, with help of statistical 

packages λ1 and λ2 can be easily obtained. 

2.8 Statistical Software for Computing Solutions to Penalized Models 
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        Penalized estimation methods are a relatively new topic in statistical modeling. That said 

the best available program to fit penalized models is R using the “glmnet” package (Friedman et 

al., 2010). This package computes solutions to all penalized generalized linear models using a 

fast algorithm known as cyclical coordinate descent and it was used for this study. SAS has a 

procedure called GLMSELECT that fits penalized models which is currently in the development, 

but despite the name it only computes solutions to linear regression models. 
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Chapter 3: Methods 

 

3.1 Introduction 

             The IRT model that was used for this study was the two-parameter logistic model. 

Particular attention was given to the item discrimination parameters, which is the distinguishing 

feature of the model, however, the difficulty parameters and ability estimates were also analyzed. 

As described in the previous chapters the main purpose of this study was to investigate a new 

estimation procedure for analyzing a dichotomous IRT data set when the number of items 

outnumbers the number of examinees. However, for the sake of completeness the estimation 

diagnostics of all conceivable item and examinee structures were analyzed. In other words, we 

looked at different combinations of number of examinees and number of items and then 

compared the estimation techniques of traditional IRT parameter estimation methods to this 

novel estimation method. In this study the marginal maximum likelihood parameter estimation 

(MMLE) procedure and Bayesian maximum likelihood estimation procedure (BMLE) were 

compared to the method of penalized joint maximum likelihood estimation (PJMLE). Part of the 

evaluation criteria in the study was to indicate which parameter estimation methods are most 

appropriate to use under each matrix dimension structure. In addition, the root mean squared 

errors (RMSE) and the bias of the discriminations parameters, difficulty parameters, and the 

examinee ability parameters were computed for the three different methods. The computational 

formula for RMSE and bias will be discussed later on in the chapter. The statistical program R 

(R Core Development Team, 2011) was used to accomplish the analysis. The packages within 

the R program that were used were glmnet (Friedman et al., 2010), ltm (Rizopolous, 2006), and 

irtoys (Partchev, 2012). 
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3.2 IRT Estimation using Penalized Joint Maximum Likelihood and GLMNET 

          Recall, the method of traditional JML estimation is based on logistic regression with 

dummy variables for the item parameters and examinee abilities. Parameter estimates are 

obtained when the iterative convergence algorithm yields differences between successive 

examinee ability estimates that are sufficiently small.  

          The R package that was used to run the LASSO and the ridge procedure in the penalized 

joint maximum likelihood procedure was glmnet. Penalized joint maximum likelihood is a two 

stage estimation procedure that is based on the same principles of traditional JML. After the 

response matrix has been simulated the N x J item responses are put into an NJ x 1 vector form 

then regressed on the starting values of the θ's with an L1 penalty shown in Equation 20 using the 

glmnet package. This allows for obtaining the L1-α's which are the logistic regression parameters. 

The λ tuning parameter which determines how much shrinkage is applied during estimation is 

obtained by k-fold cross validation. In glmnet there is an option for how many folds (with a 

minimum of 3) that the user must specify. We chose to use 10-fold cross validation. This method 

divides the data set into ten equal parts and performs logistic regression with L1 penalization on 

each of the ten divided data sets for a given λ then the overall average error rate is computed over 

the ten folds. Glmnet repeats this process using a sequence of different λ values and then the 

regression coefficients with the λ value that gives the lowest error rate is selected for the model. 

Then these regression parameter values are extracted by a simple command and are then used in 

the second stage. The data structure for this first stage is illustrated below as Figure 5. The 

penalized likelihood function that gets optimized in stage one is: 

                                   1
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In the second stage, the NJ x 1 vector of item responses are regressed on the estimated item 

parameter estimates with the regression coefficients from stage 1 serving as estimates for the 

discriminations. The goal in this stage is to use an L2 penalty to obtain the re-estimated L2-θ’s. 

This is again done through L2-penalized logistic regression using the glmnet package. Once again 

10-fold cross validation is used in the exact same way as stage 1 to obtain the regression 

coefficients. These re-estimated L2-penalized regression coefficients are extracted by a simple 

command and then are placed back into stage one and the algorithm cycles through again. The 

data structure for this second stage is illustrated below as Figure 6.  The penalized likelihood 

function that gets optimized in stage two is by Equation 21. 
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This method goes back and forth between the two stages until the difference between successive 

re-estimated L2-θ’s is sufficiently small (10
-6

). Once the algorithm has converged the final 

parameter estimates are referred to as the L1-α's, L2-β’s and the L2-θ’s. The intuition behind 

putting an L1 penalty on the α's was to zero-out discriminations that are small while leaving 

others in with some shrinkage. This also may allow researchers to flag items that do not 

discriminate well. The reasoning for putting an L2 penalty on the β’s and θ’s was so the 

information was not lost in the estimation process.  
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_____________________________________________________________________________________   

Figure 5. Data structure of the first stage in the penalized joint maximum likelihood procedure. The 

responses are regressed on the starting ability estimates with an L1 penalty.                                                                       
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Figure 6. Data structure of the second stage in the penalized joint maximum likelihood procedure. The 

responses are regressed on the estimated discriminations with an L2 penalty. 



28 

 

        The basis of the algorithm was a function built in R. First the IRT data set is simulated 

according to a two parameter model using the simulated item parameters and ability values and 

then the responses are put into a vector form. A function is then created. In the beginning of the 

function, the first glmnet procedure uses the vector of item responses which serves as the 

dependent variable and the design matrix of ability estimates which are shown in Figure 5 serves 

as the independent variables. Then the glmnet procedure with an L1-penalty is applied. The 

regression coefficients from the first procedure serve as the estimated discriminations for the 

second glmnet procedure. The second glmnet procedure uses the response vector once again as 

the dependent variable and the design matrix is a combination of two matrices as shown in 

Figure 6 which serves as the independent variables. Then the glmnet procedure with an L2 -

penalty is applied. The regression coefficients obtained from the input of discriminations serves 

as the reestimated ability estimates and this completes one loop of the function. Using these 

reestimated ability estimates the function loops back to start at the beginning and the process 

begins all over again. The function iterates back and forth between the glmnet L1-penalty 

procedure and the glmnet L2-penalty procedure until successive iterations produce reestimated 

abilities that are negligibly small, less than 10
-6

. 

3.3 IRT Estimation using ltm 

            The ltm package (Rizopolous, 2006) was used for estimating the two-parameter logistic 

model by marginal maximum likelihood. It took only one command to obtain the item 

parameters estimates and took an additional command to obtain the true ability estimates. In 

order to calculate the root mean squared error and bias measures the estimated values needed to 

be exported from the ltm output. After the measures were exported the RMSE and bias measures 

were computed using a second step procedure R. 
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3.4 IRT Estimation using irtoys 

               The Bayesian estimation procedure was accomplished using the irtoys (Partchev, 2012) 

and ICL (Hanson, 2002) packages. The irtoys package used the algorithm from the ltm package 

to obtain the marginal likelihood function and in conjunction put a prior distribution on the item 

parameters. The prior distribution for the discrimination parameters was a lognormal distribution 

with mean equal to zero and standard deviation equal to ½, also noted as lnN(0, .5). The prior 

distribution for the difficulty parameters was a normal distribution with mean equal to zero and a 

standard deviation of two, also noted as N(0, 2). Once the procedure finished, it took one 

command to obtain the discrimination estimates and difficulty estimates then an additional 

command to obtain the ability estimates. RMSE and bias measures were calculated after the 

estimates had been obtained. 

3.5 Evaluating RMSE and Bias through simulation 

            In statistical research it is critical to show that results hold up after repeated trials. For 

this reason, one-thousand simulated data sets for each response structure (Examinees by Items) 

were generated by starting values for examinee abilities and item parameters.  There were two 

hundred and fifty replications of data sets from each of four different uniform discrimination 

distributions for each experimental condition. The four uniform distributions that we used were 

U[0, 2.5], U[0, 3.0], U[0, 3.5], and U[0, 4.0]. We used uniform distributions all with a lower 

bound of zero to ensure that every possible true discrimination value could be included in the 

study. We also wanted to see how the procedure estimated discriminations that were close to 

zero. In addition, the uniform distributions we chose ensured a fair sampling of high and low 

discriminating items.  There were six different experimental matrix structures.  Just to 
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summarize, each of the six different conditions had one thousand simulated data sets for a total 

of six thousand data sets. Table 1 below describes how the parameters will be simulated along 

with justification. 

PARAMETER DISTRIBUTION JUSTIFICATION 

 

Ability estimate of the 

examinee denoted by θ 

 

θ ~N(0,1) 

 

The majority of abilities 

should be towards the center 

of the distribution, with a 

smaller percentage at the 

extreme values. 

 

Difficulty parameter of the test 

item denoted by β 

 

β ~ N(0,1) 

 

The majority of the 

difficulties should be 

towards the center of the 

distribution, with a smaller 

percentage at the extreme 

values. 

 

Discrimination parameter of 

the test item denoted by α 

   

   α ~U[0,2.5] α ~U[0,3.0] 

   α ~U[0,3.5] α ~U[0,4.0] 

Discriminations were 

chosen to ensure a fair 

sampling of high and low 

discriminations. 

________________________________________________________________________ 

Table 1. Method of simulating item parameters and abilities along with a justification 

          

      Each time a data set was simulated the MMLE, BMLE, and the PJMLE procedures were 

used to obtain parameter estimates.  Then the RMSE, bias, and absolute bias measures for the 

discrimination estimates, difficulty estimates, and examinee abilities were computed by a second 

step procedure. RMSE is a measure of precision of the parameter estimates. Smaller values for 

RMSE are preferred because they are an indication that the true values do not deviate much from 
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the estimated values for a particular estimation method. RMSE is a very important measure 

however, it does not indicate if the parameter estimates are consistently too high or too low. 

Another measure that we looked at was bias. Estimation procedures with lower average bias for 

discriminations, difficulties, and abilities are preferred because it is an indication that the 

estimates do not deviate as much from the true values. There are two methods for computing 

bias. One way is to take the absolute value of the difference from the true value and the 

estimated value. The reason this is done is to protect against the negative and positive values 

canceling each other out and thus misrepresenting the actual difference between the true value 

and the estimates. It is also possible to compute the bias without taking an absolute value. This 

gives insight into whether the estimation procedure underestimates or overestimates the true 

value of the parameter.  Table 2 shows the formulas were used to compute average RMSE, 

average bias, and average absolute bias. 

 

Formula Description of Formula 
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    Average absolute bias of discriminations 

___________

1 1

1 1 ˆ( ) | |
J R

jr j

j r

Absbias
J R

  
 

    Average absolute bias of difficulties 

___________

1 1

1 1 ˆ( ) | |
N R

nr n

n r

Absbias
N R

  
 

    Average absolute bias of abilities 

Table 2. Formulas for estimating average RMSE, average bias and average absolute bias for item 

parameters and ability parameters. 

 

3.6 Description of Different Matrix Dimensions  

           Item response data sets have the capability of taking on many different item by examinee 

structures depending on factors such as the number of examinees desiring to partake in the 

assessment and the number of items educators deem appropriate. Some matrices may have more 

items than examinees and others may have more examinees than items. Nowadays, academic 

assessments can range in length anywhere from a few items to several hundred items. Therefore, 

it is imperative to simulate IRT data matrices that resemble these scenarios.  We simulated one 

thousand of each of the following matrix structures: 
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       1. 20   items and 200 examinees 

       2. 50   items and 300 examinees 

       3. 100 items and 400 examinees 

       4. 20   items and 20   examinees 

       5. 50   items and 20   examinees 

       6. 100 items and 50   examinees 

3.7 Research Questions and Hypotheses 

      The research questions that this study looked to answer are as follows: 

1. Can penalized joint maximum likelihood be used to estimate item parameters of a 

two-parameter logistic model as well as examinee ability estimates when it is 

dimensionally inappropriate to use marginal maximum likelihood and Bayesian 

maximum likelihood? 

2. How does the root mean squared error of examinee abilities and item parameters 

compare under penalized joint maximum likelihood, marginal maximum likelihood, 

and Bayesian maximum likelihood? 

3. How does the bias and absolute bias of examinee abilities and item parameters 

compare under penalized joint maximum likelihood, marginal maximum likelihood 

and Bayesian maximum likelihood? 

          We hypothesized that using penalized joint maximum likelihood would allow for 

estimating item parameters and examinee abilities even when it is dimensionally inappropriate to 

use marginal maximum likelihood and Bayesian maximum likelihood which are traditional 

techniques. Also, we hypothesized that penalized joint maximum likelihood would produce item 

parameters and examinee abilities with a smaller root mean square error than marginal maximum 

likelihood and Bayesian maximum likelihood. Finally we hypothesize that penalized joint 
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maximum likelihood would produce item parameters and examinee abilities with a larger bias 

and absolute bias than marginal maximum likelihood and Bayesian maximum likelihood. 
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Chapter 4: Results 

4.1 Overview of the findings 

     The paramount finding was that PJMLE provided estimates to item and ability parameters 

when it was dimensionally inappropriate (more items than examinees) to use MMLE and BMLE 

when estimating a two parameter IRT model. Also, in many of the experimental conditions of 

the simulation study PJMLE yielded parameter estimates with lower average RMSE but more 

average bias and average absolute bias than MMLE. However, BMLE significantly 

outperformed PJMLE and MMLE when the dataset included more examinees than items, mainly 

because the priors that were used were highly informative. It is also important to note that the 

tuning parameter associated with LASSO and Ridge estimation focuses on optimizing prediction 

not necessarily on optimizing bias. This may explain why BMLE outperformed PJMLE. 

4.2 Applying MMLE, BMLE, and PJMLE to a real data set. 

        The real data set that we used is the well known fraction subtraction data set from Tatsuoka 

(1984). This data set is from an exam consisting of forty dichotomously scored items taken by 

five-hundred and thirty-six examinees. The data was analyzed using marginal maximum 

likelihood estimation, Bayesian maximum likelihood estimation and penalized joint maximum 

likelihood estimation. Table 3 displays a comparison of the discrimination parameters obtained 

by MMLE, BMLE and PJMLE. Notice that the PJMLE produced discrimination parameters that 

are all smaller than MMLE and BMLE with some being shrunk to zero. An interesting finding 

was that the PJMLE procedure shrunk the discrimination parameters to zero for items that did 

not necessarily measure fraction subtraction skills, for example Item 8 and Item 28. However we 

believe more research is needed to confirm these assertions. Unfortunately, no IRT data set is 
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known to have a structure where the number of items is greater than the number of examinees. 

However, makeshift methods for obtaining an IRT data having more items than examinees can 

be used. For example, one could partition the Fraction Subtraction data set into smaller parts to 

create a data set that has forty items and a random sample of twenty response patterns. 

ITEM NUMBER ACTUAL ITEM MMLE - α BMLE - α PJMLE - α 

ITEM 1 5

3
 - 

3

4
  

2.213      2.015  1.392  

ITEM 2 3

4
 - 

3

8
  

2.847  2.615  1.641  

ITEM 3 5

6
 - 

1

9
 

2.386  2.212  1.521  

ITEM 4 
3 

1

2
 - 2 

3

2
 

1.422  1.336  1.040  

ITEM 5 
4 

3

5
 - 3 

4

10
  

1.088 1.015  0.171  

ITEM 6 6

7
 - 

4

7
  

2.488  2.250  0.000  

ITEM 7 
  3 - 2 

1

5
  

2.426  2.341  1.493  

ITEM 8 2

3
 - 

2

3
  

1.107 1.051  0.000  

ITEM 9 
3 

7

8
  - 2 

0.834  0.773  0.000  

ITEM 10 
4 

1

3
  - 2 

4

3
  

3.014  2.633  1.618  

ITEM 11 
4 

1

3
  - 2 

4

3
  

2.681  2.471  1.879  
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ITEM 12 11

8
  - 

1

8
  

2.142  1.920  0.059  

ITEM 13 
3 

3

8
 - 2 

5

6
  

2.912  2.709  1.125  

ITEM 14 
3 

4

5
 - 3 

2

5
  

2.594  2.309  0.298  

ITEM 15 
2 - 

1

3
  

2.650  2.564  1.783  

ITEM 16 
4 

5

7
  - 1 

4

7
 

2.195  1.925  0.280  

ITEM 17 
7 

3

5
 - 

4

5
 

2.982  2.777  1.881  

ITEM 18 
4 

1

10
 -2 

8

10
  

2.221  2.103 1.506  

ITEM 19 
4 - 1 

4

3
  

3.435  3.524  1.404  

ITEM 20 
4 

1

3
  - 1 

5

3
 

3.112  2.881  1.796  

ITEM 21 8

5
 - 

5

6
   

2.634  2.403  1.631  

ITEM 22 5

3
 - 

5

6
   

3.116  2.832  1.809  

ITEM 23 5

6
 - 

1

15
  

3.334  2.978  1.934  

ITEM 24 
4 

1

3
  - 3 

4

3
  

1.057  1.013  0.629  

ITEM 25 
3 

2

3
  - 2

2

6
 

2.401 2.133 1.444  

ITEM 26 3

4
  - 

2

4
  

3.488  2.881  0.000  
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ITEM 27 
4 - 3 

1

6
 

3.056  3.017 1.767  

ITEM 28 3

4
 - 

3

4
  

1.062  1.019  0.000 

ITEM 29 
4 

8

9
 - 2 

1.144  1.038  0.052  

ITEM 30 
5 

3

15
  - 3 

8

15
  

4.037  3.483  1.847  

ITEM 31 
5 

1

4
 - 3 

5

4
 

3.522  3.334  2.150  

ITEM 32 13

9
  - 

1

9
  

2.041  1.832  0.293  

ITEM 33 
4 

4

9
 - 3 

5

6
  

4.619  3.591  1.207  

ITEM 34 
4 

5

7
 - 4 

3

7
  

2.907  2.482  0.408  

ITEM 35 
2 - 

1

4
  

2.430 2.399  1.614  

ITEM 36 
5 

7

9
  - 1 

5

9
  

1.884  1.671  0.134  

ITEM 37 
8 

1

3
  - 

2

3
  

3.431 3.085  1.990  

ITEM 38 
5 

1

10
  - 3 

4

10
  

2.584  2.366  1.723  

ITEM 39 
5 - 2 

5

4
  

3.455 3.526  1.501  

ITEM 40 
5 

1

5
 - 2 

7

5
  

3.307 3.131  1.790  

____________________________________________________________________________________   

Table 3. Illustration of the comparison of discrimination parameters from the fraction subtraction data set 

using both the MMLE method, BMLE method, and the PJMLE method. 
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4.3 Comparison of the average RMSE obtained by MMLE, BMLE, and PJMLE 

         Estimation procedures with lower average RMSE for discriminations, difficulties, and 

abilities are preferred because it is an indication that the estimates do not deviate as much from 

the true values. RMSE is more a measure of variability of the point estimates. Accuracy of the 

point estimates is better measured by bias, which will be discussed in the next section. PJMLE 

was successful in providing estimates of RMSE when the number of items was far greater than 

the number of examinees. BMLE and MMLE failed to provide meaningful results of RMSE 

when the number of items outnumbered examinees.                                                         

      Table 4 displays a comparison of the average RMSE of discriminations obtained by the three 

estimation procedures in the six different conditions. In each of the comparable conditions 

BMLE provided the smallest measure of RMSE compared to MMLE and PJMLE for the 

discrimination parameters. PJMLE gave better estimates of the RMSE of the discriminations 

compared to MMLE in the 100 item by 400 examinee condition. Mixed results were given in 

both the 20 item by 200 examinees condition and the 50 item by 300 examinee condition. 

         Table 5 represents the RMSE of the difficulties produced by the three estimation methods. 

BMLE clearly outperformed both MMLE and PJMLE producing lower RMSE in all of the 

experimental conditions. It was inconclusive as to which estimation procedure was more 

accurate MMLE or PJMLE. Although, MMLE seemed to perform better than PJMLE in the 20 

item by 200 examinees condition. In addition, PJMLE was able to yield estimates of difficulties 

even when the number of items was larger than the number of examinees. 

      Table 6 displays a comparison of the average RMSE of abilities obtained by the three 

estimation procedures in the six different conditions. In the 100 item by 400 examinees condition 



40 

 

PJMLE provided the best estimates of the RMSE of abilities and BMLE gave better results than 

MMLE for this condition. For the 20 item by 200 examinee condition and the 50 item by 300 

examinee condition mixed results were obtained, but PJMLE and BMLE provided lower RMSE 

than MMLE in both conditions. 

Condition Discrimination 

Distribution 

Average RMSE 

MMLE 

Average RMSE  

BMLE 

Average RMSE 

PJMLE 

20 items by 200 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

.6889               

.7392                  

.9436              

1.082 

.4765               

.5368              

.6325              

.6713 

.7293               

.7694               

.8530               

.9572 

50 items by 300 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

.6089              

.6455               

.8080              

.8370 

.2783              

.3772              

.4591              

.5739 

.6489               

.6655               

.7143               

.7410 

100 items by 400 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

.4631              

.5317              

.7838              

.8351 

.2599              

.3029              

.3441              

.3998 

.4368               

.5024               

.5651               

.6443 

20 items by 20 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

Not Estimable   

Not Estimable    

Not Estimable   

Not Estimable 

Not Estimable   

Not Estimable   

Not Estimable   

Not Estimable 

.9221               

.9513            

1.0782           

1.1638 

50 items by 20 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

Not Estimable    

Not Estimable    

Not Estimable   

Not Estimable 

Not Estimable   

Not Estimable   

Not Estimable   

Not Estimable 

.8198               

.9018            

1.0289          

1.0539 

100 items by 50 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

Not Estimable   

Not Estimable    

Not Estimable   

Not Estimable 

Not Estimable   

Not Estimable   

Not Estimable   

Not Estimable 

.6912               

.7492               

.8659               

.9383 

Table 4. Comparison of the average RMSE of discriminations obtained by the three procedures. 
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Condition Discrimination 

Distribution 

Average RMSE 

MMLE 

Average RMSE  

BMLE 

Average RMSE 

PJMLE 

20 items by 200 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

.8538                

.8903              

.7795             

.7322 

.6293              

.6041             

.7251              

.6718 

.9261                       

.8424              

.8862             

.9470 

50 items by 300 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

.8204             

.8411             

.8835             

.7906 

.5460             

.5832             

.6395             

.5721 

.7830             

.8362             

.8120             

.8342 

100 items by 400 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

.6392             

.8190             

.7259             

.8052  

.5739             

.5208             

.6021             

.6973 

.7389             

.7021             

.8342             

.8191 

20 items by 20 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

Not Estimable    

Not Estimable    

Not Estimable      

Not Estimable    

Not Estimable    

Not Estimable    

Not Estimable      

Not Estimable    

.9318             

.7882              

.7611             

.8008 

50 items by 20 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

Not Estimable    

Not Estimable    

Not Estimable      

Not Estimable    

Not Estimable    

Not Estimable    

Not Estimable      

Not Estimable    

.8191             

.7603             

.8241             

.7983 

100 items by 50 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

Not Estimable    

Not Estimable    

Not Estimable      

Not Estimable    

Not Estimable    

Not Estimable    

Not Estimable      

Not Estimable    

.8699             

.9057             

.8210             

.9193 

Table 5. Comparison of the average RMSE of difficulties obtained by the three procedures. 
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Condition Discrimination 

Distribution 

Average RMSE 

MMLE 

Average RMSE  

BMLE 

Average RMSE 

PJMLE 

20 items by 200 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

.5528              

.6025              

.5119                 

.5192 

.4120               

.4371               

.4152              

.3631 

.5468               

.4803                

.5649               

.4925 

50 items by 300 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

.4475              

.4761               

.4949               

.4721 

.2917              

.2865              

.2805              

.2819 

.2661               

.2907               

.2981               

.2730 

100 items by 400 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

.3393              

.3645               

.3517              

.3258 

.3045               

.3173              

.2954              

.3172 

.2947               

.2765                

.2831               

.2832 

20 items by 20 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

Not Estimable   

Not Estimable    

Not Estimable    

Not Estimable 

Not Estimable   

Not Estimable   

Not Estimable   

Not Estimable 

.3701               

.3341               

.3482                

.3752 

50 items by 20 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

Not Estimable   

Not Estimable     

Not Estimable     

Not Estimable 

Not Estimable    

Not Estimable   

Not Estimable   

Not Estimable 

.7781                

.8569               

.8685               

.8519 

100 items by 50 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

Not Estimable      

Not Estimable   

Not Estimable   

Not Estimable 

Not Estimable   

Not Estimable   

Not Estimable   

Not Estimable 

.4510               

.4655               

.4625               

.4581 

Table 6. Comparison of the average RMSE of abilities obtained by the three procedures. 

4.4 Comparison of average bias by MML, BML, and PJML 

    Estimation procedures with lower average bias for discriminations, difficulties, and abilities 

are preferred because it is an indication that the estimates do not deviate as much from the true 

values. There are two methods of computing bias. One way is to take the absolute value of the 

difference from the starting value and the true value. The reason this is done is to eliminate the 
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negative and positive values canceling each other out and thus misrepresenting the true 

difference between the true value and the estimates. It is also possible to compute the bias 

without taking an absolute value. This gives insight into whether the estimation procedure 

underestimates or overestimates the true value of the parameter. Below are the results. 

                          

Condition 

Discrimination 

Distribution 

Average Bias 

MMLE 

Average Bias  

BMLE 

Average Bias 

PJMLE 

20 items by 200 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

.0501              

.0700              

.1259               

.1547 

-.0932                       

-.1172                      

-.1213                        

-.1587 

-.1158                        

-.1485                      

-.1715                      

-.2218 

50 items by 300 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

.0724                    

.0883              

.1377               

.1840 

-.0712                       

-.1043                      

-.1376                       

-.1603 

-.2103                      

-.2390                      

-.3579                      

-.3721 

100 items by 400 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

.1141              

.1323              

.1695              

.1953 

-.1361                      

-.1430                      

-.1807                      

-.2019 

-.2806                      

-.3140                      

-.3871                      

-.4290 

20 items by 20 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

Not Estimable   

Not Estimable        

Not Estimable     

Not Estimable 

Not Estimable    

Not Estimable     

Not Estimable      

Not Estimable 

-.4637                       

-.5199                      

-.6104                      

-.6519 

50 items by 20 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

Not Estimable    

Not Estimable     

Not Estimable      

Not Estimable 

Not Estimable    

Not Estimable     

Not Estimable          

Not Estimable 

-.3294                      

-.3526                      

-.4685                       

-.5237 

100 items by 50 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

Not Estimable     

Not Estimable    

Not Estimable   

Not Estimable 

Not Estimable   

Not Estimable      

Not Estimable    

Not Estimable 

-.2224                      

-.2509                      

-.3064                      

-.3310 

Table 7. Comparison of the average bias of discriminations obtained by the three procedures. 
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Condition Discrimination 

Distribution 

Average Bias 

MMLE 

Average Bias  

BMLE 

Average Bias 

PJMLE 

20 items by 200 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

.1883              

.1601                      

-.2398            

.1524 

.0728                      

-.0609            

.0963             

.0348 

-.2840            

.3085              

.2659                      

-.3172 

50 items by 300 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

.1552                     

-.1296            

.0932             

.1039 

-.0428            

.0962                     

-.0429            

.0782 

.2813                        

-.2348               

.2522               

.1837 

100 items by 400 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

.1446                        

-.1290                   

.1921               

.1537 

-.1051              

.0389                       

-.0721                    

.0298 

.2936                        

-.2507                 

.3167                 

.2941 

20 items by 20 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

Not Estimable    

Not Estimable    

Not Estimable      

Not Estimable    

Not Estimable    

Not Estimable    

Not Estimable      

Not Estimable    

.2241                        

-.3593                       

-.2497                 

.3628 

50 items by 20 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

Not Estimable    

Not Estimable    

Not Estimable      

Not Estimable    

Not Estimable    

Not Estimable    

Not Estimable      

Not Estimable    

.4930                      

.3706                

.3839                 

.4213 

100 items by 50 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

Not Estimable    

Not Estimable    

Not Estimable      

Not Estimable    

Not Estimable    

Not Estimable    

Not Estimable      

Not Estimable    

-.4792                

.4831                        

-.3292               

.4850 

Table 8. Comparison of the average bias of difficulties obtained by the three procedures. 
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Condition Discrimination 

Distribution 

Average Bias 

MMLE 

Average Bias  

BMLE 

Average Bias 

PJMLE 

20 items by 200 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

.0211                       

-.0460               

.0785                       

-.0116 

-.0122                       

-.0092              

.0384                       

-.0097 

.0890                 

.0645               

.0547               

.0722 

50 items by 300 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

.0683               

.0345              

.0449              

.0388 

.0293                       

-.0121                   

.0289                       

-.0088 

.0433                       

-.0684               

.0512                

.0459 

100 items by 400 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

-.0490               

.0017                       

-.0359                      

-.0676 

-.0107               

.0078                          

-.0469                      

-.0233 

-.0673                      

-.0352             

.0220                       

-.0981 

20 items by 20 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

Not Estimable     

Not Estimable    

Not Estimable   

Not Estimable 

Not Estimable    

Not Estimable   

Not Estimable    

Not Estimable 

-.0701                      

-.0638                      

-.0810                      

-.0663 

50 items by 20 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

Not Estimable       

Not Estimable       

Not Estimable     

Not Estimable 

Not Estimable     

Not Estimable       

Not Estimable      

Not Estimable 

-.1892                      

-.2000                       

-.2636                      

-.1989 

100 items by 50 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

Not Estimable       

Not Estimable     

Not Estimable       

Not Estimable 

Not Estimable          

Not Estimable      

Not Estimable    

Not Estimable 

-.0634                       

-.0537                        

-.0495                      

-.0430 

Table 9. Comparison of the average bias of abilities obtained by the three procedures. 
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Condition Discrimination 

Distribution 

Average absolute 

bias MMLE 

Average absolute 

bias  BMLE 

Average absolute 

bias PJMLE 

20 items by 200 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

.0724                 

.0971               

.1693               

.2145 

.1493                 

.1621                 

.1972              

.2480 

.1570               

.1915               

.2557               

.3045 

50 items by 300 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

.1175                 

.1388                

.1740                     

.2111 

.1036              

.1359                   

.1674               

.1980 

.2664               

.3033                

.3620                

.4072 

100 items by 400 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

.1527                

.1735                

.2045                  

.2361 

.1417                   

.1550              

.1894                

.2178 

.3693               

.3929               

.4394                  

.4830 

20 items by 20 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

Not Estimable       

Not Estimable       

Not Estimable          

Not Estimable 

Not Estimable     

Not Estimable         

Not Estimable    

Not Estimable 

.5581               

.6038               

.6585               

.6840 

50 items by 20 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

Not Estimable      

Not Estimable      

Not Estimable    

Not Estimable 

Not Estimable       

Not Estimable       

Not Estimable     

Not Estimable 

.4308                  

.4715                    

.5179                

.5506 

100 items by 50 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

Not Estimable        

Not Estimable        

Not Estimable         

Not Estimable 

Not Estimable       

Not Estimable      

Not Estimable     

Not Estimable 

.2759                   

.3084                  

.3560               

.3851 

Table 10. Comparison of the average absolute bias of discriminations obtained by the three procedures. 
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Condition Discrimination 

Distribution 

Average absolute 

bias  MMLE 

Average absolute 

bias  BMLE 

Average absolute 

bias PJMLE 

20 items by 200 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

.2238              

.1803                  

.2679                     

.1987 

.1295                 

.0938                

.1871              

.1756 

.3182                

.3466               

.2937               

.3529 

50 items by 300 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

.1937                      

.1605                

.1274              

.1128 

.0827                

.1259                

.0943                

.1194 

.3272                

.2700               

.2681                

.2158 

100 items by 400 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

.1749                  

.1703                 

.2374              

.1887 

.1452                   

.0822                

.1147                 

.0686 

.3304                 

.2965                   

.3479                

.3112         

20 items by 20 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

Not Estimable    

Not Estimable    

Not Estimable      

Not Estimable    

Not Estimable    

Not Estimable    

Not Estimable      

Not Estimable    

.5632                  

.5419               

.5207               

.5592 

50 items by 20 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

Not Estimable    

Not Estimable    

Not Estimable      

Not Estimable    

Not Estimable    

Not Estimable    

Not Estimable      

Not Estimable    

.6431                

.5732                 

.6203                

.5984 

100 items by 50 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

Not Estimable    

Not Estimable    

Not Estimable      

Not Estimable    

Not Estimable    

Not Estimable    

Not Estimable      

Not Estimable    

.6134                 

.6392                 

.6068               

.6183 

Table 11. Comparison of the average absolute bias of difficulties obtained by the three procedures. 
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Condition Discrimination 

Distribution 

Average absolute 

bias  MMLE 

Average absolute 

bias  BMLE 

Average absolute 

bias PJMLE 

20 items by 200 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

.0253                 

.0640                  

.0812                

.0391 

.0184               

.0327              

.0496              

.0134 

.1233               

.0810               

.0852                

.0991 

50 items by 300 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

.1146               

.0620                   

.0703               

.1294 

.0893              

.0510               

.0372              

.0702 

.0643               

.0792               

.0692               

.0649 

100 items by 400 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

.0925              

.1278                 

.1025                

.1203 

.0899               

.0641                

.1128              

.0900 

.1254               

.1104                  

.1329               

.1165 

20 items by 20 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

Not Estimable        

Not Estimable        

Not Estimable       

Not Estimable 

Not Estimable       

Not Estimable      

Not Estimable      

Not Estimable 

.0802               

.0706               

.0889               

.0717 

50 items by 20 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

Not Estimable      

Not Estimable         

Not Estimable      

Not Estimable 

Not Estimable     

Not Estimable      

Not Estimable     

Not Estimable 

.2095               

.2167               

.2781               

.2113 

100 items by 50 

examinees 

Uniform[0,2.5] 

Uniform[0,3.0] 

Uniform[0,3.5] 

Uniform[0,4.0] 

Not Estimable    

Not Estimable          

Not Estimable        

Not Estimable 

Not Estimable       

Not Estimable      

Not Estimable    

Not Estimable 

.0769                

.0539               

.0727               

.0678 

Table 12. Comparison of the average absolute bias of abilities obtained by the three procedures. 
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       Table 7 provides a comparison of the average bias of the discriminations for the three 

estimation procedures. As expected PJMLE provided estimates with the highest bias in all three 

comparable experimental conditions. Unfortunately a clear conclusion could not be made 

regarding the superiority of BMLE and MMLE as a mixture of results were obtained.  It is 

important to note that PJMLE and BMLE both had negative results throughout all six conditions 

because of the shrinking effect of the priors. PJMLE gave estimates even when there were more 

items than examinees. 

      Table 8 provides a comparison of the average bias of the difficulties for the three estimation 

procedures. As expected PJMLE provided estimates with the highest bias in all three comparable 

experimental conditions. BMLE performed the best of three in all the comparable conditions. 

Again, PJMLE yielded estimates even when there were more items than examinees. 

     Table 9 displays a comparison of the average bias of the three estimation methods for the 

ability parameters. As anticipated PJMLE provided estimates with the highest bias in all three 

comparable experimental conditions. BMLE significantly outperformed PJMLE and MMLE in 

all three of the comparable experimental conditions. 

      Table 10 shows a comparison of the average absolute bias of the three estimation methods 

for the discrimination parameters. As expected the PJMLE method had significantly more 

absolute bias overall when estimating the discrimination and ability parameters. 

      Table 11 provides a comparison of the average absolute bias of the difficulties for the three 

estimation procedures. PJMLE provided estimates with the highest bias in all three comparable 

experimental conditions. BMLE performed the best of three in all the comparable conditions. 

Again, PJMLE yielded solutions even when there were more items than examinees. 
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   Table 12 display a comparison of the average absolute bias of the abilities for three estimation 

methods. As expected the PJMLE method had significantly more bias overall when estimating 

the discrimination and ability parameters. The BMLE was the most accurate outperforming 

MMLE. 

4.5 Results of PJMLE across the different simulation condition 

    The highest average RMSE, average bias, and average absolute bias for the discriminations all 

occurred when the discriminations were sampled from a U[0,4]. This makes sense as the Laplace 

prior would have the strongest shrinking effect on the discriminations in this condition. 

Similarly, the lowest average RMSE, average bias, and average absolute bias for the 

discriminations all occurred when the discriminations were sampled from a U[0,2.5]. Mixed 

results for average RMSE, average bias, and average absolute bias were obtained for the 

difficulties and the abilities. This also seemed reasonable as both the abilities and difficulties 

were sampled from a standard normal distribution, and when a quadratic penalty is applied there 

is no telling as to the tendencies of the estimates. In addition, the λ values that were obtained 

when the data set included many more examinees than items ranged from about .0001 to .0010, 

however when the data set included more items than examinees the λ values that were obtained 

ranged from about .0050 to .0200. Clearly, there was significantly less shrinkage when the data 

set included many more examinees than items. 

4.6 Illustration of the effect of shrinkage methods on discrimination parameters 

     Out of the three estimation procedures the LASSO and the Bayesian procedure were the only 

two that have the effect of shrinking the discrimination parameters. Marginal maximum 

likelihood can be thought of as a shrinkage-free procedure. LASSO puts a Laplace prior on the 
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discrimination parameters as compared to the Bayesian procedure which put a log-normal prior 

on the discrimination parameters, so it was a much stronger form of shrinkage compared to the 

Bayesian procedure. Figure 7 and Figure 8 below are an illustration of the prior distributions put 

on the Bayesian procedure and the LASSO procedure respectively. 

                               
_____________________________________________________________________________________

Figure 7. Lognormal prior distribution used in the BMLE procedure 
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________________________________________________________________________
Figure 8. Laplace prior distribution used in the PJMLE procedure 

 

    The posterior distribution of the LASSO is a Laplace distribution which is “pointy”, and this 

allows for some the discriminations to be shrunk all the way to zero. We saw a stronger effect of 

shrinking as the true value of the discriminations start to increase. Below is a visual illustration 

of this effect of shrinking for the twenty items by two-hundred examinees condition. Figure 9 

shows traditional marginal maximum likelihood with no shrinking effect. Some of the parameter 
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estimates become inflated if the likelihood function is not well behaved. Figure 10 and Figure 11 

show the shrinking effect of Bayesian and LASSO respectively.  

Figure 9.  Boxplots of the difference between MMLE estimate and true discrimination value. One boxplot 

for each simulated value of the discrimination parameters. 
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Figure 10. Boxplots of the difference between BMLE estimate and true discrimination value. One boxplot 

for each simulated value of the discrimination parameters. 
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Figure 11 .  Boxplots of the difference between PJMLE estimate and true discrimination value. One 

boxplot for each simulated value of the discrimination parameters. 
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4.7 Concluding Remarks on Simulations       

        PJMLE is not the absolute best estimation procedure available but it is effective and valid 

for estimating IRT models. Both the PJMLE and the BMLE procedure had lower RMSE 

compared to traditional MMLE in most of the experimental conditions, which indicates that they 

may be more accurate procedures. In addition out of the three estimation procedures PJMLE had 

the most average bias and average absolute bias; not surprising as it is a penalized model. The 

BMLE procedure consistently had the least overall bias. When the dataset had more items than 

examinees the MMLE and BMLE both had trouble with a singular Hessian matrix, probably 

because the models are not identified. According to the results when modeling a data set with 

more examinees than items it would be advantageous to use Bayesian estimation methods with 

an appropriate prior distribution.  When modeling a data set with more items than examinees one 

could choose to use penalized estimation methods, such as the one proposed in this study. 

 

 

 

 

 

 

 

 

 

 

 



57 

 

Chapter 5: Discussion 

 

5.1 Application of findings 

          The paramount finding of this study was that PJMLE was successful in estimating item 

parameters and examinee abilities when it was inappropriate to use MMLE and BMLE.  This 

allows for practitioners to estimate IRT models when working with a small sample of examinees. 

The most direct application of this new technique is when working with a small classroom of 

students, where traditional methods are not appropriate. Application can be extended to online 

questionnaires or other nonstandard methods of assessment.  

         Similar to the workings of penalization in regression modeling the PJMLE method had 

very similar results; less mean squared error but more bias. Since PJMLE produced less RMSE 

and more bias in many of the conditions where it could by compared to MMLE it can be argued 

that PJMLE performs just as well as MMLE, but clearly not as well BMLE. Another interesting 

finding from this study was that PJMLE may have the ability to flag items that do not measure 

the intended skill. However as stated previously more research needs to be done to verify this 

claim as it is difficult to draw conclusion from one data set. 

       Significant research has been done recently championing Bayesian estimation methods in 

item response theory over traditional estimation methods. Although PJMLE is a new estimation 

procedure the concepts involved closely resemble those discussed in Bayesian estimation 

literature because of the shrinking effect the prior distribution has on the parameter estimates. 

There are many different priors that can be used in Bayesian IRT modeling for example normal 

priors, log-normal priors, and Cauchy priors are among the most popular. In terms of Bayesian 

terminology we used normal priors and Laplace priors when estimating parameters. This study 
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stopped short of using more advanced Bayesian techniques such as MCMC, but we believe the 

techniques used in this study can be applied when using advanced techniques that involve 

sampling from a theoretical posterior distribution like those involved with Metropolis-Hastings 

Algorithm (Patz and Junker, 1999a) or Gibbs sampling (Albert, 1992).  

            We believe that this study is a valuable addition to small sample IRT estimation research. 

Again many of the newer techniques for small sample IRT estimation involve Bayesian 

estimation. Researchers have shown that when using Bayesian techniques it is imperative to use 

an informative prior on the ability and item parameter estimates so that reasonable estimates may 

be obtained (Mislevy, 1986; Mislevy & Stocking, 1989; Swaminathan & Gifford, 1985, 1986). 

Theoretical justification for why particular prior distributions are used is also important. In 

addition, Sheng (2010) provides extensive evidence that when the number of items and/or 

examinees is small the parameter estimates are sensitive to the distributional form of the priors 

which can become problematic. This study gives some insight into how one might go about IRT 

parameter estimation when there are more items than examinees on a given assessment. 

5.2 Limitations of the findings 

        First, as with all simulation studies, care should be taken when generalizing these results to 

other testing conditions. These results are based on particular distributions that most accurately 

resemble examinee abilities, item difficulties, and item discriminations. For example, examinee 

abilities can in theory resemble a chi-square distribution, item difficulties can be sampled from a 

uniform distribution, and item discriminations can be normally distributed. Additionally, highly 

informative priors were used for Bayesian estimation procedure. Results may differ significantly 

when using non-informative priors for Bayesian estimation.  



59 

 

      Throughout this research study we have learned that doing IRT modeling with a small 

sample is not advantageous as the results indicate that the superior RMSE and bias was seen in 

the larger sample experimental condition. That said if faced with a situation where the number of 

items outnumbered the number of examinees it would behoove one to use a procedure similar to 

the one we explored in this study with a most appropriate prior. If one would be willing to accept 

the results knowing that PJMLE yields biased estimates, then this method could be a real asset 

when performing IRT analysis. 

5.3 Recommendations for Future Research 

         Penalized IRT estimation is a new technique for estimating item response theory models, 

so there is a lot of research that needs to be done in this area. My future work will be to employ 

the same line of thinking to other IRT models for example the dichotomous three parameter 

logistic model, polytomous IRT models, and multidimensional IRT models. A follow up project 

to this study that I am currently working on is to apply penalization techniques to a polytomous 

form of the Rasch model. This is done by imposing an L2-penalty when estimating the step 

parameters. It would also be interesting to look at estimation with different penalization 

techniques such as elastic net, group LASSO and fused LASSO all of which can be done using 

R. However, as discussed previously, care must be taken when applying these penalization 

techniques. 

      Other future work of mine will involve investigating a more formal evaluation of how well 

PJMLE is able to identify discrimination parameters that are actually zero. This would be done 

by intentionally starting discrimination parameters at zero, and measure the percentage of times 

PJMLE correctly estimates them to be zero, similar to the idea of a Type I error rate. Other ideas 
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for future research would involve trying to use L1-penalization and L2-penalization in 

multidimensional IRT models which measure more than one latent ability. 
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