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Introduction 
PIQUANT II, the system we used for TREC 2004, is a completely reengineered system whose 
core functionalities for answering factoid and list questions remain largely unchanged from 
previous years [Chu-Carroll et al, 2003, Prager et al, 2004].  We continue to address these 
questions using our multi-strategy and multi-source approach.  For “other” questions, we 
experimented with two alternative approaches, one that uses statistical collocation information for 
extracting prominent passages related to the target, and the other which is a slight variation of the 
QA-by-Dossier approach we employed last year [Prager et al, 2004] that asks a set of sub-
questions of interest about the target and returns a set of relevant passages that answer these sub-
questions.  In addition, to address this year’s new question format, we developed a question pre-
processing component to interpret individual questions against the given target to generate a self-
contained natural language question as expected by subsequent components of our QA system.  
NIST assessed scores showed substantial improvement of our new PIQUANT II system over 
earlier versions of our QA system both in terms of absolute scores as well as relative 
improvement compared to the best and median scores in each of the three component subtasks.  

The PIQUANT II System 
In an effort to create an efficient development and test platform for question answering, we 
devoted a significant amount of time to system re-engineering.  The primary goals of this re-
engineering effort were to address the portability, component reusability, and speed of our 
original PIQUANT system.  The system that we used for the TREC-2004 evaluation was built 
within our new PIQUANT II architecture framework [Czuba, forthcoming]. The main 
characteristics of the framework are: 
 

1. Full Java implementation. 
2. Plug-and-play architecture. 
3. Well-defined, standardized APIs for typical QA system components. 
4. Distributed client-server deployment. 

 
Our new architecture continues to support our multi-agent approach to QA where different 
strategies are employed to address different question types.  Figure 1 shows a diagram of the 
PIQUANT II framework as instantiated in the factoid and list subtasks of our TREC 2004 runs.  
The box labeled “Answer Agents” in the middle of the diagram is the focus of our framework, 
which allows for plug-and-play of multiple answering agents that make up the core of a QA 
system.  The PIQUANT II framework provides the machinery to execute these answering agents 
in parallel, and to accumulate and send the results from individual agents to the answer resolution 

                                                
1 Part of this work was conducted while Sasha Blair-Goldensohn was a summer intern at the IBM T. J. 
Watson Research Center. 
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component. The answer resolution component combines top candidate answers from each agent 
and produces the top n answers that represent the answers of the QA system as a whole.  In our 
TREC 2004 runs, the answer resolution component adopts an equal a priori probability weighting 
scheme and thus simply sums the agent confidence scores of all semantically equivalent answers 
and outputs the answer with the highest combined score. 
 

 
Figure 1  PIQUANT II Framework as Instantiated for TREC 2004 Factoid & List Questions 

 
The answer justification component attempts to locate a passage in a reference corpus that 
justifies a given answer to a question.  This component is useful when an answer to a question 
was found via other means (such as through a database lookup or on the web), but a “trusted 
source” is needed to justify the answer.  In the case of PIQUANT II in TREC, it is used when an 
answer is found by our KSP agent, which performs a database lookup of the attribute value of an 
object for questions such as “What is the capital of Canada?,” and a document in the reference 
corpus is required to support the answer.  
 
The question preprocessor performs any transformation needed on the system input to ensure that 
answering agents receive their expected input (usually self-contained natural language questions).  
In the next section, we describe the question preprocessor we developed to address this year’s QA 
task, as well as the new answering agents we have developed in this framework. 

PIQUANT II Components in TREC 2004 

Question Preprocessor 
Since this year’s track introduced the notion of a question target and a set of questions related to it, 
a question preprocessor was required to perform anaphora resolution on each question against the 
target to produce a self-contained natural language question for subsequent processing. Since we 
did not have a full anaphora resolution module available, we developed a set of heuristics to 
handle the different kinds of anaphora we thought were likely to occur. However, prior to 
performing anaphora resolution, we analyze the target to extract appositional constructs.   
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The target analysis task focused primarily on extracting proper names from appositional 
constructs. For example, the target the band Nirvana was preprocessed to a modifier the band and 
Nirvana that became our new target. The new target was used in anaphora resolution as described 
below, whereas the modifier was kept and added to the search query for disambiguation purposes.  
 
Our answer selection ranking algorithm makes use of syntactic relationships extracted from the 
question text; it is thus highly desirable that the question text contains the actual target instead of 
an anaphor.  In order to satisfy this requirement we addressed two anaphora types in questions: 
 

1. Pronominal anaphora including possessives. 
2. Definite NPs. 

 
We divided anaphoric pronouns into two groups, those that are unambiguous (him, his, hers, it, its, 
their, theirs), and those that are ambiguous (her: possessive vs. accusative). For unambiguous 
pronouns, we replaced them in the question text with an appropriate form of the target. E.g. for 
the target Nirvana, the question What is its biggest hit? is transformed to What is Nirvana’s 
biggest hit? For the ambiguous her, the question is first parsed using IBM’s ESG parser [McCord, 
1989] to determine whether it is an accusative or possessive pronoun and the question is 
transformed appropriately. We assume that only one pronoun is likely to occur in a question, and 
thus we replace the pronoun earliest in the sentence.  We also assume that the pronoun refers to 
the question target as opposed to an entity in a preceding question. 
 
If the question does not contain a pronoun, it is checked for the presence of definite noun phrases. 
We assume that definite noun phrases (which we in turn assume begin with a definite article) are 
all referential if the question target does not appear in the question. In order to enable the right set 
of relationships to be build for such NPs, we add an of-PP to the question. E.g., for the target IBM, 
the question Where are the company’s headquarters? is transformed to Where are the company of 
IBM’s headquarters? Although the resulting English is somewhat odd, our parser handles the 
transformed questions correctly and an appropriate set of syntactic relationships is generated.  

Answering Agents 
For the most part, the answering agents we employed this year are algorithmically the same as the 
agents we used last year, re-engineered to conform to our new architecture.  The two exceptions 
are the Juru-based predictive annotation agent and the profile agent, whose development 
illustrates some of the key features of the PIQUANT II architecture.  The modular architecture 
and standardized APIs in the PIQUANT II framework enabled component reuse and thus allowed 
us to rapidly deploy new agents.  This was crucial for the development of the profile agent given 
the short time we had to address the “other” question type before the submission deadline.  By 
reusing existing components as building blocks, the first version of the profile agent was literally 
built within hours.  We then spent the next two weeks experimenting with various concept and 
passage extraction strategies to obtain the version of the agent used in our submission. 

Juru-Based Predictive Annotation Agent 
The Juru-based predictive annotation agent implements our previously reported Predictive 
Annotation strategy [Prager et al., 2000] in our new framework.  In doing so, we adopted 
components that conform to IBM’s Unstructured Information Management Architecture [Ferrucci 
and Lally, 2004], including various named entity annotators, parser, and search engine.  The 
resulting answering agent ended up being significantly different in terms of component strategies 
and performance from the earlier implementation that was deployed in previous years’ TREC 
evaluations. The primary difference is the use of the Juru search engine developed at IBM’s Haifa 



Labs, which placed first in the “precision at 10” category in the TREC web track in 2001 [Carmel 
et al., 2002].  In particular, we used JuruXML [Carmel et al., 2003], an extension of Juru, which 
supports queries over XML fragments, and enables us to implement our predictive annotation 
scheme.  Juru/JuruXML has different characteristics than the GuruQA passage retrieval engine 
we previously used in several regards.  First, it adopts a tf*idf based ranking scheme, rather than 
the weighted Boolean query scheme in GuruQA.  As a result, the documents/passages retrieved 
for the same query could differ dramatically.  Second, our previous query building process relied 
quite heavily on morphological and synonym expansions of keywords.  However, Juru query 
syntax does not support treating a group of words/phrases as synonyms in its scoring process.  
For these reasons and in a general effort to improve the quality of our information retrieval, we 
developed a new query building component. 
 
Our approach in creating this new query builder was to make a parameterized component which 
would allow us to easily explore the effects of different query building strategies.  These 
parameters controlled how elements of our question analysis output such as predicted answer type, 
question keywords/phrases or question semantic type would be included, excluded or required in 
the query. Using data from previous TRECs, we analyzed the effect of these settings in terms of 
document/passage recall (i.e. the proportion of documents/passages known to contain correct 
answers which were retrieved) and end-to-end MRR performance.  Although work to optimize 
these parameters is ongoing, we observed that certain settings improved results on training data, 
and used those settings for our submitted run. Settings which improved results included: 
 

?  Requiring a predictive-annotation token of the predicted answer type 
?  Requiring the highest-idf single word from the question, based on the idea that this term 

often serves as an anchor or “selector” term (cf. [Ramakrishnan et al., 2004]) 
?  Including all question keywords (i.e. not using stoplisting but rather allowing Juru’s 

tf*idf ranking to determine term significance) 
?  Excluding WordNet-based synonym or hypernym expansions (various restrictions and 

strategies were applied, none improved results) 
 

After Juru returns the top-ranked documents from the query, we apply density-based passage 
retrieval to identify the most promising passages, and lastly perform answer selection2. 
 
In terms of accuracy, the new predictive annotation agent is comparable to our previous 
implementation. However, because of the difference in search engine behavior, there is 
substantial non-overlap in the actual questions on which each agent scored, we therefore included 
both implementations of the agent in the QA system we used in our submission.  
 
In terms of run time, the new Java implementation on Linux (with a couple of Windows-
dependent components running as servers) averages 7 seconds per question, compared with 2 
minutes and 26 seconds per question on our old implementation in Perl/C/Java on AIX.3  This 
significant improvement in system speed, although not a factor in the TREC QA track evaluation, 
is crucial to end-user experience, to enabling more rapid regression tests, and to allowing for 
more complex processing mechanisms to be adopted in the system. 

                                                
2 Our question analysis and answer selection components are algorithmically the same as their counterparts 
in the previous implementation. 
3 Although the predictive annotation agent is a general purpose agent, it does not attempt to answer all 
question types.  To be more comprehensive in coverage, a QA system will include more specialized agents 
in addition to this agent, which may increase response time (however, as the agents are now executed in 
parallel, the overall execution time is the maximum time needed by all agents plus some slight overhead).  



Profile Agent 
The profile agent was the first new agent developed within the PIQUANT II framework, and was 
designed to select information of interest about a given target from a reference corpus.  In 
contrast to the approach taken by many other systems to date where the system attempts to 
identify both the definition of the target (expressed, for instance, in a copula construction or as an 
apposition) and other prominent information of interest (cf. [Blair-Goldensohn et al., 2004; Xu et 
al., 2004; Echihabi et al., 2004]), our profile agent adopts a statistical collocation-based method 
and focuses on identifying passages that convey  prominent information associated with the target 
that is difficult to discover based on syntactic information alone.   
 
The profile agent extracts relevant information in a three-stage process.  In the first stage, short 
passages about the target are extracted from the reference corpus.  In the second stage, entities 
that are strongly associated with the target are identified from within these passages. In the third 
stage, a subset of the extracted passages is chosen to convey the relationship between the selected 
entities and the target.  We experimented with various strategies in all three stages, and in this 
paper, we briefly outline the strategies used in our submitted run.  Note that since we only started 
to implement this agent two weeks prior to the QA evaluation period, we experimented with 
different strategies to the best of our abilities at that time.  We are aware that there is significant 
room for future experimentation and improvement and intend to further develop this agent.   
 
The passage extraction process reuses the search component in our Juru-based predictive 
annotation agent.  A search query is formulated based on the given target to retrieve the 100 most 
relevant documents, from which up to 500 one-sentence passages relevant to the target are 
selected.  In the entity selection phase, the extracted passages are processed by the ESG parser 
and all common nouns are identified and normalized.  The occurrence count for each normalized 
noun is compared against the expected count based on its idf value in the corpus, and a score is 
assigned for each noun which is the difference between these two counts.  The system then 
selects as candidate concepts to be included in the output those nouns whose score exceeds a 
certain predetermined threshold.  In the final stage, the profile agent selects as its output a subset 
of the extracted passages that best conveys the candidate concepts.  These passages are selected 
by considering each candidate concept in ranked order: of all passages that include the currently 
highest ranked candidate concept, the passage that contains the maximum number of other 
candidate concepts is selected.  All concepts mentioned in the selected passage are removed from 
the candidate list and the process iterates until either the candidate concept list is exhausted or the 
maximum number of passages is reached (in our run, the maximum passage count is 20). 

QA-by-Dossier Agent 
Except in one respect, our use of QA-by-Dossier (QbD) was identical to last year’s.  QbD 
consists of building ahead of time a set of auxiliary questions for each broad target type.  For 
example, for PERSON there was “When was X born?”, for ORGANIZATION “Who is the CEO 
of X?”, for THING “What does X do?”.  QbD then calls our QA system recursively so that the 
factoid-oriented agents can answer these questions. We had about a dozen auxiliary questions per 
type.  Acknowledging that some important nuggets might be missed by this agent (but possibly 
found by others), we used this approach because analysis of biographies and obituaries had 
determined that a large percentage of the de facto important definitional information was in the 
form of answers to such boilerplate questions. 
 
The major difference between our QbD run this year and last (other than the different platform, 
and that we had no time to learn new thresholds) was that we returned entire sentences instead of 
exact answers.  Our factoid QA-system returns exact answers, and last year for definitional 



questions we returned the exact answers prefixed by a term indicating the relationship in the 
question, for example “born: 1900”.  Our definitional question results last year were 
disappointing, and we wondered whether the short nature of our returned answers hurt us because 
the context was missing, so this year we returned the entire sentence that contained the exact 
answer.  As will be shown in the Analysis section below, we did better with long answers but for 
an entirely different reason. 

System Performance and Analysis 
We submitted two runs to the TREC 2004 QA track whose only difference is in the strategy 
adopted for answering “other” questions. For both runs, the factoid questions are answered by 
submitting each question to all available factoid agents and weighing the answers proposed by 
each agent in proportion to their respective confidence scores. We did not adopt a NIL strategy 
and therefore returned our best answer for each question.  For list questions, we observed from 
last year’s results that our system has relatively high precision in its top answers, but does not fare 
well in recall even if more answers are returned; therefore, we chose to target precision by 
returning our top 5 answers for each list question. For the “other” questions, run IBM1 adopted 
the profile agent for selecting significant passages related to the target, while run IBM2 used the 
QA-by-Dossier agent to return passages that answer each sub-question about the target.  The 
results for these runs as scored by the NIST assessors are shown in Table 1. 
 
Run Factoid List Other Overall 
IBM1 .313 .200 .285 .278 
IBM2 .313 .200 .227 .263 

Table 1  Assessed Scores for Submitted Runs 

Performance Analysis 
Since our entry this year was based on a re-engineered system with several new strategies 
employed, we are particularly interested in how our system performed relative to our old system 
which had been in continuous development over 5 years.  Table 2 summarizes the results of 
comparing our higher-scoring run this year against our performance from TREC 2003.  In an 
attempt to account for possible differences in task difficulty, we further contrast our system 
performance changes between 2003 and 2004 against changes in the best and median scores of all 
submitted runs for each of the three subtasks. 
 
 Best Score Median Score PIQUANT Score 
Factoid    
2003 0.700 0.177 0.298 
2004 0.770 0.170 0.313 
% change +10% -4% +5% 
List    
2003 0.396 0.069 0.077 
2004 0.622 0.094 0.200 
% change +57% +36% +160% 
Other    
2003 0.555 0.192 0.177 
2004 0.460 0.184 0.285 
% change -17% -4% +61% 
 

Table 2  Comparison of PIQUANT Results against Best and Median Scores of All Runs 



Our analysis shows that in absolute numbers, our new system performs better than the old system 
on all three subtasks, and that in terms of relative improvement, the percent increase figures range 
widely from 5% to 160%.  A closer examination of the performance in each subtask shows that 
for factoid questions, for which the main difference from last year is the addition of a new 
implementation of our predictive annotation agent employing a different search strategy, our 
percent change falls in between the percent changes of the best and median scores, suggesting 
that our improvement is on target based on the global trend.  For list questions, we inherited the 
improvement in factoid question answering, as well as changed our thresholding strategy to target 
high precision in our returned answer set.  These two factors combined turned out to have a 
dramatic impact, achieving significantly better performance improvement over the median 
scoring system (our system’s list score last year was only slightly above median).  Finally, for the 
“other” category, our system, through a combination of adopting different selection strategies and 
returning passage-length answers, achieved a 61% relative improvement over last year, while the 
best and median scores both decreased.  

QA-by-Dossier Performance 
We sought to determine whether our long answers to the “other” questions performed better than 
our exact answers to definition questions last year – in particular we were concerned that the 
brevity of our exact-answer format might have hurt us in the judging.  Last year we achieved 32 
vital nuggets out of a total of 207, giving a recall of 0.155.  To compute a comparable figure for 
this year, we needed to simulate last year’s operational setup and scoring.  To do that, we had to 
add to the vital nuggets those factoid questions that were paraphrases of those in the QbD 
auxiliary question sets (since if the same answer is provided in the “other” section as in the 
factoid, the one in the factoid section gets the score).  By our count, we got 46 factoid questions 
that were in the QbD auxiliary set, plus 12 vital nuggets that were answers to QbD questions.  
There were a total of 146 QbD factoid questions, and 234 acceptable vital nuggets, giving a recall 
of (46+12)/(146+234) = 0.153.  This is eerily close to last year’s figure, but due to the number of 
variable factors involved, the safest conclusion is simply that there was no perceptible gain in the 
assessor’s ability to detect correct nuggets from sentence-length answers. 
 
However, we did perform better with longer answers than last year, but for a different reason.  
Our auxiliary questions scored only12 vital nuggets that were direct answers to these questions, 
but 64 vital nuggets that were in the answer sentences “by chance”.  Likewise, we scored 18 
“okay” nuggets as direct answers to the QbD questions, and 76 “by chance”.  This reinforces a 
phenomenon that we’ve been observing in our work with QA, which is that exact-answer QA 
retrieval systems can be used effectively for passage-retrieval applications. 

Summary 
In this paper, we described our PIQUANT II system as configured in the TREC 2004 QA runs.  
Our effort this year focused on a the reengineering of our QA system in order to 1) have a well-
designed QA architecture for future development and 2) significantly reduce system response 
time.  For our submitted runs, one of the primary improvements we made was the development of 
the profile agent, which achieved a 61% relative improvement over our score in the 
corresponding subtask last year when the trend in all submitted runs shows a decrease.  Our 
change in strategy for the list questions to target high precision in the answer set also appeared to 
have a significant impact, while our improvement in the factoid task appears to be on target 
compared to best and median score changes.  
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