
IBM’s PIQUANT II in TREC2004

Jennifer Chu-Carroll, Krzysztof Czuba, John Prager, Sasha Blair-Goldensohn1
 Abraham Ittycheriah Dept. of Computer Science
 IBM T.J. Watson Research Center Columbia University
 Yorktown Heights, NY 10598 New York, NY
 {jencc,kczuba,jprager,abei}@us.ibm.com sashabg@cs.columbia.edu

Introduction
PIQUANT II, the system we used for TREC 2004, is a completely reengineered system whose
core functionalities for answering factoid and list questions remain largely unchanged from
previous years [Chu-Carroll et al, 2003, Prager et al, 2004]. We continue to address these
questions using our multi-strategy and multi-source approach. For “other” questions, we
experimented with two alternative approaches, one that uses statistical collocation information for
extracting prominent passages related to the target, and the other which is a slight variation of the
QA-by-Dossier approach we employed last year [Prager et al, 2004] that asks a set of sub-
questions of interest about the target and returns a set of relevant passages that answer these sub-
questions. In addition, to address this year’s new question format, we developed a question pre-
processing component to interpret individual questions against the given target to generate a self-
contained natural language question as expected by subsequent components of our QA system.
NIST assessed scores showed substantial improvement of our new PIQUANT II system over
earlier versions of our QA system both in terms of absolute scores as well as relative
improvement compared to the best and median scores in each of the three component subtasks.

The PIQUANT II System
In an effort to create an efficient development and test platform for question answering, we
devoted a significant amount of time to system re-engineering. The primary goals of this re-
engineering effort were to address the portability, component reusability, and speed of our
original PIQUANT system. The system that we used for the TREC-2004 evaluation was built
within our new PIQUANT II architecture framework [Czuba, forthcoming]. The main
characteristics of the framework are:

1. Full Java implementation.
2. Plug-and-play architecture.
3. Well-defined, standardized APIs for typical QA system components.
4. Distributed client-server deployment.

Our new architecture continues to support our multi-agent approach to QA where different
strategies are employed to address different question types. Figure 1 shows a diagram of the
PIQUANT II framework as instantiated in the factoid and list subtasks of our TREC 2004 runs.
The box labeled “Answer Agents” in the middle of the diagram is the focus of our framework,
which allows for plug-and-play of multiple answering agents that make up the core of a QA
system. The PIQUANT II framework provides the machinery to execute these answering agents
in parallel, and to accumulate and send the results from individual agents to the answer resolution

1 Part of this work was conducted while Sasha Blair-Goldensohn was a summer intern at the IBM T. J.
Watson Research Center.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161444281?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

component. The answer resolution component combines top candidate answers from each agent
and produces the top n answers that represent the answers of the QA system as a whole. In our
TREC 2004 runs, the answer resolution component adopts an equal a priori probability weighting
scheme and thus simply sums the agent confidence scores of all semantically equivalent answers
and outputs the answer with the highest combined score.

Figure 1 PIQUANT II Framework as Instantiated for TREC 2004 Factoid & List Questions

The answer justification component attempts to locate a passage in a reference corpus that
justifies a given answer to a question. This component is useful when an answer to a question
was found via other means (such as through a database lookup or on the web), but a “trusted
source” is needed to justify the answer. In the case of PIQUANT II in TREC, it is used when an
answer is found by our KSP agent, which performs a database lookup of the attribute value of an
object for questions such as “What is the capital of Canada?,” and a document in the reference
corpus is required to support the answer.

The question preprocessor performs any transformation needed on the system input to ensure that
answering agents receive their expected input (usually self-contained natural language questions).
In the next section, we describe the question preprocessor we developed to address this year’s QA
task, as well as the new answering agents we have developed in this framework.

PIQUANT II Components in TREC 2004

Question Preprocessor
Since this year’s track introduced the notion of a question target and a set of questions related to it,
a question preprocessor was required to perform anaphora resolution on each question against the
target to produce a self-contained natural language question for subsequent processing. Since we
did not have a full anaphora resolution module available, we developed a set of heuristics to
handle the different kinds of anaphora we thought were likely to occur. However, prior to
performing anaphora resolution, we analyze the target to extract appositional constructs.

Predictive Annotation Agent (Juru)

Predictive Annotation Agent
(GuruQA)

Statistical Query Agent

KSP Agent

Definition Agent

Pattern Based Agent

Answering Agents

Question
Pre-

processing

Question +
Context

Answer
Resolution

Answer
Justification

Answers

The target analysis task focused primarily on extracting proper names from appositional
constructs. For example, the target the band Nirvana was preprocessed to a modifier the band and
Nirvana that became our new target. The new target was used in anaphora resolution as described
below, whereas the modifier was kept and added to the search query for disambiguation purposes.

Our answer selection ranking algorithm makes use of syntactic relationships extracted from the
question text; it is thus highly desirable that the question text contains the actual target instead of
an anaphor. In order to satisfy this requirement we addressed two anaphora types in questions:

1. Pronominal anaphora including possessives.
2. Definite NPs.

We divided anaphoric pronouns into two groups, those that are unambiguous (him, his, hers, it, its,
their, theirs), and those that are ambiguous (her: possessive vs. accusative). For unambiguous
pronouns, we replaced them in the question text with an appropriate form of the target. E.g. for
the target Nirvana, the question What is its biggest hit? is transformed to What is Nirvana’s
biggest hit? For the ambiguous her, the question is first parsed using IBM’s ESG parser [McCord,
1989] to determine whether it is an accusative or possessive pronoun and the question is
transformed appropriately. We assume that only one pronoun is likely to occur in a question, and
thus we replace the pronoun earliest in the sentence. We also assume that the pronoun refers to
the question target as opposed to an entity in a preceding question.

If the question does not contain a pronoun, it is checked for the presence of definite noun phrases.
We assume that definite noun phrases (which we in turn assume begin with a definite article) are
all referential if the question target does not appear in the question. In order to enable the right set
of relationships to be build for such NPs, we add an of-PP to the question. E.g., for the target IBM,
the question Where are the company’s headquarters? is transformed to Where are the company of
IBM’s headquarters? Although the resulting English is somewhat odd, our parser handles the
transformed questions correctly and an appropriate set of syntactic relationships is generated.

Answering Agents
For the most part, the answering agents we employed this year are algorithmically the same as the
agents we used last year, re-engineered to conform to our new architecture. The two exceptions
are the Juru-based predictive annotation agent and the profile agent, whose development
illustrates some of the key features of the PIQUANT II architecture. The modular architecture
and standardized APIs in the PIQUANT II framework enabled component reuse and thus allowed
us to rapidly deploy new agents. This was crucial for the development of the profile agent given
the short time we had to address the “other” question type before the submission deadline. By
reusing existing components as building blocks, the first version of the profile agent was literally
built within hours. We then spent the next two weeks experimenting with various concept and
passage extraction strategies to obtain the version of the agent used in our submission.

Juru-Based Predictive Annotation Agent
The Juru-based predictive annotation agent implements our previously reported Predictive
Annotation strategy [Prager et al., 2000] in our new framework. In doing so, we adopted
components that conform to IBM’s Unstructured Information Management Architecture [Ferrucci
and Lally, 2004], including various named entity annotators, parser, and search engine. The
resulting answering agent ended up being significantly different in terms of component strategies
and performance from the earlier implementation that was deployed in previous years’ TREC
evaluations. The primary difference is the use of the Juru search engine developed at IBM’s Haifa

Labs, which placed first in the “precision at 10” category in the TREC web track in 2001 [Carmel
et al., 2002]. In particular, we used JuruXML [Carmel et al., 2003], an extension of Juru, which
supports queries over XML fragments, and enables us to implement our predictive annotation
scheme. Juru/JuruXML has different characteristics than the GuruQA passage retrieval engine
we previously used in several regards. First, it adopts a tf*idf based ranking scheme, rather than
the weighted Boolean query scheme in GuruQA. As a result, the documents/passages retrieved
for the same query could differ dramatically. Second, our previous query building process relied
quite heavily on morphological and synonym expansions of keywords. However, Juru query
syntax does not support treating a group of words/phrases as synonyms in its scoring process.
For these reasons and in a general effort to improve the quality of our information retrieval, we
developed a new query building component.

Our approach in creating this new query builder was to make a parameterized component which
would allow us to easily explore the effects of different query building strategies. These
parameters controlled how elements of our question analysis output such as predicted answer type,
question keywords/phrases or question semantic type would be included, excluded or required in
the query. Using data from previous TRECs, we analyzed the effect of these settings in terms of
document/passage recall (i.e. the proportion of documents/passages known to contain correct
answers which were retrieved) and end-to-end MRR performance. Although work to optimize
these parameters is ongoing, we observed that certain settings improved results on training data,
and used those settings for our submitted run. Settings which improved results included:

? Requiring a predictive-annotation token of the predicted answer type
? Requiring the highest-idf single word from the question, based on the idea that this term

often serves as an anchor or “selector” term (cf. [Ramakrishnan et al., 2004])
? Including all question keywords (i.e. not using stoplisting but rather allowing Juru’s

tf*idf ranking to determine term significance)
? Excluding WordNet-based synonym or hypernym expansions (various restrictions and

strategies were applied, none improved results)

After Juru returns the top-ranked documents from the query, we apply density-based passage
retrieval to identify the most promising passages, and lastly perform answer selection2.

In terms of accuracy, the new predictive annotation agent is comparable to our previous
implementation. However, because of the difference in search engine behavior, there is
substantial non-overlap in the actual questions on which each agent scored, we therefore included
both implementations of the agent in the QA system we used in our submission.

In terms of run time, the new Java implementation on Linux (with a couple of Windows-
dependent components running as servers) averages 7 seconds per question, compared with 2
minutes and 26 seconds per question on our old implementation in Perl/C/Java on AIX.3 This
significant improvement in system speed, although not a factor in the TREC QA track evaluation,
is crucial to end-user experience, to enabling more rapid regression tests, and to allowing for
more complex processing mechanisms to be adopted in the system.

2 Our question analysis and answer selection components are algorithmically the same as their counterparts
in the previous implementation.
3 Although the predictive annotation agent is a general purpose agent, it does not attempt to answer all
question types. To be more comprehensive in coverage, a QA system will include more specialized agents
in addition to this agent, which may increase response time (however, as the agents are now executed in
parallel, the overall execution time is the maximum time needed by all agents plus some slight overhead).

Profile Agent
The profile agent was the first new agent developed within the PIQUANT II framework, and was
designed to select information of interest about a given target from a reference corpus. In
contrast to the approach taken by many other systems to date where the system attempts to
identify both the definition of the target (expressed, for instance, in a copula construction or as an
apposition) and other prominent information of interest (cf. [Blair-Goldensohn et al., 2004; Xu et
al., 2004; Echihabi et al., 2004]), our profile agent adopts a statistical collocation-based method
and focuses on identifying passages that convey prominent information associated with the target
that is difficult to discover based on syntactic information alone.

The profile agent extracts relevant information in a three-stage process. In the first stage, short
passages about the target are extracted from the reference corpus. In the second stage, entities
that are strongly associated with the target are identified from within these passages. In the third
stage, a subset of the extracted passages is chosen to convey the relationship between the selected
entities and the target. We experimented with various strategies in all three stages, and in this
paper, we briefly outline the strategies used in our submitted run. Note that since we only started
to implement this agent two weeks prior to the QA evaluation period, we experimented with
different strategies to the best of our abilities at that time. We are aware that there is significant
room for future experimentation and improvement and intend to further develop this agent.

The passage extraction process reuses the search component in our Juru-based predictive
annotation agent. A search query is formulated based on the given target to retrieve the 100 most
relevant documents, from which up to 500 one-sentence passages relevant to the target are
selected. In the entity selection phase, the extracted passages are processed by the ESG parser
and all common nouns are identified and normalized. The occurrence count for each normalized
noun is compared against the expected count based on its idf value in the corpus, and a score is
assigned for each noun which is the difference between these two counts. The system then
selects as candidate concepts to be included in the output those nouns whose score exceeds a
certain predetermined threshold. In the final stage, the profile agent selects as its output a subset
of the extracted passages that best conveys the candidate concepts. These passages are selected
by considering each candidate concept in ranked order: of all passages that include the currently
highest ranked candidate concept, the passage that contains the maximum number of other
candidate concepts is selected. All concepts mentioned in the selected passage are removed from
the candidate list and the process iterates until either the candidate concept list is exhausted or the
maximum number of passages is reached (in our run, the maximum passage count is 20).

QA-by-Dossier Agent
Except in one respect, our use of QA-by-Dossier (QbD) was identical to last year’s. QbD
consists of building ahead of time a set of auxiliary questions for each broad target type. For
example, for PERSON there was “When was X born?”, for ORGANIZATION “Who is the CEO
of X?”, for THING “What does X do?”. QbD then calls our QA system recursively so that the
factoid-oriented agents can answer these questions. We had about a dozen auxiliary questions per
type. Acknowledging that some important nuggets might be missed by this agent (but possibly
found by others), we used this approach because analysis of biographies and obituaries had
determined that a large percentage of the de facto important definitional information was in the
form of answers to such boilerplate questions.

The major difference between our QbD run this year and last (other than the different platform,
and that we had no time to learn new thresholds) was that we returned entire sentences instead of
exact answers. Our factoid QA-system returns exact answers, and last year for definitional

questions we returned the exact answers prefixed by a term indicating the relationship in the
question, for example “born: 1900”. Our definitional question results last year were
disappointing, and we wondered whether the short nature of our returned answers hurt us because
the context was missing, so this year we returned the entire sentence that contained the exact
answer. As will be shown in the Analysis section below, we did better with long answers but for
an entirely different reason.

System Performance and Analysis
We submitted two runs to the TREC 2004 QA track whose only difference is in the strategy
adopted for answering “other” questions. For both runs, the factoid questions are answered by
submitting each question to all available factoid agents and weighing the answers proposed by
each agent in proportion to their respective confidence scores. We did not adopt a NIL strategy
and therefore returned our best answer for each question. For list questions, we observed from
last year’s results that our system has relatively high precision in its top answers, but does not fare
well in recall even if more answers are returned; therefore, we chose to target precision by
returning our top 5 answers for each list question. For the “other” questions, run IBM1 adopted
the profile agent for selecting significant passages related to the target, while run IBM2 used the
QA-by-Dossier agent to return passages that answer each sub-question about the target. The
results for these runs as scored by the NIST assessors are shown in Table 1.

Run Factoid List Other Overall
IBM1 .313 .200 .285 .278
IBM2 .313 .200 .227 .263

Table 1 Assessed Scores for Submitted Runs

Performance Analysis
Since our entry this year was based on a re-engineered system with several new strategies
employed, we are particularly interested in how our system performed relative to our old system
which had been in continuous development over 5 years. Table 2 summarizes the results of
comparing our higher-scoring run this year against our performance from TREC 2003. In an
attempt to account for possible differences in task difficulty, we further contrast our system
performance changes between 2003 and 2004 against changes in the best and median scores of all
submitted runs for each of the three subtasks.

 Best Score Median Score PIQUANT Score
Factoid
2003 0.700 0.177 0.298
2004 0.770 0.170 0.313
% change +10% -4% +5%
List
2003 0.396 0.069 0.077
2004 0.622 0.094 0.200
% change +57% +36% +160%
Other
2003 0.555 0.192 0.177
2004 0.460 0.184 0.285
% change -17% -4% +61%

Table 2 Comparison of PIQUANT Results against Best and Median Scores of All Runs

Our analysis shows that in absolute numbers, our new system performs better than the old system
on all three subtasks, and that in terms of relative improvement, the percent increase figures range
widely from 5% to 160%. A closer examination of the performance in each subtask shows that
for factoid questions, for which the main difference from last year is the addition of a new
implementation of our predictive annotation agent employing a different search strategy, our
percent change falls in between the percent changes of the best and median scores, suggesting
that our improvement is on target based on the global trend. For list questions, we inherited the
improvement in factoid question answering, as well as changed our thresholding strategy to target
high precision in our returned answer set. These two factors combined turned out to have a
dramatic impact, achieving significantly better performance improvement over the median
scoring system (our system’s list score last year was only slightly above median). Finally, for the
“other” category, our system, through a combination of adopting different selection strategies and
returning passage-length answers, achieved a 61% relative improvement over last year, while the
best and median scores both decreased.

QA-by-Dossier Performance
We sought to determine whether our long answers to the “other” questions performed better than
our exact answers to definition questions last year – in particular we were concerned that the
brevity of our exact-answer format might have hurt us in the judging. Last year we achieved 32
vital nuggets out of a total of 207, giving a recall of 0.155. To compute a comparable figure for
this year, we needed to simulate last year’s operational setup and scoring. To do that, we had to
add to the vital nuggets those factoid questions that were paraphrases of those in the QbD
auxiliary question sets (since if the same answer is provided in the “other” section as in the
factoid, the one in the factoid section gets the score). By our count, we got 46 factoid questions
that were in the QbD auxiliary set, plus 12 vital nuggets that were answers to QbD questions.
There were a total of 146 QbD factoid questions, and 234 acceptable vital nuggets, giving a recall
of (46+12)/(146+234) = 0.153. This is eerily close to last year’s figure, but due to the number of
variable factors involved, the safest conclusion is simply that there was no perceptible gain in the
assessor’s ability to detect correct nuggets from sentence-length answers.

However, we did perform better with longer answers than last year, but for a different reason.
Our auxiliary questions scored only12 vital nuggets that were direct answers to these questions,
but 64 vital nuggets that were in the answer sentences “by chance”. Likewise, we scored 18
“okay” nuggets as direct answers to the QbD questions, and 76 “by chance”. This reinforces a
phenomenon that we’ve been observing in our work with QA, which is that exact-answer QA
retrieval systems can be used effectively for passage-retrieval applications.

Summary
In this paper, we described our PIQUANT II system as configured in the TREC 2004 QA runs.
Our effort this year focused on a the reengineering of our QA system in order to 1) have a well-
designed QA architecture for future development and 2) significantly reduce system response
time. For our submitted runs, one of the primary improvements we made was the development of
the profile agent, which achieved a 61% relative improvement over our score in the
corresponding subtask last year when the trend in all submitted runs shows a decrease. Our
change in strategy for the list questions to target high precision in the answer set also appeared to
have a significant impact, while our improvement in the factoid task appears to be on target
compared to best and median score changes.

Acknowledgments
We would like to thank Dave Ferrucci for helpful discussions, and Elena Filatova for her help in
testing the question pre-processing component.

References

S. Blair-Goldensohn, K. McKeown, and A. Schlaikjer, 2004. Answering Definitional Questions:
A Hybrid Approach. New Directions in Question Answering, M. Maybury (ed).

D. Carmel, E. Amitay, M. Hersovici, Y. Maarek, Y. Petruschka, and A. Soffer, 2002. Juru at
TREC 10 -- Experiments with Index Pruning. Proceedings of TREC2001, pages 228-236.

D. Carmel, Y. Maarek, M. Mandelbrod, Y. Mass, and A. Soffer, 2003. Searching XML
documents via XML fragments. Proceedings of SIGIR 2003, pp. 151-158.

J. Chu-Carroll, J. Prager, C. Welty, K. Czuba, and D. Ferrucci, 2003. A Multi-Strategy and
Multi-Source Approach to Question Answering. Proceedings of TREC2002. Pages 281-288.

K. Czuba. Extendable Plug-and-Play Architecture Framework for Question Answering.
Forthcoming.

A. Echihabi, U. Hermjakob, E. Hovy, D. Marcu, E. Melz, and D. Ravichandran, 2004. Multiple-
Engine Question Answering in TextMap. Proceedings of TREC2003.

D. Ferrucci and A. Lally, 2004. UIMA: An Architectural Approach to Unstructured Information
Processing in the Corporate Research Environment. Journal of Natural Language Engineering,
10(3-4), pp. 327-348.

M. McCord, 1989. Slot grammar: A system for simpler construction of practical natural language
grammars. Natural Language and Logic, pp.118--145.

J.M. Prager, E.W. Brown, A. Coden, and D. Radev, 2000. Question-Answering by Predictive
Annotation. Proceedings of SIGIR 2000, pp. 184-191, Athens, Greece.

J. Prager, J. Chu-Carroll, K. Czuba, C. Welty, A. Ittycheriah, and R. Mahindru, 2004. IBM’s
PIQUANT in TREC2003. Proceedings of TREC2003.

G. Ramakrishnan, S. Chakrabarti, D. Paranjpe, P. Bhattacharyya, 2004. Is Question Answering a
Required Skill? Proceedings of WWW2004, pp. 111-120.

J. Xu, A. Licuanan, and R. Weischedel, 2004. TREC2003 QA at BBN: Answering Definitional
Questions. Proceedings of TREC2003.

