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ABSTRACT

Estimation and Testing Methods for

Monotone Transformation Models

Junyi Zhang

This thesis deals with a general class of transformation models that contain-

s many important semiparametric regression models as special cases. It develops

a self-induced smoothing method for estimating the regression coefficients of these

models, resulting in simultaneous point and variance estimations. The self-induced

smoothing does not require bandwidth selection, yet provides the right amount of s-

moothness so that the estimator is asymptotically normal with mean zero (unbiased)

and variance-covariance matrix consistently estimated by the usual sandwich-type

estimator. An iterative algorithm is given for the variance estimation and shown to

numerically converge to a consistent limiting variance estimator. The self-induced

smoothing method is also applied to selecting the non-zero regression coefficients for

the monotone transformation models. The resulting regularized estimator is shown



to be
√
n-consistent and achieve desirable sparsity and asymptotic normality un-

der certain regularity conditions. The smoothing technique is used to estimate the

monotone transformation function as well. The smoothed rank-based estimate of the

transformation function is uniformly consistent and converges weakly to a Gaussian

process which is the same as the limiting process for that without smoothing. An

explicit covariance function estimate is obtained by using the smoothing technique,

and shown to be consistent. The estimation of the transformation function reduces

the multiple hypotheses testing problems for the monotone transformation models

to those for linear models. A new hypotheses testing procedure is proposed in this

thesis for linear models and shown to be more powerful than some widely-used testing

methods when there is a strong collinearity in data. It is proved that the new testing

procedure controls the family-wise error rate.
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Chapter 1

Introduction

Consider the following class of regression models, known as the monotone transforma-

tion models, with response variable denoted by Y and (d + 1)-dimensional covariate

vector by X,

Y = H(X′β + ε), (1.1)

where β is the unknown regression parameter vector, ε is the unobserved error term

that is independent of X with a completely unspecified distribution, and H is a

monotone increasing, but otherwise unspecified function.

It is easily seen that this class of models contains many commonly used regression

models as its submodels that are especially important in the econometrics and sur-

vival analysis literature. For example, with H(u) = u, (1.1) becomes the standard

regression model with an unspecified error distribution; with H(u) = uλ (λ > 0),

the Box-Cox transformation model (Box and Cox, 1964); with H(u) = I[u ≥ 0],

the binary choice model (Maddala, 1983; McFadden, 1984); with H(u) = uI[u ≥ 0],

a censored regression model (Tobin, 1958; Powell, 1984); with H(u) = exp(u), the

accelerated failure times (AFT) model (Cox and Oakes, 1984; Kalbfleisch and Pren-
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tice, 2002); with ε having an extreme value density f(w) = exp(w − exp(w)), the

Cox proportional hazards regression (Cox, 1972); with ε having the standard logistic

distribution, the proportional odds regression (Bennett, 1983). In addition to the

econometrics, model (1.1) also encompasses the main semiparametric models in sur-

vival analysis, where right censoring is a major feature. Under the right censorship,

there is a censoring variable C and one observes Ỹ = Y ∧ C and ∆i = I(Yi ≤ Ci).

Estimation of the parameter β was studied by Han (1987), Sherman (1993), Khan

and Tamer (2007). In particular, Han (1987) proposed the maximum rank correlation

(MRC) estimator and proved the strong consistency of the MRC estimator; Sherman

(1993) showed the
√
n-consistency and the asymptotic normality for Han’s MRC

estimator and proposed an estimate of the limiting variance-covariance matrix for

the MRC estimator by using the finite-difference approximation; Khan and Tamer

(2007) proposed the partial rank correlation estimator for β when there is censoring

in model (1.1). Estimation of the transformation function H was studied by Chen

(2002), who constructed a rank-based estimator and established its consistency and

asymptotic normality.

This thesis focuses on (1) estimation of the regression coefficient β, which is of

finite dimension, and of the transformation function H, which is of infinite dimension;

(2) the variable selection problem for β, especially when p is larger than n; (3) the

multiple hypotheses testing problem related to the linear and monotone transforma-

tion models.

In Chapter 2, we develop a self-induced smoothing method for estimating the

regression coefficient β to address the issue of discreteness in Han’s rank correla-

tion objective function. Through the self-induced smoothing method, we bypass the

bandwidth selection problem associated with the finite difference approximation. We

show that the self-induced smoothing provides the right amount of smoothness so
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that the estimator is asymptotically normal with mean zero (unbiased) and variance-

covariance matrix consistently estimated by the usual sandwich-type estimator. An

iterative algorithm is given for the variance estimation and shown to numerically con-

verge to a consistent limiting variance estimator. The approach is applied to a data

set involving survival times of primary biliary cirrhosis patients. Simulations results

are reported, showing that the new method performs pretty well under a variety of

scenarios.

Chapter 3 is concerned with the variable selection problem for the monotone trans-

formation model (1.1). We apply the self-induced smoothing method to Han’s rank

correlation function and develop a variable selection method which is distribution-free

and robust. The new variable selection method consists of the regularized SMRCE

and the rank correlation information criteria. For the regularized SMRCE (RSM-

RCE), we add the SCAD (Fan and Li, 2001) penalty function to the smoothed rank

correlation function. The rank correlation information criteria is introduced as a

modified rank correlation function, which is adjusted for the dimensional complexi-

ty of the predictors been selected. We show that the regularized SMRCE achieves

desired sparsity. Moreover, the RSMRCE does not introduce any bias for a proper

thresholding level in the sense that the regularized estimator is
√
n-consistent and

asymptotically normal. Extensive simulation studies show that the proposed variable

selection procedure are more robust than the existing methods such as the LASSO-

BIC approach.

Chapter 4 deals with the estimation problem for the monotone transformation

function. We apply the self-induced smoothing method to Chen’s (2002) rank-based

estimator. The smoothed estimate for the monotone function is shown to be uniformly

consistent and to converge weakly to a Gaussian process. Through the smoothing

technique, we derive a close form covariance formula for the limiting Gaussian process



4

for Chen’s rank-based estimate. This covariance estimate is also consistent.

In Chapter 5, we develop a new multiple hypotheses testing procedure, which

is called the minimax of marginal regression distances (MMRD) step-down method,

for linear models. We prove that the new testing procedure controls the family-wise

error rate. The MMRD procedure is shown to be more powerful than Holm’s (1979)

step-down procedure and Benjamini-Hochberg’s (1995) false discovery rate (FDR)

controlling procedure when applied to the REE studies.
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Chapter 2

Parameter Estimation

2.1 Introduction

A basic estimation method for model (1.1) is the maximum rank correlation (MRC)

estimator proposed in the econometrics literature by Han (1987). Because both the

transformation function H and the error distribution are unspecified, not all compo-

nents of β are identifiable. Without loss of generality, we shall assume henceforth that

the last component, βd+1 = 1. Let (Y1,X1), ..., (Yn,Xn) be a random sample from

(1.1). Han’s MRC estimator, denoted by θ̂n, is the maximizer of following objective

function

Qn(θ) =
1

n(n− 1)

∑
i ̸=j

I[Yi > Yj]I[X
′
iβ(θ) > X′

jβ(θ)], (2.1)

where I[ · ] denotes the indicator function, X′ the transpose of X, and θ the first

d components of β, i.e. β(θ) = (θ1, ..., θd, 1)
′. Han (1987) proved that the MRC

estimator θ̂n is strongly consistent under certain regularity conditions.

An important subsequent development is due to Sherman (1993), who made use

of the empirical process theory and Hoeffding’s decomposition to approximate the ob-
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jective function, viewed as a U-process. He showed that θ̂n is, in fact, asymptotically

normal under additional regularity conditions.

For the censoring case, Khan and Tamer (2007) constructed the following partial

rank correlation function as an extension of the rank correlation objective function

(2.1),

Q∗
n(θ) =

1

n(n− 1)

∑
i ̸=j

∆jI[Ỹi > Ỹj]I[X
′
iβ(θ) > X′

jβ(θ)]. (2.2)

They showed that the resulting maximum partial rank correlation estimate (PRCE)

θ̂
∗
n, as the maximizer of Q∗

n(θ), is consistent and asymptotically normal.

Crucial for the statistical inference of (1.1) based on θ̂n is the consistent variance

estimation. In standard objective (loss) function derived estimation, the asymptotic

variance is usually estimated by a sandwich-type estimator of form Â−1V̂Â−1 with

Â being the second derivative of the objective function and V̂ an estimator of the

variance of the first derivative (score). The challenge here, however, is that Qn itself

is a (discontinuous) step function that precludes automatic use of differentiation to

obtain Â. Furthermore, V̂ is also difficult to obtain since the score function cannot be

derived directly from Qn via differentiation. Sherman(1993) suggested using numeri-

cal derivatives of first and second orders to construct Â and V̂. His approach requires

bandwidth selection for the derivative functions. It is unclear how stable the result-

ing variance estimator is. Alternatively, one may resort to bootstrap (Efron, 1979) or

other resampling methods (e.g. Jin et al., 2001). These approaches require repeatedly

solving the maximization of (2.1), which is discontinuous and often multidimensional

when d > 1. The computational cost could therefore be prohibitive.

In this chapter, a self-induced smoothing method for rank correlation criterion

function (2.1) is developed so that the differentiation can be performed, while by-

passing the bandwidth selection. Both point and variance estimators can be obtained
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simultaneously in a straightforward way that is typically used for smooth objective

functions. The new method is motivated by a novel approach proposed in Brown and

Wang (2005, 2007), where an elegant self-induced smoothing method was introduced

for non-smooth estimating functions. Although our approach bears similarity with

that of Brown and Wang (2005), it is far from clear why such self-induced smoothing

is suitable for the discrete objective function (rank correlation). In fact, undersmooth-

ing would make the Hessian (second derivative) unstable while oversmoothing would

introduce significant bias. Through highly technical and tedious derivations, the au-

thor will show that the proposed method does strike a right balance in terms of

asymptotic unbiasedness and enough smoothness for differentiation (twice).

The rest of this chapter is organized as follows. In Section 2.2, the new methods

are described and related large sample properties are developed. In particular, the

construction for simultaneous point and variance estimation is given and it is shown

that the resulting point estimator is asymptotically normal and the variance estima-

tor is consistent. In Section 2.3, the approach, along with the algorithm and large

sample properties, is extended to handle survival data with right censoring. Simula-

tion results are reported in Section 2.4, where application to a real data set is also

given. Section 2.5 contains some concluding remarks.

2.2 Main Results

In this section, a self-induced smoothing method is developed for the rank correlation

criterion function defined by (2.1). It is divided into three subsections, with the

first introducing the method and the algorithm, the second establishing large sample

properties and the third covering proofs.
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2.2.1 Methods

Since MRC estimator θ̂n is asymptotically normal (Sherman, 1993), its difference

with the true parameter value, θ̂n − θ, should approximately be a Gaussian noise

Z/
√
n, where Z ∼ N(0,Σ) is a d-dimensional normal random vector with mean 0

and covariance matrix Σ. Assume that Z is independent of data and let EZ denote

the expectation with respect to Z given data. A self-induced smoothing for Qn is

Q̃n(θ) = EZQn(θ + Z/
√
n). The self-induced smoothing using the limiting Gaussian

distribution was originally proposed by Brown and Wang (2005) for certain non-

smooth estimating functions.

To get an explicit form for Q̃n, let Φ be the standard normal distribution function,

Xij = Xi − Xj, σij =
√
(X

(1)
ij )

′ΣX
(1)
ij where X

(1)
ij denotes the first d components of

Xij. Then, it is easy to see that

Q̃n(θ) =
1

n(n− 1)

∑
i̸=j

I[Yi > Yj]Φ
(√

nX′
ijβ(θ)/σij

)
. (2.4)

We shall use θ̃n = argmaxΘ Q̃n(θ) to denote the corresponding estimator, which will

be called the smoothed maximum rank correlation estimator (SMRCE). Here and in

the sequel, Θ denotes the parameter space for θ.

Remark 2.1. Smoothing is an appealing way for a simple solution to the inference

problem associated with the MRCE. If Q̃n were a usual smooth objective function,

then its first derivative would become the score function and its second derivative

could be used for variance estimation. Specifically, if we use V to denote the limiting

variance of the score scaled by n and A the limit of the second derivative, then

the asymptotic variance of the resulting estimator, scaled by n, should be of form

A−1VA−1. A consistent estimator could then be obtained by the plug-in method, i.e.

replacing unknown parameters by their corresponding empirical estimators.
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Remark 2.2. It is unclear, however, whether or not the self-induced smooth will

provide a right amount of smoothing, even in view of the results given in Brown and

Wang (2005). With over-smoothing, θ̃n may be asymptotically biased, i.e. the bias is

not of order o(n−1/2); with under-smoothing, the “score” function (first derivative of

Q̃n) may have multiple “spikes” and thus the second derivative matrix (Hessian) of

Q̃n may not behave properly and certainly cannot be expected to provide a consistent

variance estimator.

In Subsection 2.2.2, it is shown that the self-induced smoothing here does result

in a right amount of smoothing in the sense that the bias is asymptotically negligible

and the Hessian matrix behave properly. Before starting the theoretic developments,

the method is described as follows first.

We first differentiate the smoothed objective function Q̃n to get score

S̃n(θ) =
1

n(n− 1)

∑
i<j

Hijϕ

(√
nX′

ijβ(θ)

σij

) √
nX

(1)
ij

σij

,

where Hij = sgn(Yi − Yj). This is a U-process of order 2 with kernel

sn(Ui,Uj) =
1

2
Hijϕ

(√
nX′

ijβ(θ)

σij

) √
nX

(1)
ij

σij

,

where Ui denotes the pair (Yi,Xi).

By Hoeffding’s decomposition, the asymptotic variance of
√
nS̃n(θ) is approxi-

mated by

V̂n(θ,Σ) =
1

n3

n∑
i=1

{∑
j

[
Hij × ϕ

(√
nX′

ijβ

σij

) √
nX

(1)
ij

σij

]}⊗2

, (2.5)

where, for a vector v, v⊗2 = vv′. Thus, V̂n(θ̂n,Σ) is used to estimate V, the middle

part of the “sandwich” variance formula discussed in Remark 2.1.
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As for A, we differentiate S̃n(θ) to get

Ân(θ,Σ) =
1

2n(n− 1)

∑
i ̸=j

Hij × ϕ̇

(√
nX′

ijβ

σij

)[√
nX

(1)
ij

σij

]⊗2
 , (2.6)

where ϕ̇(z) = −zϕ(z) is the derivative of ϕ(z). Although the self-induced smoothing

was motivated earlier with Σ being the limiting covariance matrix of the estimator,

it will be shown later that for any positive definite matrix Σ, Ân(θ̂n,Σ) converges to

A.

Note that the above discussions about A and V are not mathematically rigorous.

This is because the kernel function for the score process is sample size n-dependent.

The usual asymptotic theory for the U-process is not applicable. Indeed, our rigor-

ous derivations, to be given in Subsection 2.2.3, are quite tedious, involving many

approximations that are quite delicate.

Let

D̂n(θ,Σ) = Â−1
n (θ,Σ)× V̂n(θ,Σ)× Â−1

n (θ,Σ). (2.7)

If θ is the true parameter value, then D̂n(θ,Σ) converges to the limiting covariance

matrix, which is the desired choice for Σ in the self-induced smoothing. Therefore,

(2.7) leads to an iterative algorithm of form Σ̂
(k)

n = D̂n(θ̂n, Σ̂
(k−1)

n ); see also Brown

and Wang (2005). Specifically, an iterative algorithm is proposed as follows:

Algorithm 2.1. (SMRCE)

1. Compute the MRC estimator θ̂n and set Σ̂
(0)

to be the identity matrix.

2. Update variance-covariance matrix Σ̂
(k)

n = D̂n(θ̂n, Σ̂
(k−1)

n ). Smooth the rank cor-

relation Qn(θ) using covariance matrix Σ̂
(k)

n . Maximize the resulting smoothed

rank correlation to get an estimator θ̂
(k)

n .

3. Repeat step 2 until θ̂
(k)

n converge.
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2.2.2 Large-sample properties

This subsection is devoted to the large sample theory. The main results are: 1.

the smoothed MRC estimator (SMRCE) is asymptotically equivalent to the MRC

estimator; 2. the proposed method leads to a consistent variance estimator; and 3.

the iterative algorithm for point and variance estimation converges numerically.

First introduce notation as well as assumptions, which are similar to those in

Sherman (1993) for the MRC estimator. Let

τ(y,x,θ) = E
[
I[y>Y ]I[(x−X)′β(θ)>0]

+ I[y<Y ]I[(x−X)′β(θ)<0]

]
, (2.8)

which is the projection of the kernel of U-process Qn(θ). The expectation is taken

for (X, Y ). Also let

|∇m|τ(y,x,θ) =
∑

i1,...,im

∣∣∣∣∂mτ(y,x,θ)

∂θi1 · · · ∂θim

∣∣∣∣ .
The following Assumptions 2.1 and 2.2 are used in Han (1987) (see also Sherman,

1993) to establish consistency for the MRC estimator. For asymptotic normality, we

need an additional regularity condition (Assumption 2.3) given in Sherman (1993).

Assumption 2.1. The true parameter value θ0 is an interior point of Θ, which is a

compact subset of the d-dimensional Euclidean space Rd.

Assumption 2.2. The support of X is not contained in any linear subspace of Rd+1.

Conditional on the first d components of X, the last component of X has a density

function with respect to the Lebesgue measure.

Assumption 2.3. There exists a neighborhood, N , of θ0 such that for each pair (y,x)

of possible values of (Y,X),

(i) The second derivatives of τ(y,x;θ) with respect to θ exist in N .



12

(ii) There is an integrable function M1(y,x) such that for all θ in N ,

∥∇2τ(y,x;θ)−∇2τ(y,x;θ0)∥2 ≤ M1(y,x)|θ − θ0|.

(iii) E(|∇1|τ(Y,X;θ0))
2 < +∞.

(iv) E|∇2|τ(Y,X;θ0) < +∞.

(v) The matrix E∇2τ(Y,X;θ0) is strictly negative definite.

Proposition 2.1. (Sherman, 1993) Assume that Assumptions 2.1-2.3 hold. We have,

uniformly over any op(1) neighborhood of θ0,

Qn(θ)−Qn(θ0) =
1

2
(θ−θ0)

′A0(θ−θ0)+
1√
n
(θ−θ0)

′Wn+Op(|θ−θ0|3)+op(
1

n
), (2.9)

where Wn = 1√
n

∑
i ∇1τ(Yi,Xi;θ0), 2A(θ) = E∇2τ(Y,X;θ) and A0 = A(θ0). Con-

sequently, for the MRC estimator θ̂n,

√
n(θ̂n − θ0) = A−1

0 Wn + op(1)
L−→ N(0,D0), (2.10)

where D(θ) = A−1(θ)V(θ)A−1(θ), V(θ) = E(∇1τ(Y,X;θ)[∇1τ(Y,X;θ)]′) and

D0 = D(θ0).

Because of the standardization, the rank correlation criterion function Qn is

bounded by 1. It is not difficult to establish a uniform law of large numbers

lim
n

sup
θ∈Θ

|Qn(θ)−Q(θ)| = 0, a.s., (2.11)

where Q(θ) is the expectation of Qn(θ); cf. Han (1987) and Sherman (1993).

Likewise, we can show that such uniform convergence also holds for Q̃n, i.e.

lim
n

sup
θ∈Θ

|Q̃n(θ)−Q(θ)| = 0, a.s. (2.12)

Note that the limit Q remains the same.



13

In the following theorem, it is claimed that the estimate obtained from maximizing

the smoothed rank correlation function (2.4) is also asymptotically normal with the

same asymptotic covariance matrix as Han’s MRCE.

Theorem 2.1. For any given positive definite matrix Σ, let Q̃n(θ) be defined as in

(2.4) and θ̃n = argmaxθEZQ̃n(θ + Z/
√
n). Then, under Assumptions 2.1-2.3, θ̃n is

consistent, θ̃n → θ0 a.s. and asymptotically normal,

√
n(θ̃n − θ0)

L−→ N(0,D0),

where D0 is defined as in Proposition 2.1. In addition, θ̃n is asymptotically equivalent

to θ̂n in the sense that θ̃n = θ̂n + op(n
−1/2).

Recall that (2.7) defines the sandwich-type variance estimator by pretending that

Q̃n is a standard smooth objective function. Theorem 2.2 below shows that (2.7) is

consistent.

Theorem 2.2. Let θ̂n be the MRC estimator and D̂n be defined by (2.7). Then, for

any fixed positive definite matrix Σ, D̂n(θ̂n,Σ) converges in probability to D0, the

limiting variance-covariance matrix of
√
n(θ̂n − θ0).

Remark 2.3. The self-induced smoothing uses the limiting covariance matrix D0 as

Σ. In practice, we may initially choose the identity matrix for Σ, which is the same

way as the initial step in Algorithm 2.1. By Theorem 2.1, we know that the one-

step estimator Σ̂
(1)

n in Algorithm 2.1 converges in probability to the true covariance.

However, this one-step estimator depends on the initial choice of Σ. Algorithm 2.1 is

an iterative algorithm with the variance-covariance estimator converging to the fixed

point of D̂n(θ̂n,Σ) = Σ.
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Convergence of Algorithm 2.1 is ensured by the following theorem. For notational

simplicity, we let vech(B) be the vectorization of matrix B. For any function v of Σ,∣∣∣∣ ∂

∂Σ

∣∣∣∣v =
∑
i,j

∣∣∣∣ ∂

∂Σi,j

v

∣∣∣∣, ∂v

∂Σ
= (

∂v

∂Σ1,1

,
∂v

∂Σ2,1

, ...,
∂v

∂Σd,d

)′,

where Σr,s denotes the (r, s) entry of Σ.

Theorem 2.3. Let Σ̂
(k)

n be defined as in Algorithm 2.1. Suppose that Assumptions

2.1-2.3 hold. Then there exist Σ∗
n, n ≥ 1, such that for any ϵ > 0, there exists N ,

such that for all n > N ,

P ( lim
k→∞

Σ̂
(k)

n = Σ∗
n, ∥Σ∗

n −D0∥ < ϵ) > 1− ϵ.

Remark 2.4. For a fixed n, Σ∗
n represents the fixed point matrix in the iterative algo-

rithm. The above theorem shows that with probability approaching 1, the iterative

algorithm converges to a limit, as k → ∞, and the limit converges in probability to

the limiting covariance matrix D0.

Remark 2.5. The speed of convergence of Σ̂
(k)

n to Σ∗
n is faster than any exponential

rate in the sense that ∥Σ̂
(k)

n −Σ∗
n∥ = o(ηk) for any η > 0. This can be seen from Step

2 of Algorithm 2.1 in Subsection 2.2.1 and (2.13) below,

sup
∥θ−θ0∥=o(1),Σ∈N (D0)

∣∣∣∣ ∂

∂Σ

∣∣∣∣[D̂n(θ,Σ)]r,s = op(1), (2.13)

which will be proved in the Section 2.5. Here N (D0) is a small neighborhood of D0

and Σ is a positive definite matrix.

2.2.3 Proofs of the Theorems

In this section, proofs are provided for (1) asymptotic equivalence of SMRCE to

MRCE, (2) consistency of the induced variance estimator and (3) convergence of
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Algorithm 2.1. Some of the technical developments used in the proofs will be given

in the Section 2.5.

Proof of Theorem 2.1. Without loss of generality, let us assume θ0 = 0. As in Sub-

section 2.1.1, let Z be a d-variate normal random vector with mean 0 and covariance

matrix Σ. Define

Q̃n(θ) = EZQn(θ + Z/
√
n).

Let Γn(θ) = Qn(θ) − Qn(θ0) and Γ̃n(θ) = EZΓn(θ + Z/
√
n) = Q̃n(θ) − Qn(θ0).

Define

θ̃n = argmaxθ

[
Q̃n(θ)

]
= argmaxθΓ̃n(θ).

Let Ωn = I[∥Z∥2 > 2dlog n], where ∥Z∥2 =
√
Z′Z. Then P (Ωn) = o(n−2) due to the

Gaussian tail of Z. Since |Qn(θ)| ≤ 1 and |Γn(θ)| ≤ 2,

|EZ{Γn(θ + Z/
√
n)I[Ωn]}| ≤ P (Ωn) = o(n−2).

By the Cauchy-Schwarz inequality,

EZ{|Z|I[Ωn]} = o(n−2) and EZ{|Z|2I[Ωn]} = o(n−2).

By (2.9), uniformly over o(1) neighborhoods of 0,

EZ{Γn(θ + Z/
√
n)I[Ωc

n]} = (1/2)EZ{(θ + Z/
√
n)′A0(θ + Z/

√
n)I[Ωc

n]}

+ (1/
√
n)EZ{(θ + Z/

√
n)′WnI[Ω

c
n]}+ op(EZ{|θ + Z/

√
n|2I[Ωc

n]}+
1

n
).

Note that

EZ{|θ + Z/
√
n|2I[Ωc

n]} ≤ 2(EZ|θ|2 + EZ|Z|2/n) = O(|θ|2 + 1/n).

Therefore, uniformly over o(1) neighborhoods of 0, we have

Γ̃n(θ) = (1/2)θ′A0θ + (1/
√
n)θ′Wn + E(Z′A0Z)/2n+ op(|θ|2 + 1/n). (2.14)
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Replacing θ in (2.14) with θ0 = 0 and subtracting it from Γ̃n(θ), we have

Γ̃n(θ)− Γ̃n(θ0) =
1

2
θ′A0θ +

1√
n
θ′Wn + op(|θ|2 + 1/n). (2.15)

Combining (2.15) with Lemma 2.1 in the Section 2.5, we get,

√
n(θ̃n − θ0) = A−1

0 Wn + op(1). (2.16)

Therefore, from (2.10) and (2.16), we have

√
n(θ̂n − θ̃n) = op(1).

Finally, strong consistency of θ̃n follows the uniform almost sure convergence of Q̃n

as stated in (2.12). This completes the proof.

Proof of Theorem 2.2. For notational simplicity, let us assume throughout the proof

that Σ is the identity matrix. The same argument with modifications to include

constants for up and lower bound may be applied to deal with a general covariance

matrix Σ.

Let us first show

Ân(θ̂n)
p−→ A(θ0). (2.17)

By definition, [Ân(θ)]r,s = ∂2Q̃n(θ)/(∂θr∂θs). As defined in (2.4), Q̃n(θ) has the

following integral representation,

Q̃n(θ) =

∫
Qn(θ + z/

√
n)(2π)−

d
2 exp(−∥z∥22

2
)dz.

By change of variable t = θ + z/
√
n,

Q̃n(θ) =

∫
Qn(t)Kn(t,θ)dt, (2.18)
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where Kn(t,θ) = (2π)−
d
2n

d
2 exp(−n∥t− θ∥22

2
). From (2.18),

∂

∂θr
Q̃n(θ) =

∫
Qn(t)K̇n,r(t,θ)dt

and
∂2

∂θr∂θs
Q̃n(θ) =

∫
Qn(t)K̈n,r,s(t,θ)dt,

where K̇n,r(t,θ) = ∂Kn(t,θ)/∂θr and K̈n,r,s(t,θ) = ∂2Kn(t,θ)/(∂θr∂θs).

In view of (2.6), to show (2.17), it suffices to prove∫
Qn(t)K̈n,r,s(t,θ)dt = [A(θ0)]r,s + op(1) (2.19)

uniformly over ∥θ − θ0∥ = O(n−1/2). To show (2.19), we define

Ωn,r =

{
t : (tr − θr)

2 <
4 log n

n
,
∑
i̸=r

(ti − θi)
2 <

2(d− 1) log n

n

}
.

By Lemma 2.2(i) and the boundedness of Qn(t), we have,∫
(Ωn,r∩Ωn,s)c

Qn(t)K̈n,r,s(t,θ)dt = o(n−1/2),

where Bc for set B denotes its complement. Therefore, (2.19) reduces to∫
Ωn,r∩Ωn,s

Qn(t)K̈n,r,s(t,θ)dt = [A(θ0)]r,s + op(1). (2.20)

To show (2.20), let us establish a quadratic expansion of Qn(t) for t ∈ Ωn,r∩Ωn,s.

Since ∥t−θ∥2 <
√
4d log n/n for t ∈ Ωn,r∩Ωn,s and ∥θ−θ0∥2 = O(n−1/2), it follows

that ∥t− θ0∥2 = o(1). Therefore, by (2.9),

Qn(t) = Qn(θ0) +
1

2
(t− θ0)

′A(θ0)(t− θ0)

+ (t− θ0)
′Wn/

√
n+Op(|t− θ0|3) + op(1/n).

(2.21)
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Therefore, the left hand side of (2.20) equals I+ II+ III+ IV, where

I =

∫
Ωn,r∩Ωn,s

[
Op(|t− θ0|3) + op(1/n)

]
K̈n,r,s(t,θ)dt,

II = Qn(θ0)×
∫
Ωn,r∩Ωn,s

K̈n,r,s(t,θ)dt,

III =
W′

n√
n

×
∫
Ωn,r∩Ωn,s

(t− θ0)K̈n,r,s(t,θ)dt,

IV =
1

2

∫
Ωn,r∩Ωn,s

(t− θ0)
′A(θ0)(t− θ0)K̈n,r,s(t,θ)dt.

By the definition of Ωn,r,

|I| ≤
∣∣∣∣Op

(
(log n)

3
2

n
√
n

)
+ op(1/n)

∣∣∣∣× ∫
Ωn,r∩Ωn,s

|K̈n,r,r(t,θ)|dt.

By Lemma 2.2(ii), I = op(1). Furthermore, II = o(n−1/2) due to Lemma 2.2(iii).

Note that∫
Ωn,r∩Ωn,s

(t− θ0)K̈n,r,s(t,θ)dt =

∫
Ωn,r∩Ωn,s

(t− θ)K̈n,r,s(t,θ)dt

+ (θ − θ0)

∫
Ωn,r∩Ωn,s

K̈n,r,s(t,θ)dt

= (θ − θ0)

∫
Ωn,r∩Ωn,s

K̈n,r,s(t,θ)dt,

(2.22)

where the last equality follows from the fact that Ωn,r and Ωn,s are symmetric at θ

and (t−θ)K̈n,r,s(t,θ) is an odd function of [t−θ]r for r = 1, 2, ..., d. Combining this

with Lemma 2.2(i), we have III = o(n−1). Again by symmetry,∫
Ωn,r∩Ωn,s

(t− θ0)
′A(θ0)(t− θ0)K̈n,r,s(t,θ)dt

=

∫
Ωn,r∩Ωn,s

(t− θ)′A(θ0)(t− θ)K̈n,r,s(t,θ)dt

+ (θ − θ0)
′A(θ0)(θ − θ0)

∫
Ωn,r∩Ωn,s

K̈n,r,s(t,θ)dt.

(2.23)
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By Lemma 2.2 (i) and (iv), IV = [A(θ0)]r,s+o(n−1/2). Combining the approximations

for I− IV, we get (2.20).

Next let us prove V̂n(θ̂n)
p−→ V(θ0) by showing, componentwise,

[V̂n(θ)]r,s = [V(θ0)]r,s + op(1) (2.24)

uniformly over ∥θ − θ0∥ = O(n−1/2) for r, s = 1, ..., d.

Define

q(u, ũ;θ) = I[y>ỹ]I[(x−x̃)′β>0]
+ I[y<ỹ]I[(x−x̃)′β<0]

,

where u = (y,x) and ũ = (ỹ, x̃). In addition, let τn(u,θ) =

∫
q(u, ũ;θ)Fn(dũ),

where Fn(·) is the empirical distribution for ui’s. By definition,

[V̂n(θ)]r,s =
1

n

n∑
i=1

[
∂

∂θr

∫
τn(ui,θ +

z√
n
)(2π)−

d
2 e−

∥z∥22
2 dz

]
×
[

∂

∂θs

∫
τn(ui,θ +

z̃√
n
)(2π)−

d
2 e−

∥z̃∥22
2 dz̃

]
.

Letting t = θ + z/
√
n and ω = θ + z̃/

√
n, we have

[V̂n(θ)]r,s =
1

n

n∑
i=1

∂

∂θr

∫
τn(ui, t)Kn(t,θ)dt×

∂

∂θr

∫
τn(ui,ω)Kn(ω, θ)dω

=
1

n

n∑
i=1

∫
τn(ui, t)K̇n,r(t,θ)dt×

∫
τn(ui,ω)K̇n,s(ω,θ)dω

=

∫
Gn(t,ω)K̇n,r(t,θ)K̇n,s(ω,θ)dtdω,

where Gn(t,ω) = 1
n

∑n
i=1 τn(ui, t)τn(ui,ω), which is bounded by 0 and 1. By Lemma

2.2 (vii),

[V̂n(θ)]r,s = o(n− 1
2 )

+

∫
Ωn,r×Ωn,s

Gn(t,ω)K̇n,r(t,θ)K̇n,s(ω,θ)dtdω
(2.25)
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uniformly over ∥θ − θ0∥ = O(n− 1
2 ). Let f(u,v,w;θ1,θ2) = q(u,v;θ1)× q(u,w;θ2)

and f ∗(u,v,w;θ1,θ2), the symmetrized f . By definition,

Gn(θ1,θ2) =
1(
n
3

) ∑
i<j<k

f ∗(ui,uj,uk;θ1,θ2)

+
1

n
× 1(

n
2

)∑
i<j

f ∗(ui,uj,uj;θ1,θ2) , Un +
1

n
Ũn.

(2.26)

Clearly Un is a third-order U-statistics and Ũn is a second-order U-statistics. Applying

Hoeffding’s decomposition (van der Vaart, 1998, section 12.3),

Un =
3∑

c=0

(
3

c

)
Un,c, (2.27)

where Un,c is a U-statistics of order c (c = 0, 1, 2, 3) and defined as

Un,c =
1(
3
c

) ∑
|B|=c

1(
n
3

)∑
i

PB [f ∗(ui1 ,ui2 ,ui3 ;θ1,θ2)] .

Here, adopting the notations from van der Vaart (1998, Section 11.4), we define

PB [f ∗(ui1 ,ui2 ,ui3 ;θ1,θ2)] as a projection of f ∗ such that

Pøf
∗ = Ef ∗,

P{i}f
∗ = E[f ∗|ui]− Ef ∗,

P{i,j}f
∗ = E[f ∗|ui,uj]− E[f ∗|ui]− E[f ∗|uj] + Ef ∗,

P{1,2,3}f
∗ = E[f ∗|u1,u2,u3]−

∑
i ̸=j

E[f ∗|ui,uj] +
∑

i=1,2,3

E[f ∗|ui]− Ef ∗.

We know from Hoeffding’s decomposition that Un,2 and Un,3 are second- and third-

order degenerated U-statistics with bounded kernels and thus of order op(n
−1) and

op(n
−3/2); see Sherman (1994b, Corollary 8). Therefore, by Lemma 2.2(vi),∫

Ωn,r×Ωn,s

Un,cK̇n,r(t,θ)K̇n,s(ω,θ)dtdω = op(1), for c = 2, 3. (2.28)



21

Replacing Un,c by Ũn/n in (2.28) also results in op(1). Then combining this and (2.28)

with (2.26) and (2.27), (2.25) reduces to

[V̂n(θ)]r,s = 3×
∫
Ωn,r∩Ωn,s

Un,1 × K̇n,r(t,θ)K̇n,s(ω,θ)dtdω

+

∫
Ωn,r∩Ωn,s

Ef × K̇n,r(t,θ)K̇n,s(ω,θ)dtdω + op(1).

(2.29)

Let f1(uj; t,ω) = E[f(u,v,w; t,ω)|u = uj], f2(vj; t,ω) = E[f(u,v,w; t,ω)|v = vj]

and f3(wj; t,ω) = E[f(u,v,w; t,ω)|w = wj]. Define G̃n(t,ω) =
1

n

n∑
j=1

f1(uj; t,ω).

By the definitions of f(u,v,w; t,ω) and q(u,v;θ), we have G̃n(t,ω) =
1

n

n∑
i=1

τ(ui, t)τ(ui,ω).

By Lemma 2.3 and applying integration by parts twice,∫
Ωn,r×Ωn,s

G̃n(t,ω)K̇n,r(t,θ)K̇n,s(ω,θ)dtdω = o(n−1/2)

+

∫
˜Ωn,r×

˜Ωn,s

{
1

n

n∑
i=1

∂τ(ui,θ + z√
n
)

∂θr

∂τ(ui,θ + z̃√
n
)

∂θs

}∏
i

dΦ(zi)dΦ(z̃i),

where Ω̃n,r := {z : z2r < 4 log n,
∑

i̸=r z
2
i < 2(d− 1) log n}. By Lemma 2.3,

1

n

n∑
i=1

∂

∂θr
τ(ui,θ

∗
1)

∂

∂θs
τ(ui,θ

∗
2) = [V(θ0)]r,s + op(1)

uniformly over {(θ∗
1,θ

∗
2) : ∥θ∗

i − θ0∥2 = o(1), i = 1, 2}. Therefore,∫
Ωn,r×Ωn,s

1

n

n∑
j=1

f1(uj; t,ω)× K̇n,r(t,θ)K̇n,s(ω,θ)dtdω = [V(θ0)]r,s + op(1).

Similarly, applying integration by parts and by Lemma 2.3 and 2.2(vi), we have∫
Ωn,r×Ωn,s

1

n

n∑
j=1

f2(vj; t,ω)× K̇n,r(t,θ)K̇n,s(ω,θ)dtdω = [V(θ0)]r,s + op(1),

∫
Ωn,r×Ωn,s

1

n

n∑
j=1

f3(wj; t,ω)× K̇n,r(t,θ)K̇n,s(ω,θ)dtdω = [V(θ0)]r,s + op(1),
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∫
Ωn,r×Ωn,s

E[f(u,v,w; t,ω)]× K̇n,r(t,θ)K̇n,s(ω,θ)dtdω = [V(θ0)]r,s + op(1).

Hence the right hand side of (2.29) is [V(θ0)]r,s + op(1), which gives (2.24). From

(2.17) and (2.24), D̂n(θ̂n)
p−→ D0.

Proof of Theorem 2.3. From Theorem 2.2, we know that Σ̂
(1)

n

p−→ D0 and Σ̂n(θ̂n,D0)
p−→ D0. By the mean value theorem,

[Σ̂
(2)

n −D0]r,s = [Σ̂n(θ̂n, Σ̂
(1)

n )− Σ̂n(θ̂n,D0)]r,s + [Σ̂n(θ̂n,D0)−D0]r,s

=

[
∂

∂Σ
[D̂n]r,s

∣∣∣∣
Σ=Σ∗

]′
× vech(Σ̂

(1)

n −D0) + [Σ̂n(θ̂n,D0)−D0]r,s,

where ∥Σ∗ −D0∥ ≤ ∥Σ̂
(1)

n −D0∥ and thus Σ∗ ∈ N (D0). In view of Lemma 2.4 and

Σ̂n(θ̂n,D0)
p−→ D0, Σ̂

(2)

n

p−→ D0. Again by the mean value theorem,

[Σ̂
(k+1)

n − Σ̂
(1)

n ]r,s =

[
∂

∂Σ
[D̂n]r,s

∣∣∣∣
Σ=Σ∗

]′
× vech(Σ̂

(k)

n −D0),

where ∥Σ∗ −D0∥ ≤ ∥Σ̂
(k)

n −D0∥. Then by Lemma 2.4 and mathematical induction,

we know that for any ϵ > 0 and η > 0, there exist K and N , such that for any n > N

and k > K,

P
(∣∣[Σ̂(k+1)

n − Σ̂
(k)

n ]r,s
∣∣ ≤ η ×

∣∣[Σ̂(k)

n − Σ̂
(k−1)

n ]r,s
∣∣, for all k > K

)
> 1− ϵ,

where 1 ≤ s, r ≤ d. Note that the inequality inside the above probability implies

that Σ̂
(k)

n converges as k → ∞ and the limit Σ∗
n satisfies Σ∗

n = D̂n(θ̂n,Σ
∗
n) and

Σ∗
n

p−→ D0.

2.3 Extensions

In this section, the approach is extended to the partial rank correlation (PRC) cri-

terion function Q∗
n, defined by (3), of Khan and Tamer (2007) for censored data.
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Under the usual conditional independence between failure and censoring times given

covariates and additional regularity conditions, Khan and Tamer (2007) developed

asymptotic properties for PRCE that are parallel to those by Sherman (1993).

The same self-induced smoothing can be applied to partial rank correlation criteria

function to get

Q̃∗
n(θ) = EZQ

∗
n(θ + Z/

√
n)

=
1

n(n− 1)

∑
i̸=j

∆jI[Ỹi > Ỹj]Φ
(√

nX′
ijβ(θ)/σij

)
.

(2.29)

Define its maximizer, θ̃
∗
n, as the smoothed partial rank correlation estimator (SPRCE).

Let

Â∗
n(θ,Σ) =

1

2n(n− 1)

∑
i̸=j

Hij × ϕ̇

(√
nX′

ijβ

σij

)[√
nX

(1)
ij

σij

]⊗2
 , (2.30)

V̂∗
n(θ,Σ) =

1

n3

n∑
i=1

{∑
j

[
Hij × ϕ

(√
nX′

ijβ

σij

) √
nX

(1)
ij

σij

]}⊗2

, (2.31)

D̂∗
n(θ,Σ) = [Â∗

n(θ,Σ)]−1 × V̂∗
n(θ,Σ)× [Â∗

n(θ,Σ)]−1, (2.32)

where Hij = ∆j × I[Ỹi > Ỹj]−∆i × I[Ỹj > Ỹi].

Based on D̂∗
n(θ,Σ), we have the following iterative algorithm to compute the

SPRCE and variance estimate simultaneously.

Algorithm 2.2. (SPRCE)

1. Compute the PRC estimator θ̂
∗
n and set Σ̂

(0)
to be the identity matrix.

2. Update variance-covariance matrix Σ̂
∗(k)
n = D̂∗

n(θ̂
∗
n, Σ̂

∗(k−1)

n ). Smooth the partial

rank correlation Q∗
n(θ) using covariance matrix Σ̂

∗(k)
n . Maximize the resulting

smoothed partial rank correlation to get an estimator θ̂
∗(k)
n .
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3. Repeat step 2 until θ̂
∗(k)
n converge.

In addition to Assumptions 2.1-2.3, Khan and Tamer (2007) added the following

assumption for the consistency of PRCE.

Assumption 2.4. Let SX be the support of Xi, and Xuc be the set

Xuc = {x ∈ SX : P (∆i = 1|Xi = x) > 0}.

Then P (Xuc) > 0.

Similar to the rank correlation function, it can be shown that under Assumptions

2.1-2.4, (2.9) and (2.11) still hold for partial rank correlation function Q∗
n(θ). There-

fore, Theorems 2.2.1-3 in Section 2.2 continue to hold when replacing the point and

variance estimators for smoothed rank correlation by the corresponding ones for the

smoothed partial rank correlation. Specifically, for any positive definite matrix Σ,

under Assumptions 2.1-2.4, we have

1. The SPRCE θ̃
∗
n is asymptotically equivalent to the PRCE θ̂

∗
n in the sense that

θ̃
∗
n = θ̂

∗
n + op(n

−1/2), and, therefore,

√
n(θ̃

∗
n − θ0)

L−→ N(0,D∗
0),

where D∗
0 is the limiting variance-covariance matrix of θ̂

∗
n.

2. Variance estimator is consistent: D̂∗
n(θ̂

∗
n,Σ)

p−→ D∗
0.

3. Algorithm 2.2 converges numerically in the sense that there exist Σ∗
n, n ≥ 1,

such that for any ϵ > 0, there existsN , such that for all n > N , P (limk→∞ Σ̂
∗(k)
n =

Σ∗
n, ∥Σ∗

n −D∗
0∥ < ϵ) > 1− ϵ.

The proofs are similar to those of Theorems 2.2.1-3 in Section 2.2, and are, there-

fore, omitted.
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Table 2.1: Regression Analysis of PBC data

Albumin SE

SPRCE -4.29 1.40
PRCE -3.50 -
Cox -3.04 0.60

2.4 Numerical Results

In this section, we first apply the proposed self-induced smoothing method to analyze

the primary biliary cirrhosis (PBC) data (Fleming and Harrington, 1990, Appendix

D) and compare the result with that using the Cox regression. Then the results from

several simulation studies are reported by using the method.

2.4.1 PBC data

We apply smoothed PRCE to the survival times of the first 312 subjects with no

missing covariates in the PBC data. Two covariates albumin and age50 (age divided

by 50) are included. We reparameterize the transformation model (1) by setting

βage50 as 1, and estimated θalbumin by SPRCE. We also calculate PRCE for θalbumin

and fitted the standard Cox model. For the Cox regression, the ratio β̂albumin/β̂age50

is the estimate of θalbumin. The results are summarized in Table 2.1. Note that PRCE

does not have a readily available standard error estimate. The standard error of

β̂albumin/β̂age50 in the Cox model is estimated by the delta method. Estimates from

both the SPRCE and the Cox model conclude that the ratio of βalbumin to βage50 is

significant.

To further assess the self-induced smoothing procedure, we plot the original objec-

tive function as well as the smoothed one in the first and last steps of our algorithm,
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Figure 2.1: The smoothed rank correlation for PBC data
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as shown in Figure 2.1. The top curve is the original objective function, the middle

curve is one after the initial smoothing, and the bottom curve is the limit of the

iterative algorithm (after 8 iterations). It appears that the one-step smoothed objec-

tive function is under-smoothed in terms of the level of fluctuations, and the limiting

curve is quite smooth.

2.4.2 Simulation studies

We conduct simulation studies for a number of cases. In the first case (Design I), we

generateX from a bivariate normal distribution with mean [−10, 20]′ and a covariance

matrix diag{32, 22}. Then set βT
0 = (θ, 1) = [1.6, 1] and generate ϵ from the proba-
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Table 2.2: The proportional hazard model without censoring

n = 500 Est Mean Bias RMSE SE coverage

θ SMRCE 1.601 1.2× 10−3 0.0298 0.0316 92.3%
MRCE 1.601 0.8× 10−3 0.0340 - -
Cox 1.599 −0.9× 10−3 0.0200 - -

n = 1000 Est Mean Bias RMSE SE coverage

θ SMRCE 1.601 1.0× 10−3 0.0193 0.0212 93.9%
MRCE 1.600 0.2× 10−3 0.0225 - -
Cox 1.600 0.1× 10−3 0.0141 - -

n = 2000 Est Mean Bias RMSE SE coverage

θ SMRCE 1.600 0.2× 10−3 0.0136 0.0144 94.9%
MRCE 1.600 −0.1× 10−3 0.0158 - -
Cox 1.600 0.1× 10−3 0.0100 - -

Table 2.3: The proportional hazard model with censoring

n = 600 Est Mean Bias RMSE SE coverage

θ SPRCE 1.604 3.7× 10−3 0.0282 0.0300 93.2%
PRCE 1.603 2.9× 10−3 0.0327 - -
Cox 1.601 1.0× 10−3 0.0204 - -

n = 1200 Est Mean Bias RMSE SE coverage

θ SPRCE 1.601 1.1× 10−3 0.0190 0.0201 93.9%
PRCE 1.601 0.8× 10−3 0.0217 - -
Cox 1.600 −0.2× 10−3 0.0139 - -

n = 2400 Est Mean Bias RMSE SE coverage

θ SPRCE 1.600 0.4× 10−3 0.0127 0.0136 95.4%
PRCE 1.600 0.1× 10−3 0.0148 - -
Cox 1.600 −0.2× 10−3 0.0097 - -
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Table 2.4: The linear model with gaussian noise

n = 250 Est Mean Bias RMSE SE coverage

θ1 SMRCE 1.615 1.5× 10−2 0.0747 0.0756 91.7%
MRCE 1.612 1.2× 10−2 0.0730 - -
LS 1.601 0.7× 10−3 0.0296 - -

θ2 SMRCE .5042 0.4× 10−2 0.0427 0.0443 93.6%
MRCE .5058 0.5× 10−2 0.0423 - -
LS .5006 0.6× 10−3 0.0354 - -

n = 500 Est Mean Bias RMSE SE coverage

θ1 SMRCE 1.605 4.9× 10−3 0.0515 0.0513 92.7%
MRCE 1.607 6.7× 10−3 0.0523 - -
LS 1.601 0.7× 10−3 0.021 - -

θ2 SMRCE .5023 2.3× 10−3 0.0296 0.0302 94.6%
MRCE .5042 4.2× 10−3 0.0316 - -
LS .5006 0.6× 10−3 0.0254 - -

n = 1000 Est Mean Bias RMSE SE coverage

θ1 SMRCE 1.603 3.6× 10−3 0.0361 0.0348 92.4%
MRCE 1.603 3.4× 10−3 0.0382 - -
LS 1.601 0.5× 10−3 0.0144 - -

θ2 SMRCE .5009 0.9× 10−3 0.0203 0.0207 94.8%
MRCE .5018 1.8× 10−3 0.0214 - -
LS .5004 0.4× 10−3 0.0176 - -



29

bility density function f(w) = 2 exp(2w − exp(2w)). Set the transformation H(x) as

H−1(y) = log(y2). This is indeed a Weibull proportional hazard model. The sample

sizes are n = 500, 1000, 2000 and the number of replications is 500. The SMRCE,

MRCE and Cox model are used to estimate θ, and the standard error of SMRCE

is computed by Algorithm 2.1. The mean(Mean), bias(Bias) and root mean square

error(RMSE) for each method as well as mean of standard error(SE) and coverage of

95% confidence interval for the SMRCE are reported in Table 2.2.

The second case (Design II) is similar to the first one except that Y is censored

by a random variable C, which is independent of X and normally distributed with

mean µ = 9.2 and variance σ2 = 0.52. The sample sizes are n = 600, 1200, 2400

and the number of replications is 500. This design is similar to that in Gørgens

and Horowitz (1999). The SPRCE, PRCE and Cox model are used to estimate θ,

and the standard error of SPRCE is computed by Algorithm 2.2. The resulting

estimates are summarized in Table 2.3 where we also report bias(Bias), root mean

square error(RMSE), mean of standard error(SE), and coverage of 95% confidence

interval.

In the third case (Design III), we generate X = [X1, X2, X3]
′ by two steps. Fist

of all, generate [X1, X3]
′ from a bivariate normal distribution with mean [−2, 2]′ and

an identity covariance matrix. Then generate X3 as 0 or 2 with equal probability.

Set βT
0 = (θ1, θ2, 1) = [1.6, 0.5, 1] and generate ϵ from a normal distribution with

µ = 0 and σ2 = 0.52. Set the transformation H(x) = x. The sample sizes are

n = 250, 500, 1000 and the number of replications is 500. The SMRCE, MRCE and

least squared method are applied to estimate θ1 and θ2, and the standard error of

SMRCE is computed by Algorithm 2.1. Table 2.4 reports the mean (Mean), bias

(Bias) and root mean square error (RMSE) for each method as well as mean of

standard error (SE) and coverage of 95% confidence interval for the SMRCE.
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From Tables 2.2, 2.3 and 2.4, we find that (1) the root mean squared error is

close to the mean standard error for the SMRCE (SPRCE); (2) as the sample size

increases, the bias reduces and the coverage of 95% confidence interval converges to

the nominal level. These show that the proposed variance estimator is accurate and

Algorithms 2.1 and 2.2 work well.

2.5 Other Proofs

2.5.1 Lemmas and corollaries

Lemma 2.1 below is due to Sherman (1993, Theorem 2).

Lemma 2.1. Denote Γn(θ) as general objective functions which are centered and sat-

isfies the same regularity conditions as in Sherman (1993). Suppose θn := argmaxΘΓn(θ)

is consistent for θ0, an interior point of Θ. Suppose also that uniformly over op(1)

neighborhoods of θ0,

Γn(θ) =
1

2
(θ−θ0)

′A(θ−θ0)+
1√
n
(θ−θ0)

′Wn+ op(|θ−θ0|2)+ op(1/n) where A

is a negative definite matrix, and Wn converges in distribution to a N(0,V) random

vector. Then

√
n(θn − θ0) = −A−1Wn + op(1)

L−→ N(0,A−1VA−1).

Recall in Theorem 2.2, define Kn(t,θ) = (2π)−
d
2n

d
2 exp(−n∥t−θ∥22

2
) and its first

and second partial derivatives with respect to θ as

K̇n,r(t,θ) = (
2π

n
)−

d
2n(tr − θr)e

−n∥t−θ∥22
2 ,

K̈n,r,r(t,θ) = (
2π

n
)−

d
2n(n(tr − θr)

2 − 1)e−
n∥t−θ∥22

2 ,

K̈n,r,s(t,θ) = (
2π

n
)−

d
2n2(tr − θr)(ts − θs)e

−n∥t−θ∥22
2 .



31

Also recall

Ωn,r = {t : (tr − θr)
2 < 4 log n/n,

∑
i ̸=r

(ti − θi)
2 < 2(d− 1) log n/n}.

Then we have the following lemma.

Lemma 2.2. Uniformly over ∥θ − θ0∥2 = O(n− 1
2 ),

(i)

∫
(Ωn,r∩Ωn,s)c

F (t)K̈n,r,s(t,θ)dt = o(
1√
n
), ∀F (t) s.t. 0 ≤ F (t) ≤ 1.

(ii)

∫
Ωn,r∩Ωn,s

1

n
|K̈n,r,s(t,θ)|dt = O(1).

(iii)

∫
Ωn,r∩Ωn,s

K̈n,r,s(t,θ)dt = o(n−1/2).

(iv)

∫
Ωn,r∩Ωn,s

1

2
(t− θ)′A(t− θ)K̈n,r,s(t,θ)dt = [A]r,s + o(n−1).

(v)

∫
Ωc

n,r

|K̇n,r(t,θ)|dt = O(n−3/2).

(vi)

∫
Ωn,r

1√
n
|K̇n,r(t,θ)|dt = O(1).

(vii) For any given 0 ≤ G(t,ω) ≤ 1,

∫
G(t,ω)K̇n,r(t,θ)K̇n,s(ω,θ)dtdω

=

∫
Ωn,r×Ωn,s

G(t,ω)K̇n,r(t,θ)K̇n,s(ω,θ)dtdω + o(n− 1
2 ).

Proof. Let Ω̃n,r =
{
t : t2r < 4 log n/n,

∑
i ̸=r t

2
i < 2(d− 1) log n/n

}
, and divide its com-

plement into Ω̃
(1)

n,r :=
{
t : t2r > 4 log n/n

}
and Ω̃

(2)

n,r := {t : t2r < 4 log n/n,∑
i ̸=r t

2
i ≥ 2(d− 1) log n/n

}
. Let us prove (i)-(iv) for s = r. For s ̸= r, the proofs

are similar and omitted.
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For (i), note that∫
Ωc

n,r

F (t)K̈n,r,r(t,θ)dt =

∫
˜Ω

c

n,r

F (t+ θ)K̈n,r,r(t,0)dt.

Since 0 ≤ F (t) ≤ 1 and (nt2r − 1)I[Ω̃
(1)

n,r] ≥ 0,∫
˜Ω

(1)

n,r

F (t+ θ)K̈n,r,r(t,0)dt =

∫
˜Ω

(1)

n,r

F (t+ θ)(
2π

n
)−

d
2n(nt2r − 1)e−

n∥t∥22
2 dt

≤(
2π

n
)−

d
2

∫
˜Ω

(1)

n,r

n(nt2r − 1)e−
n∥t∥22

2 dt

=(2π)−
1
2

∫
˜Ω

(1)

n,r

n
1
2d(ntre

−nt2r
2 )
∏
i ̸=r

dΦ(
√
nti) = o(

1√
n
),

where the last equality follows from 0 ≤
∫ ∏

i̸=r

dΦ(
√
nti) ≤ 1. Similarly,

∫
˜Ω

(2)

n,r

F (t+ θ)K̈n,r,r(t,0)dt =

∫
˜Ω

(2)

n,r

F (t+ θ)(
2π

n
)−

d
2 (n2t2r − n)e−

n∥t∥22
2 dt

≤(2π)−
1
2

∫
˜Ω

(2)

n,r

n|nt2r − 1|e−
nt2r
2 d

√
ntr
∏
i̸=r

dΦ(
√
nti) ≤ 8

n(log n)3/2

n2
= o(

1√
n
).

For (ii), by definition,

1

n

∫
Ωn,r

|K̈n,r,r(t,θ)|dt = (2π)−
1
2

∫
˜Ωn,r

√
n|nt2r − 1|e−

nt2r
2 dtr

∏
i̸=r

dΦ(
√
nti)

≤ 1

π
√
n

[ntre−nt2r
2

] ∣∣∣∣2
√

logn
n

tr=1/
√
n

+

[
ntre

−nt2r
2

] ∣∣∣∣0
tr=1/

√
n

 = O(1),

where the inequality follows from 0 ≤
∫ ∏

i̸=r

dΦ(
√
nti) ≤ 1.

For (iii), by definition,

∫
Ωn,r

K̈n,r,r(t,θ)dt =

∫
˜Ωn,r

(
2π

n
)−

d
2 (n2t2r − n)e−

n∥t∥22
2 dt

= 2n
3
2 tre

−nt2r
2

∣∣∣∣2
√

logn
n

tr=0

×
∫

˜Ωn,r

∏
i̸=r

dΦ(
√
nti) = o(

1√
n
), where the last equality follows
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from 0 ≤
∫ ∏

i ̸=r

dΦ(
√
nti) ≤ 1.

For (iv), by definition and applying integration by parts twice,∫
Ωn,r

1

2
(t− θ)′A(t− θ)K̈n,r,r(t,θ)dt

=

∫
˜Ωn,r

1

2
t′At(2π)−

1
2
√
nd(−ntre

−nt2r
2 )
∏
i̸=r

dΦ(
√
nti)

=o(n−1) +

∫
˜Ωn,r

t′Aer(2π)
− 1

2
√
nd(−e−

nt2r
2 )
∏
i ̸=r

dΦ(
√
nti)

=Ar,r + o(n−1),

where er
′ = (0, ..., 0, 1, 0, ..., 0) with rth entry being 1, and the last equality follows

from the Gaussian tail probability.

For (v), we know, by definition,

∫
ΩC

n,r

|K̇n,r(t,θ)|dt =

∫
˜Ω

C

n,r

|K̇n,r(t,0)|dt. By

symmetry,∫
˜Ω

(1)

n,r

|K̇n,r(t,0)|dt =
2√
2π

∫
tr≥0,

˜Ω
(1)

n,r

n
1
2d(e−

nt2r
2 )
∏
i̸=r

dΦ(
√
nti)

≤
√
n

n2
× 1 = O(n− 3

2 ),

where the inequality follows from 0 ≤
∫ ∏

i̸=r

dΦ(
√
nti) ≤ 1. Similarly,

∫
˜Ω

(2)

n,r

|K̈n,r,r(t,0)|dt =
2
√
n√
2π

∫
tr≥0,

˜Ω
(2)

n,r

d(e−
nt2r
2 )
∏
i̸=r

dΦ(
√
nti) ≤

√
n

n2
= O(n− 3

2 ).

For (vi), by definition,

1√
n

∫
Ωn,r

|K̇n,r(t,θ)|dt =
∫

˜Ωn,r

(2π)−
d
2n

d−1
2 n|tr|e−

n∥t∥22
2 dt

=(2π)−
1
22

∫
tr≥0,

˜Ωn,r

d(e−
nt2r
2 )
∏
i̸=r

dΦ(
√
nti) = O(1),
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where the second equality is due to symmetry and the third equality follows from

0 ≤
∫ ∏

i̸=r

dΦ(
√
nti) ≤ 1.

To prove (vii), without loss of generality, let us assume 0 ≤ G(t,ω) ≤ 1. Denote

Ωa
n,r as Ωn,r and Ωb

n,r its complement. Then,∫
Ωk

n,r×Ω
l

n,s

G(t,ω)K̇n,r(t,θ)K̇n,s(ω,θ)dtdω

≤
∫
Ωk

n,r

|K̇n,r(t,θ)|dt×
∫
Ωl

n,s

|K̇n,s(ω,θ)|dω

=

∫
˜Ω

k

n,r

|K̇n,r(t,0)|dt×
∫

˜Ω
l

n,s

|K̇n,s(ω,0)|dω

where k and l are chosen from {a, b}. Then by (v) and (vi),∫
G(t,ω)K̇n,r(t,θ)K̇n,s(ω,θ)dtdω

=

∫
Ωn,r×Ωn,s

G(t,ω)K̇n,r(t,θ)K̇n,s(ω,θ)dtdω + o(n− 1
2 ).

Lemma 2.3. Uniformly over (t,ω) such that ∥t− θ0∥ = o(1) and ∥ω − θ0∥ = o(1),

we have
1

n

n∑
i=1

[
∂τ(ui, t)

∂θr
τ(ui,ω)

]
= E

[
∂τ(u,θ0)

∂θr
τ(u,θ0)

]
+ op(1), (2.33)

1

n

n∑
i=1

[
∂τ(ui, t)

∂θr

∂τ(ui,ω)

∂θs

]
= E

[
∂τ(u,θ0)

∂θr

∂τ(u,θ0)

∂θs

]
+ op(1). (2.34)

Proof. The main steps of the proof are scratched below.
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First of all, observe that∣∣∣∣ 1n
n∑

i=1

[
∂τ(ui, t)

∂θr
τ(ui,ω)

]
− 1

n

n∑
i=1

[
∂τ(ui,θ0)

∂θr
τ(ui,ω)

] ∣∣∣∣
≤ 1

n

n∑
i=1

[∣∣∣∣∂τ(ui, t)

∂θr
− ∂τ(ui,θ0)

∂θr

∣∣∣∣× ∣∣τ(ui,ω)
∣∣]

≤ 1

n

n∑
i=1

M2(ui)× |t− θ0|,

where M2(u) is an integrable function. The last inequality is due to Assumption 2.3

and |τ(u,θ)| ≤ 1.

Since M2(u) is integrable, by the law of large numbers, the left hand side of above

inequality is thus op(1). By a similar argument, we can show that

1

n

n∑
i=1

[
∂τ(ui, t)

∂θr
τ(ui,ω)

]
=

1

n

n∑
i=1

[
∂τ(ui,θ0)

∂θr
τ(ui,θ0)

]
+ op(1).

By the law of large numbers, we get (2.33). The proof of (2.34) is similar.

Lemma 2.4. Let Ân and V̂n be the same as those in (2.7). Then, for 1 ≤ r, s ≤ d,

we have

sup
∥θ−θ0∥=o(1),Σ∈N (D0)

∣∣∣∣ ∂

∂Σ

∣∣∣∣[Ân(θ,Σ)]r,s = op(1),

sup
∥θ−θ0∥=o(1),Σ∈N (D0)

∣∣∣∣ ∂

∂Σ

∣∣∣∣[V̂n(θ,Σ)]r,s = op(1),

where N (D0) is a small neighborhood of D0 and Σ is a positive definite matrix.

Proof. Let us now extend the definition of kernels in Lemma 2.2 for any covariance

matrix Σ as follows,

Kn(t,θ,Σ) := (
2π

n
)−

d
2 |Σ|−1/2 exp(−n

2
(t− θ)′Σ−1(t− θ)),
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where |Σ| is the determinant of Σ. Then the first and second derivatives of Kn with

respect to θ become

K̇n,r(t,θ,Σ) := (
2π

n
)−

d
2 |Σ|−

1
2ner

′Σ−1(t− θ)e−
n
2
(t−θ)′Σ−1

(t−θ),

K̈n,r,s(t,θ,Σ) := (
2π

n
)−

d
2 |Σ|−

1
2ner

′ [nΣ−1(t− θ)(t− θ)′Σ−1 −Σ−1
]
es

× e−
n
2
(t−θ)′Σ−1

(t−θ).

Partition Rd into Ωn,r and its complement Ωc
n,r, where Ωn,r :=

{
t : (t−θ)′Σ−1(t−

θ) < 6d log n/n
}
. Furthermore, define Ω̃n,r :=

{
t : t′Σ−1t < 6d log n/n

}
.

Note that (t − θ)(t − θ)′e−
1
2
(t−θ)′Σ−1

(t−θ) is bounded for Σ ∈ N (D0). Similar to

the proofs of Theorem 2 and Lemma 2.2, we can get

∂[Ân(θ,Σ)]r,s
∂Σ

= [A(θ0)]r,s

∫
˜Ωn,r

∂Kn(t,0,Σ)

∂Σ
dt+ op(1),

∂[V̂n(θ,Σ)]r,s
∂Σ

= [V(θ0)]r,s

∫
˜Ωn,r

∂Kn(t,0,Σ)

∂Σ
dt+ op(1),

uniformly over (θ,Σ) such that ∥θ − θ0∥ = o(1) and ∥Σ−D0∥ = o(1).

Likewise, we have

∫
˜Ω

c

n,r

∂Kn(t,0,Σ)

∂Σ
dt = o(1), which, combined with∫

∂Kn(t,0,Σ)

∂Σ
dt = 0, implies

∫
˜Ωn,r

∂Kn(t,0,Σ)

∂Σ
dt = o(1). This completes the

proof.

Corollary 2.1. For 1 ≤ r, s ≤ d, we have

sup
∥θ−θ0∥=o(1),Σ∈N (D0)

∣∣∣∣ ∂

∂Σ

∣∣∣∣[Ân(θ,Σ)−1]r,s = op(1).

Proof. First, by Theorem 2, Lemma 2.4 and the mean value theorem, we can show

that [Ân(θ,Σ)]r,s = [Ân(θ,Σ) − Ân(θ,D0) + Ân(θ,D0)]r,s = [A(θ0)]r,s + op(1).

By matrix differentiation, dA−1 = −A−1(dA)A−1. Thus Â−1
n −A−1

0 = −A−1
0 (Ân −
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A0)A
−1
0 +o(∥Ân−A0∥1), where A0 = A(θ0). The rest of the proof is straightforward

and thus omitted.

Lemma 2.5. For 1 ≤ r, s ≤ d, we have

sup
∥θ−θ0∥=o(1),Σ∈N (D0)

∣∣∣∣ ∂

∂Σ

∣∣∣∣[D̂n(θ,Σ)]r,s = op(1).

Proof. The result follows immediate from Lemma 2.4 and Corollary 2.1.

2.5.2 A sufficient condition for Assumption 2.3

Suppose f is the joint density for (X, Y ) and f(·|r, s) is the conditional density of

X(2) given X(1) = r and Y = s. Suppose g(·|s,θ) is the conditional density of X′β(θ)

given Y = s and g(·|r, s,θ) is the conditional density of X′β(θ) given X(1) = r and

Y = s. By change of variable, g(t|r, s,θ) = f(t− r′θ|r, s). Therefore,

g(t|s,θ) =
∫
g(t|r, s,θ)GX(1)|s(dr) =

∫
f(t− r′θ|r, s)GX(1)|s(dr),

where GX(1)|s is the conditional distribution of X(1) given Y = s. We also observe

that,

τ(z,θ) =
∫ x′β(θ)

−∞

∫ y

−∞ g(t|s,θ)GY (ds)dt+
∫∞
x′β(θ)

∫∞
y

g(t|s,θ)GY (ds)dt,

where GY is the marginal distribution of Y . Therefore if the conditional density

fX(2)|X(1),Y (·|r, s) has bounded derivatives up to order three for each (r, s) in the

support of space X(1) ⊗ Y , it is not difficult to show that Assumption 2.3 is satisfied.

The sufficient condition can be easily verified in certain common situations such as

when the conditional density fX(2)|X(1),Y is normal.
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2.6 Discussion

This chapter provides a simple yet general recipe for smoothing the discontinuous

rank correlation criteria function. The smoothing is self-induced in the sense that the

implied bandwidth is essentially the asymptotic standard deviation of the regression

parameter estimator. It is shown that such smoothing does not introduce any signif-

icant bias in that the resulting estimator is asymptotically equivalent to the original

maximum rank correlation estimator, which is asymptotically normal. The smoothed

rank correlation can be used as if it were a regular smooth criterion function in the

usual M-estimation problem, in the sense that the standard sandwich-type plug-in

variance-covariance estimator is consistent. Simulation and real data analysis provide

additional evidence that the proposed method gives the right amount of smoothing.
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Chapter 3

Variable Selection

3.1 Introduction

Variable selection has become increasingly important in the regression analysis due

to the growing size of data. It is common nowadays that hundreds or even thousands

of explanatory variables are available for many real-life regression problems. For

example, to build prediction models for 1-minute stock price data, we may use the

returns on stocks as well as their lagged returns of all possible lag lengths. The large

number of stocks interacting with various lag lengths results in a tremendous dataset.

However, only a small portion of those variables is useful for price prediction.

In an attempt to automatically select most important variables and construct

sparse prediction models, statisticians modify the least squares method by adding

different kinds of penalty terms to the objective functions. This methodology is the

so-called penalized least squares approach. Examples we are familiar with include

the bridge regression proposed by Frank and Friedman (1993), the least absolute

shrinkage and selection operator (LASSO) proposed by Tibshirani (1996, 1997), the
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smoothly clipped absolute deviation (SCAD) penalty proposed by Fan and Li (2001)

and the elastic net penalty proposed by Zou and Hastie (2005). The penalized least

squares idea has been extended naturally to other likelihood-based models including

the generalized linear models (Friedman, Hastie and Tibshirani, 2010) and Cox’s

proportional hazard model (Fan and Li, 2002).

The major difficulties of applying these regularization methods directly to selecting

variables for model (1.1) are the unknown error distribution and the discreteness of

the rank correlation function (2.1). We apply the self-induced smoothing method to

Han’s rank correlation function and add the SCAD penalty function to the smoothed

rank correlation function. Through the regularized and smoothed rank correlation

function, we derive a path algorithm for the variable selection problem. We use

a rank correlation information criteria to select the thresholding parameter of the

SCAD penalty. The resulting regularized estimator is proved to be
√
n-consistent

and achieve the asymptotic normality under certain regularity conditions.

The rest of this chapter is organized as follows. In Section 3.2, the new algorithm

is described and related large sample properties are developed. Section 3.3 contains

the proofs for the theoretical results. Section 3.4 covers extensive simulation studies

to compare the new method with existing ones. Section 3.5 contains the discussion

and concluding remark.

3.2 Main Results

The rank correlation function Qn(β) is discrete in β due to the indicator function

I(X′
iβ > X′

jβ). Therefore the usual optimization algorithms and the penalization

approach cannot be applied directly to the rank correlation function. Instead, the

penalty terms are introduced to the smoothed rank correlation function Q̃n.
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Define the regularized and smoothed rank correlation function

Q̃Re
n (θ) = Q̃n(θ)−

d∑
j=1

pλn(|θj|), (3.1)

where Q̃n(θ) is the smoothed rank correlation function given in Subsection 2.2.1, and

pλn is a non-concave penalty function. Define the regularized SMRCE (RSMRCE) as

θ̃
Re

n = argmaxθ∈ΘQ̃Re
n (θ). (3.2)

For the LASSO penalty pλ(θ) = λ|θ|, we know that ṗλ(θ) = λ for |θ| > 0 and the

thresholding rule associated with the LASSO penalty is

θ̂ = sgn(z)(|z| − λ)+, (3.3)

where z is the estimate from optimizing the original objective function without reg-

ularization. For the SCAD penalty

pλ(θ) =


λ|θ|, when λ ≥ |θ|,

λ2 + (α−1)λ2

2
− (αλ−|θ|)2

2(α−1)
, when λ < |θ| ≤ αλ,

λ2 + (α−1)λ2

2
, when αλ < |θ|,

(3.4)

we know that

p′λ(θ) =


λ, when λ ≥ |θ|,
αλ−|θ|
α−1

, when λ < |θ| ≤ αλ,

0, when αλ < |θ|

(3.5)

and the thresholding rule associated with the SCAD penalty is

θ̂ =


sgn(z)(|z| − λ)+, when |z| ≤ 2λ,

[(a− 1)z − sgn(z)aλ]/(a− 2), when 2λ < |z| ≤ aλ,

z, when |z| > aλ,

(3.6)
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where z is the estimate without regularization.

The thresholding parameter λn is selected by maximizing the following rank cor-

relation information criteria (RCIC)

RCIC(θ) = Qn(θ)−
1

2n

d∑
j=1

I(|θj| > 0), (3.7)

where Qn is the rank correlation function as defined in (2.1). Here
∑d

j=1 I(|θj| > 0)

is the number of non-zero coefficients or the l0-norm of θ. Therefore the RCIC can

be viewed as an AIC-type information criteria based on the rank correlation.

Algorithm 3.1. (A coordinate-descent path algorithm for RSMRCE plus the SCAD

penalty)

1. Fix the smoothing matrix in the self-induced smoothing method for Qn as Id×d.

2. Let the initial guess θ̃
Re,(0)

n be 0.

3. For stage k, choose λ(k)
n as the l∞-norm of the derivative of Q̃n evaluated at

estimate θ̃
Re,(k−1)

n .

4. Update θ̃
Re,(k)

n coordinate-wisely by maximizing Q̃n(θj), the smoothed rank cor-

relation function of θj where other components θl’s are fixed as the previous

estimates, and thresholded that maximizer by the rule in (3.6).

5. Within kth stage, repeat step 4 until θ̃
Re,(k)

n converge.

6. Go to next stage (k+1) and repeat steps 3, 4 and 5 until k reaches the maximum

number of pathes.

7. Choose the optimal k, or equivalently λ(k)
n , by maximizing the RCIC.

The finite sample performance of the above path algorithm has been assessed by

extensive simulation studies in Section 3.4.
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3.2.1 Large-sample properties

This subsection is devoted to the large sample theories. The main results are: 1. the

regularized and smoothed MRC estimator (RSMRCE) is
√
n−consistent by choosing

an appropriate non-concave penalty; 2. the regularized SMRCE is sparse and 3. the

non-zero part of RSMRCE achieves asymptotic normality.

Let θ0 = (θ10, ..., θd0)
′ = (θ′

10,θ
′
20)

′, where θ10 = (θ10, ..., θd00)
′. Without loss of

generality, we assume that θ20 = 0. Therefore, only d0 coefficients are non-zero.

Define

cn = max {ṗλn(|θj0|) : θj0 ̸= 0} . (3.8)

Under the Assumptions 2.1-2.3, we have the following asymptotic properties for

the RSMRCE with a generalized nonconcave penalty pλn . The detailed proofs are

given in the next section.

Theorem 3.1. If maxj{|p̈λn(|θj0|)| : θj0 ̸= 0} → 0, then the regularized SMRCE

θ̂
Re

n = argmaxΘ

[
Q̃n(θ)−

d∑
j=1

pλn(|θj|)

]
(3.9)

satisfies

θ̂
Re

n = θ0 +Op(n
−1/2 + cn), (3.10)

where cn is given by (3.8) and p̈λn is the second derivative of the nonconcave penalty

pλn .

For the SCAD penalty functions, if λn < maxj |θj0|/a, cn = 0 and maxj{|p̈λn(|θj0|)| :

θj0 ̸= 0} = 0. Hence, the resulting regularized SMRCE is
√
n-consistent. For the

LASSO penalty, ṗλn(|θ|) is λn except for θ = 0. Therefore in order to obtain
√
n-

consistency for the estimator regularized by LASSO penalty, we need the order of

λn to be O(n1/2), which does not meet the requirement for sparsity in the following

theorem.
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Under the same Assumptions 2.1-2.3, we have the following lemma showing the

sparsity of θ̂
Re

n .

Lemma 3.1. Suppose that the nonconcave penalty pλn satisfies

lim inf
n→∞

lim inf
θ→0+

{ṗλn/λn} > 0. (3.11)

If λn → 0 and
√
nλn → ∞ as n → ∞, then with probability tending to 1, for any

given θ1 such that ∥θ1 − θ10∥ = Op(n
−1/2), for any constant C,

Q̃Re
n ((θ1, 0)

′) = argmax∥θ2∥≤Cn−1/2

[
Q̃Re

n ((θ1,θ2)
′)
]
. (3.12)

Define the following diagonal matrix

Ξ = diag {p̈λn(|θ10|), ..., p̈λn(|θd00|)} . (3.13)

Denote

b =



ṗλn(|θ10|) sgn(θ10)

ṗλn(|θ20|) sgn(θ20)
...
...

ṗλn(|θd00|) sgn(θd00)


(3.14)

Under the Assumptions 2.1-2.3, we have the following oracle properties.

Theorem 3.2. Suppose that the nonconcave penalty pλn satisfies condition (3.11).

If λn → 0 and
√
nλn → ∞ as n → ∞, then with probability tending to 1, the

√
n-

consistent estimator θ̂
Re

n = (θ̂
Re

n,1, θ̂
Re

n,2)
′ satisfies:

(a) Sparsity: θ̂
Re

n,2 = 0.

(b) Asymptotic normality:

√
n(A1(θ10)−Ξ)

{
θ̂
Re

n,1 − θ10 + (A1(θ10)−Ξ)−1b
}

L−→ N(0,V1(θ10)), (3.15)
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where A1(θ) is the first d1-by-d1 block matrix of A(θ) which is defined in Proposition

2.1, and −A1(θ) is positive definite; V1(θ) is the first d1-by-d1 block matrix of V(θ)

which is defined in proposition 2.1.

As a consequence, the asymptotic covariance matrix of
√
nθ̂

Re

n,1 is

[A1(θ10)−Ξ]−1 V1(θ10) [A1(θ10)−Ξ]−1 . (3.16)

By Theorem 2.2, [
Â1(θ10)−Ξ

]−1

V̂1(θ10)
[
Â1(θ10)−Ξ

]−1

(3.17)

converges in probability to the asymptotic variance-covariance matrix (3.16). Here

Â1(θ) is the first d1-by-d1 block matrix of Â(θ) which is defined in (2.6); and V̂1(θ)

is the first d1-by-d1 block matrix of V̂(θ) which is defined in (2.5).

3.3 Proofs of the Theorems

In this section, proofs are provided for (1) the consistency of the regularized SMRCE,

(2) the sparsity of the RSMRCE under certain conditions of the penalty function,

and (3) the asymptotic normality of the RSMRCE for the non-zero coefficients under

the same conditions.

Proof of Theorem 3.1. Define αn = n−1/2 + cn. It suffices to show that for any given

ϵ > 0, there exists a large constant C such that

P

{
sup

∥u∥=C

Q̃Re
n (θ0 + αnu) < Q̃Re

n (θ0)

}
≥ 1− ϵ. (3.18)
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Since pλn(0) = 0, we have

Q̃Re
n (θ0 + αnu)− Q̃Re

n (θ0) ≤Q̃n(θ0 + αnu)− Q̃n(θ0)

−
d0∑
j=1

{pλn(|θj0 + αnuj|)− pλn(|θj0|)} ,

where u = (u1, ..., ud)
′ and θ0 = (θ10, ..., θd0). Then by the quadratic expansion of Q̃n

in Theorem 2.1, we have

Q̃Re
n (θ0 + αnu)− Q̃Re

n (θ0) ≤ αnu
′
(

1√
n
Wn

)
−1

2
u′A0uα

2
n + op(α

2
n + 1/n)

−
d0∑
j=1

{αnṗλn(|θj0|) sgn(θj0)uj

+α2
np̈λn(|θj0|)u2

j(1 + o(1))
}
.

(3.19)

It is obvious that the forth term is bounded by

d0αncnC + α2
n max {|p̈λn(|θj0|)| : θj0 ̸= 0}C2. (3.20)

Since max {|p̈λn(|θj0|)| : θj0 ̸= 0} → 0 and Wn = Op(1), the right hand side of (3.19)

is dominated by −1
2
u′A0uα

2
n for a sufficiently large C. This completes the proof.

Proof of Lemma 3.1. It suffices to show that with probability tending to 1 as n → ∞,

for any θ1 satisfying θ1 − θ10 = Op(n
−1/2) and for small ϵn = Cn−1/2 and index

j = d0 + 1, ..., d,

∂

∂θj
Q̃Re

n (θ) < 0 for 0 < θj < ϵn,

> 0 for − ϵn < θj < 0.

(3.21)

By definition,
∂

∂θj
Q̃Re

n (θ) =
∂

∂θj
Q̃n(θ)− ṗλn(|θj|) sgn(θj). (3.22)
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From the proof of Theorem 2.2, we know that ∂Q̃n(θ)/∂θj = Op(n
−1/2). Therefore

∂

∂θj
Q̃Re

n (θ) = λn

[
−λ−1

n ṗλn(|θj|) sgn(θj) +Op(n
−1/2/λn)

]
. (3.23)

Since

lim inf
n→∞

lim inf
θ→0+

{ṗλn/λn} > 0 and
√
nλn → ∞,

the sign of ∂Q̃Re
n (θ)/∂θj is the opposite of that of θj for any |θj| < ϵn. This completes

the proof.

Proof of Theorem 3.2. The sparsity (a) follows from Lemma 3.1. Then we want to

prove the asymptotic normality (b) for θ̂
Re

n,1.

By the definition of θ̂
Re

n and due to its sparsity (a), for j = 1, ..., d0,

0 =
∂Q̃Re

n (θ)

∂θj

∣∣∣∣
θ=(

ˆθ
Re

n,1,0)
′

=
∂Q̃n(θ)

∂θj

∣∣∣∣
θ=(

ˆθ
Re

n,1,0)
′
− ṗλn

(
|θ̂

Re

j |
)
sgn

(
θ̂
Re

j

)
.

(3.24)

By Taylor’s expansion,

0 =
∂Q̃n(θ0)

∂θj
+

d0∑
k=1

[{
∂2

∂θj∂θk
Q̃n(θ0) + op(1)

}(
θ̂
Re

k − θk0

)]
−
(
ṗλn(|θj0|) sgn(θj0) + {p̈λn(|θj0|) + op(1)}

(
θ̂
Re

j − θj0

))
.

(3.25)

Then similar to the proof of Theorem 2.2, it can be shown that

∂2

∂θj∂θk
Q̃n(θ0)

p−→ Ajk(θ0), (3.26)

and
√
n

∂

∂θj
Q̃n(θ0)

L−→ N(0,Vjj(θ0)). (3.27)

Therefore, by Slutsky’s theorem, we get the asymptotic normality of θ̂
Re

1 .
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3.4 Numerical Results

In this section, we apply the regularized method to the smoothed maximum rank

correlation estimator. The results from several large-p and small-n examples are

reported and compared for the finite sample performance. Since the regularized and

smoothed maximum rank correlation estimator (RSMRCE) does not rely on the error

distribution and the parametric form of the transformation function, the results are

expected to be robust for the RSMRCE. Without loss of generality, we consider the

linear model with different error distributions and different dependent levels for the

design matrix X. We choose SCAD penalty with a = 3.7 (Fan and Li, 2001) to

regularize the smoothed MRC estimator. The thresholding parameter λn is selected

by a rank correlation information criteria (RCIC). The RSMRCE with SCAD penalty

is compared with LASSO-BIC method where the thresholding parameter for the l1

penalty is selected by Bayesian information criteria (BIC). The performance of these

two methods are assessed in terms of median absolute deviation (MAD), the average

true positive (TP) rate which is the average number of correctly selected non-zeros,

the average true negative (TN) rate which is the average number of correctly selected

zeros, and the average false discovery rate (FDR). The average TP rate is also known

as the sensitivity and the average TN rate the specificity.

All simulations and computations are conducted in MATLAB.

Simulation 3.1. (A linear model with gaussian noise). In this example we consider the

linear regression model with gaussian noise. We choose the sample size n = 200 and

the number of predictors d = 1000. Therefore, this is the usual large-p and small-n

setup for variable selection problems. We simulate 500 datasets from the following

linear model

Y = X′β + σϵϵ, (3.28)
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where β = (1,θ′)′ = (1, 3, 1, 1, 1, 1, 1.5, 2, 2, 2, 0, ..., 0)′, ϵ follows standard normal

distribution, σϵ = 5, and X follows multivariate normal distribution with mean

µX = (20,−10, 10, 10, ..., 10, 10)′ and covariance matrix 25×ΣX where ΣX ’s diagonal

elements are all 1’s and off-diagonal elements are all equal to ρ. Here ρ is the pair-wise

correlation which is chosen as ρ = 0.0, 0.2, 0.4, 0.6, 0.8 to introduce different levels of

dependence to the design matrix.

The simulation results are summarized in Tables 3.1, 3.2 and 3.3. From Ta-

ble 3.1, we observe that the thresholding parameter λn selected by BIC for LASSO

method results in a large false discovery rate, which is almost 10 times bigger than

those obtained by the regularized SMRCE plus RCIC. The sensitivity and speci-

ficity rates for LASSO-BIC are slightly better than those for RSMRCE-RCIC when

ρ = 0.0, 0.2, 0.4, 0.6, while LASSO-BIC method sacrifices a lot in controlling the F-

DR. As the positive correlation parameter ρ increases, the FDR increases and the

sensitivity rate as well as the specificity rate decrease for most of the cases. From

Tables 3.2 and 3.3, we know that the bias introduced by the l1 penalty to LASSO

estimate is similar for different non-zero coefficients while the bias introduced by the

SCAD penalty varies. This is consistent with Theorem 3.2 and the fact that both

the first and second derivatives of the LASSO penalty remain constant for different

non-zero coefficients. As the positive correlation parameter ρ increases, the MAD as

well as the absolute value of bias increases for most of the cases.

Simulation 3.2. (A linear model with a mixture error distribution)In this example we

consider the linear regression model where the error distribution is a mixture. We

choose the sample size n = 200 and the number of predictors d = 1000. Therefore,

this is the usual large-p and small-n setup for variable selection problems. We simulate
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Table 3.1: The simulations for a linear model with gaussian noise

Method FDR Sensitivity Specificity

ρ = 0.0 RSMRCE 0.0238 0.9858 0.8962

LASSO 0.4597 1.0000 0.9091

ρ = 0.2 RSMRCE 0.0089 1.0000 0.9091

LASSO 0.6515 1.0000 0.9091

ρ = 0.4 RSMRCE 0.0463 0.9996 0.9087

LASSO 0.7009 1.0000 0.9091

ρ = 0.6 RSMRCE 0.0972 0.9771 0.8883

LASSO 0.7230 1.0000 0.9091

ρ = 0.8 RSMRCE 0.2188 0.7427 0.6753

LASSO 0.7482 1.0000 0.9091
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Table 3.2: MAD of estimated coefficients for a linear model with gaussian noise

True value Method ρ = 0.0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8

θ2 3 RSMRCE 0.2964 0.2951 0.3708 0.4228 0.6806

LASSO 0.2252 0.1974 0.2223 0.2555 0.3590

θ3 1 RSMRCE 0.1189 0.1213 0.1393 0.1780 0.2658

LASSO 0.2265 0.2021 0.2177 0.2513 0.3255

θ4 1 RSMRCE 0.1212 0.1166 0.1551 0.2029 0.2923

LASSO 0.2280 0.2057 0.2200 0.2631 0.3375

θ5 1 RSMRCE 0.1240 0.1147 0.1475 0.1882 0.2701

LASSO 0.2270 0.2017 0.2269 0.2521 0.3439

θ6 1 RSMRCE 0.1105 0.1150 0.1424 0.1893 0.2735

LASSO 0.2243 0.2021 0.2098 0.2483 0.3366

θ7 1.5 RSMRCE 0.1429 0.1541 0.1874 0.2423 0.3578

LASSO 0.2215 0.2014 0.2247 0.2503 0.3153

θ8 2 RSMRCE 0.2050 0.1941 0.2510 0.2882 0.4613

LASSO 0.2245 0.2005 0.2294 0.2503 0.3560

θ9 2 RSMRCE 0.1992 0.1942 0.2426 0.2860 0.4690

LASSO 0.2295 0.1990 0.2124 0.2521 0.3490

θ10 2 RSMRCE 0.1964 0.1989 0.2416 0.2894 0.4528

LASSO 0.2319 0.1995 0.2134 0.2606 0.3589
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Table 3.3: BIAS of estimated coefficients for a linear model with gaussian noise

True value Method ρ = 0.0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8

θ2 3 RSMRCE 0.0610 -0.2337 -0.3177 -0.3756 -0.6523

LASSO -0.2273 -0.1959 -0.2217 -0.2550 -0.3493

θ3 1 RSMRCE 0.0593 -0.0806 -0.1120 -0.1621 -0.2606

LASSO -0.2238 -0.2035 -0.2217 -0.2550 -0.3386

θ4 1 RSMRCE 0.0598 -0.0800 -0.1176 -0.1881 -0.2524

LASSO -0.2315 -0.2084 -0.2223 -0.2595 -0.3317

θ5 1 RSMRCE 0.0573 -0.0841 -0.1143 -0.1653 -0.2845

LASSO -0.2277 -0.2035 -0.2257 -0.2510 -0.3441

θ6 1 RSMRCE 0.0575 -0.0800 -0.1018 -0.1831 -0.3035

LASSO -0.2250 -0.2033 -0.2191 -0.2569 -0.3369

θ7 1.5 RSMRCE 0.0941 -0.1174 -0.1581 -0.1949 -0.3629

LASSO -0.2257 -0.2009 -0.2249 -0.2519 -0.3218

θ8 2 RSMRCE 0.1306 -0.1514 -0.2177 -0.2327 -0.4250

LASSO -0.2280 -0.1993 -0.2277 -0.2501 -0.3565

θ9 2 RSMRCE 0.1073 -0.1535 -0.2046 -0.2501 -0.4182

LASSO -0.2298 -0.2000 -0.2167 -0.2522 -0.3407

θ10 2 RSMRCE 0.1104 -0.1538 -0.2076 -0.2445 -0.4192

LASSO -0.2313 -0.1980 -0.2146 -0.2551 -0.3512
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500 datasets from the following linear model

Y = X′β + σϵϵ, (3.29)

where β = (1,θ′)′ = (1, 3, 1, 1, 1, 1, 1.5, 2, 2, 2, 0, ..., 0)′, the distribution of ϵ is a mix-

ture: 0.8N(0, 1) + 0.2t1 where t1 is the Student’s t distribution with degree of free-

dom equal 1, σϵ = 3, and X follows multivariate normal distribution with mean

µX = (20,−10, 10, 10, ..., 10, 10)′ and covariance matrix 25×ΣX where ΣX ’s diagonal

elements are all 1’s and off-diagonal elements are all equal to ρ. Here ρ is the pair-wise

correlation which is chosen as ρ = 0.0, 0.2, 0.4, 0.6, 0.8 to introduce different levels of

dependence to the design matrix. Note that the Student’s t distribution with 1 de-

gree of freedom is exactly the Cauchy distribution. Therefore, the error term in this

simulation design introduces about 20% outliers, which is used to test the robustness

of the regularized SMRCE as well as that of the LASSO method.

The simulation results are summarized in Tables 3.4, 3.5 and 3.6. From Table

3.4, we observe that the thresholding parameter λn selected by BIC for the LASSO

method results in a large false discovery rate, which is almost 10 times bigger than

those obtained by the regularized SMRCE plus RCIC. The sensitivity and specificity

rates for the LASSO-BIC method are now worse than those for the RSMRCE+RCIC

method when ρ = 0.0, 0.2, 0.4, 0.6, 0.8, while the LASSO-BIC method sacrifices a lot

in controlling the FDR. This is due to the mis-specification of the error distribution

by LASSO method. For ρ = 0.0, 0.2, 0.4, 0.6, the sensitivity and specificity rates for

the RSMRCE-RCIC method are similar to the corresponding values from Simulation

3.1. This shows that the RSMRCE-RCIC method is robust when the dependency

in X is not so strong. As the positive correlation parameter ρ increases, the FDR

increases and the sensitivity rate as well as the specificity rate decrease for most of the

cases. From Tables 3.5 and 3.6, we know that the bias introduced by the l1 penalty in
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LASSO is similar for different non-zero coefficients while the bias introduced by the

SCAD penalty varies. This is also consistent with Theorem 3.2 and the fact that both

and first and second derivatives of the LASSO penalty remain constant for different

non-zero coefficients. As the positive correlation parameter ρ increases, the MADs

as well as the absolute values of bias increase for most of the cases. The MADs as

well as the the absolute values of bias for the RSMRCE-RCIC method are smaller

than the corresponding values from Simulation 3.1. This is due to a smaller σϵ. Even

though σϵ is smaller for Simulation 3.2, the MADs as well as the the absolute values

of bias for the RSMRCE-RCIC method are bigger than the corresponding values from

Simulation 3.1. This is because the LASSO-BIC method relies on the normality of

the error distribution, which becomes a severe problem when there are many outliers

in data.

Remark 3.1. In theory, the SCAD penalty does not introduce bias to the regularized

SMRCE as well as other regularized estimators by choosing a proper thresholding

parameter λn. However, we found that the derivative of the SCAD penalty function

is zero only for |θi0| > aλ where a > 2. Therefore, for those θi0’s with small absolute

values, the estimator penalized by the SCAD penalty may have estimation bias due

to a unified thresholding parameter. This is the reason why the bias in Tables 3.3

and 3.6 are big when using the SCAD penalty. A feasible remedy is to make the

thresholding parameter λn adaptive in the sense that we make λn(θi) proportional to

|θ̂i|.

3.5 Discussion

This chapter develops a variable selection method for the general monotone trans-

formation model. The variable selection method consists of the regularized SMRCE
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Table 3.4: The simulations for a linear model with mixed noise

Method FDR Sensitivity Specificity

ρ = 0.0 RSMRCE 0.0019 0.9858 0.8962

LASSO 0.2569 0.9376 0.8524

ρ = 0.2 RSMRCE 0.0061 1.0000 0.9091

LASSO 0.5033 0.9367 0.8516

ρ = 0.4 RSMRCE 0.0434 1.0000 0.9091

LASSO 0.6182 0.9433 0.8576

ρ = 0.6 RSMRCE 0.0943 0.9996 0.9087

LASSO 0.6969 0.8947 0.8134

ρ = 0.8 RSMRCE 0.1649 0.9787 0.8897

LASSO 0.7363 0.8578 0.7799
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Table 3.5: MAD of estimated coefficients for a linear model with mixed noise

True value Method ρ = 0.0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8

θ2 3 RSMRCE 0.2063 0.1896 0.2404 0.3192 0.3843

LASSO 0.3376 0.2887 0.2889 0.3355 0.4208

θ3 1 RSMRCE 0.0765 0.0742 0.0825 0.1162 0.1573

LASSO 0.3307 0.2940 0.2880 0.3430 0.4061

θ4 1 RSMRCE 0.0750 0.0712 0.0829 0.1162 0.1525

LASSO 0.3170 0.2989 0.3035 0.3430 0.4066

θ5 1 RSMRCE 0.0791 0.0692 0.0862 0.1225 0.1573

LASSO 0.3154 0.3063 0.2904 0.3389 0.3979

θ6 1 RSMRCE 0.0772 0.0710 0.0854 0.1108 0.1528

LASSO 0.3301 0.2991 0.2819 0.3521 0.4332

θ7 1.5 RSMRCE 0.1023 0.1063 0.1229 0.1614 0.2097

LASSO 0.3180 0.3027 0.2865 0.3403 0.4041

θ8 2 RSMRCE 0.1356 0.1336 0.1598 0.2107 0.2655

LASSO 0.3366 0.2874 0.3013 0.3438 0.4063

θ9 2 RSMRCE 0.1297 0.1372 0.1516 0.2123 0.2616

LASSO 0.3339 0.3081 0.2793 0.3314 0.3906

θ10 2 RSMRCE 0.1353 0.1292 0.1516 0.2132 0.2472

LASSO 0.3425 0.2787 0.2954 0.3423 0.3850
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Table 3.6: BIAS of estimated coefficients for a linear model with mixed noise

True value Method ρ = 0.0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8

θ2 3 RSMRCE -0.0819 -0.1492 -0.2019 -0.2897 -0.3313

LASSO -0.4539 -0.4512 -0.4006 -0.5112 -0.7039

θ3 1 RSMRCE 0.0490 -0.0494 -0.0682 -0.1021 -0.1466

LASSO -0.4091 -0.3661 -0.3671 -0.4022 -0.4866

θ4 1 RSMRCE 0.0519 -0.0495 -0.0671 -0.1020 -0.1619

LASSO -0.4552 -0.3897 -0.3681 -0.4045 -0.5008

θ5 1 RSMRCE 0.0516 -0.0508 -0.0736 -0.1052 -0.1697

LASSO -0.4209 -0.3423 -0.3673 -0.4334 -0.4737

θ6 1 RSMRCE 0.0485 -0.0531 -0.0673 -0.0983 -0.1611

LASSO -0.3858 -0.3914 -0.3269 -0.4221 -0.5013

θ7 1.5 RSMRCE 0.0786 -0.0766 -0.1636 -0.1404 -0.1652

LASSO -0.4176 -0.3833 -0.3947 -0.5001 -0.5645

θ8 2 RSMRCE 0.0951 -0.1007 -0.1389 -0.1919 -0.2288

LASSO -0.5056 -0.3844 -0.4137 -0.5645 -0.5916

θ9 2 RSMRCE 0.1037 -0.1014 -0.1332 -0.1932 -0.2201

LASSO -0.4619 -0.4104 -0.4095 -0.5523 -0.6119

θ10 2 RSMRCE 0.1065 -0.0976 -0.1289 -0.1913 -0.2139

LASSO -0.4777 -0.4165 -0.4215 -0.5087 -0.6203
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and the rank correlation information criteria. For the regularized SMRCE, we add

suitable penalty functions such as SCAD to the smoothed rank correlation function

which is defined in Chapter 2. The rank correlation information criteria is a modified

rank correlation function which is adjusted for the dimensional complexity for the

selected predictors. It is shown that such regularized SMRCE achieves desired spar-

sity. If the thresholding parameter λn are selected properly, the RSMRCE does not

introduce any significant bias in the sense that the regularized estimator is consistent

and asymptotically normal. Since the method based on the smoothed rank correla-

tion function is distribution-free, the RSMRCE+RCIC method is more robust than

other parametric variable selection algorithms. Simulation studies provide additional

evidence that the proposed method are better than those existing methods such as

LASSO-BIC.
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Chapter 4

Estimation of the Monotone

Transformation Function

4.1 Introduction

In this chapter we consider estimating the monotone transformation function H of

model 1.1. Without loss of generality, we assume that H is strictly increasing. Instead

of working on the original model 1.1, we focus on the equivalent model

Λ0(Y ) = X′β + ϵ, (4.1)

where Λ0(·) = H−1(·) is the inverse of H and thus is strictly increasing as well. Chen

(2002) proposed a rank-based estimator for Λ0 assuming that there is a
√
n-consistent

estimator for β(θ) (as in Sherman (1998)). Simulation studies by Chen (2002) showed

that the rank-based method has good finite sample performance. Furthermore, Chen

(2002) proved that under mild regularity conditions the rank-based estimator is u-

niformly consistent over a closed interval of Y and it also converges weakly to a

Gaussian process with mean 0 and a bounded covariance function.
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Although Chen’s rank-based estimator for the transformation function Λ0 achieves

desired large sample properties, it is very difficult to estimate the covariance function

for the limiting Gaussian process because the rank criteria function is discrete. Chen

(2002) proposed a finite difference approach to approximate the covariance function

but that approach involves with bandwidth selection. Therefore the discreteness of

the rank correlation function is a major drawback for the rank-based estimator and

makes the statistical inference on the estimate very difficult.

To address the issue of discreteness, the self-induced smoothing technique devel-

oped in Chapter 2 is applied to Chen’s rank-based estimate. The resulting smoothed

rank-based estimate is uniformly consistent over the same interval of Y and it con-

verges weakly to a Gaussian process as well, which is the same as the limiting Gaussian

process for Chen’s rank-based estimator. From the smoothed rank correlation func-

tion of Λ0, a close-form formula can be derived easily for the covariance function of

the limiting Gaussian process. In addition, the covariance formula is consistent.

The rest of this chapter is organized as follows. In Section 4.2, the new methods

are described and related large sample properties are developed. Section 4.3 contains

discussions and some concluding remarks.

4.2 Main Results

In this section, the self-induced smoothing is applied to the rank correlation function

of Λ0. The section is further divided into two subsections, with the first introducing

the estimation method and the covariance formula, the second establishing the large

sample properties.
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4.2.1 Methods

Note that model 4.1 continues to hold if Λ0 and ϵ are replaced by Λ0 + α and ϵ + α

for any constant α (a location shift), or Λ0, ϵ and β by Λ0α, ϵα and αβ for any

positive constant α (a scaling coefficient). To address this identifiability issue, we

assume that Λ0(y0) = 0 for some finite y0 and we reparameterize β as (θ, 1). Define

diy = I[Yi ≤ y] = I[X′
iβ + ϵi ≤ Λ0(y)] and diy0 = I[Yi ≤ y0] = I[X′

iβ + ϵi ≤ Λ0(y0)].

The rank correlation function for Λ is defined as

QΛ
n(y,Λ, b) =

1

n(n− 1)

∑
i̸=j

(diy − djy0)I[X
′
ib−X′

jb ≥ Λ]. (4.2)

Chen’s rank-based estimate is defined as

Λ̂n(y) = argmaxΛ∈MΛ
QΛ

n(y,Λ, bn), (4.3)

for any given y ∈ [y2, y1], where MΛ is an appropriate compact set and bn is the
√
n

consistent estimator for β.

The objective function QΛ
n(y,Λ, b) is a step function, to which we can apply the

self-induced smoothing technique. Let Z be a random variable with mean 0 with

standard normal distribution. Assume that Z is independent with data and let EZ

be the expectation with respect to Z given data. A self-induced smoothing for QΛ
n is

Q̃Λ
n(y,Λ, b) = EZQ

Λ
n(y,Λ + Z/

√
n, b).

Following the same notations in Chapter 2, we calculate the smoothed rank cor-

relation function for Λ as

Q̃Λ
n(y,Λ, b) =

1

n(n− 1)

∑
i̸=j

(diy − djy0)Φ
(√

n(X′
ijb− Λ)

)
. (4.4)

We then use Λ̃n(y) = argmaxΛ∈MΛ
Q̃Λ

n(y,Λ, bn) as the smoothed rank estimator for

Λ0(y).
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Define

V̂ Λ
n (y, y′,Λ, b) =

1

n3

n∑
i=1

{∑
j

{
n(diy − djy0)(diy′ − djy0)

ϕ
(√

n(X′
ijb− Λ(y))

)
ϕ
(√

n(X′
ijb− Λ(y′))

)}} (4.5)

and

ÂΛ
n(y,Λ, b) =

1

2n(n− 1)

∑
i̸=j

{
n(diy − djy0)ϕ̇

(√
n(X′

ijb− Λ(y))
)}

, (4.6)

where the notations follow from those in Chapter 2.

Let

D̂Λ
n (y, y

′,Λ, b) =
[
ÂΛ

n(y,Λ, b)
]−1

V̂ Λ
n (y, y′,Λ, b)

[
ÂΛ

n(y
′,Λ(y′), b)

]−1

. (4.7)

Then in the next subsection we will see that D̂Λ
n (y, y

′, Λ̃n, bn) converges in probability

to the covariance function of the limiting Gaussian process for Chen’s rank-based

estimate.

4.2.2 Large-sample properties

In this section, we derive the large sample properties of the smoothed rank-based

estimator as well as the covariance formula defined in the previous subsection. These

properties are based on the following assumptions as well as Assumptions 2.1-2.3 in

Chapter 2.

Assumption 4.1. Λ0 is strictly increasing (or decreasing). Λ0(y0) = 0, [Λ0(y2 −

ϵ∗),Λ0(y1+ ϵ∗)] ⊂ MΛ for a small positive number ϵ∗ for some y0, y1, y2 in the support

of Y , where MΛ is a compact interval.

Define τΛ(ω, y,Λ, b) = E
[
hΛ(ω,W, y,Λ, b) + hΛ(W,ω, y,Λ, b)

]
where

hΛ(ω1, ω2, y,Λ, b) =
(
I[y1 ≥ y]− I[y2 ≥ y0]

)
I[x1b− x2b ≥ Λ]
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for ω1 = (x1, y1), ω2 = (x2, y2), and W = (X, Y ).

Assumption 4.2. V Λ(y) = E[∂2τ(W, y,Λ0(y),β0)/∂Λ
2]/2 is negative for each y ∈

[y2, y1], and uniformly bounded away from 0.

Assumption 4.3. The estimator bn is
√
n-consistent, for example, Han’s MRC estima-

tor and the SMRCE defined in Chapter 2.

The above assumptions are the same regularity conditions required by Chen’s

rank-based estimator. Under the Assumptions 2.1-2.3 and 4.1-4.3, the following the-

orem shows the uniform consistency and the weak convergence of Λ̃n(y). In addition,

the following theorem establishes the asymptotic equivalency between Λ̂n(y), Chen’s

rank-based estimator, and Λ̃n(y), the smoothed rank estimator.

Theorem 4.1. Under Assumptions 2.1-2.3 and 4.1-4.3: (i) supy2≤y≤y1 |Λ̃n(y)−Λ0(y)| =

op(1); (ii) uniformly over y ∈ [y2, y1],

√
n(Λ̃n(y)− Λ0(y)) =

1√
n

n∑
i=1

Jy0,y(Xi, Yi) + op(1), (4.8)

and
√
n(Λ̃n(y)− Λ0(y))

w−→ HΛ(y0, y) (4.9)

where HΛ(y0, y) is a Gaussian process with mean 0 and a covariance function

ΓΛ(y, y′; y0) = E[Jy0,y(X, Y )Jy0,y′(X, Y )] (4.10)

with

Jy0,y(X, Y ) = −V Λ(y)−1 ∂

∂Λ
τΛ(W, y,Λ0(y),β0). (4.11)

Moreover, the limiting Gaussian process for
√
n(Λ̃n(y) − Λ0(y)) is the same as that

for
√
n(Λ̂n(y)− Λ0(y)).
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Theorem 4.2. The covariance estimate D̂Λ
n (y, y

′, Λ̃n, bn) based on (4.7) converges in

probability to the covariance function ΓΛ(y, y′; y0) in (4.10) uniformly over {(y, y′) :

y ∈ [y2, y1], y
′ ∈ [y2, y1]}.

The proofs for the above two theorems are similar to those for Theorems 2.2.1-2

and therefore omitted.

4.3 Discussion

In this chapter, we apply the self-induced smoothing method developed in Chapter 2

to Chen’s rank-based estimator for the strictly monotone function Λ0. Through the

smoothed rank correlation function of Λ0, we derive a close form covariance formula for

the limiting Gaussian process for Chen’s rank-based estimate, and thus overcome the

difficulty of making statistical inference on the rank-based estimate for Λ0. There are

remaining questions for estimating Λ0 because both the original and the smoothed

rank estimate are constructed point-wisely, and therefore fail to provide a unified

functional estimate for Λ0. The point-wise estimate Λ̃n or Λ̂n can be used together

with those nonparametric curve fitting methods such as monotonic splines methods

to achieve a unified functional estimate. Although the fitting results from Figures 4.1-

4 look good, the asymptotic properties remain unknown for this combined method.

This is one of our future research directions.
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Figure 4.1: Estimation of the exponential function
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Figure 4.2: Estimation of the logarithm function
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Figure 4.3: Estimation of the logistic function
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Figure 4.4: Estimation of the mixed function
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Chapter 5

Multiple Hypotheses Testing

5.1 Introduction

In this chapter, we develop a new multiple hypotheses testing method for linear

models, which can be generalized for the monotone transformation model through

the estimation method developed in Chapter 4. This research is motivated by the

applied research of REE studies with Dr. Wang from the New York City Obesity

Research Center.

5.1.1 Background

The resting energy expenditure (REE) measures the amount of calories required for

a 24-hour period by the whole body during a non-active period. It is one of the

important quantities in nutrition study because it provides a reference level of daily

energy consumption for human so as to prevent any under- or over-feeding. Therefore,

the REE is so important that it is carefully monitored during all kinds of weight-loss

programs.
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There are direct and indirect methods to measure the resting energy expenditure.

The direct method involves with putting a patient in a calorimeter and measuring the

amount of heat produced by the body. The indirect method involves with analyzing

the continuous gas exchange between O2 and CO2 of the patient under the resting

condition, and then transform the exchange rates to the energy consumption. Both

of these two methods require not only certain machine such as a calorimeter, sensor

and metabolic cart, but also strict conditions such as a resting state of the patient,

no consumption of food and calorie-containing beverages prior to the measurement

and certain levels of environmental temperature and humidity. Therefore, a large-

scale clinical study is prohibitive and the sample size is limited for certain groups of

patients, which is one of the major difficulties to examine the REE.

Besides the importance of measuring the REE, it is also crucial to understand the

composition of the resting energy expenditure for both nutrition study and clinical

practice. To better understand the composition of REE, a lot of prediction models

were proposed, for instance, Harris Benedict equation (Harris and Benedict, 1918 and

1919; Roza and Shizgal, 1984), organ-tissue level model and cellular level model. In

this chapter, we examine the organ-tissue level model which decomposes the whole-

body resting energy expenditure as a summation of resting energy consumptions in

all organs and tissues of human body. According to the literature [ see Elia (1992)

and Gallagher et al. (1998)], there are six major organs and tissues considered in the

mechanism of resting energy consumption, i.e., liver, brain, heart, kidneys, skeletal

muscle and adipose tissue. Therefore, the organ-tissue level REE model is

REE =
7∑

i=1

(Ri × Ti), (5.1)

where Ti (i = 1, ..., 6) is the individual organ/tissue mass in kilogram, i is the index for

one organ/tissue, and Ri is the resting metabolic rate of corresponding organ/tissue
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in kilocalorie per kilogram and per day. In addition, T7 is the residual mass of other

organs and tissues, i.e., excluding the masses of 6 major organs and tissues from

the whole body mass. Therefore the 7th (last) component of the summation in (5.1)

accounts for the total energy consumption of the rest of the human body. The choice

of major organs and tissues in (5.1) is reasonable because these 4 organs, i.e., liver,

brain, heart and kidneys, have particularly high basal specific metabolic rate and

the 2 tissues, i.e., skeletal muscle and adipose tissue, have relatively large masses.

The masses of major organs can be measured by magnetic resonance imaging (MRI)

and the masses of tissues can be measured by a dual-energy X-ray absorptiometry

scanner. Therefore, the main problem of exploring the relationship between REE

and body composition becomes how to evaluate the resting organ/tissue metabolic

rate for a certain population. Some studies, e.g. by Wang et al. (2005, 2007, 2010),

Bosy et al. (2003), Gallagher et al. (2000) and Wakabayashi et al. (2002) find

that the changes in the whole body and liver showed an expansion of extracellular

compartments and a relative loss of cellularity among older adults, which results in

the decrease in both metabolic rates and REE for older adults. Therefore, it is also

important to evaluate the Ri values for different population so as to understand the

basic energy requirement of a certain group.

Elia (1992) suggested the following set of coefficients for healthy adults as the

resting metabolic rates in (5.1): 200 for liver, 240 for brain, 440 for heart and kidneys,

13 for skeletal muscle, 4.5 for adipose tissue and 12 for the residual organs and tissues.

However, this set of coefficients has never been closely examined let alone whether

Elia’s Ri values are applicable to a certain group of patients.
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5.1.2 The issue of collinearity

The mechanistic REE model (5.1) appears to be a natural candidate for the use of

multiple linear regression. However, the significant dependency among the organ and

tissue masses and the limited sample size make the least squares fit to (5.1) unstable.

Specifically, the standard errors for the estimates of Ri’s are exceptionally large and

thus the individual 95% confidence interval of each Ri provides little information of

the true value. In addition, the high collinearity among Ti values raises question-

s of using standard multiple testing procedures such as Bonferroni’s correction and

step-up/step-down procedures. For instance, the Holm’s (1979) step-down procedure

and the Benjamini-Hochberg (1995) false discovery rate (FDR) controlling procedure,

both of which are conservative because of ignoring the dependent structure of the esti-

mates. To deal with the dependent case, Cohen et al. (2009) proposed the maximum

residual down (MRD) method for testing the means of correlated normal random

variables. They showed that the MRD method is intuitive and have a desirable con-

vexity property required for admissibility. However, there are still two problems of

directly applying the MRD method to our study. At first, it is difficult to find the

optimal choice of the critical values. Secondly, it is still unclear whether the MRD

method is applicable to linear regression models, especially for large p and small n

problems.

Another issue associated with testing the REE model (5.1) is how to formulate

the testing hypothesis. One candidate of testing Elia’s Ri values is to examine the

following multiple hypotheses,

H i : Ri = Ri0 vs Ki : Ri ̸= Ri0, i = 1, ..., 7, (5.2)

where Ri0 is the metabolic rates of ith organ/tissue suggested by Elia. However,

since the organ and tissue masses are highly correlated, the standard multiple testing
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Figure 5.1: Nested testing hypotheses

procedures may accept all Elia’s coefficients for older adults, which is actually the

opposite to the empirical findings (Wang et al., 2005, 2007 and 2010; Bosy et al.,

2003; Gallagher et al., 2000; Wakabayashi et al., 2002), with a large probability.

Therefore, in this chapter, we consider the following sequence of hypotheses

H0 : for all i’s, Ri = Ri0 vs K0 : at least 1 i, Ri ̸= Ri0

H1 : exactly 1 i, Ri ̸= Ri0 vs K1 : at least 2 i’s, Ri ̸= Ri0

∣∣K0

...

...

Hp−1 : exactly p-1 i’s, Ri ̸= Ri0 vs Kp−1 : for all i’s, Ri ̸= Ri0

∣∣Kp−2

(5.3)

where H i is nested in Ki−1 [see Figure 5.1 for illustration]. Obviously, a sequential

decision-making is desirable for this situation.

To test (5.3), we developed a step-wise multiple testing procedure which is very

intuitive and powerful. The new method is based on performing block-wise marginal

regressions repeatedly, which makes it essentially different from all existing methods,
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although our procedure bears the similarity with MRD method and SURE indepen-

dence screening method (Fan and Lv, 2008). The new method, which is called the

minimax of marginal regression distances (MMRD) step-down procedure, have the

following advantages. At first, the MMRD procedure controls the family-wise error

rate in the strong sense meanwhile it is more powerful to detect the possible deviation

from null hypotheses. Secondly, the MMRD procedure breaks down the dependent

structure among the explanatory variables through block-wise marginal regressions.

It reduces the effect of the troublesome collinearity among the covariates. Specifically,

the earlier the individual hypothesis is selected, the less the collinearity is and thus

the more powerful the test of that hypothesis becomes. Thirdly, the MMRD test-

ing statistics are minimax solutions to some optimization problems and thus achieve

certain optimality.

In the next section, we define the marginal statistics as well as the block-wise

marginal regression, which are the basis of the MMRD step-down procedure. In

Section 5.3, we describe the MMRD procedure and use the new method to evaluate

Elia’s resting organ/tissue metabolic rates for different groups of people. In Section

5.4, some distributional properties of MMRD statistics are developed and the validity

of the MMRD method is established. In Section 5.5, other properties of the MMRD

procedure are discussed.

5.2 Basics

5.2.1 Marginal statistics

Let us now focus on the following linear regression model:

Y = Xβ + ϵ. (5.4)
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Here Y = (Y1, ..., Yn)
T is the vector of n sample responses where n is the sample size;

X = (X(1), ..., X(p)) is the matrix of p predictors, i.e., X(i)’s; ϵ is a normal random

vector with mean 0 and a diagonal covariance matrix with all diagonal elements being

σ2.

The standard estimation procedure for (5.4) is to perform a least squares (LS) fit

to (5.4) for the whole data. The resulting least squares estimate is

β̃ = [XTX]−1XTY, (5.5)

which is the best linear unbiased estimator (BLUE). In other word, the variance of

the β̃ achieves the lower bound for those of unbiased linear estimators which are all

in the form of T (X)Y . Even though the least squares estimator achieves the lower

bound, the component-wise variances are exceptionally large when XTX is nearly

singular. Therefore the power of the test statistics based on the LS fit is not powerful

enough to detect potential bias of Elia’s coefficients.

Recalling the first step of forward stage-wise regression method (Goldberger, 1961;

Goldberger and Jochemes, 1961; Freund et al., 1961a, b) and the SURE independence

screening method (Fan and Lv, 2008), define the following marginal statistics,

β̂
(i)

=
[[
X(i)

]T
X(i)

]−1 [
X(i)

]T [
Y −X(−i)β

(−i)
0

]
, (5.6)

where X(i) is the sample vector of ith predictor, X(−i) is the sub-matrix by deleting

the ith column vector in X and β
(−i)
0 is the sub-vector by deleting the ith element

in β0, the hypothesized values. Actually, β̂
(i)

is the least squares estimate for the

following regression problem

Y −X(−i)β
(−i)
0 = X(i)β(i) + ϵ. (5.7)
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Since

β̂
(i)

=
[[
X(i)

]T
X(i)

]−1 [
X(i)

]T [
Y −X(−i)β

(−i)
0

]
= β(i) +

[[
X(i)

]T
X(i)

]−1 [
X(i)

]T
X(−i)

[
β(−i) − β

(−i)
0

]
+
[[
X(i)

]T
X(i)

]−1 [
X(i)

]T
ϵ,

(5.8)

it is obvious that the covariance matrix of β̂ = (β̂
(1)
, · · · , β̂

(p)
)T is

Σ̂ = σ2G
[
XTX

]
G (5.9)

where G is a diagonal matrix,

G = diag

{[[
X(1)

]T
X(1)

]−1

, · · · ,
[[
X(p)

]T
X(p)

]−1
}
.

Its proof is given in Section 5.5. Then the variance of β̂
(i)

is

σ2
[[
X(i)

]T
X(i)

]−1

.

For β̃
(i)
, the least squares estimator, it can be shown that its variance is

σ2
[[
X(i)

]T
X(i) − c

]−1

where

c =
[
X(i)

]T
X(−i)

[[
X(−i)

]T
X(−i)

]−1 [
X(−i)

]T
X(i) ≥ 0

Therefore, the variance of the marginal statistics β̂
(i)

is smaller than that of the LS

estimate β̃
(i)
.

Remark 5.1. By definition,

β̃ = β + [XTX]−1XT ϵ, (5.10)
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and

β̂
(i)

= β(i) +
[[
X(i)

]T
X(i)

]−1 [
X(i)

]T
ϵ

+
[[
X(i)

]T
X(i)

]−1 [
X(i)

]T
X(−i)

[
β(−i) − β

(−i)
0

]
.

(5.11)

Therefore, the least squares estimate β̃ is unbiased but the marginal fit β̂ is biased.

Specifically, if the true parameter β is not equal to the hypothesized value β0, then the

third part, which contains β(−i)−β
(−i)
0 , in the above decomposition of β̂

(i)
, introduces

bias to the estimation of β. In other words, β̂ is no longer a pivotal quantity and thus

the interpretation of the resulting confidence interval is different. This is a major

difficulty in doing interval estimation for multiple testing problems. The resulting

confidence intervals or the P-values should be interpreted as conditional one [see

Cohen et al. (2009)]. However, β̂ is conditional unbiased in the sense that

E

[
β̂
(i)
∣∣∣∣β(−i) = β

(−1)
0

]
= β(i). (5.12)

5.2.2 Chi-squared statistics

From β̃ and β̂, Chi-squared statistics can be constructed in a sandwich form as follows,

η̂ = (β̂ − β0)
TΣ−1

β̂
(β̂ − β0), (5.13)

and

η̃ = (β̃ − β0)
TΣ−1

β̃
(β̃ − β0). (5.14)

It is claimed that the two Chi-squared tests have the same power for any specific

alternative hypotheses K : β = β∗. The proof requires some calculation and thus is

provided in Section 5.5 with details.

Remark 5.2. This property reveals that although the marginal statistics are less vari-

able, it is still not aggressive to reject the null hypotheses (5.2) simultaneously in
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the sense that the resulting ellipsoid statistics has the same power of detecting the

possible deviation from null as that of the ellipsoid statistics based on LS estimate.

5.3 Method and Application

5.3.1 Generalized marginal statistics

In the last section, we described the marginal statistics and discussed its properties.

In this section, the definition of marginal statistics is generalized.

Instead of fixing (p − 1) coefficients at their hypothesized values each time such

as in the model (5.7), let us fix 0 < m < p− 1 coefficients at hypothesized values and

estimate others by a least squares fit. Specifically, for a given set B = {b1, ..., bm+1}

whose cardinality |B| = m+ 1, we consider the following models

Y −X(B\{bj})β
(B\{bj})
0 = X({bj}∪Bc)β({bj}∪Bc) + ϵ, j = 1, ...,m+ 1. (5.15)

Here for a given set A = {a1, ..., al}, X(A) = (X(a1), X(a2), ..., X(al)), which is a n-by-l

matrix, and β(A) = (β(a1), β(a2), ..., β(al))T , which is a vector of l elements.

For each k ∈ {1, ...,m + 1}, we use the least squares method to fit one model in

(5.15) when j = k and get an estimate for β({bk}∪Bc) as

β̄
({bk}∪Bc)

=
[[
X({bk}∪Bc)

]T
X({bk}∪Bc)

]−1

×
[
X({bk}∪Bc)

]T [
Y −X(B\{bk})β

(B\{bk})
0

]
.

(5.16)

As in (5.11), β̄
({bk}∪Bc)

can be decomposed as follows,

β̄
({bk}∪Bc)

= β({bk}∪Bc) +
[[
X({bk}∪Bc)

]T
X({bk}∪Bc)

]−1 [
X({bk}∪Bc)

]T
ϵ

+
[[
X({bk}∪Bc)

]T
X({bk}∪Bc)

]−1 [
X({bk}∪Bc)

]T
X(B\{bk})

[
β(B\{bk}) − β

(B\{bk})
0

]
.
(5.17)
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Therefore the variance of β̄
({bk}∪Bc)

is

σ2
[[
X({bk}∪Bc)

]T
X({bk}∪Bc)

]−1

,

and β̄
({bk}∪Bc)

is still conditional unbiased in the sense that

E

[
β̄
({bk}∪Bc)

∣∣∣∣β(B\{bk}) = β
(B\{bk})
0

]
= β({bk}∪Bc). (5.18)

Hence for a given set B, let

β̂
(B)

= (β̄
(b1), β̄

(b2), ..., β̄
(bm+1))T (5.19)

be the generalized estimator of β(B).

5.3.2 MMRD step-down procedure

In this section, we combine the generalized marginal statistics with a maximizing step-

down procedure to establish a sequential decision-making for testing the multiple

hypotheses (5.3). To describe the MMRD step-down testing procedure, we firstl

define the testing statistics, the minimax of marginal regression distances, as well as

the critical values and testing functions for each individual hypothesis in (5.3).

Definition 5.1. For simplicity, the following definitions are used in the MMRD step-

down procedure.

1. For any matrix A, diag(A) is a diagonal matrix with diagonal elements the same

as A’s.

2. For a diagonal matrix D = diag{d1, ..., dp}, D1/2 , diag{
√
d1, ...,

√
dp} and

D−1/2 , diag{1/
√
d1, ..., 1/

√
dp}.
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3. UB
j ,

[
diag

(
COV (β̂

(B)
)
)]−1/2

×
[
β̂
(B)

− β
(B)
0

]
, for any index set B ∈ {B′ :

B′ ⊂ {1, 2, ..., p}, |B′| = p+ 1− j}. Here β̂
(B)

is defined as in (5.19) and COV (β̂
(B)

)

is the covariance matrix of β̂
(B)

.

4. The test statistics Uj’s are defined as follows.

For j = 1,

U1 ,
∣∣UB

1

∣∣
∞;

For j ≥ 2,

Uj , min
|B|=p+1−j

∣∣UB
j

∣∣
∞

where |v|∞ is the l∞ norm of vector v.

5. The critical values Cj’s are defined as follows.

For j = 1, C1 is the upper α quantile of U1 such that

P

(
U1 ≥ C1

∣∣∣∣H0

)
= α;

For j ≥ 2, Cj , max
|B|=p+1−j

CB
j where CB

j is the upper α quantile of
∣∣UB

j

∣∣
∞ such

that

P

(∣∣UB
j

∣∣
∞ ≥ CB

j

∣∣∣∣ β(B) = β
(B)
0

)
= α.

6. For Hj−1 in (5.3), define testing functions ϕj(X, Y ;α) = I(Uj > Cj).

Remark 5.3. UB
j is a random vector of (p+1− j) correlated standard normal random

variables given β(B) = β
(B)
0 and without any constrain on β(Bc). Specifically, UB

1 is

a normal random vector with mean 0 and covariance matrix G1/2
[
XTX

]
G1/2 given

β = β0. Here G is defined in (5.9).

Then based on the testing functions ϕj’s, the testing procedure is defined as fol-

lows.
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Algorithm 5.1. (MMRD)

1. If ϕ1 = 0, then accept H0 and terminate the procedure. Otherwise reject H0

and continue the following steps.

2. If ϕj = 0 (j ≥ 2), then accept Hj−1 and terminate the procedure. Otherwise

reject Hj−1 and continue to test Hj.

3. Repeat step 2 until j = p.

5.3.3 Application to the REE studies

We applied the MMRD step-down testing procedure to evaluating Elia’s metabolic

rates of major organs and tissues for model (5.1). The distribution of U1 is simulated

for REE model based on data from Wang and et al. (2011).

The test statistics calculated from MMRD procedure are summarized in Table

5.1. From Table 5.1 we know that there are exactly two organ/tissue metabolic rates

different from Elia’s coefficients for the elderly. Those two major organs/tissues are

probably kidneys and liver. This finding matches the results in Wang et al. (2005,

2007, 2010), Bosy et al. (2003), Gallagher et al. (2000) and Wakabayashi et al. (2002)

5.4 Theory

5.4.1 Controlling the error rate

In this section, we show that the MMRD procedure controls the family-wise error

rate (FWER) in a natural way. Recall the definition of family-wise error rate in the

strong sense as follows.
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Table 5.1: The testing results of MMRD

All Young Mid-age Elderly

Stage (n=131) (n=43) (n=51) (n=37)

1 2.433 [1.026] [0.933] 5.285

(a(p)) (Kidneys) (Liver) (Kidneys) (Kidneys)

2 3.620 0.378 2.924 2.807

(a(p)) (Liver) (Brain) (Liver) (Liver)

3 [1.054] 0.260 0.694 [1.338]

(a(p)) (Brain) (SM) (Brain) (Heart)

4 0.654 0.238 0.630 1.502

(a(p)) (Res) (Res) (Heart) (Brain)

5 0.610 0.203 0.761 0.462

(a(p)) (AT) (Heart) (SM) (AT)

6 0.604 0.053 0.506 0.210

(a(p)) (Heart) (AT) (AT) (Res)

7 0.657 0.054 0.030 0.056

(a(p)) (SM) (Kidneys) (Res) (SM)
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Figure 5.2: The distribution of U1 based on the REE data
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Definition 5.2. For the null hypothesesH0 toHp−1 and corresponding testing function

ϕ1 to ϕp, if the following condition is always satisfied for any subset I of {1, 2, ..., p},

Pr

(
ϕj(X,Y ;α) = 1

∣∣∣∣ all H i−1, i ∈ I

)
≤ α, ∀j ∈ I, (5.20)

then it is said that ϕj(X, Y ;α)’s control the family-wise error rate at the level of α

for testing the multiple hypotheses (5.3).

Theorem 5.1. The MMRD step-down procedure as defined in Algorithm 5.1 controls

the family-wise error rate at the level of α.

Proof. Since the null hypotheses Hj (j=0,...,p-1) are disjoint, the condition of con-

trolling the family-wise error rate reduces to the following one,

∀j ∈ I, Pr

(
ϕj(X,Y ;α) = 1

∣∣∣∣Hj−1

)
≤ α. (5.21)
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Let us show the above inequality for j = 1 and j ≥ 2 separately.

For j = 1, recalling the definition of U1 and C1, we have

Pr

(
ϕ1(X,Y ;α) = 1

∣∣∣∣H0

)
= Pr

(∣∣U{1,2,...,p}
j

∣∣
∞ > C1

∣∣∣∣ β = β0

)
= α.

For j ≥ 2, recalling the definition of Uj and Cj, we have

Pr

(
ϕj(X, Y ;α) = 1

∣∣∣∣Hj−1

)
= Pr

(
min

|B|=p+1−j

∣∣UB
j

∣∣
∞ > Cj

∣∣∣∣Hj−1

)
=

∑
|B|=p+1−j

Pr

(
min

|B|=p+1−j

∣∣UB
j

∣∣
∞ > Cj

∣∣∣∣ β(B) = β
(B)
0 , β(l) ̸= β

(l)
0 , ∀l ∈ Bc

)

× Pr

(
β(B) = β

(B)
0 , β(l) ̸= β

(l)
0 , ∀l ∈ Bc

∣∣∣∣Hj−1

)
where the second equality is due to the law of total probability and the truth that

{β : β(B) = β
(B)
0 , β(l) ̸= β

(l)
0 ,∀l ∈ Bc} ⊂ Hj−1 for any set B satisfying B ⊂ {1, 2, ..., p}

and |B| = p+1−j. Since the following is true for anyB′ ∈ {B : B ⊂ {1, 2, ..., p}, |B| =

p+ 1− j}(
min

|B|=p+1−j

∣∣UB
j

∣∣
∞ > Cj

)
⊂
(∣∣UB′

j

∣∣
∞ > Cj

)
⊂
(∣∣UB′

j

∣∣
∞ > CB′

j

)
,

we have

Pr

(
ϕj(X, Y ;α) = 1

∣∣∣∣Hj−1

)
≤

∑
|B|=p+1−j

Pr

(∣∣UB
j

∣∣
∞ > CB

j

∣∣∣∣ β(B) = β
(B)
0 , β(l) ̸= β

(l)
0 ,∀l ∈ Bc

)

× Pr

(
β(B) = β

(B)
0 , β(l) ̸= β

(l)
0 , ∀l ∈ Bc

∣∣∣∣Hj−1

)
=α×

∑
|B|=p+1−j

Pr

(
β(B) = β

(B)
0 , β(l) ̸= β

(l)
0 ,∀l ∈ Bc

∣∣∣∣Hj−1

)
= α

where the second last equality is due to the definition of CB
j
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5.4.2 Distributional properties of
∣∣UB

j

∣∣
∞

To make the sequential decisions of whether accepting and terminating the MMRD

procedure or rejecting the current marginal null hypothesis and carrying on the MM-

RD procedure, the distributional theory of the maximal marginal regression statistics,∣∣UB
j

∣∣
∞, is developed in this subsection. Note that in the following derivation, let us

only focus on two-sided test. We are going to examine the distribution of U1. The

distributional theories for
∣∣UB

j

∣∣
∞’s, j ≥ 2, are the same.

By definition, U1 =
∣∣U{1,2,...,p}

1

∣∣
∞ is the maximal absolute value of p correlated

standard normal distributions. Therefore, let us consider the following setup.

Suppose (W1, ...,Wp) follows multivariate normal distribution N(0,D) where D

is the variance-covariance matrix with unit diagonal elements. Let R1, ..., Rp be the

rank statistics of |Wi|pi=1 s.t. |WR1 | ≤ |WR2 | ≤ ... ≤ |WRp |. Define the anti-rank

function as a(·) s.t. a(Ri) = i,∀i.

Then at first, let us focus on Wa(p). Actually

Wa(p) =

Wmin, if |Wmin| > |Wmax|

Wmax, if |Wmax| > |Wmin|
,

where Wmax is the biggest order statistics of W and vice versa. Then by law of total

probability,

P (Wa(p) ≤ t) = P (Wmin < t
∣∣|Wmin| > |Wmax|)× p1

+ P (Wmax < t
∣∣|Wmax| > |Wmin|)× (1− p1).

where p1 = P (|Wmin| > |Wmax|). Since (W1, ...,Wp) is symmetric about 0, Wmin
d
=

−Wmax. So p1 = 1/2. Hence, the density function of Wa(p) is a mixture of two normal
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density as follows,

fWa(p)
(t) =

1

2
× f

Wmin

∣∣|Wmin|>|Wmax|
(t)

+
1

2
× f

Wmax

∣∣|Wmax|>|Wmin|
(t).

Therefore, fWa(p)
(t) is bimodal.

Example 5.1. (D is an identity matrix) If the variance-covariance matrix is diagonal

(independent case), then from lemmas in the appendices, we can compute FWa(p)
(t) ≡

P (Wa(p) ≤ t) as,

FWa(p)
(t) =

1

2
− 1

2
(1− 2Φ(t ∧ 0))p +

1

2
(2Φ(t ∨ 0)− 1)p (5.22)

Therefore, the critical value (two-sided test) C∗
1 for U1 as a significant level of α is

C∗
1 = Φ−1(

1

2
+

1

2
(1− α)1/p), (5.23)

where Φ−1(·) is the inverse-CDF of standard normal distribution.

Next, let us focus on U1 = |Wa(p)|.

Example 5.2. (p = 2) If the variance-covariance matrix is non-diagonal (dependent

case), it is not easy to compute or even approximate the cumulative distribution

function of U1. Instead, there are some interesting results as follows.

Lemma 5.1. Suppose p = 2. Then the probability density function of U1, denoted as

fU1(t; ρ), equals

2ϕ(t)×
[
Φ

(√
1 + ρ

1− ρ
t

)
− Φ

(
−
√

1− ρ

1 + ρ
t

)]
× I{t>0}, (5.24)

where ϕ(t) and Φ(t) are respectively probability density function and cumulative dis-

tribution function of standard normal distribution; ρ is the correlation or off-diagonal

entry of D2×2.



85

Remark 5.4. Then from this lemma, we know that there is no-close form expression

to compute the cumulative distribution function of U1; instead, we need numerical

integrations or other approximation methods such as MCMC simulations.

Corollary 5.1. Suppose p = 2, then fU1(t; ρ) = fU1(t;−ρ).

Lemma 5.2. Suppose p = 2 and t >
√
2, then fU1(t; ρ) ≤ fU1(t; ρ = 0). Furthermore,

for ρ ∈ (0,+∞), fU1(t; ρ) is decreasing in ρ; for ρ ∈ (−∞, 0), fU1(t; ρ) is increasing

in ρ.

Lemma 5.3. Suppose p = 2, then q.05(ρ) = q.05(−ρ) and q.05(|ρ|) is decreasing in |ρ|.

Remark 5.5. The influence of the collinearity can be explained as follows. From Lem-

ma 5.3 and Eqn. (5.9), we know how the correlation between predictors influence the

decision making of MMRD procedure in a special case of p = 2. The more depen-

dency in predictors (the bigger |ρ| is), the more difficult it is to reject the null. This

makes sense because the evidence of a deviation from null hypothesis becomes weaker

when the association between predictors turns higher. The ’significant’ evidence may

be not that significant because of the strong linear dependency between predictors.

Example 5.3. (p > 2)

Let us first build a strict lower bound for q.05, the upper−0.05 quantile of U1.

Lemma 5.4. (A strict lower bound for q.05 of U1) Let q.05 be the upper−0.05 quantile

of U1. Then for p ≥ 2, we have q.05 ≥ 1.96, or

P (U1 ≥ 1.96) ≥ 0.05. (5.25)

Actually, for dimension p ≥ 2, P (|Wa(p)| ≥ 1.96) > 0.05 and q.05 > 1.96. The

lower bound 1.96 cannot be improved; in other word, it is a strict lower bound for
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Figure 5.3: The impact of correlation on the distribution of U1
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Table 5.2: The simulated quantiles

correlation ρ∗ 0.99 0.999 0.9999 0.99999

simulated q.05 2.085 1.997 1.970 1.960

q.05. This is illustrated by an example and simulations, which also sheds light on the

situation under which q.05 is approaching 1.96 for a fix dimension parameter p.

We give an example of approaching the 1.96 lower bound here. Without loss of

generality, let us assume the dimension p is 7, the same as that of REE model. For the

covariance matrix D, let us assume that all of its off-diagonal element is ρ∗. For big

enough ρ∗, D(ρ∗) is positive-definite. Let ρ∗ be 0.99, 0.999, 0.9999, and 0.99999. The

corresponding q.05’s are estimated by simulations (sample size N = 5, 000; number of

replications M = 5, 000) and summarized in Table 5.2.

We then constructs a strict upper bound for q.05 of U1 based on Khatri-Sidak

inequality (Khatri, 1967; Sidak, 1967 and 1968) and show how the upper bound is
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obtained.

Let us first introduce Khatri-Sidak inequality in the following proposition, which

was proved by Khatri (1967) and Sidak (1967, 1968) .

Proposition 5.1. (Khatri-Sidak Inequality) Suppose (V1, ..., Vp) is a centered, Gaus-

sian random vector, then

P (max
1≤i≤p

|Vi| ≤ t) ≥ P (|V1| ≤ t)× P (max
2≤i≤p

|Vi| ≤ t). (5.26)

A short proof can be found in Li and Shao (2001).

By mathematical induction and (5.26), we get

P

(
max
1≤i≤p

|Wi| ≤ t

)
≥
[
P (|W1| ≤ t)

]p
. (5.27)

Consequently, we have the following lemma.

Lemma 5.5. Let q.05 be the upper−0.05 quantile of U1. Then q.05 ≤ C∗
1 , which is

defined in (5.23).

In general, the exact value of C1 in Algorithm 5.1 (MMRD) can be determined

for a given correlation matrix D by simulations.

5.5 Other Properties

5.5.1 Variance of marginal fit

In this section, we show the computation for the covariance matrix of β̂
(B)

for |B| =

p+ 1− j and j = 1, ..., p where β̂
(B)

is defined as in (5.11) and (5.19).

For j = 1, according to equation (5.11),

β̂
(i)

− β
(i)
0 =

[[
X(i)

]T
X(i))

]−1 [
X(i)

]T
X [β − β0]

+
[[
X(i)

]T
X(i))

]−1 [
X(i)

]T
ϵ.
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Therefore, by block-wise matrix multiplication,

β̂ − β0 = G
[
XTX

]
[β − β0] +GXT ϵ (5.28)

where G is a diagonal matrix,

G = diag

{[[
X(1)

]T
X(1)

]−1

, · · · ,
[[
X(p)

]T
X(p)

]−1
}
.

Therefore, the variance of marginal fit β̂ is σ2G
[
XTX

]
G as in (5.9).

5.5.2 Chi-squared statistics

It has been claimed in Subsection 5.2.2 that the two sandwich statistics η̂ and η̃ in

(5.13) and (5.14) have the same power under any alternative hypothesis K : β = β∗.

Actually, from (5.28) we know that both η̂ and η̃ are distributed as non-central chi-

squared r.v. Hence we only need to show that η̂ has the same non-central parameter

as η̃.

From (5.10), the non-central parameter of η̃ is

[β∗ − β0]
T [XTX

]
[β∗ − β0] /σ

2

under alternative K.

From (5.9) and (5.28), the non-central parameter of η̂ is

[β∗ − β0]
T [XTX

]
G× Σ−1

β̂
×G

[
XTX

]
[β∗ − β0]

= [β∗ − β0]
T [XTX

]
[β∗ − β0] /σ

2

Therefore, η̂ has the same non-central parameter as η̃.
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5.5.3 Distributional theories

Proof of Lemma 5.2 . According to Lemma 5.1,

∂

∂ρ
fU1(t; ρ) =

2tϕ2(t)√
1− ρ2

× g(t, ρ)× I{t>0} (5.29)

where

g(t, ρ) =
e−

t2

1−ρ

1− ρ
− e−

t2

1+ρ

1 + ρ
. (5.30)

Then we just need to prove that g(t, ρ) < 0 for ρ > 0 and g(t, ρ) > 0 for ρ < 0

when t >
√
2. From Eqn. (5.30), we know g(t, ρ) = −g(t,−ρ) and g(t, 0) = 0.

Therefore, it is sufficient to prove ∂g(t, ρ)/∂ρ < 0 for ρ > 0 and t >
√
2. After some

calculation, we get

∂

∂ρ
g(t, ρ) =

e−
t2

1−ρ

(1− ρ)2

[
1− t2

1− ρ

]
− e−

t2

1+ρ

(1 + ρ)2

[
t2

1 + ρ
− 1

]
.

Since t2 > 2 and 0 < (1 ± ρ) < 2, we obtain that ∂g(t, ρ)/∂ρ < 0 for ρ > 0 and

t >
√
2. This finishes the proof.

Proof of Lemma 5.3 . Since

{W : |W1| > t,|W2| > |W1|}

∈ {W : |W2| > t, |W2| > |W1|}

and

P (U1 > t) = P (|W1| > t, |W1| > |W2|)

+ P (|W2| > t, |W2| > |W1|),

we get P (U1 > t) > P (|W1| > t). Therefore, the upper 0.05-quantile for U1 is bigger

than 1.96, the upper 0.05-quantile for standard normal distribution.
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Then by Lemma 5.2, it is not difficult to prove that q.05(|ρ|) is decreasing in |ρ|.

Proof of Lemma 5.4 . By definition of anti-rank function a(·), we observe

{
ω : |W1| ≥ 1.96

}
⊆
{
ω : |Wa(p)| ≥ 1.96

}
.

Hence P (|Wa(p)| ≥ 1.96) ≥ 0.05. Therefore q.05 ≥ 1.96.
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