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Abstract 

Space-Time Multiscale-Multiphysics Homogenization  

Methods for Heterogeneous Materials  

 

Mahesh Raju Bailakanavar 

We present a unified, homogenization framework for computational analysis of heterogeneous 

materials consisting of multiple length scales, multiple time scales and coupled-multiple 

physics. The research efforts also addresses the technological issues associated with modeling 

the morphological details of microstructures with randomly distributed inclusions. The 

Random Sequential Adsorption (RSA) algorithm is improved to accurately and effectively 

model the morphological details of materials with randomly distributed inclusions. The 

proposed algorithm is more robust; computational efficient and versatile in comparison to the 

existing methods. A temporal homogenization scheme is developed and integrated with the 

previously developed spatial homogenization theory for fatigue life analysis of heterogeneous 

materials. The unified space-time multiscale homogenization model is validated for fatigue life 

prediction of elevated temperature Ceramic Matrix Composites (CMCs). In the final phase of 

the research a mathematical model for coupled moisture diffusion-mechanical deformation is 

developed. This model is integrated with the spatial homogenization framework to analyze 

problems consisting of multiple length scales and coupled-multiple physics. The unified 

multiscale-multiphysics model is validated for evaluating the degradation of physical and 

mechanical properties of short glass fiber and carbon fiber filled thermoplastic material systems. 
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Chapter 1  

Introduction and Scope 

In this introductory chapter, the scope of the author’s research and the motivation for the study is presented along with a brief 

outline of this dissertation. 

 
 
 
 
 

1.1 Introduction 

A composite material is created by combining two materials to produce a material that is 

superior to the individual materials and unique in terms of the physical and mechanical 

properties. The first use of composite materials dates back to the 1500s B.C., when the Egyptians 

and the Mesopotamians mixed straw with mud to create more durable dwellings [1].  Straw 

was also effectively used to strengthen pottery products and boats.  The genesis of modern era 

composite materials can be traced back to 1937 when Owens Corning Fiberglass Company 

started producing glass fibers. The incorporation of glass fiber reinforced plastics (GFRPs) into 

the industrial world inspired researchers to develop new resin materials (vinyl, polystyrene and 

plexi-glass) that defied nature’s own materials. With the advent of unsaturated polyester resins 

(patented in 1936) the production of GFRPs became more viable due to the ease in curing these 

resins.  

The Second World War further augmented the development of composites, as an 

increasingly more number of aircrafts were produced. An ever increasing use of fiber reinforced 

composites in aerospace and naval applications was seen in the early 1940’s due to their 

superior physical and mechanical properties like low strength to weight ratio and resistance to 

corrosion and environmental degradation. During this time composites were mainly used in 
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tooling, but the use of these materials in structural and semi-structural parts was constantly 

explored.  

The end of the World War II paved the way for commercial companies to extend the 

expertise in composite materials applications to public sector industries. The obvious choices 

were the commercial boat building and automobile industries. In 1953 the Molded Fiber Glass 

Corporation (MFG) along with Chevrolet Motor Company unveiled the first car Chevrolet 

Corvette with fiber glass reinforced body panels. In addition to the aerospace, marine, 

automotive and corrosion resistance applications, composite materials were incorporated in the 

construction industry as well. The push for aerospace dominance in the 1950’s and the 60’s saw 

a renewed impetus in the development of composite materials and that resulted in the 

invention of carbon composites. The development of these high performance carbon and glass 

fibers along with the advancements in polymers have contributed to the expansion of composite 

materials market into high temperature aerospace materials, armors, sports equipment and 

medical devices. 

Yet with their superior physical properties contributing to enhanced performance, 

incorporation of composite materials as primary structural members is still a subject of active 

research.  The primary reason contributing to the present state of affairs is the inability to 

accurately predict the behavior of these materials. This lack of predictability more often than not 

results in an overdesign, thereby offsetting the very advantages offered by these heterogeneous 

materials.  Some of the reasons contributing to the current state of affairs are as follows 

(i) Existence of multiple spatial scales due to the inherent heterogeneous nature of 

composite materials; 

(ii) Inability to accurately model the microstructure and characterize the material models 

at various scales; 
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(iii) Existence of multiple temporal scales due to fatigue and multiple physical processes 

having disparate characteristic time scales; 

(iv) Lack of scale separation;  

(v) Existence of multiple coupled physical processes such as mechanical-diffusion, 

mechanical-thermal and mechanical-oxidation-thermal processes; and 

(vi) Lack of enough experimental data at multiple scales or inability to separate the spatial 

scales in the material; 

But with an ever increasing impetus for weight reduction, enhanced performance and 

reduction in time and cost involved with conducting tests on one hand and the recent 

developments in computational sciences and the enormous computational power of present 

generation machines on the other hand, the present phase in the history of composite materials 

is apt to develop computational tools to accurately model the behavior and performance of 

composite materials. 

The overall effective properties of these heterogeneous materials depend upon the size, 

shape, spatial orientation and physical properties of the constituents comprising the 

microstructure. Various theories have been put forth to predict the behavior of composite 

materials. Among the noteworthy methods are the rule of mixtures, the effective medium 

models, the self-consistent methods, and the asymptotic homogenization theories.  

The rule of mixture theories of Voight [2] and Reuss [3] involve computing of 

homogenized properties by averaging over the respective properties of the phases constituting 

the microstructure, weighted by their volume fractions. These methods assume either constant 

strain field (Voight) or constant stress field (Reuss) within material microstructure, and hence, 

inadequate in predicting the overall response of complex materials. 
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Considerable improvement has been proposed by Eshelby [4] in the form of effective 

medium theory. This theory was further enhanced by Hashin [5], Budiansky [6] and Mori-

Tanaka [7]. By this approach the effective properties are computed by solving a unit cell 

boundary value problem consisting of a spherical or ellipsoidal inclusion embedded in an 

infinite matrix. Hill [8] and Christensen [9] proposed the generalized self-consistent theory, is 

an extension of the effective medium theory, where the effective properties are computed by 

solving a unit cell problem consisting of one phase embedded in another phase, properties of 

which are not known a priori.  The effective medium models and the self-consistent approaches 

are well suited for linear elastic problems with structured unit cell geometries; they do not 

perform well for unit cells with randomly distributed inclusions or clustered inclusions. 

Another class of methods, called the variational bounding methods (Hashin and 

Shtrikman [10]; Hashin [11]; Willis [12]; Ponte Castañeda and Suquet [13]) were developed to 

provide the lower and upper bounds for the overall properties of heterogeneous materials. 

Asymptotic mathematical homogenization theories were first pioneered by Bensoussan 

[14], Sanchez-Palencia [15] and Bakhvalov and Panasenko [16]. The approach involves 

asymptotic expansion of the displacement fields over the fine-scale domain and the continuum 

domain, wherein the two scales are related by the length parameter. However, these 

homogenization theories fail to account for geometrical and material nonlinearities, multi-axial 

loading scenarios and the physical and geometrical changes the microstructure undergoes.  

A practical implementation of the asymptotic homogenization methods became possible by 

utilizing finite element methods to solve boundary value problems at multiple scales. The basic 

premise underlying this theory has been presented in the papers by Guedes and Kikuchi [17]; 

Terada and Kikuchi [18]; Ghosh et al. [19, 20], Smit et al.[21], Miehe et al.[22], Michel et al. [23], 

Feyel and Caboche [24] , Kuznetsov et al. [25] and Fish et al.[26-28]. These so called 
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computational homogenization methods are computationally prohibitive for large scale 

nonlinear problems. To develop a computationally viable method, the tremendous amount of 

information that exists at a fine scale has to be systematically reduced.  One such approach has 

been offered by transformation field analysis pioneered by Dvorak [29, 30] and later improved 

by Fish et al. [31-33]  

A vast majority of the engineering materials are subjected to cyclic loads or a 

combination of multiple loads like mechanical loads and environmental loads. Due to the 

difference in physical and mechanical properties, heterogeneous materials exhibit complex 

behavior in the presence of coupled-multiple physical processes. Experimental studies have 

shown considerable degradation of overall physical and mechanical properties due to combined 

effect of moisture diffusion, monotonic and cyclic mechanical/environmental loading, heat 

transfer and chemical reaction. Clearly, there is a need to extend the finite element based 

homogenization methods to account for multiple physical processes and multiple time scales. 

Development of computational tools capable of predicting the behavior of heterogeneous 

materials subjected to extreme environmental conditions will further extend the realm of 

application of composite materials and is the main thrust of the proposed research. 

 

1.2 Scope of the Thesis 

The primary objective of the proposed research program is to develop a space-time 

multiscale-multiphysics homogenization framework with emphasis on fatigue and moisture 

diffusion in composite materials. The proposed mathematical framework is envisioned to 

encapsulate semantic combinations of the three basic attributes spanning the space, namely 

length scales, time scales and physical fields as shown in Figure 1 [34].  The scope of the study 
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also involves verification and validation of the proposed framework for random and periodic 

microstructures. The study also addresses the technological issues associated with modeling the 

morphological details of random inclusion microstructures. 

 

 

Figure 1: The space-time multiscale-multiphysics attribute space 
 

 
The focus of the first part of the thesis on methods aimed at modeling the morphological 

details of the composites with randomly distributed inclusions. The second part of the thesis 

extends the previously developed reduced order spatial homogenization framework to account 

for multiple temporal scales inherently existing in fatigue. The third part of the thesis extends 

the reduced order homogenization originally developed for a single physical process to 

multiple physical processes.   

1.3 Thesis Outline 

In Chapter 2 we present a parametric model for generating unit cells with randomly 

distributed inclusions. The proposed algorithm possesses (i) robustness by yielding unit cells 
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with fiber volume fraction of up to 45% for aspect ratios as high as 20, (ii) computational 

efficiency accomplished through a hierarchy of algorithms with increasing computational 

complexity, and (iii) versatility by generating unit cells with different inclusion shapes. A 

statistical study aimed at determining the effective size of the unit cell is conducted. The 

method has been applied to various random inclusion microstructure composites including: (i) 

two-dimensional chopped tow composites employed in automotive applications, (ii) polyurea 

or polyethene coating consisting of hard and soft domains (segments) employed for energy 

absorption in military and industrial applications, and (iii) fiber framework called fiberform 

embedded in or free from an amorphous matrix used as heat shield on space crafts to prevent 

structural damage during reentry into the atmosphere.  

In chapter 3 the space-time multiscale fatigue life prediction model for heterogeneous 

materials is developed. The proposed model combines a two-scale asymptotic homogenization 

approach in time with a “block cycle jump” technique into a unified temporal multiscale 

framework that can be effectively utilized for arbitrary material architectures and constitutive 

equations of micro-phases. The unified temporal multiscale approach in combination with a 

spatial multiscale approach based on the reduced order homogenization is validated for high 

temperature ceramic matrix composites. 

The final phase of this research as described in Chapter 5 involves development of the 

multiscale-multiphysics homogenization formulation for investigating the kinetics of moisture 

diffusion in composite materials and the effect of moisture on the strength and stiffness of short 

fiber thermoplastics.  The multiscale-multiphysics homogenization model is validated against 

experimental results of 30% by weight filled short glass fiber and short carbon fiber filled 

thermoplastic materials with applications in the automotive industry.  
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Chapter 2  

Multiscale Homogenization for Heterogeneous Materials 

In this chapter an overview of the mathematical asymptotic method based spatial homogenization theory for vector field problems 

is presented. Model reduction along with implementation aspects is discussed as well. This theory presented in this chapter 

serves as a basis to extend the framework to problems involving multiple domain and coupled-multiple physics problems.  

 
 
 
 
 

2.1 Introduction 

In this chapter the eigen-deformation based multiscale spatial homogenization theory 

for vector fields is presented. The objective of this chapter is to offer an overview of the spatial 

homogenization theory, the model reduction technique and the numerical implementation 

aspects of the reduced order spatial homogenization that is previously developed by Fish et. al. 

[31, 33, 35]. The theory presented in this chapter serves as a basis to extend the multiscale 

homogenization framework to analyze problems consisting of multiple domains in Chapter 4 

and multiple-coupled physical processes in Chapter 5. The chapter is organized as follows. In 

section 2.2 the two scale direct homogenization theory for nonlinear heterogeneous media is 

presented. Reformulation of the governing equations in terms of residual stress free fields and 

model reduction to improve the computational efficiency is presented in subsequent sections.  

2.2 Spatial Homogenization Model for Vector Fields 

For simplicity we consider the spatial domain consisting of two scales only, a coarse 

scale and a fine scale respectively. The formulation is presented for small deformations only and 

therefore no distinction is made between reference coordinates and deformed coordinates. 

Consider a heterogeneous nonlinear solid media on a composite domain Ωζ  with boundary 
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ζ∂Ω  as shown in Figure 2. The superscript ζ  implies the dependence of coarse scale fields on 

the fine scale fields. The microstructure of a composite material is assumed to be statistically 

homogeneous with local periodicity. The unit cell domain is denoted by Θ. The size of the unit 

cell is assumed to be small compared to the characteristic length of the coarse-scale domain Ω  

so that the asymptotic homogenization theory can be applied. Let x  be the coarse-scale position 

vector in the coarse scale domain Ω  and /i iy x ζ=   be the fine-scale position vector in Θ  

where 0 1ζ<  . All physical quantities are assumed to have two explicit dependencies: one on 

the coarse-scale coordinate x  and the second one, on the fine scale coordinate y . Using the 

classical nomenclature, any periodic function can be represented as 

ˆ( ) ( , ( )) ( , ( ) )f x f x y x f x y x ky≡ ≡ +ζ  

The indirect coarse-scale spatial derivatives of the response function  ( )f xζ  can be calculated by 

the chain rule as 

 

 

, ,

( , ) ( , )1,i
i i

x yi if f

f x y f x yf
x y

ζ

ζ
∂ ∂

= +
∂ ∂

 

   (2.1) 
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Figure 2: Illustration of coarse scale and fine scale domains 
 

We assume that the micro constituents possess homogeneous properties and satisfy the 

following boundary value problem: 

 

( )

( )

,

( , ) , ,

( ) ( ) 0 ,

( ) ( ) ( ) ( ) ,

1( ) ( ) ,
2

( ) ( ) ,

( ) ( ) ,

( ) ( ) ( ) ,

( ) ( )

ij j i

ij ijkl kl kl

ij i j i j j i

I
kl kl

I

u
i i

t
ij j i

i i i iS S

x b x x

x L x x x x

x u x u u x

x x x

u x u x x

x n x t x x

x u x u uζ ζ

ζ ζ ζ

ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ

ζ ζ ζ

ζ ζ ζ

ζ ζ ζ ζ

ζ ζ ζ ζ

σ

σ ε µ

ε

µ µ

σ

δ
− +

+ = ∈Ω

= − ∈Ω

= ≡ + ∈Ω

= ∈Ω

= ∈∂Ω

= ∈∂Ω

≡ = −

∑

 

 
 

,

0ij j ij j i iS SS S

x S

n n t tζ ζζ ζ

ζ

ζ ζ ζ ζ ζ ζσ σ
+ −+ −

∈

+ = + =

  (2.2) 

The total strain kl
ζε in equation (2.2)b is assumed to obey an additive decomposition into elastic 

and inelastic components, more generally referred to as eigenstrains kl
ζµ , which is summation of 

various eigenstrains types ( )I
kl
ζµ x , such as inelastic deformation, thermal change, moisture 

xx1 

x2 

y1 

y2 
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effects, etc. The traction boundary conditions govern the traction continuity along the interface 

of fine-scale constituents denoted by ζS ; the /+ −  signs indicate the two sides of the interface. 

i
ζδ is the displacement jump (or so-called eigen-separation) along the interface and 

 

⋅  is the 

jump operator.  

  In the double scale mathematical homogenization the response fields are assumed to 

depend on the coarse-scale position vector x  in the coarse-scale domain Ω  and fine-scale 

position vector y  in the unit cell domain Θ . The displacement field i iu (x) = u (x,y)ζ  is 

approximated in terms of double-scale asymptotic expansions on Ω Θ× as  

 ( ) ( ) ( )0 1 2( ) ( , ) ( , )i i iu x u x y u x y Oζ ζ ζ= + +   (2.3) 

It is a priori assumed for nonlinear problems that the first term in asymptotic expansion of 

displacements does not depend on the fine-scale coordinates. 

 ( ) ( )(0) c
i iu x u x=   (2.4) 

Thus equation (2.3) can be rewritten as  

 


( ) ( )
(0)

1 2

( )

( ) ( , ) ( ) ( , )

i

c
i i i i

u x

u x u x y u x u x y Oζ ζ ζ≡ = + +   (2.5) 

Likewise the asymptotic expansion of the strain field is obtained by substituting equation (2.3)

into equation (2.2)c and making use of the chain rule in equation (2.1)   

 ( ) ( ) ( ) ( )-1 0 1 21( ) ( , ) ( , ) ( , )ij ij ij ijx x y x y x y Oζε ε ε ζε ζ
ζ

= + + +   (2.6) 

where various orders of strain are defined as  
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( )
( )
( )

( )
( )
( )

( )
( )

1 0
,

1
, ,

0,1...

j

j j

ij i y

s s s
ij i x i y

u

u u s

ε

ε

−

+

=

= + =
  (2.7) 

The subscript parentheses denote the symmetric gradients of the displacements. Following (2.7)

(a) the asymptotic expansion in (2.6) can be restated as  

 

( ) ( ) ( )
( ) ( )

( ) ( )

0 1 2

1(0) (1) 2
( , ) ( , )

1(1) 2
( , )

( , )

( ) ( , ) ( , )

        ( ) ( , ) ( , )

        ( , ) ( , )

          

j j

j

f
ij

ij ij ij

i x i y ij

c
ij i y ij

x y

x x y x y O

u x u x y x y O

u x y x y O

ζ

ε

ε ε ζε ζ

ζε ζ

ε ζε ζ

= + +

= + + +

= + + +


  (2.8) 

The stresses and strains for different orders of ζ  are related by the constitutive relation in 

equation (2.2)(c). The two scale asymptotic expansion of the stress field is given by  

 ( ) ( ) ( )0 1 2

( , )

( ) ( , ) ( , ) ( , ))
f

ij

ij ij ij ij

x y

x x y x y x y Oζ

σ

σ σ σ ζσ ζ≡ = + +


 (2.9) 

The eigenstrain ( , , )ij ij sζ ζ ζ ζ ζµ µ ε σ≡ depends on constitutive behavior of fine-scale constituents, 

and can be expressed in term of state variables isζ , strain and/or stress. Expanding eigenstrain 

in Taylor series around the leading order fields yields 

 
( )

( )

(0) (0) (0) (1) (1) (1) 2

(1) 2

( , , )

    

ij ij ij
ij ij kl kl k

kl kl k

f
ij ij

s s O
s

O

ζ ζ ζ
ζ

ζ ζ ζ

µ µ µ
µ µ ε σ ζ ε σ ζ

ε σ

µ ζµ ζ

 ∂ ∂ ∂
≡ + + + +  ∂ ∂ ∂ 

= + +

 (2.10) 
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By substituting the asymptotic expansions in equation (2.5) to (2.9) in to the equilibrium 

equation (2.2) and enforcing the chain rule (2.1), yields equilibrium equations of various orders 

in ζ    

 1
,( ) : 0

j

f
ij yO ζ σ− =  (2.11) 

 ,(1) : 0
j

c c
ij x iO bσ + =  (2.12) 

The coarse-scale fields are defined as an average of the leading order (or fine-scale) fields 

computed over the unit cell domain as 

 

1 1;

1 1;

fc c
ij ij i i

c c
i i i i

d b b d

t t ds u u ds

ζ

ζ ζ

ω ω

σ σ

ω ω

Θ Θ

∂ ∂

= Θ = Θ
Θ Θ

= =
∂ ∂

∫ ∫

∫ ∫
 (2.13) 

Inserting the strain asymptotic expansion in equation (2.8) into the governing equation of the 

unit cell problem in equation (2.11) yields 

 

( )
( )

( )

1
,

,

( , ) ( ) ( , )

( , ) ( ) ( , ) ( , )

0

l

f el
kl

j

f c
kl kl k y

f f f
ij ijkl kl kl

f
ij y

x y x u x y

x y L y x y x y

ε

ε ε

σ ε µ

σ

−

= +

= −

=



 (2.14) 

subjected to periodicity condition. The coarse-scale stress then follows from equations (2.13) and 

(2.14) 

 ( )( )1
,

1( ) ( ) ( ) ( , ) ( , )
l

fc c
ij ijkl kl k y klx L y x u x y x y dσ ε µ

Θ

= + − Θ
Θ ∫   (2.15) 
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2.2.1 Residual-Free Fields and Model Reduction  

The two scale spatial homogenization theory for nonlinear history dependent problems 

formulated in section 2.2 referred to as “Direct Homogenization” hereafter is computationally 

prohibitive. To illustrate the computational cost, consider a two scale problem with nel elements, 

ngp gauss points per element, nload increments, Icoarse  and Ifine number of average iterations at the 

coarse scale and fine scale respectively, then the total number of linear solutions of the fine scale 

problem is nel  *  ngp  * nload ** Icoarse * Ifine. This is a formidable task in terms of the computational 

cost involved and therefore the method has not been able to find much industrial applications. 

The prohibitive cost involved with the direct homogenization has been effectively addressed by 

parallel computing and by the introduction of meso-mechanical models as shown in Figure 3. 

 

 

Figure 3: Illustration of a reduced order model 
 

A review of literature highlights the following reduced order modeling methods: 

Voronoi cell method [36], the spectral method[37], the network approximation method [38], the 

Fast Fourier Transforms[39, 40], the Lattice Discrete Particle Model (LDPM)[41, 42], the 

Transformation Field Analysis (TFA)[30, 43] and methods based on control theory including 

balanced truncation [44, 45], optimal Hankel norm approximation [46], and proper orthogonal 

decomposition [47].  

fine-scale model 

 

meso-scale model coarse-scale model 
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In this section the focus is on a variant of the TFA method [12, 29, 48, 49] that has found 

prominence in the recent years. The highlight of this method involves computation of certain 

localization operators, concentration tensors, transformation influence functions prior to the 

nonlinear two scale analysis. These localization operators/concentration tensors/influence 

functions account for the influence of the fine scale eigenstrains and eigen-separations on the 

coarse scale response by solving a series of linear elastic BVPs. However the method lacks a 

rigorous mathematical framework, is not hierarchical, cannot account for interface failure and is 

limited to a two scale framework only. 

The reduced order homogenization [33, 35, 50-52] is an extension of the TFA 

methodology and overcomes the shortcomings mentioned above. The main characteristics of 

the reduced order homogenization method are enumerated below 

(vii) The method accounts for failure at the interfaces where the separations at the interface 

is modeled as eigenseparations a concept that is analogous to eigenstrains. 

(viii) It is equipped with model improvement capabilities that allow a hierarchical 

arrangement of discretization of the microstructure. The least expensive model in this 

hierarchy involves a discretization that assumes uniform deformation in each of the 

phases comprising the unit cell. On the other hand the most expensive model in this 

hierarchy coincides with the discretization involving the direct homogenization 

method. 

(ix) Like the TFA, this methodology also involves construction of residual free fields. This 

unique feature allows the nel  *  ngp  * nload ** Icoarse * Ifine solutions of the unit cell 

equilibrium  equations to be satisfied a priori during the preprocessing phase. 
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The fine scale displacement field ( )1 ( , )iu x y  is constructed as a function of the coarse coordinate 

x and fine scale coordinate y as in the method of separation of variables:  

 ( )1 ( , ) ( ) ( ) ( , ) ( , ) ( , ) ( , )f fkl c kl n
i i kl i kl i nS

u x y H y x h y y x y d h y y x y dSε µ δ
Θ

= + Θ +∫ ∫




 

 




   (2.16) 

where kl
iH , kl

ih , and n
ih




 are the influence functions for coarse-scale strain, fine-scale eigenstrain, 

and fine-scale eigen-separation, respectively.  

The above formulation for the fine scale displacements is constructed such that the stress fields 

in the unit cell satisfy the fine scale equilibrium equation for arbitrary coarse scale strains c
klε , 

eigenstrains f
ijµ  and eigen-separations ˆ

f
nδ  

Substituting the above formulation (2.16) in equation (2.14) gives the fine-scale equilibrium 

equation as 

 ( )
( )( ) ( )( )

( )

, ,

,
,

( ) ( , ) ( , ) ( , )
0

ˆ( , ) ( , )

l l

l
j

f fmn c mn
klmn mn mn klk y k y

ijkl
fn

nk yS y

I H x h y y x y d x y
L y

h y y x y dS

ε µ µ

δ

Θ

  + + Θ −  
=  

  +  

∫

∫







 

 



 (2.17) 

Model reduction is introduced by discretizing eigenstrains ,( )f
klµ x y  and eigen-separations

( , )f
n x yδ   using a point collocation approach discretization as illustrated in the following 

equations 

 
( )

( )

( , ) ( ) -

( ) -

f
kl kl

f
n n

x y a x d y y y

b x d y y y S

µ

δ

= ∈Θ

= ∈ 

  

 

  (2.18) 

where ( )-d y y and ( )-d y y  are the Dirac delta function in the unit cell domain and at the 

interfaces of fine-scale phases, respectively.  
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Substituting (2.18) into (2.17) and requiring arbitrariness of the coarse scale strain ( )c
kl xε and the 

coefficients in (2.18) yields the following influence function equations for the displacement field, 

the eigenstrain and eigen-separation. 

 

( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }
( ) ( ) ( ){ }

,
,

,
,

, ,

0

, 0

, 0

l
j

l
j

l
j

mn
ijkl klmn k y

y

mn
ijkl klmnk y

y

n
ijkl k y y

L y I H y

L y h y y I d y y

L y h y y

 + = 

 − − = 

=




 



  (2.19) 

Equations in (2.19) represent a set of elastic boundary value problems which can be solved 

during the preprocessing phase. Analytical solutions for the above boundary value problems 

for complex microstructures are generally unknown. Finite element analysis of these boundary 

value problems with point colocation discretization is not cost effective either. The alternate 

approach is to use the subdomain collocation approach for discretization of eigenstrains and 

eigen-separations as shown below 

 

( ) ( )

1

( ) ( )

1

( , ) ( ) ( );

( , ) ( ) ( )

n
f

ij ij

m
f

n n

x y N y x

x y N y x

α α

α

ξ ξ

ξ

µ µ

δ δ

=

=

=

=

∑

∑ 





 (2.20) 

where n  and m  denote the number of partitions of phases and interfaces respectively; ( )
ij

αµ  and 

( )
n

ξδ   denote the average eigenstrains and eigen-separations in phase partition ( )αΘ  and interface 

partition ( )S ξ , respectively. This allows having a hierarchical sequence of unit cell 

homogenization models, where a model that assumes one partition per element will incur 

computational cost associated with direct homogenization, while an assumption of uniform 
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deformation in each of the phases will lead to a model with one partition per phase with 

maximum computational efficiency.  

The shape functions ( )( )N yα
 for eigenstrain are chosen to be ( )1 ΘC− functions as the 

eigenstrains need to satisfy the condition of continuity. The eigen-separation shape functions 

are chosen to be ( )0C S  functions as the cracks (displacement jumps) need to be continuous 

across the interfaces. Additionally the shape functions need to satisfy the partition of unity 

condition. 

 ( ) ( )

1 1
( ) 1  ;  ( ) 1

In m

N y N yα ξ

α ξ= =

= =∑ ∑


   (2.21) 

The average eigenstrains and eigen-separations are defined as  

 
( ) ( )

( ) ( )
ˆ

f
ij ij

f
n nS

d

dS

α α

ξ ζ

µ ϕ µ

δ ϕ δ

Θ
= Θ

=

∫

∫





  (2.22) 

The weight functions ( )αϕ  and ( )ζϕ  should satisfy the condition of positivity and normalization. 

 

( ) ( )

( ) ( )

1 1

0  ;  0

( ) 1  ;  ( ) 1
n m

y y

α ζ

α ξ

α ξ

ϕ ϕ

ϕ ϕ
= =

> >

= =∑ ∑









  (2.23) 

 A piecewise constant approximation for the eigenstrain and eigenseparation shape functions 

and weight functions satisfies the conditions in equations (2.21) and (2.23) 

 

( ) ( ) ( )

( ) ( )
( )

( )

( )

( )

( ) ( )
( ) ( )

( )
( )

( )

1
( ) , ( ) ( ) /

0

1 /
,

00

f
A

A S

y
N y y N y

y

N y y S S if y S
N y y

elsewherey S

ξ

α
α α αα

α

ξ
ζ β

ξ ζ

ξ

ϕ

ϕ∈

 ∈Θ= = Θ
∈Θ

 ∈  ∈ = = 
 ∉

∑

 







  (2.24) 
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Substituting the above discretization in (2.20),(2.22) and (2.24) into (2.17) and requiring the unit 

cell equilibrium to be satisfied for arbitrary ( )c
kl xε , ( )

ij
αµ  and ( )

n
ξδ   yields the following strong 

form of the influence functions for the fine scale displacements, eigenstrains and 

eigenseparations  

 

( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ){ } ( ) ( ) ( )

,
,

,

,

0

0

ˆ ˆ0  

l
j

j

j

mn
ijkl klmn k y

y

mn
ijkl kl klmn

y

n f
ijkl kl ny

L y I H y

L y P y I y

L y Q y with y N y

α α

ξ ξδ

 + = 

 − = 

= =






 (2.25) 

where 

 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

,

,

,

ˆ,

j

j

mn mn
ij i y

n n
ij i yS

P y h y y d

Q y h y y N y dS

α

α

ξ ξ

Θ
= Θ

=

∫

∫









 



 (2.26) 

2.2.2 Reduced Order System of Equations 

The main feature of the reduced order two scale homogenization frame work discussed in 

section 2.3 is that it allows pre-computing of the influence functions in equation (2.19) prior to 

the two scale nonlinear analysis. Therefore, each iteration of the coarse scale nonlinear analysis 

will involve computation of the fine scale strains, eigen-fields, updating of fine scale stresses 

and coarse scale stresses. The reduced order system of equations comprise of the following  

(i) Reduced order equations for residual-free strain fields at the fine scale 

(ii) Reduced order equations for traction continuity along the interfaces of the fine scale 

phases 

(iii) Reduced order equations for the fine scale eigen-fields 

The residual-free strain field is obtained by substituting (2.16) into (2.14)a 
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 ( ) ( ) ( ), ,
( , ) ( ) ( , ) ( , ) ( , ) ( , )

j j

f f fkl c kl n
ij ij kl kl ni y i yS

x y E y x h y y x y d h y y x y dSε ε µ δ
Θ

= + Θ +∫ ∫




 

 




   (2.27) 

where 

 ( ), j

kl kl
ij ijkl i

E I H= +
y

 (2.28) 

Substituting the discretization in equation (2.20) into equation (2.27) yields 

 ( ) ( ) ( ) ( )( ) ( ) ( )

1 1
( , ) ( ) ( ) ( )

n m
f kl nkl c

nij ij kl ij kl ijx y E y x P y x Q y xαα ξ ξ

α ξ

ε ε µ δ
= =

= + +∑ ∑


  (2.29) 

Averaging the residual-free strain field over partition domain ( )βΘ  yields 

 ( )( ) ( ) ( ) ( )( )

1 1
( ) ( ) ( ) ( )

n m
kl n kl c

nij ij kl ij ij klx P x Q x E xαβ βα βξ βξ

α ξ

ε µ εδ
= =

− − =∑ ∑


  (2.30) 

where 

 ( )
( ) ( )

1 dβ

β

β Θ
∗ ≡ ∗ Θ

Θ ∫  (2.31) 

Likewise the reduced order residual free fine-scale traction ( )
nt
η
 along the interface is obtained by 

averaging f
ij jnσ   over the interface partition 

 ( )( ) ( ) ( ) ( )( )

1 1
( ) ( ) ( ) ( )

n m
kl m kl c

mn kl n n n klC x t x D x T xαηα η ηξ ηξ

α ξ

µ εδ
= =

− + − =∑ ∑




     (2.32) 

where 
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( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( )
( ) ( )

ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ

ˆ

1

kl kl
m mi ijpq pq pqkl j

n
mn mi ijpq pq j

kl kl
m mi ijpq pq j

S

C a L y P y I n y

D a L y Q y n y

T a L y E y n y

dS
S

η

α α α

ξ ξ

η

η

 = − 

=

=

∗ ≡ ∗∫





  (2.33) 

The reduced order constitutive relations for eigenstrains and eigenseparations are given as 

 ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )( ) ;ij ij n nx f x t x g xα η ηαµ ε δ= =   (2.34) 

Equations (2.30), (2.32) and (2.34) comprise a reduced order system of nonlinear equations for 

independent unknowns ( ) ( )ij
αε x  and ( ) ( )n

ξδ  x . Finally, the reduced order form for the coarse-

scale stress is obtained by integrating f
ijσ over unit cell domain, which yields  

 ( )( ) ( ) ( )

1 1
( ) ( ) ( ) ( )

n m
c cc c c

nijnijklij ijkl kl klx L x x xA Bαα ξ ξ

α ξ

σ ε µ δ
= =

= + +∑ ∑   (2.35) 

where 

 

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1

1

c kl
ijkl ijmn mn

c kl
ijkl ijmn mn mnkl

c n
ijn ijmn mn

L L y E y d

A L y P y I d

B L y Q y d

α α α

ξ ξ

Θ

Θ

Θ

= Θ
Θ

 = − Θ Θ

= Θ
Θ

∫

∫

∫




 (2.36) 

Equation (2.35) can be rearranged by defining coarse-scale eigenstrain ( )c
kl xµ  

 ( ) ( ) ( )( ) ( ) ( )

1 1
( ) ( ) ( )

n m
c cc c c

nijmn ijnkl ijkl mn ijklx M x M xA Bαα ξ ξ

α ξ

µ µ δ
= =

= − + −∑ ∑   (2.37) 
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which yields a coarse-scale constitutive equation having a similar structure to that of fine-scale 

constitutive equation  

 ( )( ) ( ) ( )c c c c
ij ijkl kl klx L x xσ ε µ= −  (2.38)  

In summary, in the preprocessing stage prior to nonlinear coarse-scale analysis the influence 

problems (2.25) are solved and the coefficient tensors (2.31), (2.33) and (2.36) are calculated. At 

each iteration of nonlinear coarse-scale analysis, the eigenstrains and eigen-separations are 

updated by solving the reduced-order unit cell system(2.30), (2.32) and(2.34). Finally, the-coarse 

scale stress is updated using(2.35).  

2.3 Numerical Implementation 

This section discusses the aspects of numerical implementation of the reduced order 

homogenization and its integration into conventional finite element code architecture by 

utilizing the functionality of user-defined material interfaces. The reduced order formulation 

detailed in the previous section is recast into a form that allows addition of user defined 

materials models. The primary step of the numerical implementation phase involves solution of 

the nonlinear equations in (2.30) and (2.32). The equations are solved using Newton’s method 

by defining the unit cell residual in the following form  

 ( ) ( ) ( )( )
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  (2.39) 

The unknowns are the increments of fine scale phase strain fields ( )
ij

βε∆  and eigen-separations

( )
n̂
τδ∆ , whereas the coarse-scale strain 1

1
i c

n klε+
+ ∆  is prescribed by the coarse-scale problem at every 
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load increment n+1 and iteration i+1. The solution of the nonlinear system of equation in (2.30) 

and (2.32) using Newton’s method requires function derivatives with respect to the variable 

( ) ( ) ( ){ },
ˆ,kl m

α ζ α ξθ ε δ≡ ∆ ∆  at every load increment and iteration of the coarse scale nonlinear problem 

analysis. 
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  (2.40) 

In the above equation ijδ is Kronecker Delta. The derivative of the eigenstrains with respect to 

the phase strain can be computed from 

 

( ) ( ) ( ) ( )

( )

( )
( )

( )

( )

ij ij ijkl kl

ij mn
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kl kl
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I M

α α α α
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∂∆ ∂∆
= −
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  (2.41) 

where ( )
ijklM α  is elastic compliance tensor for phase partition α  and 

( )

( )
mn

kl

α

α

σ
ε

∂∆
∂∆

is the consistent 

tangent stiffness for the corresponding phase. The derivatives 
( )

( )
ij

kl

α

α

µ

ε

∂∆

∂∆
and

( )

( )
n

m

t ξ

ξδ
∂∆
∂∆





in equation 

(2.40) can also be computed by utilizing the constitutive relations for the phases and the 

interfaces as given in equation (2.34).  
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Once the unknowns ( ) ( ) ( ){ },
ˆ,kl m

α ζ α ξθ ε δ≡ ∆ ∆ are solved, the phase eigenstrains are updated using 

the constitutive behavior defined in equation (2.34)(a). Finally the coarse scale stress is 

computed using equation (2.35) rewritten below for convenience  

 ( )( ) ( ) ( )

1 1
( ) ( ) ( ) ( )

n m
c cc c c

nijnijklij ijkl kl klL A Bαα ξ ξ

α ξ

σ ε µ δ
= =

= + +∑ ∑ x x x x   (2.42) 

Analysis of nonlinear problems with implicit solvers necessitates the computation of the coarse 

scale tangent stiffness tensor.  The derivation of the coarse scale consistent tangent tensor is 

described in the ensuing paragraphs. 

The derivative of the coarse scale stress c
ijσ  in equation (2.42) with respect to coarse scale strain 

c
klε is as given below 

 
( ) ( )
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1 1

c n m
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α ξ

σ µ δ
ε ε ε= =

∂∆ ∂∆ ∂∆
= + +

∂∆ ∂∆ ∂∆∑ ∑


   (2.43) 

Using the chain rule the above equation can be restated as follows 
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   (2.44) 

Computing the highlighted terms in the above equation will give us the necessary consistent 

tangent tensor. We proceed by taking the derivative of the reduced order system of equations in 

(2.30) and (2.32) with respect to the incremental coarse scale strain c
klε∆ , which yields 
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  (2.45) 
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Again using chain rule the above equation can be simplified to the following linear system of 

equations 
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  (2.46) 

The highlighted terms are computed by solving the linear system of equations in (2.46). Finally 

the coarse scale consistent tangent tensor is computed by using equation (2.44). A schematic 

representation of the numerical implementation of the two scale reduced order homogenization 

model is illustrated in Figure 4 below. 

Figure 4: Schematic of the two scale reduced order homogenization  
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Chapter 3  

Parametric Generation of Unit Cells with Randomly Distributed Inclusions 

In this chapter the modified RSA algorithm is developed to generate unit cells for heterogeneous materials with randomly 

distributed inclusions of varying shapes and sizes. A statistical study aimed at understanding the effective size of the unit cell 

and its dependence on the relative properties of the phases comprising the unit cell is conducted.  The inputs from co-authors of 

the paper (Bailakanavar et.al. [53]) from which the main sections in this chapter are reproduced are gratefully acknowledged. 

 
 
 
 
 

3.1 Introduction 

Identification and generation of unit cell geometry is a vital step (preprocessing phase) 

in the multiscale analysis of composite materials. Computational challenges in automatic 

generation of periodic microstructures, such as woven or fabric composites, have been by at 

large addressed (see for instance [54]). However, automatic generation of morphological details 

of materials with randomly distributed inclusions, such as defects in ceramics, hard and soft 

domains in polymers, chopped fiber composites etc. pose new challenges. Typical inclusions 

like ellipsoids, short fibers, platelets and discs found in heterogeneous materials are often of 

different shapes and sizes.  Parameters influencing the unit cell geometry are the shape and size 

of the inclusion, the volume fraction and the morphological details like the spatial orientation 

and spatial distribution of the inclusions. Statistical data about such morphological details may 

be obtained from X-ray tomography, and 3D image analysis.  The key challenges that need to be 

addressed when generating the random inclusion unit cells are: 

 

(i) Accurate representation of the inclusion size and shape to minimize geometric 

approximation errors; 
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(ii) Generation of unit cells with packing fraction as high as 45%, typically found in 

industrial grade composite materials; 

(iii) Determination of the unit cell size that constitutes a macroscopically homogeneous 

material;  

(iv) Generation of unit cells in quick succession with maximum computational efficiency 

for utilization in a stochastic multiscale framework. 

 

A literature review points out to two main approaches being used to generate unit cells 

with randomly distributed inclusions, namely the Concurrent Construction (CC) method [55-

57] and the Random Sequential Adsorption (RSA) method [58-64]. The CC method is a two-step 

procedure. In the first step an initial configuration with an ordered packing of the inclusions is 

generated. In the second step these inclusions are perturbed in the phase space until the spatial 

orientation and distribution as observed in the statistical morphological data is achieved. The 

inclusions are not allowed to intersect or overlap as they reorient in the phase space. 

Duschlbauer et al. [57] used the CC method to generate short fiber composite unit cells with 

random orientations in 2D space. For a fiber aspect ratio (AR) of 10, they achieved a maximum 

of 21% fiber volume fraction without allowing any fiber intersections, which is about 75% of the 

maximum unforced packing limit for 2D random fibers [65].  

Inclusions found in physical processes, such as burning of coal char, convective burning 

of porous explosives and regression of solid propellants, are often characterized by particular 

shapes, such as spheres, disks, spherocylinders and perforated rods. Lubachevsky and Stillinger 

[66] generated random packs of disks in 2D space by a concurrent construction algorithm. The 

inclusions start with random positions and velocities and they grow uniformly in size from a 

point in space to jammed disks as they move about in space. Stafford and Jackson [67] extended 
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the Lubachevsky-Stillinger (LS) algorithm to create packs of non-spherical shapes for modeling 

heterogeneities in energetic materials like gun propellants.  

In the RSA approach, a point in a given unit cell volume is randomly chosen and the 

first inclusion is placed with its center at the chosen position. Next, another point is randomly 

chosen from the diminished volume in the unit cell and the second inclusion is placed at this 

point. Likewise the process of sequentially and randomly positioning an inclusion is continued 

till the desired volume fraction is achieved or till the jamming limit is encountered. This method 

generates unit cells with non-intersecting inclusions wherein the gap between the inclusions is 

user-defined, typically of the order of inclusion size. The RSA algorithm have been employed 

for generating unit cells with various inclusions, including disks [68], spheres [69], ellipsoids 

[70] and spherocylinders [71]. Böhm et al. [59] modified the RSA algorithm to include user 

specified distance between adjacent inclusions to generate unit cells with cylindrical (AR=5) , 

sphero-cylindrical (AR=5) and spherical inclusions with inclusion volume fraction of 15%. Kari 

et al. [59] also used a modified RSA algorithm wherein the unit cells with cylindrical inclusions 

(AR=10) of up to a volume fraction of 25% were generated. For volume fractions greater than 

25%, cylindrical inclusions with decreasing aspect ratios (AR<10) were gradually added after 

reaching the jamming limit.  Pan et al. [64] used another variant of the modified RSA algorithm 

wherein a combination of straight and curved fibers (AR=20) were used to generate unit cells 

with fiber volume fraction of 35%. 

Experimental study [72] of packing of short fibers in random orientation found that the 

packing fraction decreased rapidly with increasing aspect ratio of the rods. A theoretical study 

by Evans et al. [73] suggested that for fibers with AR>10, the fiber volume fraction should be 

proportional to the inverse aspect ratio, yielding a maximum fiber volume fraction of 20% for 

fibers with aspect ratio of 20. Likewise for fibers with aspect ratio of 20, Williams et al. [61] 
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reported a maximum volume fraction of 22%, while Parkhouse et al. [72] reported a volume 

fraction of 28%.  Toll [65] reported a maximum achievable volume fraction of 18.5% for 

unforced fiber packing. Toll suggests that forced packing of fibers governed by bending of 

fibers at contact points is imperative for attaining higher fiber volume fractions. It is important 

to note that in all these estimates, fibers were considered to be straight and nonintersecting.  

Either of the methods mentioned above fails to generate unit cells with volume fractions as high 

as 45% found in various heterogeneous materials. A modified RSA algorithm by Pan et al. [64] 

can generate volume fractions of up to 35%. The algorithm is computationally expensive as it 

involves solving optimization problems to identify fiber intersection in 2D and 3D space. 

Additionally the algorithm is not robust and versatile to be implemented in a multiscale 

stochastic framework.  

The research work presented in this chapter focusses on developing a parametric model 

for generating unit cells with randomly distributed inclusions. The proposed algorithm 

possesses superior robustness, computational efficiency and versatility compared to the 

previously developed RSA algorithms:  

 

(i) robustness:   it yields unit cells with fiber volume fraction of up to 45% for aspect ratios as 

high as 20; 

(ii) efficiency: it consists of a hierarchy of algorithms with increasing computational 

complexity;  

(ii) versatility: it generates unit cells with different inclusion shapes.  

 

In Section 3.2 to 3.6 details of the proposed hierarchical RSA algorithm, hereafter to be 

referred to as HRSA, for various inclusions is presented. Section 3.7 presents a statistical study 

of stiffness and strength properties of randomly distributed chopped fiber composite aimed at 
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determining the effective size of the unit cell. The HRSA algorithm has been applied to random 

inclusion microstructure composites including: (i) two-dimensional chopped tow composites in 

automotive applications, (ii) polyurea or polyethene coating consisting of hard and soft 

domains (segments) employed for energy absorption in military applications, and (iii) fiber 

framework called fiberform embedded in or free from an amorphous matrix used as heat shield 

on spacecraft to prevent structural damage during reentry into the atmosphere. A simple 

algorithm to minimize the geometric approximation and mesh discretization errors is presented 

in Section 3.8.  

3.2 Hierarchical Random Sequential Adsorption (HRSA) 

In this section a robust and computationally efficient unit cell generation algorithm for 

randomly distributed inclusions is presented. The two key features of the proposed HRSA 

algorithm are the capability to generate high packing fractions of up to 45% for inclusions with 

AR>10 and computational efficiency in generating unit cells in a quick succession. These two 

factors have not been addressed at tandem in the literature. These two objectives are 

accomplished by (i) forced packing aimed at achieving higher packing fractions followed by (ii) 

hierarchical inclusion generation strategy aimed at ensuring computational efficiency. The 

different levels in the HRSA algorithm are illustrated in Figure 5. A detailed flowchart of the 

HRSA algorithm is presented in Figure 12. 

3.2.1 Unit Cell Geometry Definition 

A set of independent user-defined model parameters along with dependent parameters 

uniquely define the unit cell geometry. The set of independent parameters is specific to the type 

of inclusion. The unit cell size is defined as a function of the inclusion’s largest dimension. The 

Hierarchical Random Sequential Adsorption (HRSA) algorithm has been developed to include 
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all possibilities of inclusion shapes found in heterogeneous materials. The size and shape of the 

inclusions are chosen based on the X-ray scans. Inclusions are approximated by piecewise 

polygons in 2D space and piecewise polyhedra in 3D space. A methodology to minimize the 

errors inherently introduced due to approximation of the geometry is built into the algorithm.  

   

Figure 5: Hierarchal levels in the HRSA algorithm 
 

3.2.2 Forced Packing 

Having described the unit cell geometry, the next step in the HRSA algorithm is to 

develop strategies for attaining higher inclusion packing fractions. Forced packing is imperative 

in generating unit cells with higher packing fractions by either varying the size or shape of the 

inclusions. For instance, microstructures of materials such as polyurea comprise of soft and 

hard domains. The hard domain comprises of inclusions of varying sizes in the form of 

ellipsoids. In generating such microstructures, first inclusions with highest AR are added. Once 
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the jamming point is attained inclusions with decreasing aspect ratios (AR<10) are gradually 

added.  

In addition to changing the size of the inclusions, forced packing is also accomplished by 

changing the shape of the inclusions for inclusions with AR>10. The inclusion geometry in 

general is described by the coordinates of the center, the in-plane angle range [0,2 ]π∈φ and the 

out-of-plane angle range (0,2 )θ π∈ . The first inclusion is generated without enforcing any 

change in shape or size. From the second inclusion onwards, the inclusion being added is 

checked for intersection with all the previously generated inclusions. The intersection points on 

the inclusion being added are identified by projecting that inclusion along with all the 

previously generated fibers on a 2D space and obtaining a closed form solution using the closest 

point of approach (CPA) method [74]. After the intersection points on the new inclusion being 

added are identified, additional points are added on the inclusion spine to enforce a change in 

shape. In the case of random chopped fiber composites, two pairs of additional points are 

added on either side of the intersecting point for bending the fiber in- and out-of- plane as 

shown in Figure 6 and Figure 7. Given the set of independent and dependent parameters the 

inclusion geometry is constructed in 3D.  

 

Figure 6: Fiber-2 forced to bend over fiber-1 at the intersecting point 
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Figure 7: Four additional vertices added on fiber-2 to enforce shape change 
 

The intersection check using the CPA method is given below. 

Consider two infinite lines 

 
1 1 2 1 1

2 3 4 3 3

( )    ( - )   
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L P s P s P P P s u

L P t P t P P P t v

= = + = +

= = + = +


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
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 (3.1)  

Let ( , ) ( ) ( )w s t P s P t= −


 be a vector between two points on the two lines as shown in Figure 

8.  We want to find ( , )w s t  that has a minimum length for all s and t.  Eberly [75] used algebraic 

approach to determine the shortest length between the two infinite lines. Sunday [74] used the 

geometric approach, the CPA and so did Teller [76] . However, Teller’s method uses cross 

product of the line segments that restricts it to 3D space. The closed form solutions given by 

Eberly and Sunday are faster than Teller's approach, which computes intermediate planes and 

gets their intersections with the two lines. In the present work we employ the geometric 

approach proposed by Sunday [74].  
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Figure 8: Intersection of two line segments 
 

In Figure 8, two lines L1 and L2 are closest at unique points P(sc) and P(tc) for which ( , )w s t  

attains its minimum length.  If L1 and L2 are not parallel, then the line segment ( , )c cw s t joining 

the closest points P(sc) and P(tc) is uniquely perpendicular to both lines at the same time.  No 

other line segment between L1 and L2 has this property. Vector ( , )c c cw w s t=
  is uniquely 

perpendicular to the vectors u  and v , and this is equivalent to it satisfying the two equations:  

 0 and 0c cu w v w= =
  

   (3.2)                                     

By substituting 0( ) ( )c c c c cw P s P t w s u t v= − = + −
   

    where 0 1 3w P P= −
  into equation (3.2) 

gives two simultaneous linear equations: 
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 (3.3) 

Then, letting ,  ,  ,  ,  a u u b u v c v v d u w e v w= = = = =
         

       we can solve for  and c cs t  : 

 2 2 and c c
be cd ae bds t
ac b ac b

− −
= =

− −
 (3.4) 

where the denominator 
2ac b−  is nonzero.  When 2 0ac b− = , the two lines are parallel and the 

distance between the lines is constant.  We can solve for the distance of separation by fixing the 
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value of one parameter and using either equation to solve for the other.  Selecting 0cs =  , we get 

/ /ct d b e c= = . 

Having solved for the closest point  and c cs t , the distance between them is given by: 

 1 2 0( , ) c cd L L w s u t v= + −
    (3.5) 

In the approach used by Pan et. al. [64], the distance between two points on two different 

generic line segments is given by:  

 1 2 1 1 2 2( , ) ( ) ( )d P Pξ ξ ξ ξ= −
 

 (3.6) 

The minimum distance between two lines is determined by minimizing the constrained 

nonlinear two-variable function 1 2( , )d ξ ξ  described in equation(3.6),  

 min 2 1 2min( ( , ))Dd d ξ ξ=  (3.7) 

subjected to the constraints 1 20 1 and 0 1ξ ξ< < < < where ξ  is the normalized distance along 

the line segment. The closed form solution in equation (3.5) is computationally more efficient 

than the minimization problem in equation(3.7).  

3.3 Unforced Packing 

Microstructures with either a low inclusion aspect ratio or a low volume fraction obviate 

the necessity to force packing.  In generating such unit cells the inclusions are not enforced to 

change their shape or size. Therefore the intersection check using CPA method can be bypassed, 

thereby reducing the computational cost. The inclusion geometry as in the case of forced 

packing is described by the coordinates of the center ( , , )C x y z , the in-plane angle range
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[0,2 ]π∈φ and the out-of-plane angle range (0,2 )θ π∈ . Given the set of independent and 

dependent parameters, inclusions are generated and sequentially added in the unit cell domain. 

3.4 Hierarchical Inclusion Generation Strategy  

Optimization tools have been previously used [64] to check for inclusion intersections in 

3D space.  In the HRSA algorithm, closed form solutions are incorporated to check for inclusion 

intersections in 3D space rather than optimization tools to provide increased efficiency. This 

step is executed after the inclusions are generated in 3D and preceded by either the forced or the 

unforced packing phase.  

The method of separating axis serves as the main engine for checking whether or not the 

inclusions intersect in 3D space. However, the computational cost of this method is enormous. 

To reduce the computational cost, the method of separating axis is preceded by a hierarchy of 

less costly methods, such as the method of radial distances and the method of separating 

planes. With this hierarchy in place, a somewhat large set is checked for intersections using the 

significantly less costly methods of intersecting ellipsoids and separating planes.  Consequently, 

a small subset needs to be checked for intersections using the method of separating axis. This 

results in a significant increase in the computational efficiency of the RSA algorithm. The three 

methods are explained in the following sections in the order of their implementation in the 

algorithm. 

3.4.1 Method of Radial Distances 

This is the first method in the three-step hierarchical approach. The method involves 

estimation of the radial distance between the inclusion being currently added and all the 

previously generated inclusions. The larger set is reduced to a small subset by considering the 
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inclusions in the near field of the inclusion being added and excluding all other inclusions in the 

far field. It is trivial exercise to show that inclusion of any shape can be contained in a convex 

ellipsoid with three semi principal axes a, b, and c with { }max , ,R a b c= . Thus, for two ellipsoids 

with centers A and B, if the distance between A and B is larger than 2R, then these two 

ellipsoids do not intersect. Thus all the inclusions that are at a radial distance greater than 2R 

from the center of the inclusion being added can be excluded from the next intersection check in 

the three-step hierarchy.  

3.4.2 Method of Separating Planes 

Two stationary convex objects do not intersect if and only if there exists a plane that 

separates them - a separating plane. The method is based on determining whether a node on one 

object lies on or inside the other object given the relative position of the node with respect to all 

the planes on the other object. Consider a plane in the infinite space that has two sides: the inner 

side and the outer side. By using the right-handed rule, it is possible to distinguish between the 

two sides. Let ΔABC be the triangle lying on this plane with nodal coordinates denoted by

( ), ,a a aA x y z , ( ), ,b b bB x y z and ( ), ,c c cC x y z . The nodes are numbered counterclockwise. Consider 

an arbitrary node ( ), ,P x y z . We determine its location relatively to the triangle ΔABC by 

calculating   

 

1
1

Δ
1
1

A A A
B A B A B A

B B B
C A C A C A

C C C
A A A

x y z
x x y y z z

x y z
x x y y z z

x y z
x x y y z z

x y z

− − −
= = − − −

− − −
 (3.8) 
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If Δ 0> , then node P is at the outer side of the plane and vice versa; if Δ 0≤ , then P is on the 

plane or at the inner side of the plane. If a node on a convex object lies inside all the surfaces of 

the other object, then the two convex objects are intersecting. 

3.4.3 Method of Separating Axes 

This section discusses the method of separating axis - the method employed to 

determine whether two stationary convex objects are intersecting or not. It can be proved that, 

two convex stationary objects will not intersect if; there exists a line for which the intervals of 

projection of the two objects onto that line do not intersect. This line is termed as a separating line 

or, more commonly, as a separating axis [77].  

Consider two compact, convex sets 1 2 and C C and a line D passing through the origin. The 

projection intervals of these compact, convex sets on to the line D are given by  

 
( ) ( ) ( ) ( ) { } { }

( ) ( ) ( ) ( ) { } { }

1 1
1 min max 1 1

2 2
2 min max 2 2

, min  :  ,max :

, min  :  ,max :

I D D D X X C D X X C

I D D D X X C D X X C

ξ ξ

ξ ξ

 = =  ∈ ∈   

 = =  ∈ ∈   

 

 

 (3.9) 

where ξ is the projection vector on D and the superscripts corresponds to the index of the 

convex set. The two convex sets do not intersect, if ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2
min max max min or ξ ξ ξ ξ> <D D D D . A 2D 

example is shown in Figure 9 to illustrate the idea of this method. 
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Figure 9: Intersection check in 2D using method of separating axes 
 

To check for the intersection of convex polyhedra in 3D space the set of direction vectors 

includes the normal vectors to the faces of the convex polyhedra and vectors generated by the 

cross product of two edges, one from each polyhedron. The curved fibers are considered to be 

comprising of s piecewise compact, convex sets. Let jC with 1,2j = be the convex polyhedra 

with vertices { }( )

1

Lj
i i

V
=

edges { }( )

1

Mj
i i

E
=

 and faces { }( )

1

Nj
i i

F
=

with outward pointing normal to each 

face being computed and stored.  

Alternatively, a separation check for convex polyhedra in 3D space can be performed by solving 

an optimization problem. Two convex polyhedra containing “s” faces can be algebraically 

defined by a set of solutions to a linear system of equations defined by 
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2 2 2
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A x b
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≤





 (3.10)  

where 1 2 and A A are real 3s × matrices, 1 2 and b b are real 1s × matrices and 1 2 and x x  are 

vectors of the coordinates of the convex polyhedra in 3D space. 
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The minimum distance between two inclusions in 3D space can then be determined by solving 

the convex optimization problem 

 3
min 1 2min[ ( , )]Dd d x x=  (3.11) 

The minimization solution is computationally less efficient compared to method of separating 

axis. 

3.5 Chopped Fibers Randomly Oriented in 2D Plane 

In this section the implementation of the HRSA algorithm to generate unit cell geometry 

with fibers that are randomly dispersed in the resin medium as seen in the microstructures of 

short fiber thermoplastics. We consider a chopped fiber tow (or fiber bundle) that has a large 

number of individual fibers. In the present manuscript the term “fiber” will be loosely referred 

to the fiber bundle or fiber tow. The chopped fiber composites are manufactured by blowing 

these chopped fiber tows on to a mandrel to create a perform which is then injected by a resin in 

a rapid injection process [78].  

Planar scans of the chopped fiber composite material suggest that the chopped fiber 

bundles are randomly oriented in the XY plane. The through-the-thickness scans suggest that 

the fiber bundle cross section has been deformed into an elliptical cross-section during the 

compression molding process with the minor semi-axis of the elliptical cross-section along the 

out-of-plane direction (Z-axis). The fibers are either straight or curved as seen in the scans. The 

fiber bundles do not intersect each other and can be curved at the fiber bundle contact points.  

The unit cell geometry generation algorithm for carbon chopped fiber composites builds 

on the work of Pan et al. [64]. The algorithm [64] has been modified to obtain higher fiber 

packing fractions and to improve the computational efficiency. Fibers are modeled as straight 
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cylinders whereas the curved fibers are approximated by piecewise straight cylinders. A curved 

fiber profile is approximated by a piecewise convex polyhedra. The fiber elliptical cross-section 

is approximated by a dodecagon. The fiber geometry is described by the coordinates of the 

center ( , , )C x y z , the elliptical cross-section major axis a , the minor axis b , the fiber length l , 

and the in plane angle range [0,2 ]π∈φ with predefined out-of-plane angle /2θ π= . The fiber 

volume fraction fV , the cross-section major axis and minor axes and the fiber length are all user 

defined parameters. The gap between adjacent fibers can be user-defined, but in the present 

study is set to be 5% of the fiber cross-section semi-minor axis b . The in-plane unit cell size is 

assumed to be a function of the fiber length.  

 The unit cell geometry comprises of two fiber rich layers of thickness 2b separated by 

three resin rich layers of thickness /20b . The unit cell length and breadth are defined in the XY 

plane with the out of plane thickness determined by fiber cross-section and the resin layers, 

which is 4.15 times the semi-minor axis of the fiber cross-section (Refer to Figure 10(c)). Fibers 

are randomly generated in the X-Y plane bounded by the in-plane dimensions of the unit cell, 

with the elliptical cross-section major axis a lying in the X-Y plane and the minor axis b along 

the out-of-plane Z direction as shown in Figure 10(b). The center and the in-plane angle are 

generated randomly, with the provision to define bounds for the in-plane distribution to 

account for preferential orientation as found in some material microstructures. Fibers are not 

allowed to intersect in 2D or 3D space. In case of a new fiber intersecting with previously 

generated fibers, the new fiber is forced to bend at the intersection points as shown in Figure 6 

and Figure 7. The bend is either in- or out-of- the X-Y plane so that the projection of the fibers 

on to the X-Y plane is a straight line. The lower fiber-rich layer accommodates only fibers with 
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no bends whereas the upper fiber-rich layer can accommodates the bends on the curved fibers 

and straight only fibers as well.  

 To generate unit cells with fiber volume fractions of up to 45% in the shortest possible 

time it is imperative that the fibers be tightly packed as they are sequentially added to the resin 

box. To this effect, the unit cell volume is divided into five zones as follows. The planar areas of 

these zones are parameterized in terms of the unit cell planar dimensions. Thus the planar areas 

of these zones will change with a change in the fiber aspect ratio. Fibers are initially generated 

in zone 1 which is the area surrounding the center of the planar dimensions as shown in Figure 

11. The available area is then gradually increased to involve zone-2 and zone-3. The zone-4 area 

comprises of the areas at the four corners of the plane. Fibers are restricted to be generated in 

this zone by restricting the area for generating the fiber center and the spatial orientation. The 

zone-5 comprises of the second fiber rich layer.  

 A statistical study is conducted to determine the maximum volume fraction that can be 

achieved in every zone and the optimum number of realizations required to achieve that 

volume fraction. This study is conducted for unit cells with fiber aspect ratios of 5.0, 10.0, 15.0, 

20.0 and 25.0. The maximum achievable volume fraction and the optimum number of 

realizations for each of the five zones is studied for the five fiber aspect ratios. The fiber 

generation process moves from one zone to the next when either the bound on achievable 

volume fraction or the number of realizations is reached for that zone. The unit cell geometry is 

meshed with tetrahedral elements based on predefined mesh density. A pseudo resin layer with 

a thickness of b/20 is introduced around the unit cell to ensure that unit cell has perfect periodic 

boundaries. 
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Figure 10: Random chopped fiber unit cell geometry 
 

 
Figure 11: Division of the unit cell volume into five zones 
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The HRSA algorithm flowchart is depicted in Figure 12. The unit cell generation algorithm is 

described below  

(i) For a randomly generated center in 3D space C(x, y, z) and in-plane angle range 

(0,2 )πφ the fiber spine is generated in the lower fiber rich layer. Based on the zones 

discussed above, the z coordinate of the fiber spine center is either defined to lie in the 

bottom fiber-rich layer or the top fiber-rich layer. 

(ii) From the generation of the second fiber onwards, a newly generated fiber spine along 

with all the previously generated fiber spines are projected onto the XY planes to 

check whether or not the new fiber intersects with any of the previously generated 

fibers. The Closest Point of Approach [74] method is incorporated into the algorithm 

to check for fiber intersections in 2D space. 

(iii) If the newly generated fiber does not intersect with any previously generated fibers, 

then the fiber is generated in 3D space by sweeping the fiber cross-section profile 

along the fiber spine. Subsequently, the fiber is added to the unit cell, the fiber volume 

fraction is updated and the algorithm moves on to generate the next fiber spine. 

(iv) If the newly generated fiber spine intersects with any of the previously generated fiber 

spines, then the intersection points are identified on the new fiber spine. 

(v) Next, the z coordinate of the intersection point on the new fiber spine is moved to the 

next fiber rich layer. In addition two pairs of additional points are added on either 

side of the intersecting point on the top and bottom fiber rich layers for bending the 

fiber in and out of the X-Y plane as shown in Figure 6 and Figure 7. 

(vi) The fiber is generated in 3D by sweeping the cross-section profile along the fiber 

spine.  
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(vii) If any of the fiber lies outside the unit cell, they are clipped by the planes of the resin 

bounding box. Since the clipped fiber lengths only need to be taken into account to 

update the fiber volume fraction, the fibers need to be checked and clipped on the fly.  

(viii) The fiber is checked for intersection with the other fibers in 3D space through the 

method of separating axis [77]. 

(ix) If the new fiber passes the 3D intersection check, then it is added to the unit cell and 

the fiber volume fraction is updated. 

(x) Steps (i) to (ix) are repeated till the required fiber volume fraction is achieved. 
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Figure 12: Hierarchical RSA algorithm 
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3.6 Inclusions Randomly Oriented in 3D Space  

The process of generating a random inclusion composite unit cell in 3D consists of 

placing inclusions of a given shape and size (or size range) and rotation angle (or rotation angle 

range) one by one in randomly selected positions in the unit cell domain. Each time a new 

inclusion is attempted to be placed in the unit cell domain, the overlaps with existing inclusions 

are checked for. If a newly introduced inclusion does not overlap with previously generated 

inclusion, it is accepted; otherwise, another position is attempted. If, after a predefined number 

of trials, the inclusion has not found its place so that it does not overlap with existing inclusions, 

it is discarded and another inclusion is selected and tried in the same manner. This process is 

repeated until a predefined inclusion volume fraction is reached. The algorithm can be easily 

implemented for complex inclusion geometries. However, the method is very time consuming 

and, for non-spherical inclusions, rearrangement by way of rotation is often not possible. 

Moreover, since some inclusions may have to be discarded, the size distribution of packed 

inclusions may be different from the intended. The packing density depends on the sequence of 

inclusion addition. For example, if larger inclusions are added first, the final packing density 

tends to be higher than if smaller inclusions are placed first. In the following paragraphs we 

describe the algorithm for unit cells with inclusions in the form of straight chopped fibers 

randomly oriented in 3D space and unit cells with ellipsoidal inclusions. 

3.6.1 Randomly Oriented Chopped Fibers Embedded in Matrix   

The microstructure of materials such as phenolic impregnated carbon ablators (PICA) 

consists of chopped fibers randomly dispersed in resin. The volume fraction of fibers is typically 

very small. The algorithm developed to generate the randomly oriented chopped fibers in 2D 

space can be tailored to generate the unit cell for carbon phenolic impregnated carbon ablators 
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(PICA). The inclusions are idealized by straight cylinders, with user-defined cross-section and 

length. Since the inclusions are randomly oriented in 3D space, the center ( , , )C x y z and the in-

plane (0,2 )πφ and the out-of-plane (0,2 )θ π angles are randomly generated. The random 

orientation in 3D space obviates the intersection check in 2D space. The aforementioned three-

step intersection check process is used to check for fiber intersections in 3D space. A newly 

generated fiber is rejected if it fails the intersection check in 3D space. The unit cell with straight 

chopped fibers randomly oriented in 3D space is shown in Figure 13. 

 

Figure 13: Straight chopped fibers randomly distributed in 3D 
 

3.6.2 Randomly Oriented Bonded Fibers Free of Matrix (FiberForm) 

FiberForm is a low density very porous carbon fiber insulation material designed for 

high temperatures applications.  It consists of a group of carbon fibers bonded to each other by 

means of an organic binder that is carbonized at very high temperature as shown in Figure 14. 

The FiberForm unit cell is defined parametrically as a function of handful parameters, such as 

fiber characteristics (volume fraction, dimensions, orientations) and the dimensional 

characteristics of binders. The FiberForm unit cell generation process consists of two steps. In  

Step 1, a unit cell with randomly oriented disconnected fibers embedded in matrix material as 
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described in the previous section is generated.  In Step 2, the binders connecting the fibers are 

generated as follows. The nearest distance between a fiber and its neighboring fiber is 

computed by looping over all the fibers.  If the distance between a fiber and its neighboring 

fiber is less than the user-prescribed binder length, then all the matrix elements between the 

nearest points on each fiber are enclosed in a cylinder to create a bond between the fibers. Once 

all the bonds in the unit cell are identified, the elements in the enclosed cylinders are reassigned 

with binder material properties. The resulting FiberForm unit cell consists of three phases: 

fibers, binders and fictitious matrix phase, which excludes the binders. There are two 

possibilities to proceed. Matrix elements lying outside the fiber and binder phases can be 

removed resulting in a two-phase material consisting of fibers and binders. Alternatively, one 

can assign negligible elastic material properties to the fictitious matrix phase resulting in a three 

phase material. The former is obviously computationally advantageous, while the latter 

provides additional robustness in case some fibers are “not sufficiently connected”, i.e. 

connected at a fewer than two nodes resulting in a mechanism and ultimately singularity of the 

resulting stiffness matrix. In the latter case the fictitious matrix serves as a stabilizer. The 

FiberForm unit cell is depicted in Figure 14. 
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Figure 14  (a) FiberForm unit cell with fiber volume fraction 5% and cross section radius equal to 2.4; (b) 
FiberForm unit cell with fiber volume fraction 10% and cross section radius equal to 0.6 

 

3.6.3 Ellipsoidal Inclusions Randomly Oriented in 3D Space 

The geometry of an ellipsoid is defined by the coordinates of the center ( , , )C x y z , the 

semi-principal axes a, b and c, the in-plane angle (0,2 )πφ  and the out-of-plane angle (0,2 )θ π . 

The center is generated randomly whereas the major axis a, minor axes b and c, and the in-plane 

angle φ  and out-of-plane angle θ  are user defined parameters. One can generate these 

parameters randomly or specify exact values in order to generate unit cells with preferential 

size and packing angles of the ellipsoids. The ellipsoids are randomly oriented in 3D space. The 

geometry of an ellipsoidal inclusion is shown in Figure 15 (a).  As in the case of chopped fibers 

the ellipsoids are checked for intersection in 3D space using the three-step hierarchical approach 

discussed above. To this effect, an ellipsoid is discretized into a convex polyhedron with 48 sub-

surfaces, as shown in Figure 16. The three-step hierarchical intersection check in 3D is outlined 

in Figure 17. A unit cell with randomly sized and oriented ellipsoids is depicted in Figure 15 (b). 

(a) (b) 
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Figure 15: (a) Geometry of an ellipsoidal inclusion  (b) an ellipsoidal inclusion unit cell 

 

Figure 16: Discretization of an ellipsoidal inclusion into 48 faces 
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Figure 17: A three-step hierarchical intersection check algorithm 

 

The computational times involved in generating a unit cell with ellipsoidal inclusions by 

employing the method of separating axes alone and the three step hierarchical approach for is 

shown in Figure 18. It is evident that the three-step intersection checking approach significantly 

reduces computational cost when compared with the method of separating axes alone. 
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Figure 18: Comparison of cpu times between method of separating axes and the 3-step hierarchical method 

3.7 Statistical Study to Determine the Size of Unit Cell 

For random microstructure composites there are several definitions of the unit cell or 

representative volume element (RVE). The first definition suggests that the unit cell is a 

statistical representation of the microstructure of the composite material. This implies that the 

unit cell size should be sufficiently large to include an effective sampling of all the 

heterogeneities including grains, cracks, voids and inclusions. The average of the estimates of 

material properties should be accurate and the scatter should be small. The second definition by 

Drugan and Willis [79] suggests that the unit cell is the smallest volume element of the material 

for which the spatially constant “overall modulus” macroscopic constitutive representation is a 

sufficiently accurate to represent mean constitutive response. This definition does not insist that 

the scatter be small but only the average of the estimates be accurate, which is a 

superimposition of all the possible fluctuations associated with local microstructure. Kanit et al. 

[80] suggests that smaller unit cells with morphological or physical properties averaged over 

several number of realizations of the unit call may be used to get the same accuracy as given by 

a large unit cell which is a statistical representation of the microstructure. The variance for each 

unit cell size is used to define the precision of the property estimates. The notion of integral 

range is used to relate the precision to the minimum unit cell size. Thus for a given precision 
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and number of realizations the minimum required unit cell volume can be determined to give 

accurate effective properties.  

In this section we present a study to determine the size of the unit cell with randomly 

distributed chopped fibers. The scope of the research involves computation of the effective 

properties, in this case the homogenized modulus averaged over several realizations for five 

different unit cell sizes and study the distribution of the variance and mean of the homogenized 

properties in comparison to the experimentally observed mean properties, based on which the 

effective size of the unit cell is decided. The study also investigates whether or not, the optimal 

size of the unit cell depends on the relative physical and mechanical properties of the phases 

comprising the microstructure. In our study we consider carbon fiber, which is approximately 

two orders magnitude stiffer than the resin phase, and the glass fiber, which is approximately 

one order of magnitude stiffer than the resin phase.  

The unit cell in-plane dimensions are considered to be equal and parameterized in terms 

of the random chopped fiber length. The unit cell thickness is determined by the fiber cross-

section area and is set to 4.15 * b for all the five cases, where b is the semi-minor axis of the 

elliptical cross-section of the fiber. Various number of realizations are carried out for size ratios 

of 1.0, 1.5, 2.0, 2.5 and 3.0, where the size ratio (SR) is defined as 

 Unit Cell planar dimenisonSR=
fiber length

 (3.12) 

The statistical study has been implemented in a stochastic multiscale framework. At the coarse-

scale coupons of the glass and carbon fiber reinforced composites are subjected to uniaxial 

tension test. The fine scale microstructure geometry is constructed by utilizing the HRSA 

algorithm presented in Section 2.2. The unit cell problem is then subjected to six modes of 
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deformation and the stress influence functions are computed by solving the unit cell problem 

[31-33]. The homogenized elastic stiffness tensor is computed by integrating the stress influence 

function over the unit cell domain. The flowchart illustrating the statistical study framework is 

shown in Figure 19.  The following guidelines are adhered to in determining the optimal unit 

cell size.  

(i) The in-plane Young’s moduli in tension ( 11 22,c cE E ) averaged over the realizations 

should converge and they should converge to the spatially constant mean response 

c
effE   observed in the experiments. 

(ii) The variance or the relative error of the averaged properties should be within a 

specified tolerance. 

(iii) There exists a unit cell in the realization history that has the in-plane moduli equal to 

the mean moduli that is 11 22
c c c

effE E E= = . This is required in order to conduct model 

reduction on a macroscopically homogeneous unit cell.  
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Figure 19: Statistical study framework 
 

3.7.1 Carbon Fiber Microstructure 

The results of the statistical study involving the randomly distributed carbon fiber 

composite unit cell are presented in this section. Figure 20 to Figure 24 depict the average in-

plane elastic moduli as obtained over the increasing number of realizations for each of the five 

cases for carbon fiber composite. 
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  Figure 20: Carbon fiber microstructure: Averaged in-plane moduli for SR=1.0  
 

 
Figure 21: Carbon fiber microstructure: Averaged in-plane moduli for SR=1.5 

 

 
Figure 22: Carbon fiber microstructure: Averaged in-plane moduli for SR=2.0  
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Figure 23: Averaged in-plane moduli for SR=2.0 and SR=2.5 
 

 

Figure 24: Carbon fiber microstructure: Averaged in-plane moduli for SR=3.0 
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cell. The averaged in-plane moduli, the variance and the relative error are presented in Figure 

25, Figure 26 and Figure 27 respectively. 

 

 

Figure 25: Mean of homogenized modulus for carbon fiber microstructure for SR=1.0 to SR=3.0 
 

 

Figure 26:  Variance of homogenized modulus for carbon fiber microstructure for SR=1.0 to SR=3.0   
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Figure 27: Carbon fiber microstructure: Relative error for SR=1.0 to SR=3.0 
 

It is evident from Figure 25  that for the size ratio greater than 2.0 the mean in-plane moduli 

averaged over realizations is nearly constant. The relative error in Figure 27 decreases according 

to power law with the relative error being less than 5% for size ratio (SR) greater than two. The 

mean computational time for generating the unit cell and computing the homogenized modulus 

tensor for all five cases is presented in Figure 28. It can be seen that the mean computational 

time increases exponentially with the increase in the size of the unit cell.  

 

Figure 28: CPU time for SR=1.0 to SR=3.0 
 

 

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5

Re
la

tiv
e 

er
ro

r (
%

) 

Size Ratio 

Rel Error E11

Rel Error E22

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

7000.00

0.5 1.0 1.5 2.0 2.5 3.0 3.5

M
ea

n 
C

PU
 ti

m
e 

(s
) 

Size Ratio 

Mean_CPU

 



                                                                                                                                                65 
 

For the case with SR = 2.0 it takes a fairly reasonable number of realizations (around 30) to 

converge and a mean computational time per realization is roughly 550 s. Thus the total CPU 

time is approximately 16500 s and the relative error is around 4%. For the case with size ratio of 

2.5 and 3.0 the relative error is around 2% and convergence to the mean in 20-25 realizations is 

around 55000 s for SR=2.5 and 106000 s for SR=3.0. Thus SR = 2.0 seems to be optimal and is 

chosen to statistically represent the microstructure of the random chopped fiber composite 

material.  

 

3.7.2 Glass Fiber Microstructure 

In this section we conduct statistical study for the chopped glass fiber unit cell. As in the 

previous section the averaged in-plane elastic modulus is obtained over the increasing number 

of realizations for each of the five cases as shown in Figure 29 - Figure 33. Unlike for the carbon-

fiber unit cell, the averaged in-plane elastic modulus for the glass-fiber unit cell converges for 

all the five cases. The number of realizations required for convergence decreases with increasing 

SR. Since the geometry of the unit cell remains the same, the mean computational time for 

generating the unit cell and computing the homogenized modulus tensor for all five cases is the 

same as in Figure 28. The in-plane elastic modulus variance as a function of the size ratio for 

both the carbon and glass fiber unit cell microstructures is shown in Figure 35.  
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Figure 29: Glass fiber microstructure: Averaged in-plane moduli for SR=1.0 
 

  
Figure 30: Glass fiber microstructure: Averaged in-plane moduli for SR=1.5  

 

 

Figure 31: Glass fiber microstructure: Averaged in-plane moduli for SR=2.0 
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Figure 32: Glass fiber microstructure: Averaged in-plane moduli for SR=2.5 
  

 

Figure 33: Glass fiber microstructure: Averaged in-plane moduli for SR=3.0 
 

  

Figure 34: Glass fiber microstructure: Averaged in-plane moduli for SR=3.0 and relative errors 
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Figure 35: The in-plane elastic modulus variance as a function of the size ratio for both the carbon and glass fiber 
unit cell microstructures 
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3.8 Methodology to Control the Volume Fractions of Constituent Phases  

The volume fractions of the constituent phases in the unit cell are affected by the 

geometry idealization and mesh size. Geometric approximation errors are introduced when 

curved features in the geometry are approximated by planar surfaces. Consequently, the 

resulting volume fractions of the constituent phases may vary from the actual volume fractions 

of phases. The errors introduced by mesh discretization can be reduced by refining the mesh, 

but this will significantly increase the computational cost involved in solving the unit cell 

problem. Alternatively, one can generate a higher volume fraction of the constituent phases 

than required, so that the resultant volume fraction attained is equal to the actual volume 

fraction of the constituent phase [54]. In the present study, the mesh density parameter is 

specified as a multiple of the fiber cross-section semi-minor axis b. For a mesh seeding size 

equal to b, the error introduced by mesh discretization has been found to be approximately 7%. 

The volume fraction errors introduced by finer mesh densities have been pre-computed by 

numerical experiments. The following empirical equation was employed to obtain a desired 

volume fraction 

 (1 )gen act error
f f fV V V= +  (3.13) 

where gen
fV is the volume fraction generated, des

fV is the desired volume fraction of the inclusion 

in the random chopped fiber composite and error
fV is the error in the volume fraction introduced 

by mesh discretization. 
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3.9 Conclusion 

In this chapter a parametric model for generating unit cells with randomly distributed 

inclusions is developed. The proposed algorithm is robust, yields unit cells with fiber volume 

fraction of up to 45% for aspect ratios as high as 20 and possesses versatility by being able to 

generate unit cells with inclusions of varying shapes and sizes. Computational efficiency is 

incorporated into the algorithm through a hierarchy of algorithms with increasing 

computational complexity. The method has been implemented to generate to microstructure 

geometries of various random inclusion composites, namely two-dimensional chopped tow 

composites; polyurea or polyethene coating consisting of hard and soft domains (segments) and 

carbon fiberform embedded in, or free from an amorphous matrix. A statistical study aimed at 

determining the effective size of the unit cell is conducted. The study considered two material 

systems, namely 35% by volume randomly distributed glass fiber microstructure geometry and 

a 35% by volume randomly distributed carbon fiber microstructure geometry. For the carbon 

fiber microstructure, the averaged in-plane elastic moduli converged to the effective properties 

for cases with SR>2.0 only and the suggested optimum SR is 2.0. For the glass fiber 

microstructure the in-plane averaged elastic moduli converged for all the five cases and the 

optimum SR is 1.5. This leads to a conclusion that for a given material system with randomly 

distributed inclusions the optimal size of the unit cell depends on the relative stiffness of the 

phases comprising the microstructure. 
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Chapter 4  

Space-Time Multiscale Homogenization for Heterogeneous Materials 

In this chapter the temporal homogenization theory is formulated. The theory is integrated with spatial homogenization theory 

presented in Chapter 2 to develop a unified space-time homogenization theory to analyze problems consisting of multiple length 

scales and multiple domains. The model is validated for fatigue life analysis of high temperature CMC’s with turbo-machinery 

applications.  The inputs from co-authors of the paper (Bailakanavar et.al. [84]) from which the main sections in this chapter are 

reproduced are gratefully acknowledged. 

 
 
 
 
 

4.1 Introduction 

Fatigue of heterogeneous material systems is a multiscale phenomenon in space and 

time. It is multiscale in space due to the fact that the size of a material heterogeneity, defects and 

cracks could be of several orders of magnitude smaller than of a structural component. It is 

multiscale in time because the cyclic load period could be of the order of seconds while 

component life may span years. Owing to this tremendous disparity between spatial and 

temporal scales, component fatigue life prediction poses tremendous challenge to engineers. 

The study of fatigue life prediction dates back to the 19th century [85]. The first paper 

describing failure due to cyclic loading was published in 1829 [86]. Fatigue life prediction 

methods range from sole experimentation, to modeling and computational resolution of spatial 

scales. Today, experiments are the essential design tools for fatigue life estimations. S-N curves 

[87], which provide component life versus cyclic stress/strain level information, are the most 

commonly used tools in practice. Due to considerable scatter in fatigue life data, a family of S-N 

curves with probability of failure known as S-N-P plots is often used. On the other hand, 

numerical studies of fatigue life prediction often employ the Paris law [88] for predicting high 

cycle (~ above 1000 cycles) fatigue life and the ε-N curves [89, 90] for low cycle fatigue life (~ 
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below 1000 cycles). More recently, fatigue life predictions based on continuum damage 

mechanics (CDM) have been advocated for homogeneous [91-96] and heterogeneous [97-99] 

materials. 

Paris law [88] can be viewed as an empirical temporal multiscale approach, which states that 

under ideal conditions of high cycle fatigue (or small scale yielding) and constant amplitude 

loading, growth rate of long cracks depends on the amplitude of the stress intensity factors. 

Models departing from these ideal conditions have also been developed and implemented [100-

103]. Various crack growth “laws” have been used in conjunction with multiple spatial scales 

methods to propagate arbitrary discontinuities. 

An alternative to Paris-like fatigue models is to carry out a direct cycle-by-cycle 

simulation. These simulations often employ a cohesive law to model fatigue crack growth based 

on unloading-reloading hysteresis [104]. However, the cycle-by-cycle approach is not feasible 

for high cycle fatigue life prediction of large scale heterogeneous systems. Nevertheless, an 

attractive feature of this approach is that it provides a unified treatment of long and short cracks 

and the ability to account for overloads. 

To circumvent the computational challenges posed by the cycle-by-cycle simulation, 

several temporal multiscale approaches have been proposed. The first is often coined as a 

“block cycle jump” technique [99, 105, 106] wherein the rate of damage growth due to fatigue 

during a single load cycle is computed at each spatial integration point by constructing an 

ordinary differential equation 

 ( ) ( ) ( )
−

= −
1K K

I
I I

dw
w w

dt
x

x x  (4.1) 
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where ( )Iω x  is the damage variable at an integration point Ix , t is the cyclic load period; and 

K is a cycle count. The block cycle jump is closely related to the unified brittle-fatigue damage 

model [107]. The second approach [50, 108-110] employs a multiple temporal scales asymptotic 

analysis. By this approach, loads and response fields are assumed to depend on slow time 

coordinate t, due to slow degradation of material properties during fatigue, as well as on fast 

time coordinateτ , due to locally periodic loading in time domain.  

In the present chapter, a unified space-time multiscale homogenization framework is 

developed for modeling of fatigue induced damage and prediction of fatigue life. We show that 

essentially the above mentioned temporal multiscale approaches are closely related and that the 

unified framework can be effectively utilized in practice for arbitrary material architectures and 

constitutive equations of phases at the fine scale. We start by introducing multiple temporal 

scales in the context of a single spatial scale and discuss the application of the proposed 

framework to model the phenomenon of fatigue. Consideration of multiple spatial and 

temporal scales is subsequently discussed. The unified space-time multiscale homogenization 

model is validated for high temperature ceramic matrix composites (CMC). In the present study 

we consider a local damage model where the finite element mesh serves as a localization 

limiter. A more general formulation necessitates consideration of non-local and gradient models 

(see [111] for nonlocal fatigue model).  

4.2 Temporal Homogenization 

In this section a unified temporal homogenization model is developed for homogeneous 

materials. Generalization of this approach to heterogeneous materials involving multiple length 

scales and multiple domains is presented in Section 4.3. The premise of the temporal 

homogenization formulation lies in the assumption that the damage nucleation and subsequent 
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degradation of material properties occurs in a slow time scale as compared to the fast time scale 

in which the cyclic loads are applied. This assumption allows us to implement a temporal scales 

separation. The slow timescale is denoted by t and [ ],t N∈ 0  where N is a number of cycles until 

failure. The fast timescale is denoted by τ  and [ ]0,τ τ∈ 0 . The fast time scale is chosen to satisfy 

the local periodicity (τ - periodicity) assumption, similar to the fine-scale periodicity 

assumption in the spatial homogenization theory. The fast timescale is related to the slow 

timescale by tτ η=  where 0 1η<   . The response fields φ  are assumed to depend on the two 

temporal scales: 

 ( ) ( ), , ,x t x tηφ φ τ=   (4.2) 

Time differentiation of response fields with respect to multiple temporal scales is given by the 

chain rule: 

 ( ) ( ) ( ) ( ) ( ), , , , ,1 1, , , ,
d x t x t x t

x t x t
dt t

ηφ φ τ φ τ
φ τ φ τ

η τ η
∂ ∂

′= + = +
∂ ∂

  (4.3) 

where d
dt

ηφ , φ , ′φ denote total time derivative,  partial time derivative with respect to slow time 

variable t and partial time derivation with respect to fast time variable τ  , respectively.  

Consider a homogeneous inelastic solid subjected to periodic loads and/or boundary 

conditions in time domain. Assuming, for simplicity, small deformations the governing 

equations are 
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[ ] [ ]

( ) [ ] [ ]

[ ] [ ]

[ ] [ ]

, 0

0

( , ) 0
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u
i i

ij j i
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x t L x x t x t N

x t u x t N

u x t u x t N

x t n t x t

σ τ τ τ

σ τ ε τ µ τ τ

ε τ τ τ

τ τ τ

σ τ τ

+ = Ω × ×

= − Ω × ×

= Ω × ×

= ∂Ω × ×

= ∂Ω [ ] [ ]00, 0, .t N τ× ×

 (4.4) 

The eigenstrain evolution equation can be expressed as 

 ( ), ,kl
ij

d f s
dt
µ

σ ε=  (4.5) 

where denotes state variables. Applying temporal differentiation rule in (4.3)  to (4.5) yields 

 ( )1 , ,kl
kl kl ij

d f s
dt

ηµ
µ µ σ ε

η
′= + =  (4.6) 

Consider the leading order term in asymptotic expansion of eigenstrains 

 ( ) ( ) ( ), , , , , ( )kl kl klx t x t x t Oηµ µ τ µ τ ζ≡ = +  (4.7) 

Substituting (4.7)  into (4.6)  yields the leading order equation 

 ( ) ( ), ,
0 ,kl

kl kl

x t
x t

µ τ
µ µ

τ
∂

= → =
∂



   (4.8) 

Thus the leading order eigenstrain is only a function of slow time coordinate t  , i.e. 

 ( ) ( ) ( ), , ,kl klx t x t Oµ τ µ η= +  (4.9) 

Equation (4.9) suggests that inelastic deformations evolve slowly in time, i.e., it is little affected 

by what happens in a single load cycle. Applying the time-averaging operator 

is
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 ( ) ( )0

0
0

1, , , ,x t x t d
τ

φ τ φ τ τ
τ

≡ ∫  (4.10) 

to (4.9)  yields 

 ( ) ( ) ( ), , ,kl klx t x t Oµ τ µ η= +  (4.11) 

Given the above definition of the time-averaging operator we can state the leading order slow-

evolving (time-homogenized) governing equations 

 

[ ]

( ) [ ]

( ) [ ]

[ ]

[ ]

,

,

( , ) ( , ) 0 on   0, ,

( , ) ( ) ( , ) ( , ) on   0, ,

( , ) ( , ) on   0, ,

( , ) ( , ) on  0, ,

( , ) ( , ) on  0, .

ij ij

ij ijkl kl kl

ij i j

u
i i

t
ij j i

x t b x t N

x t L x x t x t N

x t u x t N

u x t u x t N

x t n t x t N

σ

σ ε µ

ε

σ

+ = Ω ×

= − Ω ×

= Ω ×

= ∂Ω ×

= ∂Ω ×



 (4.12) 

To complete the definition of the initial-boundary value problem for the time-averaged 

governing equations in (4.12), it remains to construct the evolution equation for the leading 

order eigenstrain ( )klµ x,t  with respect to slow time scale. The time derivative ( )klµ x,t  after 

 cycles can be evaluated using finite difference over two subsequent cycles 

 1( , ) ( , ) ( , )kl kl klt K t Kt K
x t x t x tµ µ µ

= = −=
= −  

  (4.13) 

Substituting (4.9) into (4.13)  and denoting ( ) ( )01, , 0t K t Kτ τ τ= − = ≡ = = yields the evolution 

equation of the leading order eigenstrain with respect to the slow timescale  

 0( , ) ( , - 1, ) ( , , 0)kl kl klt K
x t x t K x t Kµ µ τ τ µ τ

=
≅ = = − = =

  (4.14) 

t K=
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Equation (4.14) states that the eigenstrain growth rate with respect to slow timescale can be 

approximated by computing the difference between the values of eigenstrain in the beginning 

and the end of the previous load cycle.  

Using forward Euler’s integration the eigenstrain after Kt∆ cycles from the current load cycle K 

can be approximated by 

 ( , ) ( , ) ( , )kl kl kl Kt K t t K t K
x t x t x t tµ µ µ

= +∆ = =
= + ∆  

  (4.15) 

The relation in (4.15) is termed as the predictor. It is important to note that by evolving 

eigenstrains (4.15) while keeping the rest of the fields (stresses, strains, etc.) unchanged would 

violate the governing equations in (4.4) .This inconsistency can be alleviated by equilibrating 

discrete equilibrium equations. In the remainder of the chapter, this process will be referred as  

consistency adjustment. 

The block size is selected to ensure accuracy based on the following criteria: 

Let a∆ µ be user-defined allowable eigenstrain increment for Kt∆ cycles and max
I

∆ µ be the norm 

of the largest eigenstrain increment obtained in a single cycle among all the quadrature points I. 

Then the initial value of Kt∆ can be evaluated as { }int /maxK a I
t µ µ∆ = ∆ ∆  where {}int ⋅ denotes 

truncation to the decimal part. 

Given the above initial value of the block size evaluate the eigenstrain based on the average 

of the growth rates at ( , )kl t K
x tµ

=



  and ( , )
K

kl t K t
x tµ

= +∆



   

 ( )( , ) ( , ) ( , ) ( , )
2K K

cor K
kl kl kl klt K t t K t K tt K

tx t x t x t x tµ µ µ µ
= +∆ = = +∆=

∆
= + +   

   (4.16) 

Kt∆

Kt∆
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The relation in the above equation (4.16) is termed as the corrector. If the difference in some 

norm between the predictor (4.15)  and corrector (4.16)  is sufficiently small then the step is 

accepted and the above mentioned consistency adjustment is performed.  Otherwise the block 

size is halved and the predictor-corrector step is repeated. 

We now focus on solution post processing, similarly to the post processing in the spatial 

homogenization. Let *φ  be the fast-time correction from the average defined by 

 * ζφ φ φ= −  (4.17) 

Then the governing equations for the fast-scale correction *
iu can be obtained by subtracting the 

governing equation for the temporal averages in (4.12)  from (4.4) , which yields 

 

[ ]

[ ]

[ ]

[ ]

[ ]

,

* *
0

* *
0

* *
( , ) 0

* *
0

* *
0

( , ) ( , ) 0    0, ,

( , ) ( ) ( , )    0, ,

( , ) ( , )    0, ,

( , ) ( , )   0, ,

( , ) ( , )   0, .

ij j i

ij ijkl kl

ij i j

u
i i

t
ij j i

x b x on

x L x x on

x u x on

u x u x on

x n t x on

σ τ τ τ

σ τ ε τ τ

ε τ τ τ

τ τ τ

σ τ τ τ
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= ∂Ω ×

= ∂Ω ×

 (4.18) 

It is instructive to point out that the above equations are linear. Moreover, if the prescribed 

boundary conditions and body forces have the same 0τ periodicity, then * ( , )ib x τ , * ( , )iu x τ , * ( , )it x τ  

and the resulting fast-scale correction * ( , )iu x τ can be computed by analyzing a linear problem 

(4.18)  over a single load cycle. Finally, if * ( ,0)ib x , * ( ,0)iu x , * ( ,0)it x vanish at 0τ =  then in the case 

of quasi-static loading the fast-scale correction vanish at the start and at the end of the cycle. 
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4.3 Unified Space-Time Multiscale Homogenization 

Having developed the temporal homogenization model in context of a single spatial 

scale (inelastic homogeneous solid), we proceed to develop the unified formulation. The 

phenomenon of fatigue involves multiple length scales in space and time domains and hence 

the formulation is termed as unified space-time multiscale homogenization. 

For a heterogeneous inelastic solid subjected to cyclic loading the spatial and temporal 

homogenization procedures can be sequentially applied starting with spatial upscaling. Spatial 

upscaling based on the reduced order homogenization described in Chapter 2, gives rise to the 

following equations at the coarse scale [26-33]: 
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 (4.19) 

The coarse-scale stress in the reduced order spatial homogenization theory is updated by the 

fine-scale partitioned eigenstrain and partitioned eigen-separation [31-33]. The coarse-scale 

eigenstrain evolution equation will be constructed from the reduced order constitutive 

equations of partitioned eigenstrain and partitioned eigen-separation 

 
( )

( ) ( ) ( )( ) ( )( )
( )

( ) ( ), ; ,mn n
nmn n

d d ff s stdt dt

α ξ
α ξ ξα α ξµ δε= =









  (4.20) 
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We proceed by decomposing the coarse-scale governing equations (4.19)  into a slow timescale 

and a fast timescale initial and boundary value problem (IBVP) using the temporal averaging 

operator (4.10)  and the time differentiation rule (4.3) .  

Applying the time differentiation rule in equation (4.3)  to the partitioned eigenstrain and eigen-

separation in equation (4.20) yields 
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 (4.21) 

From (4.21) it follows that the leading order partitioned eigenstrains and eigen-separations do 

not depend on fast-time coordinate, i.e.   

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )( )
ˆ ˆ

, , ,

, , ,

kl kl

n n

x t x t O

x t x t O

α α

ξξ

µ τ µ η

τ ηδ δ

= +

= +





 (4.22) 

Likewise the leading order coarse-scale eigenstrain can be expressed as a function of the slow 

timescale coordinate t  

 ( ) ( ) ( ), , ,c c
kl klx t x t Oµ τ µ η= +  (4.23) 

The coarse-scale equilibrium equation and the constitutive equation along with the initial and 

boundary conditions of the slow-evolving IBVP are obtained by time averaging the coarse-scale 

governing equations in (4.19)  over fast time coordinate oτ   
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 (4.24) 

To complete the definition of the coarse-scale-slow-time IBVP in (4.24), the partitioned 

eigenstrain ( )( , )kl K
x tαµ , and eigen-separation ( )( )

ˆ ,ξ

n K
x tδ



  growth rate over a single load cycle are 

calculated using finite difference method as follows 
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 (4.25) 

The phase eigenstrains and eigen-separations over Kt∆ cycles from the current load cycle K can 

be approximated by employing the Euler’s integration scheme  
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 (4.26) 

The relation in (4.26) is termed as the predictor. The block cycle size Kt∆ is chosen such that the 

maximum phase eigenstrains and eigen-separations are kept sufficiently small. The block cycle 

size is calculated as: 

 ( ){ }( ) ( )

( ) ( )

,
int max / , /

I I
K a a

x x S
t

β ξ

β ξµ µ δ δ
∈Θ ∈

∆ = ∆ ∆ ∆ ∆


 

   (4.27) 
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where aµ∆   and aδ∆


 are user-defined allowable phase eigenstrain and eigen-separation 

increments;  ( )βµ∆   and ( )ξδ∆


are the eigenstrain and eigen-separation increments obtained in 

a single cycle;  ( )
Ix β∈Θ and ( )

Ix S ξ∈ denote quadrature points in the phase and interface 

partitions, respectively.  

The equilibrium equations in (4.19)  will be violated if the eigenstrains and eigen-separations in 

(4.26) are only evolved while keeping the rest of the response fields unchanged. This 

inconsistency can be alleviated by performing a non-linear finite analysis at the end of the load 

cycle to equilibrate the discrete equilibrium equations, the process being termed as consistency 

adjustment. 

A predictor-corrector scheme as described in Section 4.2 is employed to evaluate the 

eigenstrains and eigen-separations. 

Given the above initial value of the block size Kt∆ predict the eigenstrain and eigen-separation 

as 
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 

 (4.28) 

Again, the relation in (4.28) is termed as the corrector. If the difference between the predictor in 

(4.26) and corrector in (4.28) is sufficiently small then the step is accepted and the 

aforementioned consistency adjustment is performed. Else, the block size is halved and the 

predictor-corrector step is repeated. 
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 The governing equations for the coarse-scale-fast-time IBVP are obtained by subtracting 

the governing equations for the slow time scale IBVP in (4.24) from (4.19) , which yields the 

following linear strong form over [ ]0Ω 0,τ×  
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 (4.29) 

The constitutive equations in (4.24) and (4.29) are two way coupled. The fast timescale IBVP in 

(4.29) is solved at every time step of the slow timescale IBVP. Modeling of damage induced by 

fatigue and the numerical implementation aspects are given in Section 4.4 and Section 4.5 

respectively. 

4.4 Fatigue Damage Model 

In cyclic loading, the damage accumulation due to fatigue depends on damage 

accumulation history, cyclic load amplitude and frequency, material properties, and 

environmental effects.  In the present work, we employ continuum damage based fatigue model 

[27, 99]. By this approach we define a pseudo damage parameter ( ) [ ]ˆ ( , ) 0,1x tηω ∈ at a given time t 

as 

 ( ) ( ) ( ){ }( )
( ) ( ){ }( )

( )

( , )
ˆ ( , ) ( , ) ,   0
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x t
x t x t

η η

η η η
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ϑ
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+

∂Φ −
= Φ − ≥

∂
 (4.30) 
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where ( )ηϑ is the phase equivalent strain (see [27, 99] for definition); ( )
ini
ηϑ  denotes the phase 

equivalent strain at onset of damage; ( )ηΦ  is the damage evolution law for each phase partition.  

The operator {}+
⋅ denotes the positive part, i.e. {} { }0,·sup

+
⋅ = . The phase damage parameter ( )ηω  

for quasistatic loading is defined as 

 ( ) ( ) ( ){ }ˆ( , ) max ( , )x t x t tη ηω ω τ= ≤  (4.31) 

By incorporating the gauge function  [112] defined as 

 
( ) ( )

( ) ( )

ˆ η η

η η
ωφ
ω ω

Φ
= =  (4.32) 

the rate form of the phase damage law can be expressed as  
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 (4.33) 

where ( )ηγ  is the fatigue law material parameter for phase partition η ; 
( )

( )
( ){ }

+

∂Φ

∂


η
η

η
ϑ

ϑ
 represents 

the instantaneous quasistatic damage accumulation due to the phase equivalent strain ( )ηϑ . 

4.5 Implementation of the Space-Time Multiscale Homogenization Model 

In this Section we focus on the implementation of the unified space-time multiscale 

homogenization model for high temperature CMC material system. The fibrous composite 

material microstructure comprises of matrix and tow phases. For simplicity, attention is 

restricted to evolution of damage in the phases only, assuming the interfaces to be perfectly 
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bonded. Prior to the nonlinear analysis, the partitioned elastic strain influence functions, the 

eigenstrain influence functions [31-33]  are pre-computed by solving the RVE problem.  

4.5.1 Integration of Spatial Homogenization Model 

The implementation of the reduced order spatial homogenization formulation involves 

evaluating the phase strains, eigen-fields and updating the phase stresses and the coarse-scale 

stresses. At any given slow time t, the coarse-scale strain c
mn t

ε , and the coarse-scale strain 

increment c
mn∆ε  are known at the beginning of the load increment. The goal is to update the 

overall coarse-scale strain c
mnε , the phase strain ( )

mn
ηε , the phase damage parameter ( )ηω , the 

damage phase equivalent strain ( )ηϑ , the phase stresses ( )
mn
ησ  and the overall coarse-scale stress

c
mnσ . The update algorithm is outlined below. 

(i) Update the overall coarse scale strain c c c
mn mn mnt

= + ∆ε ε ε  

(ii) Solve the nonlinear equation (2.30) to evaluate the strain fields in the phases at the fine 

scale. Compute the phase damage equivalent strain ( )ηϑ  

(iii) Check if the process is inelastic, i.e. ( ) ( )
ini>η ηϑ ϑ . If process is inelastic, update the phase 

damage parameter ( )ηω by integrating equation (4.33) using backward Euler  scheme 

such that  

 ( )
( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) 0
t t

t t

tt
+∆

+∆

 
 
 
 
 

 Φ ∂Φ
ℵ ≡ − − − = ∂ 

ηγη η
η η η η

η ηω ω ϑ ϑ
ω ϑ

 (4.34) 

The above equation is nonlinear in ( )ηω and is solved using the Newton iteration as 

( )

1( )
( ) ( ) ( )1

( )
i

i i
−

+
  ∂ℵ = − ℵ 

∂    η

η
η η η

η

ω

ω ω
ω

                                      (4.35) 
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where the left superscript denotes iteration count.  

(iv) If the process is elastic, then ( ) ( )
t

=η ηω ω  

(v) Update the phase eigenstrain ( )
mn
ηµ  using the constitutive relation in (2.34) 

(vi) Update the coarse-scale stress c
mnσ using equation (2.38) 

(vii) For an implicit solver compute the coarse scale consistent tangent tensor using 

equation (2.44) 

A detailed schematic of the two scale reduced order spatial homogenization model is depicted 

in Figure 36 below. 
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Figure 36: Schematic of the two scale reduced order homogenization model 
 

4.5.2  Integration of Temporal Homogenization Model 

Consider time t in the slow time scale at the beginning of a load cycle K-1, where the fine 

scale fields and coarse-scale fields are known at time t. Perform an incremental finite element 

analysis for one load cycle as mentioned in Section 4.5.1, wherein the coarse-scale strain
1
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strain ( )
1mn K−

ηε are known at the beginning of the load cycle. To update the phase damage 

parameter ( )
K

ηω  it is necessary to integrate the phase damage parameter in equation (4.33) over 

the loading path as 

 ( ) ( )
( )

( )

( )
( )

( )
( )

0 0

,
t t

t t

x t dt
+ +

+

 Φ ∂Φ
=    ∂ 

∫ ∫ 



ηγτ τ η η
η η

η η
ω ϑ

ω ϑ
 (4.36) 

where t is the slow time scale coordinate at the  beginning of the load cycle and 0τ is the load 

cycle period. Since the phase damage growth rate over a single cycle is very small the damage 

growth rate over a number of cycles may be approximated as   

 ( ) ( )
0( )

( ) ( )

1
( , )

t

t K K K
tt K

d x t dt
dt

+

= −
=

≈ ≡ ∆ = −∫ 

τη
η ηη ηω ω ω ω ω  (4.37) 

The above equation is similar to equation (4.25) wherein the eigenstrain is a function of the 

coarse-scale strain and the phase damage parameter. 

Similar to equation (4.26) the phase damage over a block size Kt∆ is computed using the 

forward Euler integration rule 

 ( ) ( ) ( )
( )K

KK t K
t

+∆
= + ∆ ∆η η ηω ω ω  (4.38) 
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Figure 37: Adaptive block scheme for fatigue life estimation 

 

To ensure consistency of the solution, it is necessary to equilibrate the discrete equilibrium 

equations at the end of the load cycle. The criterion for choosing the block cycle Kt∆ is specified 

in equation (4.27). To control the accuracy of the block cycle scheme the phase damage 

parameter is also calculated based on the average growth rates at ( )Δ
K

ηω  and ( )
( )Δ

K

η
K tω +∆  as 

illustrated in Figure 37. 
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cor K
K tK

t η ηη ηω ω ω ω
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∆
= + ∆ + ∆  (4.39) 

If the difference between the predictor (4.38) and corrector (4.39) is small the block cycle size is 

accepted and the fatigue life is updated as  

 max
1

; 0
n

K K
K

t n t t
=

= + ∆ ∆ ≥∑  (4.40) 

where n is the number of the cycle blocks in the loading history. If the difference between the 

predicted and corrected values is large, then the block cycle size is halved and the predictor-
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corrector algorithm is repeated. The predictor-corrector integration algorithm is summarized 

below. 

(i) Let time t, be the time in the loading history corresponding to ( )1 thK − cycle.  

(ii) Perform an incremental finite element analysis for one load cycle as mentioned in 

Section 4.5.1 with the coarse-scale strain as
1

c
mn K
ε

−
and the phase damage parameter as

( )

1K

ηω
−

. The computed  phase damage at the end of the load cycle is denoted by ( )

K

ηω  

(iii) Calculate the initial block cycle size Kt∆ in equation (4.27). 

(iv) Compute the phase damage parameters ( )

( )KK t

ηω
+∆

and 
)

( )

( K

cor

K t

ηω
+∆

using the forward 

Euler integration in equation (4.38). 

(v) Check for convergence 

 { })

( ) ( )
( ) (K K

cor
K t K tmaxGauss errη ηω ω+∆ +∆| | − | | ≤                                                         (4.41) 

 where err is the user-defined error tolerance   

(vi) If criterion in (4.41) is satisfied, update damage parameter by ( )
( )KK t

ηω +∆| , fine scale 

fields and eigen-fields and fatigue life maxt in equation (4.40). 

(vii) Perform consistency adjustment by first computing the phase stresses ( )
mn K

ησ followed 

by coarse-scale stress ( )c
K

xσ . Equilibrate the discrete equilibrium equations at the 

coarse scale. Repeat steps 1-8 for the next load cycle K+1. 

(viii)  If criterion in (4.41) is not satisfied then, halve the time step, 2K Kt t∆ = ∆ / , and repeat 

the above steps until equation (4.41) is satisfied. 

The schematic of the implementation of the unified space-time multiscale formulation is 

depicted in Figure 38 below. 
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Figure 38: Schematic of the unified multi space-time homogenization framework 
 

4.6 Validation of the Space-Time Multiscale Homogenization Model 

In this section, the validation of the unified space-time multiscale formulation for fatigue 

life analysis of a six-layer, five harness satin weave, CMC is presented. The validation study 

consists of two stages. In the first phase the fatigue damage model described in Section 4.4 is 

validated against experimental uniaxial tensile test results of the CMC material system at 
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various elevated temperatures. The second stage consists of validation of the fatigue life 

prediction model described in Section 4.5.2. The microstructure of the composite is assumed to 

be a two-phase periodic material consisting of tows and matrix. The unit cell of the ceramic 

composite is given in Figure 39. 

 
Figure 39: Unit cell model (21767 elements, 4298 nodes) 

 

4.6.1 Validation of Fatigue Damage Model 

Prior to making the fatigue life predictions it is necessary to validate the fatigue damage 

model and optimize the phase elastic and inelastic properties in order to match the coarse scale 

response with the experimental response. We consider an isotropic linear damage model for 

matrix and tow phases with phase damage variables ( ) ( ),mat towω ω  being piecewise-continuous 

function of phase damage equivalent strains ( ) ( ),mat towϑ ϑ  respectively, as shown in Figure 40. 
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Figure 40: Piecewise damage evolution functions for matrix phase (left) and tow phase (right)  

 

The piecewise linear damage model for matrix phase is defined as: 
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and ( )mat
Iε , ( )matS , ( )matG and ( )matE denote the maximum principal eigenstrain, the yield stress, the 

strain energy density,  and the elastic modulus in the matrix phase, respectively. 

The piecewise linear damage model for the tow phase is defined as: 
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The optimization of the phase material properties is conducted by solving an inverse problem 

wherein the error between the experimental observation and simulation is minimized 

                           [ ]2

1

1 1( ) ( ) ( )
2 2

a
T

i i i
i

min F x F x w exp_data sim_data x
=

= −∑
                    (4.44) 

 

where iw denotes weights reflecting the confidence level in various observations.  

First, a quasi-static uniaxial tensile test is performed to characterize quasistatic material 

parameters. The coarse scale finite element model of the uniaxial tensile test is presented in 

Figure 41. 

 
Figure 41: ¼th simulation model of eight-layer, five harness satin weave, ceramic composite 

 

The matrix and tow phase properties were optimized for temperatures 2100F, 2300F and 2400F.  

Once these properties have been characterized the simulation results agree very well with the 
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experimental results for all temperatures considered as shown in Figure 42. The evolution of 

damage in the tows and the matrix is shown in Figure 43 to Figure 45. 

 
Figure 42: Comparison between experimental and simulation stress-strain curves 

 

      
Figure 43: Damage evolution as a function of the phase equivalent strain at 2100F 
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Figure 44: Damage evolution as a function of the phase equivalent strain at 2300F 

 

 
Figure 45: Damage evolution as a function of the phase equivalent strain at 2400F 
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temperature (2100F, 2300F and 2500F). The test coupon is set to fail when the damage in either 

of matrix phase or tow phases reaches a critical value.  

Comparison between the simulation and experimental results are presented in Figure 46 

to Figure 55. The results indicate that failure in the matrix phase occurs prior to failure in the 

tows. The dependence of ( )matγ on loading frequency, amplitude and temperature is depicted in 

Figure 49 and Figure 50 for the low cycle fatigue and in Figure 54 and Figure 55 for the high 

cycle fatigue. Several observations can be made. It can be seen that for the 1Hz cyclic load case, 

the exponent ( )ηγ  is less sensitive to the temperature variations at smaller load amplitudes. 

However for the 60Hz case the exponent ( )ηγ  is sensitive to the temperature variations even at 

low load amplitudes. 

 

 
Figure 46: Simulation vs experimental results at 1Hz and 2100F 
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Figure 47: Simulation vs experimental results at 1Hz and 2300F 

 

 
Figure 48: Simulation vs experimental results at 1Hz and 2400F 

 

 
Figure 49: Gamma exponent vs load for varying temperatures at 1Hz 
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Figure 50: Gamma exponent vs temperature for varying loads at 1Hz 

 

 
Figure 51: Simulation vs experimental results at 60Hz and 2100F 

 

 
Figure 52: Simulation vs experimental results at 60Hz and 2300F 
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Figure 53: Simulation vs experimental results at 60Hz and 2400F 

 

 
Figure 54: Gamma exponent vs load for various temperatures at 60Hz 

 

 
Figure 55: Gamma exponent vs temperature for various loads at 60 Hz 
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4.7 Discussion 

The fatigue damage model does an excellent job of fitting the tensile behavior of the five 

harness satin fabric CMC and quite a good job of fitting the fatigue behavior. More importantly, 

the behavior of the damage rate parameter seems consistent with the mechanical behavior of 

the ceramic composite. However, the extent of the cyclic damage captured by the current model 

and any time dependent damage that is not explicitly modeled is unclear. This uncertainty is 

due to the fact that these are short duration tests, about million plus cycles in 5 hours for the 

60Hz case. The duration presumably emphasizes “mechanical” damage, and the current model 

captures the change in strength due to the increasing temperature. Above 2300F, temperature 

increases do not change the strength significantly, resulting in similar fatigue lives. 

Looking at the details of the results, for a frequency of one Hertz, Figure 50 shows that the 

gamma parameter is primarily a function of load amplitude, showing very little dependence 

upon the influence of temperature. There is some impact of temperature at higher load 

amplitudes. Again, recall the relatively short duration of the 1 Hertz tests. At this frequency, the 

longest test is about two days. Thus, the occurrence of time dependent damage progression is 

modest. At 60 Hertz frequency and load amplitudes lesser than 100 MPa, the behavior of 

gamma is same when compared to the 1Hz case as depicted in Figure 54. 

Figure 55 shows a decrease in the gamma exponent as the temperature increases from 2100F to 

2300F, and then is approximately constant for a further 100F increase. At this load of 83 MPa, 

the composite matrix will show some amount of cracking, thus providing entry for the 

environment and potential time dependent damage. At the low temperature, the damage rate is 

not as severe but increasing temperature increases the damage, reaching some saturation 

between 2300 and 2400F. This mechanism is consistent with the model results shown in Figure 

50 for the 1 Hertz fatigue. 
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In summary, the model captures the monotonic and cyclic damage behavior in a CMC 

material. By incorporating the monotonic behavior into the cyclic model, the model is capable of 

describing the fatigue damage in a manner that is consistent with the damage mechanisms 

observed in the ceramic matrix composites. The cyclic model is calibrated from the results of 

fatigue experiments with high and low frequency triangular waveforms at varying load 

amplitudes and temperatures. These experiments are relatively short in duration, therefore 

limiting the opportunity for occurrence of time dependent damage. Further data is required to 

determine how the model can be extended to other waveforms including hold times and slower 

frequencies. It is anticipated that such an extension might require an explicit time dependent 

function. 

4.8 Conclusions 

In this chapter, the assumption of slow progression of damage and subsequent 

degradation of material properties in comparison to the fast time scale cyclic loading allowed us 

to separate the time scales. The temporal homogenization formulation was developed in Section 

4.2. The reduced order spatial and temporal homogenization models were integrated into a 

unified formulation in Section 4.3. The unified space-time multiscale homogenization 

formulation was validated for fatigue life analysis of ceramic matrix composites. A continuum 

damage mechanics based model was employed for modeling the fatigue induced damage and 

progression. The damage evolution in the matrix and tow phases was modeled with piecewise-

continuous functions of the equivalent strains in the phases. Predictions show good agreement 

with experimental results. The model is consistent with the damage mechanisms observed for 

the composite undergoing monotonic and high frequency cycling. This methodology may be 
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implemented in the development of a structural design tool for CMC hot flow path 

components.   
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Chapter 5   

Multiscale-Multiphysics Homogenization for Heterogeneous Materials 

In this chapter the kinetics of moisture diffusion in fiber reinforced thermoplastics and the influence of moisture on physical and 

mechanical properties are studied. A coupled-multiphysics model is developed to capture the complex behavior of thermoplastic 

material systems in the presence of moisture. The coupled-multiphysics model is integrated with the spatial homogenization 

model to develop a unified multiscale-multiphysics theory to analyze problems consisting of multiple length scales and coupled-

multiple physics problems. The unified framework is validated for analyzing moisture diffusion and degradation of physical and 

mechanical properties of glass and carbon fiber filled thermoplastic material systems.   

 
 
 
 
 

5.1 Introduction 

If one was to try and pinpoint the birth of composites in the automotive sector, then the 

1953 General Motors Motorama would be a good candidate. It was at this event that the 

Chevrolet Corvette was first unveiled [113]. While General Motors is considered to be a pioneer 

in utilization of polymer matrix composites in automotive industry, there has been little 

widespread adoption within the mass production sector. However, there is ample of evidence 

that this state of affairs is rapidly changing. Recent DOT report [114] identified weight 

reduction through lightweight materials as one of the best ways to achieve the reduction of 

energy consumption, lower emissions, and improve safety. Lovins and Cramer [115] and 

Jackson and Schlesinger [116] estimated that fuel economy would improve 5% to 7% for every 

10% vehicle weight reduction and a CO2 emissions reduction of 20 kg for every kg of vehicle 

weight reduction.  With 75% of vehicle gas (energy) consumption directly related to factors 

associated with vehicle weight, the potential benefits of weight reduction will enable smaller 

engine and battery, with corresponding cost and/or performance benefits.  
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The enormous gains offered by polymer matrix composites for automotive applications 

are well documented [117].  Yet, their lack of predictability in automotive fluid environment 

and operating atmospheres (e.g. distilled water, saltwater, high humidity, windshield washer, 

engine coolant, motor oil, brake fluid, gasoline, battery acid) has often resulted in overdesign 

and thus limited their insertion in load bearing components since the overdesigned component 

may not yield any design advantages. There are several reasons for this state of affairs:  (i) 

existence of multiple spatial scales and multiple coupled physical processes including, such as 

thermal, mechanical and moisture diffusion; and (ii) costly environmental degradation 

experiments that require long time exposure of the test specimens to varied levels of humidity 

and temperature conditions. 

Among the variants of thermoplastics, short fiber thermoplastics have been increasingly 

used in the automotive industry as they are less dense than traditional materials. Their usage is 

specifically intended to fill the gap in the mechanical properties offered by continuous-long 

fiber composites primary used as structural members and the mechanical properties offered by 

unreinforced polymer products used as non-load bearing members. Glass and carbon short 

fibers are mainly used as the filling medium with polyamides (PA/Nylon) or polyphthalamides 

(PPA), commonly known as partially aromatic polyamides being the base material. Their 

applications are mainly in body parts: door panels, hoods, bonnets, bumpers; engine parts 

including cam covers, engine mounts, fuel tanks, fuel cells and interior trims including molded 

seats. They enjoy such a great demand due to the factors like manufacturing ease, versatility, 

low cost, corrosion resistance and superior mechanical, thermal and electrical properties. 

Polyamides of semi-crystalline composition are known to absorb moisture due to their 

hydrophilic characteristics. Experimental studies for  PA-6, PA-66 and PA-46 report an 

equilibrium moisture content varying in the range from 1.2 wt.% to 2.5 wt.% at 50% RH and 
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23 Co  temperatures and about 8 wt.% to 9 wt.% upon reaching saturation conditions [118-121]. 

The moisture is first absorbed in to the micro and macro cracks/voids and eventually reaches 

the areas surrounding the fiber matrix interfaces.  The absorbed moisture breaks the inter-

catenary polymer-polymer hydrogen bonds to form water-polymer bonds. The net effect is 

plasticization of the matrix leading to molecular mobilization of the structural units. The 

absorbed moisture induces swelling in the matrix whereas the fibers remain impermeable 

resulting in a differential stress state at the interface, eventually weakening the interfacial 

strength.  

The mechanical and physical properties of thermoplastics are mainly dependent upon 

the molecular mobility of the structural chains [122]. The temperature at which the molecular 

chains acquire mobility is called the glass transition temperature gT . Therefore the mobilization 

of the structural chains due to moisture ingression causes a monotonic decrease in the glass 

transition temperature [123, 124]. The Young’s modulus is dependent upon the concentration of 

the inter-catenary hydrogen bonds (7). Since the absorbed moisture breaks the inter-catenary 

hydrogen bonds a reversible loss in strength and stiffness, consistent with the decrease in Tg 

has also been reported by [125, 126]. 

The present experimental practices to evaluate environmental degradation of 

thermoplastics involve long time exposure of the test specimens to varied levels of humidity 

and temperature conditions. More often, these experimental methods involve tremendous cost 

and time; the setups are hard to conduct and generally fail to shed enough light on the complex 

behavior that the material system exhibits in the presence of moisture. It is therefore necessary 

to develop computational tools that offer accurate prediction and optimization capabilities to 

further expand the realm of applications of thermoplastic materials. This necessitates a 
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thorough understanding of the complex mechanical behavior of the constituents comprising the 

microstructure in the presence of coupled physical processes, the resulting internal stress states 

due to relative differences in the physical and mechanical properties of the constituent phases, 

the non-uniform degradation of the constituent phase properties and the strong coupling that 

exists between the evolving microstructure and the macro scale response.  

A considerable amount of research efforts including analytical methods, single and 

multiscale methods have been devoted towards developing such numerical tools. Gerad et al. 

[127, 128] studied the coupling between chemical leaching in underground cementitious 

structures in the presence of water and the progressive mechanical damage that occurs. Ulm et 

al. [129] developed the homogenization based chemo-mechanics theory to study the effect of 

chemical leaching on the structural integrity of concrete structures. Oskay and Haney [130] 

studied the effect of extreme mechanical and environmental loading on titanium structures 

using a single scale thermo-chemo-mechanical model. Ozdemir et al. [131]studied the coupling 

between thermal and mechanical fields using the multiscale homogenization approach. Terada 

and Kurumatani [132] developed a two scale diffusion-deformation model to analyze micro 

crack propagations and aging in quasi brittle solids due to diffusion of scalar fields. Yu and 

Fish[133] studied the coupling between multiple physical processes in thermo-viscoelastic 

composites at multiple spatial and temporal scales.  Kuznetsov and Fish [134] developed a 

coupling scheme between electrical and mechanical field in heterogeneous solids. 

In this chapter we develop a computationally efficient multiscale-multiphysics 

framework aimed at predicting mechanical response of thermoplastic composites subjected to 

different levels of moisture. In Section 5.2 the effects of moisture on the physical and mechanical 

properties of polyamides is discussed. In Section 5.3, the mathematical model of the coupled 

mechanical deformation - moisture diffusion process is formulated at the micro-scale based on 
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the observed experimental data.   The spatial homogenization (upscaling) procedure is 

described in Section 5.4. Computational complexity of analyzing the coupled physical processes 

at multiple scales is reduced via model reduction scheme, originally introduced for the 

mechanical fields. Section 5.5 enumerates the implementation aspects of the multiscale-

multiphysics model. Details of the experimental program are outlined in Section 5.6 and the 

model is validated in Section 5.7 

5.2 Effects of Moisture on the Properties of Polyamides 

Polyamides are susceptible to moisture absorption. The absorbed moisture breaks the 

inter-catenary polymer-polymer hydrogen bonds to form water-polymer bonds. The net effect 

is plasticization of the matrix leading to mobilization of the structural units. The mobilization of 

the structural chains causes a decrease in the glass transition temperature. The breaking of the 

inter-catenary hydrogen bonds also leads to a reversible loss in strength and stiffness, consistent 

with the decrease in Tg. In the following paragraphs the theory of kinetics of moisture diffusion 

and the subsequent degradation of the physical and mechanical properties is enumerated. 

Formulations for the maximum moisture content and the observed decrease in the glass 

transition temperature, stiffness and strength of short fiber thermoplastics are also presented.  

 

5.2.1 Effect of Moisture on the Glass Transition Temperature of Polyamides 

The amorphous regions in hydrophilic polymers like PA-6 and PA-66/6 are known to absorb 

moisture that leads in mobilization of the polymer structural chains. This increase in mobility of 

the chains due to increased moisture content causes the glass transition temperature of the 

polymer to decrease as represented by the peak of the tan  δ  curves in Figure 56 and Figure 57 

respectively. 
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Figure 56: Tg of Ultramid® T KR4357 G6 in dry state and moisture conditioned state [121] 
 

 

Figure 57: Tg of Ultramid® T KR4370 C6 in dry state and moisture conditioned state [121] 
 

Typically the microstructure of polyamides comprises of two phases namely the crystalline 

phase and the amorphous phase. The moisture is assumed to diffuse in the amorphous whereas 

the crystalline regions are considered to be completely inaccessible to moisture.  The monotonic 

decrease in gT  due to an increase in the moisture content c  for a typical polyamide is shown in 

Figure 58. Based on the assumptions made above, Reimschuessel [122] suggests the following 

relation between moisture content c  and the glass transition temperature gT  
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       ( ) ( ){ }0 0
exp ln /g g g l glT T T c c Tτ = ∆ − ∆ +                                            (5.1) 

where ( )g go glo
T T T∆ = −  and ( ) /l lc c= −τ δ ; goT is the glass transition temperature in the dry 

polymer; lc corresponds to the maximum amount of moisture absorbed that directly interacts 

with all of the amide functions available in the amorphous region at which / 0gdT dc → ; glT is 

the limiting glass temperature at corresponding moisture content lc . 

 

Figure 58: Schematic representation of the Tg(w) relationship [122] 
 

If we consider the glass transition temperature 1glT +  and its conjugate moisture content lc − δ  

as shown in above figure, then the equation for δ  can be written as  

 { } 1

01 ln( ) ln( )l g gl g glc c T T T T
−

   = − − − −   δ   (5.2) 

In order to evaluate the decrease in the glass transition temperature gT  by utilizing the relation 

in equation (5.1), we need to develop a formulation for the maximum moisture content lc .  
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5.2.2 Formulation for Maximum Moisture Content  

In the following paragraphs the formulation for the maximum moisture content in polyamide 

based material systems is formulated. 

 

Figure 59: Interaction of amide groups with absorbed moisture in PA-6 [118] 
 

The concentration of accessible amide groups (NHCO) in PA-6 with a crystallinity factor of α  is 

given by  

 
[ ] [ ]

[ ]

(1 )

( 1)

accessible total

n ptotal

NHCO NHCO

NHCO S P M S

= −

= − = −

α
  (5.3) 

where S  is the number of polymer molecules, nP  is the  number average degree of 

polymerization and pM is the total number of monomer segments.  In the event of a high degree 

of polymerization 1nP  ; the number of available polymer molecules is very low pS M , 

following which the total number of amide groups per gram of polymer is given as    

 [ ] 8.85 03 /gm of PA-6totalNHCO e= −   (5.4) 

Next, we use the physics of the moisture absorption process to arrive at a relation between the 

accessible amide groups and the maximum moisture content lc . The mechanism of absorption 
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of water as suggested by Puffr and Sebenda [118] entails successive adsorption of three 

molecules of water for every two neighboring amide groups and results in an interaction as 

depicted in Figure 59. 

 [ ]18 * (3 /2) *l accessiblec NHCO=   (5.5)    

Substituting equation (5.3) (a) in equation (5.5)  yields  

 0.239(1 )lc = −α   (5.6)     

where 0.4=α  is the crystallinity factor. Having computed lc the suppression of the glass 

transition temperature by moisture ingression may be computed by equation (5.10). 

5.2.3 Effect of Moisture on Strength and Stiffness of Polyamides 

Another effect of the mobilization of the polymer chains consistent with decrease in the glass 

transition temperature is the irreversible mechanism that leads to loss of elastic modulus and 

strength. The decrease in elastic modulus and strength of PA-6 due to moisture ingression is 

depicted in Figure 60(a) and (b) respectively. 
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Figure 60: Plot depicting decrease in modulus and strength of nylon-6 due to moisture ingression [121] 
 

The relationship between elastic modulus and moisture content given by Reimschuessel [122] is  

 ( ) ( ){ }exp ln /l l l lE E E E E c c E′ ′ = − − − +  ε   (5.7)    

where E′ is the modulus at 0c = , lE is the modulus at lc c= and ε is a material parameter.  

The relationship in above equation is completely analogous to the relation between gT  and the 

moisture content given in equation (5.1).   

In the present work the relationship between the strength and moisture content is 

approximated by the following relation which is analogous to equation (5.7)  

 ( ) ( ){ }exp ln /l l l lS S S S S c c S′ ′ = − − − +  φ   (5.8)   

where S′ is the modulus at 0c = , lS is the modulus at lc c= and φ is a material parameter.. 

      (a)  (b) 
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5.3 Coupled Multiphysics Model  

  Consider a heterogeneous nonlinear solid media on a composite domain Ωζ  with 

boundary Ωζ∂  as shown in Figure 61. The superscript ζ  implies the dependence of coarse scale 

response on the fine scale fields. The microstructure of a composite material is assumed to be 

statistically homogeneous with local periodicity. The unit cell domain is denoted by Θ. For 

simplicity, small deformations are considered. 

 
Figure 61: Illustration of the coarse and fine scale fields 

         

 

Consider the strong form of the governing equations of the coupled mechanical-diffusion 

problem on the composite domain Ωζ   
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subject to the following initial and boundary conditions 
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  (5.10) 

where the two primary variables are the displacements ζ
iu and moisture concentration ζc ; ζ

klμ  is 

an eigenstrain arising from inelastic deformation, thermal and moisture effects; ζ
kη is the 

eigenconcentration gradient; ζ
iJ and ζσ ij  are moisture flux and stress, respectively; ′ζijD  and ζ′ijklL

denote the initial (in dry conditions) Fick’s and Hooke’s law, respectively. In the following we 

assume that the boundary ∂Ω  is smooth with ( )jn x  being the normal to the boundary; ζc  and 

iu are the prescribed concentration and displacement defined  on ∂Ωc and ∂Ωu , respectively; nJ  

and it are the prescribed flux and traction defined on ∂Ω J and ∂Ωt , respectively, such that 

∂Ω ∪ ∂Ω = ∂Ω ∂Ω ∩ ∂Ω =, 0c J c J  and ∂Ω ∪ ∂Ω = ∂Ω ∂Ω ∩ ∂Ω =, 0u t u t . The superimposed dot 

and comma followed by a subscript denote temporal and spatial derivatives, respectively.  
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The moisture diffusion and mechanical deformation are two-way coupled. Diffusivity is 

enhanced by hydrostatic strain.  The mechanical problem is affected by moisture content in 

three ways:  

(i) The Young modulus of a polymer reduces with  higher moisture content  as shown in 

Figure 60(a) 

(ii) The strength of the polymer reduces as well with increase in moisture content as can be 

seen in  Figure 60 (b) 

(iii) The presence of moisture also induces swelling 

 

The relationship between elastic modulus and moisture content proposed by Reimschuessel 

[122] in the context of multiple length scales is restated as 

 ( ) ( ){ }exp ln /l l l lE E E E E c c Eζ ζ ζ ζ ε ′ ′= − − − +    (5.11) 

where ζE′ is the Young’s modulus at 0ζc = , lE is the modulus at ζ
lc c= and 0.15ε = is a material 

parameter that has been calibrated based on  Figure 60(a). 

The relationship between the polymer strength and moisture content is approximated similarly 

to the relation in (5.11) as 

 ( ) ( ){ }exp ln /l l l lS S S S S c c Sζ ζ ζ ζ ε ′ ′= − − − +    (5.12) 

The two way coupled multiphysics model is defined as  
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( )( )
( ) ( )( ) ( )( ) ( )

( )( ) ( ) ( )( )( )
( )

( ) ( )( )

1

,1 exp

ij ijkl kl kl

in el s
kl kl kl kl

el
kl klij klmn mnij ij

s
ij ij

k kk k

L c

c S c E c c

E c I L L E c

c c

c c

ζζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ

ζζ ζ ζ ζ ζ ζ

ζ ζ

ζ ζ ζ ζ

σ ε µ

µ µ µ µ

µ ε

µ δ β

η γ ε α

−

′= −

= + +

′= −

=

= −

  (5.13) 

where ( )( )in
kl S cζ ζµ  is an eigenstrain arising from mechanical loading with diffusion-dependent 

strength, ( )( )el
kl E cζ ζµ  is an eigenstrain arising due to moisture dependent Young’s modulus;

( )s
kl cζµ is a hygroscopic strain induced by material swelling;  ( )( )mnijL E cζ ζ ζ  denotes moisture-

dependent Hooke’s law; k
ζη is the eigen-concentration gradient of the non-Fickian deformation-

dependent diffusion model; α and β are model parameters; ( )kk
ζγ ε encapsulates the 

deformation-dependent diffusion, such that ( )0 1kk
ζγ ε = =  and ( )kk

ζγ ε → ∞ → ∞ . 

 

Remark 1: In case of constant moisture conditions, the eigenstrain arising due to moisture 

dependent Young’s modulus ( )( )el
kl E cζ ζµ  can be removed. Instead  ijklL ζ′  would represent 

Hooke’s law at the predefined moisture conditions.  

Remark 2: It is a trivial exercise to show that the constitutive equation of the moisture diffusion 

can be expressed as   

 
( ) ( )

,

   exp

i ij j

ij ij kk

J D c

D D c

ζ ζ ζ

ζ ζ ζ ζγ ε α β

′=

′=
  (5.14) 

where ζ
ijD  is nonlinear diffusivity. 
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5.4 Unified Multiscale-Multiphysics Homogenization 

In the present manuscript the size of a periodic unit cell domain Θ is assumed to be 

infinitesimally small compared to the characteristic length of the coarse-scale domain Ω. This 

formalism can be described by the asymptotic homogenization theory. Let x  be the coarse-scale 

position vector in the coarse scale domain Ω and /i iy ζ= x   be the fine-scale position vector in 

unit cell domain Θ where 0 1ζ<  . All physical quantities are assumed to have two explicit 

dependencies: one on the coarse-scale coordinate x  and the second one, on the fine-scale 

coordinate y . Using the classical formalism any periodic function can be represented as 

ˆ( ) ( , ( )) ( , ( ) )f x f x y x f x y x kyζ ≡ ≡ + . 

The indirect spatial derivatives of the response function  ( )f xζ  can be calculated by the chain 

rule as 

 

, ,

( , ) ( , )1,i
i i

x yi if f

f x y f x yf
x y

ζ

ζ
∂ ∂

= +
∂ ∂

 

  (5.15) 

The displacement field ( ), ,i iu u x y tζ = and moisture concentration ( ), ,c c x y tζ = are 

approximated in terms of double-scale asymptotic expansions on Ω Θ× as 

 1 2( , ) ( , , ) ( )cc c x t c x y t Oζ ζ ζ= + +   (5.16) 

 1 2( , ) ( , , ) ( )c
i i iu u x t u x y t Oζ ζ ζ= + +   (5.17) 

where the leading order terms ( , )cc x t  and ( , )c
iu x t represent the coarse-scale field. The 

asymptotic expansions for the strain and concentration gradient are obtained by taking spatial 

derivatives of the displacement field ( ), ,i iu u x y tζ = and moisture concentration ( ), ,c c x y t=ζ  

 ( )(1)
( , )

( , , )

( , , ) ( , ) ( , , )   
j

f
ij

c
ij ij i y

x y t

x y t x t u x y t O= + +


ζ

ε

ε ε ζ   (5.18) 
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,

(1)
, , ,

( , , , )

( , , ) ( , ) ( , , ) ( )
i i i

f
xi

c
x y

c x y t

c x y t c x t c x y t Oζ

τ

ζ= + +


  (5.19) 

The asymptotic equations for stress and concentration flux are given as 

 ( ) ( )0

( , , )

( , , , ) ( , , )
f

ij

ij ij

x y t

x y t x y t O= +


ζ

σ

σ τ σ ζ   (5.20) 

 (0)

( , , )

( , , , ) ( , , ) ( )
f
i

i i

J x y t

J x y t J x y t Oζ τ ζ= +


  (5.21) 

where the superscript f denotes fine scale fields. The fine-scale stresses and fluxes are related to 

the fine scale strains f
ijε and concentration gradients ,i

fc by utilizing constitutive equations in 

(5.9)(b) and (e) and (5.13) 

By substituting the asymptotic expansions in equation (5.16) to (5.21) into the strong form in 

(5.9)  and enforcing the chain rule (5.15), yields the governing equations at the coarse scale and 

fine scale. 

 

( )
( )

( )
( )
( ) ( )( ) ( )( ) ( )

( )( ) ( ) ( )( )( )

( )

,

,

1
,

(1)
, , ,

,

1

0

0

Fine-scale :

1 exp

j

j

l

i i i

f
i y

f
ij y

f c
kl kl k y

f c
x y

f f f
i ik k k

f f f
ij ijkl kl kl

f f f fin el s
kl kl kl kl kl

f f fel
kl klij klmn mnij ij

fs
ij ij

f f
k jj

J

u

c c c

J D c

L

c S c E c c

E c I L L E c

c

ζ ζ ζ ζ

ζζ ζ ζ

σ

ε ε

η

σ ε µ

µ µ µ µ µ

µ ε

µ δ β

η γ ε

−

=

=

= +

= +

′= − −

= −

= = + +

′= −

=

= − ( )( )
( ) ( )

,

1 1( , ), ( , )

f f
k

i

c c

u x y c x y y periodic

α
























−

  (5.22) 
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The coarse-scale fields are defined as an average of the leading order (or fine-scale) fields 

computed over the unit cell domain as 

 

,

,

0

1

1

Coarse-scale :
( , ) ( , ) , 0
( , ) ( , ) , 0

ˆ( , ) ( , ) , 0
( , ) ( , )      

i

j

c c
i x

c c c c
ij x i i

fc
ij ij

fc
i i

c c u
i i
c c c

c
i i
c

J c

b u

d

J J d

u x t u x t x t
c x t c x t x t
u x t u x t x t
c x t c x t

σ ρ

σ σ
Θ

Θ

=

+ =

= Θ
Θ

= Θ
Θ

=            ∈∂Ω >

=             ∈∂Ω >

=            ∈Ω  =

=

∫

∫





       ;  0
( , ) ( , ) , 0

( , ) ( , ) , 0

c c t
ij j i

c c J
n n

x t
x t n t x t x t

J x t J x t x t

σ


















∈Ω =
 =       ∈∂Ω >
 =            ∈∂Ω >  

  (5.23) 

5.4.1 Residual-Free Fields and Model Reduction 

To reduce the computational cost associated with multiple solutions of the unit cell 

problem in (5.22), a model reduction scheme originally developed for a single physical process 

[33, 35, 50-52] is employed. The model reduction technique is based on the construction of 

residual free scalar and vector fields. The fine scale perturbation of the displacement field (1)
iu is 

constructed to satisfy the unit cell equilibrium equations for arbitrary coarse scale strains and 

fine scale eigenfields    

 ( )1 ( , , ) ( ) ( , ) ( , ) ( , , ) ( , ) ( , , )f fkl c kl n
i i kl i kl i nS

u x y t H y x t h y y x y t d h y y x y t dSε µ δ
Θ

= + Θ +∫ ∫




 

 




    (5.24) 

kl
iH , kl

ih , and n
ih




 are the influence functions for coarse-scale strain, fine-scale eigenstrain, and 

fine-scale eigenseparation, respectively. 
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Likewise the fine scale moisture concentration (1)c  is constructed to satisfy the fine scale 

diffusion equations arbitrary coarse-scale concentration gradients and fine-scale eigenfields as 

follows 

 (1)
,( , ) ( ) ( , ) ( , ) ( , , )fi c i
i ic x y H y c x t h y y x y t dη

Θ

= + Θ∫     (5.25) 

( )iH y is the coarse scale concentration gradient influence function and ( , )ih y y is the fine scale 

eigen concentration gradient influence function. Substituting (5.24) and (5.25) in (5.22) yields 

 ( )
( )( ) ( )( )

( )

, ,

,
,

( , ) ( , ) ( , , ) ( , , )
0

ˆ( , ) ( , )

l l

l
j

f fmn c mn
klmn mn mn klk y k y

ijkl
fn

nk yS y

I H x t h y y x y t d x y t
L y

h y y x y dS

ε µ µ

δ

Θ

  + + Θ −  
=  

  +  

∫

∫







 

 



  (5.26) 

 ( ), , ,

,

( ) ( ) ( , ) ( , ) ( , , ) ( , , ) 0
j j

j

f fk c k
ij jk y k y k j

y

D y I H y c x t h y y x y t d x y tη η
Θ

   
′− + + Θ − =        

∫     (5.27) 

The eigenstrains, eigen-separations and eigen-concentration gradients are discretized in terms 

of phase eigenstrains ( )
kl
αµ , phase eigenseparation ( )

n
αδ  and phase eigenconcentration gradients 

( )
k
αη  over phase domain ( )αΘ  

 

( )( )

1

( ) ( )

1

( , , ) ( ) ( , );

( , , ) ( ) ( , )

n
f

ij kl

m
f

n n

x y t N y x t

x y t N y x t

αα

α

ξ ξ

ξ

µ µ

δ δ

=

=

=

=

∑

∑ 





  (5.28) 

 ( ) ( )

1
( , , ) ( ) ( , )

n
f

k ix y t N y x tα α

α

η η
=

= ∑    (5.29) 

The shape functions ( )( )N yα
 for eigenstrain and eigen-concentration gradient are chosen to be 

( )1 ΘC− as the eigenfields need to satisfy the condition of continuity. The eigenseparation shape 
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functions are chosen to be ( )0C S  functions as the cracks (displacement jumps) need to be 

continuous across the interfaces. Additionally the shape functions need to satisfy the partition 

of unity condition. 

 The average eigenstrains, eigen-separations and eigen-concentration gradients are defined as 

 

( ) ( )

( ) ( )

( ) ( )

f
ij ij

f
n nS

f
i i

d

dS

d

α α

ξ ζ

α α

µ ϕ µ

δ ϕ δ

η ϕ η

Θ

Θ

= Θ

=

= Θ

∫

∫

∫

 







  (5.30) 

The weight functions αϕ ( )  and ζϕ( )  should satisfy the condition of positivity and normalization. 

A piecewise constant approximation for the eigenstrain and eigen-separation shape functions 

and weight functions yields  

 

( ) ( ) ( )

( ) ( )
( )

( )

( )

( )

( ) ( )
( ) ( )

( )
( )

( )

1
( ) , ( ) ( ) /

0

1 /
,

00

f
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A S
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N y y N y
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N y y S S if y S
N y y

elsewherey S

ξ

α
α α αα

α

ξ
ζ β

ξ ζ

ξ

ϕ

ϕ∈

 ∈Θ= = Θ
∈Θ

 ∈  ∈ = = 
 ∉

∑

 







  (5.31) 

Substituting the discretization in (5.28) to (5.31) into (5.26)  and (5.27), and requiring the unit cell 

equilibrium to be satisfied for arbitrary c
klε , ( )

kl
αµ , ( )

n
ξδ  , ,c

kc  and ( )
k
αη yields the following strong 

form of the influence functions. 
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  (5.32) 

where  
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,
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ˆ( ) , ( )

j
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ij i yS
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ξ ξ

α

Θ

Θ

= Θ

=

= Θ

∫
∫
∫










 





  (5.33)   

The strong form of the influence function problems (5.32) can be solved by the Galerkin 

approximation based finite element method. 

5.4.2 Reduced Order System of Equations 

The residual-free strain field at the fine scale is obtained by substituting equations (5.28)  and 

(5.24)  into equation (5.22)(c) 

 ( ) ( ) ( ) ( )( ) ( ) ( )

1 1
( , , ) ( , ) ( , ) ( , )

n m
f kl nkl c

nij ij kl ij kl ijx y t E y x t P y x t Q y x tαα ξ ξ

α ξ

ε ε µ δ
= =

= + +∑ ∑


   (5.34) 

where ( ) ( ) ( ), j

kl kl
ij ijkl i y

E y I H y= +  

Averaging the residual-free strain field over partition domain ( )Θ β  yields 

 ( )( ) ( ) ( ) ( )( )

1 1
( , ) ( , ) ( , ) ( , )

n m
kl n kl c

nij ij kl ij ij klx t P x t Q x t E x tαβ βα βξ βξ

α ξ

ε µ εδ
= =

− − =∑ ∑


   (5.35) 
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where ( )
( ) ( )

1 d
Θ

∗ ≡ ∗ Θ
Θ ∫ β

β
β

 

Likewise the reduced order residual free fine-scale traction ( )
nt
η
 along the interface is obtained by 

averaging f
ij jnσ   over the interface partition, which yields 

 ( )( ) ( ) ( ) ( )( )

1 1
( , ) ( , ) ( , ) ( , )

n m
kl m kl c

mn kl n n n klC x t t x t D x t T x tαηα η ηξ ηξ

α ξ

µ εδ
= =

− + − =∑ ∑




      (5.36) 

where 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
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( ) ( )

ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ

ˆ

1

kl kl
m mi ijpq pq pqkl j

n
mn mi ijpq pq j

kl kl
m mi ijpq pq j

S

C a L y P y I n y

D a L y Q y n y

T a L y E y n y

dS
S

η

α α α

ξ ξ

η

η

 = − 

=

=

∗ ≡ ∗∫





   (5.37) 

The fine scale residual free concentration gradient field is obtained by substituting equations 

(5.29)  and (5.25)  into equation (5.22)(d) 

 ( ) ( )
, ,

1
( , , ) ( ) ( , ) ( ) ( , )

n
f j jc
i i j i jc x y t E y c x t P y x tα α

α

η
=

= + ∑   (5.38) 

where ,( ) ( )
i

j j
i ij yE y H yδ= +  

Averaging the residual-free strain field over partition domain ( )βΘ  yields 

 ( ) ( , ) ( )
, ,

1
( , ) ( , ) ( , )

n
j jc

i i j i jc x t E c x t P x tβ β α αβ

α

η
=

= + ∑   (5.39) 

where ( )
( ) ( )

1 dβ

β

β Θ
∗ ≡ ∗ Θ

Θ ∫  
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The reduced order coarse scale stress and flux fields are obtained by averaging the fine scale 

field over the unit cell domain  

 

( )( ) ( ) ( )

1 1

( ) ( )
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1

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

n m
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∑ ∑
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  (5.40) 

where  
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D D y E y d

A D y t S y d

α α α
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Θ

Θ

= Θ
Θ

 = − Θ Θ

= Θ
Θ

′= Θ
Θ

′= Θ
Θ

∫

∫

∫

∫

∫



   (5.41) 

The influence function problems in equations (5.32) and the coefficient tensors appearing in 

equations (5.35), (5.37),(5.39) and (5.41) are pre-computed in the preprocessing phase. At each 

iteration of the coarse scale nonlinear problem, the phase strains (5.35), concentration gradients 

(5.39) and the eigen-fields are updated. Finally, the coarse scale stress and flux are updated 

using equation (5.40).    

5.5 Implementation of the Multiscale-Multiphysics Homogenization Model 

In this section the aspects of the multiscale-multiphysics software architecture are discussed. 

The code structure consists of the following two phases. 

Preprocessing Phase 
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• Generate the short fiber unit cell using the modified RSA algorithm 

• Solve the scalar (diffusion) and vector (deformation) field influence function problems 

and compute the coefficient tensors 

Coupled Macro Analysis Phase 

• Solve the scalar and vector field reduced order system of equations and update fine scale 

fields 

Update the coarse scale stress and coarse scale flux 

The preprocessing phase was implemented in MDS [135]. Abaqus was used as the solver at the 

coarse scale. The functionality of Abaqus to analyze coupled heat transfer-displacement 

problems was utilized to conduct the coupled moisture diffusion-deformation analysis. The 

scalar field formulation was implemented in UMATHT and the vector field formulation was 

implemented in UMAT. The respective coarse scale quantities of interest are passed by 

ABAQUS into the UMATHT and UMAT user subroutines at every gauss and every load 

increment. The reduced order systems of equations for the scalar and vector fields are solved to 

update the fine scale eigen-fields. The coarse scale stress and flux are computed and passed 

back to Abaqus to equilibrate the system of equations at the coarse scale. The implementation of 

the unified multiscale-multiphysics formulation is illustrated in Figure 62 below.  
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Figure 62: Schematic of the unified multiscale-multiphysics formulation 
 

5.6 Experimental Program 

This section presents a brief overview of the experimental program at General Motors. 

The experiments involved two material systems namely 30% by weight filled short glass fiber 

thermoplastics (BASF, Ultramid® T KR4357 G6)  and 30% by weight filled short carbon fiber 

thermoplastics (BASF, Ultramid® T KR4357 C6). The experimental program involved exposing 

samples of fiber reinforced polyamide materials to varying humidity and temperature 
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conditions.  Multiple humidifying conditions were evaluated in order to determine the 

dependence of the water absorption on temperature and humidity levels.  The volumetric 

expansion of the samples and the gravimetric uptake of water were measured.  Once samples 

reached the equilibrium state under given conditions, the mechanical properties of the material 

systems were measured and compared with mechanical properties in the Dry As Molded 

(DAM) state to evaluate the degradation of material properties. The mechanical testing involved 

uniaxial tensile tests and three point bending tests.  The details of the experimental program are 

presented in Figure 63. 

 

Figure 63: Details of the experimental program 
   

5.7 Validation of the Multiscale-Multiphysics Homogenization Model 

In this section, the validation of the unified multiscale-multiphysics formulation for 

studying the degradation of physical and mechanical properties due to moisture uptake in glass 

fiber filled (BASF Ultramid® T KR4357 G6) and carbon fiber filled (BASF Ultramid® T KR4370 

C6) thermoplastic material system is presented. The validation study consists of two stages 

namely the preprocessing stage and the macro analysis stage as illustrated in Figure 62 above. 
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The experimental results of moisture conditioning at 72  & 62% RHoC  as per ISO1110 were used 

to identify the diffusion model parameters appearing in equation(5.13). The experimental 

results of the uniform field uniaxial tensile tests were used to identify the elastic and inelastic 

mechanical properties of the material in the dry as molded (DAM) state and the moisture 

conditioned state (as per ISO1110). The three point bending test results were used to validate 

the multiscale-multiphysics unified framework. The microstructure geometry details for the 

two material systems are summarized in Table 1. 

 
Table 1: Details of the microstructure of the two material systems 

 
Material 

Fiber 
Weight 

% 

Fiber 
Volume

% 

Fiber 
diameter 
(micron) 

Fiber 
length 

(micron) 

Resin 

Glass Fiber SFT 
BASF Ultramid® T KR4357 G6 

 
30 

 
16 

 
17 

 
125 

partially 
aromatic 

polyamide 
Carbon Fiber SFT 
BASF, Ultramid® T KR4370 C6 

 
30 

 
22 

 
8 

 
125 

partially 
aromatic 

polyamide 
  

Studies by Bailey and Rzepka [136] and Toll and Anderson [137, 138] suggest that during the 

injection molding process, majority of the fibers ( ~60-65%) align along the melt flow front and 

the rest ( ~35-40%) along the cross flow direction giving rise to an orthotropic properties.  In the 

present work, we adopt the terminology wherein the melt flow front direction is referred to as 

00 orientation and the cross flow direction is referred to as 900 orientation. In order to evaluate 

the orthotropic properties, samples are cut from an injection molded plaque along 00 and 900 

and subjected to uniaxial tensile testing 

The modified RSA algorithm [53] described in Chapter 3 was used to generate the unit cell 

geometries for the two material systems. Utilizing the preferential orientation feature of the 

RSA algorithm the fibers were constrained to orient along  00 and 900 with an allowable 
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deviation of 05±  so that the unit cell geometry captures the distribution of the fibers found in 

the test samples. The unit cell finite element meshes for the two material systems are shown in 

Figure 5.  The x-axis in Figure 64 represents the direction of the flow front (00 orientation) and 

the y-axis represents the cross-flow direction (900 orientation). 

 

 

Figure 64 : Unit cell geometry (a) glass fiber filled (BASF, Ultramid® T KR4357 G6)  (b) carbon fiber filled 
polyamide systems (BASF, Ultramid® T KR4370 

 

5.7.1 Moisture Conditioning as per ISO1110 (70C & 62% RH) 

A two scale reduced order scalar field homogenization simulations were conducted for 

the two materials systems. The preprocessing phase was implemented in MDS that involved 

solving the scalar field influence function problems and the coefficient tensors. Abaqus was 

used as the macro solver with the homogenization formulation implemented in the user 

material subroutine UMATHT. The simulations were conducted for three types of specimens 

namely a tensile specimen, a flex specimen and an impact specimen. The moisture diffusivity 

was analyzed for partially aromatic polyamide based resin phase whereas the fibers were 
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assumed to be impermeable. A non-linear least squares problem was solved to optimize the 

material parameters appearing in equation (5.13). The moisture uptake plots for the glass fiber 

filled thermoplastic material system are presented in Figure 65 to Figure 67. 

 

Figure 65: Moisture uptake for glass fiber filled (BASF, Ultramid® T KR4357 G6) tensile specimen 

 

 

Figure 66: Moisture uptake for glass fiber filled (BASF, Ultramid® T KR4357 G6) flex specimen 
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Figure 67: Moisture uptake for glass fiber filled (BASF, Ultramid® T KR4357 G6) impact specimen 

 

The moisture uptake plots for the 30% by weight carbon fiber filled thermoplastic material 

system are shown in Figure 68 to Figure 70 below 

 

Figure 68: Moisture uptake for carbon fiber filled (BASF, Ultramid® T KR4370 C6) tensile specimen 
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Figure 69: Moisture uptake for carbon fiber filled (BASF, Ultramid® T KR4370 C6) flex specimen 

 

 

Figure 70: Moisture uptake for carbon fiber filled (BASF, Ultramid® T KR4370 C6) impact specimen 
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identified from uniaxial tensile test simulations as per ISO 527-2 specifications. The model 

parameters of resin are summarized in  

Table 2. The results obtained for the two material systems were found to be in good agreement 

with the experimental results. The uniaxial tensile test results for the dried glass fiber filled 

thermoplastic samples are presented in Figure 72 and Figure 73. 

 

Figure 71: Schematic of the three-piece linear damage model 
 

Table 2: Parameters of the resin mechanical model  
 

E (GPa) ν   0S  (MPa) 1S (MPa) 1ε (%)  2S  (MPa) 2ε (%) 3ε (%)  C   

3.5 0.3 40.0 65.0 3.5 70.0 5.0 5.5 0  
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Figure 72: Stress-Strain plot for glass fiber filled (BASF, Ultramid® T KR4357 G6) 𝟎𝟎 specimen 

 

 

Figure 73: Stress-Strain plot for glass fiber filled (BASF, Ultramid® T KR4357 G6) 𝟗𝟎𝟎 specimen 

 

The uniaxial tensile test results for the dried carbon fiber filled thermoplastic samples are 

presented in Figure 74and Figure 75. 

 

Figure 74: Stress-Strain plot for carbon fiber filled (BASF, Ultramid® T KR4370 C6) 𝟎𝟎 specimen 
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Figure 75: Stress-Strain plot for carbon fiber filled (BASF, Ultramid® T KR4370 C6) 𝟗𝟎𝟎 specimen 
 

5.7.3 Sequential Diffusion-Mechanical Problem 

Sequentially coupled simulations were conducted for both the glass fiber (BASF, 
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ISO1110 specifications. The decrease in the elastic modulus and strength of the resin phase due 

to moisture ingression was computed. The coefficient tensors for the vector field problem were 

recomputed based on the decreased/updated elastic properties of the resin phase. In the second 

step the specimen were subjected to uniaxial tensile load and the material elastic and inelastic 

properties in the moisture conditioned state (ISO1110) were characterized by solving a 

nonlinear least squares problem. The uniaxial tensile test results for the glass fiber filled 

thermoplastic material systems are shown in Figure 76 and Figure 77. 
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Figure 76: Uniaxial tensile test results for KR4357 GF 𝟎𝟎 specimen 
 

 

Figure 77: Uniaxial tensile test results for KR4357 GF 𝟗𝟎𝟎 specimen 
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Figure 78: Uniaxial tensile test results for KR4357 CF 𝟎𝟎 specimen 

 

Figure 79: Uniaxial tensile test results for KR4357 CF 𝟗𝟎𝟎 specimen 
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attributed to the higher volume fraction of the impermeable carbon fibers in comparison to the 

volume fraction of the glass fibers. Additionally, it is also envisaged that the interfaces between 

the carbon-fiber and resin absorb lesser amounts of moisture than the interfaces in the glass 

fiber filled material system. The presence of moisture also increases the ductility in both the 

material systems.  

   

5.7.4 Three Point Bending Test 

In this section the three-point bending simulation results for the glass fiber filled 

thermoplastics are presented. The three point bending simulations were run to validate the 

scalar and vector field material models used in the coupled multiscale-multiphysics simulations 

as enumerated in section 5.7.5. The experiments were conducted by General Motors as per 

ASTM D790 specifications. The sizes of the specimens were 100 mm in length, 25 mm in wide 

and 3.2 mm in height.  A schematic representation of the three-point bending test is presented 

in Figure 80. 

 

Figure 80: Schematic of the 3-point bending test (ASTM D790) 
 

Abaqus was used as the coarse scale solver for running the three point bending simulations. 

The finite element model is shown in Figure 81. The simulation program involved running 
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three point bending tests for specimens in the DAM state and moisture conditioned state 

(ISO1110) followed by comparison of the simulations results with the experimental results to 

validate the unified multiscale-multiphysics model. The model contained 7112 continuum 

elements with 7 elements through the thickness.  

 

Figure 81: Finite element model of the 3-point bending test (ASTM D790) 
 

The contour plot and the force-displacement plot for the glass fiber filled material in DAM state 

are presented in Figure 82 and Figure 83 respectively. The maximum deflection is about 8mm at 

a peak force of 550 N.  The simulation results match well with the experimental results thereby 

validating the material models for the DAM samples.  

 

Figure 82: Contour plot of the displacements for Ultramid® T KR4357 G6 𝟎𝟎 samples in DAM state 
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Figure 83: Plot of force-displacement for Ultramid® T KR4357 G6 𝟎𝟎 samples in DAM state 
 

The contour plot and the force-displacement plot for the moisture conditioned glass fiber 

thermoplastic samples are presented in Figure 84 and Figure 85 respectively. The maximum 

deflection is about 10mm at a peak force of 395 N.  The increased ductility due to presence of 

moisture results in a tensile dominant mode of failure. A reduction in strength and stiffness are 

evident form the simulation results.  A 22% decrease in the flexural modulus and 28% decrease 

in peak force at failure are recorded and they match well with the experimental observations.  

 

 

Figure 84: Contour plot of the displacements for Ultramid® T KR4357 G6 𝟎𝟎 samples in moisture conditioned state 
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Figure 85: Plot of force-displacement for Ultramid® T KR4357 G6 𝟎𝟎 samples in moisture conditioned state 
 

The contour plot and the force-displacement plot for the glass fiber filled material in DAM state 

for the 90o  samples are presented in Figure 86 and Figure 87 respectively. The maximum 

deflection is about 9mm at a peak force of 280 N.  The contour plot and the force-displacement 

plot for the moisture conditioned glass fiber thermoplastic 90o samples are presented in Figure 

88 and Figure 89 respectively. The maximum deflection is about 10mm at a peak force of 170 N.   

A 36% decrease in the flexural modulus and 39% decrease in peak force at failure are recorded 

and the simulation results match well with the experimental observations.  

 

 

Figure 86: Contour plot of the displacements for Ultramid® T KR4357 G6 𝟗𝟎𝟎 samples in DAM state 
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Figure 87: Plot of force-displacement for Ultramid® T KR4357 G6 𝟗𝟎𝟎 samples in DAM state 

 

Figure 88: Contour plot of the displacements for Ultramid® T KR4357 G6 𝟗𝟎𝟎 samples in moisture conditioned 
state 
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Figure 89: Plot of force-displacement for Ultramid® T KR4357 G6 𝟗𝟎𝟎 samples in moisture conditioned state 
  

5.8 Conclusion 

In this chapter A novel computationally efficient multiscale-multiphysics framework 

was developed for the coupled moisture diffusion - mechanical problem at two relevant scales. 

The formulation was implemented in MDS with Abaqus as a coarse-scale solver. The model 

was validated for the 30% by weight filled glass fiber and carbon fiber reinforced thermoplastic 

composites. The moisture conditioning and uniaxial tension experiments were utilized to 

characterize the diffusion and mechanical properties at a fine scale. These properties were then 

used to validate the formulation in a series of three-point bend tests at different moisture 

conditions and fiber orientations. The proposed formulation has been found to be in good 

agreement with the experiments conducted by General Motors.  
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