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Abstract
Selecting important information while account-
ing for repetitions is a hard task for both sum-
marization and question answering. We pro-
pose a formal model that represents a collec-
tion of documents in a two-dimensional space
of textual and conceptual units with an asso-
ciated mapping between these two dimensions.
This representation is then used to describe the
task of selecting textual units for a summary or
answer as a formal optimization task. We pro-
vide approximation algorithms and empirically
validate the performance of the proposed model
when used with two very different sets of fea-
tures, words and atomic events.

1 Introduction
Many natural language processing tasks involve the
collection and assembling of pieces of informa-
tion from multiple sources, such as different doc-
uments or different parts of a document. Text sum-
marization clearly entails selecting the most salient
information (whether generically or for a specific
task) and putting it together in a coherent sum-
mary. Question answering research has recently
started examining the production of multi-sentence
answers, where multiple pieces of information are
included in the final output.

When the answer or summary consists of mul-
tiple separately extracted (or constructed) phrases,
sentences, or paragraphs, additional factors influ-
ence the selection process. Obviously, each of the
selected text snippets should individually be impor-
tant. However, when many of the competing pas-
sages are included in the final output, the issue of
information overlap between the parts of the output
comes up, and a mechanism for addressing redun-
dancy is needed. Current approaches in both sum-
marization and long answer generation are primar-
ily oriented towards making good decisions for each
potential part of the output, rather than examining
whether these parts overlap. Most current methods
adopt a statistical framework, without full semantic
analysis of the selected content passages; this makes

the comparison of content across multiple selected
text passages hard, and necessarily approximated by
the textual similarity of those passages.

Thus, most current summarization or long-
answer question-answering systems employ two
levels of analysis: a content level, where every tex-
tual unit is scored according to the concepts or fea-
tures it covers, and a textual level, when, before
being added to the final output, the textual units
deemed to be important are compared to each other
and only those that are not too similar to other can-
didates are included in the final answer or summary.
This comparison can be performed purely on the ba-
sis of text similarity, or on the basis of shared fea-
tures that may be the same as the features used to
select the candidate text units in the first place.

In this paper, we propose a formal model for in-
tegrating these two tasks, simultaneously perform-
ing the selection of important text passages and the
minimization of information overlap between them.
We formalize the problem by positing a textual unit
space, from which all potential parts of the summary
or answer are drawn, a conceptual unit space, which
represents the distinct conceptual pieces of informa-
tion that should be maximally included in the final
output, and a mapping between conceptual and tex-
tual units. All three components of the model are
application- and task-dependent, allowing for dif-
ferent applications to operate on text pieces of dif-
ferent granularity and aim to cover different concep-
tual features, as appropriate for the task at hand. We
cast the problem of selecting the best textual units
as an optimization problem over a general scoring
function that measures the total coverage of concep-
tual units by any given set of textual units, and pro-
vide general algorithms for obtaining a solution.

By integrating redundancy checking into the se-
lection of the textual units we provide a unified
framework for addressing content overlap that does
not require external measures of similarity between
textual units. We also account for the partial overlap
of information between textual units (e.g., a single
shared clause), a situation which is common in nat-
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ural language but not handled by current methods
for reducing redundancy.

2 Formal Model for Information Selection
and Packing

Our model for selecting and packing information
across multiple text units relies on three compo-
nents that are specified by each application. First,
we assume that there is a finite setT of textual units
t1, t2, . . . , tn, a subset of which will form the an-
swer or summary. For most approaches to sum-
marization and question answering, which follow
the extraction paradigm, the textual unitsti will
be obtained by segmenting the input text(s) at an
application-specified granularity level, so eachti
would typically be a sentence or paragraph.

Second, we posit the existence of a finite setC
of conceptual unitsc1, c2, . . . , cm. The conceptual
units encode the information that should be present
in the output, and they can be defined in different
ways according to the task at hand and the prior-
ities of each system. Obviously, defining the ap-
propriate conceptual units is a core problem, akin
to feature selection in machine learning: There is
no exact definition of what an important concept is
that would apply to all tasks. Current summariza-
tion systems often represent concepts indirectly via
textual features that give high scores to the textual
units that contain important information and should
be used in the summary and low scores to those tex-
tual units which are not likely to contain informa-
tion worth to be included in the final output. Thus,
many summarization approaches use as conceptual
units lexical features liketf*idf weighing of words
in the input text(s), words used in the titles and sec-
tion headings of the source documents (Luhn, 1959;
H.P.Edmundson, 1968), or certain cue phrases like
significant, importantand in conclusion(Kupiec et
al., 1995; Teufel and Moens, 1997). Conceptual
units can also be defined out of more basic concep-
tual units, based on the co-occurrence of important
concepts (Barzilay and Elhadad, 1997) or syntac-
tic constraints between representations of concepts
(Hatzivassiloglou et al., 2001). Conceptual units do
not have to be directly observable as text snippets;
they can represent abstract properties that particular
text units may or may not satisfy, for example, status
as a first sentence in a paragraph or generally posi-
tion in the source text (Lin and Hovy, 1997). Some
summarization systems assume that the importance
of a sentence is derivable from a rhetorical repre-
sentation of the source text (Marcu, 1997), while
others leverage information from multiple texts to
re-score the importance of conceptual units across

all the sources (Hatzivassiloglou et al., 2001).
No matter how these important concepts are de-

fined, different systems use text-observable features
that either correspond to the concepts of interest
(e.g., words and their frequencies) or point out those
text units that potentially contain important con-
cepts (e.g., position or discourse properties of the
text unit in the source document). The former class
of features can be directly converted to concep-
tual units in our representation, while the latter can
be accounted for by postulating abstract conceptual
units associated with a particular status (e.g., first
sentence) for a particular textual unit. We assume
that each conceptual unit has an associatedimpor-
tance weightwi that indicates how important unitci

is to the overall summary or answer.

2.1 A first model: Full correspondence
Having formally defined the setsT andC of tex-
tual and conceptual units, the part that remains in
order to have the complete picture of the constraints
given by the data and summarization approach is the
mapping between textual units and conceptual units.
This mapping, a functionf : T×C → [0, 1], tells us
how well each conceptual unit is covered by a given
textual unit. Presumably, different approaches will
assign different coverage scores for even the same
sentences and conceptual units, and the consistency
and quality of these scores would be one way to de-
termine the success of each competing approach.

We first examine the case where the functionf is
limited to zero or one values, i.e., each textual unit
either contains/matches a given conceptual feature
or not. This is the case with many simple features,
such as words and sentence position. Then, we de-
fine the total information covered by any given sub-
setS of T (a proposed summary or answer) as

I(S) =
∑

i=1,...,m

wi · δi (1)

wherewi is the weight of the conceptci and

δi =
{

1, if ∃j ∈ {1, . . . , m} such thatf(tj , ci) = 1
0, otherwise

In other words, the information contained in a
summary is the sum of the weights of the concep-
tual units covered by at least one of the textual units
included in the summary.

2.2 Partial correspondence between textual
and conceptual units

Depending on the nature of the conceptual units, the
assumption of a 0-1 mapping between textual and
conceptual units may or may not be practical or even



feasible. For many relatively simple representations
of concepts, this restriction poses no difficulties: the
concept is uniquely identified and can be recognized
as present or absent in a text passage. However, it is
possible that the concepts have some structure and
can be decomposed to more elementary conceptual
units, or that partial matches between concepts and
text are natural. For example, if the conceptual units
represent named entities (a common occurrence in
list-type long answers), a partial match between a
name found in a text and another name is possi-
ble; handling these two names as distinct concepts
would be inaccurate. Similarly, an event can be rep-
resented as a concept with components correspond-
ing to participants, time, location, and action, with
only some of these components found in a particular
piece of text.

Partial matches between textual and conceptual
units introduce a new problem, however: if two tex-
tual units partially cover the same concept, it is
not apparent to what extent the coverage overlaps.
Thus, there are multiple ways to revise equation (1)
in order to account for partial matches, depending
on how conservative we are on the expected over-
lap. One such way is to assume minimum overlap
(the most conservative assumption) and define the
total information in the summary as

I(S) =
∑

i=1,...,m

wi ·max
j

f(tj , ci) (2)

An alternative is to consider thatf(tj , ci) repre-
sents the extent of the[0, 1] interval corresponding
to conceptci that tj covers, and assume that the
coverage is spread over that interval uniformly and
independently across textual units. Then the com-
bined coverage of two textual unitstj andtk is

f(tj , ci) + f(tk, ci)− f(tj , ci) · f(tk, ci)

This operator can be naturally extended to more
than two textual units and plugged into equation (2)
in the place of the max operator, resulting into an
equation we will refer to as equation (3). Note that
both of these equations reduce to our original for-
mula for information content (equation (1)) if the
mapping functionf only produces 0 and 1 values.

2.3 Length and textual constraints

We have provided formulae that measure the infor-
mation covered by a collection of textual units un-
der different mapping constraints. Obviously, we
want to maximize this information content. How-
ever, this can only sensibly happen when additional
constraints on the number or length of the selected

textual units are introduced; otherwise, the full set
of available textual units would be a solution that
proffers a maximal value for equations (1)–(3), i.e.,
∀S ⊂ T, I(S) ≤ I(T ). We achieve this by assign-
ing a costpi to each textual unitti, i = 1, . . . , n,
and defining a functionP over a set of textual units
that provides the total penalty associated with se-
lecting those textual units as the output. In our ab-
straction, replacing a textual unit with one or more
textual units that provide the same content should
only affect the penalty, and it makes sense to assign
the same cost to a long sentence as to two sentences
produced by splitting the original sentence. Also,
a shorter sentence should be preferable to a longer
sentence with the same information content. Hence,
our operational definitions forpi andP are

pi = length(ti), P (S) =
∑

ti∈S

pi

i.e., the total penalty is equal to the total length of
the answer in some basic unit (e.g., words).

Note however, than in the general case thepi’s
need not depend solely on the length, and the to-
tal penalty does not need to be a linear combina-
tion of them. The cost function can depend on
features other then length, for example, number of
pronouns—the more pronouns used in a textual unit,
the higher the risk of dangling references and the
higher the price should be. Finding the best cost
function is an interesting research problem by itself.

With the introduction of the cost functionP (S)
our model has two generally competing compo-
nents. One approach is to set a limit onP (S) and
optimizeI(S) while keepingP (S) under that limit.
This approach is similar to that taken in evaluations
that keep the length of the output summary within
certain bounds, such as the recent major summa-
rization evaluations in the Document Understand-
ing Conferences from 2001 to the present (Harman
and Voorhees, 2001). Another approach would be
to combine the two components and assign a com-
posite score to each summary, essentially mandat-
ing a specific tradeoff between recall and precision;
for example, the total score can be defined as a lin-
ear combination ofI(S) andP (S), in which case
the weights specify the relative importance of cov-
erage and precision/brevity, as well as accounting
for scale differences between the two metrics. This
approach is similar to the calculation of recall, pre-
cision, and F-measure adopted in the recent NIST
evaluation of long answers for definitional questions
(Voorhees, 2003). In this paper, we will follow the
first tactic of maximizingI(S) with a limit onP (S)
rather than attempting to solve the thorny issues of



weighing the two components appropriately.

3 Handling Redundancy in
Summarization

Redundancy of information has been found useful
in determining what text pieces should be included
during summarization, on the basis that information
that is repeated is likely to be central to the topic or
event being discussed. Earlier work has also recog-
nized that, while it is a good idea to select among
the passages repeating information, it is also impor-
tant to avoid repetition of the same information in
the final output.

Two main approaches have been proposed for
avoiding redundancy in the output. One approach
relies on grouping together potential output text
units on the basis of their similarity, and outputting
only a representative from each group (Hatzivas-
siloglou et al., 2001). Sentences can be clustered
in this manner according to word overlap, or by us-
ing additional content similarity features. This ap-
proach has been recently applied to the construction
of paragraph-long answers (e.g., (Blair-Goldensohn
et al., 2003; Yu and Hatzivassiloglou, 2003)).

An alternative approach, proposed for the synthe-
sis of information during query-based passage re-
trieval is the maximum marginal relevance (MMR)
method (Goldstein et al., 2000). This approach as-
signs to each potential new sentence in the output a
similarity score with the sentences already included
in the summary. Only those sentences that contain a
substantial amount ofnew informationcan get into
the summary. MMR bases this similarity score on
word overlap and additional information about the
time when each document was released, and thus
can fail to identify repeated information when para-
phrasing is used to convey the same meaning.

In contrast to these approaches, our model han-
dles redundancy in the output at the same time it
selects the output sentences. It is clear from equa-
tions (1)–(3) that each conceptual unit is counted
only once whether it appears in one or multiple tex-
tual units. Thus, when we find the subset of textual
units that maximizes overall information coverage
with a constraint on the total number or length of
textual units, the model will prefer the collection of
textual units that have minimal overlap of covered
conceptual units. Our approach offers three advan-
tages versus both clustering and MMR: First, it in-
tegrates redundancy elimination into the selection
process, requiring no additional features for defin-
ing a text-level similarity between selected textual
units. Second, decisions are based on the same fea-
tures that drive the summarization itself, not on ad-

ditional surface properties of similarity. Finally, be-
cause all decisions are informed by the overlap of
conceptual units, our approach accounts for partial
overlap of information across textual units. To illus-
trate this last point, consider a case where three fea-
turesA, B, andC should be covered in the output,
and where three textual units are available, cover-
ing A andB, A andC, andB andC, respectively.
Then our model will determine that selecting any
two of the textual units is fully sufficient, while this
may not be apparent on the basis of text similarity
between the three text units; a clustering algorithm
may form three singleton clusters, and MMR may
determine that each textual unit is sufficiently dif-
ferent from each other, especially ifA, B, andC
are realized with nearly the same number of words.

4 Applying the Model

Having presented a formal metric for the informa-
tion content (and optionally the cost) of any poten-
tial summary or answer, the task that remains is to
optimize this metric and select the corresponding
set of textual units for the final output. As stated
in Section2.3, one possible way to do this is to fo-
cus on the information content metric and introduce
an additional constraint, limiting the total cost to a
constant. An alternative is to optimize directly the
composite function that combines cost and informa-
tion content into a single number.

We examine the case of zero-one mappings be-
tween textual and conceptual units, where the to-
tal information content is specified by equation (1).
The complexity of the problem depends on the
cost function, and whether we optimizeI(S) while
keepingP (S) fixed or whether we optimize a com-
bined function of both of those quantities. We will
only consider the former case in the present paper.
We start by examining an artificially simple case,
where the cost assigned to each textual unit is 1, and
the functionP for combining costs is their sum. In
this case, the total cost is equal to the number of
textual units used in a summary.

This problem, as we have formalized it above,
is identical to theMaximum Set Coverageproblem
studied in theoretical computer science: givenC, a
finite set of weighted elements, a collectionT of
subsets ofC, and an integerk, find thosek sets that
maximize the total number of elements in the union
of T ’s members (Hochbaum, 1997). In our case,
the zero-one mapping allows us to view each textual
unit as a subset of the conceptual units space, con-
taining those conceptual units covered by the tex-
tual unit, andk is the total target cost. Unfortu-
nately, maximum set coverageis NP-hard, as it is



reducible to the classicset coverproblem (given a
finite set and a collection of subsets of that set, find
the smallest subset of that collection whose mem-
bers’ union is equal to the original set) (Hochbaum,
1997). It follows that more general formulations of
the cost function that actually are more realistic for
our problem (such as defining the total cost as the
sum of the lengths of the selected textual units and
allowing the textual units to have different lengths)
will also result in an NP-hard problem, as we can re-
duce these versions to the special case ofmaximum
set coverage.

Nevertheless, the correspondence with maximum
set coverage provides a silver lining. Since the
problem is known to be NP-hard, properties of
simple greedy algorithms have been explored, and
a straightforward local maximization method has
been proved to give solutions within a known bound
of the optimal solution. The greedy algorithm for
maximum set coverage has as follows: Start with an
empty solutionS, and iteratively add to theS the
setTi that maximizesI(S ∪ Ti). It is provable that
this algorithm is the best polynomial approximation
algorithm for the problem (Hochbaum, 1997), and
that it achieves a solution bounded as follows

I(OPT) ≥ I(GREEDY) ≥
[
1−

(
1− 1

k

)k
]

I(OPT)

>

(
1− 1

e

)
I(OPT) ≈ 0.6321× I(OPT)

whereI(OPT) is the information content of the op-
timal summary andI(GREEDY) is the information
content of the summary produced by this greedy al-
gorithm.

For the more realistic case where cost is speci-
fied as the total length of the summary, and where
we try to optimizeI(S) with a limit on P (S) (see
Section2.3), we propose two greedy algorithms in-
spired by the algorithm above. Both our algorithms
operate by first calculating a ranking of the textual
units in decreasing order. This ranking is for the
first algorithm, which we calladaptive greedy algo-
rithm, identical to the ranking provided by the ba-
sic greedy algorithm, i.e., each textual unit receives
as score the increase inI(S) that it generates when
added to the output, in the order specified by the ba-
sic greedy algorithm. Our second greedy algorithm
(dubbedmodified greedy algorithmbelow) modifies
this ranking by prioritizing the conceptual units with
highest individual weightwi; it ranks first the tex-
tual unit that has the highest contribution toI(S)
while covering this conceptual unit with the high-
est individual weight, and then iteratively proceeds
with the textual unit that has the highest contribu-
tion toI(S) while covering the next most important

unaccounted for conceptual unit.
Given the rankings of textual units, we can then

produce an output of a given length by adopting ap-
propriate stopping criteria for when to stop adding
textual units (in order according to their ranking)
to the output. There is no clear rule for conform-
ing to a specific length (for example, DUC 2001 al-
lowed submitted summaries to go over “a reason-
able percentage” of the target length, while DUC
2004 cuts summaries mid-sentence at exactly the
target length). As the summary length in DUC is
measured in words, in our experiments we extracted
the specified number of words out of the top sen-
tences (truncating the last sentence if necessary).

5 Experiments

To empirically establish the effectiveness of the pre-
sented model we ran experiments comparing evalu-
ation scores on summaries obtained with a baseline
algorithm that does not account for redundancy of
information and with the two variants of greedy al-
gorithms described in Section4. We chose summa-
rization as the evaluation task because “ideal” out-
put (prepared by humans) and methods for scoring
arbitrary system output were available for this task,
but not for evaluating long answers to questions.

Data We chose as our input data the document
sets used in the evaluation of multidocument sum-
marization during the Document Understanding
Conference (DUC), organized by NIST in 2001
(Harman and Voorhees, 2001). This collection con-
tains 30 test document sets, each containing approx-
imately 10 news stories on different events; docu-
ment sets vary significantly in their internal cohere-
ness. For each document set 12 human-constructed
summaries are provided, 3 for each of the target
lengths of 50, 100, 200, and 400 words. We se-
lected DUC 2001 because unlike later DUCs, ideal
summaries are available for multiple lengths. We
consider sentences as our textual units.

Features In our experiments we used two sets of
features (i.e., conceptual units). First, we chose
a fairly basic and widely used set of lexical fea-
tures, namely the list of words present in each input
text. We set the weight of each feature to itstf*idf
value, takingidf values fromhttp://elib.cs.
berkeley.edu/docfreq/ .

Our alternative set of conceptual units was the list
of weightedatomic eventsextracted from the input
texts. An atomic event is a triplet consisting of two
named entities extracted from a sentence and a con-
nector expressed by a verb or an event-related noun
that appears in-between these two named entities.

http://elib.cs.berkeley.edu/docfreq/
http://elib.cs.berkeley.edu/docfreq/


The score of the atomic event depends on the fre-
quency of the named entities pair for the input text
and the frequency of the connector for that named
entities pair. Filatova and Hatzivassiloglou (2003)
define the procedure for extracting atomic events in
detail, and show that these triplets capture the most
important relations connecting the major constituent
parts of events, such as location, dates and partici-
pants. Our hypothesis is that using these events as
conceptual units would provide a reasonable basis
for summarizing texts that are supposed to describe
one or more events.

Evaluation Metric Given the difficulties in com-
ing up with a universally accepted evaluation mea-
sure for summarization, and the fact that judgments
by humans are time-consuming and labor-intensive,
we adopted an automated process for comparing
system-produced summaries to the ideal summaries
written by humans. The ROUGE method (Lin and
Hovy, 2003) is based on n-gram overlap between
the system-produced and ideal summaries. As such,
it is a recall-based measure, and it requires that
the length of the summaries be controlled in or-
der to allow for meaningful comparisons. Although
ROUGE is only a proxy measure of summary qual-
ity, it offers the advantage that it can be readily ap-
plied to compare the performance of different sys-
tems on the same set of documents, assuming that
ideal summaries are available for those documents.

Baseline Our baseline method does not consider
the overlap in information content between selected
textual units. Instead, we fix the score of each sen-
tence as the sum oftf*idf values or atomic event
scores. At every step we choose the remaining sen-
tence with the largest score, until the stopping crite-
rion for summary length is satisfied.

Results For every version of our baseline and
approximation algorithms, and separately for the
tf*idf -weighted words and event features, we get a
sorted list of sentences extracted according to a par-
ticular algorithm. Then, for each DUC document set
we create four summaries of each suggested length
(50, 100, 200, and 400 words) by extracting accord-
ingly the first 50, 100, 200, and 400 words from the
top sentences.

To evaluate the performance of our summarizers
we compare their outputs against the human models
of the corresponding length provided by DUC, us-
ing the ROUGE-created scores for unigrams. Since
scores are not comparable across different docu-
ment sets, instead of average scores we report the
number of document sets for which one algorithm
outperforms another. We compare each of our

Length Events tf*idf
50 +3 0

100 +4 −4
200 +2 −4
400 +5 0

Table 1:Adaptive greedy algorithm versus baseline.

Length Events tf*idf
50 0 + 7

100 +4 + 4
200 +8 + 6
400 +2 +14

Table 2:Modified greedy algorithm versus baseline.

approximation algorithms (adaptive and modified
greedy) to the baseline.

Table 1 shows the number of data sets for
which the adaptive greedy algorithm outperforms
our baseline. This implementation of our informa-
tion packing model improves the ROUGE scores in
most cases when events are used as features, while
the opposite is true whentf*idf provides the con-
ceptual units. This may be partly explained because
of the nature of thetf*idf -weighted word features:
it is possible that important words cannot be con-
sidered independently, and that the repetition of im-
portant words in later sentence does not necessarily
mean that the sentence offers no new information.
Thus words may not provide independent enough
features for our approach to work.

Table2 compares our modified greedy algorithm
to the baseline. In that case, the model offers gains
in performance when both events and words are
used as features, and in fact the gains are most pro-
nounced with the word features. For both algo-
rithms, the gains are generally minimal for 50 word
summaries and most pronounced for the longest,
400 word summaries. This validates our approach,
as the information packing model has a limited op-
portunity to alter the set of selected sentences when
those sentences are very few (often one or two for
the shortest summaries).

It is worth noting that in direct comparisons be-
tween the adaptive and modified greedy algorithm
we found the latter to outperform the former. We
found also events to lead to better performance than
tf*idf -weighted words with statistically significant
differences. Events tend to be a particularly good
representation for document sets with well-defined
constituent parts (such as specific participants) that
cluster around a narrow event. Events not only give
us a higher absolute performance when compared



to just words but also lead to more pronounced im-
provement when our model is employed. A more
detailed analysis of the above experiments together
with the discussion of advantages and disadvantages
of our evaluation schema can be found in (Filatova
and Hatzivassiloglou, 2004).

6 Conclusion

In this paper we proposed a formal model for in-
formation selection and redundancy avoidance in
summarization and question-answering. Within
this two-dimensional model, summarization and
question-answering entail mapping textual units
onto conceptual units, and optimizing the selection
of a subset of textual units that maximizes the in-
formation content of the covered conceptual units.
The formalization of the process allows us to benefit
from theoretical results, including suitable approx-
imation algorithms. Experiments using DUC data
showed that this approach does indeed lead to im-
provements due to better information packing over
a straightforward content selection method.
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