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ABSTRACT

Financial Portfolio Risk Management:

Model Risk, Robustness and Rebalancing Error

Xingbo Xu

Risk management has always been in key component of portfolio management. While more

and more complicated models are proposed and implemented as research advances, they all in-

evitably rely on imperfect assumptions and estimates. This dissertation aims to investigate the

gap between complicated theoretical modelling and practice. We mainly focus on two directions:

model risk and reblancing error.

In the first part of the thesis, we develop a framework for quantifying the impact of model

error and for measuring and minimizing risk in a way that is robust to model error. This robust

approach starts from a baseline model and finds the worst-case error in risk measurement that

would be incurred through a deviation from the baseline model, given a precise constraint on the

plausibility of the deviation. Using relative entropy to constrain model distance leads to an ex-

plicit characterization of worst-case model errors; this characterization lends itself to Monte Carlo

simulation, allowing straightforward calculation of bounds on model error with very little com-

putational effort beyond that required to evaluate performance under the baseline nominal model.

This approach goes well beyond the effect of errors in parameter estimates to consider errors in

the underlying stochastic assumptions of the model and to characterize the greatest vulnerabilities

to error in a model. We apply this approach to problems of portfolio risk measurement, credit risk,

delta hedging, and counterparty risk measured through credit valuation adjustment.



In the second part, we apply this robust approach to a dynamic portfolio control problem. The

sources of model error include the evolution of market factors and the influence of these factors on

asset returns. We analyze both finite- and infinite-horizon problems in a model in which returns

are driven by factors that evolve stochastically. The model incorporates transaction costs and leads

to simple and tractable optimal robust controls for multiple assets. We illustrate the performance

of the controls on historical data. Robustness does improve performance in out-of-sample tests

in which the model is estimated on a rolling window of data and then applied over a subsequent

time period. By acknowledging uncertainty in the estimated model, the robust rules lead to less

aggressive trading and are less sensitive to sharp moves in underlying prices.

In the last part, we analyze the error between a discretely rebalanced portfolio and its contin-

uously rebalanced counterpart in the presence of jumps or mean-reversion in the underlying asset

dynamics. With discrete rebalancing, the portfolio’s composition is restored to a set of fixed target

weights at discrete intervals; with continuous rebalancing, the target weights are maintained at all

times. We examine the difference between the two portfolios as the number of discrete rebalancing

dates increases. We derive the limiting variance of the relative error between the two portfolios for

both the mean-reverting and jump-diffusion cases. For both cases, we derive “volatility adjust-

ments” to improve the approximation of the discretely rebalanced portfolio by the continuously

rebalanced portfolio, based on on the limiting covariance between the relative rebalancing error

and the level of the continuously rebalanced portfolio. These results are based on strong approxi-

mation results for jump-diffusion processes.
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Chapter 1

Introduction

Risk measurement has always been a vital component of financial portfolio management. Research

in this area using advanced mathematical models has experienced rapid development over the past

two decades. However, simplified assumptions used in traditional academic research models are

usually inadequate to characterize the complicated practical situations. The implementation of

these simplified models could lead to significant unexpected risks in financial activities. This

dissertation aims to bridge this gap between the existing academic research and practice from the

following two directions:

• Model risk, referring to the unexpected uncertainty in model assumption and estimation;

• Portfolio rebalancing error, referring to the discrepancy between theoretical continuously

rebalanced portfolio and discretely rebalanced one.
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1.1 Robust Risk Measurement and Model Risk

Risk measurement relies on modeling assumptions. Errors in these assumptions introduce errors

in risk measurement. This makes risk measurement vulnerable to model risk, which refers to the

uncertainty of the model being used.

In practice, model risk is sometimes addressed by comparing the results of different models

— see Morini (2011) for an extensive treatment of this idea with applications to many different

markets. An alternative approach to model uncertainty is to mix multiple models. This idea is

developed from a Bayesian perspective in, for example, Draper (1995) and Raftery et al. (1997)

and applied to portfolio selection in Pesaran et al. (2009). More often, if it is considered at all,

model risk is investigated by varying model parameters. Importantly, we consider model errors

that go beyond parameter sensitivity to consider the effect of changes in the probability law that

defines an underlying model. This includes those model errors that are not reflected in parameter

perturbations. For example, the main source of model risk might result from an error in a joint

distribution of returns that cannot be described through a change in a covariance matrix.

In Chapter 2, we develop tools for quantifying model risk and making risk measurement robust

to modeling errors. Our goals are as follows:

• to measure model error that is more general than parameter uncertainty, given a baseline

nominal model;

• to identify the sources of model error to which a measure of risk is most vulnerable and to

identify which changes in the underlying model have the greatest impact; and

• to propose decisions that are robust in terms of model error.
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To work with model errors described by changes in probability laws, we need a way to quan-

tify such changes, and for this we use relative entropy. Relative entropy offers a non-parametric

way to describe the difference between two probability distributions. In Bayesian statistics, the

relative entropy between posterior and prior distributions measures the information gained through

additional data. In characterizing model error, we interpret relative entropy as a measure of the

additional information required to make a perturbed model preferable to a baseline model. Thus,

relative entropy becomes a measure of the plausibility of an alternative model. Indeed, relative

entropy has been applied for model calibration and estimation in numerous sources, including

Avellaneda (1998), Avellaneda et al. (2001, 1997), Buchen and Kelly (1996), Cont and Deguest

(2010), Cont and Tankov (2004, 2006), Gulko (1999, 2002), and Basurto and Goodhart (2009).

In working with heavy-tailed distributions, for which relative entropy may be undefined, we use a

related notion of α-divergence, as do Dey and Juneja (2010) in a portfolio selection problem.

With the relative entropy, we are able to identify the worst-case scenario of a particular model

when the model risk is bounded by some pre-determined level. It is a convenient choice because

the worst-case alternative within a relative entropy constraint is typically given by an exponential

change of measure. Monte Carlo simulation combines conveniently with our approach to identify

the details of the worst-case scenario. At the same time that we simulate a nominal model and

estimate a nominal risk measure, we can estimate a bound or bounds on model risk with virtually

no additional computational effort: we simply multiply the nominal risk measure on each path

by a factor (a likelihood ratio or Radon-Nikodym derivative) that captures the worst-case change

of probability measure. To simulate under the worst-case model is again straightforward because

simulating under the original model and then multiplying any output by the worst-case likelihood
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ratio is equivalent to simulating the output from the worst-case model. This is similar to impor-

tance sampling, except that the usual goal of importance sampling is to reduce estimation variance

without changing the mean of the estimated quantity; here, the objective is to understand how the

change in probability measure changes the means and other model properties. This simulation-

based approach also allows us to limit which stochastic inputs to a model are subject to model

error.

Our method can potentially be generalized to a much higher level as follows. If we can find a

measurement or premetric, whose worst-case likelihood ratio can be derived easily, then most of

our analysis can be carried out without much difficulty. A possible choice of such measurement or

premetric has the form E[φ(m)], where the function φ(m) ≥ 0 for any likelihood ratiom. Relative

entropy and α−divergence are special cases.

We further develop tools following this approach that are robust in a sense similar to the way

the term is used in the optimization and control literature. Robust optimization seeks to optimize

against worst-case errors in problem data — see Ben-Tal et al. (2000), Bertsimas and Pachamanova

(2008), and Goldfarb and Iyengar (2003), for example. The errors in problem data considered in

this setting are generally limited to uncertainty about parameters, though distributional robustness

is considered in, e.g., Nilim and El Ghaoui (2005) and Natarajan et al. (2008). Our approach builds

on the robust control ideas developed in Hansen and Sargent (2007), Hansen et al. (2006), and

Petersen et al. (2000), and applied to dynamic portfolio selection in Glasserman and Xu (2013).

In this line of work, it is useful to imagine an adversary that changes the probability law in the

model dynamics; the robust control objective is to optimize performance against the worst-case

change of probability imposed by the adversary. Similarly, here we may imagine an adversary
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changing the probability law of the inputs to a risk calculation; we want to describe this worst-case

change in law and quantify its potential impact on risk measurement. In both settings, the degree

of robustness is determined through either a constraint or a penalty on relative entropy that limits

the adversary’s ability to make the worst case arbitrarily bad.

In the second half of Chapter 2, we examine model errors in models for mean-variance portfolio

optimization, conditional value-at-risk, Gaussian copula of portfolio credit risk, delta hedging error

and credit valuation adjustment. Using simulation-based tools, we are able to identify the worst-

case scenario to model error with relative entropy constraints. The results show that our approach

based on stochastic robustness goes well beyond parameter sensitivity in exploring model error.

1.2 Application in Dynamic Portfolio Control

In Chapter 3, the robust approach introduced in Chapter 2 is applied to a dynamic portfolio control

problem in details.

Classic mean-variance portfolio optimization (see Markowitz (1952)), like most optimization

problems that rely on estimated quantities, is vulnerable to the error-amplifying effects of combin-

ing optimization with estimation. Any reasonable estimation procedure applied to multiple assets

will overestimate the expected returns of some assets or underestimate their risk, and an optimiza-

tion procedure that ignores this fact will drive a portfolio to overinvest in precisely these assets.

Dynamic portfolio control introduces a further complication by requiring a model of the evolution

of asset prices. Any practical model is likely to be misspecified, in addition to being subject to

estimation error, and optimization will again amplify the effects of error, in this case model error.
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The approach of robustness in parameters has been developed extensively in the portfolio op-

timization. For example, Ben-Tal et al. (2000), Bertsimas and Pachamanova (2008), Goldfarb and

Iyengar (2003) focus on parameter uncertainty, and, Lim et al. (2011) approaches it from a differ-

ent perspective in . Robustness to uncertainty over a set of distributions in portfolio optimization

is analyzed in, e.g., Nilim and El Ghaoui (2005), Natarajan et al. (2008), Natarajan et al. (2010),

Delage and Ye (2010) and Goh and Sim (2010), primarily in single-period formulations.

Here we use a stochastic notion of robustness introduced in Chapter 2 that allows model un-

certainty in the law of evolution of the stochastic inputs to a model. This robustness approach is

combined with the following features: we study multi-period (finite- and infinite-horizon) portfo-

lio control problems; returns are driven by factors that evolve stochastically; transaction costs are

incorporated. We assume both the relationship between returns and factors and the evolution of the

factors are subject to model error and thus treated robustly. Simple optimal controls are developed

that remain tractable for multiple assets. Performance is demonstrated through both in-sample and

out-of-sample on historical data.

For the factor model and factor dynamics, we start from the (non-robust) model of Garleanu and

Pedersen (2012). Their model uses linear dynamics and a quadratic objective to achieve tractabil-

ity with considerable flexibility and generality that lends itself to further study. Their analysis,

motivated by realistic trading strategies, focuses on the impact of the speed of mean-reversion in

factor dynamics and how this affects portfolio control and, ultimately, equilibrium asset prices. By

building on their framework, we retain a high degree of tractability, and we can study the effect

of robustness in a current and independent model, rather than in a model introduced specifically

for the comparison. As a byproduct, we can also see the effect of model uncertainty on factor dy-
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namics and the factor model of returns: the adversary in the robust formulation can perturb both,

and the adversary’s optimal choice points to the ways in which the investor is most vulnerable to

model error. We test our portfolio rules on the same commodity futures as Garleanu and Pedersen

(2012). Briefly, we find that robustness leads to better performance in out-of-sample tests in which

the model is re-estimated on a rolling window; robust rules guard against model and estimation

error by trading less aggressively on signals from the factors.

1.3 Porfolio Relabancing Error

The analysis of a portfolio’s dynamics is often simplified by assuming that the constituent assets

can be traded continuously. For a trading strategy defined by portfolio weights, meaning the frac-

tion of the portfolio held in each asset, continuous trading leads to an idealized model in which

the actual weights match the target weights at each instant. For highly liquid stocks bought and

sold on electronic exchanges, continuous trading is often a close approximation of reality. But

for many other asset classes the practical reality of discrete trading cannot be entirely ignored. A

portfolio manager may not be able to maintain an ideal set of portfolio weights continuously in

time; transactions costs and liquidity constraints may limit the portfolio manager to rebalancing

the portfolio to target weights at discrete intervals.

We analyze the error in approximating a discretely rebalanced portfolio with one that is con-

tinuously rebalanced and thus more convenient to model. Our focus is on the effect of jumps and

mean reversion in the dynamics of the underlying assets. For both features, we examine the limiting

difference between the continuous and discrete portfolios as the rebalancing frequency increases.
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Our main results are as follows. With either mean reversion or jumps, we derive the limiting vari-

ance of the relative error between the two portfolios. With mean reversion and no jumps, we show

that the limiting error, scaled by the square root of the number of rebalancing dates, is asymp-

totically normal and independent of the level of the continuously rebalanced portfolio; moreover,

the limiting distribution is identical to the one achieved without mean reversion. In the presence of

jumps, we show that the scaled relative error converges to the sum of a normal random variable and

a compound Poisson random variable. For both the mean-reverting and jump-diffusion cases, we

derive “volatility adjustments” to improve the approximation of the discretely rebalanced portfolio

by the continuously rebalanced portfolio. These adjustments are based on the limiting covariance

between the relative rebalancing error and the level of the continuously rebalanced portfolio.

The simpler case in which the underlying assets are modeled as a multivariate geometric Brow-

nian motion is analyzed in Glasserman (2012). The analysis there is motivated by the incremental

risk charge (IRC) introduced by the Basel Committee on Banking Supervision (2007, 2009). The

IRC is intended to capture the effect of potential illiquidity of assets in a bank’s trading portfolio.

It models illiquidity by imposing a fixed rebalancing frequency for each asset class: some bonds,

for example, might have a liquidity interval of two weeks, and tranches of asset backed securities

might have liquidity intervals of a month or even a quarter. The IRC is thus based on the difference

between discrete and continuous rebalancing.

The possibility of jumps in asset prices is clearly relevant to portfolio risk and to the modeling

of less liquid assets. One would also expect jumps to have a qualitatively different effect on rebal-

ancing error than pure diffusion — adding jumps should cause the discretely rebalanced portfolio

to stray farther from the target weights — and this is confirmed in our results. The potential impact
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of mean reversion is less evident: one might expect mean reversion to offset part of the effect of

discrete rebalancing if it helps restore a portfolio’s weights to their targets. We will see that this is

the case, but only for the volatility adjustment that comes from the covariance between the rebal-

ancing error and the portfolio level. The distribution of the relative rebalancing error itself is, in

the limit, unaffected by the presence of mean reversion.

Discretely rebalanced portfolios arise in models of transaction costs and discrete hedging, in-

cluding Bertsimas et al. (2000), Boyle and Emanuel (1980), Duffie and Sun (1990), Leland (1985),

and Morton and Pliska (1995). Sepp (2012) examines the asymptotic error of delta hedging with

proportional transaction costs under a jump-diffusion model with lognormal jump sizes. Guasoni

et al. (2011) analyze the effect of discrete rebalancing on the measurement of tracking error and

portfolio alpha. In their analysis of leveraged ETFs, Avellaneda and Zhang (2010) examine the

impact of discrete rebalancing and derive an asymptotic relation between the behavior of the fund

and the underlying asset as the rebalancing frequency increases. Jessen (2010) studies the dis-

cretization error for CPPI portfolio strategies using simulation. Haugh (2011) studied constant

proportion trading strategy, which is closely related to leveraged ETF. Although these applications

do not fit precisely within the specifics of our setting, we nevertheless view our analysis as po-

tentially relevant to extending work on these applications. In Glasserman and Xu (2010), we use

a continuously rebalanced portfolio to design an importance sampling procedure to estimate the

tail of a discretely rebalanced portfolio in a pure-diffusion setting, and the results we develop here

suggest potential extensions to models with jumps.

The distribution of the difference between a diffusion process and its discrete-time approxima-

tion has received extensive study motivated by simulation methods, as in Kurtz and Protter (1991).
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Jacod and Protter (1998) study this error for more general processes, including processes with

jumps. Tankov and Voltchkova (2009) apply the results of Jacod and Protter (1998) to analyze the

error in discrete delta-hedging, thus extending the results of Bertsimas et al. (2000) to models with

jumps. In their analysis of discretization methods, Kloeden and Platen Kloeden and Platen (1992)

develop strong approximation results for stochastic Taylor expansions; Bruti-Liberati and Platen

(2005, 2007) derive corresponding expansions for jump-diffusion processes. These results provide

very useful tools for our investigation of rebalancing error.

1.4 Outline

In Chapter 2, the definition of the robust risk measurement is proposed, and is further generalized

to heavy-tail distribution. The approach is extended to incorporate constraints in the form of ex-

pectations, and to cope with the case where model uncertainty is restricted within certain sources.

In the second half of the chapter, several models are examined to illustrate that the robust risk

measurement captures more general model uncertainty that goes beyond parameter uncertainty.

In Chapter 3, the robustness approach is applied to a dynamic portfolio control problem with

practical features. We find a closed-form value function iteration, and study the effect of robustness

through empirical experiments. Stability results are also derived for both finite and infinite-horizon

cases.

In Chapter 4, the limiting behavior of constant-weight portfolio rebalancing error is investi-

gated. Closed-form limits of the errors are derived for the models with jump and mean-reversion

effects. Using the results, volatility estimators of the discretely rebalanced portfolios are obtained.
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In later half of the chapter, the main tool, strong approximation for stochastic differential equation,

is provided, together with detailed proof of the main results.
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Chapter 2

Robust Risk Measurement and Model Risk

2.1 Introduction

Risk measurement relies on modeling assumptions, which themselves can be a source of risk,

called model risk. A variety of reasons contribute to model uncertainty. For example, misspec-

ification among alternative models, insufficient or polluted data, sampling variability, imperfect

models structure, or even the evolution of the market dynamics (or say the “true” model), can all

lead to the inevitable result, i.e., model error.

In this chapter, a non-parametric robust risk measurement is introduced to measure potential

model uncertainty. The measurement uses relative entropy to capture the discrepancy between

the baseline model and the unknown “true” model. In Bayesian statistics, the relative entropy be-

tween posterior and prior distributions measures the information gained through additional data. In

characterizing model error, we interpret relative entropy as a measure of the additional information
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required to make a perturbed model preferable to a baseline model. Thus, relative entropy becomes

a measure of the plausibility of an alternative model.

We illustrate through numerical examples that this robustness approach enables us to consider

more general uncertainty compared with parameter uncertainty. This approach is incorporated with

Monte Carlo simulation, which lends us the power to investigate the details of the worst possible

model with given uncertainty level. We extend the robustness approach to account for constraints

in the form of expectation, and to restrict the uncertainty within certain random source. For heavy-

tailed distribution, a generalization of relative entropy, α−divergence, is used.

The rest of this chapter is organized as follows. Section 2.2 provides an overview of our

approach and develops the main supporting theoretical tools. In Section 2.3, we discuss the imple-

mentation of the approach through a set of techniques we call robust Monte Carlo. The remainder

of this chapter is devoted to illustrative applications: Section 2.4 considers portfolio variance;

Section 2.5 considers conditional value-at-risk; Section 2.6 examines the Gaussian copula model

of portfolio credit risk; Section 2.7 investigates delta hedging, comparing the worst-case hedg-

ing error with various specific sources of model error; and Section 2.8 studies model risk in the

dependence between exposures and default times in credit valuation adjustment (CVA).

2.2 Overview of the Approach

We begin by introducing the main ideas in a simple setting. Let X denote the stochastic elements

of a model — this could be a scalar random variable, a random vector, or a stochastic process. Let

V (X) denote some measure of risk associated with the outcome X . We will introduce conditions
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on V later, but for now we keep the discussion informal. If the law of X is correctly specified, then

the expectation E[V (X)] is the true value of the risk measure of interest.

We incorporate model uncertainty by acknowledging that the law of X may be misspecified.

We consider alternative probability laws that are not too far from the nominal law in a sense quan-

tified by relative entropy. For probability densities g and g̃ with a well-defined likelihood ratio

m = g̃/g, we define the relative entropy of g̃ with respect to g to be

R(g, g̃) = E[m logm] =

∫
g̃(x)

g(x)
log

g̃(x)

g(x)
g(x) dx.

In Bayesian statistics, relative entropy measures the information gain in moving from a prior distri-

bution to a posterior distribution. In our setting, it measures the additional information that would

be needed to make an alternative model g̃ preferable to a nominal model g.

It is easy to see thatR ≥ 0, andR(g, g̃) = 0 only if g̃ and g coincide almost everywhere (with

respect to g). Relative entropy is not symmetric in g and g̃ and does not define a distance in the

usual sense, but R(g, g̃) is nevertheless interpreted as a measure of how much the alternative g̃

deviates from g. (Our views of g and g̃ are generally not symmetric either: we favor the nominal

model g but wish to consider the possibility that g̃ is correct.) The expression E[m logm], defining

relative entropy through a likelihood ratio, is applicable on general probability spaces and is thus

convenient. Indeed, we will usually refer to alternative models through the likelihood ratio that

connects an alternative probability law to a nominal law, defining g̃(x) to be m(x)g(x). With the

nominal model g fixed, we writeR(m) instead ofR(g, g̃).

To quantify model risk, we consider alternative models described by a set Pη of likelihood
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ratios m for which E[m logm] < η. In other words, we consider alternatives within a relative

entropy “distance” η of the original model. We then seek to evaluate, in addition to the nominal

risk measure E[V (X)], the bounds

inf
m∈Pη

E[m(X)V (X)] and sup
m∈Pη

E[m(X)V (X)]. (2.2.1)

The expression E[m(X)V (X)] is the expectation under the alternative model defined by m. For

example, in the scalar case m = g̃/g,

E[m(X)V (X)] =

∫
g̃(x)

g(x)
V (x)g(x) dx =

∫
V (x)g̃(x) dx.

The bounds in (2.2.1) thus bound the range of possible values for the risk measure consistent with

a degree of model error bounded by η.

The standard approach to the maximization problem in (2.2.1) is to form the dual problem

inf
θ>0

sup
m
E[mV (X)− 1

θ
(m logm− η)].

(We will often suppress the argument of m to simplify notation, as we have here.) For given θ > 0,

the inner supremum problem has as solution of the form

m∗θ =
exp(θV (X))

E[exp(θV (X))]
, (2.2.2)

provided the expectation in the denominator is finite. In other words, the worst-case model error is
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characterized by an exponential change of measure defined through the function V and a parameter

θ > 0. The lower bound in (2.2.1) is solved the same way but with θ < 0. The explicit solution we

get in (2.2.2) is the greatest advantage of working with relative entropy to quantify model error. In

Section 2.3, we will apply (2.2.2) at multiple values of θ to trace out bounds at multiple levels of

relative entropy.

2.2.1 A First Example: Portfolio Variance

To help fix ideas, we introduce a simple example. Let X denote a vector of asset returns and

suppose, for simplicity, that X is modeled by a multivariate normal distribution N(µ,Σ), Σ > 0,

on Rn. We consider a portfolio with weights a = (a1, . . . , an)> summing to 1, and we use portfolio

variance as our risk measure

E[V (X)] = E[a>(X − µ)(X − µ)>a].

We are interested in the worst-case variance

sup
m∈Pη

E[mV (X)] = sup
m∈Pη

E[ma>(X − µ)(X − µ)>a].

In formulating the problem this way, we are taking µ as known but otherwise allowing an arbitrary

change in distribution, subject to the relative entropy budget of η.
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From (2.2.2), we know that the worst-case change of measure has the form

m∗θ ∝ exp
(
θ
[
a>(X − µ)(X − µ)>a

])
.

We find the worst-case density of X by multiplying the original N(µ,Σ) density by the likelihood

ratio; the result is a density proportional to

exp
(
θ
[
a>(x− µ)(x− µ)>a

])
× exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
.

In other words, the worst-case density is itself multivariate normal N(µ, Σ̃),

Σ̃ = (Σ−1 − 2θaa>)−1,

with θ > 0 sufficiently small that the matrix inverse exists. For small θ,

Σ̃ = Σ + 2θΣaa>Σ + o(θ2),

and the worst-case portfolio variance becomes

a>Σ̃a = a>Σa+ 2θa>Σaa>Σa+ o(θ2)

= a>Σa+ 2θ
(
a>Σa

)2
+ o(θ2).
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That is, the resulting worst-case variance of the portfolio is increased by approximately 2θ times

the square of the original variance.

This simple examples illustrates ideas that recur throughout this chapter. We are interested

in finding the worst-case error in the risk measure — here given by portfolio variance — but we

are just as interested in understanding the change in the probability law that produces the worst-

case change. In this example, the worst-case change in law turns out to stay within the family

of multivariate normal distributions: we did not impose this as a constraint; it was a result of the

optimization. So, in this example, the worst-case change in law reduces to a parametric change —

a change in Σ. In this respect, this example is atypical, and, indeed, we will repeatedly stress that

the approach to robustness we use goes beyond merely examining the effect of parameter changes

to gauge the impact of far more general types of model error.

The worst-case change in distribution we found in this example depends on the portfolio vec-

tor a. Here and throughout, it is convenient to interpret model error as the work of a malicious

adversary. The adversary perturbs our original model, but the error introduced by the adversary is

not arbitrary — it is tailored to have the most severe impact possible, subject to a relative entropy

budget constraint. The bounds in (2.2.1) measure the greatest error the adversary can introduce,

subject to this constraint.

The portfolio variance example generalizes to any quadratic function V (x) = x>Aqx, Aq > 0.

A similar calculation shows that under the worst-case change of measure X remains normally

distributed with

X ∼ N(µ̃, Σ̃), Σ̃ = (Σ−1 − 2θAq)
−1, µ̃ = Σ̃Σ−1µ.
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The relative entropy associated with this change of measure evaluates to

η(θ) =
1

2

(
log(det(ΣΣ̃−1) + tr(Σ−1Σ̃− I) + (µ− µ̃)>Σ−1(µ− µ̃)

)
.

By inverting the mapping θ 7→ η(θ), we can find the worst-case θ associated with any relative

entropy budget η. In most of our examples, it is easier to evaluate model error at various values

of θ and calculate the corresponding value for relative entropy, rather than to specify the level of

relative entropy in advance; we return to this point in Section 2.3.

2.2.2 Optimization Problems and Precise Conditions

As the portfolio variance example illustrates, risk measurement often takes place in the context of

an investment or related decision. We therefore extend the basic problem of robust evaluation of

E[V (X)] to optimization problems of the form

inf
a∈A

E[Va(X)], (2.2.3)

for some parameter a ranging over a parameter setA. For example, a could be a vector of portfolio

weights or a parameter of a hedging strategy. We will introduce conditions on Va and the law of

X .

Assumption 2.2.1. For the minimization problem (2.2.3)

1. The decision parameter setA is compact, Va(x) is convex in a for any x. Thus, infaE[Va(X)] <

∞.
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2. For all a ∈ A, the moment generating function Ψg(θ, a) = E[exp(θVa(X))] exists for θ

in some open set containing the origin. If P (Va(X) > 0) > 0, then Ψg(θ, a) ↑ ∞ as

θ ↑ θmax(a), where θmax(a) := sup{θ : Ψg(θ, a) < ∞}; if P (Va(X) < 0) > 0, then

Ψg(θ, a) ↑ ∞ as θ ↓ θmin(a) where θmin(a) := inf{θ : Ψg(θ, a) <∞}.

Part (1) of the assumption ensures feasibility of the optimization problem. (For a maximization

problem, we would require that Va(x) be concave in a.) Part (2) ensures the finiteness of Ψg(θ, a)

and its derivative, so that the corresponding exponential change of measure is well-defined. We

denote by (θmin(a), θmax(a)) the interval (possibly infinite) in which Ψg(θ, a) is finite and thus an

exponential change of measure defined by exp(θVa(X)) is well-defined.

We formulate a robust version of the optimization problem (2.2.3) as

inf
a

sup
m∈Pη

E[mVa(X)]. (2.2.4)

Here, we seek to optimize against the worst-case model error imposed by a hypothetical adversary.

The dual to the inner maximization problem is

inf
a

inf
θ>0

sup
m
E[mVa(X)− 1

θ
(m logm− η)]. (2.2.5)

For any θ > 0 and decision parameter a, if part (2) of Assumption 2.2.1 is satisfied, the optimal

change of measure for the adversary is described by the likelihood ratio

m∗θ,a = exp(θVa(X))/E[exp(θVa(X))], (2.2.6)
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where we need θ ∈ (0, θmax(a)) . By substituting (2.2.6) into (2.2.5), we get

inf
a

inf
θ>0

1

θ
logE[exp(θVa(X))] +

η

θ
. (2.2.7)

If θmax(a) < ∞, then as θ ↑ θmax(a), the objective function in (2.2.7) goes to infinity, so the

infimum over θ will automatically make the optimal θ smaller than θmax. That is, we can safely

consider θ <∞ instead of θ ∈ (0, θmax(a)). This allows us to change the order of infa and infθ in

(2.2.5), whereas θmax(a) depends on the decision a. Now we can relax the constraints for θ in both

(2.2.5) and (2.2.7) to θ > 0. Assumption 2.2.1 is relevant to the infa and infθ ordered as (2.2.7).

To swap the order, we need the following assumption.

Assumption 2.2.2. 1. If (θ∗, a∗,m∗) solve (2.2.5), then θ∗ ∈ [0, θ∗max) for some θ∗max ∈ [0,∞]

such that for any θ ∈ [0, θ∗max), the set {a ∈ A : E[exp(θVa(X))] <∞} is compact.

2. For θ ∈ [0, θ∗max), E[exp(θVa(X))] is lower semi-continuous in a.

Proposition 2.2.3. Under Assumptions 2.2.1–2.2.2, problem (2.2.5) is equivalent to

inf
θ>0

inf
a

sup
m
E[mVa(X)− 1

θ
(m logm− η)]. (2.2.8)

For fixed θ ∈ (0, θ∗max), the corresponding optimal objective function of inner infa supm in (2.2.8)

becomes

H(θ) +
η

θ
:= inf

a
sup
m
E[mVa(X)− 1

θ
m logm+

η

θ
] (2.2.9)

=
1

θ
logE[exp(θVa∗(θ)(X))] +

η

θ
,



22

where the optimal decision is

a∗(θ) = arg inf
a

1

θ
logE[exp(θVa(X))], (2.2.10)

and the worst-case change of measure is

m∗θ = exp(θVa∗(θ)(X))/E[exp(θVa∗(θ)(X))]. (2.2.11)

Because E[exp(θVa(X))] is not necessarily continuous in a, the lower semi-contintuity condi-

tion in Assumption 2.2.2 is needed to guarantees that the infimum in (2.2.10) can be attained.

For a fixed value of a,

lim
θ→0+

1

θ
logE[exp(θVa(X))] = E[Va(X)],

corresponding to the nominal case without model uncertainty. To avoid too much technical com-

plication, we only consider a simple case. When logE[exp(θVa(X))]/θ is continuous both in a

and , we can define the optimal decision and objective function when θ approaches 0 as follows:

a∗(0) = lim
θ→0+

arg inf
a

1

θ
logE[exp(θVa(X))] = arg inf

a
E[Va(X)],

H(0) = lim
θ→0+

1

θ
logE[exp(θVa∗(0)(X))] = E[Va∗(0)(X)].
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The constrained problem (2.2.4) is equivalent to

inf
θ>0

H(θ) +
η

θ
. (2.2.12)

As a consequence of (Petersen et al. 2000, Theorem 3.1), when the set of θ > 0 leading to finite

H(θ), is non-empty, (2.2.12) has a solution θ > 0 and the optimal value and solution solve the

original constraint problem (2.2.4).

Proposition 2.2.4. With assumption 2.2.2, the objective function in (2.2.10) is convex in a.

Proof. Because Va(x) is convex in a for any x, the objective function E[Va(X)] is convex in a.

Because θ > 0, the objective function in (2.2.10) is convex as well.

For given η > 0, we can find an optimal θ∗η, withm∗(θ∗η, a
∗(θ∗η)) and a∗(θ∗η) as optimal solutions,

and

η = E[m∗(θ∗η, a
∗(θ∗η)) logm∗(θ∗η, a

∗(θ∗η))], (2.2.13)

i.e., the uncertainty upper bound is reached at the optimal perturbation. So with θ∗η > 0, and

the adversary’s optimal choice as (2.2.11), the original constraint problem (2.2.4) has the optimal

objective

E[m∗(θ∗η, a
∗(θ∗η))Va∗(θ∗η)(X)] =

E[Va∗(θ∗η)(X) exp(θ∗ηVa∗(θ∗η)(X))]

E[exp(θ∗ηVa∗(θ∗η)(X))]
, (2.2.14)

which differs from the objective function of the penalty version (2.2.9) through the constant term.

In practice, we may be interested in seeing the relation between the level of uncertainty and the

worst-case error, which involves comparing different values of η. In this case, rather than repeat
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the procedure above multiple times to solve (2.2.12), we can work directly with multiple values of

θ > 0 and evaluate η(θ) with each, as in (2.2.13). Working with a range of values of θ, this allows

us to explore the relationship between η and the worst-case error (and this is the approach we use

in our numerical examples). This method requires that η be an increasing function of θ, a property

we have observed numerically in all of our examples.

2.2.3 Robustness with Heavy Tails: Extension to α-Divergence

In order to use relative entropy to describe model uncertainty, we need the tails of the distribution of

V (X) to be exponentially bounded, as in Assumption 2.2.1. To deal with heavy-tailed distribution,

we can use an extension of relative entropy called α-divergence and defined as (see also Rényi

(1961) and Tsallis (1988))

Dα(m) = Dα(g, g̃) =
1−

∫
g̃α(x)g1−α(x)dx

α(1− α)
=

1− E[mα]

α(1− α)
,

with m the likelihood ratio g̃/g, as before, and the expectation on the right taken with respect to

g. Relative entropy can be considered a special case of α-divergence, in the sense that R(m) =

E[m logm] = limα→1+ Dα(m).

With relative entropy replaced by α-divergence, the constraint problem (2.2.4) becomes

inf
a

sup
m:Dα(m)<η

E[mVa(X)].



25

The corresponding penalty problem is

infa infθ>0 supm E[mVa(X)− 1

θ
(Dα(m)− η)]

= infθ>0 infa supm E[mVa(X)− 1

θ
(Dα(m)− η)]. (2.2.15)

The supremum is taken over valid likelihood ratios — nonnegative random variables with mean

1. Dey and Juneja (2010) apply an equivalent polynomial divergence and minimize it subject to

linear constraints through a duality argument. We use a similar approach. We need the following

condition to ensure that the proposed likelihood ratio is non-negative.

Assumption 2.2.5. For any a, Va(X) > 0 almost surely under the nominal measure, and

E[Va(X)
α
α−1 ] <∞.

Proposition 2.2.6. Suppose Assumption 2.2.5 holds. For any a ∈ A, θ > 0 and α > 1, the

pair (m∗(θ, α, a), c(θ, α, a)) that solves the following equations with probability 1 is an optimal

solution to (2.2.15):

m∗(θ, α, a) = (θ(α− 1)Va(X) + c(θ, α, a))
1

α−1 , (2.2.16)

for some constant c(θ, α, a) , such that θ(α− 1)Va(X) + c(θ, α, a) ≥ 0, (2.2.17)

and E
[
(θ(α− 1)Va(X) + c(θ, α, a))

1
α−1

]
= 1. (2.2.18)

Proof. The objective of (2.2.15) is concave in m. Proceeding as in (Dey and Juneja 2010, Proof

of Theorem 2), we can construct a new likelihood ratio (1− t)m∗ + tm using an arbitrary m; the
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objective becomes

K(t) := E

[
((1− t)m∗ + tm)Va +

1

θα(1− α)
((1− t)m∗ + tm)α

]
+
η

θ
,

K ′(0) = E

[{
Va +

1

θ(1− α)
(m∗)α−1

}
(m−m∗)

]
. (2.2.19)

In order to have K ′(0) = 0 for any m, we need the term inside braces in (2.2.19) to be constant.

By the definition of m∗, K ′(0) = 0 holds, so m∗ is optimal.

If Va(X) is not bounded from below, then when θ > 0 and α ≥ 0, (2.2.17) cannot be satisfied.

For the case in which the adversary seeks to minimize the objective function (that is, to get the

lower bound of the error interval), we need α < 0 to satisfy (2.2.17).

A feasible likelihood ratio exists in a neighborhood of θ = 0, by the following argument. In the

nominal case θ = 0, we have m∗(0, α, a) = c(0, a)
1

α−1 , so we can always choose c(0, α, a) = 1.

By continuity, we can find a set [0, θ0) such that c(θ, α, a) satisfying (2.2.17) and (2.2.18) exists

for any θ ∈ [0, θ0). Once c(θ, α, a), (2.2.16) gives an optimal change of measure (not necessarily

unique). The optimal decision becomes

a∗(θ) = arg min
a

α− 1

α
E[(θ(α− 1)Va(X) + c(θ, α, a))

1
α−1 Va(X)] +

c(θ, α, a)

θα(1− α)
. (2.2.20)

In contrast to the relative entropy case, it is not clear whether the objective in (2.2.20) is convex in

a.

Measuring potential model error through α-divergence focuses uncertainty on the tail decay of

the nominal probability density. For example, in the simple scalar case Va(x) = xk, taking α > 1
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leads to a worst-case density function

g̃X(x) ≈ cxk/(α−1)gX(x), (2.2.21)

for x� 0, where gX is the density function ofX under the nominal measure. Incorporating model

uncertainty makes the tail heavier, asymptotically, by a factor of xk/(α−1).

Remark 2.2.1. As illustrated using relative entropy and α−divergence, our method can potentially

be generalized to a much higher level as follows. If we can find a measurement or premetric,

with which the worst-case likelihood ratio can be derived easily, then most of our analysis can

be carried out without much difficulty. A possible choice of such measurement or premetric has

the form E[φ(m)], where the function φ(m) ≥ 0 for any likelihood ratio m and is convex in m.

Relative entropy and α−divergence are special cases.

2.3 Implementation: Robust Monte Carlo

In this section, we present methods for estimating the model error bounds in practice through what

we call robust Monte Carlo. In addition to calculating bounds, we present ways of examining the

worst-case model perturbation to identify the greatest model vulnerabilities, and we also show how

to constrain the possible sources of model error.
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2.3.1 Estimating the Bounds on Model Error

We assume the ability to generate independent replications X1, X2, . . . of the stochastic input X ,

recalling that X may be a random variable, a random vector, or a path of a stochastic process. A

standard Monte Carlo estimator of E[V (X)] is

1

N

n∑
i=1

V (Xi).

For any fixed θ and likelihood ratio mθ ∝ exp(θV (X)), we can estimate the expectation of

V (X) under the change of measure defined bymθ by generating theXi from the original (nominal)

measure and forming the estimator

∑N
i=1 V (Xi) exp(θV (Xi))∑N

i=1 exp(θV (Xi))
, (2.3.1)

which converges to E[mθV (X)] as N →∞. Assuming V ≥ 0, we have E[V (X)] ≤ E[mθV (X)]

if θ > 0 and E[V (X)] ≥ E[mθV (X)] if θ < 0. Our estimator of these bounds requires virtually

no additional computational effort beyond that required to estimate the nominal value E[V (X)].

From the same replications X1, . . . , XN , we can estimate the likelihood ratio by setting

m̂θ,i =
exp(θV (Xi))∑N

j=1 exp(θV (Xj))/N
, i = 1, . . . , N.
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This in turn allows us to estimate the relative entropy at θ as

η̂(θ) =
1

N

N∑
i=1

m̂θ,i log m̂θ,i. (2.3.2)

Thus, we can easily estimate (η(θ), E[mθV (X)]) across multiple values of θ. Given a relative

entropy budget η, we then lookup the smallest and largest values of E[mθV (X)] estimated with

η̂(θ) ≤ η to get the model error bounds at that level of η. We will illustrate this procedure through

several examples.

Just as importantly, we can use the same simulation to analyze and interpret the worst-case

model error. We do this by estimating expectations E[mθh(X)] of auxiliary functions h(X) under

the change of measure by evaluating estimators of the form

1

N

N∑
i=1

m̂θ,ih(Xi). (2.3.3)

Through appropriate choice of h, this allows us to estimate probabilities, means, and variances of

quantities of interest, for example, that provide insight into the effect of the worst-case change in

probability law.

In some case, we may want to sample from the worst-case law, and not evaluate expectations

under the change of measure. If V is bounded, we can achieve this through acceptance-rejection:

to simulate under the law defined by θ, we generate candidates X from the original nominal law

and accept them with probability exp(θV (X))/M , with M chosen so that this ratio is between 0
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and 1. If V is unbounded, we need to truncate it at some large value and the sampling procedure

then incurs some bias as a result of the truncation.

These techniques extend to problems of optimization over a decision parameter a, introduced

in Section 2.2.2, for which a standard estimator is

min
a

1

N

N∑
i=1

Va(Xi),

For θ > 0, a worst-case objective function estimator is

∑N
i=1 Vâ∗(Xi) exp(θVâ∗(Xi))∑N

i=1 exp(θVâ∗(Xi))
, (2.3.4)

where the estimated optimal decision parameter is

â∗N = arg inf
a

1

θ
log

N∑
i=1

exp(θVa(X))

N
,

and the estimated optimal likelihood ratio is

m̂∗θ,i =
exp(θVâ∗N (Xi))∑N

j=1 exp(θVâ∗N (Xj))/N
, i = 1, . . . , N.

By continuous mapping theorem, for given â∗N and any θ ∈ [0, θmax) the averages of both numera-



31

tor and denominator of (2.3.4) are consistent estimators. That is,

1

N

N∑
i=1

Vâ∗N (Xi) exp(θVâ∗N (Xi))→ E[Vâ∗N (X) exp(θVâ∗N (X))],

1

N

N∑
i=1

exp(θVâ∗N (Xi))→ E[exp(θVâ∗N (X))].

Hence, (2.3.4) is a consistent estimator for (2.2.14) with â∗.

In the case where E[exp(θVa(X))] is continuous in a and the optimal decision a∗ is unique, it

is easy to show that â∗ converges to a∗ in distribution. More generalized results can be found in

Sample Average Approximate literature, e.g., Shapiro et al. (2009).

Similar estimators are available in the α-divergence framework. For given θ > 0, α > 1 and a,

we estimate the worst-case likelihood ratio as

m̂∗θ,α,a,i = (θ(α− 1)Va(Xi) + ĉ(θ, α, a))
1

α−1 ,

for some constant ĉ(θ, a), s.t. θ(α− 1)Va(Xi) + ĉ(θ, α, a) > 0, for each i

with
1

N

N∑
i=1

[
(θ(α− 1)Va(Xi) + ĉ(θ, α, a))

1
α−1

]
= 1.

For given θ > 0 and α > 1, we solve for an optimal a as

â∗(θ) = arg min
a

α− 1

α

N∑
i=1

[(θ(α− 1)Va(Xi) + ĉ(θ, α, a))
1

α−1 Va(Xi)] +
ĉ(θ, α, a)

θα(1− α)
.
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The robust estimator for the objective becomes

1

N

N∑
i=1

Va(Xi)m̂θ,α,a∗(θ),i.

2.3.2 Incorporating Expectation Constraints

When additional information is available about the “true” model, we can use it to constrain the

worst-case change of measure. Suppose the information available takes the form of constraints

on certain expectations. For example, we may want to constrain the mean (or some higher mo-

ment) of some variable of a model. We formulate this generically through constraints of the form

E[mhi(X)] ≤ ηi or E[mhi(X)] = ηi for some function hi and scalars ηi.

Such constraints can be imposed as part of an iterative evaluation of model risk. In (2.3.3), we

showed how a change of measure selected by an adversary can be analyzed through its implications

for auxiliary functions. If we find that the change of measure attaches an implausible value to the

expectation of some hi(X), we can further constrain the adversary not just through the relative

entropy constraint but through additional constraints on these expectations. This helps ensure the

plausibility of the estimated model error and implicitly steers the adversary to allocate the relative

entropy budget to other sources of model uncertainty. The adversary’s problem becomes

sup
m∈PM

E[mV (X)], (2.3.5)

where PM = {m : R(m) ≤ η, E[mhi(X)] ≤ ηi, i = 1, ..., nM} for some ηi, η ∈ [0,∞).

Here we have added nM constraints on the expectations of hi(X) under the new measure.
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We can move the constraints into the objective with Lagrange multipliers θi and transform

(2.3.5) into a penalty problem; the argument in Petersen et al. (2000) still holds as the terms of

hi(X) can be combined with that of V :

inf
θ>0,θi>0

sup
m
E

[
mV (X)− 1

θ
(m logm− η)−

nM∑
i=1

mhi(X)− ηi
θi

]
.

When θ and the θi are fixed, the problem can be treated as before in (2.2.8).

Proposition 2.3.1. For fixed θ > 0 and θi > 0, i = 1, ..., nM , such that

E

[
exp

(
θ

[
V (X)−

nM∑
i=1

hi(X)

θi

])]
<∞.

The worst change of measure is

m∗θ ∝ exp

(
θ

[
V (X)−

nM∑
i=1

hi(X)

θi

])
.

The optimization over (θ, θi) becomes

inf
θ>0,θi>0

1

θ
logE

[
exp

(
θ

[
V (X)−

nM∑
i=1

hi(X)

θi

])]
+
η

θ
+

nM∑
i=1

ηi
θi
.

For equality constraints, the optimization is over θi ∈ R.

This is a standard result on constraints in exponential families of probability measures. It is

used in Avellaneda et al. (2001) and Cont and Tankov (2004), for example, where the constraints

calibrate a base model to market prices. Glasserman and Yu (2005) and Szechtman and Glynn
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(2001) analyze the convergence of Monte Carlo estimators in which constraints are imposed by

applying weights to the replications.

For an optimization problem as in (2.2.3), adding constraints entails solving another layer of

optimization. For example, if the original problem is a minimization problem as in (2.2.3), then

for given (θ, θi), the optimal decision becomes

a∗(θ, θi) = arg inf
a

1

θ
logE

[
exp

(
θ

[
Va(X)−

nM∑
i=1

hi(a,X)

θi

])]
+

nM∑
i=1

ηi
θi
.

2.3.3 Restricting Sources of Model Uncertainty

In some cases, we want to go beyond imposing constraints on expectations to leave entire distri-

butions unchanged by concerns about model error. We can use this device to focus robustness on

parts of the model of particular concern. We will see a different application in Section 2.8 where

we use an exponential random variable to define a default time in a model with a stochastic default

intensity. In that setting, we want to allow the default intensity to be subject to model uncertainty,

but we want to leave the exponential clock unchanged as part of the definition of the default time.

Suppose, then, that the stochastic input has a representation as (X, Y ), for a pair of ran-

dom variables or vectors X and Y . We want to introduce robustness to model error in the law

of X , but we have no uncertainty about the law of Y . For a given θ > 0, we require that
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E[exp(θVa(X, Y ))|Y = y] <∞ for any y, and formulate the penalty problem

inf
a

sup
m

E[m(X, Y )Va(X, Y )− 1

θ
(m(X, Y ) logm(X, Y )− η)] (2.3.6)

s.t. E[m(X, Y )|Y = y] = 1, ∀y (2.3.7)

m(x, y) ≥ 0 ∀x, y.

We have written m(X, Y ) to emphasize that the likelihood ratio may be a function of both inputs

even if we want to leave the law of Y unchanged.

Proposition 2.3.2. For problem (2.3.6) with θ > 0 and E[exp(θVa(X, Y ))|Y = y] <∞ for all y:

1. Any likelihood ratio that satisfies (2.3.7) preserves the law of Y .

2. For any a, the likelihood ratio

m∗(x, y) =
exp(θVa(x, y))

E[exp(θVa(X, Y ))|Y = y]
, (2.3.8)

is an optimal solution to the maximization part of problem (2.3.6).

3. The corresponding optimal decision becomes

a∗(θ) = arg inf
1

θ
E [logE[exp(θVa(X, Y ))|Y ]] .

Proof. The feasible set of likelihood ratios m is convex, and the objective function is concave in
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m, so it suffices to check first-order conditions for optimality. Define

K̄(t) = E

[
(tm∗ + (1− t)m)Va(X, Y )− 1

θ
((tm∗ + (1− t)m) log(tm∗ + (1− t)m)− η)

]
,

where m is an arbitrary likelihood ratio satisfying (2.3.7). Obviously, m∗ satisfies (2.3.7). Taking

the derivative of K̄ at zero and substituting for m∗, we get

K̄ ′(0) = E

[(
Va(X, Y )− 1

θ
logm∗ − 1

θ

)
(m∗ −m)

]
= E

[
E

[(
Va(X, Y )− 1

θ
logm∗ − 1

θ

)
(m∗ −m)|Y

]]
= E

[
1

θ
(logE[exp(θVa(X, Y ))|Y ]− 1)E [(m∗ −m)|Y ]

]
. (2.3.9)

By constraint (2.3.7), for any Y = y, the conditional expectation E[(m∗ −m)|Y ] in (2.3.9) equals

zero, so K̄ ′(0) = 0. Hence m∗ is an optimal solution satisfying constraint (2.3.7).

Next, we show that any likelihood ratio satisfying (2.3.7) preserves the distribution of Y . Let a

tilde indicate the distribution following the change of measure.

P̃ (Y ∈ D) = E[m∗(θ,X, Y )IY ∈D]

= E [E[m∗(θ,X, Y )IY ∈D|Y ]]

= E [IY ∈DE[m∗(θ,X, Y )|Y ]]

= E[IY ∈D] = P (Y ∈ D)

for any Y -measurable set D.
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Thus, the likelihood ratio for the marginal law of Y is identically equal to 1, indicating that the

distribution of Y is unchanged.

To implement (2.3.8), we need to generate multiple copies X1, . . . , XN for each outcome of y

and then form the Monte Carlo counterpart of (2.3.8),

m̂∗(x, y) =
exp(θVa(x, y))∑N

i=1 exp(θVa(Xi, y))/N
(2.3.10)

Robust Monte Carlo Recap: We conclude this section with a brief summary of the implementa-

tion tools of this section.

◦ By simulating under the nominal model and weighting the results as in (2.3.1), we can estimate

the worst-case error at each level of θ. We can do this across multiple values of θ at minimal

computational cost. By also estimating η(θ) as in (2.3.2), we can plot the worst-case error

as a function of relative entropy.

◦ To examine the effect of the change of measure define by θ, we can estimate moments and

the expectations of other auxiliary functions using (2.3.3). We can also sample directly

from the measure defined by θ using acceptance-rejection — exactly if V is bounded and

approximately if not.

◦ We can constrain the worst-case change of measure through constraints on moments or other

auxiliary functions using Proposition 2.3.1. This technique can be used iteratively to con-

strain the potential model error if the values estimated through (2.3.3) appear implausible.

◦ Using Proposition 2.3.2 and (2.3.10), we can constrain the worst-case model to leave certain
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marginal distributions unchanged. This too can be used iteratively to focus robustness on the

most uncertain features of model.

2.4 Portfolio Variance

The rest of the chapter deals with applications of the ideas developed in the previous sections. In

Section 2.2.1, we illustrated the key ideas of robust risk measurement through an application to

portfolio variance. Here we expand on this example.

2.4.1 Mean-Variance Optimal Portfolio

We extend our earlier discussion of portfolio variance to cover the selection of mean-variance

optimal portfolios under model uncertainty. For the mean-variance objective, let γ > 0 be a risk-

aversion parameter and consider the optimization problem

inf
a
−E[a>X − γ

2
a>(X − E[X])(X − E[X])>a]. (2.4.1)

As before, a denotes a vector of portfolio weights. To illustrate the method of Section 2.3.2, we

constrain the mean vector and limit uncertainty to the covariance matrix, which leads to the robust

problem

inf
a

sup
m
E[mVa(X)] = inf

a
sup
m
−E[m(a>X − γ

2
a>(X − µ)(X − µ)>a)]

s.t. E[mX] = µ.
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Following the argument in Section 2.3.2, for some a, θ > 0 and θµ (θµ corresponds to the

vector (1/θi)), the worst-case likelihood ratio is

m∗ ∝ exp
(
θ(Va(X)− θ>µ (X − µ))

)
(2.4.2)

where θµ solves inf
θµ

1

θ
logE

[
exp

(
θ
[
V (X)− θ>µX

])]
− θ>µ µ.

Proceeding as in Section 2.2.1, we find that the worst-case change of measure preserves the nor-

mality of X . The term with θµ is linear in X and therefore affects only the mean of X . Because

we have constrained the mean, m∗ satisfies

m∗ ∝ exp(
θγ

2
a>(X − µ)(X − µ)>a), (2.4.3)

Matching (2.4.2) and (2.4.3), we find that θµ = −a.

For given θ > 0, let A(θ) = {a : Σ−1 − θγaa> > 0} denote the set of portfolio vectors a that

ensure that the resulting covariance matrix is positive definite. Then for given (a, θ) such that θ > 0

and a ∈ A(θ), the worst-case change of measure has X ∼ N(µ, Σ̃), where Σ̃−1 = Σ−1 − θγaa>.

We can find the optimal a by numerically solving

a∗(θ) = arg inf
a∈A(θ)

1

θ
logE[exp

(
θ
[
V (X)− θ>µX

])
] + θ>µ µ

= arg inf
a∈A(θ)

1√
det(I − θγaa>Σ)

− a>µ. (2.4.4)
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The corresponding relative entropy is

η(θ) =
1

2

(
log(det(ΣΣ̃−1)) + tr(Σ−1Σ̃− I)

)
.

To illustrate, we consider an example with 10 assets, where µi = 0.1, σii = 0.3 and ρij = 0.25

for i 6= j, i, j = 1, ..., 10, and γ = 1. We refer to the optimal portfolio at these parameter values

as the nominal portfolio (NP). At each θ value, we compute the robust portfolio (RP), meaning the

one that is optimal under the change of measure defined by θ. In the left panel of Figure 2.1, we plot

the performance of the two portfolios (as measured by the mean-variance objective — recall that

we are minimizing) against relative entropy (which we also compute at each θ). The performance

of the NP portfolio under the nominal model is simply a horizontal line. The performance of the

RP portfolio under the nominal model is always inferior, as it must be since NP is optimal in

the nominal model. However, under the worst-case model, the RP values are better than the NP

values, as indicated by the upper portion of the figure. In the lower portion of the figure we see the

performance of the nominal portfolio under the best-case model perturbation possible at each level

of relative entropy. The vertical gap between the two portions of the NP curve indicate the model

risk at each level of relative entropy.

One of the themes of this chapter is that model error as gauged by relative entropy does not

necessarily correspond to a straightforward error in parameters. To illustrate, in the right panel

we examine the performance of the nominal portfolio under specific parameter perturbations. We

vary the common correlation parameter from ρ = 0.05 (which produces the best performance) to

ρ = 0.45 (which produces the worst); the relative entropy first decreases and then increases as
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Figure 2.1: Expected performance vs relative entropy. The left panels shows the performance
of the nominal portfolio (NP) and the robust portfolio (RP) under the nominal and worst-case
models. The right panel shows the performance of the nominal portfolio under perturbations in
model parameters. Higher values on the vertical scale indicate worse performance.

ρ moves through this range. We also examine the effect of multiplying the covariance matrix of

the assets by κρ ∈ (0.72, 1.32). The key point — and one to which we return often — is that

the worst-case change of measure results in significantly worse performance than any of these

parameter perturbations.

Glasserman and Xu (2013) study a dynamic version of the mean-variance problem with stochas-

tic factors and transaction costs. The analysis results in closed-form solutions for both the investor

and adversary. For general multi-period problems, Iyengar (2005) develops a robust version of

dynamic programming.

2.4.2 Empirical Example

To apply these ideas to data, we use daily returns from the CRSP database on the 126 stocks that

were members of the S&P500 index from January 1, 1990, to December 31, 2011.

We first estimate the mean µ and covariance Σ of daily return using the first 12 years of data,

through the end of 2001. For the covariance matrix we use the shrinkage method in Ledoit and
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Wolf (2003). Based on the estimated mean and covariance matrix, we construct the mean-variance

optimal portfolio

a = (γΣ)−1(µ− θµI) (2.4.5)

where θµ = (I>(γΣ)−1µ− 1)/(I>(γΣ)−1I)

and γ = 10. We assume a static portfolio with total capital of 1. We take the portfolio variance

from the initial time period as a forecast of the future variance for the same portfolio. We compare

this forecast with the realized variance in 2002, when the dot-com bubble burst.

In the first column of Table 2.1, we see that the realized variance in 2002 is quite large compared

to the forecast using the previous 12 years of data. Confidence intervals equal to two times the

standard error of the realized variance and forecast have no overlap. The sampling variability in

the initial period is not large enough to explain the realized variance.

2002 2008
Realized variance 0.35× 10−3 0.65× 10−3

±2×Std. Err. (0.29, 0.42)× 10−3 (0.53, 0.77)× 10−3

Forecast variance 0.21× 10−3 0.21× 10−3

±(2×Std. Err.+Model Err.) (0.20, 0.22)× 10−3 (0.20, 0.22)× 10−3

θ = 100 (0.21, 0.25)× 10−3 (0.17, 0.22)× 10−3

θ = 500 (0.18, 0.32)× 10−3 (0.14, 0.32)× 10−3

θ = 900 (0.16, 0.47)× 10−3 (0.12, 0.58)× 10−3

Table 2.1: Realized and forecast variance with model uncertainty.

Next we introduce error intervals based on relative entropy. We use the portfolio variance as
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the objective and obtain the worst-case variance at different levels of θ. Let

Model Error = |nominal variance-worst variance|.

Now we can form a new interval by combining both standard error and model error. In the lower

part of Table 2.1, the new interval almost reaches the realized variance in 2002 when θ = 500, and

it covers the confidence interval of realized variance when θ = 900. By considering both sampling

variability and model error, we can cover the 2002 scenario.

This gives us a rough sense of the level of robustness needed to capture a sharp change like that

in 2002. We now position ourselves at the end of 2007 and undertake a similar analysis. Again,

we use the previous 12 years of data to form a forecast, which is 0.21× 10−3. We choose θ = 900

as the robustness level, based on the study of 2002, so that the whole confidence interval of 2002

is contained.

The model errors for the forecast of 2002 were 0.10 × 10−3 and 0.25 × 10−3 for θ = 500

and 900 respectively, and they change to 0.10 × 10−3 and 0.36 × 10−3 in the forecast of 2008.

The forecast with both standard error and model error forms a pretty wide interval, which has a

slight overlap with the confidence interval of the realized variance in 2008. Although the crisis in

2008 was more severe than the drop in 2002, the market change in 2002 provides a rough guide of

potential model risk. The particular combination we have used of sampling error and model error

is somewhat heuristic, but it nevertheless shows one way these ideas can be applied to historical

data.
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2.4.3 The Heavy-Tailed Case

To illustrate the use of α-divergence in the heavy-tailed setting, we now suppose that the vector of

asset returns is given by X ∼ µ + ZT , where ZT ∼ tν(Σ, ν) has a multivariate t distribution with

ν > 2 degrees of freedom and covariance matrix νΣ/(ν−2). Because neither the t-distribution nor

a quadratic function ofX has a moment generating function, we use α-divergence as an uncertainty

measure. With a fixed portfolio weight vector a, Proposition 2.2.6 yields the worst-case likelihood

ratio

m∗(θ, α) = (θ(α− 1)Va(X) + c(θ, α))
1

α−1 (2.4.6)

with c(θ, α) s.t. E[m∗(θ, α)] = 1

where Va(X) = a>(X − µ)(X − µ)>a.

To illustrate, we consider an portfolio with n = 10 assets, ν = 4, µi = 0.1, Σii = 0.28+0.02×i

and ρij = 0.25 for i, j = 1, ..., n and i 6= j. We use a randomly generated portfolio weight vector

a = [0.0785, 0.1067, 0.1085, 0.1376, 0.0127, 0.2204, 0.0287, 0.1541, 0.1486, 0.0042],

and simulate N = 107 samples to examine the worst-case scenario. Table 2.2 shows the portfolio

variance across various values of θ and α, with θ = 0 corresponding to the baseline nominal model.

For fixed α, increasing θ increases the uncertainty level and increases the worst-case variance. The

middle column of the table shows results using estimated parameters at α = 2.5; we return to these

at the end of this section.
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θ α = 2 α = 2.5 α = 2.5, worst parameters (DOF) α = 3 α = 3.5
0 0.109 0.109 0.109 0.109 0.109

0.1 0.159 0.131 0.130 (3.15,3.65) 0.125 0.122
0.4 0.308 0.174 0.174 (2.84,3.18) 0.152 0.143
0.7 0.458 0.210 0.209 (2.77,2.93) 0.173 0.159
1 0.607 0.241 0.238 (2.74,2.84) 0.190 0.171

Table 2.2: Worst-case portfolio variance at different levels of θ and α. The middle column reports
estimates using parameters estimated at α = 2.5, showing first the portfolio variance and then the
degrees of freedom parameter (in parentheses) estimated using να = ν + kno− kθ,α and maximum
likelihood.

We saw in (2.2.21) that the choice of α influences the tail of V (X) under the worst-case change

of measure. A smaller α in Table 2.2 yields a heavier tail, but this does not necessarily imply a

larger portfolio variance. To contrast the role of α with θ, we can think of choosing α based

on an assessment of how heavy the tail might be and then varying θ to get a range of levels of

uncertainty. In both cases, some calibration to the context is necessary, as in the empirical example

of the previous section and in the discussion below.

To understand the influence of the α parameter, we examine the tail of the portfolio excess

return, r = a>X − µ. Figure 2.2 plots the tail probability of |r| on a log-log scale. Because r has

a t distribution, the log of the density of |r|, denoted by g|r|(x), is asymptotically linear

log g|r|(x) ≈ −(ν + 1) log x, for x� 0.

Using the fact that

log (m∗(θ, α)) =
1

α− 1
log(θ(α− 1)r2 + c(θ, α)) ≈ 2

α− 1
log |r|,
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we find (as in (2.2.21)) that

log
(
g̃|r|(x)

)
−
(
log g|r|(x)

)
≈ 2

α− 1
log x, for x� 0 (2.4.7)

where g̃|r| is the density of |r| under the change of measure. This suggests that the difference of

the slopes in Figure 2.2 between the nominal and worst scenario should be roughly 2/(α − 1).

Asymptotically, the tail under the worst scenario is similar to a t distribution with degrees of

freedom ν − 2/(α− 1).

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−14

−12

−10

−8

−6

−4

−2

0

2

log(|r|)

lo
g(

 P
DF

 o
f |

r| 
)

 

 
nominal
worst parameters
α = 2.5, θ = 1

Figure 2.2: Tail density of absolute returns |r|.

We fit linear functions to the curves in Figure 2.2 in the region log(|r|) ∈ (0.5, 2) and compare

the slopes of nominal kno and worst scenario kθ,α. Table 2.3 lists the differences kθ,α − kno; as we

increase θ, the difference of slopes gets closer to the limit 2/(α− 1) in (2.4.7).

By re-weighting the sample under the nominal model using m∗(θ, α), we can estimate model

parameters as though the worst-case model were a multivariate t. We estimate the degrees of

freedom parameter using

να,θ = ν + kno − kθ,α (2.4.8)
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α = 2 α = 2.5 α = 3 α = 3.5
2/(α− 1) 2 1.333 1 0.8
θ = 0.1 1.090 0.846 0.694 0.590
θ = 0.4 1.631 1.159 0.899 0.735
θ = 0.7 1.773 1.231 0.943 0.764
θ = 1 1.840 1.263 0.962 0.777

Table 2.3: Difference of slopes kθ,α−kno of the worst-case and nominal densities, as in Figure 2.2.

and estimate the covariance matrix as

worst covariance = E[ma>(X − µ)(X − µ)>a] ≈ 1

N

N∑
i=1

m(Xi)a
>(Xi − µ)(Xi − µ)>a.

We can then generate a second set of samples from the t distribution with these parameters to see

how this compares with the actual change of measure.

In the middle of Table 2.2, we show the estimated να,θ using (2.4.8) as the first number in

parentheses. The second value is a maximum likelihood estimate usingm∗θ,α to weight the nominal

samples. The two values are relatively close; we use only (2.4.8) in sampling under the worst-

case parameter values and in Figure 2.2. The variance results under the parameters estimated at

α = 2.5 are very close to those estimated under the worst-case model at α = 2.5, suggesting

that the worst case might indeed be close to a t distribution. Interestingly, Figure 2.2 shows that

using the parameters from the worst case actually produces a heavier tail; the worst-case change of

measure magnifies the variance through relatively more small returns than does the approximating

t distribution. In Table 2.4, we see that the α-divergence under the approximating t is much larger.

Thus, the adversary has economized the use of α-divergence to magnify the portfolio variance

without making the tail heavier than necessary.
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θ α = 2.5 approximating t-dist.
0.1 0.001 0.086
0.4 0.012 0.230
0.7 0.031 0.287
1 0.058 0.323

Table 2.4: Comparison of α-divergence using the worst-case change of measure and the approxi-
mating t distribution from the worst case.

2.5 Conditional Value at Risk (CVaR)

The next risk measure we consider is conditional value at risk (CVaR), also called expected short-

fall. The CVaR at quantile δ for a random variable X representing the loss on a portfolio is defined

by

CV aRδ = E[X|X > V aRδ],

where V aRδ satisfies 1− δ = P (X > V aRδ).

As in Rockafellar and Uryasev (2002), CVaR also equals to the optimal value of the minimization

problem

min
a

1

1− δ
E[(X − a)+] + a, (2.5.1)

for which the optimal a is V aRδ.

To put this problem in our general framework, we set Va(X) = (1−δ)−1(X−a)++a. The main

source of model error in measuring CVaR is the distribution of X . As in previous sections, we can

introduce robustness to model uncertainty by considering a hypothetical adversary who changes the

distribution of X . Of particular concern is the worst-case CVaR subject to a plausibility constraint
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formulated through relative entropy or α-divergence. Jabbour et al. (2008) and Zhu and Pykhtin

(2007) consider robust portfolio optimization problems using CVaR but different types of model

uncertainty.

To illustrate the general approach, we introduce two specific examples that offer some analytic

tractability, one in the relative entropy setting and one using α-divergence.

2.5.1 Relative Entropy Uncertainty

Suppose X follows a double exponential distribution DE(µde, bde) with location parameter µde

and scale parameter bde, meaning that its density function is

g(x) ∝ exp

(
−|x− µde|

bde

)
.

Then for given a and θ > 0, the density function of X under the worst-case change of measure

becomes

g̃(x) = m∗θ,a(x)g(x) ∝ exp

(
−|x− µde|

bde
+

θ

1− δ
(x− a)+

)
.

The values of a and δ are connected by P (X > a) = 1−δ under the nominal distribution. Because

θ/(1 − δ) > 0, we need 1/bde > θ/(1 − δ) to ensure this density function is well-defined. The

exponent is a piecewise linear function of the argument x, so g̃ can be considered a generalization

of the double exponential distribution.

We can find the VaR and CVaR explicitly in this example. First, we evaluate the normalization
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constant (2.2.10):

E[exp(θVa(X))] =



exp(θa)

[
1 + 1

2

(
1

1− θbde
1−δ
− 1

)
exp(µde−a

bde
)

]
, if a > µde

1
2

exp(θa)

[(
1

1− θbde
1−δ

+ 1

1+
θbde
1−δ

)
exp( θ

1−δ (µde − a))

+

(
1− 1

1+
θbde
1−δ

)
exp(a−µde

bde
)

]
, else.

(2.5.2)

Denote the cumulant generating function of Va(X) by Υa(θ) = logE[exp(θVa(X))]; then

a∗(θ) = arg min
a

1

θ
Υa(θ),

To find a∗, we observe that the functionE[exp(θVa(X))] is convex in a and its derivative at a = µde

is

d

da
E[exp(θVa(X))]

∣∣∣∣
a=µde

=
θ

2
(2 +

θbde − 1

1− δ − θbde
) exp(θµde).

This is positive provided δ > 1/2, so we can solve the first order condition for a > µde to get

a∗(θ) = µde − bde log

(
2(1− δ − θbde)

1− θbde

)
,

which is the VaR under the worst-case change of measure.

The VaR for the nominal model is

V aRδ = µde − bde log(2(1− δ)).
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and the nominal CVaR is

CV aRδ = V aRδ + bde = µde − bde log(2(1− δ)) + bde.

Under the worst-case change of measure at parameter θ, the CVaR becomes

CV aRδ,θ = a∗(θ) +
1

1
bde

+ θ
1−δ

.

So, here we can see explicitly how the worst-case CVaR increases compared to the nominal CVaR.

The corresponding relative entropy is

η(θ) = E[m∗a∗(θ),θ logm∗a∗(θ),θ]

= θ
E[Va∗(θ) exp(θVa∗(θ)(X))]

E[exp(θVa∗(θ)(X))]
− logE[exp(θVa∗(θ)(X))]

= θΥ′a∗(θ)(θ)−Υa∗(θ)(θ).

Figure 2.3 shows the nominal and worst-case densities starting from a nominal density that is

DE(0, 1), using δ = 95% and θ = 0.03. The nominal 95% VaR is a = 2.30; the worst-case

model error (for CVaR) at θ = 0.03 shifts more mass to the right tail and increases the VaR to 3.19.

The CVaR increases from 3.30 to 3.81. The increase in VaR and the corresponding increase in

CVaR reflect the magnitude of underestimation of risk consistent with this level of the uncertainty

parameter θ.
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Figure 2.3: The dotted red line shows the worst-case density, with δ = 95% and θ = 0.03, relative
to a DE(0, 1) nominal density (the solid blue line). The right panel gives a magnified view of the
right tail.

2.5.2 The Heavy-Tailed Case

If the nominal distribution of the loss random variable X is heavy-tailed, then E[exp(θVa(X))]

is infinite and the calculations in (2.5.2) and following do not apply. In this case, we need to use

α-divergence as the uncertainty measure. With α > 1, θ > 0 and a fixed, the worst case likelihood

ratio now becomes

m∗θ,a(X) = (θ(α− 1)Va(X) + c(θ, α, a))
1

α−1 , (2.5.3)

for some constant c(θ, α, a) satisfying (2.2.17) and (2.2.18).

If the density function of X under the nominal distribution is regularly varying with index ξ,

i.e. limx→∞ g(tx)/g(x) = tξ for any t > 0 and some index ξ < 0, then under the worst-case

change of measure it is regularly varying with index ξ + 1/(α − 1), as suggested by (2.2.21). We

require ξ + 1/(α − 1) < 0 to guarantee the new density function is well-defined. Because α > 1,

the worst index is smaller than the nominal one, meaning that the worst-case distribution has a

heavier tail.
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For purposes of illustration, it is convenient to choose as nominal model a generalized Pareto

distribution with density function

g(x) =
1

bgp
(1 +

ξgp
bgp

x)
− 1
ξgp
−1
, for x ≥ 0, some bgp > 0 and ξgp > 0,

or a generalized extreme value distribution with density

g(x) =
1

ξgev
(1 + ξgevx)

− 1
ξgev
−1

exp
(
−(1 + ξgevx)

− 1
ξgev

)
, for x ≥ 0 and ξgev > 0.

These are regularly varying with index −(1 + 1/ξ), with ξ = ξgp or ξ = ξgev, accordingly.

Figure 2.4 shows two examples — a generalized Pareto density on the left, and a generalized

extreme value distribution on the right, each shown on a log scale. In each case, the figure compares

the nominal distribution and the worst-case distribution with α = 4. As in Figure 2.3, the worst-

case model error shifts the VaR to the right and increases the weight of the tail beyond the shifted

VaR, increasing the CVaR.
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Figure 2.4: Density of X . The nominal distribution is generalized Pareto (left) or generalized
extreme value (right), with parameters bgp = 1 (scale), ξgp = 0.3 (shape), and ξgev = 0.3 (shape).
Other parameters are θ = 0.01, α = 4, and δ = 95%.
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A recurring and inevitable question in incorporating robustness into risk measurement is how

much uncertainty to allow — in other words, where to set θ or α. If the distribution of X is es-

timated from historical data, then the precision with which the tail decay of X is estimated (the

exponential decay in the light-tailed setting and power decay in the heavy-tailed setting) can pro-

vide some guidance on how much uncertainty should be incorporated, as we saw in Section 2.4.2.

Also, the Monte Carlo approach presented in Section 2.3 illustrates how auxiliary quantities (for

example, moments of X) can be calculated under the worst-case change of measure to gauge its

plausibility.

2.6 Portfolio Credit Risk

In this section, we apply robustness to the problem of portfolio credit risk measurement. We

develop the application within the framework of the standard Gaussian copula model; the same

techniques are applicable in other models as well.

2.6.1 The Gaussian Copula Model

We consider a portfolio exposed to n obligors, and we focus on the distribution of losses at a fixed

horizon. Let Di denote the default indicator for ith obligor, meaning that

Di =


1, if the ith obligor defaults within the horizon;

0, otherwise.
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A default of obligor i produces a loss of ci, so the total loss from defaults is

L =
n∑
i=1

ciDi.

We are interested in robust measurement of tail probabilities P (L > l) for loss thresholds l.

In the Gaussian copula model, each default indicator Di is represented through the indicator of

an event {XD
i > li}, where XD

i has a standard normal distribution, and the threshold li is chosen

so that P (Di = 1) = P (XD
i > li) = pi, for a given default probability pi. Dependence between

default indicators is introduced through correlations between the XD
i . For simplicity, we focus on

a single-factor homogeneous model in which the XD
i are given by

XD
i = ρZ +

√
1− ρ2εi,

where Z, ε1, . . . , εn are independent standard normal random variables. We interpret Z as a broad

risk factor that affects all obligors, whereas εi is an idiosyncratic risk associated with the ith obligor

only. We have n = 100 obligors, each with a 1% default probability pi, so li = 2.33. The loss

given default is ci ≡ 1 for all i = 1, . . . , n.

2.6.2 Robustness and Model Error

The Gaussian copula model offers an interesting application because it is both widely used and

widely criticized for its shortcomings. Taking the Gaussian copula as a reference model, our in-

terest lies in examining its greatest vulnerabilities to model error — in other words, finding which
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perturbations of the model (in the sense of relative entropy) produce the greatest error in measur-

ing tail loss probabilities P (L > l). Importantly, we are interested in going beyond parameter

sensitivities to understand how the worst-case error changes the structure of the model.

Taking our risk measure as P (L > l) means taking V (Z, ε1, . . . , εn) = IL>l, so the worst-case

change of measure at parameter θ is

m∗θ ∝ exp(θIL>l).

⇒ P̃ (L ∈ dy) =


exp(θ)
C

P (L ∈ dy) if l > y;

1
C
P (L ∈ dl) otherwise.

(2.6.1)

Here, C > 1 is a normalization constant. This change of measure lifts the probabilities of losses

greater than l and lowers the probability of all other scenarios. Equivalently, we can say that the

probability of any outcome of the default indicators (D1, . . . , Dn) is increased by exp(θ)/C if it

yields a loss greater than l and is lowered by a factor of C otherwise.

We investigate the implications of this transformation to the model through numerical experi-

ments. We take l = 5, which yields P (L > l) = 3.8%. Our results are based on simulation with

N = 106 samples.

Figure 2.5 shows how the loss probability varies with relative entropy. The solid blue line

shows results under the worst-case change of measure defined by (2.6.1). The dotted red line shows

results under parameter changes only; these are determined as follows. At each relative entropy

level, we simulate results under the worst-case change of measure (2.6.1); we estimate all model
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parameters (the means, standard deviations, and correlations for the normal random variables Z,

ε1, . . . , εn); we then simulate the Gaussian copula model with these modified parameters.

0 0.05 0.1 0.15
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Relative entropy

P
(L

>
x)

 

 

worst P(L>x)
P(L>x) using the worst mean and std

Figure 2.5: Loss probability as a function relative entropy. The solid blue line shows results
under the worst-case change of measure. The dotted red line shows results using parameter values
estimated from the worst-case change of measure. The comparison shows that the vulnerability to
model error goes well beyond errors in parameters.

A comparison of the lines in Figure 2.5 confirms that the worst-case change of measure has an

impact that goes well beyond a change in parameter values. If we compare the two curves at the

same relative entropy, the worst-case model continues to show a higher loss probability. In other

words, focusing on parameter changes only does not fully utilize the relative entropy budget. The

changes in parameter values do not maximize the model error at a given relative entropy budget.

Table 2.5 reports parameter estimates obtained under the worst-case model at two values of

θ. They indicate, in particular, that the parameters of the εi are affected very little by the change

in distribution. Indeed, with 95% confidence, Jarque-Bera and Anderson-Darling tests reject nor-

mality of Z at θ ≥ 1 but fail to reject normality of the εi even at θ = 2. The model is more

vulnerable to errors in the dependence structure introduced by Z than to errors in the distribution

of the idiosyncratic terms.
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θ = 0.5 θ = 2
max(ρεiεj , ρεi,Z) 4.3× 10−3 0.013
min(ρεiεj , ρεi,Z) −3.4× 10−3 −4.7× 10−3

average(|ρεiεj |, |ρεi,Z |) 5.6× 10−3 6.4× 10−3

average(µεj) 7.6× 10−4 6.8× 10−3

average(σεj) 1.00 1.01
average(skewεj) 1.7× 10−3 0.013

average(excess kurtosisεj) 8.2× 10−4 0.017
mean of Z 0.047 0.39

standard deviation of Z 1.04 1.23

Table 2.5: Statistics of εj and Z under the worst-case change of measure.
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Figure 2.6: Contours of joint densities of (Z, ε100) with θ = 0.5 (left) and θ = 2 (middle), and joint
density of (ε99, ε100) at θ = 2 (right)

To gain further insight into the worst-case change of distribution, we examine contour plots

in Figure 2.6 of the joint density function of ε100 and Z. The joint density function is derived by

using the original joint density function and the likelihood ratio m∗θ. The leftmost figure shows

θ = 0.5, and the next two correspond to θ = 2. The increase in θ shifts probability mass of Z to

the right but leaves the joint distribution of the εi essentially unchanged. This shift in Z changes

the dependence structure in the copula and produces the lift in the probability mass function of L

described by (2.6.1). In the middle panel of Figure 2.6, we see a slight asymmetry in the upper
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D
100) under the worst scenario θ = 2 (left), and

the ratio of the worst-case joint density to the nominal density (right).

right corner, reflecting the fact that defaults are more likely when both the εi and Z are increased.

The left panel of Figure 2.7 shows contours of the joint density of (XD
99, X

D
100) under the worst-

case change of measure, which distorts the upper-right corner, reflecting the increased probability

of joint defaults. The right panel shows the ratio of the worst-case density to the nominal density.

Figure 2.8 shows the nominal and worst-case marginal distributions of Z and L. The worst case

makes Z bimodal and inflates the distribution of L beyond the threshold of 5. In particular, the

greatest vulnerability to model error takes us outside the Gaussian copula model, creating greater

dependence between obligors in the direction of more likely defaults, rather than just through a

change of parameters within the Gaussian copula framework.

Next, we illustrate the effect of imposing constraints on Z, using the method of Section 2.3.2.

We constrain the first moment to equal 0 or the first two moments to equal 0 and 1; one might take

these values to be part of the definition of Z. To match relative entropy values, we find that an

unconstrained value of θ = 2 corresponds to constrained values θ = 2.7 (with one constraint) and

θ = 3.7 (with two constraints); see Table 2.6. Figure 2.9 compares the marginal distribution of Z
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Figure 2.8: Marginal density of Z and L under worst scenario with θ = 0.8 and θ = 2 vs nominal
model.

under the constrained and unconstrained worst-case changes of measure. The constraints lower the

height of the second peak in the bimodal distribution of Z. Not surprisingly, the worst-case value

of P (L > l) decreases as we add constraints.

P (L > l)
nominal, θ = 0 0.037

unconstrained, θ = 2 0.221
constraint on 1st moment of Z, θ = 2.7 0.186

constraint on 1st and 2nd moments of Z, θ = 3.7 0.153
constraint on marginal distribution of Z, θ = 4 0.152

Table 2.6: Default probability for unconstrained and constrained cases. The values of θ for the
constrained cases are chosen to keep the relative entropy fixed across all three cases.

We can further restrict the marginal distribution of Z through the method of Section 2.3.3. Such

a restriction is important if one indeed takes Z as an overall market risk factor and not simply a

tool for constructing a copula. Using 103 samples for Z and 104 samples of ε for each realization

of Z, we report the resulting probability in the last row of Table 2.6, taking θ = 4 to make the
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measures.

relative entropy roughly equal to that in the unconstrained case with θ = 2. The default probability

is slightly smaller than the case with constraints on 1st and 2nd moments.

Figure 2.10 shows the distribution of ε under the worst scenario, taking θ = 9 to make the

effect more pronounced. With the marginal distribution of Z held fixed, the potential model error

moves to the idiosyncratic terms. The worst-case joint density of (ε99, ε100) puts greater weight on

large values of either ε99 or ε100. The worst-case marginal density of ε100 changes in a way similar

to the marginal density of Z in Figures 2.8 and 2.9.

2.7 Delta Hedging Error

In our next application, we take hedging error as our measure of risk. This application goes beyond

our previous examples by adding model dynamics to the robust risk measurement framework.

The nominal model specifies dynamics for the evolution of an underlying asset, which leads to a
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Figure 2.10: The marginal distribution of Z is fixed. The left figure is the joint density of (ε99, ε100)
under the worst scenario, and the right figure is the marginal density of ε100 under the worst sce-
nario. Both figures have θ = 9.

hedging strategy for options written on the underlying asset. Model risk in this context can take

the form of misspecification of the dynamics of the underlying asset, rather than just a marginal

distribution at a fixed point in time. A hypothetical adversary can change the dynamics of the

underlying asset and will do so in a way that maximizes hedging error subject to a relative entropy

constraint. Our objectives are to quantify the potential hedging error, develop a hedging strategy

that is robust to model error, and to identify the greatest sources of vulnerability to model error in

the nominal model.

2.7.1 Delta Hedging: Nominal Model

For simplicity, we take the nominal model to be the Black-Scholes framework. The risk-neutral

dynamics of the underlying asset are given by

dSt
St

= rndt+ σndWt,
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and the drift under the physical measure is µn. The risk-neutral drift enters in the option delta, but

hedging error is generated under the physical measure so the physical drift is also relevant. The

subscript n indicates that these parameters apply to the nominal model.

We consider the problem of discrete hedging of a European call option with strikeK and matu-

rity T : the interval [0, T ] is divided into NT equal periods, and the hedging portfolio is rebalanced

at the start of each period. With discrete rebalancing, we introduce hedging error even under the

nominal model.

We consider a discrete-time implementation of a self-financing delta hedging strategy. At time

t = 0, the proceeds of the sale of the option (at price C(0, T, S0)) are used to form a portfolio of

stock and cash, with rn the interest rate for holding or borrowing cash. We denote by δσn(t, St)

the number of shares of stock held at time t. It equals to the delta of the call option, which is the

first derivative of the value of the option with respect to the underlying price under Black-Scholes

model. At time 0, the portfolio’s cash and stock positions are given by

cash(0) = C(0, T, S0)− S0δσn(0, S0),

stock(0) = S0δσn(0, S0).

After the rebalancing at time kT/NT = k∆t, they are given by

cash(k) = ern∆tcash(k − 1)− Sk∆t(δσn(k∆t, Sk∆t)− δσn((k − 1)∆t, S(k−1)∆t)),

stock(k) = Sk∆tδσn(k∆t, Sk∆t).
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At maturity, the option pays (ST −K)+ with strike K, resulting in a hedging error is

He = (ST −K)+ − cash(NT )− stock(NT ).

If adjusted continuously, the hedging portfolio should replicated the price of the option under the

Black-Scholes model, i.e., He = 0. But the discrete hedging gives a non-zero He.

For our measure of hedging performance, we use E[|He|], the expected absolute hedging error.

A hypothetical adversary seeks to perturb the dynamics of S to magnify this hedging error. In

our general formulation, we would take X to be the discrete path of the underlying asset and

V (X) = |He|.

Alternative approaches to related problems include the uncertain volatility formulation of Avel-

laneda et al. (1995), where the volatility is assumed to lie within a closed interval but is otherwise

unknown. In Mykland (2000), uncertainty is defined more generally through bounds on integrals

of coefficients. Tankov and Voltchkova (2009) study the best volatility parameter to use for delta

hedging to minimize expected squared hedging error under a jump-diffusion model for the under-

lying asset. Bertsimas et al. (2000) analyze asymptotics of the delta hedging error as NT →∞.

In delta hedging, the volatility is unknown and is typically extracted from option prices. If

the nominal model holds, then the minimizer of hedging error is indeed the nominal volatility σn.

Under our formulation of robustness with discrete delta hedging, we can calculate a robust value of

this input σn in the sense of minimizing the maximum value of the hedging error E[|He|] at given

value of θ. The result is illustrated in Figure 2.11 for an example with an initial stock price of

S0 = 100, strike K = 100, maturity T = 1, nominal volatility σn = 0.2, risk-free rate rn = 0.05,
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resulting in a Black-Scholes call price of 10.45 at t = 0. The drift under the physical measure is

µn = 0.1 The figure shows the nominal and robust values of delta as functions of the underlying

asset; the robust σn is optimized against the worst-case change of measure at θ = 0.5. The robust

delta is slightly larger out-of-the-money and smaller in-the-money. Figure 2.11 suggests that if

we are restricted to delta-hedging but are allowed to use different values for volatility, then the

nominal value is almost the best we can do. Branger et al. (2012), among others, also find that

Black-Scholes delta hedging performs surprsingly well, even when its underlying assumptions are

not satisfied.
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Figure 2.11: Optimal delta versus S0 with θ = 0.5.

2.7.2 Model Error and Hedging Error

Now we take a dynamic perspective on hedging error. We use simulation to investigate the vulner-

ability of discrete delta hedging to model error and to examine the worst-case change of measure
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that leads to hedging errors. We continue to use the Black-Scholes model as the nominal model

with the same parameters as before. Our simulation results use 108 paths.

From simulated sample paths and (2.2.11), we can estimate the optimal likelihood ratio m∗θ for

each path (we use θ = 0.5 for most results), which enables us to estimate the density function of

|He| under the worst-case change of measure. The density is illustrated in Figure 2.12, where we

can see that the change of measure makes the right tail heavier. In Figure 2.12, the tail is fit through

a non-parametric method, using the “ksdensity” command in MATLAB with a normal kernel and

bandwidth 0.1.
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Figure 2.12: Density of absolute hedging error under nominal and worst scenario, with θ = 0.5.

To investigate the dynamics of the underlying asset under the worst-case change of measure

— in other words, to investigate the adversary’s strategy — we generate paths conditional on

reaching points (t, St). For every t = T (2 + 8k/NT ), for k = 1, ..., 12, and every St = 70 + 6l for

l = 1, ..., 10, we simulate N sample paths conditioned to pass through (t, St) by using Brownian

bridge sampling. If we use pathi to denote the ith simulated path, then the conditional likelihood
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given St = x is

m∗(pathi|St = x) =
g̃(pathi|St = x)

g(pathi|St = x)

=
g̃(pathi)

g(pathi)

g(St ∈ (x, x+ dx))

g̃(St ∈ (x, x+ dx))

∝ g̃(pathi)

g(pathi)
= m∗(pathi)

Because the expectation of the conditional likelihood ratio should be 1, we apply the normalization

m∗(pathi|St = x) =
m∗(pathi)∑N

j=1 m
∗(pathj)/N

across the N simulated paths.

As a point of comparison for the simulation results, it is useful to consider potential sources of

hedging error. With discrete rebalancing, we would expect a large move in the underlying asset to

produce a large hedging error. Figure 2.13 plots the option gamma and the time-decay theta, and

these suggest that the hedging error is particularly vulnerable close to maturity when the underlying

is near the strike. (Time in the figure runs from left to right, with time 1 indicating option maturity.)

Indeed, the gamma at the strike becomes infinite at maturity.

In Figure 2.14, we use the simulation results to plot contours of the worst drift (upper left)

and worst volatility (lower left) of the Brownian increment in the step immediately following the

conditional value at (t, St). The conditional worst drift is highest close to maturity and just below

the strike and it is lowest close to maturity and just above the strike, as if the adversary were trying
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Figure 2.13: Gamma and Theta for European call option

to push the underlying toward the strike near maturity to magnify the hedging error. In fact, at

every step t, the worst-case drift has an S−shape centered near the strike.

The worst-case volatility is also largest near the strike and near maturity, consistent with the

view that this is where the model is most vulnerable. If the underlying is far from the strike, large

hedging errors are likely to have been generated already, so the adversary does not need to consume

relative entropy to generate further hedging errors. The contours of relative entropy show that the

adversary expends the greatest effort near the strike and maturity. There is a slight asymmetry in

the relative entropy and worst-case volatility below the strike near inception. This may reflect the

asymmetry in gamma around the strike, which is greater far from maturity.

It should also be noted that the adversary’s strategy is path-dependent, so Figure 2.14 does

not provide a complete description. In particular, at any (t, St), we would expect the adversary to

expend greater relative entropy — applying a greater distortion to the dynamics of the underlying

— if the accumulated hedging error thus far is small than if it is large. The contours in the figure

implicitly average over these cases in conditioning only on (t, St).

To generate Figure 2.14, we used kernel smoothing. The smoothed value at (s, t) is a weighted
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average of results at (si, ti), i = 1, ..., n, using a kernel K(., .) > 0,

gsmooth(s, t) =

∑n
i=1 g(si, ti)K((si, ti), (s, t))∑n

i=1 K((si, ti), (s, t))
.

In particular, we usedK((s′, t′), (s, t)) = φ(‖(s′, t′)−(s, t)‖/a), with φ the density of the standard

normal distribution and ‖ ‖ a scaled Euclidean normal under which the distance between adjacent

corners in the grid is 1. That is, ‖(60, 1) − (60, 0)‖ = 1, ‖(60, 1) − (140, 1)‖ = 1, and so

on. The constant a is chosen so that for any neighboring nodes (s, t) and (s′, t′) on the grid,

‖(s, t)− (s′, t′)‖/a = 1.
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2.7.3 Comparison With Specific Model Errors

In this section, we examine specific types of model errors and compare them against the worst case.

In each example, we replace the Black-Scholes dynamics of the underlying asset with an alternative

model. For each alternative, we evaluate the hedging error and the relative entropy relative to the

nominal model. By controlling for the level of relative entropy, we are able to compare different

types of model error, including the worst case, on a consistent basis.

In each plot in Figure 2.15, the horizontal axis shows the relative entropy of the perturbed

model (with respect to the nominal model), and the vertical axis is the absolute hedging error

estimated from simulation. We take values of θ in [0, 0.23].

In panel (a) of Figure 2.15, we perturb the nominal model through serial correlation: we replace

the i.i.d. Brownian increments with AR(1) dynamics. The perturbed model thus has ∆W̃t =

ρ∆W̃t−1 +
√

1− ρ2εt and ∆W̃1 = ε1, where εt are independent and normally distributed with

mean 0 and variance ∆t. With ρ ∈ (−0.15, 0.15), the relative entropy reaches a minimum near

ρ = 0. The expected hedging error seems to be robust with respect to serial dependence, never

getting close to the worst case error except near the origin. The second plot in (a) suggests that a

larger ρ leads to smaller hedging error. For larger ρ > 0, ∆W̃ is more mean reverting, which may

explain the smaller hedging error.

In panel (b) of Figure 2.15, we use Merton’s jump-diffusion model,

dSt
St−

= (rn − λJE[exp(Yi)− 1]))dt+ σndWt + dJt

where J is a compound Poisson, Jt =
∑Nt

i=1 exp(Yi), with Nt a Poisson process with intensity λJ ,
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and Yi i.i.d. N(0, σJ), with σJ = 1. When increasing σJ from 0 to 1, or the jump intensity λJ

from 0 to 0.2, both the relative entropy and the expected hedging error increase almost linearly,

with similar slope.

Panels (c) and (d) of Figure 2.15 test the Heston stochastic volatility model, in which the square

of volatility vt = σ2
t follows the dynamics

dvt = κσ(µσ − vt)dt+ σσ
√
vtdW

v
t , (2.7.1)

where W v
t is a Brownian motion, ρ = corr(W v

t ,Wt). We pick κσ = 5, µσ = σ2
n = 0.04, ρ = −0.2

and σσ = 0.05.

When discretized to dates ti = i∆t, i = 1, ..., NT , the likelihood ratio for the price process

becomes

m(st1 , ..., stNT ) =
g̃(st1 , ..., stNT )

g(st1 , ..., stNT )

=
Ev[g̃(st1 , ..., stNT |vt1 , ..., vtN )]

g(st1 , ..., stNT )

where g and g̃ are the joint density functions of prices under the nominal and Heston models,

respectively. In the second equality, g̃(.|.) denotes the conditional density of prices given the vari-

ance process, and the expectation is taken over the variance process. The conditional expectation

is approximated using 1000 sample paths of v.

As the speed of mean-reversion κσ changes from 3 to 20, the relative entropy and the expected

hedging error decrease. As κσ becomes larger, the expected hedging error gets closer to the nomi-
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nal value, while relative entropy appears to converge to some positive value. With a large κσ, any

deviation from the nominal variance decays quickly, leaving only a short-term deviation introduced

by the diffusion term of (2.7.1).

As the long-run limit µσ varies from 0.036 to 0.044, relative entropy and expected hedging

error attain their lowest values near 0.04, which is the nominal value of squared volatility. Holding

fixed the level of relative entropy, the expected hedging error is very similar when µσ < 0.04

and µσ > 0.04. As the volatility of volatility σσ varies from 0 to 0.13, both relative entropy and

expected hedging error increase. As σσ gets closer to zero, the volatility behaves more like a

constant, which is the nominal model. And as the correlation ρ between the two Brownian motions

varies from -0.5 to 0.7, the change in hedging error is very small, with the maximum hedging error

obtained when ρ is close to nominal value -0.2. The relative entropy reaches the minimum value

when ρ equals the nominal value -0.2.

For our last comparison, we use the variance-gamma model of Madan et al. (1998),

St = S0 exp((µvg + ωvg)t+Xt)

where Xt = µvgΓ(t; 1, νvg) + σWΓ(t;1,νvg)

ωvg =
1

νvg
log(1− µvgνvg −

1

2
σ2νvg)

where Γ(t; 1, νvg) is the gamma process with unit mean rate. Parameter µvg controls the skewness

of return and νvg controls the kurtosis; see panels (b) and (c) of Figure 2.16. The figure suggests

that skewness and kurtosis have limited impact on hedging error.

It is noteworthy that in most of the examples in Figures 2.15 and 2.16 the observed hedging
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error is significantly smaller than that of the worst-case achievable at the same level of relative

entropy. As our final test, we add constraints on the evolution of the underlying asset, thus limiting

the adversary’s potential impact.

First we constrain the moments of the realized mean and realized variance of the returns of the

underlying asset. Let ∆W =
∑NT

i=1 ∆Wi/NT be the average of the Brownian increments ∆Wi

along a path. We constrain the mean E[m∆W ] = 0 and the realized variance E[m
∑NT

i=1(∆Wi −

∆W )2/(NT − 1)] = ∆t. Figure 2.17(a) shows that this has only a minor effect on the worst-case

hedging error. In Figure 2.17(b), we constrain the mean and variance of the realized variance as

a way of constraining total volatility. Here, the reduction in the worst-case hedging error is more

pronounced.

The overall conclusion from Figure 2.17 is that even with constraints on the first two mo-

ments of the underlying asset returns, the worst-case hedging error generally remains larger than

the hedging errors we see in Figures 2.15 and 2.16 under specific alternatives. To put it another

way, the hypothetical adversary shows much more creativity in undermining the Black-Scholes

delta-hedging strategy than is reflected in these models. Indeed, the alternatives are all time-

homogeneous, whereas a key feature of Figure 2.14 is that the greatest vulnerabilities occur close

to maturity and, to a lesser extent, at inception.
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Figure 2.15: Hedging error under various changes in the underlying dynamics.
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Figure 2.16: Hedging errors under various changes in the underlying dynamics.

2.8 Credit Valuation Adjustment (CVA)

Our final application of the robust risk measurement framework examines credit valuation adjust-

ment (CVA), which has emerged as a key tool for quantifying counterparty risk among both market

participants and regulators.
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Figure 2.17: The blue dots are for constraint cases, and the red dots are for the unconstrained case.

2.8.1 Background on CVA

CVA measures the cost of a counterparty’s default on a portfolio of derivatives. Rather than model

each derivative individually, we will work with a simplified model of the aggregated exposure

between two parties. We model this aggregated exposure as an Ornstein-Uhlenbeck process Xt,

dXt = κx(µx −Xt)dt+ σxdW
x
t . (2.8.1)

This allows the aggregated exposure to be positive for either party (and thus negative for the other);

we can think of the two parties as having an ongoing trading relationship so that new swaps are

added to their portfolio as old swaps mature, keeping the dynamics stationary. Alternatively, we

can takeX as a model of the exposure for a forward contract on a commodity or FX product where

the underlying asset price is mean-reverting.

The time-to-default for the counterparty is modeled through a stochastic default intensity λt,
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which follows a CIR-jump process

dλt = κλ(µλ − λt)dt+ σλ
√
λtdW

λ
t + dJt,

whereW x andW λ are Brownian motions with correlation ρ, and Jt is a compound Poisson process

with jump intensity νj and jump sizes following an exponential distribution with mean 1/γ. The

long-run limit of X matches the initial value, X0 = µx, and similarly λ0 = µλ. As in Zhu and

Pykhtin (2007), the CIR-jump model guarantees that λt ≥ 0.

Given the default intensity process, the time of default τ is

τ = Λ−1(ξ), where Λ(t) =

∫ t

0

λs ds and ξ ∼ Exp(1), (2.8.2)

meaning that ξ has a unit-mean exponential distribution and is independent of everything else. The

CVA for a time horizon T is then given by

CV A = (1−R)E[e−rτIτ<T max(Xτ , 0)],

where R is the recovery rate. In other words, the loss at default of the counterparty is (1 −

R) max(Xτ , 0), and we take the expected present value of this loss on the event {τ < T} that

the default occurs within the horizon. (This is a unilateral CVA, because we have included the

default time of only one of the two parties.) We will study how model uncertainty affects the CVA.

In the following example, we set parameters at T = 2 years and divide the time horizon evenly

intoNT = 200 steps, corresponding to around two periods per week. The risk-free rate is r = 0.02,
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the recovery rate is R = 0.3, the long-run limit of the exposure is µx = 0, the long-run limit of

the default intensity is µλ = 0.02, the exposure volatility is σx = 0.2, the default intensity has

volatility σλ = 0.2, and the mean reversion coefficient κx = κλ = 1, which corresponds to a

half-life of about 1.4 years. For simplicity, we initially omit jumps in the intensity.

We have the freedom to choose the units of X to fit the context. For example, if the volatility

is 0.1 million dollars, we can measure X in multiple of a half million dollars to get σx = 0.2.

Alternatively, suppose the underlying exposure is that of a netted portfolio of swaps with notional

value 0.111 billion dollars, 10-year maturity and quarterly payments. If the interest rate is roughly

constant, then the change in the value in the early years is roughly proportional to the change in

the swap rate, or about 0.111
∑40

i=1 e
−ri∆t∆S∆t = ∆S billion dollars with swap rate S. Then we

can model the change in swap rate using dynamics similar to (2.8.1) with κs = κx, S0 ≥ 0 and

σs = σx, which corresponds to 20% volatility for the swap rate.

We apply our robust Monte Carlo approach to measure model risk. In this application, it is

essential that the distribution of ξ in (2.8.2) remain unchanged: the adversary can change the

dynamics of the default intensity (as well as the exposure), but having ξ be a unit-mean exponential

in (2.8.2) is part of what it means for λ to be the default intensity, so this element is not subject to

model error.

We enforce this condition through the method in Section 2.3.3. We simulate N = 104 sample

paths for X and λ, and use Nξ = 104 samples of ξ. For each realization of ξ, all N paths of λ are

generated using (2.8.2), yielding a total of N × Nξ paths. (Paths of X and λ are generated using
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an Euler approximation.) For path (X i, λi) and given ξ,

m̂∗(X i, λi, ξ) =
exp(θV (X i, λi, ξ))∑N

j=1 exp(θV (Xj, λj, ξ))/N
(2.8.3)

where V (X i,Λi, ξ) = (1−R)e−rτIτ<T max(X i
τ , 0)

and τ = Λ−1
i (ξ), Λi(t) =

∫ t

0

λi(s)ds.

We call V (X i,Λi, ξ) the realized CVA for sample (X i,Λi, ξ).

2.8.2 Analysis of the Worst-Case Model Error

We use the simulation results to examine the worst-case model. As a first step, we estimate values

for some parameters to see how these parameters are affected by the change of measure.

We consider three cases for our experiments: ρ = 0.3, ρ = 0, and ρ = −0.3, the first of these

corresponding to wrong-way risk because it makes default more likely when the exposure is large.

These values of ρ are parameters to the nominal model; the nominal model is then distorted by

the change of measure, and we re-estimate the correlations and other parameters. For example, to

estimate the kth moment of the increments of Wx, we use

µ̂xk =

∑N
i=1

∑Nξ
j=1

∑Nij
t=1

(
∆W x,i

t

)k
m∗(X i, λi, ξj)∑N

i=1

∑Nξ
j=1Nij

,

where Nij is the number of steps until the default, with Nij = N if no default occurs within the

horizon.

The results are summarized in Table 2.7. The columns show estimates for different values of
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θ, with θ = 0 corresponding to the nominal value. Positive larger θ corresponds to possible larger

CVA in the worst-case scenario, while negative smaller θ corresponds to possible smaller CVA.

We first report estimates for CVA and, just below each value, CVA as a percentage of the notional

0.111. The impact of model error is illustrated through the range of values across different values

of θ. The impact is asymmetric, with positive θ values having a greater effect than smaller θ values,

particularly at larger values of ρ. This is at least partly explained by controlling for differences in

relative entropyR(mθ).

θ

nominal ρ -12 -9 -6 -3 0 3 6 9 12
-0.3 CVA 3.98 4.80 5.86 7.26 9.14 11.67 15.14 19.90 26.46

×104 (0.36%) (0.43%) (0.53%) (0.65%) (0.82%) (1.05%) (1.36%) (1.79%) (2.38%)

0 5.13 6.27 7.78 9.82 12.60 16.45 21.84 29.45 40.23
(0.46%) (0.56%) (0.70%) (0.88%) (1.14%) (1.48%) (1.97%) (2.65%) (3.62%)

0.3 6.34 7.82 9.81 12.49 16.17 21.25 28.31 38.07 51.36
(0.75%) (0.70%) (0.88%) (1.13%) (1.46%) (1.91%) (2.55%) (3.42%) (4.63%)

-0.3 R(mθ) 2.53 1.68 0.89 0.27 0.00 0.40 1.99 5.60 12.53
0 ×103 3.61 2.42 1.30 0.39 0.00 0.61 3.08 8.86 20.27

0.3 4.73 3.18 1.71 0.52 0.00 0.80 4.04 11.44 25.49
-0.3 ρ -0.299 -0.299 -0.299 -0.299 -0.299 -0.299 -0.299 -0.299 -0.299

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.3 0.299 0.299 0.299 0.299 0.299 0.299 0.299 0.299 0.299
-0.3 σx 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.201

0 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.201 0.201
0.3 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.201 0.201
-0.3 σλ 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201

0 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.202
0.3 0.200 0.201 0.201 0.201 0.201 0.201 0.201 0.202 0.202
-0.3 drift of σxW x -1.27 -1.06 -0.79 -0.43 0.05 0.70 1.59 2.83 4.56

0 ×104 -1.27 -1.06 -0.79 -0.43 0.05 0.70 1.59 2.83 4.56
0.3 -1.73 -1.47 -1.13 -0.67 -0.06 0.76 1.89 3.43 5.49
-0.3 drift of σλWλ -0.48 -0.39 -0.27 -0.12 0.07 0.32 0.66 1.13 1.78

0 ×104 -0.48 -0.39 -0.27 -0.12 0.07 0.32 0.66 1.13 1.78
0.3 -0.96 -0.80 -0.60 -0.34 0.014 0.49 1.12 1.99 3.12

Table 2.7: Worst-case results and parameters for CVA example.
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The estimates of ρ, σx, and σλ are consistently close to their nominal values and thus unaffected

by the change of measure. The means of the scaled Brownian motions σxW x and σλW λ, both of

which are zero under the nominal measure, are increasing in θ, though the magnitude of change is

small. In short, the wide range of CVA values are all consistent with nearly the same parameters

values; changes in parameter values are not the primary source of model risk.

Next, we consider changes in the marginal distributions of Xτ and τ , considering only out-

comes in which τ < T . The upper panels of Figure 2.18 show the marginal density of Xτ . At

θ = 12, the adversary is trying to increase the CVA, so the density is shifted to the right; setting

θ = −12 has the opposite effect. The lower panels show the cumulative distribution of τ . Here, a

larger θ value makes default more likely within the horizon (thus increasing the CVA), whereas a

smaller θ makes default less likely.

The most interesting aspect of the worst-case change of measure is the effect on the dependence

between τ and Xτ . We can get a first indication of this dependence from the correlations estimated

at different θ values reported in Table 2.8. The correlations consistently increase with θ.

θ -12 -9 -6 -3 0 3 6 9 12
ρXτ ,τ -0.075 -0.045 -0.012 0.025 0.068 0.116 0.178 0.263 0.390
ρXτ ,ξ 0.039 0.064 0.093 0.125 0.159 0.200 0.248 0.313 0.413

Table 2.8: Correlations between Xτ and τ , conditional on τ < T .

To further examine the dependence, in Figure 2.19 we plot contours of the joint density of τ

and Xτ for different values of θ, taking ρ = 0.3. Despite this correlation in the driving Brownian

motions, we do not observe much dependence between Xτ and τ in the nominal case θ = 0 (upper

right). At θ = 12, we see a marked increase in dependence. We also see that the most likely way

to get a large realized CVA is to have a default toward the end of the horizon, after the exposure
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Figure 2.18: Marginal distribution of Xτ and τ for τ < T .

has a chance to accumulate. In other words, the least costly way for the adversary to generate a

large CVA is to push τ toward T and push X upward. In the lower right corner, we show the joint

distribution obtained using the parameter values estimated at θ = 12. This once again supports

the view that the change in parameter values does not capture the most important features of the

worst-case model. The case θ = −12 in the upper left shows some negative dependence between

τ and Xτ ; here the adversary tries to generate a small CVA with a quick default near X = 0 or no

default at all.

In Figure 2.20, we plot contours of the joint density of (ξ,Xτ ) for the same cases that appear
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Figure 2.19: Joint density of Xτ and τ for τ < T , T = 2.

in Figure 2.19. These are consistent with the pattern in Figure 2.19, but recall that the marginal

distribution of ξ does not change so the pattern here is more purely determined by the change in

dependence. This is further illustrated in Figure 2.21, which shows contours of the copula for Xτ

and ξ.

In Figure 2.22, we revisit the comparisons of Figures 2.18–2.20, except now we constrain the

change of measure to leave the marginal law ofX unchanged. The effect is to force a much greater

change in the dependence structure since the adversary has less flexibility to change the marginals.

As another perspective on the worst-case change of measure, in Figure 2.23 we plot some

statistics of the Brownian increments σxW x and σλW λ on paths with defaults. Each plot starts up

to 100 steps (1 year) before the default. The horizontal axis is the time remaining until default, so

the origin corresponds to the time of default and 1 corresponds to 1 year before default.
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Figure 2.20: Joint density of Xτ and ξ for τ < T , T = 2.

With θ = 12, the worst-case means and standard deviations of the increments are significantly

higher than their original values within 100 steps. Further from default, the abnormality of means

decreases. This may explain why parameters estimated using all the increments under the worst-

case scenario are not so different from the original parameter values. In estimating worst-case

parameters using all the increments, the effect of the abnormal increments is diluted by other

increments whose distributions are much less perturbed.

Interestingly, the standard deviations increase as we move further away from default. This

seems to be a consequence of the fact that closer to default there is a strong upward trend with

reduced volatility for both λ and X .

In Table 2.9, we estimate CVA at different values of θ and then at different parameter values.

For example, to match the CVA at θ = 6, we would need to make dramatic changes in the input
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Figure 2.21: Copula of (Xτ , ξ).

parameters — increasing ρ to 0.95 or increasing ρ together with µλ. Once again we find that the

worst-case model error is not simply described by a change in parameters.

T = 2
CVA ρXτ ,τ

worst parameters θ = 12 0.0016 0.0695
θ = 0 0.0016 0.0675
θ = 3 0.0021 0.1164
θ = 6 0.0028 0.1777
θ = 9 0.0038 0.2634
θ = 12 0.0051 0.3903
ρ = 0.4 0.0018 0.0884
ρ = 0.95 0.0027 0.2083
µλ = 0.04 0.0027 0.0271
µλ = 0.06 0.0031 -0.0169

µλ = 0.025, ρ = 0.65 0.0025 0.1231
µλ = 0.025, ρ = 0.9 0.0030 0.1722
µλ = 0.05, ρ = 0.9 0.0037 -0.0010

Table 2.9: CVA and ρXτ ,τ using parameters estimated from the worst-case scenario, the worst-case
scenario, and scenarios with perturbed parameters.

By simply increasing ρ, both CVA and ρXτ ,τ increase. However, the increase in ρXτ ,τ is greater

than the increase in CVA compared to the worst scenario; moreover, even with a very extreme

value like ρ = 0.95, the changes in CVA and ρXτ ,τ are limited. When only µλ is increased, the
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Figure 2.22: Marginal densities of τ and Xτ (first row), joint density of (Xτ , τ) (second row) and
joint density of (Xτ , ξ) (third row). The dynamics of X are fixed.

CVA increases, but when µλ ≥ 0.06, ρXτ ,τ turns negative. A possible explanation is that as µλ

becomes very large, those paths with small realizations of W λ also default before T , contributing

small values of Xτ , hence a smaller ρXτ ,τ .

In order to reach the level of the worst-case CVA and ρXτ ,τ , we need to have µλ ≈ 0.025 and

ρ = 0.9 to reach the level at θ = 6. For the level at θ = 12, we can set µλ ≈ 0.07 to reach the level

of CVA, but we cannot reach a similar level for ρXτ ,τ even with very high correlation ρ = 0.8.
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Figure 2.23: Statistics for increments before defaults using θ = 0 (left) and θ = 12 (right).

Compared to Figure 2.19, Figure 2.22 shows much less distortion in the joint density of (Xτ , τ)

and (Xτ , ξ), and the change of dependence shows up later in the horizon. With the dynamics of

X fixed, the adversary’s only control is through the default intensity λ, trying to make the default

occur when X has a larger value. Early in the horizon, X typically has small values, so the

adversary chooses not to expend relative entropy early. Hence, the perturbed distribution of τ is

similar to what it was before early in the horizon.

We have also tested the case with jumps in the dynamics of λ, with parameters νj = 1.5 and

γ = 0.01 from El Bachir and Brigo (2008) and other parameters are unchanged. The results are

very similar to what we had before, except that in Figure 2.23, the dynamics of Wx and Wλ have

very minor changes even before defaults.

In Figure 2.24, we plot the worst-case jump intensity and the worst-case mean jump sizes. Both

increase with θ, but the magnitudes of the changes are small.
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Figure 2.24: Worst-case jump intensity and worst-case mean jump size.

2.9 Concluding Remarks

This chapter develops a general approach and specific tools for quantifying model risk and bound-

ing the impact of model error. By taking relative entropy as a measure of “distance” between

stochastic models, we get a simple representation of the worst-case deviation from a baseline

nominal model — this worst-case deviation is characterized by an exponential change of mea-

sure. Applying this representation with simulation allows us to bound the effect of model error

across multiple values of relative entropy with minimal computational effort beyond that required

to simulate the baseline nominal model alone. We have also shown how to incorporate additional

information into the analysis to impose constraints on moments and other auxiliary functions of the

underlying model or to leave certain marginal distributions of the underlying model unchanged;

and we have extended these ideas to heavy-tailed distributions with α-divergence replacing relative

entropy.

Using these tools, we have examined model error in mean-variance portfolio optimization,

conditional value-at-risk, the Gaussian copula model of portfolio credit risk, delta hedging, and
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credit valuation adjustment. A recurring theme in these examples is that the worst-case model

deviation generally looks very different from a change of parameters within the baseline nominal

model. Thus, our approach based on stochastic robustness goes well beyond parameter sensitivity

in exploring model error to identify the greatest vulnerabilities in the stochastic structure of a

model.
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Chapter 3

Robust Portfolio Control with Stochastic

Factor Dynamics

3.1 Introduction

Mean-variance portfolio optimization is known for its sensitivity to small perturbation. This is one

of the main difficulty faced by its practical application. The natural extension to multiple horizons

not only inherits this unpleasant pitfall, it also faces the challenge of evolution of the future market.

In this chapter, tools introduced in Chapter 2 are used to construct a portfolio control that is robust

towards model risk.

Our model builds on a practical setting, where the returns of assets depend on factors following

some times-series model. The objective follows mean-variance framework while the transaction

costs are subtracted from gross returns. We assume both the relationship between returns and

factors and the evolution of the factors are subject to model error, and derive optimal controls that
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optimize the worst-case objective provided that the true model is relatively close to the nominal

one, measured by relative entropy. Thus, it is robust with respect to moderate model risk. The

original problem (without robustness) can be solved via Linear-Quadratic-Gaussian programming.

With the extra consideration of robustness, a closed-form value function iteration is derived and the

stability for infinite-horizon problem is studied. Numerical results shows improvement from the

consideration of robustness, which comes from the reduced risk exposure relative to the baseline

model.

The rest of this chapter is organized as follows. Section 3.2 formulates the basic portfolio con-

trol problem and its robust extension. Section 3.3 solves the finite-horizon problem. Section 3.4

examines the effect of varying the degree of robustness and compares robust and non-robust solu-

tions. Section 3.5 solves the infinite-horizon control problem, and Section 3.6 presents numerical

results. Most proofs are collected in Appendix A.

3.2 Problem Formulation

3.2.1 Dynamics and Objective

We consider a portfolio optimization problem in which asset returns are driven by factors with

stochastic dynamics. Examples of portfolio control problems with factor models of returns include,

among many others, the work of Bielecki and Pliska (1999), Campbell and Viceira (2002), and

Pesaran and Timmermann (2012). The formulation in Garleanu and Pedersen (2012), which we

now review, leads to particularly explicit solutions in both its original and robust form.

The investor has access to nx underlying assets evolving in discrete time. The changes in prices
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of the assets from time t to time t+ 1 are indicated by a vector rt+1 ∈ Rnx , specified by

rt+1 = µ+Bfft + ut+1, (3.2.1)

where µ ∈ Rnx represents an expected or “fair” return, ft ∈ Rnf is a vector of factors influencing

price changes and known to the investor at time t, Bf ∈ Rnx×nf is a factor loading matrix, and

u1, u2, . . . , are i.i.d. random vectors in Rnx following a multivariate normal distribution with mean

zero and covariance matrix Σu. The factors are mean-reverting, evolving according to the equation

ft+1 = Cfft + vt+1, (3.2.2)

with coefficient matrix Cf ∈ Rnf×nf and i.i.d. noise vectors v1, v2, . . . in Rnf following a mul-

tivariate normal distribution with mean zero and covariance matrix Σv. We assume that the vt are

independent of the ut. To make the factors stable, we assume throughout that σ(Cf ) < 1, where

σ(·) gives the spectral radius of a square matrix. Equations (3.2.1) and (3.2.2) allow the possibility

that prices become negative. However, we measure performance based on price changes, so this

does not present a problem. The probability of this occurring can also be made very small through

parameter choices.

Denote by xt ∈ Rnx the vector of shares of underlying assets held in the portfolio just after any

transactions made at time t; in other words, at time t the portfolio’s holdings are rebalanced from



93

xt−1 to xt. Rebalancing the portfolio imposes transactions costs modeled as

1

2
∆x>t Λ∆xt, where ∆xt = xt − xt−1, (3.2.3)

with cost matrix Λ symmetric and positive definite. For a square matrix A, we write A > 0 (or ≥,

<, ≤) if A is positive definite (or positive semi-definite, negative definite, negative semi-definite,

respectively). If a small transaction of dx shares temporarily moves the market price unfavorably

by the amount Λdx, then a transaction of size ∆xt results in a total cost of ∆x>t Λ∆xt/2, compared

to executing the transaction at the original price. The simple model penalizes large trades and

provides tractability.

In a mild abuse of notation, we use ∆x to denote an investment policy — that is, a rule for deter-

mining transactions given the information available. With this convention, we write the objective

introduced by Garleanu and Pedersen (2012), which models an investor seeking to maximize the

present value of risk-adjusted excess gains, net of transaction costs, as follows:

sup
∆x

E

[
T∑
t=0

βt
(

(xt−1 + ∆xt)
>(rt+1 − µ)− γ

2
V art[(xt−1 + ∆xt)

>rt+1]− 1

2
∆x>t Λ∆xt

)]

= sup
∆x

E

[
T∑
t=0

βt
(
x>t (Bfft + ut+1)− γ

2
x>t Σuxt −

1

2
∆x>t Λ∆xt

)]
. (3.2.4)

The objective (3.2.4) consists of three terms. The first term is the discounted sum of future excess

returns with discount factor β ∈ (0, 1). The third term measures discounted transaction costs. The

difference between these two terms measures the discounted net cash flow to the investor. The

middle term is a risk penalty, in which γ > 0 measures the investor’s risk aversion. The notation
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V art denotes conditional variance of excess return, given information up to time t, including

position xt, and we use Et analogously. Measuring risk through the expectation of the discounted

sum of conditional variances is a compromise made for tractability, as is the case with the quadratic

measure of transaction costs. This also makes the objective time consistent, which is not typically

true for dynamic mean-variance problems (e.g., Basak and Chabakauri (2010)). Interestingly,

even if we drop the risk penalty (setting γ = 0) a term of exactly this form appears in the solution

to a robust formulation. We view (3.2.4) as a guide to selecting sensible strategies rather than as

a precise representation of an investor’s preference. In our numerical tests, we therefore evaluate

performance through a Sharpe ratio as well as directly through (3.2.4).

Given the Markov structure of the problem, it suffices for the investor to consider policies

under which ∆xt is a deterministic function of (xt−1, ft), and the supremum in (3.2.4) is taken

over such policies. In choosing an optimal policy, the investor must, as usual, balance risk and

reward. In addition, the combination of the factor structure in (3.2.1) and the mean-reversion in

(3.2.2) requires the investor to balance the benefits of acting on a signal before the factors decay

against the costs of large transactions.

Remark 3.2.1. Our model of transaction costs can be generalized to incorporate more features

while preserving tractability. One generalization is to incorporate permanent price impact by

adding x>t Λ̃∆xt to the transaction costs, where Λ̃∆xt is the permanent price impact caused by

transaction ∆xt. Because this term is linear in ∆xt, we still get an explicit iteration similar to

Proposition 3.3.6. Moallemi and Saglam (2012) consider more general models with transaction

costs and more general performance objectives than (3.2.4); they forego explicit solutions and

instead optimize numerically within the class of linear rebalancing rules.
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3.2.2 Robust Formulation

We now introduce model uncertainty by allowing perturbations in the stochastic dynamics of the

model. The stochastic input to the model is the sequence {(ut, vt), t = 1, 2, . . . } of noise terms,

so we will translate uncertainty about the model into uncertainty about the law of this sequence.

As is usually the case in discussions of robustness, it is convenient to describe uncertainty through

the possible actions of a hypothetical adversary who changes the model to maximize harm to the

original agent — in our setting, the investor. We will constrain the actions of the adversary shortly,

but first we briefly illustrate the effect the adversary can have by changing the law of the noise

sequence.

The noise vectors all have mean zero under the original model. If the adversary changes the

conditional mean of vt+1 to −Dft, for some nf × nf matrix D, then (3.2.2) becomes

ft+1 = (Cf −D)ft + ṽt+1,

where ṽt+1 has the law of the original vt+1. Thus, the adversary can change the dynamics of the

factors and, for example, accelerate the speed of mean-reversion and potentially reduce the value

of the factors to the investor. By instead setting the conditional mean of vt+1 to (I − Cf )f̄ , for

some fixed f̄ , the adversary moves the long-run mean of the factors from the origin to f̄ . Changing

the conditional mean of ut+1 to −B̄fft changes (3.2.1) to

rt+1 = µ+ (Bf − B̄)ft + ũt+1,
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ũt+1 having the original distribution of ut+1, and thus allows the adversary to change the factor

loadings. By changing the covariance of ut+1, the adversary changes the covariance of the price

changes rt+1. 1 The adversary can also introduce correlation between ut+1 and vt+1. We will see

that the adversary’s optimal controls take advantage of dynamic information about both portfolio

holdings and factor levels and thus go beyond robustness to uncertainty about static parameters

like Cf and Bf .

These examples also serve to illustrate that alternative but equivalent formulations of the origi-

nal control problem (3.2.4) can lead to distinct formulations when we consider robustness. For in-

stance, replacing x>t (rt+1−µ) on the left side of (3.2.4) with its conditional expectationEt[x>t (rt+1−

µ)] = x>t Bfft clearly has no effect on the investor’s portfolio choice or its performance as mea-

sured by (3.2.4). However, by including ut+1 in the objective we allow the adversary to influence

performance by changing the distribution of this term. Put differently, including this term leads

the investor to a strategy that is robust to errors in both the return model (3.2.1) and the factor

dynamics (3.2.2), whereas omitting ut+1 focuses robustness exclusively on the factor dynamics.

We solve and test both formulations.

We now formulate the adversary’s actions more precisely. Let gu and gv denote the probability

densities of ut and vt. The adversary may choose a new joint density g̃t for (ut, vt), which could,

in the most general formulation, depend on past values (us, vs), s < t, of the noise sequence.

However, we will restrict our analysis to the Markovian case in which any dependence of the

1The uncertainty introduced by ut+1 can potentially cause the factor loading model to deviate from Arbitrage
Pricing Theory (APT). We can enforce APT constraint by imposing linear constraints on the conditional expectation
of ut+1, i.e., Et[ut+1] = Ωλt + Ωft for given ft, where λt is the vector of risk premium of factors ft, and Ω
represents the degree of possible deviation of conditional expectation of ut+1. As a special case, we can also assume
the uncertainty only comes from vt+1. This alternative approach will be tested in the numerical section.
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density function g̃t on the past is captured through dependence on the state (xt−1, ft). If we set

mt =
g̃t(vt, ut|xt−1, ft)

gv(vt)gu(ut)
, Mt =

t∏
s=1

ms, (3.2.5)

then Mt is the likelihood ratio relating the distribution of (u1, v1, . . . , ut, vt) selected by the ad-

versary to the original distribution. Because gu and gv are multivariate normal densities, so the

denominator of mt is supported on all of Rnx × Rnx and is never zero.

As in Hansen and Sargent (2007), Hansen et al. (2006) and Petersen et al. (2000), we limit

the adversary by constraining or penalizing the relative entropy of the change of measure. How

tightly we constrain or penalize the relative entropy determines the degree of model uncertainty

by limiting how far the adversary can change the stochastic evolution of the data away from the

investor’s model. The relative entropy at time t is E[Mt logMt], which is always positive and is

equal to zero only when the adversary leaves the original measure unchanged by taking Mt ≡ 1.

Given M0 and a sequence of one-period likelihood ratios m = {mt, t = 1, 2, . . . } as in (3.2.5), let

Rβ(m) = (1− β)
∞∑
t=0

βtE[Mt logMt] =
∞∑
t=0

βt+1E [MtEt[mt+1 logmt+1]] (3.2.6)

denote the infinite-horizon discounted sum of relative entropy, where the term 1− β is introduced

to simplify the final expression. We can give the adversary a budget η > 0 and constrain the

measure change to satisfy Rβ(m) ≤ η. When truncated at a finite upper limit T , the two sums

in (3.2.6) no longer coincide — the discount factor on the right would need to be replaced with

(βt+1 − βT+1), leading to a control problem that depends on both t and T , and not just on the
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time-to-go T − t. To avoid this feature and to preserve consistency with the infinite-horizon case,

we use the rightmost sum in (3.2.6), truncated at T , as our finite-horizon measure of discounted

entropy.

Constraining the adversary’s measure change to satisfyRβ(m) ≤ η results in the robust control

problem (for either a finite or infinite horizon)

sup
∆x

inf
m:Rβ(m)<η

E

[∑
t

βtMt

(
x>t (Bfft + ut+1)− γ

2
x>t Σvxt −

1

2
∆x>t Λ∆xt

)]
. (3.2.7)

Here, the investor seeks to optimize performance in the face of model uncertainty by maximizing

performance against the worst case stochastic perturbation to the original model, considering only

perturbations that are sufficiently close to the original model to satisfy the relative entropy con-

straint. As before, the supremum is taken over policies under which each ∆xt is a deterministic

function of (xt−1, ft); the infimum is taken over measure changes satisfying the relative entropy

constraint and having the form in (3.2.5) in which each new density g̃t is determined by (xt−1, ft).

Thus, (xt−1, ft) remains Markovian under any policy pair (∆x,m).

The Lagrangian of the constrained problem (3.2.7) is a penalty problem with parameter θ > 0

sup
∆x

inf
m
E

[
T∑
t=0

βtMt

(
x>t (Bfft + Et[mt+1ut+1])− γ

2
x>t Σvxt

−1

2
∆x>t Λ∆xt + θβEt[mt+1 logmt+1]

)]
, (3.2.8)

with the constraintRβ(m) < η replaced by an admissibility conditionRβ(m) <∞. Hansen et al.

(2006), Claim 5.4, establish the equivalence of constrained and penalized formulations through
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convex duality under mild conditions, complementing a similar result in Petersen et al. (2000). We

work directly with (3.2.8) because it is more amenable to explicit solution. This formulation also

has an interpretation in terms of dynamic risk measures, in which case θ measures the investor’s

aversion to ambiguity; see Ruszczyński (2010).

Our restriction to investment policies and measure changes that are Markovian in the sense

that their dependence on the past is fully captured by dependence on the state (xt−1, ft) does not

change the value of (3.2.8) in the finite-horizon case, provided the measure changes satisfy a more

general rectangularity condition; this is shown in Theorems 2.1–2.2 of Iyengar (2005) for discrete

state spaces, but his argument applies here as well. The infinite-horizon problem raises stability

issues, but Section 7.6 of Hansen and Sargent (2007) shows an analogous reduction to Markovian

strategies, under modest technical conditions, for problems of the type we consider. We avoid a

digression into these issues by limiting ourselves to Markovian strategies throughout.

3.3 Finite-Horizon Robust Problem

3.3.1 Robust Bellman Equation for U

To lighten notation, we define

Q(x,∆x, f) = x>Bff −
γ

2
x>Σux−

1

2
∆x>Λ∆x.
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For a fixed horizon T < ∞, and any 0 ≤ t ≤ T , the finite-horizon value function Ut,T for the

penalty problem (3.2.8) is given by

Ut,T (Mt, xt−1, ft) = sup
∆x

inf
m
Et

[
T∑
s=t

βsMs (Q(xs,∆xs, fs)

+Es[ms+1u
>
s+1]xs + θβEs[ms+1 logms+1]

)]
, (3.3.1)

with (x−1, f0) fixed and UT+1,T = 0. That Ut,T is indeed a function of only (Mt, xt−1, ft) follows

from our restriction to Markovian strategies (∆x,m) for the investor and the adversary. In par-

ticular, under a fixed pair of policies, the conditional expectations inside the summation reduce to

functions of (xs, fs), and xs is a function of (xs−1, fs).

Define the one-step robust dynamic programming operator T acting on functions h : R×Rnx×

Rnf → R by

T (h)(M,x, f) = sup
∆x+

inf
m+

M (Q(x+,∆x+, f)

+E[m+u
>
+]x+ + βE[θm+ logm+] + βE[h(Mm+, x+, f+)]

)
, (3.3.2)

where x+ = x + ∆x+, f+ = Cff + v+, v+ ∼ N(0,Σv), and u+ ∼ N(0,Σu). The supremum

is over ∆x+ ∈ Rnx and the infimum is over m+ of the form in (3.2.5). It is always feasible (and

optimal) for the adversary to choose m+ with finite relative entropy.
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Proposition 3.3.1. Ut,T satisfies, for 0 ≤ t ≤ T , the robust Bellman equation

Ut,T = T (Ut+1,T ). (3.3.3)

Proof. The proof is the same as that of Theorem 2.2 of Iyengar (2005), even though the setting

there is a discrete state space. In particular, the rectangularity condition required there holds in our

setting. (We detail the argument for the infinite-horizon case in the proof of Proposition 3.5.1.)

We have taken UT+1,T = 0 as our terminal condition for simplicity. If the underlying assets

are futures contracts (the focus of Section 3.6), then we can interpret this condition as having

all contracts mature at T + 1. Alternatively, we could assign UT+1,T a liquidation value for the

portfolio, considering both asset prices at time T + 1 and the transactions costs incurred in selling

off the portfolio’s holdings. This formulation would require recording price levels (the cumulative

sum of the price differences rt) in the state vector, which could be done quite easily. The final

portfolio is just the scalar product of xT+1 and the price vector, so this formulation remains within

the linear-quadratic framework. We omit this extension for simplicity, particularly since it does not

apply to the infinite-horizon problem.

3.3.2 Bellman Equation for V

To solve the Bellman equation (3.3.3), we will follow the approach in Hansen and Sargent (2007)

and prove that Ut,T can be decomposed as a product of Mt and a function of (xt−1, ft), which will
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simplify (3.3.3) so that we can solve it analytically. First, we write U in the form

Ut,T (Mt, xt−1, ft) = MtVt,T (Mt, xt−1, ft), (3.3.4)

taking this as the definition of Vt,T , since Mt ∈ (0,∞). Then (3.3.3) becomes

T (Mtmt+1Vt+1,T )(Mt, xt−1, ft) = MtVt,T (Mt, xt−1, ft). (3.3.5)

Recalling the definition of T , we can divide both sides of (3.3.5) by Mt to get

Vt,T (Mt,xt−1, ft) = sup
∆xt

inf
mt+1

{Q(xt,∆xt, ft)

+Et[mt+1u
>
t+1xt + βθmt+1 logmt+1 + βmt+1Vt+1,T (Mt+1, xt, ft+1)]

}
. (3.3.6)

Set VT+1,T = 0. It now follows by induction that Vt,T does not depend on Mt: Suppose this is

true of Vt+1,T ; then, under our Markovian restriction on strategies, the conditional expectations in

(3.3.6) are functions of (xt−1, ft), and thus so is Vt,T .

Since θ > 0, the term in the conditional expectation of (3.3.6) is convex in mt+1, so we

can solve the minimization problem through the first-order conditions, which leads to the optimal

choice

m∗t+1 =
exp

{
−1
θ

(
Vt+1,T (xt, ft+1) + 1

β
x>t ut+1

)}
Et

[
exp

{
−1
θ

(
Vt+1,T (xt, ft+1) + 1

β
x>t ut+1

)}] . (3.3.7)

This is a positive function of xt, ft+1, ut+1 and vt+1, normalized to integrate to 1, so it has the form
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required by (3.2.5). (We verify that the normalization in the denominator is finite in the case of

interest as part of Theorem 3.3.8.) Substituting expression (3.3.7) into (3.3.6), we get the following

recursion for V :

Vt,T (xt−1, ft) = sup
∆xt∈Rd

{
Q(xt,∆xt, ft)− βθ logEt

[
exp{−

Vt+1,T (xt, ft+1) + 1
β
x>t ut+1

θ
}

]}
,

(3.3.8)

which we abbreviate as Vt,T = T V (Vt+1,T ) by defining T V as the operator on the right. We

summarize this transformation as follows:

Proposition 3.3.2. For any T < ∞, any solution to (3.3.8) gives a solution Ut,T (Mt, xt−1, ft) =

MtVt,T (xt−1, ft) to (3.3.3), where the adversary’s choice is given by (3.3.7).

The recursion in (3.3.8) has the form of a risk-sensitive optimal control problem. With β = 1,

the recursion can be unwound and V expressed as the value function of a control problem; this

case is treated extensively in Whittle (1981), Whittle and Whittle (1990). With β < 1, there is no

non-recursive expression for V : V cannot be expressed as the value function for a control problem

with a time-separable objective, nor is it equivalent to specifying an exponential utility function or

any other standard utility function. This discounted case is treated in Hansen and Sargent (1995),

though their convexity condition does not hold in our setting; see also Skiadas (2003). Portfolio

optimization problems with risk-sensitive criteria are solved in, e.g., Bielecki and Pliska (1999),

Bielecki et al. (2005), Fleming and Sheu (2001), with the risk-sensitive objective posited from the

outset. It should be stressed that in, our setting, the risk-sensitive problem (3.3.8) emerges only as

an intermediate step in solving the robust control problem, in response to the adversary’s optimal

strategy, and not as the primary objective.
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3.3.3 Saddlepoint Condition and Solution to the Bellman Equation

Building on Whittle (1981), Whittle and Whittle (1990), we will give conditions leading to a

quadratic solution for Vt,T . To motivate the argument, we first observe that starting with VT+1,T = 0

and taking one step backward in (3.3.8) we find that VT,T is quadratic in (xT−1, fT ). If, for some

t ≤ T , Vt+1,T is quadratic in (xt, ft+1) with no dependence on Mt, then the last term in (3.3.8)

becomes

−θβ log

(
Et[exp{−1

θ
G}]Et[exp{− 1

θβ
x>t ut+1}]

)
= −θβ logEt[exp{−1

θ
G}]− 1

2βθ
x>t Σuxt,

(3.3.9)

where G is a quadratic function of (xt, ft+1) (and thus of vt+1), and the conditional expectation

factors because of the independence of ut+1 under the original probability measure. Under the

saddlepoint conditions given below, (3.3.9) then reduces to a quadratic function of (xt, ft). So,

the right side of (3.3.8) is a quadratic function of xt, ft, and xt−1. Maximizing over xt under the

saddlepoint conditions, the right side of (3.3.8) becomes a quadratic function of (xt−1, ft). Thus,

Vt,T is quadratic in (xt−1, ft) and has no functional dependence on Mt.

A consequence of these properties of Vt,T is that it is quadratic in vt+1 — implying that vt+1

continues to be normally distributed under the change of measure, though with a different mean

and covariance — and linear in ut+1 — implying that ut+1 continues to be normally distributed but

with a different mean. The absence of a cross term multiplying vt+1 and ut+1 in m∗t+1 preserves

the independence of the two vectors.
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In light of the foregoing discussion, we posit the representation

Vt,T (xt−1, ft) = x>t−1A
(t,T )
xx xt−1 + x>t−1A

(t,T )
xf ft + f>t A

(t,T )
ff ft + A

(t,T )
0 ,

and set

A(t,T ) =

 A
(t,T )
xx

1
2
A

(t,T )
xf

1
2
(A

(t,T )
xf )> A

(t,T )
ff

 .
Without loss of generality, we take A(t,T ) to be symmetric. We introduce two conditions to ensure

that this structure is preserved by the recursion (3.3.8). To state the conditions generically, we drop

the superscript (t, T ).

Condition 3.3.3. Σ−1
v + 2

θ
Aff > 0.

Condition 3.3.4. J1 > 0, with γ
θ

= γ + (1/θβ) and

J1 = γ
θ
Σu + Λ− 2βAxx +

β

θ
Axf (Σ

−1
v +

2

θ
Aff )

−1A>xf > 0. (3.3.10)

By analogy with Whittle and Whittle (1990), pp.81–83, we call these saddlepoint conditions.

The following lemma provides sufficient conditions for the required properties.

Lemma 3.3.5. (i) If Axx ≤ 0 and Condition 3.3.3 holds, then Condition 3.3.4 holds. (ii) If Aff ≥

0, then Condition 3.3.3 holds.

The lemma helps explain the name “saddlepoint” and shows that the conditions we have are

weaker than concavity in x and convexity in f . We now apply our conditions to the Bellman
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equation (3.3.8). The result is similar to that of Hansen and Sargent (1995); however, a separate

argument is needed because we do not have joint concavity. Given a matrix A, define

J2 = Bfft + Λxt−1 + βAxfCfft − 2
β

θ
Axf (Σ

−1
v +

2

θ
Aff )

−1AffCfft, (3.3.11)

J3 = Bf + βAxfCf − 2
β

θ
Axf (Σ

−1
v +

2

θ
Aff )

−1AffCf . (3.3.12)

The matrix J3 appears when we substitute a quadratic function into (3.3.8); the vector J2 depends

on the state (xt−1, ft) and will be used to describe the investor’s optimal portfolio. The proof of

the following result, and that of most results throughout this chapter, appears in Appendix A.

Proposition 3.3.6. If a symmetric matrix A satisfies Conditions 3.3.3 and 3.3.4, then T V maps a

quadratic function with coefficients (A,A0) to a quadratic function with coefficients (S(A),U(A,A0)),

where

S(A)xx = −1

2
Λ +

1

2
ΛJ−1

1 Λ>, (3.3.13)

S(A)xf = ΛJ−1
1

[
Bf + βAxfCf − 2

β

θ
Axf (Σ

−1
v +

2

θ
Aff )

−1AffCf

]
, (3.3.14)

S(A)ff = βC>f AffCf − 2
β

θ
C>f Aff (Σ

−1
v +

2

θ
Aff )

−1AffCf +
1

2
J>3 J

−1
1 J3, (3.3.15)

U(A,A0) =
βθ

2
log |I +

2

θ
ΣvAff |+ βA0, (3.3.16)

and | · | denotes the determinant of a matrix.

We now show that the properties we need for a quadratic representation of Vt,T are indeed

preserved by (3.3.8). We write Sn for the n-fold iteration of the mapping S .
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Proposition 3.3.7. (i) If A is symmetric then Sn(A) is symmetric for all n > 0. (ii) If A is

symmetric and satisfies Λ1/2J−1
1 Λ1/2 < I , Aff ≥ 0, and Condition 3.3.4, then

−Λ/2 < Sn(A)xx < 0 and Sn(A)ff ≥ 0, for n > 0.

Hence, Conditions 3.3.4 and 3.3.3 hold for all n > 0.

3.3.4 Optimal Controls

We can now summarize the optimal controls for the adversary and the investor. We use Ẽ to denote

expectation under the change of measure selected by the adversary. The conditions on A(T,T ) in

the following result hold, in particular, for the terminal condition A(T+1,T ) = 0 corresponding to

UT+1,T = 0, but they hold more generally as well.

Theorem 3.3.8. Suppose A(T,T ) satisfies the conditions in Proposition 3.3.7 so that Conditions

3.3.4 and 3.3.3 hold for all A(t,T ), t ≤ T . (i) Under the adversary’s optimal change of measure,

the conditional distribution of (ut+1, vt+1) given (u1, v1), . . . , (ut, vt) is normal with conditional

covariance Σ̃t+1,

Σ̃t+1 =

 Σu 0

0 (Σ̃v)t+1

 , where (Σ̃v)t+1 =

(
Σ−1
v +

2

θ
A

(t+1,T )
ff

)−1

,
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and conditional mean (µu,t+1, µv,t+1), with µu,t+1 = −Σuxt/(θβ) and

µv,t+1 = −1

θ
(Σ̃v)t+1

(
(A

(t+1,T )
xf )>xt + 2A

(t+1,T )
ff Cfft

)
(3.3.17)

= −1

θ
(Σ̃v)t

∂Vt+1,T (xt, Ẽt[ft+1])

∂ft
.

(ii) The investor’s optimal choice is

∆x∗t = 2Λ−1A(t,T )
xx (xt−1 +

1

2
(A(t,T )

xx )−1A
(t,T )
xf ft) = Λ−1∂Vt,T

∂x
, (3.3.18)

so

xt = J−1
1 J2 = (I + 2Λ−1A(t,T )

xx )xt−1 + Λ−1A
(t,T )
xf ft. (3.3.19)

The effect of the adversary’s control is to change the evolution of the factors from (3.2.2) to

ft+1 = Cfft + µv,t+1 + ṽt+1, ṽt+1 ∼ N(0, (Σ̃v)t+1);

in particular, this makes

Ẽt[ft+1] = Cfft + µv,t+1

= (I − 2

θ
(Σ̃v)t+1A

(t+1,T )
ff )Cfft −

1

θ
(Σ̃v)t+1(A

(t+1,T )
xf )>xt

= (Σ̃v)t+1(Σ−1
v Cfft −

1

θ
(A

(t+1,T )
xf )>xt), (3.3.20)
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where Ẽ denotes expectation under the change of measure selected by the adversary. Because

(Σ̃v)t+1 ≤ Σv, we interpret the first term in (3.3.20) as shrinking the persistence of the factors

and thus potentially reducing their value to the investor; the second term in (3.3.20) indicates that

the adversary also exploits the investor’s current portfolio in setting the conditional mean of the

factors, as suggested by the expression following (3.3.17).

Corollary 3.3.9. We can write the investor’s optimal choice (3.3.19) as

xt = (I + 2Λ−1A(t,T )
xx )xt−1 − 2Λ−1A(t,T )

xx (−1

2
(A(t,T )

xx )−1A
(t,T )
xf ft) (3.3.21)

= (γ
θ
Σu + Λ− 2βA(t+1,T )

xx )−1

× (Λxt−1 + γ
θ
Σu(γθΣu)

−1Bfft − 2βA(t+1,T )
xx (−1

2
(A(t+1,T )

xx )−1A
(t+1,T )
xf Ẽt[ft+1]). (3.3.22)

For (3.3.21), as in Garleanu and Pedersen (2012), we can interpret this choice as a weighted

average of the current portfolio xt−1 and a target portfolio given by

target = −1

2
(A(t,T )

xx )−1A
(t,T )
xf ft. (3.3.23)

The target portfolio maximizes the quadratic function Vt,T , given the factor level ft. If trans-

action costs were waived for one period, the investor would move immediately to the target; oth-

erwise, the investor’s optimal trade (3.3.18) is proportional to the difference between the current

portfolio and the target, the proportion depending on the cost matrix Λ. Recall that the A matrix

depends on the robustness parameter θ through the recursions in Proposition 3.3.6.

In (3.3.22), the term (γ
θ
Σu)

−1Bfft, which we call the myopic portfolio, maximizes the single-
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period mean-variance objective

x>t Bfft −
γ
θ

2
x>t Σuxt.

Thus, (3.3.22) represents xt as a weighted average of the current portfolio xt−1, the myopic portfo-

lio, and the conditional expectation of the target portfolio one step ahead. Comparing this expres-

sion to equation (16) of Garleanu and Pedersen (2012), we can interpret the effect of the robust

solution as replacing the original conditional expectation of the factors with their conditional ex-

pectation under the adversary’s change of measure and implicitly increasing the investor’s risk

aversion parameter from γ to γ
θ
. Interestingly, if we omitted the variance penalty γx>t Σuxt/2

from the original objective (3.2.4), it would still appear in the robust formulation, because γ
θ
> 0

even if γ = 0. Uncertainty in the linear term u>t+1xt has the effect of increasing risk aversion.

3.4 Comparison with the Non-Robust Case

In this section, we examine the effect of varying the robustness parameter θ, including the non-

robust formulation θ = ∞ as a limiting case. We affix θ as a subscript or superscript to indicate

functions and quantities tied to a specific value of the parameter. The non-robust version is indi-

cated by a subscript or superscript∞.

We denote by U∞t,T and U∞, respectively, the finite-horizon and infinite-horizon value func-

tions for the (non-robust) objective (3.2.4) and define a dynamic programming operator acting on

functions h : Rnx × Rnf → R by

T ∞(h)(x, f) = sup
∆x+∈Rnx

{x>+Bff+ −
γ

2
x>+Σvx+ −

1

2
∆x>+Λ∆x+ + E [h(x+, f+)]},
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with x+ = x + ∆x+, and the expectation taken over f+ = Cff + v, v ∼ N(0,Σv). Then U∞t,T

satisfies the recursion T ∞(U∞t+1,T ) = U∞t,T . Garleanu and Pedersen (2012) show that this dynamic

programming equation maps a quadratic function backward to another quadratic function. We can

therefore write

U∞t,T (xt−1, ft) = x>t−1ST−t∞ (A)xxxt−1 + x>t−1ST−t∞ (A)xfft + f>t ST−t∞ (A)ffft + UT−t∞ (A,A0),

(3.4.1)

with ST−t∞ (A) and UT−t∞ (A,A0) the coefficients of U∞t,T at time t when U∞T,T is quadratic with

coefficient matrix A. Here, Sn∞ is the n-fold iteration of S∞, but Un∞ is defined recursively by

setting U1
∞ = U∞ and Un∞(A,A0) = U∞(Sn−1

∞ (A),Un−1
∞ (A,A0)); see the analogous dependence

on A and A0 in (3.3.16).

The non-robust case can be considered a special case of the robust formulation. Condition 3.3.3

holds automatically when θ =∞, and if Condition 3.3.4 holds for some matrix A for θ =∞, then

it also holds for any θ ∈ (0,∞). This is because the last term in (3.3.10) is positive definite

for θ ∈ (0,∞) but vanishes when θ = ∞, and γθ is decreasing in θ, so Jθ1 ≥ J∞1 . It is also

easy to verify that Proposition 3.3.7 holds at θ = ∞. As we vary θ (smaller θ indicating greater

robustness), the coefficient matrices are ordered as follows:

Lemma 3.4.1. If (A,A0) satisfies Aff ≥ 0, Λ1/2J−1
1 Λ1/2 < I , and Condition 3.3.4 for some

0 < θ1 < θ2 ≤ ∞, then for any n ≥ 0, Snθ1(A) ≤ Snθ2(A) and Unθ1(A,A0) ≤ Unθ2(A,A0).

To illustrate, suppose we start the recursions for two parameter levels 0 < θ1 < θ2 ≤ ∞ from



112

the same terminal condition with coefficients (A,A0) (including A = A0 = 0 as a special case).

Suppose the conditions of Lemma 3.4.1 hold. We make the following observations:

(a) In the portfolio decomposition (3.3.21), the weight on the previous position satisfies 1 +

2Λ−1Snθ1(A)xx < 1 + 2Λ−1Snθ2(A)xx, so more robustness (smaller θ) leads to less weight on

the previous position xt−1 and more weight on the target portfolio (3.3.23). The less-robust

investor puts greater trust in the persistence of the factors described by the model and thus

attaches greater value to the previous portfolio. However, the coefficient of ft in (3.3.21) can

either increase or decrease with θ because Snθ (A)xf can increase or decrease or change in a

more complicated way.

(b) From the decomposition (3.3.22), we find similarly that increasing robustness decreases weight

on the myopic portfolio (γ
θ
Σu)

−1Bfft, and it also decreases the size of the myopic portfolio

because γ
θ

increases with θ. If we remove ut+1 from (3.2.4) and limit robustness to the factor

dynamics (3.2.2) only, then γ
θ
≡ γ and the myopic portfolio does not vary with θ.

(c) Also from (3.3.22), we see that increasing robustness puts more weight on the conditional ex-

pectation of the target portfolio while decreasing the coefficient on the conditional expectation

of the factors. In numerical examples, we find that the conditional expectation of the target

portfolio is very sensitive to θ.

We can also interpret the effect of robustness from the optimal controls

∆x∗t = Λ−1∂Vt+1,T

∂x
and µv,t+1 = −1

θ
(Σ̃v)t

∂Vt+1,T (xt, Ẽt[ft+1])

∂ft
.
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These expressions are already very suggestive, as they show the investor and the adversary using

their controls to increase and decrease V , respectively. Also, the quadratic function Vt,T is concave

in xt−1 and convex in ft, making it a hyperbolic paraboloid. The cross term x>t Bfft in the objective

function leads to the cross term coefficientAxf 6= 0 in the value function. The presence of this term

means that the axes of the hyperbolic paraboloid are twisted and not orthogonal to each other. As

a result, the minimum point for f is linear in x, and maximum point for x is linear in f , properties

exploited by both players. This can also be seen in (3.3.17) and (3.3.19).

If there were no cross term in the objective and we had At+1,T
xf = 0, then the coefficient of Cfft

in (3.3.17) would be a negative definite matrix, and the effect of the adversary’s choice of µv,t+1

would thus be to accelerate the mean reversion of the factors in (3.2.2) and reduce their value to the

investor. In fact, in the limit as θ approaches zero, the coefficient of ft in (3.3.17) becomes −Cf

which eliminates any persistence in the factor dynamics (3.2.2). With a nonzero cross term, the

adversary can do further harm by moving the factors in a direction that depends on the investor’s

current portfolio.

We conclude this section by verifying that value iteration for the non-robust problem converges;

this is needed to confirm that the solution to the Bellman equation found in Garleanu and Pedersen

(2012) is in fact the value function for the infinite-horizon problem and that the corresponding

control is optimal. In the following, J1 is evaluated with θ =∞.

Proposition 3.4.2. If A is such that J1 > 0, Aff ≥ 0, and

A−

 0 0

0 1
2γ
B>f Σ−1

u Bf

 ≤ 0,
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then the iteration of (3.4.1) converges; i.e., limn→∞(Sn∞(A),Un∞(A,A0)) exists. The control (3.3.18)

obtained from the limit is optimal, and the quadratic function defined by the limit solves the Bell-

man equation and is the value function for the infinite-horizon problem.

3.5 Infinite-Horizon Robust Problem

3.5.1 Formulation and Bellman equation

For the robust infinite-horizon problem, define U by setting t = 0 and T = ∞ on the right

side of (3.3.1). This robust value function is bounded above by the non-robust value function

(corresponding to θ = ∞ in Lemma 3.4.1), and it is bounded below because the investor can

choose xt ≡ 0.

Proposition 3.5.1. With T the operator defined in (3.3.2), U satisfies

U = T (U). (3.5.1)

Similarly, by arguing as in Proposition 3.3.2 and the subsequent discussion, we arrive at the

following result.

Proposition 3.5.2. Suppose V (xt−1, ft) satisfies V = T V (V ), with T V as defined by (3.3.8). Then

U(Mt, xt−1, ft) = MtV (xt−1, ft) satisfies (3.5.1) with

m∗t+1 =
exp

{
−1
θ

(
V (xt, ft+1) + 1

β
x>t ut+1

)}
Et

[
exp

{
−1
θ

(
V (xt, ft+1) + 1

β
x>t ut+1

)}] , (3.5.2)
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provided the normalization in (3.5.2) is finite.

This reduces the problem of finding a solution to the robust Bellman equation (3.5.1) to one of

solving V = T V (V ). In solving for the infinite-horizon V , the finite-horizon recursions for Vt,T

in Proposition 3.3.6 become simultaneous equations. Given coefficients (A,A0) of a quadratic

function, define J1, J2, and J3 as in (3.3.10)–(3.3.12).

Proposition 3.5.3. If A is symmetric and (A,A0) satisfy Aff ≥ 0, J1 > 0, Λ1/2J−1
1 Λ1/2 < I , and

Axx = −1

2
Λ +

1

2
ΛJ−1

1 Λ>,

Axf = ΛJ−1
1

[
Bf + βAxfCf − 2

β

θ
Axf (Σ

−1
v +

2

θ
Aff )

−1AffCf

]
,

Aff = βC>f AffCf − 2
β

θ
C>f Aff (Σ

−1
v +

2

θ
Aff )

−1AffCf +
1

2
J>3 J

−1
1 J3,

(1− β)A0 = −βθ
2

log |I +
2

θ
ΣvAff |,

then the quadratic function V defined by (A,A0) is a fixed point of T V .

This is a direct consequence of Proposition 3.3.7. With this result, we can solve the equations

for (A,A0) and check the conditions in the statement of the proposition (which ensure the saddle-

point conditions we need for optimality). If these are satisfied, then we have a fixed point V , from

which we get a solution U to the Bellman equation T (U) = U by setting U(M,x, f) = MV (x, f).

Such a solution provides candidate optimal controls for both the investor and the adversary — con-

trols that attain the supremum and the infimum in the one-step operator T . The calculation of these

controls is similar to that in Theorem 3.3.8, but simpler because of that stationarity implicit in the

infinite-horizon setting. We summarize the calculation as follows:
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Lemma 3.5.4. Suppose the conditions of Proposition 3.5.3 hold and define V from (A,A0) accord-

ingly. (i) Under the change of measure (3.5.2), the conditional distribution of (ut+1, vt+1) given

(u1, v1), . . . , (ut, vt) is normal with conditional covariance Σ̃,

Σ̃ =

 Σu 0

0 Σ̃v

 , where Σ̃v =

(
Σ−1
v +

2

θ
Aff

)−1

,

and conditional mean (µu,t+1, µv,t+1), with µu,t+1 = −Σuxt/(θβ) and

µv,t+1 = −1

θ
Σ̃v

(
Axf

>xt + 2AffCfft
)

= −1

θ
Σ̃v
∂V (xt, Ẽt[ft+1])

∂ft
.

(ii) The supremum over ∆x in the Bellman equation V = T V (V ) is given by the investment choice

∆x∗t = 2Λ−1Axx(xt−1 +
1

2
(Axx)

−1Axfft) = Λ−1∂V (xt−1, ft)

∂x
,

under which

xt = J−1
1 J2 = (I + 2Λ−1Axx)xt−1 + Λ−1Axfft.

3.5.2 Stability

Lemma 3.5.4 provides explicit expressions for the controls obtained by solving the robust Bellman

equation. As is often the case in infinite-horizon problems, we need additional conditions to verify
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that a solution to the Bellman equation is in fact the value function (3.3.1) (with T = ∞) and

that the corresponding controls are optimal. For these properties, we need to impose stability

properties on the evolution of the controlled system. The key property is the admissibility condition

Rβ(m) < ∞, with Rβ as defined in (3.2.6). Although it refers only to the adversary’s control,

this property is best viewed as a condition on the controls of both players because the adversary’s

choice of mt may depend on the investor’s choice of portfolio. Define the state yt and the extended

state yet by setting

yt =

 xt−1

ft

 and yet =


ut

xt−1

ft

 .

The state evolution depends on the chosen pair of policies (∆x,m). We use ‖ · ‖ to denote the

usual Euclidean vector norm. The full stability condition we use is as follows.

Definition 3.5.5. (β-Stability.) We call a policy pair (∆x,m) and the resulting extended state

evolution β-stable ifRβ(m) <∞ and if αtẼ[‖yet ‖2]⇒ 0 for some α ∈ (β, 1), for all ye0.

The mean square convergence to zero of αt/2yet under the change of measure is sufficient to

ensure that the infinite discounted sum (with discount factor β) of a quadratic function of the

extended state is finite. We thus interpret β-stability as ensuring that the adversary cannot drive the

investor reward to −∞ and that the investor cannot drive the relative entropy penalty to +∞; in

particular, the condition avoids the possibility of getting∞−∞ in the robust value function. For

the controls obtained from the Bellman equation (the controls in Lemma 3.5.4), a simpler condition
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characterizes β-stability. We use the condition

Rα(m) <∞ for some α ∈ (β, 1). (3.5.3)

Lemma 3.5.6. SupposeU is a solution to the robust Bellman equation (3.5.1) for whichU(M,x, f)

is the product ofM and a quadratic function of (x, f). If the quadratic function satisfies Conditions

3.3.4 and 3.3.3, then the resulting controls (∆x,m) are β-stable if and only if (3.5.3) holds.

3.5.3 Optimality

We now verify that that the policies provided by the robust Bellman equation through Lemma 3.5.4

do indeed solve the robust control problem in a suitable sense. Suppose both the investor and the

adversary choose their policies (Markov, as we assume throughout), and let x∗t and m∗t be the

resulting portfolios and likelihood ratios. Then the value attained by this pair of policies, starting

from (M0, x−1, f0), whenever this expression is well-defined, is given by

U∗(M0, x−1, f0) = E

[
∞∑
t=0

βtMt

(
Q(x∗t ,∆x

∗
t , ft) + θβm∗t+1(logm∗t+1 + u>t+1x

∗
t )
)]

(3.5.4)

= Ẽ

[
∞∑
t=0

βt
(
Q(x∗t ,∆x

∗
t , ft) + θβm∗t+1(logm∗t+1 + u>t+1x

∗
t )
)]
, (3.5.5)

where, as before, Ẽ denotes expectation under the adversary’s change of measure. We show that a

solution to the robust Bellman equation (3.5.1) is indeed the value attained under the corresponding

policies, and the policy forms an equilibrium. Once one player has selected a policy, we call a

policy selected by the other player a β-stable response if the resulting policy pair is β-stable.
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Theorem 3.5.7. Suppose U∗ is a solution to the robust Bellman equation (3.5.1), and suppose

U∗(M,x, f) is the product of M and a quadratic function of (x, f) satisfying Conditions 3.3.3–

3.3.4. Suppose the corresponding policy pair (∆x∗,m∗) satisfies Rα(m∗) < ∞ for some α ∈

(β, 1). Then

(i) U∗ is the value attained under the policy pair (∆x∗,m∗).

(ii) The investor’s best β-stable response to m∗ is ∆x∗. The adversary’s best β-stable response

to ∆x∗ is m∗.

This result justifies the controls that come out of Lemma 3.5.4. It is worth noting that a violation

of β-stability entails either a portfolio size that grows exponentially or an infinite relative entropy

penalty. The restriction to β-stable policy pairs is therefore sensible, and it is appropriate to view

the policy ∆x∗ derived from the robust Bellman equation as the investor’s optimal choice in the

face of the model uncertainty captured by the robust formulation.

3.5.4 Convergence of Value Iteration

From Lemma 3.5.4, we see that the key step in solving the infinite-horizon robust control problem

is solving the equations in Proposition 3.5.3, which restate the condition V = T V (V ) for quadratic

V . A natural approach is to start from some initial (A,A0) and apply the equations iteratively. Each

application of the equations is an application of the operator T V , so the question of convergence

of this iterative approach is equivalent to the question of convergence of the finite-horizon function

Vt,T as t→ −∞with VT,T the quadratic function determined by the starting point (A,A0). Hansen

and Sargent (1995) consider the case where the objective function is concave in the state variable,
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which allows a simple proof through a monotone convergence argument, but our setting is beyond

the scope of their result.

Over a finite horizon T , each (At+1,T , At+1,T
0 ) determines candidate controls through the pre-

scription in Theorem 3.3.8. Under these controls, the state yt evolves as in (A.2) but with a time-

dependent transition matrix

Ψ̄t,T =

 I 0

−1
θ
(Σ̃v)t+1A

(t+1,T )
xf (Σ̃v)t+1Σ−1

v Cf


 I + 2Λ−1A

(t+1,T )
xx Λ−1A

(t+1,T )
xf

0 I

 .

If both factors in this representation have norm less than β−1/2, then we have convergence of Sn(A)

Un(A,A0) for any initial (A,A0) that satisfies Λ1/2J−1
1 Λ1/2 < I and Aff ≥ 0. The norm here can

be any matrix norm for which ‖Mn‖1/n → σ(M), such as any p-norm.

We have not found simple sufficient conditions that ensure this uniform stability condition. The

condition can easily be checked for each Ψ̄t,T at each iteration as part of an iterative algorithm,

but given the difficulty of verifying the condition in advance we omit the details of the result.

In our numerical experiments, we have never observed a failure to converge starting either from

zero or the solution of the non-robust case and, indeed, the convergence appears to be quite fast.

An alternative to iteration is the decomposition method covered in Hansen and Sargent (2007).

This approach leads to conditions that guarantee a solution, but it requires a lengthy and technical

digression so we omit it.
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3.6 Numerical Results

3.6.1 Data Description and Model Estimation

In order to test the effect of the robust formulation, we work with the application to commod-

ity futures in Garleanu and Pedersen (2012), using futures prices on the following commodities:

aluminun, copper, nickel, zinc, lead, and tin from the London Metal Exchange; gas oil from the

Intercontinental Exchange; WTI crude, RBOB unleaded gasoline, and natural gas from the New

York Mercantile Exchange; gold and silver from the New York Commodities Exchange; and cof-

fee, cocoa, and sugar from the New York Board of Trade. For consistency with Garleanu and Ped-

ersen (2012), we use daily prices for the period 01/01/1996 – 01/23/2009 for our in-sample tests;

we use data through 04/09/2010 for out-of-sample tests. As discussed in Garleanu and Pedersen

(2012), extracting price changes from futures prices requires some assumptions on how contracts

are rolled, and this makes it difficult to reproduce exactly the same time series of price changes.

We choose the contract with the largest volume on each day. In some early samples when volumes

for some commodities are not available, we choose the contract closest to maturity that does not

expire in the current month. Our estimates and results are quite close and adequate for the purpose

of examining the effect of robustness.

For each commodity, Garleanu and Pedersen (2012) introduce factors f 5D, f 1Y and f 5Y , which

are the moving averages of price changes over the previous five days, one year and five years,

normalized by their respective standard deviations. Using these factors, we estimate the following
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model of price changes for each commodity:

rst+1 = 0.004
(0.54)

+ 11.43
(2.41)

f 5D,s
t + 107.55

(2.42)
f 1Y,s
t − 218.76

(−1.65)
f 5Y,s
t + ust+1,

the superscript s indexing the 15 commodities. This is a pooled panel regression — the coefficients

are the same across all commodities — with parameters estimated using feasible generalized least

squares. The numbers reported under the coefficients are t-statistics. Similarly, for the factor

dynamics we get the following estimates:

∆f 5D,s
t+1 = −0.2510

(−0.67)
f 5D,s
t + v5D,s

t+1 ,

∆f 1Y,s
t+1 = −0.0039

(−0.64)
f 1Y,s
t + v1Y,s

t+1 ,

∆f 5Y,s
t+1 = −0.0010

(−0.78)
f 5Y,s
t + v5Y,s

t+1 .

The matrix Cf is thus diagonal and, in light of the t-statistics, a potential source of model error

to be captured in the vt+1 terms. With f = (f 5D,1, f 1Y,1, f 5Y,1, ..., f 5D,15, f 1Y,15, f 5Y,15)>, the

form of the loading matrix Bf follows from the regression equation for rst . Erb and Harvey

(2006) documented the 1-year momentum factor in commodity futures prices. Asness et al. (2009),

Moskowitz et al. (2012) documented 1-year and 5-year many asset classes.

We adopt the choices in Garleanu and Pedersen (2012) in estimating Σv and Σu, and in set-

ting the risk aversion parameter to γ = 10−9, the one-day discount factor β = exp(−0.02/260)

corresponding to a 2% annual rate, and the transaction cost matrix to Λ = λΣu, with λ = 3×10−7.
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3.6.2 In-Sample Tests

This section reports results of in-sample tests in which we evaluate portfolio performance on the

same price data used to estimate the model. We compare performance at various levels of the

robustness parameter θ, including the non-robust case θ = ∞. The “No TC” case is a strategy

that ignores transaction costs and thus reduces to the mean-variance optimal portfolio xt+1 =

(γΣu)
−1Bfft. With Λ = λΣu, the myopic portfolio corresponds to taking β = 0, and it evolves as

xt+1 = λ
λ+γ

xt + 1
λ+γ

Σ−1
u Bfft.

Tables 3.1 and 3.2 summarize performance results. The robust results in Table 3.1 are based on

allowing the changes in both returns (through ut) and factor dynamics (through vt); in Table 3.2,

robustness is limited to vt by omitting ut+1 from the original problem (3.2.4). As we discussed in

Section 3.2.2, alternative but equivalent non-robust objectives can lead to different robust problems.

The columns labeled “mean/std” report annualized performance ratios computed as

√
260×Mean(daily $ profit)/Standard deviation(daily $ profit).

We refer to these loosely as Sharpe ratios though they are calculated from differences rather than

percentage changes because the assets are futures contracts — each contract has zero initial value,

and total portfolio value can become negative. The columns labeled “Obj” report the objective

function value

Mean(daily $ profit)− γ

2
Variance(daily $ profit).

The difference between gross and net performance is the effect of transaction costs.
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To provide a rough indication of the statistical significance of our comparisons, we group the

data into consecutive batches and calculate standard errors across batches. For each level of the

robustness parameter θ, we calculate an approximate t-statistic (using the first estimator in The-

orem 1 of Muñoz and Glynn (1997)) for the difference in performance between the robust and

non-robust strategies. With sufficient stationarity and mixing in the underlying data, these statis-

tics are indeed asymptotically t-distributed, though the conditions required are not guaranteed to

hold in practice. We report results based on 40 batches and have obtained very similar results with

30 batches and with 50 batches.

Not surprisingly, ignoring transactions costs leads to good gross performance and terrible net

performance in the first row of Table 3.1. The myopic rule produces less extreme differences but

overall poor results. These portfolios help illustrate the value of dynamic control rules. The non-

robust rule is optimized to the net objective function, so there is no reason to expect to see any

benefit to robustness by this criterion. In Table 3.1, we see some deterioration in the net objective

as we increase robustness (decrease θ); in Table 3.2, the net objective is relatively insensitive over

a wide range of θ values. Interestingly, when we compare performance based on Sharpe ratios, for

which none of the rules has been optimized, adding robustness appears to improve performance

in both cases, though the differences are not significant as measured by our t-statistics. The in-

sample improvement in the Sharpe ratio for the robust portfolios is primarily due to a reduction

in the standard deviation in the denominator. At high robustness levels, the net excess return of

the robust portfolio can be lower than that of the non-robust portfolio but with smaller standard

deviation.
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Obj ×10−6 mean/std
θ Gross t-stat Net t-stat Gross t-stat Net t-stat

No TC 1.22 -159.68 0.82 -11.67
Myopic -0.21 -0.22 0.08 0.08

Non-robust 0.70 0.62 0.60 0.56
Robust 1010 0.70 -0.04 0.62 0.12 0.61 -0.08 0.57 -0.13

109 0.55 -0.65 0.51 -0.49 0.61 -0.29 0.57 -0.48
108 0.15 -1.24 0.13 -1.09 0.63 0.09 0.57 -0.35
107 0.02 -1.37 0.02 -1.21 0.72 0.89 0.66 0.70
106 0.00 -1.40 0.00 -1.23 0.79 1.04 0.77 1.18
105 0.00 -1.40 0.00 -1.23 0.82 1.13 0.82 1.40

Table 3.1: In-sample performance comparisons using the full data series with robustness in returns
(ut) and factor dynamics (vt). For each θ, the t-stats compare performance of the robust rule at that
θ with the non-robust case, based on grouping the data into 40 batches.

Obj ×10−6 mean/std
θ Gross t-stat Net t-stat Gross t-stat Net t-stat

Non-robust 0.70 0.62 0.60 0.56
Robust 1010 0.70 0.40 0.62 0.53 0.60 0.80 0.56 0.89

109 0.71 0.38 0.62 0.52 0.60 0.81 0.57 0.89
108 0.72 0.35 0.65 0.48 0.61 0.98 0.57 1.05
107 0.72 0.07 0.66 0.19 0.65 1.15 0.62 1.19
106 0.51 -0.50 0.48 -0.37 0.72 0.97 0.68 0.96
105 0.23 -1.02 0.22 -0.87 0.75 0.84 0.71 0.77

Table 3.2: In-sample performance comparisons using the full data series with robustness in factor
dynamics (vt) only. For each θ, the t-stats compare performance of the robust rule at that θ with
the non-robust case, based on grouping the data into 40 batches.

3.6.3 Out-of-Sample Tests

To compare out-of-sample performance, we re-estimate the model parameters each week from

01/01/1996 through 04/09/2010 using the previous 6 months of data. Each time the parameters

are estimated, the investment control rule remains fixed for one week until the parameters are next

updated. Thus, at each point in time, the investment policy is based solely on prior market data.

Updating the parameter estimates based on a rolling 6-month window is also more reflective of

how such a model would be used in practice.
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Table 3.3 (with robustness to both ut and vt) and Table 3.4 (with robustness to vt only) sum-

marize the results. Over a wide range of θ values, the robust control rules show improved net

performance as measured by either the objective function value or the Sharpe ratio. In effect, the

robust rules acknowledge the uncertainty in the estimated model and thus trade less aggressively

than the non-robust rule, and this improves out-of-sample performance. Allowing robustness to

both the model of returns and the model of factor dynamics (Table 3.3) results in somewhat better

results overall than focusing robustness on the factor dynamics.

As with the in-sample tests, the improvement mainly comes from the reduction in risk. In

Table 3.5, t-statistics for the difference in net returns between the robust and non-robust portfolios

are estimated using batch means with 40 batches. None of the robust portfolios has a significantly

better net return than that of the non-robust portfolio.

Our subsequent analysis focuses on the less favorable case in which robustness is limited to the

factor dynamics.

To illustrate the effect of robustness, Figure 3.1 shows the evolution of the positions in gold and

crude oil under various strategies. Ignoring transaction costs leads to wild swings on a much wider

scale, so we omit this case from the graph. Positions under the robust rules (shown at θ = 107 and

θ = 104 with robustness to vt only) fluctuate less than those chosen by the non-robust rule. At the

same time, by anticipating the evolution of the factors, the robust rules are quicker to respond than

the myopic portfolio. The figures and numerical results suggest that θ = 107 provides a reasonable

level of robustness and θ = 104 is overly conservative. The third panel scales the non-robust

positions to facilitate comparison. We discuss scaling strategies in Section 3.6.4.

Figure 3.2 compares net returns over the full time period and provides further insight into
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Obj ×10−6 mean/std
θ Gross t-stat Net t-stat Gross t-stat Net t-stat

No TC -59.76 -8257.60 0.53 -5.74
Myopic -11.80 -11.90 -0.57 -0.59

non-robust -36.78 -42.92 0.35 0.04
robust 109 -8.17 2.24 -10.50 2.32 0.39 0.93 0.15 3.07

108 0.29 2.06 0.02 2.18 0.40 0.21 0.26 1.76
107 0.10 1.99 0.08 2.13 0.46 0.38 0.37 1.73
106 0.01 1.99 0.01 2.12 0.52 0.66 0.49 2.21
105 0.00 1.99 0.00 2.12 0.53 0.69 0.52 2.32
104 0.00 1.99 0.00 2.12 0.53 0.69 0.53 2.34

Table 3.3: Out-of-sample performance comparisons using a rolling 6-month estimation window
with robustness in returns (ut) and factor dynamics (vt). For each θ, the t-stats compare perfor-
mance of the robust rule at that θ with the non-robust case, based on grouping the data into 40
batches.

Obj ×10−6 mean/std
θ Gross t-stat Net t-stat Gross t-stat Net t-stat

non-robust -36.78 -42.92 0.35 0.04
robust 109 -31.16 1.69 -36.38 1.72 0.37 1.21 0.08 2.67

108 -18.70 1.91 -22.16 1.95 0.40 1.06 0.16 2.65
107 -5.10 2.05 -6.70 2.12 0.44 0.58 0.25 1.99
106 -0.28 2.03 -0.85 2.13 0.42 -0.39 0.27 0.81
105 0.27 2.01 0.11 2.13 0.37 -0.73 0.26 0.38
104 0.18 2.00 0.14 2.13 0.41 -0.26 0.33 0.86

Table 3.4: Out-of-sample performance comparisons using a rolling 6-month estimation window
with robustness in factor dynamics (vt) only. For each θ, the t-stats compare performance of the
robust rule at that θ with the non-robust case, based on grouping the data into 40 batches.

differences across strategies. Ignoring transaction costs results in disastrously poor performance,

so this case is omitted from the figure. The performance of the myopic portfolio degrades over

the time. Interestingly, much of the benefit of the robust rule, compared with the non-robust rule,

appears to be due to a small number of days. The non-robust rule can outperform the robust rule

over long periods of time; adding robustness reduces the impact of a small number of bad bets by

trading less aggressively on the signals from the factors. Consistent with what we see in Figure 3.2,
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θ 109 108 107 106 105 104

robust in v only 0.96 0.69 0.33 0.03 -0.09 -0.12
robust in v and u 0.24 -0.07 -0.14 -0.15 -0.15 -0.15

Table 3.5: t-statistics of the difference of net returns between robust and non-robust portfolios for
out-of-sample tests, based on grouping the data into 40 batches.
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Figure 3.1: Positions in gold in out-of-sample tests under various control rules. The lower-left
figure shows the positions for risk scaled non-robust portfolio and corresponding robust portfolio.

the improved Sharpe ratio under the robust rules results mainly from a smaller denominator rather

than a larger numerator. We have also observed in QQ-plots (not included) that the tails of the

out-of-sample distributions of daily returns of the robust portfolio are lighter than those of the

non-robust portfolio.

The largest losses in Figure 3.2 occur near September 27, 1999, and February 2, 2006, so we

examine events around these days in greater detail. Leading up to this date, the loading matrix

(Bf ) and the mean reversion matrix (Cf ) were relatively slow moving. As shown in Figure 3.3,
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Figure 3.2: Net portfolio returns in out-of-sample tests.

both portfolios had short positions in gold, though more aggressively under the non-robust rule. On

September 26, 15 European central banks signed an agreement to limit gold sales (Weber (2003));

the price of gold rose 6% the next day and 11% the day after. This spike results in large losses for

the short positions in our test portfolios, but the loss is tempered under the robust rule.
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Figure 3.3: Parameter estimates near September 29, 1999

To ensure that our results are not overly influenced by a single day, we repeat the comparison

removing days September 27-28, 1999, from the data. Table 3.6 shows that the robust portfolio

still outperforms the non-robust portfolio.

Whereas the large price change on September 27, 1999, was limited to gold, changes around

February 2, 2006, were spread across multiple commodities, and the portfolio losses resulted from
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Obj ×10−6 mean/std
θ Gross t-stat Net t-stat Gross t-stat Net t-stat

non-robust -32.11 -37.98 0.49 0.18
robust 107 -3.89 1.89 -5.45 1.97 0.56 1.05 0.37 2.58

106 -0.02 1.86 -0.58 1.98 0.48 -0.03 0.33 1.24

Table 3.6: Out-of-sample results with two extreme days (9/27-28/1999) removed from the data.

large positions rather than large price changes. The largest positions for both the robust and non-

robust portfolios on that date are in aluminum, zinc, gold, and sugar. The prices for these com-

modities are shown in Figure 3.4.
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Figure 3.4: Prices for aluminum, gold, zinc, and sugar before and after February 2, 2006. These
are the commodities in which the portfolios hold the largest positions on that date.

The position sizes for these commodities are shown in Figure 3.5. The steady price increases in

the first half of Figure 3.4 lead to growing positions, particularly for the non-robust portfolio. The

positions change smoothly; this is consistent with the representation in (3.3.21) — more precisely,

the infinite-horizon version without the superscripts (t, T ) — of the portfolio as a weighted aver-

age of the previous position and a target position, together with the observation that the factors are

moving smoothly as a consequence of the pattern of price changes. The large positions produce

large losses on February 2. The price drop in sugar, for example, is barely perceptible, yet it pro-
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duces the largest losses of any of the commodities because of the large position accumulated. The

robust portfolio suffers smaller losses because it is less aggressive in building up large positions in

response to the increasing factor levels. Interestingly, the two portfolios hold fairly similar posi-

tions in zinc and gold, despite the large difference in their sugar positions. The non-robust portfolio

positions continue to grow quickly following the price drop. We attribute this, informally, to the

non-robust portfolio ascribing greater persistence to the factors.
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Figure 3.5: Four largest positions for the non-robust (top) and robust (bottom) portfolios around
February 2, 2006.

Table 3.7 lists relative entropy values for in-sample tests with standard errors reported in paren-

theses. Using the results in Theorem 3.3.8, 104 sample paths with the same length as the history

for in-sample tests are simulated using the estimated model, and the relative entropy is estimated

using (3.2.6). For each Mt, the conditional relative entropy Et[mt+1 logmt+1] is calculated using

the closed form (A.3). To achieve the similar level of relative entropy for the robustness only in

v with θ = 109, one need to set θ = 107 when robustness in both v and u are considered. Both

objective function and Sharpe ratio with θ = 107 in Table 3.3 are better than those with θ = 109

in Table 3.4. The difference of these performance measurements suggests that the improvement is

brought by considering the extra source of uncertainty from u.
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For out-of-sample tests, there is no exact way to capture the relative entropy budget at each

time, so we simply use the relative entropy for the same value of θ in in-sample tests.

θ Robustness in v Robustness in v and u
1010 0.020 (1.4×10−4) 0.017 (1.2×10−4)
109 0.30 (1.2×10−3) 0.17 (6.4× 10−4)
108 1.1 (5.7×10−3) 0.27 (1.0×10−3 )
107 2.4 (0.016) 0.31 (9.7× 10−4)
106 5.0 (0.048) 0.40 (8.2×10−4)
105 12 (0.16) 0.44 (8.1×10−4)

Table 3.7: Relative entropy for in-sample tests. Standard errors are reported in parentheses.

3.6.4 Scaling and Trimming

In this section, we will compare the robust portfolios with simple heuristics to make the non-robust

portfolios less aggressive by adding constraints. We consider three alternatives.

Risk scaled portfolio: For the out-of-sample test, at each time the model is updated, the posi-

tion of the non-robust portfolio is scaled by a factor. For given robustness level θ > 0, the scaling

factor is computed using the previous 6 months’ realized return so that the variance of the net re-

turn of the scaled portfolio equals that of the robust portfolio. The scaling factor is applied to those

positions in the subsequent week. For the first 6 months, we still use their own performance for

scaling.

Capital scaled portfolio: First, define the total exposure to be the sum of absolute exposures,∑
i |xi,t|pi,t, with pi,t being the price of the ith asset at time t. Whenever the total exposure of the

non-robust portfolio exceeds a predetermined threshold, it will be scaled down proportionately so
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that the total exposure of the scaled portfolio equals the threshold. We choose the maximum total

exposure of a robust portfolio as the threshold.

Trimmed portfolio: Here we trim the non-robust portfolio so that at any time t the position

for each asset will be bounded by some upper and lower bounds. We set the bounds to be the

maximum and minimum positions of the robust portfolio for each asset.

Tables 3.9 and 3.10 report out-of-sample performance for these three portfolios. Columns la-

beled with “RS”, “CS” and “T” refer to risk scaled portfolio, capital scaled portfolio and trimmed

portfolio, respectively. The t−statistics in parentheses, which the compare performance of the

robust portfolio with these three portfolios, suggest that none of these alternatives performs con-

sistently as well as the robust method. Actually, the robust portfolio perform significantly better

than these three portfolios in terms of objective function when robustness is not too extreme, i.e.,

when θ is not too small.

Among the three constrained portfolio, the risk scaled portfolios have relatively closer perfor-

mance to the corresponding robust portfolios. Interestingly, there is a heuristic reason for this.

Suppose that we scale down the non-robust portfolio by a factor s ∈ (0, 1), such that the positions

of the resulting portfolio becomes xst = sx∞t , where x∞t is the position of the non-robust portfolio.

Then

xst = (I + 2Λ−1A(t,T )
xx )xst−1 − 2Λ−1A(t,T )

xx × s× target,

where the matrix A is computed under the case θ = ∞. So the scaled portfolio follows original

non-robust policy but with scaled target. (Garleanu and Pedersen 2012, Prop. 3) show that under
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the specification Λ = λΣu for some λ > 0, the target portfolio of the non-robust portfolio can be

written as a discounted sum of expected myopic portfolios, (γΣu)
−1Bfft, at all future times. So

scaling the target portfolio is very close to scaling up the risk aversion parameter γ to γs = γ/s,

though the discounting factor for myopic portfolios will change slightly when γ changes.

On the other hand, from (3.3.8), (3.3.9) and Appendix A.1, robustness in the mean of u with

θ > 0 is equivalent to increasing γ to γθ. Thus, scaling down the non-robust portfolio by s is close

to considering robustness in the mean of u with

θ =
s

((1− s)βγ)
. (3.6.1)

The performance of the risk scaled portfolios in Table 3.10 is close to that of the corresponding

robust portfolios. This suggests that most of the improvement is explained by the robustness in u,

since the gap between the risk scaled portfolio and the robust portfolio can be considered as the

extra benefit brought by considering robustness in v. This is consistent with the observation in

Table 3.7, where the performance of the robust portfolio considering only the uncertainty in v is

much less than the portfolio with robustness in both u and v at the same relative entropy level.

In Figure 3.1, the lower-left figure shows the position of gold for risk scaled portfolio and the

corresponding robust portfolio with θ = 104. The robust portfolio is different from the risk scaled

portfolio, especially when it has some extreme positions.

Table 3.8 reports average scaling parameters over time. For the cases with robustness in both v

and u, the scaling parameters are very close to γ/γθ, which supports our observation on the effect

of scaling.
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θ 109 108 107 106 105 104

robust in v only 0.96 0.81 0.53 0.27 0.11 0.037
robust in v and u 0.53 0.11 0.013 1.5×10−3 1.5×10−4 1.5×10−5

γ/γθ 0.5 0.091 9.9×10−3 1.0×10−3 1.0×10−4 1.0×10−5

Table 3.8: Average of scaling parameters for out-of-sample tests, so that the realized variance of
the scaled non-robust portfolio equals to that of the robust portfolio.

3.7 Concluding Remarks

We have developed robust portfolio control rules using a stochastic and dynamic notion of robust-

ness to model error. Our analysis covers both finite- and infinite-horizon multi-period problems.

We work with a factor model of returns, in which factors evolve stochastically. The relationship

between returns and factors and the evolution of the factors are subject to model error and are

treated robustly. We incorporate transaction costs and develop simple optimal controls that remain

tractable for multiple assets. Robustness significantly improves performance in out-of-sample tests

on historical data.

Using this approach requires choosing a value for the parameter θ, which controls the degree

of robustness or pessimism. In principle, one would want to select this parameter to reflect the

reliability of a model based on the data available to support it. Conveniently, we find that our

results are consistent over a wide range of θ values, so the exact choice of this parameter does

not dominate our empirical results. Methods for selecting this parameter nevertheless remain an

interesting topic for further investigation.
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Obj ×106

θ Gross RS CS T Net RS CS T
non-robust -36.78 -42.92

robust 109 -31.16 -31.59 -35.43 -34.67 -36.38 -36.97 -41.29 -40.16
(-0.93) (-2.13) (-2.43) (-0.96) (-2.22) (-2.79)

108 -18.70 -19.70 -30.45 -27.31 -22.16 -23.35 -35.70 -32.27
(-1.22) (-3.24) (-2.99) (-1.19) (-3.41) (-3.17)

107 -5.10 -6.70 -21.07 -14.63 -6.70 -8.18 -25.21 -18.37
(-1.35) (-3.80) (-3.03) (-1.32) (-4.19) (-3.49)

106 -0.28 -0.80 -7.92 -6.59 -0.85 -1.33 -11.20 -9.41
(-0.79) (-3.52) (-2.71) (-0.70) (-4.19) (-3.54)

105 0.27 0.15 -1.1 -2.78 0.11 0.05 -1.93 -4.54
(-0.39) (-1.18) (-2.05) (-0.19) (-1.77) (-3.03)

104 0.18 0.14 0.36 -0.50 0.14 0.12 0.18 -1.48
(-0.41) (0.45) (-0.93) (-0.17) (0.12) (-1.96)

mean/std
θ Gross RS CS T Net RS CS T

non-robust 0.35 0.04
robust 109 0.37 0.35 0.37 0.38 0.08 0.06 0.06 0.08

(-1.24) (-1.05) (-0.35) (-1.48) (-2.64) (-1.68)
108 0.40 0.35 0.42 0.43 0.16 0.10 0.12 0.13

(-1.14) (-0.88) (0.17) (-1.19) (-2.47) (-1.32)
107 0.44 0.33 0.41 0.53 0.25 0.14 0.13 0.24

(-0.63) (-0.33) (1.14) (-0.49) (-1.56) (0.09)
106 0.42 0.31 0.34 0.42 0.27 0.18 0.10 0.10

(0.29) (1.01) (0.75) (0.56) (0.44) (-0.30)
105 0.37 0.30 0.39 0.17 0.26 0.23 0.21 -0.16

(0.62) (1.87) (0.08) (1.03) (1.75) (-0.80)
104 0.41 0.31 0.44 0.23 0.33 0.29 0.34 -0.10

(0.19) (1.41) (0.11) (0.64) (1.53) (-0.77)

Table 3.9: Out-of-sample performance comparisons using a rolling 6-month estimation window
with robustness factor dynamics (vt) only. Scaled portfolio is derived from scaling the non-robust
portfolio so that the realized variance of its net return equals to that of the corresponding robust
portfolio. ((RS) is for risk scaled portfolio, and (CS) is for capital scaled portfolio. (T) indicates
trimmed portfolio is derived by trimming the position of the non-robust portfolio so that the po-
sitions of trimmed portfolio is bounded by the positions of corresponding robust portfolio. The
t-statistics in parentheses compare performance of the robust rule with scaling or trimming, based
on grouping the data into 40 batches.
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Obj ×106

θ Gross RS CS T Net RS CS T
non-robust -36.78 -42.92

robust 109 -8.17 -9.25 -26.98 -18.18 -10.5 -11.05 -31.85 -22.37
(-1.83) (-3.76) (-3.74) (-1.07) (-4.11) (-4.39)

108 0.29 0.16 -4.54 -4.11 0.02 0.07 -6.18 -6.24
(-1.06 ) (-2.59 ) (-2.44 ) (0.38) (-3.25) (-3.41)

107 0.10 0.08 0.31 -0.10 0.08 0.08 0.25 -0.62
(-0.59) (0.98) (-0.51) (0.10) (0.80) (-1.31)

106 0.01 0.01 0.04 0.05 0.01 0.01 0.04 -0.01
(-0.73) (1.37) (0.18) (-0.52) (1.38) (-0.39)

105 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(-0.71) (1.41) (0.05) (-0.68) (1.41) (-0.15)

104 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(-0.70) (1.41) (-0.01) (-0.69) (1.41) (-0.04)

mean/std
θ Gross RS CS T Net RS CS T

non-robust 0.35 0.04
robust 109 0.39 0.35 0.42 0.53 0.15 0.18 0.13 0.23

(-0.75) (-0.72) (1.25) (1.75) (-2.41) (0.01)
108 0.40 0.35 0.34 0.19 0.26 0.31 0.11 0.15

(-0.07) (0.97) (-0.75) (1.22) (0.47) (-1.72)
107 0.46 0.35 0.44 0.17 0.37 0.34 0.38 -0.14

(-0.21) (1.10) (-0.72) (0.49) (1.47) (-1.45)
106 0.52 0.34 0.43 0.22 0.49 0.34 0.42 -0.00

(-0.46) (0.62) (-0.60) (-0.24) (0.82) (-1.14)
105 0.53 0.35 0.43 0.12 0.52 0.35 0.43 0.05

(-0.49) (0.53) (-0.77) (-0.46) (0.56) (-0.95)
104 0.53 0.35 0.43 0.10 0.53 0.35 0.43 0.09

(-0.49) (0.52) (-0.82) (-0.49) (0.53) (-0.84)

Table 3.10: Out-of-sample performance comparisons using a rolling 6-month estimation window
with robustness in returns (ut) factor dynamics (vt). Scaled portfolio is derived from scaling the
non-robust portfolio so that the realized variance of its net return equals to that of the corresponding
robust portfolio. (RS) is for risk scaled portfolio, and (CS) is for capital scaled portfolio. (T) indi-
cates trimmed portfolio is derived by trimming the position of the non-robust portfolio so that the
positions of trimmed portfolio is bounded by the positions of corresponding robust portfolio.The
t-statistics in parentheses compare performance of the robust rule with scaling or trimming, based
on grouping the data into 40 batches.
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Chapter 4

Portfolio Rebalancing Error with Jumps

and Mean Reversion in Asset Prices

4.1 Introduction

The gap between continuous- and discrete-time modeling for portfolio dynamic is a very practical

issue. Continuous modeling is convenient in terms of tractability, while discrete trading is an

important realistic feature of trading activity and portfolio management.

We investigate the error in approximating a discretely rebalanced portfolio with one that is

continuously rebalanced. We focus on the effects of jumps and mean reversion in the dynamics

of the underlying assets, with constant target weights. By increasing the rebalancing frequency

to infinity, results are derived for the speed of convergence and the limit of the error, scaled by

the square root of the number of rebalancing dates. Specifically, when it involves jumps, the

limit follows a compound Poisson distribution; when it only has the mean reversion feature, the
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limit follows a normal distribution. Because of the convergence, the closed-form volatility of the

continuously rebalanced portfolio can serve as an approximation of that of the discrete portfolio.

Thanks to the limiting results, we are able to derive an improved volatility estimator for the discrete

portfolio.

The main tools needed for the proof of the main results are the strong approximation results

for stochastic differential equations. They are stochastic Taylor expansion, which are developed

by Kloeden and Platen (1992) for diffusion processes, and Bruti-Liberati and Platen (2005, 2007)

for jump-diffusion processes.

As a direct application, the results of this chapter can be used to guide the construction of

efficient simulation algorithm for tail risk measurement of discretely rebalanced portfolio (see

Glasserman and Xu (2010)).

The rest of this chapter is organized as follows. Section 4.2 introduces the mean-reverting and

jump-diffusion models and states our main results on the limiting rebalancing error. Section 4.3

derives our volatility adjustments for discretely rebalanced portfolios. Numerical examples are

given in Section 4.4. The rest of the chapter is then devoted to proving our main results. In

Section B.1, we provide background on strong approximation and then apply these tools to our

results for the jump-diffusion model. Section B.6 covers the mean-reverting case. Proofs for the

volatility adjustments are given in Section B.7. Section 4.5 addresses complications that arise from

the possibility of portfolio values becoming negative, which we interpret as a default.
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4.2 Model Dynamics and Main Results

We begin by introducing two models of the dynamics of the d underlying assets in the portfolio,

one with mean reversion and one with jumps. The first model is as follows:

Exponential Ornstein-Uhlenbeck (EOU) model:

dSi(t)

Si
= µidt+ dLi(t), i = 1, . . . , d,

dLi(t) = κ(µli − Li)dt+ σ>i dW (t), Li(0) = 0.

For each i = 1, . . . , d, the drift µi and volatility vector σi = (σi1, . . . , σid) are constants. The

model is driven by W = (W1, . . . ,Wd)
>, a d-dimensional standard Brownian motion, and each

Li is a Ornstein-Uhlenbeck process. We recover geometric Brownian motion as a special case by

taking κ = 0.

We also investigate portfolios under the following dynamics for asset prices:

Jump-Diffusion (JD) model:

dSi(t)

Si(t−)
= µidt+

d∑
j=1

σijdWj(t) + d(

N(t)∑
j=1

(Y i
j − 1)), i = 1, . . . , d.

Here, N is a Poisson process with intensity 0 < λ < ∞, and Y i
j > 0 is the jump size associated

with the ith asset at the jth jump of N . The {Y i
j }i are i.i.d. across different values of j. All of W ,

N and {Y i
j } are mutually independent. Each Si is right-continuous, so the left limit Si(t−) is the

value of Si just prior to a possible jump at t.

The two models could be combined to introduce both mean reversion and jumps in the asset
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dynamics. However, our interest lies in analyzing the impact of each of these features, so we keep

them separate. To avoid confusion between the two models, we underline variables that are specific

to the EOU case.

Given a model of asset dynamics, we consider portfolios defined by a fixed vector of weights

w = (w1, . . . , wd)
>, such that

∑d
i=1wi = 1. Interpret wi as the fraction of value invested in the ith

asset. The weights could be the result of a portfolio optimization, but we do not model the portfolio

selection problem. In considering only fixed weights, we exclude portfolios in which the weights

themselves change with asset prices, and this is a restriction on the scope of our results. Kallsen

(2000) showed that under an exponential Levy model such as our JD model, constant weights are

in fact optimal for investors with power and logarithmic utilities. There is a sizeable literature

that argues the merits of rebalancing to fixed weights. Kim and Omberg (1996) studied portfolio

optimization with mean reversion, but their framework does not fit our setting. See, e.g., Chapters

4–6 of Dempster (2009) and the many references cited there.

With continuous rebalancing to target weightsw1, . . . , wd, the value of the portfolio in the EOU

model evolves as

dV (t)

V (t)
=

d∑
i=1

wiµidt+
d∑
i=1

wi dLi(t),

and thus

V (t) = V (0) exp{(µw −
1

2
σ2
w)t+

d∑
i=1

wiσ
>
i

∫ t

0

e−κ(t−s)dWs + (1− e−κt)µ̄l)}, (4.2.1)
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where µ̄l =
∑

iwiµ
l
i, µw =

∑
iwiµi, Σ = (Σij) with Σij =

∑d
k=1 σikσjk and σw =

√
w>Σw.

In the jump-diffusion model, portfolio value evolves as

dV
:

(t)

V
:

(t−)
=

d∑
i=1

wi
dSi(t)

Si(t−)
= µwdt+

d∑
i=1

wiσ
>
i dW (t) +

d∑
i=1

wid(

N(t)∑
j=1

Y i
j − 1)

= µwdt+ σwdW̃ (t) + d(

N(t)∑
j=1

d∑
i=1

wi(Y
i
j − 1)),

where W̃ is a scalar Brownian motion, W̃ (t) =
∑

i,j wiσijWj(t)/σw. This expression assumes that

V
:

remains strictly positive, a requirement we will return to shortly. The solution to this equation is

then given by

V
:

(t) = exp{(µw −
1

2
σ2
w)t+ σwW̃ (t)}

N(t)∏
j=1

[
d∑
i=1

wiY
i
j ]. (4.2.2)

We fix a horizon T over which we analyze the evolution of the portfolio. For the discretely

rebalanced case, we fix a rebalancing interval ∆t = T/N , corresponding to a fixed number N of

rebalancing dates in (0, T ]. Denote the value of the discretely rebalanced portfolio by V̂
:

(or V̂

in the EOU case). With discrete rebalancing, the portfolio composition is restored to the target

weights at each rebalancing opportunity. Thus, the portfolio value evolves as

V̂
:

((n+ 1)∆t) = V̂
:

(n∆t)
d∑
i=1

wi
Si((n+ 1)∆t)

Si(n∆t−)
, n = 1, . . . , N − 1,

and similarly for V̂ . We normalize the initial portfolio value to V
:

(0) = V̂
:

(0) = V̂ (0) = 1.

To ensure that the continuously rebalanced portfolio preserves strictly positive value (i.e., to
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rule out bankruptcy), we impose the requirement that, almost surely,

d∑
i=1

wiY
i > 0, (4.2.3)

where Y 1, . . . , Y d have the distribution of the jump sizes associated with the d assets. That this

condition is sufficient can be seen from (4.2.2), and differentiating (4.2.2) reproduces the stochastic

differential equation that precedes it. This condition still allows jumps to decrease portfolio value

to levels arbitrarily close to zero. It holds automatically if all portfolio weights are positive. The

condition is crucial for our analysis because we work with the relative error between the discrete

and continuous portfolios, and the denominator in the relative error is the value of the continuous-

time portfolio. We also make the following technical assumption on the jump sizes:

∥∥∥∥ Y k∑
iwiY

i

∥∥∥∥
3

<∞ and ‖Y k‖ <∞ for k = 1, . . . , d; (4.2.4)

and later,

∥∥∥∥log(
Y k∑
iwiY

i
)

∥∥∥∥ <∞. (4.2.5)

Here, ‖.‖3 indicates the L3-norm of a random variable, and ‖.‖ indicates the L2-norm. Assump-

tions (4.2.3)–(4.2.4) will be in force whenever we consider the jump-diffusion model; we use

(4.2.5) in Section 4.3.

Even under these assumptions, we cannot rule out the possibility that the discretely rebalanced

portfolio value drops to zero and lower. We therefore adopt the convention that the portfolio value
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is absorbed at zero if it would otherwise become less than or equal to zero; we refer to this event

as bankruptcy. We will show (in Section 4.5) that we can ignore the possibility of bankruptcy for

our limiting results because the effect becomes negligible asymptotically. Thus, in most of our

discussion, we treat the discretely rebalanced portfolio as a positive process.

We now proceed to state our main results for the EOU model. Our first result approximates the

relative error between the discrete and continuous portfolios with a sum of independent random

variables and identifies the limiting variance of the relative error.

Theorem 4.2.1. For the EOU model, there exist random variables {εn,N , n = 1, . . . , N,N =

1, 2, . . . }, with {ε1,N , . . . , εN,N} i.i.d. for each N , such that

E[(
V̂ (T )− V (T )

V (T )
−

N∑
n=1

εn,N)2] = O(∆t2); (4.2.6)

in particular, with σ̄ =
∑d

i=1 wiσi

εn,N =
d∑
i=1

wi

∫ n∆t

(n−1)∆t

∫ s

(n−1)∆t

(σi − σ̄)>dW (r)(σi − σ̄)>dW (s),

and

V ar[εn,N ] = σ2
L∆t2 := [

1

2
(w>(Σ ◦ Σ)w − 2w>ΣΩΣw + (w>Σw)2)]∆t2, (4.2.7)

where “◦” denotes elementwise multiplication of matrices, Ω is a diagonal matrix with Ωii = wi.
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Thus,

N V ar

[
V̂ (T )− V (T )

V (T )

]
→ σ2

LT
2.

The variance parameter in this result can be understood as

σ2
L = V ar[

1

2
(
d∑
i=1

wi(σ
>
i Z)2 − (

d∑
i=1

wiσ
>
i Z)2)],

where Z ∼ N(0, I) in Rd. We now supplement this characterization of the limiting variance with

the limiting distribution of the error:

Theorem 4.2.2. As N →∞,

√
N(V̂ (T )− V (T ),

V̂ (T )− V (T )

V (T )
)⇒ (V (T )X,X),

where X ∼ N(0, σ2
LT

2) is independent of V (T ), and⇒ denotes convergence in distribution.

The limits in Theorems 4.2.1 and 4.2.2 coincide with those proved in Glasserman (2012) for

asset prices modeled by geometric Brownian motion. Thus, we may paraphrase these results as

stating that the presence of mean-reversion does not change the relative rebalancing error, as mea-

sured by its limiting distribution. The absolute error V̂ (T ) − V (T ) does change. In both cases,

its limiting distribution is that of the independent product of the continuous portfolio (V
:

(T ) or

V (T )) and X , but the distribution of the continuous portfolio is itself changed by the presence of

mean-reversion.

A key feature of Theorem 4.2.2 is the asymptotic independence between the portfolio value

and the relative error. We will see, however, that with appropriate scaling there is a non-trivial
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covariance between these terms, and the strength of the limiting covariance depends on the speed

of mean-reversion. We take up this issue when we consider volatility adjustments in the next

section.

We proceed to the limiting variance of the relative error in the jump-diffusion model. For each

asset i = 1, . . . , d, introduce the compound Poisson process

J it =

N(t)∑
j=1

(
Y i
j∑

k wkY
k
j

− 1

)
.

To simplify notation, we define

Ȳ i
j =

Y i
j∑

k wkY
k
j

− 1,

and then the compensated version of J it becomes J̃ it = J it − λµyi t, where µyi = E[Ȳ i]. Let

∆J̃ in = J̃ i(n∆t) − J̃ i((n − 1)∆t) and ∆Wn = W (n∆t) − W ((n − 1)∆t). Denote XN :=

(V̂
:

(T )− V
:

(T ))/V
:

(T ).

Theorem 4.2.3. For the JD model, under assumptions (4.2.3) and (4.2.4),

E[(
V̂
:

(T )− V
:

(T )

V
:

(T )
−

N∑
n=1

ε̃n,N)2] = O(∆t2), (4.2.8)

where

ε̃n,N = εn,N +
d∑
i=1

wi[b
>
i ∆Wn∆J̃ in +

∫ n∆t

(n−1)∆t

∫ s−

(n−1)∆t

dJ̃ i(r)dJ̃ i(s)], (4.2.9)
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and bi = σi − σ̄, i = 1, . . . , d. And

V ar[ε̃n,N ] = σ̃2
L∆t2

= V ar[εn,N ] + ∆t2(w>(b>b ◦M)w) +
∆t2

2
w>M ◦Mw,

where V ar[εn,N ] is as in (4.2.7), b = [b1, b2, ..., bd], and M is the d× d matrix with entries

mij := λE[Ȳ iȲ j]. (4.2.10)

Thus

V ar(XN)→ σ̃2
LT

2,

where XN =
√
N
V̂
:

(T )− V
:

(T )

V
:

(T )
.

In (4.2.9), the εn,N are the error terms that arise in the case of geometric Brownian motion (i.e.,

with λ = 0 in the JD model and, equivalently, with κ = 0 in the EOU model). As in the EOU

model, the relative error has a limit distribution.

Theorem 4.2.4. Under assumptions (4.2.3) and (4.2.4), if the jump part is not degenerate, i.e.

λ 6= 0 and P (Y i = 1, i = 1, . . . , d) 6= 1, then

√
N
V̂ (T )− V (T )

V (T )
⇒ X,
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where X d
=X +

√
T
∑N(t)

j=1

∑d
i=1 wib

>
i ξjȲ

i
j and ξj ∼ N(0, I) are i.i.d. d-dimensional standard

normal vectors for j ≥ 1, independent of everything else. The limit does not hold in the L2 sense.

The jump-diffusion model produces a heavier-tailed distribution for the relative error, resulting

in the failure to converge to a limiting normal distribution. One can get some intuition from the

asymptotics of ε̃n,N in (4.2.9), where the third term is nonzero only when there are at least two

jumps in the period. Though the third term in (4.2.9) converges to zero in probability, it does

contribute to the limiting variance as well as the third absolute moment, both of which are of order

Θ(∆t2).

Because of the presence of Ȳ in the limit distribution, we do not have an asymptotic indepen-

dence result for the JD case, but log V
:

(T ) and XN are asymptotically uncorrelated, as shown later

in Proposition 4.3.2.

4.3 Volatility Adjustments

We now apply and extend the limiting results of the previous section to develop volatility ad-

justments that approximate the effect of discrete rebalancing. To motivate this idea, consider the

continuous-time dynamics of the portfolio value in (4.2.2), and consider first the case without

mean reversion, κ = 0. In this setting, V is a geometric Brownian motion with volatility σw, with

σ2
w = w>Σw, as defined following (4.2.2). The parameter σw is a useful measure of portfolio risk

under continuous rebalancing. The corresponding parameter for horizon T in the EOU model is

(the square root of)

σ2
w,κ :=

1

T
V ar[log V (T )] = σ2

w

1− exp(−2κT )

2κT
, (4.3.1)
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and, in the jump-diffusion model, under assumption (4.2.5)

σ2
w,J :=

1

T
V ar[log V

:
(T )] = σ2

w + λE

(log
d∑
i=1

wiY
i

)2
 . (4.3.2)

In practice, σw,κ and σw,J serve reasonably well for large N as an approximation for discretely

rebalanced portfolio. Our objective is to correct these parameters to capture the impact of discrete

rebalancing.

4.3.1 Volatility Adjustment with Mean Reversion

From the definition of XN , we can write value of the discretely rebalanced portfolio as

V̂ (T ) = V (T )(1 +XN/
√
N),

which shows that V̂ (T ) is the product of the continuously rebalanced portfolio value and a correc-

tion factor that is asymptotically normal and independent of V (T ). We would like to calculate the

“volatility” of V̂ (T ) — the standard deviation of its logarithm, normalized by
√
T — but because

V̂ (T ) is potentially negative, we cannot do this directly. Instead, we note that

V̄ (T ) := V (T ) exp(XN/
√
N) = V̂ (T ) +Op(1/N),

which yields a strictly positive approximation. The Op(1/N) error in this approximation is negli-

gible compared to the Op(1/
√
N) difference between the discrete and continuous portfolios, and

we will confirm that making this approximation does not change the limiting variance.
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For V̄ (T ) we have

V ar[log V̄ (T )]

T
=

1

T
V ar[log V (T ) +

XN√
N

]

= σ2
w

1− e−2κT

2κT
+
V ar[XN ]

TN
+

2Cov[log V (T ), XN ]

T
√
N

= σ2
w,κ + σ2

LT∆t+ o(∆t) +
2Cov[log V (T ), XN ]

T
√
N

, (4.3.3)

with σw,κ as in (4.3.1) and σ2
L the variance parameter in (4.2.7). Although XN is asymptotically

independent of V (T ), the covariance term does not vanish fast enough to be negligible. In the

following proposition, we find the limit of the third term, and verify the validity of replacing V̂

with V̄ :

Proposition 4.3.1. (i) The limiting covariance is given by

√
NCov[log V (T ), XN ]→ γ

L
T 2,

where

γ
L

= e−κ(γL +
∑
i

wi(σ̄
>σi)κ(µli − µ̄l)),

with

γL = µ>ΩΣw − µwσ2
w + σ4

w − w>ΣΩΣw. (4.3.4)
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(ii) Moreover, E[(V̄ (T )− V̂ (T ))2] = O(N−2), and

N(V ar[log V̄ (T )]− V ar[log V (T )])→ (σ2
L + 2γ

L
)T 2.

This result applied to (4.3.3) suggests the following adjustment to the volatility for the dis-

cretely rebalanced portfolio:

σ2
adj = σ2

w,κ + (σ2
L + 2γ

L
)∆t. (4.3.5)

At ∆t = 0, we recover the volatility for the continuously rebalanced portfolio, but for small

∆t > 0, the adjusted volatility includes a correction for discrete rebalancing. The parameter γL in

(4.3.4) is the limiting covariance derived in Glasserman (2012) for assets modeled by multivariate

geometric Brownian motion; thus, at κ = 0 we recover the volatility adjustment derived there

in the absence of mean reversion, as expected. The second part of the proposition confirms that

the difference between V̄ (T ) and V̂ (T ) is negligible. In Section 4.4.2, we present numerical

results illustrating the performance of the volatility adjustment (4.3.5) in approximating the effect

of discrete rebalancing.

4.3.2 Volatility Adjustment in the Jump-Diffusion Model

We follow similar steps in the jump-diffusion model. We set V̄
:

(T ) := V
:

(T ) exp(XN/
√
N) with

XN =
√
N

N−1∑
n=0

(
V̂
:

((n+ 1)∆t)

V
:

((n+ 1)∆t)
−
V̂
:

(b∆t)

V
:

(n∆t)
),
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and then

V ar[log V̄
:

(T )]

T
= σ2

w,J +
V ar[XN ]

TN
+

2Cov[log V
:

(T ), XN ]

T
√
N

, (4.3.6)

with σw,J as defined in (4.3.2).

Proposition 4.3.2. (i) The limiting covariance is given by

√
NCov[log V

:
(T ), XN ]→ γ̃LT

2,

where

γ̃L := γL + λ[
∑
i

wiσ̄
>σiµ

y
i ] + λ

∑
i

wi(µi − σ>i σ̄ + λµyi )E[Ȳ i(log
∑
l

wlY
l − µJ)]

and

µJ = E[log
∑
i

wiY
i
j ].

(ii) Moreover, E[(V̂
:

(T )− V̄
:

(T ))2] = O(N−2) and

N(V ar[log V̄
:

(T )]− V ar[log V
:

(T )])→ (σ̃L + γ̃L)T 2.

The resulting volatility adjustment is

σ̃2
adj = σ2

w,J + (σ̃2
L + 2γ̃L)∆t. (4.3.7)
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The asymptotic variance parameters for the relative error (σ2
L and σ̃2

L) do not depend on the drift

parameters µi, but, interestingly, the drifts do appear in the asymptotic covariance γL (and γ
L

and

γ̃L). We will see that in a stochastic Taylor expansion of the relative error, the µi appear only

in those terms with norms of order O(∆t3/2). For the variance, it turns out that only terms with

norms up to order O(∆t) are relevant, but the covariance involves terms of norm O(∆t3/2), and

these involve the µi.

Since the volatility adjustments are explicitly related to the weights, one could reverse the

approximation as a guideline for adjusting portfolio weights to control the portfolio volatility σ

with discrete rebalancing.

4.4 Numerical Experiments and Further Discussion

4.4.1 Example for the Jump-Diffusion Model

We begin with the JD model model and examine the approximation for the relative error provided

by Theorem 4.2.4.

We calibrated the JD model from the daily returns of global equity indices based on the method

introduced in Das and Uppal (2004). The weights are computed as the optimal weights for power

utility with risk aversion parameter γ = 2 following the results of Das and Uppal (2004)1. The data

used is from March 2009 to March 2011, and the calibrated results are as in Table 4.1. Jump sizes

are modeled by Merton’s jump model with log(Y i) ∼ N(µiJ , σ
i
J). We calibrate the parameters by

1The negative weights could cause defaults, even in the continuous portfolio, though this occurs very rarely with
out estimated value of σJ . In our numerical examples, we exclude paths with defaults. We address this issue in
Section 4.5.
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assuming the jump sizes are perfectly correlated as in Das and Uppal (2004). However, perfectly

correlated jumps would have the same effect as constant jump sizes because we are considering

relative error. To make the example more interesting, we simulate independent jumps sizes instead.

SP500 FTSE NIK DAX SSMI CAC STI HSI MXX SET50 MERV
λ 3.0142
w -1.22 -0.22 0.22 0.87 -3.30 0.82 0.44 -0.47 1.32 1.17 1.38
µ 0.15 0.13 0.12 0.25 0.09 0.12 0.17 0.21 0.25 0.35 0.40

µJ ×10−2 -0.74 0.24 -1.71 -0.10 0.22 1.28 0.00 0.18 -0.85 -0.01 0.46
σJ ×10−2 2.91 2.65 1.47 2.92 2.24 4.68 2.46 2.87 2.58 3.56 4.69
Σ ×10−2 3.14 2.00 0.27 2.35 1.52 2.56 0.50 0.44 2.14 0.41 3.17

2.00 2.84 0.75 2.94 1.93 3.26 0.92 1.00 1.72 1.05 2.48
0.27 0.75 4.53 0.60 0.77 1.03 1.76 2.74 0.33 1.81 0.30
2.35 2.94 0.60 3.83 2.29 3.87 0.92 0.98 2.00 1.12 2.93
1.52 1.93 0.77 2.29 2.02 2.54 0.65 0.68 1.14 0.72 1.78
2.56 3.26 1.03 3.87 2.54 4.37 1.05 1.14 2.08 1.16 3.02
0.50 0.92 1.76 0.92 0.65 1.05 2.54 2.47 0.68 1.86 0.78
0.44 1.00 2.74 0.98 0.68 1.14 2.47 4.65 0.88 2.58 0.68
2.14 1.72 0.33 2.00 1.14 2.08 0.68 0.88 2.74 0.73 2.65
0.41 1.05 1.81 1.12 0.72 1.16 1.86 2.58 0.73 4.88 0.91
3.17 2.48 0.30 2.93 1.78 3.02 0.78 0.68 2.65 0.91 6.23

Table 4.1: Parameters estimated from S&P 500, FTSE 100, Nikkei 225, DAX, Swiss Market
Index, CAC 40, FTSE Straits Times Index for Singapore, Hang Seng, Mexico IPC, Thai Set 50
and Argentina Merval.

Figure 4.1 shows QQ plots of the value of discrete portfolios versus the limit as described

in Theorem 4.2.4, both simulated over 2500 replications. We choose N to be 4, 12 and 360 to

represent quarterly, monthly and daily rebalancings. As the number of steps N gets larger, the

figure indicates convergence to the theoretical limit, though relatively slower than in the EOU

model.

Since the limiting distribution is not normal, we do not have an asymptotic independence result

of the type in Theorem 4.2.2. But the numerical results in Table 4.2 still show the correlation
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Figure 4.1: Jump-diffusion model: QQ plots of XN versus X at N = 4 (upper left), N = 12
(upper right), N = 360 (lower left).

between log V
:

(T ) and XN decreasing toward zero as N increases. This is to be expected because

part (i) of Proposition 4.3.2 shows the covariance of log V
:

(T ) and XN converging to zero at rate

O(1/
√
N), and XN has a non-degenerate limiting variance. In separate experiments, we have

found large discrepancies in the QQ plots when σiJ are doubled. Estimation of mij in (4.2.10)

becomes unstable, and condition (4.2.4) may be violated. Table 4.3 shows the error reduction of

N 4 12 360
JD -12% -13% -4%
EOU -85% -61% -13%

Table 4.2: Correlations for JD model and EOU model, between log V
:

(T ) (or log V (T )) and XN ,
with 2500 replicates.
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volatility as

1− | σ̃adj − σ̂N
σw,J − σ̂N

|, (4.4.1)

where σ̃adj is defined in (4.3.7). This measure shows the relative improvement achieved in ap-

proximating the volatility using the adjustment; a small value indicates small improvement, and a

value close to 1 indicates good improvement. These estimates are based on 50,000 replications.

When the correlation between V
:

(T ) and XN is small, the error reduction tends to be unstable.

As suggested by (4.3.6), when N is small and the covariance term in (4.3.6) is negative, the er-

ror reduction can be small, or even negative. In this situation, numerical errors, especially from

computing the required expectation of the Ȳ i, can contaminate the results.

N 4 12 360
JD 87% 46% 2%
EOU 69% 55% 18%

Table 4.3: Volatility error reductions for JD model and EOU model, with 50,000 replications.
Formula (4.4.1) and (4.4.2) are used for JD model and EOU model, respectively.

4.4.2 Example for the EOU model

For the purpose of illustration, we use the same parameters w, µ and Σ from Section 4.4.1. We

use the mean-reversion rate κ = 1 and long-run levels µli = 0.1 × i/d, i = 1, . . . , d. Figure 4.2

illustrates the convergence to normality as N increases, using 2500 replicates.

Table 4.2 reports estimated correlations between log V (T ) and XN using the same parameters

as Figure 4.2. As expected, the correlation decreases toward zero as N increases.
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Figure 4.2: EOU model: QQ plots of XN/σLT versus standard normal at N = 4 (upper left),
N = 12 (upper right) and N = 360 (lower left).

Table 4.3 evaluates the volatility adjustment by reporting the estimated error reduction using

the adjustment, calculated as

1− | σadj − σ̂N
σw,κ − σ̂N

|, (4.4.2)

where σadj is defined in (4.3.5) and σ̂N is the volatility of the discretely rebalanced portfolio as

estimated by simulation. The results in Table 4.3 show appreciable error reduction, especially

when the number of rebalancing dates N is small. When N becomes large, the denominator

σw,κ − σ̂ will become very small. The magnitude of the reduction is not necessarily monotone

in N . More examples for the diffusion case without mean reversion can be found in Glasserman

(2012).
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4.5 Dealing with Defaults

As explained in Section 4.2, jumps in asset values can produce negative portfolio values, even

under continuous rebalancing. Here we address this issue in greater detail.

Assume that once a portfolio defaults (i.e., drops to zero or below), it is absorbed at zero

forever. It follows from (4.2.2) that such a default occurs in a continuously rebalanced portfolio

if and only if there is a jump before time T with
∑

iwiY
i ≤ 0. Under assumption (4.2.3), the

continuously rebalanced portfolio will therefore never default.

The discretely rebalanced portfolio will default at time t in the nth time interval if and only if t

is the first time that t ∈ [(n− 1)∆t, n∆t] with t̃ = t−∆tb t
∆t
c and

R̂n,N(t) =

 V̂
:

(t)

V̂
:

((n− 1)∆t)

 =
d∑
i=1

wi exp{(µi −
1

2

d∑
j=1

σ2
ij)t̃+ σ>i W (t̃)}

N(t̃)∏
j=1

Y i
j ≤ 0. (4.5.1)

Let Ind denote the indicator of default for the discrete portfolio, where Ind = 1 means that the

portfolio defaults in nth time interval, while Ind = 0 if not.

Proposition 4.5.1. Under conditions (4.2.3) and (4.2.4), we have

‖
V̂
:

(T )− V
:

(T )

V
:

(T )
‖ − ‖

V̂
:

(T )− V
:

(T )

V
:

(T )
I{Ind =0 for all n=1,...,N}‖ = O(∆t).

Proposition 4.5.1 confirms that we can ignore possible defaults in the discretely rebalanced

portfolio, because the limits in Theorem 4.2.2 and 4.2.4 are scaled by
√
N = ∆t−1/2, while the

errors introduced by ignoring defaults are of order O(∆t). In fact, we can even weaken our as-
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sumptions to allow
∑

iwiY
i ≤ 0, replacing (4.2.3) with the condition

E[

(
wjY

j∑
iwiY

i

)2

|
∑
i

wiY
i < 0] <∞, for all j = 1, ..., d,

This suffices to show that defaults have a negligible effect on the relative error using a similar

argument.

4.6 Concluding Remarks

In this chapter, we have analyzed the error between a discretely rebalanced portfolio and its contin-

uously rebalanced counterpart in the presence of jumps or mean-reversion in the underlying asset

dynamics. With discrete rebalancing, the portfolios composition is restored to a set of fixed target

weights at discrete intervals; with continuous rebalancing, the target weights are maintained at all

times. We examined the difference between the two portfolios as the number of discrete rebal-

ancing dates increases. With either mean reversion or jumps, we derive the limiting variance of

the relative error between the two portfolios. With mean reversion and no jumps, we show that

the scaled limiting error is asymptotically normal and independent of the level of the continuously

rebalanced portfolio. With jumps, the scaled relative error converges in distribution to the sum of

a normal random variable and a compound Poisson random variable.

For both the mean-reverting and jump-diffusion cases, we derive volatility adjustments to im-

prove the approximation of the discretely rebalanced portfolio by the continuously rebalanced

portfolio, based on on the limiting covariance between the relative rebalancing error and the level
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of the continuously rebalanced portfolio. These results are based on strong approximation results

for jump-diffusion processes.
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Appendix A

Additional Proofs for Chapter 3

A.1 Proof of Proposition 3.3.6

Proof. Proof Set x+ = x + ∆x+ and f+ = Cff + v+ with v+ ∼ N(0,Σv). By substituting

a quadratic expression for Vt+1,T into (3.3.8), applying (3.3.9), and then substituting for f+, the

maximization problem becomes

max
∆x+∈Rd

{
x>+Bff −

γ
θ

2
x>+Σux+ −

1

2
∆x>+Λ∆x+

−θβ logE[exp{−1

θ
(x>+Axxx+ + x>+Axff+ + f>+Afff+ + A0)}]

}
= max

∆x+∈Rd

{
x>+Bff −

γ
θ

2
x>+Σux+ −

1

2
∆x>+Λ∆x+ + βx>+Axxx+ + βA0

− θβ logE[exp{−1

θ
[x>+Axf (Cff + v+) + (Cff + v+)>Aff (Cff + v+)]}]

}
,
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where the expectation is over v+. Evaluating this expectation, the problem becomes

max
∆x+∈Rd

{
x>+Bff −

γ
θ

2
x>+Σux+ −

1

2
∆x>+Λ∆x+ + βx>+Axxx+ + βA0

− β

2θ
(2f>C>f Aff + x>+Axf )(Σ

−1
v +

2

θ
Aff )

−1(2f>C>f Aff + x>+Axf )
>

+ βx>+AxfCff + β(Cff)>Aff (Cff) −θβ
2

log(|Σ−1
v +

2

θ
Aff |−1/|Σv|)

}
. (A.1)

The terms involving x+ in (A.1) are contained in a quadratic function of the form −1
2
x>+J1x+ +

x>+J2 with J1 and J2 defined in (3.3.10) and (3.3.11), respectively (taking xt−1 = x and ft = f in

J2). Condition 3.3.4 guarantees that the maximum is achieved at x+ = J−1
1 J2.

Substituting the optimal control into (A.1) and collecting terms, the maximum value becomes

1

2
J>2 J

−1
1 J2 −

1

2
x>Λx+ βA0 + β(Cff)>AffCff

−2
β

θ
(Cff)>Aff (Σ

−1
v +

2

θ
Aff )

−1AffCff +
βθ

2
log |I +

2

θ
ΣvAff |.

This expression can be written as x>S(A)xxx+x>S(A)xff + f>S(A)fff +U(A,A0) with S(A)

and U(A,A0) as defined in (3.3.13)–(3.3.16).

A.2 Proof of Proposition 3.3.7

Proof. Proof (i) Symmetry is immediate from (3.3.13) and (3.3.15). (ii) Let J(n),1 denote the value

of J1 obtained by replacing A with Sn(A), with J(0),1 = J1 and S0(A) = A. Take as induction

hypothesis that J(k),1 > 0, Λ1/2J−1
(k),1Λ1/2 < I , and Sk(A)ff ≥ 0, for all k = 0, 1, . . . , n; these
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conditions hold at n = 0. From (3.3.13) we have Sn(A)xx = (−Λ + ΛJ−1
(n−1),1Λ)/2, so the

induction hypothesis implies that −Λ/2 < Sn(A)xx < 0. We need to show that the properties

asserted in the induction hypothesis are preserved at k = n+ 1. We get J(n+1),1 > 0 from (3.3.10)

using γ
θ
Σu > 0, Λ > 0, Sn(A)xx < 0 and Sn(A)ff ≥ 0. Next, using (3.3.10), Λ1/2J−1

(n+1),1Λ1/2

evaluates to

(
I + Λ−1/2

[
γ
θ
Σu − 2βSn(A)xx +

β

θ
Sn(A)xf (Σ

−1
v +

2

θ
Sn(A)ff )

−1Sn(A)>xf

]
Λ−1/2

)−1

.

By the induction hypothesis, the term in square brackets is positive definite, from which we get

Λ1/2J−1
(n+1),1Λ1/2 < I .

It remains to show that S(n+1)(A)ff ≥ 0. To simplify notation, we detail the case n = 0, which

allows us to write S(A) as A; the same argument applies for all n. Because Aff is symmetric and

positive semi-definite and Σv > 0, we have

 Aff Aff

Aff Aff + θ
2
Σ−1
v

 ≥ 0.

By the second property at the top of p.651 of Boyd and Vandenberghe (2004), the Schur comple-

ment

Aff − Aff (
θ

2
Σ−1
v + Aff )

−1Aff

is positive semi-definite, and so then is βC>f (Aff −Aff ( θ2Σ−1
v +Aff )

−1Aff )Cf , which combines
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the first two terms in (3.3.15). The last term in (3.3.15) is J>3 J
−1
1 J3/2 ≥ 0, so we conclude that

S(A)ff is positive semi-definite.

A.3 Proof of Theorem 3.3.8

Proof. Proof The investor’s optimal choice (3.3.19) is established in the proof of Proposition 3.3.6.

For the adversary, we know from the fact that the exponent in the numerator on the right side of

(3.3.7) is quadratic in vt+1 and linear in ut+1 that m∗t+1 is well-defined and is a ratio of multivariate

normal densities that takes the form

logm∗t+1 =Constant− 1

2
[u>t+1 − µ>u,t+1, v

>
t+1 − µ>v,t+1](Σ̃)−1

t+1

 ut+1 − µu,t+1

vt+1 − µv,t+1



+
1

2
[u>t+1, v

>
t+1]

 Σ−1
u 0

0 Σ−1
v


 ut+1

vt+1

 .

On the other hand, by substituting the quadratic form of Vt+1,T into the right side of (3.3.7) we get

logm∗t+1 =− 1

θ

(
x>t A

(t+1,T )
xx xt + x>t A

(t+1,T )
xf [Cfft + vt+1]

+[vt+1 + Cfft]
>A

(t+1,T )
ff [vt+1 + Cfft] + A

(t+1,T )
0

)
− 1

βθ
x>t ut+1 − logEt[exp{−1

θ
Vt+1,T}]−

1

2βθ
x>t Σuxt.

Matching the coefficients of ut+1 and vt+1 yields the expressions for µv,t+1, µu,t+1 and Σ̃t.
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A.4 Proof of Corollary 3.3.9

Equation (3.3.21) is immediate. For (3.3.22), using (3.3.19) and substituting (3.3.11) and (3.3.20),

we get

xt = J−1
1

(
Bfft + Λxt−1 + βA

(t+1,T )
xf (Ẽt[ft+1]− µv,t+1)− 2β

θ
A

(t+1,T )
xf (Σ̃v)t+1A

(t+1,T )
ff Cfft

)
.

Moving J1 to the left-hand side, and substituting (3.3.10) and (3.3.17), we have

(
γ
θ
Σu + Λ− 2βAxx +

β

θ
Axf (Σ

−1
v +

2

θ
Aff )

−1A>xf

)
xt

=

(
Bfft + Λxt−1 + βA

(t+1,T )
xf Ẽt[ft+1] +

β

θ
A

(t+1,T )
xf Σ̃v,t+1((A

(t+1,T )
xf )>xt + 2A

(t+1,T )
ff Cfft)

−2β

θ
A

(t+1,T )
xf (Σ̃v)t+1A

(t+1,T )
ff Cfft

)
.

Rearranging terms and, as before, writing γ
θ

for γ + (1/θβ), we get equation (3.3.22).

A.5 Proof of Lemma 3.4.1

Proof. Proof We use induction on n = T − t. The statement of the lemma holds at n = 0. For

some t ≤ T , suppose U θ1
t,T (1, x, f) ≤ U θ2

t,T (1, x, f), for all (x, f). Then for any (xt−1, ft) and any

mt,

x>t−1E[mtut] + βE[mtU
θ1
t,T (1, xt−1, ft) + θ1βmt logmt]

≤ x>t−1E[mtut] + βE[mtU
θ2
t,T (1, xt−1, ft) + θ2βmt logmt],
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because the relative entropy is nonnegative. It follows that the infima over mt of the two sides

are ordered the same way, and then also the suprema over xt in evaluating T (U θi
t−1,T ) using (3.3.2)

Thus, U θ1
t−1,T (1, xt−1, ft) ≤ U θ2

t−1,T (1, xt−1, ft). Since (xt−1, ft) is arbitrary and the conditions for

Proposition 3.3.7 are in force, this entails Sn+1
θ1

(A) ≤ Sn+1
θ2

(A) and Un+1
θ1

(A,A0) ≤ Un+1
θ2

(A,A0).

A.6 Proof of Proposition 3.4.2

Proof. Proof Consider the modified problem

Ũ(x0, f1) = sup
∆x

∞∑
t=1

E[βt(− 1

2γ
f>t B

>
f Σ−1

u Bfft + x>t Bfft −
γ

2
x>t Σuxt −

1

2
∆x>t Λ∆xt)]. (A.1)

The term we have added (quadratic in ft) completes the square in (xt, ft) and makes the one-step

reward in the modified problem non-positive for all t under any policy. It does so without changing

the optimal control because the evolution of ft is unaffected by the investor’s decisions.

The added terms make (A.1) a standard LQG problem to which we can apply standard re-

sults. The corresponding dynamic programming operator maps the set of negative semi-definite

quadratic functions into itself; thus, we may abbreviate it as mapping coefficients (Ã, Ã0), Ã ≤ 0,

to coefficients (S̃(Ã), Ũ(Ã, Ã0)). We can invoke Proposition 4.4.1 of Bertsekas (2007) by setting

x̄t = βt/2xt and f̄t = βt/2ft and recalling that σ(Cf ) < 1. Starting from any (Ã, Ã0) with Ã ≤ 0,

iterative application of the dynamic programming operator for the modified problem produces a
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convergent sequence; that is, limn→∞(S̃n(Ã), Ũn(Ã, Ã0)) exists, and the limit is the same for all

(Ã, Ã0) with Ã ≤ 0.

If (A,A0) satisfies the conditions of the proposition, then the original and modified dynamic

programming operators are related by U∞ = Ũ and

S∞(A) = S̃(A) +

 0 0

0 1
2γ
B>f Σ−1

u Bf

 .

With θ =∞, S∞(A)xx and S∞(A)xf depend only on Axx and Axf , and S∞(A)ff depends linearly

on Aff , so

S2
∞(A) = S̃

S̃(A) +

 0 0

0 1
2γ
B>f Σ−1

u Bf


+

 0 0

0 1
2γ
B>f Σ−1

u Bf



= S̃2(A) + β

 0 0

0 1
2γ
C>f B

>
f Σ−1

u BfCf

+

 0 0

0 1
2γ
B>f Σ−1

u Bf

 .

Applying this step repeatedly, we get

Sn∞(A) = S̃n(A) +
n−1∑
t=0

βt

 0 0

0 1
2γ

(C>f )tB>f Σ−1
u BfC

t
f

 . (A.2)

With σ(Cf ) < 1 < β−1/2, the sum converges, so limn→∞ Sn∞(A) exists.
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For U∞, the expression U∞(A,A0) = βA0 + βtr(ΣvAff ) yields

Un∞(A,A0) = βnA0 +
n∑
i=1

βitrace(ΣvS i(A)ff ).

Thus, limn→∞ Ũ exists. The remaining assertions in the proposition follow from corresponding

statements for the modified problem.

A.7 Proof of Proposition 3.5.1

Proof. Proof By collecting the one-period reward and cost in a function G, we can write

U(M0, x−1, f0) = sup
∆x

inf
m
E

[
∞∑
t=0

βtG(Mtmt+1, xt,∆xt, ft)

]
.

Writing ∆xs and ms for the policies applied at time s, we have

U(M0, x−1, f0)

≤ sup
∆x0

inf
m1

sup
{∆xt,t≥1}

inf
{mt,t≥2}

E

[
∞∑
t=0

βtG(Mtmt+1, xt, ft)

]

= sup
∆x0

inf
m1

(
E[G(M0m1, x1,∆x1, f1)] + sup

{∆xt,t≥1}
inf

{mt,t≥2}
E

[
∞∑
t=1

βtG(Mtmt+1, xt,∆xt, ft)

])

= sup
∆x0

inf
m1

(E[G(M0m1, x1,∆x1, f1)] + βE[U(M1, x0, f1)]) ;
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i.e., U ≤ T (U). Now fix a policy π for the investor and let

Uπ(M0, x−1, f0) = inf
{mt,t≥1}

E

[
∞∑
t=0

βtG(Mtmt+1, x
π
t ,∆x

π
t , ft)

]

= inf
m1

(
E[G(M0m1, x

π
0 ,∆x

π
0 , f0)] + inf

{mt,t≥2}
E

[
∞∑
t=1

βtG(Mtmt+1, x
π
t ,∆x

π
t , ft)

])
,

the notation xπt indicating the portfolio process under policy π. For any ε > 0, the policy π can be

chosen so that

inf
{mt,t≥2}

E

[
∞∑
t=1

βtG(Mtmt+1, x
π
t ,∆x

π
t , ft)

]
≥ βE[U(M0m1, x

π
0 , f1)]− ε,

and since U ≥ Uπ, we get

U(M0, x−1, f0) ≥ inf
m1

(E[G(M0m1, x
π
0 ,∆x

π
0 , f0)] + βE[U(M0m1, x

π
0 , f0)]− ε) ,

and since this holds for any xπ0 ,

U(M0, x−1, f0) ≥ sup
∆x0

inf
m1

(E[G(M0m1, x0,∆x0, f0)] + βE[U(M0m1, x0, f1)]− ε) .

We conclude that U ≥ T (U) because ε > 0 is arbitrary.
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A.8 Proof of Lemma 3.5.6

The key property of the controls provided by the solution to the Bellman equation is that they lead

to linear dynamics for the state evolution. Using the form of the controls in Lemma 3.5.4, we can

write the state evolution under the resulting change of measure as

yt+1 = Ψyt +

 0

µv,t+1

+

 0

ṽt+1

 , (A.1)

with ṽt+1 ∼ N(0, Σ̃v) and

Ψ =

 I + 2Λ−1Axx Λ−1Axf

0 Cf

 .
Because µv,t+1 is itself a linear function of xt and ft, we can also write this as

yt+1 = Ψ̄yt +

 0

ṽt+1

 , (A.2)

with

Ψ̄ =

 I + 2Λ−1Axx Λ−1Axf

−1
θ
Σ̃vA

>
xf (I + 2Λ−1Axx) −1

θ
Σ̃vA

>
xfΛ

−1Axf + (I − 2
θ
Σ̃vAff )Cf

 .
Before proving Lemma 3.5.6, we show that in this setting β-stability reduces to a condition on Ψ̄.

Lemma A.8.1. Under the conditions of Lemma 3.5.6, β-stability holds if and only if σ(Ψ̄) < β−1/2.
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Proof. Proof (Lemma A.8.1.) Suppose first that σ(Ψ̄) < β−1/2. From (A.2) we have

yt = Ψ̄ty0 +
t−1∑
i=0

Ψ̄i

 0

ṽt−i

 ,

where the ṽt are i.i.d. N(0, Σ̃v) random vectors under the adversary’s change of measure. Thus,

Ẽ[yt] = Ψ̄ty0. The matrix norm induced by the usual Euclidean norm has the property that

‖Ψ̄n‖1/n → σ(Ψ̄) (see, e.g., (7.10.12) in Meyer (2001)). Thus, there exists a c1 > 0 and an

α1 ∈ (0, 1) such that βt/2‖Ψ̄t‖ < c1α
t
1, and then

βt/2‖Ψ̄ty0‖ ≤ βt/2‖Ψ̄t‖‖y0‖ ≤ c1α
t
1‖y0‖.

In particular, βt/2Ẽ[y0] converges to zero exponentially fast.

Next we consider the covariance matrix of yt,

Cov(yt) =
t−1∑
i=0

(Ψ̄i)>Σ̃vΨ̄
i

We may choose α1 > β1/2 and set β̄ = β/α2
1 < 1, so β̄t/2‖Ψ̄t‖ < c1. Then β̄t/2‖(Ψ̄>)t‖ < c2,

for some c2 > 0 — the norm of a matrix and the norm of its transpose are equivalent (in the sense

of norms) because both are equivalent to the max norm defined as the as maximum of the absolute

values of all entries of the matrix. This allows us to bound the norm of the covariance matrix of
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βt/2yt as follows:

βt‖
t−1∑
i=0

(Ψ̄i)>Σ̃vΨ̄
i‖ ≤ βt

t−1∑
i=0

‖(Ψ̄i)>‖‖Ψ̄i‖‖Σ̃v‖

≤ α2t
1 ‖Σ̃v‖

t−1∑
i=0

β̄i‖Ψ̄i‖‖(Ψ̄i)>‖

≤ c1c2α
2t
1 ‖Σ̃v‖(t− 1).

Thus, the covariance of βt/2yt also converges to zero, from which we conclude that βt/2yt con-

verges to zero in mean square under the change of measure. Furthermore, ut+1 ∼ N(µu,t+1,Σu)

under the adversary’s change of measure, with µu,t+1 linear in yt with constant coefficients. It

follows that βt/2ut+1 and thus βt/2yet converges to zero in mean square. Retracing the steps

above, we see that we can replace β with some α ∈ (β, 1) and preserve this convergence because

σ(Ψ̄) < α−1/2 for some such α. Thus, αt/2Ẽ[‖yet ‖]→ 0 for some α ∈ (β, 1).

Next we evaluate the discounted sum of relative entropy. The summands are given by

Et[mt+1 logmt+1] =
1

2

(
µ>u,t+1Σ−1

v µu,t+1 + µ>v,t+1Σ−1
v µv,t+1 + tr(Σ−1

v Σ̃v − I) + log
|Σv|
|Σ̃v|

)
.

(A.3)

Since Σ̃v does not depend on t, it suffices to show that

Ẽ

[
∞∑
t=0

βt
(
µ>v,t+1Σ−1

v µv,t+1 + µu,t+1Σ−1
u µu,t+1

)]
<∞. (A.4)

Because both αt/2µu,t+1 and αt/2µv,t+1 are linear in αt/2yt, both converge to zero in mean square,

and then because β < α, (A.4) holds.
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Finally, for the converse, if βt/2Ẽ[‖yet ‖]→ 0, then βt/2Ẽ[yt]→ 0, which means βt/2Ψ̄ty0 → 0.

Because this holds for all y0, we must (by (7.10.5) in Meyer (2001)) have σ(Ψ̄) < β−1/2.

Proof. Proof (Lemma 3.5.6.) We know from the proof of Lemma A.8.1 that β-stability implies

Rα(m) <∞ for some α ∈ (β, 1), so it remains to establish the converse. If Rα(m) <∞, then, in

particular,

Ẽ

[
∞∑
t=0

αtµ>v,t+1Σ−1
v µv,t+1

]
<∞.

Each µv,t+1 is normally distributed, say µv,t+1 ∼ N(µz,t+1,Σz,t+1), so we may write

Ẽ[αtµ>v,t+1Σ−1
v µv,t+1] = αt

(
µ>z,t+1Σ−1

v µz,t+1 + αtẼ[(µv,t+1 − µz,t+1)>Σ−1
v (µv,t+1 − µz,t+1)]

)
.

Both terms on the right side are non-negative, hence convergence of the series entails αt/2µz,t+1 →

0. We can choose c′ ∈ (0,∞) such that αt/2‖µz,t+1‖ ≤ c′. Taking the expectation of both sides of

(A.1) and (A.2) we get

Ψ̄ty0 = Ẽ[yt] = Ψty0 +
t−1∑
i=0

Ψi

 0

µz,t−i

 .

Thus, choosing ‖y0‖ = 1,

αt/2‖Ψ̄t‖ ≤ αt/2‖Ψt‖+ αt/2
t−1∑
i=0

‖Ψi‖‖µz,t−i‖. (A.5)

Because of the upper triangular structure of Ψ, Proposition 3.3.7, and the condition that σ(Cf ) < 1,
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we have that σ(Ψ) = α2 ∈ (0, 1), and we can find a constant c ∈ (0,∞) such that for all t > 0,

‖Ψt‖ ≤ cαt2.

Thus,

αt/2
t−1∑
i=0

‖Ψi‖‖µz,t−i‖ ≤ c′
t−1∑
i=0

‖Ψi‖α(1+i)/2

≤ cc′
t−1∑
i=0

αi2α
(1+i)/2 ≤ cc′tα1/2 1− (α2α

1/2)t−1

1− α2α1/2
, (A.6)

which is bounded by some constant for all t > 0. We can then choose a slightly smaller ᾱ ∈

(β, α) for which ᾱt/2
∑t−1

i=0 ‖Ψi‖‖µz,t−i‖ → 0 geometrically fast. We conclude from (A.5) that

ᾱt/2‖Ψ̄‖ → 0 geometrically fast and so by (7.10.5) in Meyer (2001), σ(Ψ̄) < ᾱ1/2. Lemma A.8.1

now yields β-stability.

A.9 Proof of Theorem 3.5.7

Proof. Proof (i). Let V ∗ be the quadratic function in the statement of the theorem. Let ∆x∗t and

x∗t denote the transactions and positions under the corresponding policy. Because U∗ satisfies the

robust Bellman equation, we have

U∗(1, x−1, f0) = V ∗(x−1, f0)

= Q(x∗0,∆x
∗
0, f0) + θβẼ[logm∗1 + u>1 x

∗
0] + βẼ[V ∗(x∗0, f1)]

= Ẽ

[
n∑
t=0

βt
(
Q(x∗t ,∆x

∗
t , ft) + θβẼ[logm∗t+1 + u>t+1x

∗
t ]
)

+ βn+1V ∗(x∗n, fn+1)

]
,
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for any finite n. The β-stability property allows us to write this as

V ∗(x−1, f0) = Ẽ

[
∞∑
t=0

βt
(
Q(x∗t ,∆x

∗
t , ft) + θβẼ[logm∗t+1 + u>t+1x

∗
t ]
)

−
∞∑

t=n+1

βt
(
Q(x∗t ,∆x

∗
t , ft) + θβ(Ẽ[logm∗t+1 + u>t+1x

∗
t ])
)

+ βn+1V ∗(x∗n, fn+1)

]
.

By β-stability, the infinite sum of terms βt+1Ẽ[logm∗t+1] is finite, so the tail sum from t = n + 1

vanishes as n → ∞. From the change of measure in Lemma 3.5.4, we see that Ẽt[u>t+1x
∗
t ] is a

quadratic function of the extended state yet , as are V ∗ and Q. Again by β-stability, the tail sum

of discounted quadratic terms vanishes as n → ∞, and Ẽ[βn+1V ∗(x∗n, fn+1)] → 0 as well. Thus,

letting n→∞ we see that U∗ is indeed the value attained under the policy pair (∆x∗,m∗).

(ii) Now suppose the adversary has chosen policy m∗. By selecting policy ∆x∗, the investor

can attain the value U∗. Consider an alternative policy indicated by trades ∆x̄t and positions x̄t.

Because U∗ satisfies the robust Bellman equation, we have

U∗(1, x−1, f0) ≥ Q(x̄0,∆x̄0, f0) + θβẼ[logm∗1 + u>1 x̄0] + βẼ[U∗(1, x̄0, f1)].

The expression on the right is the value to the investor of applying ∆x̄0 and subsequently following

the policy ∆x∗ while the adversary consistently followsm∗. By applying this inequality iteratively,

we can compare U∗ with the value attained by applying ∆x̄0, . . . ,∆x̄n and subsequently following
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policy ∆x∗:

U∗(1, x−1, f0) ≥

Ẽ

[
n∑
t=0

βt
{
Q(x̄t,∆x̄t, ft) + θβẼ[logm∗t+1 + u>t+1x̄t]

}]
+ βn+1Ẽ[U∗(1, x̄n, fn+1)].

If (∆x̄,m∗) is β-stable, then the value attained under this pair of policies is well-defined, finite,

and given by

Ū(1, x−1, f0) = Ẽ

[
∞∑
t=0

βt
{
Q(x̄t,∆x̄t, ft) + θβẼ[logm∗t+1 + u>t+1x̄t]

}]
.

We thus have

U∗(1, x−1, f0)− Ū(1, x−1, f0)

≥ βn+1Ẽ[U∗(1, x̄n, fn+1)]− Ẽ

[
∞∑

t=n+1

βt
{
Q(x̄t,∆x̄t, ft) + θβẼ[logm∗t+1 + u>t+1x̄t]

}]
.

The last term on the right vanishes as n → ∞ because Ū(1, x−1, f0) < ∞ under the assumed β-

stability of (∆x̄,m∗). For the first term on the right, U∗(1, x̄n, fn+1) = V ∗(x̄n, fn+1) is quadratic,

so, again, β-stability of (x̄,m∗) ensures that this term vanishes as n→ 0.

Using the saddle point condition, i.e. Conditions 3.3.3 and 3.3.4, we can interchange the order

of minimum and maximum in the robust Bellman’s equation. Then a similar argument applies for

the adversary’s response to the investor’s choice of policy.



Appendix B

Additional Proofs for Chapter 4

B.1 Asymptotic Error via Strong Approximation

In this section, we develop tools for the strong approximation of jump-diffusion models which we

will need to prove our results for that case.

If X solves dXt = ã(Xt)dt + b̃(Xt)dWt + c̃(Xt)dJt, and ‖XN − X‖2 = O(∆tk), then we

call XN a strong approximation of order k. In the absence of jumps, Kloeden and Platen (1992)

show the same order then applies to almost sure convergence. Bruti-Liberati and Platen (2005)

and Bruti-Liberati and Platen (2007) treat strong approximation for the jump-diffusion case. In

following their approach it is convenient to think of dt as having order 1, and dW and dJ as each

having order 1/2, in terms of their L2-norm. Approximations of order k then involve keeping all

terms of order k or lower.
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We use the following representations of the continuous and discrete portfolios. We set

V (1) =
N∏
n=1

V (n∆t)

V ((n+ 1)∆t)
=

N∏
n=1

Rn,N ,

and

V̂ (1) =
N∏
n=1

V̂ (n∆t)

V̂ ((n+ 1)∆t)
=

N∏
n=1

R̂n,N ,

where

R̂n,N :=
V̂ (n∆t)

V̂ ((n− 1)∆t)

=
d∑
i=1

wi exp{(µi −
1

2

d∑
j=1

σ2
ij)∆t+ σ>i ∆Wn}

N(n∆t)∏
j=N((n−1)∆t)+1

Y i
j

and

Rn,N :=
V (n∆t)

V ((n− 1)∆t)

= exp{(µw −
1

2
σ2
w)∆t+ σ̄>∆Wn}

N(n∆t)∏
j=N((n−1)∆t)+1

(
d∑
i=1

wiY
i
j ).
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Then

R̂n,N

Rn,N

=
d∑
i=1

wi exp{(µi − µw −
1

2
‖σi‖2 +

1

2
σ2
w)∆t+ (σi − σ̄)>∆Wn}

×
N(n∆t)∏

j=N((n−1)∆t)+1

Y i
j∑d

i=1wiY
i
j

=
R̂c
n,N

Rc
n,N

∑d
i=1 wi exp{(µi − µw − 1

2
‖σi‖2 + 1

2
σ2
w)∆t+ (σi − σ̄)>∆Wn}

∏
j Y

i
j∑

iwi exp{(µi − µw − 1
2
‖σi‖2 + 1

2
σ2
w)∆t+ (σi − σ̄)>∆Wn}

∏
j

∑
iwiY

i
j

,

where R̂c
n,N/R

c
n,N is the ratio of returns in the absence of jumps, as in Glasserman (2012),

R̂c
n,N

Rc
n,N

=
d∑
i=1

wi exp{(µi − µw −
1

2
‖σi‖2 +

1

2
σ2
w)∆t+ (σi − σ̄)>∆Wn}.

B.2 Background on Strong Approximations

As in Kloeden and Platen (1992) and Platen (1982), we use the following notation. For a string

ω = (i1, . . . , ik−1, ik) of indices, let ω− := (i1, . . . , ik−1) and −ω := (i2, . . . , ik), for k > 0. The

length of the string is given by l(ω) = k, and n(ω) denotes the number of zeros in the string ω.

Define the hierarchical sets Al = {ω|l(ω) + n(ω) ≤ 2l}, and the corresponding remainder sets

B(Al) = {ω /∈ Al,−ω ∈ Al}, for l = 1
2
, 1, 3

2
, 2, . . ..

For a predictable g satisfying certain regularity and integrability conditions in the main theorem



180

of Platen (1982), an iterated integral Iω is defined as follows:

Iω[g]t =



g(t) if l(ω) = 0;∫ t
0
Iω−[g]zdz if il(ω) = 0 and l(ω) > 0;∫ t

0
Iω−[g]zdW

i
z if il(ω) = i > 0 and l(ω) > 0;∫ t

0
Iω−[g]zdJ̃

i
z if il(ω) = i < 0 and l(ω) > 0.

To have a better understanding of the notation, one can interpret the string ω = (i1, ..., ik) as the

order for iterated integration, with the direction from left to right corresponding to the order of

integration from innermost to outermost integral. Each entry ik indicates the process against which

the integral is taken. For example, ik > 0 indicates an integral against the ithk component of the

Brownian Motion, while ik < 0 indicates an integral against J̃ ik .

The main result of Platen (1982) shows that under our particular setting where all coefficient

functions are linear, we have the Ito-Taylor expansion

f(t,Xt) =
∑
ω∈Al

Iω[fω(0, X0)]t +
∑

ω∈B(Al)

Iω[fω(· , X.)]t.



181

Here we choose f(x) = x and coefficients are defined by

fω(t, x) =



x if l(ω) = 0;

ã(x) if l(ω) = 1,i1 = 0 ;

b̃i1(x) if l(ω) = 1,i1 > 0 ;

c̃(x) if l(ω) = 1,i1 < 0 ;

Li1f−ω if l(ω) > 1;

where

Lif(t, x) =



∂f
∂t

+ ã∂f
∂x

+ 1
2

∑
j b̃

2
j
∂2f
∂x

if i = 0;

b̃i
∂f
∂x

if i > 0;

f(t, x+ c̃(x))− f(t, x) if i < 0.

A more detailed treatment of strong approximations and this notation can be found in Platen

(1982).

For our application, we need to approximate
∑
wiXi(∆t) := R̂n,N/Rn,N , where

Xi,N(t) = exp{(µi − µw −
1

2
‖σi‖2 +

1

2
σ2
w)t+ (σi − σ̄)>W (t)}

N(t)∏
j=1

Y i
j∑
wkY k

j

.

Each Xi,N satisfies the following SDE:

dXi,N(t)

Xi,N(t−)
= (µi − µw −

1

2
‖σi‖2 +

1

2
σ2
w +

1

2
‖σi − σ̄‖2)dt+ (σi − σ̄)>dWt + dJ it

= aidt+ b>i dWt + dJ̃ it ,
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where ai = µi − µw − 1
2
‖σi‖2 + 1

2
σ2
w + 1

2
‖σi − σ̄‖2 + λµyi and bi = σi − σ̄.

For our analysis, we need some standard properties of predictable quadratic variations: <

t, t >= 0, < t,W i
t >= 0 and < t, J̃ jt >= 0 for all i and j; < W i,W j >t= δijt, and < J̃ j, J̃ i >t=

mijt, for constants mij . To derive the appropriate constants, we observe that

E[J̃ it J̃
j
t ] = E[[J̃ i, J̃ j]t]

=
1

4
E[[J̃ i + J̃ j, J̃ i + J̃ j]t − [J̃ i − J̃ j, J̃ i − J̃ j]t]

=
1

4
E[
∑

0<s<t

(J̃ is − J̃ is− + J̃ js − J̃
j
s−)2 −

∑
0<s<t

(J̃ is − J̃ is− − J̃ js + J̃ js−)2]

= E[
∑

0<s<t

((J̃ is − J̃ is−)(J̃ js − J̃
j
s−))]

= λtE[Ȳ iȲ j].

The third equality is due to the fact that a compound Poisson process
∑N(t)

i=1 Zi has quadratic

variation
∑N(t)

i=1 Z2
i ((Cont and Tankov 2003, Example 8.4)). Thus, we need mij = λE[Ȳ iȲ j].

B.3 Strong Approximation for the Jump-Diffusion model

We now use the strong approximation scheme of order 3/2 to prove Theorem 4.2.3 and 4.2.4. First

we write

Xi,N(∆t) = 1 + ζ i1/2,N + ζ i1,N + ζ i3/2,N + riN ,
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where ζ i.,N are defined as follows. First,

ζ i1/2,N =

∫ ∆t

0

b>i dW +

∫ ∆t

0

dJ̃ i = b>i ∆W + ∆J̃ i.

(From now on we drop the limits of integration for iterated integrals taken over [0,∆t]. An integral

of the form
∫
g dJ̃ i should be understood as

∫
g(t−)dJ̃ i(t).) Continuing, we have

ζ i1,N = ai
∫
dt+

∫ ∫
b>i dWb>i dW +

∫ ∫
b>i dWdJ̃ i

+

∫ ∫
dJ̃ ib>i dW +

∫ ∫
dJ̃ idJ̃ i (B.1)

and

ζ i3/2,N = ai
∫ ∫

b>i dWdt+ ai
∫ ∫

dtb>i dW + ai
∫ ∫

dJ̃ idt+ ai
∫ ∫

dtdJ̃ i

+

∫ ∫ ∫
b>i dWb>i dWb>i dW +

∫ ∫ ∫
b>i dWb>i dWdJ̃ i

+

∫ ∫ ∫
b>i dWdJ̃ ib>i dW +

∫ ∫ ∫
dJ̃ ib>i dWb>i dW +

∫ ∫ ∫
b>i dWdJ̃ idJ̃ i

+

∫ ∫ ∫
dJ̃ idJ̃ ib>i dW +

∫ ∫ ∫
dJ̃ ib>i dWdJ̃ i +

∫ ∫ ∫
dJ̃ idJ̃ idJ̃ i.

(B.2)

By observing that
∑
wibi = 0 and

∑
wiJ̃

i = 0, we find that
∑
wiζ

i
1/2,N = 0. For the next
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term, we have

∑
i

wiζ
i
1,N =

∑
i

wi[εn,N + b>i ∆W∆J̃ i +

∫ ∫
dJ̃ idJ̃ i].

Here, εn,N is the corresponding error term in the absence of jumps; the last two terms are the

difference between the continuous and jump-diffusion cases.

It is now easy to see that ‖
∑
wiζ

i
1,N‖ = O(∆t), and similarly ‖

∑
wiζ

i
3/2,N‖ = O(∆t3/2).

Now we need to show that the remainder riN satisfies ‖riN‖ = O(∆t2).

Lemma B.3.1. (Modified from (Studer 2001, Lemma 3.42).) Given an adapted caglad (left con-

tinuous with right limits) process g(t), with
∫ t

0
E[g(s)2]ds = K <∞, then

E[(

∫ t

0

g(s)dMs)
2] ≤


tK, if Mt = t;

K, if Mt = W i
t ;

miiK, if Mt = J̃ it .

(The integrand should be understood as g> when M = W .)

Proof. The result and proof are the same as in Studer (2001).

To bound the error when we truncate a strong approximation, we can apply a result of (Studer

2001, Proposition 3.43), or s similar result of (Bruti-Liberati and Platen 2005, Theorem 6.1). Out

setting is simpler than theirs because of the special form of the dynamics in the JD model.

Lemma B.3.2. (Modified from (Studer 2001, Proposition 3.43).) Under our assumptions (4.2.3)
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and (4.2.4) for the JD model, there exist some constants C1 and C2 such that for any i = 1, ..., d

E[(Xi,N(t)−
∑
κ∈Ak

Iκ[fκ(0, Xi,N(0))])2] ≤ C1(C2t)
2k+1.

Proof. Since f(t, x) = x, the conditions in (Studer 2001, Proposition 3.43) (and those in (Bruti-

Liberati and Platen 2005, Theorem 6.1)) are satisfied. Thus, for any ω ∈ B(Ak), we can find some

constant C3

sup
0≤t≤T

E[(fω(t,Xi,N(t)))2] ≤ C3.

Denote ni(ω) be the number of components for J̃ i in ω. By induction and the previous lemma, we

have for any ω ∈ B(Ak), we can find some constant C4

E[Iω[fω(., Xi,N(.))]2t ] ≤ tn(ω)(mii)
ni(ω)C3t

l(ω)

≤ C3C
2k+1
4 tl(ω)+n(ω);

and |B(Ak)| ≤ (3d+ 3)k+1, therefore,

E[(Xt −
∑
κ∈Ak

Iκ[fκ(0, X0)])2] ≤ (
∑

ω∈B(Ak)

(E[Iω[fω(., X)]])1/2)2

≤ (
∑

ω∈B(Ak)

(C3C
2k+1
4 tl(ω)+n(ω))1/2)2

≤ C1(C2t)
2k+1.
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As a consequence, for our setting we get

Lemma B.3.3. ‖riN‖ = ‖Xi,N − 1− ζ i1/2,N − ζ i1,N − ζ i3/2,N‖ = O(∆t2).

B.4 Correlation Between ζ i1 and ζ i3/2

In this section, we show that the terms
∑
wiζ

i
1,N and

∑
wiζ

i
3/2,N are uncorrelated. Before special-

izing to our setting, we derive some general properties used extensively in this subsection.

To calculate the covariance between iterated integrals, from (Cont and Tankov 2003, Proposi-

tion 8.11) we have (using the notation of Lemma B.3.1)

E[Iω1Iω2 ] = E[

∫
Iω1−dM1

∫
Iω2−dM2]

= E[

∫
Iω1−Iω2dM1 +

∫
Iω2−Iω1dM2 +

∫
Iω1−Iω2−d[M1,M2]]

= E[

∫
Iω1−Iω2dM1 +

∫
Iω2−Iω1dM2 +

∫
Iω1−Iω2−d < M1,M2 >], (B.1)

where

Mi(t) =


t if r(ωi) = 0;

Wt if r(ωi) = 1;

J̃kt if r(ωi) = k < 0,

with r(ωi) the rightmost element of ωi. As before, when Mi = J̃k for some i and k, we use the

left-continuous version of the integrand. When Mi = W , we take its transpose in the integrand.

Here we use the square bracket and sharp bracket to denote quadratic variation and predictable

quadratic variation as introduced towards the end of Section B.2.
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When r(ωi) 6= 0 for both i = 1 and 2, Mr(ωi) is a martingale, so after taking expectations,

the first two terms in (B.1) vanish. Assumption (4.2.4) implies square integrability of these iter-

ated integrals, which contain jump terms. Otherwise, when they consist of only dt or dW , their

integrability is immediate. Thus, we have the following possible combinations:

When r(ω1) > 0 and r(ω2) = −j < 0, M1 and M2 are uncorrelated martingales, so the

expectation of their product is 0. Thus, we have:

E[

∫
I>ω1−dW

∫
Iω2−dJ̃

j] = 0. (B.2)

When r(ω1) = r(ω2) = 1,

E[

∫
I>ω1−dW

∫
I>ω2−dW ] =

∫
E[I>ω1−Iω2−]dt

and when r(ω1) = −i, r(ω2) = −j,

E[

∫
Iω1−dJ̃

i

∫
Iω2−dJ̃

j] =

∫
E[Iω1−Iω2−]mijdt. (B.3)

When r(ω1) = 0 and r(ω2) 6= 0,the second and the third term in (B.1) vanish, leaving

E[

∫
Iω1−dt

∫
Iω2−dM2] =

∫
E[Iω1−Iω2 ]dt.

Now we apply these results to analyze the correlation between ζ1 and ζ3/2. LetBl,n = {γ|l(γ) =

l, n(γ) = n}. All strings in Bl,n are of the same length l and have the same number of zeros n. We
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observe from (B.1) and (B.2) that ζ i1,N is a linear combination of elements in B(A1) and ζ i3/2,N is

a linear combination of elements of B(A3/2). From here until the end of this subsection, we let ω

and κ be strings with l(ω) = 1 and l(κ) = 3/2, and we treat all possible combinations of values of

n(ω) and n(κ):

(a) If n(ω) = 0 and n(κ) = 0 — that is, neither contains dt integrals — then (B.2)–(B.3) show

that E[IωIκ] equals to an integral against dt with its integrand either zero or E[Iω−Iκ−]. Applying

the same argument again, so we can say that E[Iω−Iκ−] is again an integral against dt with its

integrand either zero or E[Iω−−Iκ−−], which is zero, since l(ω) = 1. So E[IωIκ] = 0 for any

ω ∈ B1,0 and κ ∈ B3/2,0. Hence any linear combination of elements of {Iω : ω ∈ B1,0} and any

linear combination of elements of {Iκ : ω ∈ B3/2,0} are uncorrelated.

(b) If l(ω) = n(ω) = 1, but n(κ) = 0, then Iω is actually deterministic. SoE[IωIκ] = IωE[Iκ] = 0,

since Iκ is a martingale. Hence any linear combination of elements of {Iω : ω ∈ B1,1} and any

linear combination of elements of {Iκ : ω ∈ B3/2,0} are uncorrelated.

(c) For the case n(ω) = 0 and n(κ) = 1, we observe that in our particular setting, for any i 6= 0,

I(i,0) and I(0,i) always appear in pairs in ζ i and have the same coefficients. Using integration by

parts we can consider them in pairs, for i 6= 0, to get

I(i,0) + I(0,i) =

∫
d(tMi) = ∆t∆Mi,

so

E[Iω(I(i,0) + I(0,i))] = ∆tE[Iω∆Mi] = 0,
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the last equality following from the same argument as (a). Hence, any linear combination of

elements of {Iω : ω ∈ B1,0} and any linear combination of elements of {Iκ : ω ∈ B3/2,1} are

uncorrelated.

(d) If n(ω) = 1, and n(κ) = 1, then Iω = ∆t, which is deterministic, and I(i,0) + I(0,i) = ∆t∆Mi

has zero mean. Hence any linear combination of elements of {Iω : ω ∈ B1,1} and any linear

combination of elements of {Iκ : ω ∈ B3/2,1} are uncorrelated.

To summarize, we have proved

Lemma B.4.1.
∑
wiζ

i
1,N and

∑
wiζ

i
3/2,N are uncorrelated.

B.5 Convergence Proofs

Using our analysis of the strong approximation for the jump-diffusion case, we can now prove

Theorems 4.2.3 and 4.2.4.

B.5.1 Proof of Theorem 4.2.3

Proof. We have

R̂n,N

Rn,N

= 1 +
∑
i

wiζ
i
1,N +

∑
i

wiζ
i
3/2,N +

∑
i

wir
i
N .

We have shown that ‖
∑
wiζ

i
1,N‖ = O(∆t), ‖

∑
wiζ

i
3/2,N‖ = O(∆t3/2), ‖

∑
wir

i
N‖ = O(∆t2),

thatE[
∑
wiζ

i
1,N ] = 0 andE[

∑
wiζ

i
3/2,N ] = 0, and that

∑
wiζ

i
1,N and

∑
wiζ

i
3/2,N are uncorrelated.

We can now follow the argument used in (Glasserman 2012, Proposition 1) to prove (4.2.8).

Next we calculate the variance of the relative error. To condense (4.2.9), letE1 =
∑
wi[b

>
i ∆W∆J̃ i],
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and E2 =
∑
wi[
∫ ∫

dJ̃ idJ̃ i]. By following steps similar to those used to prove Lemma B.4.1, we

can show that the pairwise correlations between εn,N , E1, and E2 are all zero. Thus,

V ar[ε̃n,N ] = V ar[εn,N ] + V ar[E1] + V ar[E2].

We need to calculate the last two terms on the right. For E1, we have

V ar[E1] = E[E2
1 ] = E[(

∑
wib
>
i ∆W∆J̃ i)2]

= E[(∆W>bΩ∆J̃)2]

= E[(
∑
i

∆W 2
i )∆J̃>(Ωb>bΩ)∆J̃ ]

= ∆t2(w>(b>b ◦M)w).

For E2, we have

V ar[E2] = E[E2
2 ] = E[(

∑
wi

∫ ∫
dJ̃ idJ̃ i)2]

=
∑
i,j

wiwj

∫
E[< J̃ i, J̃ j >s]mijds

=
∆t2

2
w>M ◦Mw.
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B.5.2 Proof of Theorem 4.2.4

Proof. First, from the expression of the asymptotics of the relative error in (4.2.9), the contribution

of the compensation terms in the jump terms are of lower order, so we can replace J̃ in and J̃ i with

J in and J i respectively throughout (4.2.9) and (4.2.8) still holds. That is,

E[(
V̂ (T )− V (T )

V (T )
−

N∑
n=1

ε̄n,N)2] = O(∆t2)

where ε̄n,N = εn,N +
d∑
i=1

wi[b
>
i ∆Wn∆J in +

∫ n∆t

(n−1)∆t

∫ s−

(n−1)∆t

dJ i(r)dJ i(s)]. (B.1)

The last term in (B.1) is nonzero only when there are at least two jumps in the period [(n −

1)∆t, n∆t], which has probability O(∆t2). Since the number of jumps in different periods are

i.i.d., the probability that none of the time intervals has more than one jump is of order 1−O(∆t),

so

√
N

N∑
n=1

d∑
i=1

wi

∫ n∆t

(n−1)∆t

∫ s−

(n−1)∆t

dJ i(r)dJ i(s)⇒ 0.

For the same reason, we can ignore multiple jumps in each ∆t interval in (B.1). More precisely,

√
N

N(T )∑
j=1

(
d∑
i=1

wib
>
i ∆Wn(j)Ȳ

i
n(j) −

d∑
i=1

wib
>
i ∆Wn(j)∆J

i
n(j)

)
⇒ 0, (B.2)

where n(j) is the index of the interval when jth jump takes place.
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To analyze the limit of (B.2), we rewrite it as

√
N

∑
n6=n(j)
j=1,...,N(T )

εn,N +
√
N

∑
n=n(j)
j=1,...,N(T )

εn,N +
√
N

N(T )∑
j=1

d∑
i=1

wib
>
i ∆Wn(j)Ȳ

i
n(j). (B.3)

Let N → ∞, noting that N(T ) remains fixed. In (B.3), the first term is independent of the other

two terms, and it converges to X ∼ N(0, σ2
LT ), as shown in Theorem 4.2.1. The second term in

(B.3) converges to zero in L2 and thus in probability. Thus (B.3) converges in distribution to

X +

N(T )∑
j=1

d∑
i=1

wib
>
i ξjȲ

i
j ,

where ξj are i.i.d. standard normal random variables independent of everything else. The limit

does not hold in L2, since the L2-norm of the third term in (B.1) has order O(∆t2), as shown in

the proof of Theorem 4.2.3.

B.6 Strong Approximation for the Mean-Reverting Case

In this section, we prove Theorem 4.2.1. We build on the strong approximation technique intro-

duced in Section B.3, but the argument will be somewhat simpler because we no longer have jump

terms.



193

B.6.1 Proof of Theorem 4.2.1

Proof. The value of the discretely rebalanced portfolio at ∆t is given by

V̂ (∆t) =
∑
i

wi exp{(µi −
1

2
‖σi‖2)∆t+ σi

∫ ∆t

0

e−κ(∆t−s)dWs + (1− e−κ∆t)µli},

and the ratio of the discrete portfolio value to the continuous portfolio value is given by

R̂N

RN

=

∑
iwi exp{(µi − 1

2
σ2
i )∆t+ σ>i

∫ ∆t

0
eκ(s−∆t)dWs + (1− e−κ∆t)µli}

exp{(µw − 1
2
σ2
w)∆t+ σ̄

∫ ∆t

0
eκ(s−∆t)dWs + (1− e−κ∆t)µ̄l}

=
∑
i

wi exp{(µi − µw −
1

2
(‖σi‖2 − σ2

w))∆t+ (σi − σ̄)>
∫ ∆t

0

eκ(s−∆t)dWs

+ (1− e−κ∆t)(µli − µ̄l)}

=:
∑
i

wiDi(∆t),

where each Di satisfies

dDi = Di[(µi − µw −
1

2
(‖σi‖2 − σ2

w − ‖σi − σ̄‖2))dt+ dL̄i]

dL̄i = κ(µli − µ̄l − L̄i)dt+ (σi − σ̄)>dW.

Using strong approximation as introduced in Section B.3, we get (with all iterated integrals
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taken from 0 to ∆t):

Di(∆t) = 1 + (µi − µw −
1

2
(‖σi‖2 − σ2

w − ‖σi − σ̄‖2))(∆t+

∫ ∫
dL̄idt

+

∫ ∫
dtdL̄i) + ∆L̄i +

∫ ∫
dL̄idL̄i +

∫ ∫ ∫
dL̄idL̄idL̄i +O(∆t2),

where

∆L̄i = (σi − σ̄)>e−κ∆t

∫ ∆t

0

eκsdWs + (1− e−κ∆t)(µli − µ̄l)

= (σi − σ̄)>(∆W − κ
∫ ∆t

0

Wsds) + κ(µli − µ̄l)∆t+O(∆t2).

Expanding the iterated integrals of L̄i and substituting, we get

Di(∆t) = 1 + (σi − σ̄)>∆W + [(µi − µw −
1

2
(‖σi‖2 − σ2

w))∆t

+
1

2
∆W>Σ̄i∆W ] + [

1

6
∆W>Σ̄i∆W (σi − σ̄)>∆W

+ (µi − µw −
1

2
(‖σi‖2 − σ2

w))(σi − σ̄)>∆W∆t− (σi − σ̄)>(κ

∫ ∆t

0

Wsds)]

+ κ(µli − µ̄l)∆t+ κ(µli − µ̄l)(σi − σ̄)>∆W∆t+O(∆t2),

where Σ̄i = (σi − σ̄)(σi − σ̄)>, and we drop the term ∆W>Σ̄i

∫ ∆t

0
sdWs because its L2-norm is

O(∆t2).
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Now taking the weighted sum of the Di, we get

∑
i

wiDi(∆t) = 1 + 0 + [−1

2
(
∑
i

wi‖σi‖2 − σ2
w)∆t+

1

2
∆W>Σ̄∆W ]

+
∑
i

wi[
1

6
∆W>Σ̄i∆W (σi − σ̄)>∆W

+ (µi − µw − κ(µli − µ̄l)−
1

2
(‖σi‖2 − σ2

w))(σi − σ̄)>∆W∆t] +O(∆t2)

=: 1 + ζN1 + ζN3/2 + r

where Σ̄ =
∑

iwiΣ̄i and ‖r‖ = O(∆t2).

Following essentially the same arguments used in the jump-diffusion case, it is now easy to

show that ‖ζN1 ‖ = O(∆t) and ‖ζN3/2‖ = O(∆t3/2), and also that ζN1 and ζN3/2 are uncorrelated,

leading to

‖ V̂ (T )

V (T )
− 1−

N∑
n=1

ζN1,n‖ = O(∆t).

At the same time,

ζN1,n =
1

2
(∆W>Σ̄∆W − Tr(Σ̄)∆t) = εn,N ,

coincides with the εn,N in the case of multivariate geometric Brownian motion considered in

Glasserman (2012). The same limit therefore applies here.
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Given the representation in Theorem 4.2.1, the proof of Theorem 4.2.2 is the same as that of

Theorem 1 in Glasserman (2012).

B.7 Analysis of the Volatility Adjustments

B.7.1 Proof of Proposition 4.3.2: the Jump-Diffusion Case

Proof. With

XN =
√
N

N−1∑
n=0

(
V̂ ((n+ 1)∆t)

V ((n+ 1)∆t)
− V̂ (n∆t)

V (n∆t)
)

we can write Cov[log V (T ), XN ] as

Cov[log V (T ), XN ]

=
√
N

N∑
k=1

N−1∑
n=0

E[(σ̄>∆Wk

+

N(k+1)∑
j=N(k)+1

(log
∑
i

wiY
i
j − µJ))(

V̂ ((n+ 1)∆t)

V ((n+ 1)∆t)
− V̂ (n∆t)

V (n∆t)
)]

where, as before, µJ = E[log
∑

iwiY
i
j ]. If we interchange the order of summation and fix a value

of n, we need to evaluate

E[(σ̄>∆Wk +

N(k+1)∑
j=N(k)+1

(log
∑
i

wiY
i
j − µJ))(

V̂ ((n+ 1)∆t)

V ((n+ 1)∆t)
− V̂ (n∆t)

V (n∆t)
)], (B.1)

for which we have three cases:
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(1) k ≥ n+ 2. In this case, we have

E[(σ̄>∆Wk +

N(k+1)∑
j=N(k)+1

(log
∑
i

wiY
i
j − µJ))(

V̂ ((n+ 1)∆t)

V ((n+ 1)∆t)
− V̂ (n∆t)

V (n∆t)
)] = 0,

because W (k) and
∑N(k+1)

j=N(k)+1(log
∑

iwiY
i
j ) are both independent of

(V̂ (n∆t), V (n∆t), V̂ ((n+ 1)∆t), V ((n+ 1)∆t)).

(2) k = n+ 1. (B.1) becomes

E

[
V̂ (n∆t)

V (n∆t)

]
E

(σ̄>∆Wn+1 +

N(k+1)∑
j=N(k)+1

(log
∑
i

wiY
i
j − µJ))

R̂n+1

Rn+1

 . (B.2)

Multiplying the factors inside the last expectation produces two terms. For the first, we have

E[σ̄>∆Wn+1
R̂n+1

Rn+1

]

=
∑
i

wiE[σ̄>∆Wn+1 exp{(µi − µw −
1

2
‖σi‖2 +

1

2
σ2
w)∆t+ (σi − σ̄)>∆Wn+1}

N(n+2)∏
j=N(n+1)+1

Y i
j∑
wlY l

j

]

=
∑
i

wi(σ̄
>σi − σ2

w)∆t exp{(µi − µw + σ2
w − σ>i σ̄)∆t+ λ∆t(µyi )}

= γL∆t2 +
∑
i

wiσ̄
>σiλµ

y
i∆t

2 +O(∆t3). (B.3)
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For the other term, from (B.2) we have

E[

N(k+1)∑
j=N(k)+1

(log
∑
i

wiY
i
j − µJ)

R̂n+1

Rn+1

]

=
∑
i

wi exp{(µi − µw + σ2
w − σ>i σ̄)∆t}

× E[(

N(k+1)∏
r=N(k)+1

(Ȳ i + 1))(

N(k+1)∑
j=N(k)+1

(log
∑
i

wiY
i
j − µJ))], (B.4)

where

E[(

N(k+1)∏
r=N(k)+1

(Ȳ i
r + 1))(

N(k+1)∑
j=N(k)+1

(log
∑
i

wiY
i
j − µJ))]

=
∞∑
n=1

e−λ∆t (λ∆t)n

n!

n∑
j=1

E[
n∏
k=1

(
Ȳ i + 1

)
(log

∑
l

wlY
l
j − µJ)]

= exp{λ∆tµyi }∆tλE[(Ȳ i + 1)(log
∑
l

wlY
l − µJ)]. (B.5)

Substituting (B.5) into (B.4), we get

E[

N(k+1)∑
j=N(k)+1

(log
∑
i

wiY
i
j − µJ)(

R̂n+1

Rn+1

)]

=
∑
i

wi exp{(µi − µw + σ2
w − σ>i σ̄)∆t} exp{λ∆tµyi }

×∆tλE[(Ȳ i + 1)(log
∑
l

wlY
l − µJ)]. (B.6)

Applying a Taylor expansion to the exponential part under assumptions (4.2.4) and (4.2.5), (B.6)
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becomes

∑
i

wiλ(µi − σ>i σ̄ + λµyi )E[Ȳ i(log
∑
l

wlY
l − µJ)]∆t2 +O(∆t3). (B.7)

Using (B.3) and (B.7) we have for (B.2)

E[(σ̄>∆Wn+1 +

N(k+1)∑
j=N(k)+1

(log
∑
i

wiY
i
j − E))(

R̂n+1

Rn+1

)] = γ̃L∆t2 +O(∆t3).

(3) k < n+ 1. The same argument applies in this case, and we have

E[(σ̄>∆Wn+1 +

N(k+1)∑
j=N(k)+1

(log
∑
i

wiY
i
j − µJ))(

V̂ ((n+ 1)∆t)

V ((n+ 1)∆t)
− V̂ (n∆t)

V (n∆t)
)] = O(∆t4).

Hence we have

N−1/2Cov[log T (T ), XN ] =
γ̃LT

2

N
+O(N−2).

(ii) For the second part of the proposition, we need to show that

E[(V̄ (T )− V̂ (T ))2] = O(N−2).

By following the steps of a similar proof in Glasserman (2012), it suffices to show E[V (T )2X2
N ] <

∞.
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We can write

V 2(T ) = exp{2µwT + σ2
wT} exp{2σ̄>W (T )− 2σ2

wT} exp{−(λ− λ̃)T}

× exp{(λ− λ̃)T}
N(t)∏
j=1

(
∑
i

wiY
i
j )2,

and now we would like to use the following as a Radon-Nikodym derivative:

exp{2σ̄>W (T )− 2σ2
wT} exp{(λ− λ̃)T}

N(t)∏
j=1

(
∑
i

wiY
i
j )2. (B.8)

The first exponential term is itself a Radon-Nikodym derivative for the diffusion process. From

assumption (4.2.4), we have E[(Y i)2] < ∞, so we can choose an appropriate λ̃ such that f̃(y) =

λy2f(y)/λ̃ is a well-defined density function, where f(.) and f̃(.) are the density functions for∑
iwiY

i under the original probability and the new probability measure, respectively. Therefore,

(B.8) is indeed a Radon-Nikodym derivative, and, under the probability measure it defines, each

asset’s drift is changed from µi to µi + 2σ>i σ̄, and the
∑

iwiY
i now have density f̃ .

From Theorem 4.2.3, the convergence of the second moment of XN holds as long as the drifts

and Poisson rate are constant, and assumption (4.2.3) and the first inequality of (4.2.4) hold under

the new measure. Because of absolute continuity, (4.2.3) will still hold. For (4.2.4)

Ẽ[|Ȳ k + 1|3] = exp{(λ− λ̃T )}E[|Y k|2|Ȳ k + 1|]

≤ exp{(λ− λ̃T )}‖Ȳ k + 1‖3‖Y k‖2
3 <∞.
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Hence we have proved the second part of the proposition.

B.7.2 Proof of Proposition 4.3.1: the Mean-Reverting Case

Proof. Under assumption (4.2.3), first we focus on the case of only one jump

P (Ind = 1) ≤ P (Ind = 1, N(∆t) = 1) + P (N(∆t) > 1)

= P (
∑
i

wi exp{(µi −
1

2

d∑
j=1

σ2
ij)s+ σ>i W (s)}

N(s)∏
j=1

Y i
j < 0,

for some s ∈ [0,∆t]|N(∆t) = 1)P (N(∆t) = 1) +O(∆t2). (B.9)

The last term O(∆t2) is from the probability of more than one jump within the time interval. Now

we simplify the first term by using the fact of having only one jump, and also apply a first-order

Taylor expansion to the exponential:

P (
∑
i

wi exp{(µi −
1

2

d∑
j=1

σ2
ij)s+ σ>i W (s)}

N(s)∏
j=1

Y i
j < 0,

for some s ∈ [0,∆t]|N(∆t) = 1)

= P (
∑
i

wi(1 + σ>i W (s) + r̄i(s))Y
i < 0, for some s ∈ [0,∆t]),
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where r̄i is the remainder in the Taylor approximation, with L2−norm O(∆t). Then

P (
∑
i

wi(1 + σ>i W (s) + r̄i(s))Y
i < 0, for some s ∈ [0,∆t])

≤ P (max(|σ>i W (s) + r̄i(s)|)
∑
i

|wiY i| >
∑
i

wiY
i, for some s ∈ [0,∆t])

≤ P (
∑
i

|σ>i W (s) + r̄i(s)| >
∑

iwiY
i∑

i |wiY i|
, for some s ∈ [0,∆t]).

Conditioning on the Y i and applying Chebyshev’s inequality yields

P (
∑
i

|σ>i W (s) + r̄i(s)| >
∑

iwiY
i∑

i |wiY i|
, for some s ∈ [0,∆t])

≤ E[V ar(
∑
i

|σ>i W (s) + r̄i(s)|)
( ∑

iwiY
i∑

i |wiY i|

)2

, for some s ∈ [0,∆t]]

≤ V ar(
∑
i

|σ>i W (s) + r̄i(s)|)E

[( ∑
iwiY

i∑
i |wiY i|

)2
]

= O(∆t).

Substituting these results in (B.9) concludes the proof.

B.8 Proof of Lemma B.8.1

Lemma B.8.1. Given assumption (4.2.3) , P (Ind = 0) = O(∆t2).
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Proof. (i) With

XN =
√
N

N−1∑
n=0

(
V̂ ((n+ 1)∆t)

V ((n+ 1)∆t)
− V̂ (n∆t)

V (n∆t)
),

we have

Cov[log V (T ), XN ]

=
√
N

N∑
k=1

N−1∑
n=0

E[σ̄>e−κ
∫ k∆t

(k−1)∆t

eκsdWs(
V̂ ((n+ 1)∆t)

V ((n+ 1)∆t)
− V̂ (n∆t)

V (n∆t)
)]. (B.1)

For k ≥ n+ 2,

E[σ̄>e−κ
∫ k∆t

(k−1)∆t

eκsdWs(
V̂ ((n+ 1)∆t)

V ((n+ 1)∆t)
− V̂ (n∆t)

V (n∆t)
)] = 0,

For k = n+ 1, we have

E[σ̄>e−κ
∫ (n+2)∆t

(n+1)∆t

eκsdWs(
V̂ ((n+ 1)∆t)

V ((n+ 1)∆t)
− V̂ (n∆t)

V (n∆t)
)]

= E[
V̂ (n∆t)

V (n∆t)
]E[σ̄>e−κ

∫ (n+2)∆t

(n+1)∆t

eκsdWs

R̂n+1

Rn+1

].
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E[σ̄>e−κ
∫ (n+2)∆t

(n+1)∆t

eκsdWs

R̂n+1

Rn+1

]

=
∑
i

wiσ̄
>(σi − σ̄)e−κ(1+∆t)

∫ ∆t

0

eκsds exp{(µi − µw −
1

2
(‖σi‖2 − σ2

w))∆t

+
1

2
‖σi − σ̄‖2e−2κ∆t

∫ ∆t

0

e2κsds+ (1− e−κ∆t)(µli − µ̄l))}.

(B.2)

We only need its coefficient on ∆t2, which is

∑
i

wi(σ̄
>σi)e

−κ(µi − µw −
1

2
(‖σi‖2 − σ2

w) +
1

2
‖σi − σ̄‖2 + κ(µli − µ̄l))

=
∑
i

wi(σ̄
>σi)e

−κ(µi − µw + σ2
w − σ>i σ̄ + κ(µli − µ̄l))

= e−κ(γL +
∑
i

wi(σ̄
>σi)κ(µli − µ̄l)).

For the first factor in (B.2), we have

E[
V̂ (n∆t)

V (n∆t)
] =

n∏
k=1

E[
R̂n+1

Rn+1

] =
n∏
k=1

(1 +O(∆t2)) = 1 +O(∆t).

So, we have

E[σ̄>e−κ
∫ (n+2)∆t

(n+1)∆t

eκsdWs(
V̂ ((n+ 1)∆t)

V ((n+ 1)∆t)
− V̂ (n∆t)

V (n∆t)
)] = γ

L
∆t2 +O(∆t3).

For the case k ≤ n, following the same argument as in the proof of (Glasserman 2012, Prop.
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4), we get

E[σ̄>e−κ
∫ (k+1)∆t

k∆t

eκsdWs(
V̂ ((n+ 1)∆t)

V ((n+ 1)∆t)
− V̂ (n∆t)

V (n∆t)
)] = O(∆t4),

and then (B.1) becomes

N−1/2Cov(log V (T ), XN) =
γ
L
T 2

N
+O(N−2).

The proof for part (ii) follows the same line as the one in Glasserman (2012). The only mod-

ification needed is that now the Girsanov transformation is a little more general, the change of

measure now changing the standard Brownian motion W (T ) to a Gaussian process
∫ T

0
eκsW (s).

B.9 Proof of Proposition 4.5.1

Proof. With N fixed, since {R̂n,N : n = 1, ..., N} are i.i.d., from (4.5.1) and the surrounding

discussion, the number of intervals n until Ind = 1 has a geometric distribution, and

P (Ind = 1 for some n = 1, . . . , N) = O(∆t).

If the discrete portfolio defaults, V̂
:

(T ) = 0 and
V̂:(T )−V:(T )

V:(T )
= −1, so

‖
V̂
:

(T )− V
:

(T )

V
:

(T )
I{Ind =1 for some n=1,...,N}‖ = O(∆t).
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