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Abstract 

An Item Response Theory Approach to Causal Inference: 

in the Presence of a Pre-intervention Assessment 

Jessica Marini 

 This research develops a form of causal inference based on Item Response Theory (IRT) 

to combat bias that occurs when existing causal inference methods are used under certain 

scenarios.  When a pre-test is administered, prior to a treatment decision, bias can occur in causal 

inferences about the decision’s effect on the outcome.  This new IRT based method uses item-

level information, treatment placement, and the outcome to produce estimates of each subject’s 

ability in the chosen domain. Examining a causal inference research question in an IRT model-

based framework becomes a model-based way to match subjects on estimates of their true 

ability.  This model-based matching allows inferences to be made about a subject’s performance 

as if they had been in the opposite treatment group.  The IRT method is developed to combat 

existing methods’ downfalls such as relying on conditional independence between pre-test scores 

and outcomes.  Using simulation, the IRT method is compared to existing methods under two 

different model scenarios in terms of Type I and Type II errors.  Then the method’s parameter 

recovery is analyzed followed by accuracy of treatment effect evaluation.  The IRT method is 

shown to out perform existing methods in an ability-based scenario. Finally, the IRT method is 

applied to real data assessing the impact of advanced STEM in high school on a students choice 

of major, and compared to existing alternative approaches.  
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1 
Chapter 1: Introduction 

When examining the causal effects of interventions, or experimental factors, statisticians 

have a number of different methods and data types from which to choose (Shadish, Cook, 

Campbell, 2001).  The preferred method of estimating causal effects is through the design of a 

controlled experiment.  These experiments fully randomize subjects to the levels of interest in 

the experiment, which implicitly controls for unseen factors that could influence the outcome 

variable under study; experiments are the gold-standard for investigating causal effects.  At the 

other extreme are observational studies.  In observational studies, there is no randomization for 

selection into treatment and control groups; participants in some sense self-select into the 

treatment condition.  In between these extremes lie variations—studies that have randomization 

to some level, others that match subjects to try to control for differences, etc.   

In many educational settings, true fully-randomized experiments are hard to come by for 

a number of reasons.  One of the most important reasons is that it could be unethical to 

randomize students into the different intervention groups.  For example, if the effects of being 

retained a year in school were being studied, it would be unethical to randomly assign students to 

be retained or promoted.  A child who truly needs to be held back could potentially end up being 

promoted, causing him or her to not get the educational help that he or she needs or deserves.  

While it might be plausible to try out different curricula or remedial programs in an educational 

setting, certain factors would go into selecting students to participate—maybe only those that 

need extra help would be placed into one of two experimental remedial courses, this would 

exclude those who do not need help.  This once again goes back to the fact that it is unethical to 

place students in developmental tracks when they do not need remediation.  This same scenario 



 

 

2 
applies to honors courses—it is not ethical to place a student in honors courses when he or she is 

not ready for that level of rigor. 

 Non-randomization in studies like those mentioned above leads to a type of selection 

bias; students are placed into the different treatment levels based on some factor, which is often 

related to the outcome under study.  This type of selection bias can influence the interpretation of 

the causality of the treatment.  If random assignment was used, estimating the causal effect of the 

treatment is relatively simple and the effectiveness of the treatment or intervention can easily be 

determined.   However, when selection bias is present, standard estimates of the effectiveness of 

the treatment are invalid; evaluating the treatment or intervention becomes difficult because the 

potential outcomes are likely related to the selection mechanism itself (Rubin, 1974).  That is, 

selection into the treatment is not independent of the outcome because subjects have not been 

randomized into the different treatment groups; thus statistical methods based on the assumption 

of randomization to treatment group (e.g. ANOVA) are not appropriate and would potentially 

lead to biased results.  When selection bias is present in a sample, the researcher must use 

methods that control for this selection bias, e.g., case-control studies or other matching methods 

(Rubin, 1974).   

Figure 1 depicts a graph describing being placed into treatment solely based on test 

performance.  Imagine a hypothetical college admissions example.  Students applying to college 

must take a placement test to determine if they need to start in a remedial mathematics course.  

The school would like to see the effect of the remedial course on entering a freshman level 

course within a timely manner of completing the remedial course.  In the figure, X denotes the 

(potentially multivariate) performance on the placement test, D denotes the decision variable 

(e.g., to be placed into the remedial mathematics course), and Y0 and Y1 denote the potential 
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outcomes (e.g. begin the freshman level course the following semester after completing the 

remedial course) of students not placed and placed in the remedial course respectively.  These 

potential outcomes are generally expressed by a combination of three factors—treatment 

placement, observed covariates, and unobserved covariates (Stone, 1993).   

According to Item Response Theory (IRT; Lord & Novick, 1968), a test is measure of a 

true score of an individual, represented by θ in the figure.  The potential outcomes and the 

decision variable, associated with one another through their relationship with test performance, 

are assumed conditionally independent given test performance.  That is that knowing the 

individual’s score on the test will tell you all the information you need to know about the 

interventions association with the outcome.  This is the type of assumption implicitly made by 

causal inference methods like analysis of covariance (ANCOVA).  To properly evaluate the 

efficacy of the intervention D, the statistical method must control for performance on the test, 

otherwise the estimated effects might be biased (Rosenbaum, 2010).  Furthermore, tests have 

limitations because they cannot measure every possible aspect of an individual and these 

limitations introduce measurement error into the test scores.    

 

Figure 1:  Graph describing the causal inference assumption 

 



 

 

4 
There are different ways to control for student differences that can be done before or after 

treatment.  Before placement into treatment, students could be matched on different criteria—

gender, age, ethnicity, etc.  While not as good at eliminating selection bias as random 

assignment, this technique can help to limit bias (Rosenbaum, 2010).  If matching prior to 

treatment is not possible, then student differences should be measured.  Gender, ethnicity, pre-

test scores, and other demographics and relative information should be measured and used to 

statically control for bias during analysis.  The more information collected about the sample, the 

more likely it is to control for biases using statistical methods.  Statistical controls are applied 

during the data analysis stage and are especially useful for observational data.  There have been a 

number of statistical methods suggested for handling the evaluation of interventions from 

observational, non-randomized data.  They include ANCOVA (Fisher, 1932, as cited in Belin & 

Normand, 2009), propensity score matching (Rosenbaum & Rubin, 1983), instrumental variables 

(Wright, 1928; as cited in Angrist, Imbens, & Rubin, 1996), the Heckman Model (Heckman, 

1979), and regression discontinuity (Thistlethwaite & Campbell, 1960).  However, some of these 

techniques might be more appropriate in certain situations than in others. 

 Probably one of the oldest methods for handling data collected as part of such an 

evaluation is analysis of covariance (ANCOVA; Fisher, 1932, as cited in Belin & Normand, 

2009). The typical application of an ANCOVA model, which is appropriate for continuous 

outcomes, assumes a linear relationship between the outcome (Y) and test performance (X), and 

includes a dummy variable for the decision variable (D).  The effect of D is interpreted as the 

effect of the program.  When outcomes are dichotomous, a logistic regression (LR) analysis with 

a covariate is appropriate in place of ANCOVA.  ANCOVA, while simple and popular, has a 
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number of limiting assumptions (e.g., normality, linearity, homogeneity of variance, sample size 

requirements, homogeneity of relationship between the outcome and test performance). 

Potential Outcomes/Counterfactual Model Framework 

 To begin the discussion of methods for causal inference, the framework used in the 

potential outcomes model, or counterfactual model, should be set.  The counterfactual model has 

been a part of experimental design and causal inference using observational data for some time, 

but was formalized by Rubin’s work (1974; 1978; 1986).  Within this model framework, 

members of the sample are exposed to a treatment (D = 1) or to a control  (D = 0). Each member 

of the sample has a potential outcome for each treatment condition.  Yi0 is the potential outcome 

of individual i under the control and Yi1 is the potential outcome of the individual if s/he were to 

receive the treatment, although only one outcome is observed depending on treatment placement.  

The observed outcome is  

 

The gain from the treatment for an individual, i, is the difference between the individual’s two 

potential outcomes, 

 

There are different ways to define the effect of the treatment using this gain, which all depend on 

the reference population for the effect.  These are the average impact of treatment (ATE), 

average impact of treatment on the treated (TT), and the average impact of treatment on the 

untreated (UT; Todd, 2006).  The following represents these different effects, where H represents 

a set of characteristics of the individual that are not affected by the treatment.  ATE looks at the 

average treatment effect for all participants—the difference between the treatment and control 

groups:  

! 

Yi = DiYi1 + (1"Di)Yio

! 

" i =Yi1 #Yio
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TT looks at the average treatment effect for those who were treated: 

 

Finally, UT looks at the average treatment effect for those who were not treated: 

 

Pearl’s work (2000) can help explain the idea of counterfactuals further and make these 

terms easier to interpret.  A scenario is explained to be counterfactual if unobserved values seem 

to differ from the observed value.  This means that you observe only one outcome, but there are 

other possible outcomes.  However, these outcomes are not observed and hence differ from or 

contradict each other.  Pearl goes on to elaborate that this counterfactual way of thinking can 

help to influence future decision-making based on causal effects in the past.  For example, 

suppose there is a binary representation, A, of the two academic states a student could be in—

struggling (A=1) or not struggling (A=0)—and that there is a binary treatment variable, T 

representing extra help (T=1) or no extra help (T=0).   Now imagine the next two questions a 

teacher might ask: 

Q1: I have a student who is struggling; do I give them extra help? 

Q2: I gave extra help to a student who was struggling and now he is no longer struggling.  Is it 

because of the extra help? 

Question 1 represents the treatment effect for the student—the difference in student i’s potential 

outcomes.  This is represented by 

! 

" i = P(Ai1 = 0) # P(Ai0 = 0)  which is reminiscent of the 

treatment gain.  Question 2 represents a conditional probability statement that is reminiscent of 

the TT equation above.  This is represented as 

! 

P(Ai0 =1 |Ti =1,Ai = 0) and implies the question 

‘since the student was given extra help and now no longer struggles, what is the probability that 

! 

E(Y1 "Y0 |H) = E(# |H)

! 

E(Y1 "Y0 |D =1,H) = E(# |D =1,H)

! 

E(Y1 "Y0 |D = 0,H) = E(# |D = 0,H)
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the student would still be struggling if no extra help was given?’  These relationships are best 

suited to be interpreted to help make future decisions based on observed casual situations. 

According to Rubin, a simple yet strong assumption must be made in using the potential 

outcomes model for causal inference.  This assumption is the stable-unit-treatment-value 

assumption (SUTVA; Rubin, 1986) and says that one must assume that the outcome of any 

person exposed to the treatment will remain the same no matter how treatment was assigned or 

what treatment other people receive.  In other words, for N units and T treatments, the value of 

the outcome for individual i in treatment condition t, Yit, remains the same no matter how 

individual i was assigned to treatment t and also no matter what treatment the other individuals 

were exposed to.  To even begin discussing causal effects of a relationship, SUTVA needs to be 

met—the units of study, treatments, and outcomes must be defined to make SUTVA hold.  

Furthermore, the assumption of strong ignorability (Rosenbaum & Rubin, 1983) must be met as 

well.  Strong ignorability states that given an observed vector of covariates, the potential 

outcomes are independent of treatment.  Mathematically this is represented as 

€ 

(Y0,Y1)⊥D |H = h , for all h and 

€ 

0 < Pr(D =1 |H = h) <1 for all h 

where h is a vector of observed covariates. This means that controlling for the covariates allows 

the treatment effect to be estimated without bias. 

Modeling Reality 

Recall Figure 1 and note that it does not seem to accurately describe reality.  For one, a 

test, X, is a measure of some true ability, which is denoted by θ in the figure, and it is likely that 

potential outcomes, denoted by Y, are related directly to θ rather than being directly related to 

test performance X.  Also, the causal assumptions seen in Figure 1 are 

€ 

D⊥(Y0,Y1) | X , 

€ 

D⊥θ | X , 

and 

€ 

(Y0,Y1)⊥θ | Xwhich indicate that the decision, possible outcomes, and ability are pair wise 
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independent given test performance.  Recall the college admissions example—it is probably 

more likely that enrolling in a freshman level course (Y) is related to a student’s true academic 

ability (θ) rather than how she performed on the admissions placement test.  A graph of this 

scenario is depicted in Figure 2.  Here the treatment decision, D, and outcomes, Y, are 

conditionally independent given ability, θ, which is measured by performance on the test.  The 

causal inference assumptions in this figure are 

€ 

D⊥(Y0,Y1) |θ , 

€ 

D⊥(Y0,Y1) | X , 

€ 

D⊥θ | X , and 

€ 

(Y0,Y1)⊥X |θ  and the existing methods are still applicable.  

 

 

Figure 2: Decision based solely on test performance where the outcome is related to the 
measured ability rather than test performance itself. 

 

However, what happens when the decision is not directly related to test performance?  

Imagine another example from college admissions—honors program admission.  Suppose a 

college offers two difficulty levels of honors courses to those students enrolled in the honors 

program.  The college would like to see what effect enrollment in the higher level course has on 

final cumulative college GPA.  It would be feasible to imagine that admittance into the honors 

program is not based solely on a student’s performance on a single placement test, but on 
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multiple factors (placement test included).  Furthermore, selection into the difficulty level of the 

course is up to the student.  Here the decision variable, or treatment placement, is no longer 

directly related to test performance. When the decision variable is not directly affected by 

performance on a test, but instead related to the true ability, existing methods of analysis would 

not be appropriate because the strong ignorability assumption of causal inference would be 

violated—knowing the covariate of test score or performance would no longer mean that 

treatment placement is independent of the potential outcomes.  In mathematical terms 

€ 

D⊥(Y0,Y1) | X  is no longer true.  In other words knowing a student’s score on a placement 

assessment would not imply if he elected to take the higher-level honors course.  However, both 

test performance and the decision to take an honors level course are likely to be related to the 

student’s true academic ability (θ).  Figure 3 describes such a process.  In this model the 

assumptions of causal inference fail since measurement error is no longer captured by treatment 

placement.  This model implies 

€ 

D⊥(Y0,Y1) |θ , 

€ 

D⊥X |θ , and 

€ 

(Y0,Y1)⊥X |θ . 

 

Figure 3: D is no longer directly related to test performance, X, and causal inference assumptions 
fail. 

 

Research Goals 

 The focus of this research is to develop a new technique to overcome the selection bias 

associated with evaluating the efficacy of an educational program decision or placement  
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(treatment) in an observational setting, specifically when a pre-test is given prior to placement.  

The existing methods of diminishing selection bias have potential to be lacking the quality to 

control for innate, unobservable student characteristics as well as test measurement error.  

However, these characteristics can be captured using Item Response Theory (IRT; Lord & 

Novick, 1968).  Using IRT allows students to be matched based on their innate ability rather than 

just on observable factors.  This research proposes to use student test data, at the item level, to 

match students (within the IRT model) based on estimates of their true ability and then examine 

how the treatment differs for students with identical measures of ability.  This method of 

matching is a new and unique approach because previous methods for matching on observable 

variables can be used in tandem with this method.  Comparing those students who possess the 

same innate ability will allow for selection bias to be controlled for as well as allow causal 

inferences to be made based on the findings of the observational experiment.   

Chapter two of this dissertation begins with a review of the currently available literature 

on the existing methods of causal inference and their use in educational research.  Then, the 

development of the newly proposed method is described in parallel to the existing methods of 

causal inference.  Chapter three describes the specifics of the model as well as the methods 

behind the simulation involved in exploring the statistical properties of this new method.  In 

addition, the method is compared to the existing methods to examine the predictive power and 

added benefit of using the new method.  Chapter four provides the results of the simulations and 

method comparison.  Chapter five provides a discussion of this research, limitations, and areas 

for future work.
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Chapter 2: Literature Review 

 As discussed, there are various types of methods used to evaluate causal inference 

models.  A review of the relevant literature is provided, to understand the use and assumptions of 

these methods. 

Regression Discontinuity 

Suppose fifth grade students who are being promoted to the sixth grade take a statewide 

standardized “fifth grade proficiency assessment” at the end of their fifth grade year.  Students 

who score 50 or below are placed into a developmental track during the sixth grade.  In the 

middle of the sixth grade year, all sixth graders are tested again to see if academic progress is 

being made.  The efficacy of the developmental tracking could be analyzed in this situation using 

a technique called regression discontinuity.   

To truly understand the effect of the developmental track, one would want to compare the 

difference between the mid-year sixth grade test scores if the student was placed in the 

developmental track and not placed in the track.  However, in reality, only one of these scores is 

available since the student is either placed in the track or not (Holland, 1986; Rubin, 1974).  In 

potential outcomes framework, there are only two relationships between the test X and the 

average outcomes, 

€ 

E[Y1 | X] and 

€ 

E[Y0 | X] for those in treatment and not in treatment.  

Regression discontinuity (RD; Thistlethwaite & Campbell, 1960; Imbens & Lemieux, 2008; Lee 

& Lemieux, 2009) focuses on those students “right above” and “right below” the pre-test cut 

point, c.  This creates two groups with almost identical scores on the pre-test, but with different 

treatment placement and therefore outcomes based on different treatment groups.  RD then 

compares the outcomes of these two groups, using regression, and determines the effect of the 

treatment program, 

! 

E[Y1 "Y0 | X = c ± #] as 

! 

lim
"# 0

c +" , which is 

! 

E[Y1 "Y0 | X = c].  Further, RD 



12 

 

can be extended to cases known as the “fuzzy design” where treatment placement is not strictly 

determined by some variable—other variables that are unobserved are related to treatment 

assignment (Hahn, Todd, & van der Klaauw, 2001; Imbens & Lemieux, 2008).  The fuzzy design 

is a special case of the usual, or sharp design, RD analysis.  Lee and Card (2008) stress that the 

classic use of RD, as described above, is suited when the variable assigning treatment is 

continuous.  When it is discrete, they offer corrections that can be used so that RD is still an 

applicable analysis.  Also, the decision variable in RD does not have to be based on only one 

measure.  It can be a created using multiple evaluative measures together and it does not even 

have to be related to the outcome (Matthews, Peters, & Housand, 2012).  However, an RD 

assumption requires that the assignment be fully known. 

RD has been used in a number of educational studies.  Recently, Crone, Stoolmiller, 

Baker, and Fien (2012) examined a multi-component intervention for struggling middle school 

readers across multiple districts in Oregon using a multilevel cluster RD design.  They found that 

although no significant effect of the intervention was found, there was significant variation in the 

intervention’s effect across the schools in the districts.  In two different studies, Abadzi (1984; 

1985) examined the effect that ability grouping had on academic achievement and self-esteem.  

In the first study (Abadzi, 1984), she examined fourth-graders in Texas who were grouped into 

high and regular ability groups.  Abadzi found that those students right above the cut point 

showed increases in academic performance while those just below the cut point showed 

decreases after being in a regular ability class for a year.  Those in the high ability group showed 

increases after a year of grouping.  There were no significant differences found in self-esteem.  

In the subsequent study (Abadzi, 1985), she looked at the effects of ability grouping on “long-

run” academic achievement and self-esteem of students in Texas in fourth through sixth grade.  
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The ability-grouping decisions for these students were made at the end of their third grade year 

and this study examined this grouping up until the end of their fifth grade year.  The study found 

that overall, the students right near the cut point, on either side, were the most affected by ability 

placement and that the effect from ability-grouping diminished in the long-run for these students. 

The following studies further illustrate the use of RD in an educational setting.  

• Seaver and Quarton (1976) looked at the effect of being placed on the Dean’s List for 

full-time undergraduates in terms of grade point average and course load.  They found 

that earning the distinction of being on the Dean’s List encourages students to continue to 

earn high grades, but does not influence the amount of courses they take on.   

• According to Owen (2010), females that earned an A as a final grade in their first 

economics class had a higher probability of majoring in economics, even after grades 

were controlled for, indicating that final grades contain valuable feedback that could act 

as encouragement to pursue further study in a field.  Male students did not show the same 

effect.   

• Ou (2010) found that students who barely failed their high school exit exam were more 

likely to drop out of high school than those that just barely passed the exam.   

• Finally, the effect of taking a remedial English class at a community college was 

explored by Horn, McCoy, Campbell, & Brock (2009).  They found that taking the 

remedial English class had a negative effect on grades in the first level, non-remedial, 

English class that students needed to take.  Furthermore, the longer the time in between 

the remedial course and the non-remedial course, the greater the negative effect was. 
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Instrumental Variables 

 Suppose an elementary school has developed an extracurricular program to help prepare 

their fifth grade students for transition to the sixth grade, which is housed in the middle school 

and has many differences from the elementary school.  This program is open to all fifth graders 

and is voluntary to attend.  The school wants to see if the program really is beneficial for the 

transition to the new school. Analyzing the effectiveness of this program just by comparing the 

sixth grade adjustment of those students who attend to those that did not attend is not appropriate 

since there are confounding factors that could be associated with attending (i.e. students that 

adjust well attend easily or students who have trouble adjusting do not attend.)  Rather, it would 

be appropriate to examine the effect of the encouragement of attending the program. To do this, 

the school has one of the two fifth grade teachers encourage her class to attend the program and 

tells the other teacher to mention it, but not remind and encourage his students.   

However, this is still not a straightforward analysis as there are three student types that 

would occur.  First, there would be students that would go whether encouraged or not 

encouraged to go.  Second, there would be students that would not go whether encouraged or not 

encouraged.  Third, there would be students who would not attend if not encouraged, but would 

attend if encouraged.  It is this group, where encouragement changes the attending decision, that 

is most important to explore.  Furthermore, students in this group of interest might not attend all 

sessions of the program, in a way creating levels of the treatment.  An appropriate technique to 

analyze a situation like this, usually known as the intent-to-treat (ITT), is instrumental variables.  

Instrumental variables were originally developed in economics to look at supply and demand 

(IV; Wright, 1928; as cited in Angrist, Imbens, & Rubin, 1996).  IV is appropriate when there is 

bias associated with the explanatory variable of interested.  IV looks at an “instrument,” or 
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variable, which is related to the treatment variable and explains the bias seen the in the 

explanatory variable of interest.  In other words, compliance to attending the program (the 

instrument) is related to being encouraged to attend (the treatment).  IVs are used to control for 

measurement error in the explanatory variables. 

Nomi and Allensworth (2009) used both IV and RD to examine the efficacy of a double-

period algebra policy that the Chicago Public Schools put into place.  Here, the authors found 

that about 20% of the students in the study did not adhere to the double-period algebra policy 

guidelines.  Because of this, IVs were used to look at the enrollment effect and a modified RD 

design was used to look at the policy effect.  The lack of complete adherence was confounding 

the policy effect and needed to be controlled for using IVs.  They found that there was a policy 

effect for those students just above and below the enrollment cutoff score and that there was a 

positive affect on algebra scores for those that enrolled in the double-period policy than those 

that were eligible but did not enroll.   

Angrist and Lavy (1999) use IV and RD to examine the effect of class size on scholastic 

achievement in Israeli public schools, where enrollment is the identified instrument, since it is 

closely related to class size.  The study found that overall, there is an increase shown in test 

scores when class sizes are reduced.  This is another illustration of how IV and RD are used 

together to control for factors that would bias the results. 

Propensity Score Matching 

In situations where the tracking of students into different tracks is not based on a hard cut 

point, propensity scores might be used.  Propensity score matching creates a matching variable 

based on the probability to be placed into treatment as a function of multiple observed variables; 

it is useful to remove biases associated with treatment assignment to estimate treatment effects 
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on an outcome (Rosenbaum & Rubin, 1983).  As before, we wish to study the average treatment 

effect based on the difference in outcomes in the treatment and control groups.  Given a selection 

of observed pretreatment covariates h, for any individual i, that do not contain all of the 

observations used to place i into a treatment assignment, the propensity score, e(h), represents 

the probability to be placed into treatment given the observed covariates.  

! 

e(h) = pr(D =1 | h)  

The propensity score is a type of balancing score, b(h), and “is a function of the observed 

covariates h such that the conditional distribution of h given b(h) is the same for treated (D = 1) 

and control (D = 0) units” (Rosenbaum & Rubin, 1983, p 42) and

! 

0 < P(D =1 |b(h)) <1.  As 

described in Rosenbaum and Rubin (1983) for large samples, it can be shown that treatment 

assignment and the observed covariates are conditionally independent given the propensity score,  

! 

h"D | e(h) 

The propensity score is usually unknown in small sample observational studies and must be 

estimated from the available data.  This is done usually using logistic regression and the 

following equation 

! 

e(h) = P(D =1 | h) =
P(D =1)P(h |D =1)

P(D =1)P(h |D =1) + P(D = 0)P(h |D = 0)
 

Propensity scores have been used in educational research to study differences between 

public and private schools (Fan & Nowell, 2011), retention policy for kindergarteners (Hong & 

Raudenbush, 2005, 2006), the probability of graduating from college if awarded a scholarship 

(Melguizo, 2010), the effects of completing college on future earnings (Brand & Xie, 2010), and 

the effects on school choice (Bifulco, 2010).   
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The Heckman Model 

A fourth approach used to estimate a casual effect from observational data is the 

Heckman model, which uses statistical methods to correct for bias that enters the sample and 

inference due to nonrandom treatment selection (Heckman, 1979).  In educational research, it has 

been used to correct for biases when analyzing the effect of taking a commercial SAT prep 

course (Briggs, 2004).   

Proposed New method: Ability Matching, Using IRT 

The methods described above are all appropriate for processes that fit into the conceptual 

framework depicted in Figure 1.  Some, like ANCOVA and RD, may be able to handle the 

process described in Figure 2 to estimate the causal effects of an educational decision.  These 

methods must be careful to account for the fact that the potential outcomes are conditionally 

independent of the decision given true ability, not given test performance.  However, these 

existing methods are not required to provide unbiased estimates of the effects in scenarios 

depicted by Figure 3. 

 Recall that in Figure 3, D is not conditionally independent of the potential outcomes (Y) 

given test performance, which is a requirement for the standard methods to be appropriate.  

Because of the conditional relationship between the decision and the outcome, results derived 

from ANCOVA or propensity score matching are likely to be biased.  In fact, as discussed in 

Rosenbaum (1984) and Holland and Rosenbaum (1986), if test performance X, the selection 

variable D, and the potential outcomes Y0 and Y1 are all positively associated with the true ability 

θ, the estimated treatment effects found by matching on test performance X will be positively 

biased.  The same idea follows for the negative association.  In a scenario like the one pictured in 

Figure 3, not only does test performance provide information about a student’s true ability, the 
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decision, and outcome also provide more information about the true ability.  Providing additional 

information that does not include measurement error of a test to model the true score allows for 

better estimates of the true score to be found. 

The purpose of this study is to develop a new method for making causal inferences about 

the effect of a decision on a related outcome when a pre-test is given, in a related domain.  In 

theory, this method should be applicable in both the cut-score scenario, Figure 2, where current 

methods hold and the ability-only scenario, Figure 3, where current methods struggle with bias.  

The IRT model implicitly controls for the latent “true” ability and thus allows for direct 

comparison of treatment and control effects at each level of ability in the domain under study.  

Thus, the proposed method can be thought of as a sort of model-based matching procedure that 

matches on an unobservable latent ability.   

Using IRT is a new approach to causal inference and will capture additional information 

about the person through their performance on the test, decision, and outcome and provide a less 

biased estimate of the effect of the treatment decision.  Recall the different college admissions 

examples, it is possible for two students with different mathematics abilities to achieve the same 

score on the placement test.  For example, questions on tests can be missed by students who have 

the ability to get the answer correct for many reasons (e.g. distraction in the testing room, 

fatigue, misreading of the question, etc.).  However, IRT models can estimate and use answer 

patterns and the difficulty of items to gain additional information about an individual’s ability.  

Using item-level data to gain information about students is like using a fine paintbrush to paint 

small areas of a canvas.  The small brush allows fine grained details to be visible whereas a 

larger one does not. 
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For each model scenario (i.e. cut-score scenario and ability-only scenario), this method is 

evaluated and compared to the applicable existing methods via a simulation study. Then the 

statistical properties of the method are evaluated using bias and RMSE to check item parameter 

recovery and treatment effect estimation.  Finally, the method is tested on a real world dataset 

against the other applicable existing methods to comparatively evaluate its performance. 
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Chapter 3: Method 

Item Response Theory Background 

To overcome the biases described in the existing methods, this research uses IRT models 

to examine the causal relationship between a pre-test, educational decision (intervention), and 

outcome.  IRT models are a class of mixed effects, latent variable models for the analysis of 

repeated ordinal responses.  This research assumes that the educational intervention is 

dichotomous and that the test performance is an ordinal representation of an individual’s scores 

on a battery of test questions.  If the outcome variable is also ordinal, then IRT models are 

appropriate to model situations like that in Figure 2 and Figure 3.  According to Mislevy (1991), 

latent variables not only capture aspects of observable variables, like correctly answering test 

items, but also capture all associations in various domains, like demographics and aspects of a 

student’s educational standing.  Using an IRT model allows the latent ability, θ, to capture 

unobservable associations during the pre-test, those associated with the decision, and also with 

the outcome.   

IRT contains a broad range of models that allow θ to be estimated by modeling the item 

responses in a broad range of situations.  The simplest model, the Rasch model (Rasch, 1960), 

sometimes called the one-parameter logistic model (1PL), assumes that the log-odds (logit) of 

the item characteristic curve is a linear function of θ.  The Rasch model only uses the difficulty, 

β, of each item as a parameter.  For item i and examinee j, the probability of j correctly 

answering i is modeled by the following equation. 

! 

Pi(" j ) =
e(" j #$ i )

1+ e(" j #$ i )
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However, in many situations the Rasch model is too restrictive and is generalized to the two-

parameter logistic model (2PL; Birnbaum 1968), which allows the slope of the log-odds to vary.  

In the 2PL model there are two parameters for each item—the item difficulty, β, and the item 

discrimination, α.   

! 

Pi(" j ) =
e# i (" j $% i )

1+ e# i (" j $% i )
 

The 2PL model can be generalized even further to account for guessing, c, on questions, because 

in many situations when someone does not know the answer to a question, they guess rather than 

just getting it incorrect.  This generalization is known as the three-parameter logistic model 

(3PL; Birnbaum, 1968).    

! 

Pi(" j ) = ci + (1# ci)
e$ i (" j #% i )

1+ e$ i (" j #% i )
 

These three models (Rasch, 2PL, and 3PL) are the most common models for dichotomous item 

response data.  There are specific models for data that is polytomous, such as the generalized 

partial credit model (GPCM; Muraki, 1992) for ordinal polytomous responses, and the nominal 

response model (NRM; Bock, 1972) for nominal item responses.  These polytomous models, 

estimate the probability of scoring in category l of a k-category model; for the GPCM this 

probability is conditional on the fact that the score is either in category l-1 or l.  The GPCM is 

given by 

! 

Pijl
Pij,l"1 + Pijl

=
e# i ($ j "% il )

1+ e# i ($ j "% il )
 

The NRM is given by  

! 

Pil (" ) =
e(# il" j +cil )

e(# ig" j +cig )

g=1

k
$
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Another advantage is that all of these models can be modeled using standard software like 

PARSCALE (Muraki & Bock, 1997), BILOG-MG 3 (Zimowski, Muraki, Mislevy, & Bock, 

n.d.), and packages in R like LTM (Rizopoulos, 2011) and IRTOYS (Partchev, 2012).  

When item responses are ordinal, the decision variable is dichotomous, and the potential 

outcomes are ordinal, the conceptual models depicted in Figure 2 and Figure 3, can be thought of 

as generalized linear or non-linear mixed effects models.  Typically these models assume that θ, 

which represents ability, is distributed as a normal random variable with a mean of zero and 

variance of one, N(0,1), and an IRT model can be applied to the data. The path from θ to X 

represents the relationship of test items and ability.  For dichotomously scored items, standard 

IRT models (Rasch, 2PL, and 3PL) can be used to model the data.  If the items are polytomously 

scored, like partial credit items, a GPCM is a plausible model for analyzing this relationship and 

expanding the applications of this model.  Mathematically, the GPCM will reduce to a standard 

IRT model if the items are scored dichotomously; the polytomous version of the 2PL model is 

the GPCM.  The path from θ to D represents the probability of being placed into the treatment 

condition based on ability.  Simplest is dichotomous, but it can also be extended to polytomous 

(nominal and ordinal) conditions.  This relationship can be modeled using the standard IRT 

models.  Depending on the scenario examined, Figure 2 or Figure 3, will determine if this path is 

included in the overall model.  The paths from θ to Y0 and θ to Y1 represent the probability of 

success on the outcome variable in each treatment group, given the student’s ability.  For these 

models the outcome is represented in ordered categories, either dichotomously (e.g. success or 

failure) or polytomously (e.g. low, medium, high), but not continuously.  A student only has an 

observed value for one of these paths since only one decision can be followed.  The value would 

be missing for the other path.  This relationship is also modeled with standard IRT models and 
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can be extended from the dichotomous condition to polytomous (nominal and ordinal) 

conditions. 

Under the IRT model the outcome variables, Y0 and Y1 are treated as “items” in a large 

“test.”  Since they are treated as “items” they contain the “item responses” for the individuals in 

the sample.  Certain individuals have missing data for these responses.  As long as these 

outcomes represent situations under the cut-score scenario (Figure 2) or the ability-based 

scenario (Figure 3) the data would be considered missing at random (MAR; Rubin, 1976).  The 

data is considered MAR since it is impossible for an individual to have an outcome for both the 

treatment and control group. 

The overall IRT model links all of these paths together as if it was one large set of item 

responses where the test items, X, come first, followed by the decision D, and the outcome 

variables Y0 and Y1.  Representing the data as such allows for the GPCM, in general terms, to be 

applied to this “large test” and parameter estimates can be estimated for each outcome path.  

These estimates represent the discrimination and difficulty of success on the outcome for each 

treatment group—the outcomes for the treatment and control groups are like items on the test 

and can be compared to each other as such. 

Data Simulation   

Simulation Conditions To compare this method to existing causal inference methods 

and to study the statistical properties of this method, simulation conditions were formed from 

combinations of sample size, pre-test length, and true treatment effect. Table 1 lists the possible 

values that each aspect of the simulation could contain.  

Sample sizes ranged from 500 to 10,000 and were chosen to realistically model different 

groups of test takers—from a placement examination of an incoming college freshman class to a 
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sample of students taking an admissions test, like the SAT.  The number of items on the pre-test 

could take on three different values of 10, 20, or 50, also chosen to represent true life testing 

situations such as a college placement test or an admissions exam (College Board, 2013).   

The difficulty parameters of the outcome variables were chosen to represent the 

difference between the two groups.  The difference in the difficulty parameters β1 and β0 is a 

measure of the treatment effect; it represents the difference in log-odds of a student at the mean 

ability level, θ = 0.  In very general terms, a treatment effect either exists or it does not exist.  If 

an effect exists, it can be either positive or negative as well as either weak or strong.  To replicate 

these options, five different treatment effect representations were used.  For all of the outcome 

conditions, the discrimination parameter of the outcome α, (i.e. the slope) was set constant at 1.  

This allowed the representations of possible treatment effects to only be represented by the 

difficulty parameters.  It is possible to have identical outcome difficulties, but varying slopes, 

which would result in differential effects.    

No effect would exist if both treatment and control groups found the outcome equally 

difficult, as long as they had the same outcome slopes.  Finding the outcome equally difficult 

implies that there is no difference in success between those in treatment and those in the control 

group with the same level of ability, indicating no treatment effect, represented by the “No 

Difference” condition in this study.  A negative effect exists if the control group performs better 

on the outcome than the treatment group.  When the treatment group finds the outcome to be 

more difficult than the control group for those with the same ability, the treatment group will 

have a lower probability of success on the outcome.  This effect can be either weak or strong, 

represented here by the negative low (Low -) and negative high (High -) conditions.  A positive 

effect exists if, conditional on having the same ability, those in the treatment group perform 
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better on the outcome than those in the control group.  This means those in the treatment group 

find the outcome less difficult than those in the control group.  The positive effect can also be 

weak or strong, represented by the positive low (Low +) and positive high (High +) condition. 

 

Table 1  

Values for simulation conditions. 

Sample Size (N) Number of Items (X) Treatment Effect Y0 (Control) Y1 (Treatment) 

500 10 No Difference 0 0 

1000 20 Low - -0.5 0.5 

5,000 50 Low + 0.5 -0.5 

10,000  High - -1 1 

  High + 1 -1 

 

 The design of the simulations creates all possible combinations of these values, resulting 

in 60 different simulation conditions.  For example, a simulation of 500 students on a 10-item 

test with item difficulties for the outcomes of 0 and 0 for the control and treatment groups 

respectively is created.  Followed by a simulation of 500 students on a 10-item test with item 

difficulties for the outcomes of -0.5 and 0.5 for control and treatment groups respectively were 

created, etc. For the simulation conditions involving a cut score, the cut score value was set to be 

equal to half of the item on the test.  This resulted in a split of approximately 70% of the sample 

being placed into treatment, which is a realistic value according to the literature (Legislative 

Analyst’s Office, 2011).  

Pre-test True Item Parameters The initial difficulty and discrimination values for the 

10, 20, and 50 items on the test were modeled based on true parameters from the 2007 Trends in 
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Mathematics and Science Study (TIMSS), see Table A1 in the Appendix for these values.  The 

TIMSS is an international study that compares the science and mathematic achievement of U.S. 

students to that of students in other countries.  The mathematics items are modeled by a 3PL IRT 

model (Gonzales, Williams, Jocelyn, Roey, Kastberg, & Brenwald, 2008).  Since the current 

research uses a 2PL model, rather than a 3PL model, only the difficulty and discrimination 

parameters of the TIMSS items were selected.  For each item parameter (discrimination and 

difficulty), the empirical density of the parameters used in the TIMSS were plotted and a normal 

curve fitted to the density.  Then, the parameters of the normal curve were used to sample 50 

items each for difficulty and discrimination to be used as the initial values for the simulation pre-

test.  These were then broken down into each test length, with each longer test containing the 

smaller tests.  The first ten items represent the 10-item test; the first 20 items represent the 20-

item test and contains the 10-item test within it.  Finally, the 50-item test is represented by all 50 

items, which contain the other two tests.  These values are considered the true parameter values. 

Dataset Building Each of the 60 simulation conditions contained 1,000 replications of 

data simulation.  Each replication consisted of sampling “true” ability values from a standard 

normal distribution (N(0,1)) for the appropriate sample size.  For each member of the sample 

size, a 2PL model was used to estimate dichotomous item responses on the appropriate number 

of pre-test items using the initial item parameter values.  Using the specific outcome difficulty 

for each simulation condition (e.g. “High +”), a 2PL model was used to generate dichotomous 

responses on each outcome (i.e. the outcome for the treatment group and the outcome for the 

control group), based on each member’s ability.  Then, dichotomous treatment placement was 

also estimated using a 2PL model, the decision parameters (difficulty = 0, discrimination = 1), 

and each member’s ability.  This decision is called the ability-based decision.  A second 
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treatment decision was also assigned to the member based on the sum of that member’s correct 

responses’ relationship to an established cut score.  The cut score was designated as 50% 

accuracy on the test.  If the member’s test score was equal to this value or less, that member was 

assigned to the treatment group.  This decision variable is referred to as the cut score decision.  

These two decisions variables could result in identical or different treatment placement.   

Recall that a member can only have a value of the outcome for the treatment group in 

which that member was assigned.  Therefore, two sets of outcome variables were created that 

corresponded to the ability-based decision and the cut score-based decision.  If a member was 

assigned to the treatment group, that member’s value in the control group’s outcome variable 

was set to missing, and vice versa.  This was done for both decision variables.  An example of 

the dataset set up can be seen in Table 2. 

Table 2 

Sample simulated dataset. 

Member θ I1 I2 . . . IX TS Dθ yc yt Dcut yc_cut yt_cut 

1 0.585 0 1 . . . 0 1 0 1 NA 1 NA 0 

2 -0.477 1 1 . . . 0 2 1 NA 1 1 NA 0 

3 0.902 0 0 . . . 0 0 1 NA 0 0 0 NA 

. . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . 

N -1.626 1 0 . . . 0 7 0 0 NA 0 1 NA 

Note: I1 to IX represents each item on the pre-test; N represents sample size, TS represents the 
total score on the pre-test; Dθ represents the ability-based decision with corresponding outcomes 
of yt and yc; Dcut represents the cut score-based decision with corresponding outcomes of yt_cut 
and yc_cut 
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Causal Inference Method Comparison 

Recall the cut-score scenario in Figure 2 and the ability-based scenario in Figure 3.  

These figures represent two different representations of how the pre-test, decision, and outcomes 

can be associated. As explained earlier, not all causal inference methods are applicable to both 

scenarios.  However, the IRT causal inference method must be evaluated in each scenario and 

compared to the appropriate methods to determine the best use of the method. 

Cut-score Scenario Three different causal inference methods are compared within the 

cut-score scenario, shown in Figure 2.  They LR, RD, and the IRT method.  Each method 

requires different combinations of each simulated data set, but all use the cut-score based 

decision (Dcut) as well as the cut-score associated outcomes (yt_cut and yc_cut). 

Logistic regression. Since the outcome in this study is dichotomous a logistic regression 

model (LR) is used in place of an ANCOVA model.  This LR model requires three pieces—a 

covariate, a selection variable, and an outcome.  For this model the covariate is the total score on 

the test and is centered around the treatment group’s mean. The selection variable representing 

treatment placement is the cut score-based decision variable. Combining both treatment group 

outcomes into one variable creates a single outcome variable.  Since each member has an 

outcome value either in the treatment condition or the control condition there are no missing 

entries in this composite variable.  A logistic regression using the binomial distribution with a 

logit link function was used to estimate the treatment effect.  This model returns estimates of the 

treatment effect, the interaction between total score and treatment placement, and associated 

significance values. 

Regression discontinuity. The RD method required similar pieces as the LR model, 

except that the total score was centered around the cut score, rather than the treatment group’s 
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mean score. A logistic regression using the binomial distribution with a logit link function was 

also used to estimate the treatment effect. This model returns estimates of the treatment effect, 

the interaction between total score and treatment placement, and associated significance values. 

IRT-based approach. A 2PL model was used to estimate ability based on item responses 

and each outcome.  The individual pre-test items were entered into the model using dichotomous 

scoring (correct/incorrect) and the outcome variable for each treatment group was also entered 

dichotomously (success on the outcome/non-success) as an item. Together this created one large 

“test” that consisted of 12, 22, or 52 items.  The estimation was done in R using the est( ) 

function within the package IRTOYS (Partchev, 2012).  Specifically, this function used the ICL 

(Hanson, 2002) estimation program to estimate the 2PL model.  This method returns difficulty 

and discrimination parameter estimates for each “item” in the model. 

Ability-based Scenario Three different causal inference methods are compared within 

the ability-based scenario, shown in Figure 3.  They are LR, propensity score matching, and the 

IRT method.  Each method requires different combinations of each simulated data set, but all use 

the ability-based decision (Dθ) as well as the associated outcomes (yt and yc). 

Logistic regression. Once again the LR model requires three pieces—a covariate, a 

selection variable, and an outcome.  For this model the covariate is the total score on the test and 

is centered around the treatment group’s mean. The selection variable representing treatment 

placement is the ability-based decision variable.  The outcome variable is created by combining 

both treatment group outcomes into one variable.  Since each member has an outcome value 

either in the treatment condition or the control condition there are no missing entries in this 

variable.  A logistic regression using the binomial distribution with a logit link function was used 

to estimate the treatment effect.  This model returns estimates of the treatment effect, the 
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interaction between total score and treatment placement, and associated significance values. 

Propensity score matching. A propensity score was created using the test items as the 

observed covariates.  Once the propensity score was created, the Matching ( ) function in R was 

used to match those in treatment and control, based on the propensity score.  This matching was 

executed as one-to-one matching with replacement.  This model then estimates the probability of 

success on the outcome using the matched sample and returns an estimate of the treatment effect. 

IRT-based approach. A 2PL model was used to estimate ability based on item responses, 

the decision, and outcome.  The individual pre-test items were entered into the model using 

dichotomous scoring (correct/incorrect), the ability-based decision variable was also entered into 

the model dichotomously, as was the outcome variable for each treatment group.  Together this 

created one large “test” that consisted of 13, 23, or 53 items.  The estimation was done in R using 

the est( ) function within the package IRTOYS.  Specifically, this function used the ICL 

estimation program to estimate the 2PL model.  This method returns difficulty and 

discrimination parameter estimates for each “item” in the model. 

Parameter Recovery Evaluation Parameter estimates from each model were compared 

to the true values of the parameters in terms of biases and root mean squared errors (RMSE) to 

evaluate parameter recovery.  The bias of the estimate of the parameter of interest, γ, is 

calculated as the difference between the mean estimated parameter (over all replications) and the 

true parameter value, or   

 

 

 ! 

BIAS(ˆ " ) = E[ ˆ " ] #"
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The RMSE of the estimate of the parameter of interest is calculated as the square root of the sum 

of the squared bias of the estimated parameter and the variance of the estimated parameter. 

 

The treatment effect was calculated for each method within a scenario.  These estimates were 

compared to the true effect in terms of bias and RMSE.  Then, these statistics were compared 

between models. 

Method Comparison Statistics Within each scenario, the three models were compared 

to each other in terms of Type I and Type II errors.  For each causal inference method, the 

proportion of simulated datasets where statistically significant effects, p ≤ 0.05, were found was 

calculated.  When no true differences exist in the simulated data (i.e. the No Difference group), 

this proportion is an estimate of the Type-I error rate.  When there are true differences (i.e.    

Low -, Low +, High -, High +), this proportion is an estimate of the power, or one minus the 

Type-II error rate.  

For the IRT models, the parameter estimates for the difficulty from treatment and control 

conditions for each simulation replication, i, were used with the MSE (the square of the RMSE) 

and bias for the overall condition, j, to create a z-score.  This z-score was then compared to a 

normal distribution to get a resulting p-value. 
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For the propensity score model the p-value was calculated by comparing a test statistic to a 

t-distribution.  The test statistic was calculated using the estimated effect and the standard error 

with degrees of freedom equal to one less than the number of observations from each simulation 

condition. 

 

 

Real World Data  

To examine this method on real world data, data from a large-scale college admission test 

as well as data from an end-of-year high school exam were obtained. The main research question 

using this data is to look at the effect of taking an advanced course in one of the science, 

technology, engineering, and mathematics (STEM) areas during the senior year of high school 

and its association with majoring in a STEM field in college.  Data from the mathematics section 

of the admissions test, taken during the junior year, acts as the pre-test.  The decision is if the 

student took the advanced STEM course during their senior year. The outcome is majoring in a 

STEM field in college.  There is an interest in the STEM fields, and it seems particularly useful 

to identify aspects of high school curriculum that could help to interest students in STEM areas. 

! 

t =
est
se
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Chapter 4: Results 

This chapter discusses the results of this dissertation.  The two different scenarios—cut-

score (Figure 2) and ability-based (Figure 3)—will be examined separately.  The investigation of 

the causal inference methods under each scenario will begin with the presentation of the 

estimated item parameters, a discussion of the Type I and Type II error rates, and a discussion 

about model parameter recovery and treatment estimation.  The individual causal inference 

methods are compared briefly, however Chapter 5 will present a thorough comparison and 

discussion.  This section begins with the ability-based scenario (Figure 3), moves to the cut-score 

(Figure 2), and finishes with an analysis of real world data.  

The est( ) function in the IRTOYS (Partchev, 2012) package in R was used to estimate 

the 2PL models by calling the ICL program (Hanson, 2002).  It was observed that multiple fitting 

errors in ICL occurred for the 2PL model under the cut-score scenario.  To overcome this, a 

warning and error catching function was written so that a new dataset was simulated whenever a 

fitting error occurred.  The dataset that triggered the error or warning was saved for future 

investigation, but not included in the model running process. 

Comparison Under the Ability-based Scenario  

Recall that the ability-based scenario is the model where the decision is not based on the 

pre-test, but is based on the student’s ability (see Figure 3).  In this scenario, the student is placed 

into treatment based on his/her probability of success on the decision, which is based on the 

student’s ability.  The mean parameter estimates for the outcome variables in the ability-based 

scenario, along with the true values, RMSE, and bias can be seen in Table A2 through Table A5 

in the Appendix.   
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Type I and Type II Error Rates The main hypothesis of this study is to determine how 

the IRT based method compares to existing methods of causal inference.  For the three models—

LR, propensity score, and IRT—the proportion of simulated datasets where statistically 

significant effects, p ≤ 0.05, were found was calculated for each simulation condition.  Table 3 

through Table 6 show the proportion of significant differences found by each method for the 

outcome conditions.  For all simulations involving the No Difference outcome condition, the IRT 

method found a proportion of about 0.05, indicating that it is performing as expected.  This value 

remained relatively constant as the sample size and test length varied.  The other methods, 

specifically LR and propensity score matching, have high Type I error rates as shown by the high 

proportion of significant differences found for this condition. For both LR and propensity score 

the Type I error decreases as test length increases and yet increases as sample size increases. 

The conditions where true differences exist (i.e. Low -, Low +, High -, High +) represent 

the power of the test.  The higher the power, the better the test is at detecting true differences.  A 

good test is a test that has a power function near one for most values of the estimator that fall in 

the rejection region (Casella & Berger, 2002, p. 383).  In terms of power, the IRT method 

demonstrates higher power than propensity score matching and similar power to LR.  This is 

shown by the fact that a higher proportion of significant differences are found by the IRT method 

than in propensity score matching, within a simulation condition.  Also, for all methods in almost 

all conditions, as test length and sample sized increased independently power also increased. 

Together this information indicates that the IRT method is able to detect differences 

between the treatment and control groups better than the existing methods for the ability-based 

scenario, when these differences exist.  Also, the IRT method is less likely than the other 

methods to detect difference when no difference between treatment and control exists.  
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Table 3 

Proportion of statistically significant effects found by each model, under the ability-based 
scenario, for a sample size of 500.  

Simulation Characteristics IRT LR Propensity Score 

X OC  Decision Interaction  

No Difference 0.052 0.329 0.063 0.216 

Low - 0.995 0.822 0.066 0.590 

Low + 0.655 1.000 0.043 0.986 

High - 1.000 1.000 0.061 0.999 

10 

High + 0.843 1.000 0.051 1.000 

No Difference 0.048 0.101 0.060 0.093 

Low - 0.991 0.934 0.086 0.705 

Low + 0.872 0.997 0.062 0.946 

High - 1.000 1.000 0.076 0.999 

20 

High + 1.000 1.000 0.043 1.000 

No Difference 0.052 0.060 0.064 0.036 

Low - 1.000 0.975 0.086 0.712 

Low + 0.930 0.990 0.059 0.783 

High - 1.000 1.000 0.111 0.996 

50 

High + 1.000 1.000 0.051 0.999 

Note: X represents the test length and OC represents the outcome condition. 
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Table 4 

Proportion of statistically significant effects found by each model, under the ability-based 
scenario, for a sample size of 1,000. 

Simulation Characteristics IRT LR Propensity Score 

X OC   Decision Interaction   

No Difference 0.048 0.583 0.058 0.379 

Low - 1.000 0.985 0.063 0.904 

Low + 0.991 1.000 0.054 1.000 

High - 1.000 1.000 0.063 1.000 

10 

High + 1.000 1.000 0.055 1.000 

No Difference 0.052 0.147 0.075 0.117 

Low - 1.000 1.000 0.113 0.966 

Low + 0.998 1.000 0.058 1.000 

High - 1.000 1.000 0.127 1.000 

20 

High + 1.000 1.000 0.055 1.000 

No Difference 0.047 0.063 0.071 0.052 

Low - 1.000 1.000 0.115 0.965 

Low + 1.000 1.000 0.073 0.994 

High - 1.000 1.000 0.146 1.000 

50 

High + 1.000 1.000 0.050 1.000 

Note: X represents the test length and OC represents the outcome condition. 
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Table 5 

Proportion of statistically significant effects found by each model, under the ability-based 
scenario, for a sample size of 5,000.  

Simulation Characteristics IRT LR Propensity Score 

X OC   Decision Interaction   

No Difference 0.047 0.998 0.095 0.970 

Low - 1.000 1.000 0.118 1.000 

Low + 1.000 1.000 0.058 1.000 

High - 1.000 1.000 0.149 1.000 

10 

High + 1.000 1.000 0.056 1.000 

No Difference 0.050 0.519 0.228 0.470 

Low - 1.000 1.000 0.417 1.000 

Low + 1.000 1.000 0.139 1.000 

High - 1.000 1.000 0.499 1.000 

20 

High + 1.000 1.000 0.075 1.000 

No Difference 0.042 0.082 0.257 0.108 

Low - 1.000 1.000 0.409 1.000 

Low + 1.000 1.000 0.118 1.000 

High - 1.000 1.000 0.540 1.000 

50 

High + 1.000 1.000 0.080 1.000 

Note: X represents the test length and OC represents the outcome condition. 
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Table 6 

Proportion of statistically significant effects found by each model, under the ability-based 
scenario, for a sample size of 10,000. 

Simulation Characteristics IRT LR Propensity Score 

X OC   Decision Interaction   

No Difference 0.059 1.000 0.136 1.000 

Low - 1.000 1.000 0.176 1.000 

Low + 1.000 1.000 0.082 1.000 

High - 1.000 1.000 0.232 1.000 

10 

High + 1.000 1.000 0.061 1.000 

No Difference 0.047 0.815 0.422 0.835 

Low - 1.000 1.000 0.651 1.000 

Low + 1.000 1.000 0.291 1.000 

High - 1.000 1.000 0.789 1.000 

20 

High + 1.000 1.000 0.088 1.000 

No Difference 0.047 0.143 0.446 0.222 

Low - 1.000 1.000 0.690 1.000 

Low + 1.000 1.000 0.217 1.000 

High - 1.000 1.000 0.842 1.000 

50 

High + 1.000 1.000 0.065 1.000 

Note: X represents the test length and OC represents the outcome condition. 
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To visualize this further the proportion of statistically significant effects from each 

condition of the three methods were plotted in a histogram by each treatment effect outcome 

group.  The No Difference condition is shown in Figure 4 through Figure 6 for the various 

methods.  Figure 4 shows the No Difference outcome condition for the IRT method.  According 

to Casella and Berger (2002, p. 397-8), p-values that fall under the null hypothesis are uniformly 

distributed.  Since this outcome condition represents the null hypothesis (i.e. the situation where 

both treatment and control group find the outcome equally difficult), these histograms should 

look like a uniform distribution.  As you can see from Figure 4, this is true for the IRT method.  

However, the LR method (Figure 5) and the propensity score method (Figure 6) do not resemble 

a uniform distribution.  The remaining plots for the other outcome conditions can be seen in the 

Appendix—Figure A1 through Figure A4 for the IRT method, Figure A5 through Figure A8 for 

the LR method, and Figure A9 through Figure A12 for the propensity score method. 
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Figure 4: Histograms of the p-values from the IRT method under the ability-based scenario for 
the No Difference outcome group.  

 



41 

 

 

Figure 5: Histograms of the p-values from the LR method under the ability-based scenario for 
the No Difference outcome group. 
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Figure 6: Histograms of the p-values from the propensity score method under the ability-based 
scenario for the No Difference outcome group.   
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Bias and RMSE for the IRT Method The next step in the investigation of the IRT 

method was to examine parameter recovery within the confines of the ability-based scenario.  To 

do this, mean biases and RMSE were calculated for the discrimination and difficulty parameters 

estimated by the IRT method.  To examine how these values change between the different 

aspects of each simulation condition, profile plots were created for combinations of each 

treatment group’s outcome and the associated item parameter.  Figure 7 and Figure 8 show plots 

for the difficulty parameter of the treatment group’s outcome under the ability-based scenario. 

 Figure 7 shows the profile plot for the bias of the difficulty parameter of the outcome 

variable of the treatment group.  The five panels represent each outcome condition, No 

Difference through High +, with the lines representing the test length and the x-axis showing the 

sample size.  A common occurrence in each of these panels is that the bias decreases as sample 

size increases.  In addition, in the smallest sample size condition, N=500, the 10-item test shows 

the highest bias and the 50-item test the smallest.  This same pattern can be observed for the bias 

of the difficulty in the control condition (see Figure A13 in the Appendix) as well as for the bias 

of the discrimination parameters in both groups (see Figure A14 for the treatment group and 

Figure A15 for the control group in the Appendix). 

Figure 8 shows the RMSE of the difficulty parameter of the outcome variable in the 

treatment group.  The panels in this plot show the same trend as those in Figure 7 and the 

associated plots in the Appendix.  As the sample size increases, the RMSE gets smaller and 

approaches zero.  In other words, as sample size increases parameter recovery gets better.  In 

addition, it is interesting to note that as test length becomes longer, RMSE is smaller.  This is 

specifically shown in the smallest sample size condition, but disappears as the sample size 

increases.  This same trend is also shown in the plots of the RMSE of difficulty parameter for the 
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outcome variable in the control group (Figure A16 in the Appendix) as well as for the RMSE of 

the discrimination parameter of the outcome variables in both treatment (Figure A17 in 

Appendix) and control (Figure A18 in Appendix) groups. For completeness, scatterplots of the 

bias and RMSE for all of the remaining test items, including the decision variable, can be seen in 

the Appendix.  For the ability-based scenario see Figure A19 to Figure A24 for the bias and 

Figure A25 to Figure A30 for the RMSE.   

 

Figure 7: Profile plot for the bias of the difficulty parameter of the outcome variable for the 
treatment group under the ability-based scenario.   
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Figure 8: Profile plot for the RMSE of the difficulty parameter of the outcome variable for the 
treatment group under the ability-based scenario. 

 

ANOVA and ANCOVA Analysis of Simulation Conditions From the previous profile 

plots it can be seen that the bias and RMSE values vary between the different simulation 

conditions in terms of sample size, pre-test length, and outcome difficulty condition, indicating 

that further investigation is needed. To do this, individual three-way factorial design ANCOVA 

models were run to see if certain components of each condition—sample size, pre-test length, 

outcome condition (No Difference, Low -, Low +, High -, High +)—explained the variation in 

bias and RMSE values while controlling for parameter estimates.  These three-way factorial 
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models had equal groups in each cell of the design, making effect interpretation easier.  Five 

models used a corresponding bias as an outcome and fived used a corresponding RMSE.  For 

example, one ANCOVA used the RMSE of the difficulty parameter for the treatment group, 

controlled for the estimate of the difficulty of the treatment group, and looked at sample size, 

pre-test length, and outcome condition.  

ANCOVA models with full interactions were estimated, but had “an essentially perfect 

fit” according to R and were unreliable.  Therefore, the interactions were removed and only main 

effect models were fit.  For the bias, these main effect ANCOVA models had the same 

“essentially perfect fit” and therefore the parameter estimate portion of the model (difficulty, 

discrimination, or difference in difficulty) was removed from each model and an ANOVA model 

was fit instead.  The results of these ANOVA and ANCOVA analyses are shown in Table 7 and 

Table 8.  Table 7 shows the association with bias.  Sample size is always significantly associated 

with the bias, regardless of the parameter being estimated.  The outcome condition is 

significantly associated with bias only for the difficulty parameter.  Pre-test length was 

significantly associated with the bias in the difficulty parameter for the treatment group and in 

the difference of the difficulty between the treatment and control groups. Table 8 shows the 

results of the RMSE analysis.  Once again sample size is always a significant factor.  Outcome 

condition is significantly related in all but the RMSE of the discrimination parameter of the 

control group.  Yet, pre-test length is rarely significantly associated. 
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Table 7 

ANOVA table for the bias in the ability-based scenario. 

Response Source DF F 

Outcome Condition 4 7.319* 

Sample Size 3 3.435* 

Pre-test Length 2 1.928 

Difficulty  
yc 

Residual 50  

Outcome Condition 4 8.275* 

Sample Size 3 5.069* 

Pre-test Length 2 0.924 

Difficulty  

yt 

Residual 50   

Outcome Condition 4 0.302 

Sample Size 3 38.271* 

Pre-test Length 2 3.917 

Discrimination  

yc 

Residual 50   

Outcome Condition 4 0.235 

Sample Size 3 58.024* 

Pre-test Length 2 0.931 

Discrimination  

yt 

Residual 50   

Outcome Condition 4 8.426* 

Sample Size 3 4.565* 

Pre-test Length 2 1.263 

Difficulty  

(yt-yc) 

Residual 50   

Note: * p < 0.05 
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Table 8 

ANCOVA table for the RMSE in the ability-based scenario. 

Response Source DF F 

Difficulty yc 1 151.360* 

Outcome Condition 4 155.231* 

Sample Size 3 103.494* 

Pre-test Length 2 0.979 

Difficulty 

yc 

Residual 49   

Difficulty yt 1 191.870* 

Outcome Condition 4 161.911* 

Sample Size 3 126.784* 

Pre-test Length 2 4.252* 

Difficulty 

yt 

Residual 49   

Discrimination yc 1 2256.892* 

Outcome Condition 4 2.854* 

Sample Size 3 195.319* 

Pre-test Length 2 51.777* 

Discrimination 

yc 

Residual 49   

Discrimination yt 1 2232.399* 

Outcome Condition 4 2.195 

Sample Size 3 133.738* 

Pre-test Length 2 51.839* 

Discrimination 

yt 

Residual 49   

Difficulty difference (yt-yc) 1 207.695* 

Outcome Condition 4 192.142* 

Sample Size 3 119.590* 

Pre-test Length 2 2.430 

Difficulty 

(yt-yc) 

Residual 49   

Note: * p < 0.05 
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Quantifying the Treatment Difference The final part of the comparison under the 

ability-based scenario was to quantify the treatment effect found by the IRT method and compare 

these treatment estimates to the estimates found by the other methods.  Since the outcome in 

each group is treated as an item in the overall IRT model, item characteristic curves (ICC) can be 

created using the item parameters.  These two curves are plotted over the entire ability spectrum.  

For an illustration of what this looks like, see Figure 9.  The area between these curves represents 

the difference between the treatment and control groups.  This difference is the treatment effect.  

To quantify this treatment effect, integration can be used to find the area.  Furthermore, including 

the decision variable in the IRT model, which is done under the ability-based scenario, assumes 

that there is a distribution difference between the group assignment, and this integration must be 

weighted by the proportion of people in the treatment group. 

 Mathematically the difference (Δ(u)) between the two curves can be found by using the 

following formula.  Here, ayc represents the estimated discrimination of the outcome for the 

control group, ayt represents the estimated discrimination of the outcome for the treatment group, 

byc represents the estimated difficulty of the outcome for the control group, byt represents the 

estimated difficulty of the outcome for the treatment group, and u represents a point on the 

ability scale. 

! 

"(u) =
#1

1+ e#ayc (u#byc )
+

#1
1+ e#ayt (u#byt )

 

This difference is then weighted by the distribution of the decision variable and the proportion 

assigned to treatment, wt (u). 

! 

wt(u) =
1 2"( )e#

1
2
u2

1+ e#aD (u#bD )prop(treatment)
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Finally, the weighted difference is integrated, over the conditional distribution of the population 

of interest, S, from negative infinity to positive infinity to quantify the treatment effect, eff (S). 

! 

eff (S) = "(u)wt(u) f (u | S)du
#$

$

%  

 

 

Figure 9: Hypothetical example of ICC outcome curves. 

 

 For each of the three methods, this treatment effect was calculated for each simulation 

condition.  For the No Difference group, the effect should be zero since both the treatment and 

control group found the outcome equally difficult.  Both negative outcome conditions (Low - and 
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High -) should be negative, indicating that there is a negative treatment effect because the control 

group finds the outcome easier than the treatment group.  This value should be larger in 

magnitude for the High - outcome condition since a greater difference in difficulty exists initially 

between groups.  The positive outcome conditions (Low + and High +) should both show 

positive effects since the treatment group found the outcome measure easier than the control 

group.  This value should be larger in magnitude for the High + outcome condition since there 

was a greater difference in difficulty between groups.  Table 9 through Table 12 show the means 

and standard deviations by method for the treatment effect.    

 The true values were calculated for each condition.  Since the difficulty value of the 

ability-based treatment decision is zero and the discrimination is one, the proportion expected in 

treatment is 50%.  Using the initial values for the outcome conditions, the true treatment effect 

for each outcome condition is as follows—No Difference: treatment effect = 0; Low -: treatment 

effect = -0.204; Low +: treatment effect = 0.204; High -: treatment effect = -0.393; and High +: 

treatment effect = 0.393.  For the IRT method, these values follow as predicted shown by mean 

values very close to the true values and small standard deviations.  For the LR and propensity 

score methods, the direction of effects follow as expected, but the magnitude does not.  Both the 

estimates from LR and propensity score are further from the true values than the estimates from 

the IRT method.  In addition, both methods show more variation, shown by larger standard 

deviations, than the IRT method. 
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Table 9 

Means (and standard deviations) of treatment effect estimates, by method, for N = 500. 

X OC IRT LR PS 

No Difference 0.001 (0.056) 0.319 (0.219) 0.074 (0.065) 

Low - -0.203 (0.049) -0.623 (0.213) -0.136 (0.059) 

Low + 0.203 (0.059) 1.265 (0.230) 0.275 (0.065) 

High - -0.395 (0.048) -1.584 (0.254) -0.339 (0.057) 

10 

High + 0.393 (0.058) 2.214 (0.246) 0.460 (0.064) 

No Difference -0.001 (0.051) 0.142 (0.241) 0.038 (0.068) 

Low - -0.203 (0.048) -0.836 (0.251) -0.166 (0.062) 

Low + 0.204 (0.052) 1.129 (0.239) 0.236 (0.067) 

High - -0.392 (0.042) -1.823 (0.272) -0.361 (0.056) 

20 

High + 0.395 (0.051) 2.131 (0.252) 0.427 (0.067) 

No Difference -0.001 (0.047) 0.031 (0.244) 0.014 (0.075) 

Low - -0.205 (0.046) -0.986 (0.269) -0.189 (0.071) 

Low + 0.202 (0.048) 1.042 (0.239) 0.217 (0.081) 

High - -0.394 (0.040) -2.013 (0.298) -0.382 (0.063) 

50 

High + 0.392 (0.050) 2.061 (0.263) 0.404 (0.076) 

Note:  True values for the outcome conditions are No Difference = 0.000, Low - = -0.204, Low + 
= 0.204, High - = -0.393, High + = 0.393. 



53 

 

 

Table 10 

Means (and standard deviations) of treatment effect estimates, by method, for N=1,000. 

X OC IRT LR PS 

No Difference 0.002 (0.039) 0.325 (0.151) 0.073 (0.043) 

Low - -0.205 (0.036) -0.625 (0.156) -0.139 (0.040) 

Low + 0.203 (0.041) 1.257 (0.157) 0.274 (0.041) 

High - -0.393 (0.034) -1.563 (0.175) -0.336 (0.038) 

10 

High + 0.395 (0.039) 2.208 (0.164) 0.457 (0.043) 

No Difference 0.000 (0.034) 0.151 (0.158) 0.038 (0.045) 

Low - -0.205 (0.034) -0.839 (0.178) -0.171 (0.041) 

Low + 0.205 (0.036) 1.134 (0.163) 0.241 (0.045) 

High - -0.392 (0.030) -1.812 (0.192) -0.362 (0.038) 

20 

High + 0.393 (0.037) 2.112 (0.182) 0.428 (0.047) 

No Difference -0.002 (0.035) 0.032 (0.177) 0.014 (0.049) 

Low - -0.203 (0.032) -0.966 (0.182) -0.186 (0.043) 

Low + 0.203 (0.035) 1.043 (0.175) 0.218 (0.050) 

High - -0.393 (0.029) -1.990 (0.207) -0.381 (0.040) 

50 

High + 0.395 (0.033) 2.063 (0.179) 0.412 (0.047) 

Note:  True values for the outcome conditions are No Difference = 0.000, Low - = -0.204, Low + 
= 0.204, High - = -0.393, High + = 0.393. 



54 

 

 

Table 11 

Means (and standard deviations) of treatment effect estimates, by method, for N=5,000. 

X OC IRT LR PS 

No Difference 0.000 (0.017) 0.317 (0.068) 0.070 (0.018) 

Low - -0.205 (0.016) -0.620 (0.071) -0.140 (0.017) 

Low + 0.204 (0.018) 1.257 (0.069) 0.274 (0.018) 

High - -0.393 (0.015) -1.551 (0.075) -0.336 (0.015) 

10 

High + 0.394 (0.018) 2.197 (0.074) 0.457 (0.017) 

No Difference -0.001 (0.016) 0.146 (0.074) 0.035 (0.019) 

Low - -0.205 (0.014) -0.832 (0.076) -0.171 (0.017) 

Low + 0.204 (0.016) 1.125 (0.075) 0.240 (0.018) 

High - -0.394 (0.014) -1.811 (0.090) -0.363 (0.016) 

20 

High + 0.394 (0.016) 2.104 (0.081) 0.426 (0.019) 

No Difference 0.000 (0.015) 0.045 (0.074) 0.016 (0.018) 

Low - -0.204 (0.014) -0.961 (0.079) -0.189 (0.016) 

Low + 0.204 (0.016) 1.046 (0.077) 0.219 (0.019) 

High - -0.393 (0.013) -1.971 (0.090) -0.381 (0.015) 

50 

High + 0.393 (0.015) 2.046 (0.081) 0.408 (0.019) 

Note:  True values for the outcome conditions are No Difference = 0.000, Low - = -0.204, Low + 
= 0.204, High - = -0.393, High + = 0.393. 
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Table 12 

Means (and standard deviations) of treatment effect estimates, by method, for N=10,000. 

X OC IRT LR PS 

No Difference 0.000 (0.012) 0.317 (0.047) 0.070 (0.012) 

Low - -0.204 (0.012) -0.614 (0.050) -0.138 (0.011) 

Low + 0.204 (0.013) 1.253 (0.049) 0.273 (0.012) 

High - -0.394 (0.011) -1.555 (0.054) -0.337 (0.010) 

10 

High + 0.393 (0.013) 2.193 (0.053) 0.457 (0.011) 

No Difference 0.000 (0.011) 0.148 (0.054) 0.036 (0.012) 

Low - -0.205 (0.011) -0.830 (0.056) -0.170 (0.012) 

Low + 0.204 (0.012) 1.123 (0.053) 0.240 (0.012) 

High - -0.394 (0.011) -1.809 (0.061) -0.364 (0.010) 

20 

High + 0.393 (0.013) 2.099 (0.058) 0.426 (0.013) 

No Difference 0.000 (0.011) 0.045 (0.054) 0.016 (0.013) 

Low - -0.204 (0.010) -0.962 (0.058) -0.189 (0.012) 

Low + 0.204 (0.011) 1.044 (0.053) 0.219 (0.012) 

High - -0.394 (0.010) -1.975 (0.068) -0.381 (0.011) 

50 

High + 0.394 (0.012) 2.047 (0.056) 0.409 (0.013) 

Note:  True values for the outcome conditions are No Difference = 0.000, Low - = -0.204, Low + 
= 0.204, High - = -0.393, High + = 0.393. 
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To visualize the difference between the estimated effect and the true value, bias and 

RMSE calculations were performed.  Figure 10 through Figure 12 show plots of the bias of these 

treatment effects and Figure 13 through Figure 15 show plots of the RMSE.  For comparison, 

within bias and RMSE, these figures are plotted on the same scale.  However, it is important to 

note that the range of values varied by method.  For the IRT method, bias ranged from -0.002 to 

0.002 and RMSE from 0.000 to 0.060.  For LR, bias ranged from -1.620 to 1.821 and RMSE 

from 0.000 to 1.840.  Finally for propensity score matching, bias ranged from 0.01 to 0.08 and 

RMSE from 0.000 to 0.100.   

From Figure 10 and Figure 13 it can be seen that the bias and RMSE of the estimates 

from the IRT method are very small, indicating that this method returns accurate values of the 

treatment effect.  There seems to be a slight improvement in estimation as sample size increases, 

but since the values are so close to zero it is hard to describe.  From Figure 11 and Figure 14 it 

can be seen that the LR method has difficulty estimating the true treatment effect.  This difficulty 

is seen by the high values of bias and RMSE.  From the plot of the bias, LR struggles in all 

treatment conditions, but especially High - and High +.  There does not seem to be an 

improvement in estimation as sample size gets larger and it seems as if better estimates are 

produced when the pre-test is shortest.  From Figure 12 and Figure 15 it can be seen that the 

propensity score method estimates the treatment effect almost as well as the IRT method.  Yet 

there is deviation from zero shown in both the bias and RMSE plots.  It also seems as if as 

sample size increases, the estimates from the longer tests get better while the estimates from the 

shorter tests remain the same. 

 



57 

 

 
Figure 10: Profile plot of bias by outcome condition for the IRT method under ability-based 
scenario.  
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Figure 11: Profile plot of bias by outcome condition for the LR method under ability-based 
scenario. 
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Figure 12: Profile plot of bias by outcome condition for the propensity score method under 
ability-based scenario. 
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Figure 13: Profile plot of RMSE by outcome condition for the IRT method, under the ability-
based scenario. 
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Figure 14: Profile plot of RMSE by outcome condition for the LR method, under the ability-
based scenario 
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Figure 15: Profile plot of RMSE by outcome condition for the propensity score method, under 
the ability-based scenario 

 

Comparison Under the Cut-score Scenario 

Recall that the cut-score scenario is the model where the decision is based strictly on the 

pre-test (see Figure 2).  In this scenario, students are placed into treatment based on a cut-score 

of 50% accuracy on the test.  The mean parameter estimates for the outcome variables in the cut-

score scenario, along with the true values, RMSE, and bias can be seen in Table A6 through 

Table A9 of the Appendix.  The estimates for the control group produced by this model do not 
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look reasonable.  There are some very extreme values that could indicate that the model does not 

fit this data very well.  These patterns can be further elaborated visually. 

Type I and Type II Error Rates Recall that the main hypothesis of this study is to 

determine how the IRT based method compares to existing methods of causal inference.  For the 

three models—LR, RD, and IRT—the proportion of simulated datasets where statistically 

significant effects, p ≤ 0.05, were found was calculated for each simulation condition.  Table 13 

through Table 16 show the proportion of significant differences found by each method for the 

outcome conditions. 

The No Difference outcome condition represents the situation where both groups find the 

outcome equally difficult and no true differences exist, indicating that differences between the 

data should not be found more than by chance.  Here, we would expect to see a proportion of 

0.05 if the causal inference method was performing as expected.  This condition represents the 

Type I error rate.  Across all four sample sizes the IRT method has good Type I error rates as 

shown by a lower proportion of significant differences found by this model.  LR and RD have 

Type I error rates that are higher than those of the IRT model. 

Recall that the conditions where true values exist represent the power of the test and that 

a good test has power near one showing its ability at detecting true differences (Casella & 

Berger, 2002, p. 383).  LR and RD show good power across the different sample sizes.  

However, the IRT method has poor power in this scenario, which can be attributed to the 

previously discussed fitting issues. 
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Table 13 

Proportion of statistically significant effects found by each model, under the cut-score scenario, 
for a sample size of 500.  

Simulation Characteristics IRT LR RD 

X OC   Decision Interaction Decision Interaction 

No Difference 0.063 0.041 0.045 0.043 0.045 

Low - 0.088 0.143 0.039 0.331 0.039 

Low + 0.055 0.152 0.042 0.493 0.042 

High - 0.123 0.287 0.041 0.749 0.041 

10 

High + 0.028 0.617 0.046 0.978 0.046 

No Difference 0.042 0.072 0.101 0.053 0.052 

Low - 0.074 0.151 0.069 0.352 0.055 

Low + 0.037 0.507 0.502 0.697 0.062 

High - 0.109 0.644 0.273 0.819 0.041 

20 

High + 0.015 0.911 0.907 0.997 0.057 

No Difference 0.015 0.064 0.017 0.073 0.050 

Low - 0.025 0.028 0.015 0.397 0.050 

Low + 0.010 0.395 0.039 0.845 0.069 

High - 0.063 0.100 0.008 0.949 0.055 

50 

High + 0.003 0.794 0.777 0.999 0.086 

Note: X represents the test length and OC represents the outcome condition. 
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Table 14 

Proportion of statistically significant effects found by each model, under the cut-score scenario, 
for a sample size of 1,000. 

Simulation Characteristics IRT LR RD 

X OC   Decision Interaction Decision Interaction 

No Difference 0.025 0.048 0.055 0.050 0.055 

Low - 0.038 0.255 0.055 0.611 0.055 

Low + 0.014 0.268 0.059 0.793 0.059 

High - 0.055 0.493 0.046 0.950 0.046 

10 

High + 0.008 0.874 0.061 1.000 0.061 

No Difference 0.016 0.117 0.168 0.066 0.066 

Low - 0.016 0.321 0.127 0.599 0.042 

Low + 0.004 0.810 0.790 0.926 0.071 

High - 0.045 0.901 0.487 0.978 0.069 

20 

High + 0.003 0.997 0.995 1.000 0.081 

No Difference 0.003 0.182 0.043 0.091 0.055 

Low - 0.007 0.037 0.023 0.756 0.063 

Low + 0.119 0.736 0.071 0.992 0.069 

High - 0.017 0.148 0.023 1.000 0.054 

50 

High + 1.000 0.986 0.148 1.000 0.099 

Note: X represents the test length and OC represents the outcome condition. 
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Table 15 

Proportion of statistically significant effects found by each model, under the cut-score scenario, 
for a sample size of 5,000.  

Simulation Characteristics IRT LR RD 

X OC   Decision Interaction Decision Interaction 

No Difference 0.047 0.047 0.059 0.053 0.059 

Low - 0.588 0.757 0.042 0.999 0.042 

Low + 0.998 0.911 0.073 1.000 0.073 

High - 0.790 0.984 0.059 1.000 0.059 

10 

High + 1.000 1.000 0.088 1.000 0.088 

No Difference 0.051 0.323 0.580 0.133 0.126 

Low - 0.444 0.929 0.311 0.998 0.070 

Low + 0.998 1.000 1.000 1.000 0.127 

High - 0.119 1.000 0.983 1.000 0.065 

20 

High + 1.000 1.000 1.000 1.000 0.202 

No Difference 0.049 0.715 0.120 0.207 0.162 

Low - 0.844 0.051 0.056 1.000 0.113 

Low + 1.000 0.999 0.310 1.000 0.195 

High - 0.990 0.538 0.034 1.000 0.085 

50 

High + 1.000 1.000 0.568 1.000 0.269 

Note: X represents the test length and OC represents the outcome condition. 
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Table 16 

Proportion of statistically significant effects found by each model, under the cut-score scenario, 
for a sample size of 10,000. 

Simulation Characteristics IRT LR RD 

X OC   Decision Interaction Decision Interaction 

No Difference 0.057 0.044 0.058 0.044 0.058 

Low - 0.978 0.973 0.056 1.000 0.056 

Low + 1.000 0.997 0.076 1.000 0.076 

High - 1.000 1.000 0.043 1.000 0.043 

10 

High + 1.000 1.000 0.104 1.000 0.104 

No Difference 0.055 0.561 0.899 0.187 0.178 

Low - 0.937 0.994 0.511 1.000 0.129 

Low + 1.000 1.000 1.000 1.000 0.298 

High - 1.000 1.000 1.000 1.000 0.080 

20 

High + 1.000 1.000 1.000 1.000 0.391 

No Difference 0.054 0.951 0.255 0.438 0.255 

Low - 1.000 0.058 0.086 1.000 0.166 

Low + 1.000 1.000 0.537 1.000 0.359 

High - 1.000 0.839 0.040 1.000 0.098 

50 

High + 1.000 1.000 0.865 1.000 0.450 

Note: X represents the test length and OC represents the outcome condition.  
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To visualize this further, the proportion of statistically significant effects from each 

condition of the three methods were plotted in a histogram by each treatment effect outcome 

group. Figure 16 shows this plot for the No Difference condition under the IRT method.  As 

stated previously, p-values that fall under the null hypothesis are uniformly distributed (Casella 

and Berger, 2002, p. 397-8).  Since this outcome condition represents the situation where both 

treatment and control groups find the outcome equally difficult, which is the null hypothesis, 

these histograms should look like a uniform distribution.   As alluded to in Table 13 through 

Table 16, this figure shows that model fitting problems existed especially for the two smaller 

sample sizes of 500 and 1,000.  The four other plots for the remaining outcome conditions for the 

IRT model can be seen in the Appendix in Figure A31 through Figure A34.  Figure 17 shows 

these same No Difference outcome condition plots for the LR model.  Figure 18 shows the No 

Difference outcome plots for the RD model.  

Within each of these figures, there are some simulation condition combinations of sample 

size and test length where the distribution of the proportion of significant effects look uniform.  

However, more frequently it appears that these histograms do not look uniform.  This helps to 

visualize the amount of Type I error that exists in these existing causal inference methods when 

applied to data of this type.  For both the LR method and the RD shorter tests show more 

uniform distributions.  This could indicate that the Type I error is more biased with measurement 

error in these conditions. The remaining plots for the other outcome conditions can be seen in the 

Appendix--Figure A35 through Figure A38 for the LR method and Figure A39 through Figure 

A42 for the RD method. 
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Figure 16: Histograms of the p-values from the IRT method in the cut-score scenario for the No 
Difference outcome condition. 

 



70 

 

 

Figure 17: Histograms of the p-values from the LR method under the cut-score scenario for the 
No Difference outcome condition.  
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Figure 18: Histograms of the p-values from the RD method under the cut-score scenario for the 
No Difference outcome condition.  

 

Bias and RMSE for the IRT Method As in the other scenario, to evaluate the IRT 

method in terms of parameter recovery, biases and RMSE values were calculated for each of the 

parameters of the outcome.  Then, these values were plotted, seen in Figure 19 and Figure 20.  

As discussed throughout this dissertation, this model encountered problems while being fit to the 

data.  At times, extreme parameter estimates were produced by the IRT model.  This is reflected 

in the following figures. 

Figure 19 shows the bias for the difficulty parameter of the outcome variable in the 

treatment group.  Overall, the parameter recovery for this specific parameter does not seem bad.  
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Across these plots emerges a trend—better parameter recovery is seen as the sample size 

increases.  The largest change in bias can be seen in the panel representing the High - outcome 

condition.  Recall that this condition is where the treatment group found the outcome to be very 

difficult.  Also recall that these students were placed into treatment if their total test score fell 

below the cut score value corresponding to half the items on the test.  Therefore, together this 

means that these students are struggling and are given an outcome that is very difficult for them.  

The control group shows the same thing for the High - outcome condition for the difficulty 

(Figure A43 in the Appendix).  Even the discrimination parameter, which was not manipulated, 

shows this trend for the High - outcome condition (Figure A44 for the treatment and Figure A45 

for the control group in the Appendix).  This could explain why the parameter recovery is not 

very good in this condition. 

Figure 20 shows the RMSE for the difficulty parameter of the outcome in the treatment 

group.  The panel that shows the largest change in bias is once again the panel corresponding to 

the High - outcome condition.  The RMSE seem acceptable and do not exceed 0.5.  However, the 

RMSE for the control group is poor for all conditions, especially in the High - outcome condition 

(see Figure A46 in the Appendix).  The RMSEs for the discrimination in both treatment and 

control groups reduce as sample size increases, but are poor (i.e. large) for the High - outcome 

condition (Figure A47 for the treatment group and Figure A48 for the control group in the 

Appendix).  Also, for completeness, scatterplots of the bias and RMSE for all of the remaining 

items can be seen in the Appendix. See Figure A49 to Figure A55 for bias and Figure A56 to 

Figure A61 for RMSE. 
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Figure 19: Profile plot for the bias of the difficulty parameter of the outcome variable for the 
treatment group under the cut-score scenario.  
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Figure 20: Profile plot for the RMSE of the difficulty parameter of the outcome variable for the 
treatment group under the cut-score scenario.  

 

ANOVA and ANCOVA Analysis of Simulation Conditions The previous profile plots 

tell a similar story to those under the ability-based scenario.  They indicate that there could be an 

under lying association between aspects of the simulation conditions and the bias and RMSE 

values.  Once again, ANOVA and ANCOVA analyses were performed to gain insight into which 

aspects of the simulations were significantly related to the IRT method’s ability to recover 

parameters. 

Again, individual three-way factorial design ANCOVA models were run to see if certain 

components of each condition—sample size, pre-test length, outcome condition (No Difference, 
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Low -, Low +, High -, High +)—explained the variation in bias and RMSE values while 

controlling for parameter estimates.  These three-way factorial models had equal groups in each 

cell of the design, making effect interpretation easier.  Five models used a corresponding bias as 

an outcome and fived used a corresponding RMSE. 

ANCOVA models with full interactions were estimated, but had “an essentially perfect 

fit” according to R and were unreliable.  Therefore, the interactions were removed and only main 

effect models were fit.  For the bias, these main effect ANCOVA models had the same 

“essentially perfect fit” and therefore the parameter estimate portion of the model (difficulty, 

discrimination, or difference in difficult) was removed from each model and an ANOVA model 

was fit instead.  The results of these ANOVA and ANCOVA analyses are shown in Table 17 

Table 18.   

Table 17 shows the association with bias.  Sample size is always significantly associated 

with the bias, regardless of the parameter being estimated.  The outcome condition is 

significantly associated with bias only for the difficulty parameter.  Pre-test length was 

significantly associated with the bias of the difficulty parameter for the treatment group and with 

the difference of the difficulty between the treatment and control groups.  Table 18 shows the 

results of the RMSE analysis.  Once again, sample size is always a significant factor.  Outcome 

condition is significantly related in all but the RMSE of the discrimination parameter of the 

control group; yet, pre-test length is rarely significantly associated. 
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Table 17 

ANOVA table for the bias in the cut-score scenario. 

Response Source DF F 

Outcome Condition 4 6.464* 

Sample Size 3 20.303* 

Pre-test Length 2 3.272* 

Difficulty 

yc 

Residual 50   

Outcome Condition 4 12.427* 

Sample Size 3 3.297* 

Pre-test Length 2 0.475 

Difficulty 

yt 

Residual 50   

Outcome Condition 4 2.032 

Sample Size 3 4.123* 

Pre-test Length 2 2.135 

Discrimination 

yc 

Residual 50   

Outcome Condition 4 2.175 

Sample Size 3 38.475* 

Pre-test Length 2 2.149 

Discrimination 

yt 

Residual 50   

Outcome Condition 4 6.484* 

Sample Size 3 20.257* 

Pre-test Length 2 3.255* 

Difficulty 

(yt-yc) 

Residual 50   

Note: * p < 0.05 
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Table 18 

ANCOVA table for the RMSE in the cut-score scenario. 

Response Source DF F 

Difficulty yc 1 1880.129* 

Outcome Condition 4 4.818* 

Sample Size 3 32.697* 

Pre-test Length 2 1.715 

Difficulty 

yc 

Residual 49   

Difficulty yt 1 155.425* 

Outcome Condition 4 104.334* 

Sample Size 3 119.376* 

Pre-test Length 2 0.300 

Difficulty 

yt 

Residual 49   

Discrimination yc 1 1450.687* 

Outcome Condition 4 0.669 

Sample Size 3 2.856* 

Pre-test Length 2 2.956 

Discrimination 

yc 

Residual 49   

Discrimination yt 1 2647.723* 

Outcome Condition 4 7.148* 

Sample Size 3 308.138* 

Pre-test Length 2 48.804* 

Discrimination 

yt 

Residual 49   

Difficulty difference (yt-yc) 1 1846.725* 

Outcome Condition 4 14.147* 

Sample Size 3 32.804* 

Pre-test Length 2 1.744 

Difficulty 

(yt-yc) 

Residual     

Note: * p < 0.05 
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Quantifying the Treatment Difference Once again, the next step in the comparison of 

these three causal inference methods is to calculate the estimated treatment effect for the IRT 

method and compare this to the estimates from the other methods.  Recall from the analysis in 

the ability-based scenario that the area between the item response curves for the treatment and 

control group (the differences of these two) represents the treatment effect (example shown in 

Figure 9).  Once again, integration can be used to quantify this treatment effect.  Under the cut-

score scenario, the decision variable is not included in the 2PL IRT model.  Therefore, we are 

assuming that there is no difference in the distribution in the treatment and control groups.   

 Mathematically the difference (Δ(u)) between the two curves can be found by using the 

following formula.  Here ayc represents the estimated discrimination of the outcome for the 

control group, ayt represents the estimated discrimination of the outcome for the treatment group, 

byc represents the estimated difficulty of the outcome for the control group, byt represents the 

estimated difficulty of the outcome for the treatment group, and u represents a point on the 

ability scale. 

! 

"(u) =
#1

1+ e#ayc (u#byc )
+

#1
1+ e#ayt (u#byt )

 

Then this difference is integrated, over the conditional distribution of the population of interest, 

S, from negative infinity to positive infinity to quantify the treatment effect, eff (S). 

! 

eff (S) = "(u) f (u | S)du
#$

$

%  

For each of the three methods, this treatment effect was calculated for each replication in 

each simulation condition.  For the No Difference group, the effect should be zero since both 

treatment and control group found the outcome equally difficult.  Both negative outcome 

conditions (Low - and High -) should be negative, indicating that there is a negative treatment 
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effect because the control group finds the outcome easier than the treatment group.  This value 

should be larger in magnitude for the High - outcome conditions since a greater difference in 

difficulty exists initially between groups.  The positive outcome conditions (Low + and High +) 

should both show positive effects since the treatment group found the outcome measure easier 

than the control group.  This value should be larger in magnitude for the High + outcome 

conditions since there was a greater difference in difficulty initially between groups.  Table 19 

through Table 22 show the means and standard deviations by method for the treatment effect.    

 The true values were calculated for each condition.  Using the simulating values for the 

outcome conditions the true treatment effect for each outcome condition is as follows—No 

Difference: treatment effect = 0; Low -: treatment effect = -1; Low +: treatment effect = 1; High 

-: treatment effect = -2; and High +: treatment effect = 2.  The estimates produced by the IRT 

method are much larger than the true values when the sample size is small (i.e. N=500), but 

improve as the sample size gets larger and as the test length increases.  Also, the standard 

deviations are very large indicating that there is great variability of these treatment effect 

estimates.  The LR method is harder to judge from the table.   

The estimates from this method do not always follow the expected direction and while 

the magnitude of the effect is not the same as the true value, it is hard to tell how much they are 

different.  The RD method seems to produce the best treatment estimates with the mean values 

being as expected in direction and similar in magnitude to the true value. 
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Table 19 

Means (and standard deviations) of treatment effect estimates, by method, for N = 500. 

X OC IRT LR RD 

No Difference -13.480 (49.317) 0.107 (1.010) 0.076 (0.508) 

Low - -21.722 (62.986) -0.798 (2.054) -0.871 (0.790) 

Low + -9.339 (39.850) 0.884 (0.883) 0.956 (0.476) 

High - -36.395 (85.016) -1.506 (3.289) -1.754 (1.148) 

10 

High + -0.134 (23.810) 1.886 (0.864) 1.920 (0.486) 

No Difference -8.328 (38.148) -0.146 (0.349) 0.133 (0.475) 

Low - -19.596 (60.655) 0.372 (0.380) -0.848 (0.579) 

Low + -6.087 (34.853) -0.652 (0.329) 1.121 (0.454) 

High - -33.782 (84.523) 1.035 (0.475) -1.826 (0.706) 

20 

High + 0.248 (16.768) -1.112 (0.351) 2.120 (0.466) 

No Difference -3.281 (22.520) -0.935 (2.885) 0.168 (0.427) 

Low - -7.658 (37.658) -1.616 (5.103) -0.801 (0.462) 

Low + -0.789 (16.621) -0.851 (0.731) 1.196 (0.418) 

High - -19.212 (62.416) -3.550 (8.224) -1.878 (0.547) 

50 

High + 1.723 (5.087) -1.115 (0.424) 2.206 (0.401) 

Note:  True values for the outcome conditions are No Difference = 0.000, Low - = -1.000, Low + 
= 1.000, High - = -2.000, High + = 2.000. 
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Table 20 

Means (and standard deviations) of treatment effect estimates, by method, for N = 1,000. 

X OC IRT LR RD 

No Difference -4.722 (27.111) 0.012 (0.682) 0.042 (0.353) 

Low - -9.573 (39.802) -0.940 (0.817) -0.912 (0.419) 

Low + -1.077 (16.137) 0.874 (0.611) 0.941 (0.331) 

High - -15.578 (51.996) -1.733 (0.998) -1.792 (0.493) 

10 

High + 1.476 (10.088) 1.828 (0.606) 1.896 (0.342) 

No Difference -2.946 (21.071) -0.168 (0.251) 0.125 (0.344) 

Low - -4.940 (26.811) 0.407 (0.276) -0.848 (0.380) 

Low + 0.272 (9.659) -0.656 (0.228) 1.100 (0.325) 

High - -13.690 (48.804) 1.017 (0.341) -1.806 (0.468) 

20 

High + 1.746 (4.409) -1.104 (0.232) 2.091 (0.326) 

No Difference -0.592 (7.746) -0.449 (0.384) 0.167 (0.295) 

Low - -2.276 (12.607) -0.191 (1.169) -0.848 (0.330) 

Low + 0.929 (0.641) -0.778 (0.314) 1.198 (0.289) 

High - -6.039 (27.349) -0.666 (4.573) -1.833 (0.373) 

50 

High + 1.994 (0.188) -1.096 (0.283) 2.225 (0.292) 

Note:  True values for the outcome conditions are No Difference = 0.000, Low - = -1.000, Low + 
= 1.000, High - = -2.000, High + = 2.000. 
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Table 21 

Means (and standard deviations) of treatment effect estimates, by method, for N = 5,000. 

X OC IRT LR RD 

No Difference -0.040 (0.299) 0.004 (0.313) 0.038 (0.161) 

Low - -1.096 (0.469) -0.927 (0.335) -0.899 (0.170) 

Low + 0.975 (0.159) 0.894 (0.271) 0.959 (0.148) 

High - -2.175 (0.816) -1.840 (0.422) -1.828 (0.207) 

10 

High + 2.002 (0.093) 1.832 (0.262) 1.900 (0.145) 

No Difference -0.056 (0.299) -0.162 (0.111) 0.114 (0.153) 

Low - -1.098 (0.543) 0.402 (0.123) -0.864 (0.165) 

Low + 0.986 (0.169) -0.661 (0.101) 1.105 (0.140) 

High - -2.239 (1.521) 1.019 (0.143) -1.848 (0.199) 

20 

High + 1.992 (0.094) -1.108 (0.106) 2.083 (0.141) 

No Difference -0.035 (0.209) -0.391 (0.153) 0.158 (0.128) 

Low - -1.062 (0.375) -0.009 (0.192) -0.844 (0.146) 

Low + 0.989 (0.114) -0.739 (0.140) 1.176 (0.128) 

High - -2.121 (0.618) 0.457 (0.242) -1.848 (0.165) 

50 

High + 1.993 (0.082) -1.063 (0.129) 2.190 (0.130) 

Note:  True values for the outcome conditions are No Difference = 0.000, Low - = -1.000, Low + 
= 1.000, High - = -2.000, High + = 2.000. 
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Table 22 

Means (and standard deviations) of treatment effect estimates, by method, for N = 10,000. 

X OC IRT LR RD 

No Difference -0.021 (0.185) -0.021 (0.207) 0.028 (0.108) 

Low - -1.057 (0.298) -0.945 (0.236) -0.901 (0.122) 

Low + 0.992 (0.105) 0.900 (0.193) 0.958 (0.108) 

High - -2.083 (0.472) -1.862 (0.286) -1.836 (0.144) 

10 

High + 2.002 (0.066) 1.834 (0.187) 1.900 (0.104) 

No Difference -0.028 (0.199) -0.163 (0.073) 0.114 (0.107) 

Low - -1.051 (0.323) 0.396 (0.087) -0.868 (0.119) 

Low + 0.979 (0.113) -0.671 (0.076) 1.093 (0.098) 

High - -2.066 (0.482) 1.020 (0.102) -1.839 (0.138) 

20 

High + 1.993 (0.066) -1.114 (0.075) 2.079 (0.103) 

No Difference -0.014 (0.141) -0.385 (0.108) 0.163 (0.094) 

Low - -1.029 (0.222) 0.008 (0.131) -0.847 (0.098) 

Low + 0.991 (0.078) -0.732 (0.096) 1.172 (0.088) 

High - -2.028 (0.355) 0.489 (0.167) -1.842 (0.116) 

50 

High + 1.996 (0.057) -1.062 (0.088) 2.190 (0.092) 

Note:  True values for the outcome conditions are No Difference = 0.000, Low - = -1.000, Low + 
= 1.000, High - = -2.000, High + = 2.000. 
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To visualize the difference between the estimated effect and true value, bias and RMSE 

calculations were performed.  Figure 21 through Figure 23 show plots of the bias of these 

treatment effects and Figure 24 through Figure 26 show plots of the RMSE.  For comparison, 

within bias and RMSE, these figures are plotted on the same scale.  However, it is important to 

note that the range of values varied by causal inference method.  For the IRT method, bias 

ranged from -34.400 to -0.003 and RMSE from 0.000 to 97.100.  For LR, bias ranged from -

3.120 to 3.400 and RMSE from 0.000 to 8.370.  Finally for RD, bias ranged from -.105 to 0.247 

and RMSE from 0.000 to 1.174.   

From Figure 21 and Figure 24 it can be seen that the bias and RMSE of the estimates 

from the IRT method are large, specifically for the two conditions of negative treatment effect 

(Low - and High -).  Although, in all conditions the values approach zero when the sample size is 

5,000 and larger.  The High + condition for the IRT method shows the best parameter recovery 

of the condition.  From Figure 22 and Figure 25 it can be seen that the LR method is better at 

estimating the treatment effect than the IRT method, for the cut-score scenario.  However, like 

the IRT method, the LR method is having estimation issues not only in the High - condition, but 

also in the High + condition, which is seen in the plot of the bias.  From the plot of the RMSE, 

the High - condition seems to be having issues.  Yet, as in the IRT method, the estimates get 

better as the sample size increases and the test length increases.  From Figure 23 and Figure 26 it 

can be seen that the RD method has the best treatment effect estimation of the three methods.  

The bias and RMSE are both close to zero for all conditions and are much closer than the other 

methods. 
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Figure 21: Profile plot of bias by outcome condition for the IRT method under cut-score scenario 
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Figure 22: Profile plot of bias by outcome condition for the LR method under cut-score scenario. 
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Figure 23: Profile plot of bias by outcome condition for the RD method under cut-score scenario. 
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Figure 24: Profile plot of RMSE by outcome condition for the IRT method under cut-score 
scenario. 
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Figure 25: Profile plot of RMSE by outcome condition for the LR method under cut-score 
scenario. 
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Figure 26: Profile plot of RMSE by outcome condition for the RD method under cut-score 
scenario. 

 

Real World Data 

To examine how this method performs on real world data, item-level data from a large-

scale college admission exam, test scores from an advanced end-of-course high school exam, and 

college major were obtained.  To focus in on mathematics ability, only the responses on the three 

sections of the math portion of the exam were used.  Items that were correct were coded as “1.”  

Items that were incorrect were coded as “0.”  Omitted and not reached items were also coded as 

“0” because of the estimation methods used in the R function est() in the package IRTOYS 

(Partchev, 2012).  The treatment was the decision to take a STEM course, represented by the 
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end-of-course exam, during the senior year and the outcome was deciding to be a STEM major 

in college. 

 The sample contained 2,655 students with 1,821 students taking an advanced STEM 

course during their senior year.  The mathematics portion of the test contained 54 items and for 

this sample, the total score on this portion ranged from 11 to 54 with a mean of 40.012 (SD = 

8.238).  For the students who took the STEM course during their senior year (the treatment 

group) the total score ranged from 13 to 54 (M = 42.087, SD = 7.547).  For those who did not 

take the STEM course during the senior year (the control group) the total score ranged from 11 

to 53 (M = 35.483, SD = 7.862). 

 Figure 27 shows the item characteristic curves for both the non-STEM (control, labeled 

“1”) and STEM (treatment, labeled “2”) students.  The IRT model estimated the following 

outcome parameters of discrimination (a) and difficulty (b) for the non-STEM group as               

a = 0.355 and b = 4.275 and for the STEM group as a = 0.528 and b = 1.166.    It is shown that 

over the entire ability scale, the STEM students have a higher probability of becoming a STEM 

major in college than those who did not take a STEM exam during the senior year.  Also, as 

ability estimates get larger, the difference between the probabilities of the two groups majoring 

in STEM fields in college increases.  This difference can be quantified by integrating to find the 

area between the two curves.  To be meaningful, and comparable to the LR and propensity 

scores, this integration should be weighted by the ability distribution of those in the treatment 

group.  Doing this results in an estimate of the effect of the treatment on the treated (TT).  The 

value of the TT for the IRT model is 0.191.  The significance of this value is found by 

performing a Wald test.  For this test, the null hypothesis is that the discrimination in the control 

group is equal to the discrimination value in the treatment and the difficulty value in the control 
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group is equal to the difficulty value in the treatment group (i.e. the two groups have the same 

difficulty and discrimination value).  The alternative is that at least one pair is different.  Here, 

this value is highly significant (p = 4.28e-13).  This indicates that taking the STEM class during 

the senior year significantly increases the probability of becoming a STEM major in college. 

 LR and propensity score models were also run on this data.  The LR model was centered 

around the mean of the treatment group.  Doing this resulted in a statistically significant effect of 

the decision to take an STEM exam in the senior year (coef = 1.005 p < 0.001).   The interaction 

between the total score on the math section and the decision to take STEM was not significant at 

the 0.05 level (coef = 0.0270, p 0.0612), indicating that the main effect of the decision can be 

interpreted.  There is a significant effect of taking an advanced STEM course in the senior year 

and majoring in a STEM field in college.  A plot of the fitted probabilities of majoring in STEM 

found from the LR analysis and the total score shown in Figure 28.  Also, the average predicted 

probability of becoming a STEM major for those who took the senior year class is .389.  If these 

students did not take the senior year class their average predicted probability of becoming a 

STEM major is 0.188.  The difference of these two, 0.201, is the average effect of the treatment 

on the treated.  The propensity score model also estimated a statistically significant effect of 

taking an STEM exam during the senior year, effect = 0.195 (p < 0.001), while using the 

different score response patterns to match students.  Based on these two existing methods of 

causal inference, it can be concluded that there is a statistically significant relationship between 

taking an STEM exam during the senior year and majoring in a STEM field in college. 
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Figure 27: Plot of the item characteristic curve for the outcome variables in the real world data.  
The curve labeled “1” shows the control, or non-STEM, exam condition and the curve labeled 
“2” shows the treatment or STEM exam condition. 

 

2 
1 
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Figure 28: Plot of the fitted values from the LR model by the total test score. The black dots 
show the fitted probability of majoring in STEM for the group that took the senior year advanced 
STEM course and the gray dots shows this for the group that did not take the course during their 
senior year. 
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Chapter 5: Discussion 

 Randomized experiments are the gold standard for estimating causal effects.  However, in 

observational research and most educational settings, randomized experiments are hard to come 

by.  To compensate for this lack of randomized “gold-standard” research opportunities, different 

methods of causal inference have been created.  These methods provide some form of correction 

to make inferences less biased.  Some methods match students prior to the intervention, some 

correct using statistical methods before the analyses, and some set up strict assumptions of what 

types of data can be used.  However, these methods can still provide biased results if the 

underlying assumptions are not met—which many times they are not.   

The goal of this research was to develop and evaluate a new causal inference model 

based in IRT for use when a pre-intervention test is used.  This method was developed to combat 

many of the currently existing methods shortcomings, specifically the bias associated when a 

treatment and an outcome are no longer conditionally independent given pre-test performance.  

To adequately see if this method did combat these shortcomings, it was evaluated under two 

different scenarios—ability-based and cut-score—and compared to existing methods for causal 

inference applicable to each scenario.  Recall that the cut-score scenario had a treatment decision 

based on a specified cut-score on the pre-test (see Figure 2) and the ability-based model included 

a treatment decision that was not directly decided by the pre-test (see Figure 3).  The cut-score 

scenario was identified as a scenario in which existing methods were still applicable, but when 

the assumption of conditional independence between decision and outcomes, given the pre-test 

score, no longer held (i.e. the under the ability-based scenario), these existing methods would not 

be appropriate.  Under the ability-based scenario, existing methods would have trouble 
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estimating accurate treatment effects, since a key assumption was missing, and bias would enter 

the analyses. 

Under the ability-based scenario the IRT method outperformed the existing methods in 

all method comparisons.   In terms of Type I error, the IRT method had excellent rates, 

demonstrating that the method would not identify differences if they did not exist.  The existing 

methods had larger Type I error rates indicating that both LR and propensity score identified 

more differences when they did not actually exist than the IRT method.  In fact, LR and 

propensity score were struggling significantly at times in terms of Type I error rates.  Also, the 

IRT method showed excellent power of detecting true differences.  Even when LR and 

propensity score methods had good power, the IRT method showed better results.  This indicates 

that the IRT method is better than the existing methods to tell when true differences between the 

treatment and control group exist and when they do not exist and it is also less likely to give false 

results. 

  In terms of parameter recovery, the IRT method was able to recovery item difficulty and 

discrimination parameters well for both treatment and control groups across the various 

simulation conditions.   The parameter recovery improved as the sample size increased.  This 

provides strong evidence towards the accuracy of parameter estimation under the IRT method.  

This is very important since the treatment effect is found using the item parameters from the 

outcome variables.  So, not only will the IRT method accurately identify differences when they 

do exist, but the parameters used to quantify the differences are extremely accurate. 

Most notable for the IRT method, under the ability-based scenario, is its ability to actually 

estimate treatment effects over all 60 simulation conditions.  Furthermore, it is not just the 

accuracy of the treatment effect estimates, but the fact that the IRT method performed far 
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superior to the existing methods while estimating treatment effects.  The IRT method produced 

better, more accurate, and less biased estimates of the treatment effect than the very popular and 

widely used propensity score matching method.   

 The IRT method was run through the gamut, under the ability-based scenario, and came 

out victoriously.  Not only did the method demonstrate that it could perform well, yet it also 

showed that it could combat the biases that other existing causal inference methods would fall 

victim to when the assumption of conditional independence was broken.  Less biased estimates 

of treatment effects were demonstrated numerous times for all pretest lengths, sample sizes, and 

outcome conditions which is very important since estimates can be either positively or negatively 

biased.   

Next, the IRT method was investigated under the cut-score scenario.  Recall once more 

that this scenario is one in which the assumptions of currently existing methods still hold.  Under 

this scenario the IRT method was compared to LR and RD methods in terms of Type I and Type 

II error, parameter recovery ability, and treatment effect estimation.  The IRT method had better 

Type I error rates than the other two methods.  This is very important since a researcher does not 

want evidence of differences to be found unless those differences actually exist.  In terms of 

power, the IRT method, LR and RD had good power throughout all the simulation conditions, 

however the IRT method struggled for smaller sample sizes.   

In terms of parameter recovery, when the sample size was 5,000 and above, the IRT 

method performed better than LR and comparable to RD, in terms of bias and RMSE.  The   

High - condition is where the IRT method performed poorest for sample sizes of 500 and 1,000 

yet, for these sample sizes performed much better in the High +.  In terms of estimating the 

treatment effect, RD produced the most accurate estimates as compared to the other methods.  
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Once again, IRT produced better estimates for larger sample sizes than it did for smaller ones.  

LR was not accurate with producing these estimates. 

As mentioned previously, the cut-score scenario is one of the scenarios that existing 

methods of causal inference could handle, as long as they accounted for the previously discussed 

assumptions and biases.  RD is one of the methods that is most appropriate for this type of 

scenario, which might be evidence for why it performed well.  However, it is also of interest to 

note that the measurement error involved with a pre-test can act almost as a covariate to 

treatment placement, which under the “fuzzy design” RD can influence the treatment effect 

estimates and make it more like a randomized experiment and influence the estimates (Hahn, 

Todd, & VanDerKlaauw, 2001).  It could also be likely that the RD method performed well due 

to measurement error within the pre-test affecting the estimates of the effects.  Although the IRT 

method was not the best method for all aspects of the simulation conditions under the cut-score, 

it did perform well under larger sample sizes (5,000 and 10,000), longer length tests, and 

outcome conditions where the difference in difficulty between the treatment and control groups 

were not exceedingly large (No Difference, Low -, Low +).  

The real data that was used to test each of these methods resembles scenarios used in the 

simulation study.  The scenario that this data falls under is the ability-based scenario since 

scoring a certain total score on the exam does not place a student into the advanced STEM 

course.  Although the sample size of the real data was not studied in these analyses, it does fall 

above the threshold of 1,000 where issues were seen.  Also, the pre-test is near the largest size 

used in simulation.  Together this indicates that estimates found by any of the methods should 

perform well. As was seen in the analyses, this was the case.  Each of the tested methods was 

able to identify a significant treatment effect and all of the estimates were in the same range as 
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each other.  Coupling that fact with the evidence that the IRT provided more accurate estimates 

of the treatment effect during simulation, one may infer that the treatment effect estimated by the 

IRT method is the most accurate one. 

These analyses provide evidence that the IRT method is very useful for scenarios where a 

pre-test, a treatment decision, and outcomes are all related to ability, like that in Figure 3.  An 

ability-based scenario is quite common when a pre-test exists because not all decisions are based 

strictly on test scores.  Retention and promotion of students do not rely solely on a test score, nor 

does placement in an honors or accelerated program.  Tests are used as tools to help gauge 

understanding, comprehension, learning, and ability, but are not the be-all and end-all in 

decision-making (nor should they ever be).  They are a tool to facilitate progress and decisions 

and must be evaluated as such.  The IRT method does just that—it does not put un-do emphasis 

on one test score, but takes into account other factors associated with overall ability.  Because of 

this, this method produces less biased and more accurate estimates of treatment effects.  In its 

most general terms, this IRT method can be thought of as an ANCOVA that matches on true 

ability, yet it is all model based.  The IRT method is powerful in its ability to gather information 

about each group member by using that member’s pre-test, decision, and outcome behavior to be 

able and estimate their true ability.  Furthermore, within the method this estimate of true ability 

is used to match between treatment and control groups, allowing model-based matches that 

control for extraneous measurement error and unobserved confounding covariates.  

While the IRT method can be used in an array of settings, there are certain data 

requirements for its use.  First, the test data must be item-level test response data.  This means 

that data for the correctness of each question must be available.  The data should come from a 

high-quality, reliable test, if possible, since a poor test will not provide accurate information 
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about the student.  Next, the decision variable needs to be an ordinal categorical variable with 

two or more levels.  If the decision has more than two levels, a polytomous IRT model, like the 

GPCM, must be used.  Finally, the outcome variable that is used in the IRT model must be input 

as a ordinal categorical variable.  If the outcome is continuous, it should be broken down into 

categories prior to being input into the model.  For example, if the outcome is GPA, it should be 

broken down into categories of interest (e.g. B or higher and lower than a B) before including it 

into the model. 

Limitations 

 As briefly mentioned earlier, the IRT model struggled when applied to smaller sample 

sizes under the cut-score scenario.  This struggle can be attributed to how the treatment and 

control groups were populated under the cut-score scenario.  A cut-score equal to half the items 

on the test was used, but this caused the groups to become uneven due to the difficulty of the pre-

test items and the ability of the simulated group members.  Certain replications within the 

simulation conditions with smaller sample sizes produced very large difficulty estimates for 

either treatment group—indicating that all members got the question correct or all members got 

the question wrong.   

Figure 29 illustrates the outcome behavior one of these data sets.  This figure shows the 

item characteristic curves (ICC) for the treatment and control groups.  These curves show the 

probability of success on the outcome across the entire ability spectrum.  This specific data is 

one of the replications from a simulation of N = 500 on a pre-test of 20 items for the No 

Difference outcome condition.  This figure illustrates that there was no variation in the 

probability of success for those in the control group.  However, both groups have very similar 

distributions of ability indicating that even though they behave very differently on the outcome, 
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they have similar abilities.  This allowed for very little variation within the model, resulting in 

estimates that behaved poorly.  As the sample size increased, estimates behaved better and 

appear more comparable to the LR and RD methods. 

 

Figure 29: Visualization of treatment and control groups' probability of success and the 
distribution of each group's abilities. 

 

Another limitation of this study was the use of the est ( ) function in the IRTOYS 

(Partchev, 2012) package in R.  As mentioned before, this function called on the ICL program 

(Hanson, 2002) to fit and estimate the 2PL model on the data.  However, the ICL program does 

not return anything other than item parameter estimates.  It does not return standard errors of any 

type.  Because of this, standard errors in the simulations had to be calculated using Monte Carlo 

approximations of bias and RMSE.  Other estimation methods do exist in R, like the LTM 

package (Rizopoulos, 2011), however the ltm ( ) function within this package took between 20 to 
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40 minutes to run one replication within a simulation condition.  Recall that 1,000 replications 

were performed within each of the 60 simulations conditions.  Due to time constraints ltm ( ) was 

not a viable option. 

Another limitation of this research is the selection of the difficulty values used in the 

outcome condition section of the simulation conditions.  These were selected at the beginning of 

the research using arbitrary values.  Upon completion of the analysis, it was realized that these 

values are actually quite large.  In fact a difference in difficulty of -0.5 to 0.5, as seen in both of 

the Low outcome conditions (Low – and Low +), is actually a large effect.  It is believed that this 

limited the amount of variation observed between conditions in analyses such as the Type I and 

Type II error analysis. 

A final limitation of this study was the availability of “real world” data on which to test 

the IRT method.  It was not easy to obtain the data used in this study.  In fact, finding item-level 

pre-test data, with an associated decision, and outcomes was close to impossible.  It would be 

helpful to explore this method using other datasets to truly grasp the usefulness of the method. 

Areas for Future Research 

One of the most pertinent areas for future research would be to find other applicable data 

sets and use this model to estimate the effect of a decision.  Finding access to the correct data 

source, like a placement test at a community college, would be very helpful.   

Also, further exploration must be done to determine if there is an optimal situation under 

a cut-score scenario where the IRT method is best used.  There seems to be multiple factors that 

affect how the IRT method performs under the cut-score model.  The two most obvious are the 

determination of the cut-score and the sample size.  These two factors are intertwined, as well.  It 

is possible that in smaller samples, the distribution of subjects into treatment and control created 
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very little variation within groups, making estimation difficult.  So, an optimal cut-score should 

be explored by trying different percentages of subjects in both treatment and control groups.  

Then the model should be tested under the cut-score method against existing methods to see how 

it performs.   

This study set the outcome discrimination to one.  Future studies should explore what 

happens when the outcome discrimination is no longer held constant at one.  This segues into 

more future research as well.  Different types of IRT models, like the 3PL model or GPCM, 

should be explored as well.  The transition to GPCM would be an easy one since the GPCM 

allows for polytomous data; no longer would the test, decision, and outcome have to be 

dichotomous.  This would allow for decisions with multiple levels (e.g. studying the effect of 

being place in remedial, college prep, or honors English) and multiple level outcomes (e.g. 

failure, moderate success, success).  Incorporating a different IRT model would allow for new 

situations to be modeled by this method.   

Also, it is important to see how the method behaves when covariates are added and how 

that compares to existing methods.  Covariates could be added to any part of the model.  They 

could be associated with the pretest, the decision, the outcome, or with ability itself.  These 

components could even be interrelated, covarying with each other.  The addition of covariates 

would require the use of multiple group IRT models (Muthén & Christoffersson, 1981; Muthén 

& Lehman, 1985).  More complex situations need to be explored to fully understand the scope of 

the application of the IRT method. 

Finally, it would be interesting to see how the IRT method could be combined with 

Cognitive Diagnostic Models (CDM; Tatsuoka & Tatusoka, 1992).  CDMs are latent trait models 

that assess the presence or absence of skills.  They have been used within a higher dimensional 
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attribute space to specify the joint distribution of the latent variables (de la Torre & Douglas, 

2004).  It would be interesting to see how CDMs could be combined into the IRT method.  

Perhaps the IRT method can be tied back to the skill sets that students with identical abilities 

possess.  If so, it would be highly interesting to investigate the effectiveness of the treatment 

placement in the realm of the possessed skills.  A more concrete example of where this might be 

applicable is the following.  Imagine that a group of students took a college admissions 

placement test, given by the school itself.  Then the student is placed into a level of a first-year 

class (e.g. low, medium, high).  The outcome could be the level of the student’s final grade or the 

progressing to the next course level.  It would be useful to evaluate the level of placement in 

terms of the skills that student possesses, based on the placement test.  This would seem to have 

implications for college retention and completion rates, among other uses.   

This dissertation has illustrated the usefulness of approaching a causal inference model 

from an IRT perspective.  It has shown the statistical properties of this IRT method in two 

different scenarios and compared it to current methods.  In addition, resources have been 

provided to apply this new method to future studies in various fields. 
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Appendix 

Table A1 

True value for the parameters of the items in the pre-tests. 

Item Difficulty Discrimination   Item Difficulty Discrimination 

1 0.101 0.651   26 0.626 1.431 

2 0.141 0.872   27 -0.060 1.361 

3 1.482 1.236   28 0.004 0.965 

4 0.514 1.377   29 0.461 0.507 

5 1.085 0.524   30 0.640 1.093 

6 1.162 1.027   31 0.454 1.496 

7 0.832 0.999   32 1.067 1.542 

8 -0.131 1.098   33 0.226 0.961 

9 0.674 0.747   34 1.473 1.587 

10 1.426 0.859   35 0.489 1.505 

11 0.631 0.698   36 0.205 1.533 

12 0.861 1.193   37 -0.136 1.468 

13 1.731 1.256   38 0.613 1.068 

14 0.378 1.538   39 0.771 1.288 

15 0.306 1.305   40 -0.015 0.481 

16 0.804 1.203   41 0.451 0.494 

17 0.906 1.121   42 1.114 1.519 

18 0.360 1.303   43 -0.463 1.406 

19 0.938 1.464   44 -0.080 0.816 

20 1.009 1.525   45 -0.721 1.058 

21 0.987 0.966   46 0.266 1.185 

22 0.746 0.732   47 0.969 0.775 

23 -0.053 1.167   48 -0.143 1.105 

24 1.610 1.007   49 0.044 0.805 

25 1.319 1.257   50 0.647 1.904 

Note: Items 1-10 represent the 10-item test; items 1-20 represent the 20-item test; items 1-50 
represent the 50-item test. 
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Table A2 

True parameter values and mean IRT estimated parameter values for the outcome in the control 
and treatment group for the 15 simulations with sample size 500, for the ability-based scenario. 

   Difficulty Discrimination 

      True Est. Bias RMSE True Est. Bias RMSE 

Treatment 0 -0.028 -0.028 0.207 1 1.014 0.014 0.258 
No Difference 

Control 0 0.020 0.020 0.201 1 1.023 0.023 0.289 

Treatment 0.5 0.502 0.002 0.152 1 1.032 0.032 0.276 
Low - 

Control -0.5 -0.505 -0.005 0.163 1 1.032 0.032 0.289 

Treatment -0.5 -0.560 -0.060 0.352 1 1.032 0.032 0.289 
Low + 

Control 0.5 0.532 0.032 0.292 1 1.049 0.049 0.306 

Treatment 1 1.027 0.027 0.224 1 1.034 0.034 0.274 
High - 

Control -1 -1.011 -0.011 0.213 1 1.063 0.063 0.301 

Treatment -1 -1.087 -0.087 0.506 1 1.038 0.038 0.316 

10 items 

High + 
Control 1 1.111 0.111 0.659 1 1.029 0.029 0.315 

Treatment 0 -0.008 -0.008 0.168 1 1.026 0.026 0.217 
No Difference 

Control 0 0.010 0.010 0.170 1 1.025 0.025 0.235 

Treatment 0.5 0.495 -0.005 0.152 1 1.016 0.016 0.223 
Low - 

Control -0.5 -0.503 -0.003 0.157 1 1.023 0.023 0.231 

Treatment -0.5 -0.540 -0.040 0.259 1 1.015 0.015 0.228 
Low + 

Control 0.5 0.525 0.025 0.248 1 1.028 0.028 0.245 

Treatment 1 1.016 0.016 0.198 1 1.026 0.026 0.221 
High - 

Control -1 -1.028 -0.028 0.202 1 1.008 0.008 0.231 

Treatment -1 -1.077 -0.077 0.385 1 1.022 0.022 0.255 

20 items 

High + 
Control 1 1.051 0.051 0.374 1 1.033 0.033 0.257 

Treatment 0 -0.004 -0.004 0.156 1 1.031 0.031 0.207 
No Difference 

Control 0 0.002 0.002 0.164 1 1.020 0.020 0.209 

Treatment 0.5 0.503 0.003 0.155 1 1.025 0.025 0.195 
Low - 

Control -0.5 -0.506 -0.006 0.153 1 1.018 0.018 0.204 

Treatment -0.5 -0.527 -0.027 0.237 1 1.019 0.019 0.208 
Low + 

Control 0.5 0.515 0.015 0.231 1 1.025 0.025 0.213 

Treatment 1 1.011 0.011 0.176 1 1.015 0.015 0.196 
High - 

Control -1 -1.017 -0.017 0.185 1 1.024 0.024 0.210 

Treatment -1 -1.037 -0.037 0.328 1 1.029 0.029 0.222 

50 items 

High + 
Control 1 1.032 0.032 0.323 1 1.033 0.033 0.238 
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Table A3 

True parameter values and mean IRT estimated parameter values for the outcome in the control 
and treatment group for the 15 simulations with sample size 1,000, for the ability-based 
scenario.  

   Difficulty Discrimination 

      True Est. Bias RMSE True Est. Bias RMSE 

Treatment 0 -0.009 -0.009 0.127 1 1.018 0.018 0.192 
No Difference 

Control 0 0.016 0.016 0.129 1 1.014 0.014 0.199 

Treatment 0.5 0.499 -0.001 0.109 1 1.016 0.016 0.181 
Low - 

Control -0.5 -0.510 -0.010 0.109 1 1.021 0.021 0.202 

Treatment -0.5 -0.526 -0.026 0.191 1 1.011 0.011 0.193 
Low + 

Control 0.5 0.514 0.014 0.183 1 1.028 0.028 0.206 

Treatment 1 1.007 0.007 0.135 1 1.012 0.012 0.180 
High - 

Control -1 -1.012 -0.012 0.150 1 1.024 0.024 0.206 

Treatment -1 -1.035 -0.035 0.290 1 1.018 0.018 0.215 

10 items 

High + 
Control 1 1.050 0.050 0.284 1 1.012 0.012 0.207 

Treatment 0 -0.009 -0.009 0.117 1 1.017 0.017 0.156 
No Difference 

Control 0 0.002 0.002 0.114 1 1.014 0.014 0.152 

Treatment 0.5 0.500 0.000 0.103 1 1.018 0.018 0.156 
Low - 

Control -0.5 -0.505 -0.005 0.109 1 1.014 0.014 0.167 

Treatment -0.5 -0.508 -0.008 0.155 1 1.020 0.020 0.165 
Low + 

Control 0.5 0.520 0.020 0.163 1 1.002 0.002 0.164 

Treatment 1 0.999 -0.001 0.127 1 1.021 0.021 0.160 
High - 

Control -1 -1.009 -0.009 0.142 1 1.011 0.011 0.165 

Treatment -1 -1.038 -0.038 0.245 1 1.008 0.008 0.178 

20 items 

High + 
Control 1 1.013 0.013 0.227 1 1.025 0.025 0.177 

Treatment 0 0.000 0.000 0.118 1 1.012 0.012 0.138 
No Difference 

Control 0 -0.001 -0.001 0.117 1 1.011 0.011 0.138 

Treatment 0.5 0.493 -0.007 0.107 1 1.002 0.002 0.135 
Low - 

Control -0.5 -0.501 -0.001 0.104 1 1.012 0.012 0.137 

Treatment -0.5 -0.517 -0.017 0.160 1 1.006 0.006 0.152 
Low + 

Control 0.5 0.504 0.004 0.148 1 1.011 0.011 0.149 

Treatment 1 1.003 0.003 0.127 1 1.009 0.009 0.137 
High - 

Control -1 -1.003 -0.003 0.130 1 1.016 0.016 0.146 

Treatment -1 -1.027 -0.027 0.214 1 1.016 0.016 0.159 

50 items 

High + 
Control 1 1.020 0.020 0.208 1 1.003 0.003 0.151 
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Table A4 

True parameter values and mean IRT estimated parameter values for the outcome in the control 
and treatment group for the 15 simulations with sample size 5,000, for the ability-based 
scenario. 

   Difficulty Discrimination 

      True Est. Bias RMSE True Est. Bias RMSE 

Treatment 0 -0.005 -0.005 0.054 1 1.001 0.001 0.079 
No Difference 

Control 0 -0.002 -0.002 0.055 1 1.008 0.008 0.084 

Treatment 0.5 0.499 -0.001 0.048 1 1.005 0.005 0.080 
Low - 

Control -0.5 -0.504 -0.004 0.047 1 1.006 0.006 0.086 

Treatment -0.5 -0.503 -0.003 0.076 1 1.009 0.009 0.085 
Low + 

Control 0.5 0.502 0.002 0.077 1 1.004 0.004 0.086 

Treatment 1 1.001 0.001 0.061 1 1.001 0.001 0.080 
High - 

Control -1 -0.999 0.001 0.061 1 1.006 0.006 0.090 

Treatment -1 -1.012 -0.012 0.114 1 1.000 0.000 0.092 

10 items 

High + 
Control 1 1.009 0.009 0.113 1 1.002 0.002 0.093 

Treatment 0 -0.001 -0.001 0.049 1 1.004 0.004 0.067 
No Difference 

Control 0 -0.003 -0.003 0.052 1 1.005 0.005 0.070 

Treatment 0.5 0.499 -0.001 0.046 1 0.998 -0.002 0.065 
Low - 

Control -0.5 -0.503 -0.003 0.046 1 1.005 0.005 0.070 

Treatment -0.5 -0.505 -0.005 0.069 1 1.004 0.004 0.072 
Low + 

Control 0.5 0.498 -0.002 0.067 1 1.006 0.006 0.070 

Treatment 1 0.996 -0.004 0.057 1 1.006 0.006 0.070 
High - 

Control -1 -1.002 -0.002 0.060 1 1.006 0.006 0.074 

Treatment -1 -1.009 -0.009 0.097 1 1.002 0.002 0.075 

20 items 

High + 
Control 1 0.998 -0.002 0.099 1 1.007 0.007 0.077 

Treatment 0 -0.001 -0.001 0.050 1 1.006 0.006 0.062 
No Difference 

Control 0 0.002 0.002 0.050 1 1.005 0.005 0.063 

Treatment 0.5 0.498 -0.002 0.048 1 1.007 0.007 0.062 
Low - 

Control -0.5 -0.498 0.002 0.046 1 1.006 0.006 0.062 

Treatment -0.5 -0.500 0.000 0.064 1 1.007 0.007 0.065 
Low + 

Control 0.5 0.500 0.000 0.067 1 1.004 0.004 0.067 

Treatment 1 0.998 -0.002 0.055 1 1.003 0.003 0.061 
High - 

Control -1 -1.002 -0.002 0.054 1 1.001 0.001 0.063 

Treatment -1 -1.005 -0.005 0.093 1 1.004 0.004 0.070 

50 items 

High + 
Control 1 0.999 -0.001 0.092 1 1.006 0.006 0.071 
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Table A5 

True parameter values and mean IRT estimated parameter values for the outcome in the control 
and treatment group for the 15 simulations with sample size 10,000, for the ability-based 
scenario.  

   Difficulty Discrimination 

      True Est. Bias RMSE True Est. Bias RMSE 

Treatment 0 -0.002 -0.002 0.038 1 1.004 0.004 0.058 
No Difference 

Control 0 -0.002 -0.002 0.037 1 1.006 0.006 0.059 

Treatment 0.5 0.498 -0.002 0.034 1 1.002 0.002 0.057 
Low - 

Control -0.5 -0.500 0.000 0.033 1 1.002 0.002 0.059 

Treatment -0.5 -0.501 -0.001 0.054 1 1.002 0.002 0.059 
Low + 

Control 0.5 0.503 0.003 0.055 1 0.999 -0.001 0.062 

Treatment 1 1.002 0.002 0.042 1 1.001 0.001 0.056 
High - 

Control -1 -1.002 -0.002 0.043 1 1.002 0.002 0.062 

Treatment -1 -1.003 -0.003 0.080 1 1.001 0.001 0.065 

10 items 

High + 
Control 1 1.003 0.003 0.078 1 1.002 0.002 0.063 

Treatment 0 -0.003 -0.003 0.036 1 1.001 0.001 0.048 
No Difference 

Control 0 -0.003 -0.003 0.036 1 1.000 0.000 0.049 

Treatment 0.5 0.497 -0.003 0.033 1 1.002 0.002 0.047 
Low - 

Control -0.5 -0.504 -0.004 0.033 1 1.004 0.004 0.051 

Treatment -0.5 -0.505 -0.005 0.050 1 1.001 0.001 0.050 
Low + 

Control 0.5 0.495 -0.005 0.050 1 1.003 0.003 0.052 

Treatment 1 0.997 -0.003 0.040 1 1.001 0.001 0.048 
High - 

Control -1 -1.005 -0.005 0.041 1 1.001 0.001 0.051 

Treatment -1 -1.000 0.000 0.067 1 1.005 0.005 0.054 

20 items 

High + 
Control 1 0.997 -0.003 0.071 1 1.003 0.003 0.056 

Treatment 0 0.000 0.000 0.035 1 1.002 0.002 0.043 
No Difference 

Control 0 0.003 0.003 0.036 1 1.003 0.003 0.044 

Treatment 0.5 0.499 -0.001 0.034 1 1.004 0.004 0.045 
Low - 

Control -0.5 -0.498 0.002 0.034 1 1.004 0.004 0.042 

Treatment -0.5 -0.499 0.001 0.046 1 1.004 0.004 0.045 
Low + 

Control 0.5 0.500 0.000 0.046 1 1.005 0.005 0.048 

Treatment 1 0.996 -0.004 0.039 1 1.005 0.005 0.044 
High - 

Control -1 -0.999 0.001 0.041 1 1.005 0.005 0.047 

Treatment -1 -0.998 0.002 0.066 1 1.007 0.007 0.049 

50 items 

High + 
Control 1 1.001 0.001 0.065 1 1.002 0.002 0.050 
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Table A6 

True parameter values and mean IRT estimated parameter values for the outcome in the control 
and treatment group for the 15 simulations with sample size of 500 for the cut-score scenario.  

   Difficulty Discrimination 

      True Est. Bias RMSE True Est. Bias RMSE 

Treatment 0 0.006 0.006 0.140 1 1.023 0.023 0.267 
No Difference 

Control 0 -13.474 -13.474 51.106 1 1.811 0.811 6.426 

Treatment 0.5 0.528 0.028 0.234 1 1.042 0.042 0.289 
Low - 

Control -0.5 -21.194 -20.694 66.266 1 1.837 0.837 5.386 

Treatment -0.5 -0.513 -0.013 0.129 1 1.026 0.026 0.257 
Low + 

Control 0.5 -9.852 -10.352 41.152 1 1.245 0.245 1.756 

Treatment 1 1.081 0.081 0.425 1 1.029 0.029 0.301 
High - 

Control -1 -35.313 -34.313 91.613 1 6.083 5.083 22.522 

Treatment -1 -1.034 -0.034 0.210 1 1.014 0.014 0.259 

10 items 

High + 
Control 1 -1.168 -2.168 23.888 1 1.419 0.419 2.534 

Treatment 0 0.012 0.012 0.142 1 1.004 0.004 0.212 
No Difference 

Control 0 -8.315 -8.315 39.022 1 1.178 0.178 0.842 

Treatment 0.5 0.514 0.014 0.204 1 1.031 0.031 0.233 
Low - 

Control -0.5 -19.082 -18.582 63.397 1 1.323 0.323 3.217 

Treatment -0.5 -0.507 -0.007 0.133 1 1.009 0.009 0.209 
Low + 

Control 0.5 -6.595 -7.095 35.545 1 1.132 0.132 0.737 

Treatment 1 1.052 0.052 0.351 1 1.029 0.029 0.255 
High - 

Control -1 -32.730 -31.730 90.238 1 2.624 1.624 10.540 

Treatment -1 -1.024 -0.024 0.188 1 1.011 0.011 0.204 

20 items 

High + 
Control 1 -0.776 -1.776 16.857 1 1.132 0.132 0.702 

Treatment 0 0.010 0.010 0.147 1 1.022 0.022 0.210 
No Difference 

Control 0 -3.271 -3.271 22.743 1 1.064 0.064 0.570 

Treatment 0.5 0.532 0.032 0.242 1 1.022 0.022 0.227 
Low - 

Control -0.5 -7.126 -6.626 38.215 1 1.174 0.174 0.710 

Treatment -0.5 -0.504 -0.004 0.131 1 1.017 0.017 0.197 
Low + 

Control 0.5 -1.293 -1.793 16.703 1 1.057 0.057 0.514 

Treatment 1 1.058 0.058 0.371 1 1.023 0.023 0.251 
High - 

Control -1 -18.154 -17.154 64.696 1 1.155 0.155 0.842 

Treatment -1 -1.015 -0.015 0.176 1 1.017 0.017 0.201 

50 items 

High + 
Control 1 0.709 -0.291 5.086 1 1.035 0.035 0.464 
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Table A7 

True parameter values and mean IRT estimated parameter values for the outcome in the control 
and treatment group for the 15 simulations with sample size of 1,000 for the cut-score scenario.  

   Difficulty Discrimination 

      True Est. Bias RMSE True Est. Bias RMSE 

Treatment 0 0.005 0.005 0.093 1 1.017 0.017 0.190 
No Difference 

Control 0 -4.717 -4.717 27.503 1 1.234 0.234 3.305 

Treatment 0.5 0.518 0.018 0.159 1 1.015 0.015 0.190 
Low - 

Control -0.5 -9.055 -8.555 40.689 1 1.128 0.128 0.798 

Treatment -0.5 -0.505 -0.005 0.092 1 1.004 0.004 0.179 
Low + 

Control 0.5 -1.582 -2.082 16.261 1 1.079 0.079 0.713 

Treatment 1 1.033 0.033 0.244 1 1.012 0.012 0.205 
High - 

Control -1 -14.545 -13.545 53.699 1 1.527 0.527 5.003 

Treatment -1 -1.017 -0.017 0.149 1 1.006 0.006 0.183 

10 items 

High + 
Control 1 0.462 -0.538 10.094 1 1.068 0.068 0.579 

Treatment 0 0.000 0.000 0.097 1 1.012 0.012 0.157 
No Difference 

Control 0 -2.946 -2.946 21.258 1 1.067 0.067 0.533 

Treatment 0.5 0.517 0.017 0.146 1 1.004 0.004 0.161 
Low - 

Control -0.5 -4.424 -3.924 27.080 1 1.126 0.126 0.670 

Treatment -0.5 -0.505 -0.005 0.089 1 0.999 -0.001 0.143 
Low + 

Control 0.5 -0.232 -0.732 9.679 1 1.055 0.055 0.483 

Treatment 1 1.021 0.021 0.227 1 1.017 0.017 0.181 
High - 

Control -1 -12.669 -11.669 50.164 1 1.242 0.242 1.412 

Treatment -1 -1.018 -0.018 0.122 1 1.000 0.000 0.144 

20 items 

High + 
Control 1 0.728 -0.272 4.412 1 1.049 0.049 0.438 

Treatment 0 0.008 0.008 0.099 1 1.006 0.006 0.142 
No Difference 

Control 0 -0.584 -0.584 7.766 1 1.046 0.046 0.379 

Treatment 0.5 0.511 0.011 0.163 1 1.011 0.011 0.166 
Low - 

Control -0.5 -1.765 -1.265 12.661 1 1.033 0.033 0.455 

Treatment -0.5 -0.501 -0.001 0.089 1 1.011 0.011 0.135 
Low + 

Control 0.5 0.428 -0.072 0.640 1 1.070 0.070 0.347 

Treatment 1 1.020 0.020 0.257 1 1.015 0.015 0.179 
High - 

Control -1 -5.020 -4.020 27.623 1 1.111 0.111 0.577 

Treatment -1 -1.006 -0.006 0.110 1 1.016 0.016 0.134 

50 items 

High + 
Control 1 0.989 -0.011 0.161 1 1.022 0.022 0.313 
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Table A8 

True parameter values and mean IRT estimated parameter values for the outcome in the control 
and treatment group for the 15 simulations with sample size of 5,000 for the cut-score scenario.  

   Difficulty Discrimination 

      True Est. Bias RMSE True Est. Bias RMSE 

Treatment 0 0.000 0.000 0.043 1 0.998 -0.002 0.078 
No Difference 

Control 0 -0.040 -0.040 0.298 1 1.033 0.033 0.273 

Treatment 0.5 0.504 0.004 0.064 1 1.000 0.000 0.082 
Low - 

Control -0.5 -0.593 -0.093 0.472 1 1.023 0.023 0.282 

Treatment -0.5 -0.501 -0.001 0.038 1 1.006 0.006 0.080 
Low + 

Control 0.5 0.474 -0.026 0.158 1 1.012 0.012 0.239 

Treatment 1 1.007 0.007 0.106 1 1.001 0.001 0.091 
High - 

Control -1 -1.167 -0.167 0.830 1 1.044 0.044 0.354 

Treatment -1 -1.003 -0.003 0.058 1 1.004 0.004 0.079 

10 items 

High + 
Control 1 0.999 -0.001 0.074 1 1.023 0.023 0.229 

Treatment 0 -0.002 -0.002 0.041 1 1.004 0.004 0.066 
No Difference 

Control 0 -0.059 -0.059 0.302 1 1.008 0.008 0.227 

Treatment 0.5 0.501 0.001 0.058 1 1.001 0.001 0.068 
Low - 

Control -0.5 -0.597 -0.097 0.549 1 1.020 0.020 0.261 

Treatment -0.5 -0.505 -0.005 0.040 1 1.001 0.001 0.063 
Low + 

Control 0.5 0.482 -0.018 0.166 1 1.020 0.020 0.198 

Treatment 1 1.001 0.001 0.094 1 1.005 0.005 0.079 
High - 

Control -1 -1.238 -0.238 1.535 1 1.018 0.018 0.306 

Treatment -1 -1.004 -0.004 0.052 1 1.001 0.001 0.062 

20 items 

High + 
Control 1 0.988 -0.012 0.083 1 1.009 0.009 0.180 

Treatment 0 0.001 0.001 0.042 1 1.003 0.003 0.064 
No Difference 

Control 0 -0.034 -0.034 0.209 1 1.008 0.008 0.173 

Treatment 0.5 0.503 0.003 0.064 1 1.003 0.003 0.068 
Low - 

Control -0.5 -0.558 -0.058 0.372 1 1.009 0.009 0.200 

Treatment -0.5 -0.500 0.000 0.041 1 1.004 0.004 0.063 
Low + 

Control 0.5 0.489 -0.011 0.109 1 1.016 0.016 0.155 

Treatment 1 1.008 0.008 0.107 1 1.002 0.002 0.080 
High - 

Control -1 -1.113 -0.113 0.619 1 1.015 0.015 0.245 

Treatment -1 -1.004 -0.004 0.051 1 1.003 0.003 0.059 

50 items 

High + 
Control 1 0.989 -0.011 0.067 1 1.005 0.005 0.134 
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Table A9 

True parameter values and mean IRT estimated parameter values for the outcome in the control 
and treatment group for the 15 simulations with sample size of 10,000 for the cut-score scenario.  

    Difficulty Discrimination 

      True Est. Bias RMSE True Est. Bias RMSE 

Treatment 0 0.000 0.000 0.031 1 1.002 0.002 0.056 
No Difference 

Control 0 -0.022 -0.022 0.183 1 1.011 0.011 0.175 

Treatment 0.5 0.499 -0.001 0.044 1 1.006 0.006 0.057 
Low - 

Control -0.5 -0.558 -0.058 0.301 1 0.999 -0.001 0.193 

Treatment -0.5 -0.500 0.000 0.028 1 1.000 0.000 0.058 
Low + 

Control 0.5 0.491 -0.009 0.103 1 1.014 0.014 0.165 

Treatment 1 1.006 0.006 0.069 1 0.998 -0.002 0.061 
High - 

Control -1 -1.077 -0.077 0.473 1 1.015 0.015 0.230 

Treatment -1 -1.001 -0.001 0.042 1 1.002 0.002 0.057 

10 items 

High + 
Control 1 1.002 0.002 0.052 1 1.021 0.021 0.159 

Treatment 0 -0.002 -0.002 0.028 1 1.002 0.002 0.045 
No Difference 

Control 0 -0.030 -0.030 0.200 1 1.004 0.004 0.156 

Treatment 0.5 0.501 0.001 0.042 1 1.000 0.000 0.049 
Low - 

Control -0.5 -0.550 -0.050 0.323 1 1.007 0.007 0.183 

Treatment -0.5 -0.505 -0.005 0.028 1 1.004 0.004 0.045 
Low + 

Control 0.5 0.474 -0.026 0.113 1 0.990 -0.010 0.141 

Treatment 1 1.000 0.000 0.066 1 1.001 0.001 0.056 
High - 

Control -1 -1.066 -0.066 0.479 1 1.018 0.018 0.214 

Treatment -1 -1.003 -0.003 0.036 1 1.001 0.001 0.044 

20 items 

High + 
Control 1 0.991 -0.009 0.058 1 1.000 0.000 0.134 

Treatment 0 -0.001 -0.001 0.031 1 1.007 0.007 0.047 
No Difference 

Control 0 -0.015 -0.015 0.138 1 1.007 0.007 0.118 

Treatment 0.5 0.501 0.001 0.048 1 1.002 0.002 0.050 
Low - 

Control -0.5 -0.527 -0.027 0.220 1 1.004 0.004 0.131 

Treatment -0.5 -0.501 -0.001 0.028 1 1.002 0.002 0.043 
Low + 

Control 0.5 0.489 -0.011 0.074 1 1.004 0.004 0.105 

Treatment 1 1.001 0.001 0.069 1 1.004 0.004 0.054 
High - 

Control -1 -1.027 -0.027 0.348 1 1.017 0.017 0.162 

Treatment -1 -1.004 -0.004 0.036 1 1.002 0.002 0.043 

50 items 

High + 
Control 1 0.992 -0.008 0.046 1 1.002 0.002 0.094 
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Figure A1: Histograms of the p-values from the IRT method under the ability-based scenario for 
the Low - outcome condition. 
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Figure A2: Histograms of the p-values from the IRT method under the ability-based scenario for 
the Low + outcome condition. 
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Figure A3: Histograms of the p-values from the IRT method under the ability-based scenario for 
the High - outcome condition. 
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Figure A4: Histograms of the p-values from the IRT method under the ability-based scenario for 
the High + outcome condition. 
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Figure A5: Histograms of the p-values from the LR method under the ability-based scenario for 
the Low - outcome condition. 
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Figure A6: Histograms of the p-values from the LR method under the ability-based scenario for 
the Low + outcome condition. 

 



127 

 

 

Figure A7: Histograms of the p-values from the LR method under the ability-based scenario for 
the High - outcome condition. 
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Figure A8: Histograms of the p-values from the LR method under the ability-based scenario for 
the High + outcome condition. 
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Figure A9: Histograms of the p-values from the propensity score method under the ability-based 
scenario for the Low - outcome condition. 
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Figure A10: Histograms of the p-values from the propensity score method under the ability-
based scenario for the Low + outcome condition. 
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Figure A11: Histograms of the p-values from the propensity score method under the ability-
based scenario for the High - outcome condition. 
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Figure A12: Histograms of the p-values from the propensity score method under the ability-
based scenario for the High + outcome condition. 

. 
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Figure A13: Profile plot for the bias of the difficulty parameter of the outcome variable for the 
control group under the ability-based scenario. 
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Figure A14: Profile plot for the bias of the discrimination parameter of the outcome variable for 
the treatment group under the ability-based scenario. 
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Figure A15: Profile plot for the bias of the discrimination parameter of the outcome variable for 
the control group under the ability-based scenario. 
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Figure A16: Profile plot for the RMSE of the difficulty parameter of the outcome variable for the 
control group under the ability-based scenario. 
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Figure A17: Profile plot for the RMSE of the discrimination parameter of the outcome variable 
for the treatment group under the ability-based scenario. 
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Figure A18: Profile plot for the RMSE of the discrimination parameter of the outcome variable 
for the control group under the ability-based scenario. 
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Figure A19: Plot of bias difficulty for the 10-item test under the ability-based scenario. 

Note: The sample size is represented by the increase size in dots on the plot with the smallest dot 
representing N = 500 and the largest representing N = 10,000. 
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Figure A20: Plot of bias discrimination for the 10-item test under the ability-based scenario. 

Note: The sample size is represented by the increase size in dots on the plot with the smallest dot 
representing N = 500 and the largest representing N = 10,000. 
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Figure A21: Plot of bias difficulty for the 20-item test under the ability-based scenario. 

Note: The sample size is represented by the increase size in dots on the plot with the smallest dot 
representing N = 500 and the largest representing N = 10,000. 
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Figure A22: Plot of bias discrimination for the 20-item test under the ability-based scenario. 

Note: The sample size is represented by the increase size in dots on the plot with the smallest dot 
representing N = 500 and the largest representing N = 10,000. 
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Figure A23: Plot of bias difficulty for the 50-item test under the ability-based scenario. 

Note: The sample size is represented by the increase size in dots on the plot with the smallest dot 
representing N = 500 and the largest representing N = 10,000. 
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Figure A24: Plot of bias discrimination for the 50-item test under the ability-based scenario. 

Note: The sample size is represented by the increase size in dots on the plot with the smallest dot 
representing N = 500 and the largest representing N = 10,000. 
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Figure A25: Plot of RMSE difficulty for the 10-item test under the ability-based scenario. 

Note: The sample size is represented by the increase size in dots on the plot with the smallest dot 
representing N = 500 and the largest representing N = 10,000. 
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Figure A26: Plot of RMSE discrimination for the 10-item test under the ability-based scenario. 

Note: The sample size is represented by the increase size in dots on the plot with the smallest dot 
representing N = 500 and the largest representing N = 10,000. 
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Figure A27: Plot of RMSE difficulty for the 20-item test under the ability-based scenario. 

Note: The sample size is represented by the increase size in dots on the plot with the smallest dot 
representing N = 500 and the largest representing N = 10,000. 
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Figure A28: Plot of RMSE discrimination for the 20-item test under the ability-based scenario. 

Note: The sample size is represented by the increase size in dots on the plot with the smallest dot 
representing N = 500 and the largest representing N = 10,000. 
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Figure A29: Plot of RMSE difficulty for the 50-item test under the ability-based scenario. 

Note: The sample size is represented by the increase size in dots on the plot with the smallest dot 
representing N = 500 and the largest representing N = 10,000. 
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Figure A30: Plot of RMSE discrimination for the 50-item test under the ability-based scenario. 

Note: The sample size is represented by the increase size in dots on the plot with the smallest dot 
representing N = 500 and the largest representing N = 10,000. 
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Figure A31: Histograms of the p-values from the IRT method under the cut-score scenario for 
the Low - outcome condition. 
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Figure A32: Histograms of the p-values from the IRT method under the cut-score scenario for 
the Low + outcome condition. 
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Figure A33: Histograms of the p-values from the IRT method under the cut-score scenario for 
the High - outcome condition.  
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Figure A34: Histograms of the p-values from the IRT method under the cut-score scenario for 
the High + outcome condition.  
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Figure A35: Histograms of the p-values from the LR method under the cut-score scenario for the 
Low - outcome condition. 
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Figure A36: Histograms of the p-values from the LR method under the cut-score scenario for the 
Low + outcome condition. 
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Figure A37: Histograms of the p-values from the LR method under the cut-score scenario for the 
High - outcome condition. 
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Figure A38: Histograms of the p-values from the LR method under the cut-score scenario for the 
High + outcome condition. 
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Figure A39: Histograms of the p-values from the RD method under the cut-score scenario for the 
Low - outcome condition. 
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Figure A40: Histograms of the p-values from the RD method under the cut-score scenario for the 
Low + outcome condition. 
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Figure A41: Histograms of the p-values from the RD method under the cut-score scenario for the 
High - outcome condition. 
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Figure A42: Histograms of the p-values from the RD method under the cut-score scenario for the 
High + outcome condition. 
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Figure A43: Profile plot for the bias of the difficulty parameter of the outcome variable for the 
control group under the cut-score scenario. 
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Figure A44: Profile plot for the bias of the discrimination parameter of the outcome variable for 
the treatment group under the cut-score scenario. 
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Figure A45: Profile plot for the bias of the discrimination parameter of the outcome variable for 
the control group under the cut-score scenario. 
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Figure A46: Profile plot for the RMSE of the difficulty parameter of the outcome variable for the 
control group under the cut-score scenario. 
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Figure A47: Profile plot for the RMSE of the discrimination parameter of the outcome variable 
for the treatment group under the cut-score scenario. 
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Figure A48: Profile plot for the RMSE of the discrimination parameter of the outcome variable 
for the control group under the cut-score scenario. 
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Figure A49: Plot of bias of the difficulty for the 10-item test under the cut-score scenario. 

Note: The sample size is represented by the increase size in dots on the plot with the smallest dot 
representing N = 500 and the largest representing N = 10,000. 
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Figure A50: Plot of bias discrimination for the 10-item test under the cut-score scenario. 

Note: The sample size is represented by the increase size in dots on the plot with the smallest dot 
representing N = 500 and the largest representing N = 10,000. 

 

 



171 

 

 

Figure A51: Plot of bias difficulty for the 20-item test under the cut-score scenario. 

Note: The sample size is represented by the increase size in dots on the plot with the smallest dot 
representing N = 500 and the largest representing N = 10,000. 
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Figure A52: Plot of bias discrimination for the 20-item test under the cut-score scenario. 

Note: The sample size is represented by the increase size in dots on the plot with the smallest dot 
representing N = 500 and the largest representing N = 10,000. 
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Figure A53: Plot of bias difficulty for the 50-item test under the cut-score scenario. 

Note: The sample size is represented by the increase size in dots on the plot with the smallest dot 
representing N = 500 and the largest representing N = 10,000. 
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Figure A54: Plot of bias discrimination for the 50-item test under the cut-score scenario. 

Note: The sample size is represented by the increase size in dots on the plot with the smallest dot 
representing N = 500 and the largest representing N = 10,000. 
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Figure A55: Plot of RMSE difficulty for the 10-item test under the cut-score scenario. 

Note: The sample size is represented by the increase size in dots on the plot with the smallest dot 
representing N = 500 and the largest representing N = 10,000. 
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Figure A56: Plot of RMSE discrimination for the 10-item test under the cut-score scenario. 

Note: The sample size is represented by the increase size in dots on the plot with the smallest dot 
representing N = 500 and the largest representing N = 10,000. 
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Figure A57: Plot of RMSE difficulty for the 20-item test under the cut-score scenario. 

Note: The sample size is represented by the increase size in dots on the plot with the smallest dot 
representing N = 500 and the largest representing N = 10,000. 
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Figure A58: Plot of RMSE discrimination for the 20-item test under the cut-score scenario. 

Note: The sample size is represented by the increase size in dots on the plot with the smallest dot 
representing N = 500 and the largest representing N = 10,000. 
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Figure A59: Plot of RMSE difficulty for the 50-item test under the cut-score scenario. 

Note: The sample size is represented by the increase size in dots on the plot with the smallest dot 
representing N = 500 and the largest representing N = 10,000. 
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Figure A60: Plot of RMSE discrimination for the 50-item test under the cut-score scenario. 

Note: The sample size is represented by the increase size in dots on the plot with the smallest dot 
representing N = 500 and the largest representing N = 10,000. 

 

 


