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ABSTRACT

Contributions to Information-Based Complexity
and to Quantum Computing

Iasonas Petras

Multivariate continuous problems are widely encountered in physics, chemistry, finance and in

computational sciences. Unfortunately, interesting real world multivariate continuous prob-

lems can almost never be solved analytically. As a result, they are typically solved numerically

and therefore approximately.

In this thesis we deal with the approximate solution of multivariate problems. The com-

plexity of such problems in the classical setting has been extensively studied in the literature.

On the other hand the quantum computational model presents a promising alternative for

dealing with multivariate problems. The idea of using quantum mechanics to simulate quan-

tum physics was initially proposed by Feynman in 1982. Its potential was demonstrated

by Shor’s integer factorization algorithm, which exponentially improves the cost of the best

classical algorithm known.

In the first part of this thesis we study the tractability of multivariate problems in the

worst and average case settings using the real number model with oracles. We derive necessary

and sufficient conditions for weak tractability for linear multivariate tensor product problems

in those settings.

More specifically, we initially study necessary and sufficient conditions for weak tractabil-

ity on linear multivariate tensor product problems in the worst case setting under the absolute

error criterion. The complexity of such problems depends on the rate of decay of the squares

of the singular values of the solution operator for the univariate problem. We show a con-

dition on the singular values that is sufficient for weak tractability. The same condition is

known to be necessary for weak tractability.

Then, we study linear multivariate tensor product problems in the average case setting



under the absolute error criterion. The complexity of such problems depends on the rate

of decay of the eigenvalues of the covariance operator of the induced measure of the one

dimensional problem. We derive a necessary and sufficient condition on the eigenvalues for

such problems to be weakly tractable but not polynomially tractable.

In the second part of this thesis we study quantum algorithms for certain eigenvalue

problems and the implementation and design of quantum circuits for a modification of the

quantum NAND evaluation algorithm on k-ary trees, where k is a constant.

First, we study quantum algorithms for the estimation of the ground state energy of the

multivariate time-independent Schrödinger equation corresponding to a multiparticle system

in a box. The dimension d of the problem depends linearly to the number of particles of the

system. We design a quantum algorithm that approximates the lowest eigenvalue with relative

error ε for a non-negative potential V , where V as well as its first order partial derivatives

are continuous and uniformly bounded by one. The algorithm requires a number of quantum

operations that depends polynomially on the inverse of the accuracy and linearly on the

number of the particles of the system. We note that the cost of any classical deterministic

algorithm grows exponentially in the number of particles. Thus we have an exponential

speedup with respect to the dimension of the problem d, when compared to the classical

deterministic case.

We extend our results to convex non-negative potentials V , where V as well as its first

order partial derivatives are continuous and uniformly bounded by constants C and C ′ re-

spectively. The algorithm solves the eigenvalue problem for a sequence of convex potentials

in order to obtain its final result. More specifically, the quantum algorithm estimates the

ground state energy with relative error ε a number of quantum operations that depends

polynomially on the inverse of the accuracy, the uniform bound C on the potential and the

dimension d of the problem. In addition, we present a modification of the algorithm that

produces a quantum state which approximates the ground state eigenvector of the discretized

Hamiltonian within δ. This algorithm requires a number of quantum operations that depends

pollynomially on the inverse of ε, the inverse of δ, the uniform bound C on the potential and

the dimension d of the problem.

Finally, we consider the algorithm by Ambainis et.al. that evaluates balanced binary



NAND formulas. We design a quantum circuit that implements a modification of the algo-

rithm for k-ary trees, where k is a constant. Furthermore, we design another quantum circuit

that consists exclusively of Clifford and T gates. This circuit approximates the previous one

with error ε using the Solovay-Kitaev algorithm.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

In this thesis we study algorithms for multivariate problems. A great number of the important

real life multivariate problems are extremely difficult to solve. Analytical solutions cannot

be generally derived. Hence numerical methods are employed to approximate the solution.

Some problems are intrinsically difficult to solve. There are known lower bounds showing

that the amount of computational resources required to solve them is huge. On the other

hand, there are many interesting problems for which lower and upper bounds have an expo-

nential gap depending on the dimension of the problem. Even more interestingly, the choice

of the setting can make a significant difference. For example, there are problems that are very

hard in the worst case but are easy when we allow randomization, such as high dimensional

integration problems, see [8; 66].

Quantum computers offer a promising alternative. Richard Feynman initiated research in

computing based on quantum mechanics [27]. More specifically he proposed to take advantage

of the features of quantum mechanical systems that make it hard to simulate using classical

computers. Peter W. Shor later developed a quantum algorithm for prime factorization

that is exponentially faster than any classical algorithm known [61]. This result further

motivated the use of quantum computers in dealing with problems that are or appear to be

computationally hard for the classical computer.

This thesis is divided into two parts. In the first part, we study the complexity of linear

multivariate tensor product problems in two settings; the worst case (Chapter 2) and the

average case (Chapter 3). We show necessary and sufficient conditions for the problems to
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be weakly tractable1.

In the second part, we switch to a different computational model, the quantum model, and

derive upper bounds on the computational resources required to solve eigenvalue problems.

In addition, we estimate the resources required to implement a modification of the algorithm

in [4, Fig. 2]. In Chapter 4, we present a quantum algorithm approximating the lowest

eigenvalue of a certain class of Hamiltonians of a quantum system, an important problem in

physics and chemistry. In Chapter 5, we derive another quantum algorithm for a modification

of the previous class of Hamiltonians. Finally, in Chapter 6, we design a quantum circuit

implementing a modification of the quantum algorithm in [4, Fig. 2]. The modified algorithm

corresponds to complete k-ary trees, where k ∈ {2, 3, . . .} is a constant.

1.1 Information-based complexity

Computational complexity studies the intrinsic difficulty of approximating the solution of a

problem and is independent of the algorithm used. Information-based complexity (IBC) is

used to analyze the computational complexity of continuous problems. The computational

complexity of a problem is defined as the minimal number of information and combinatory

operations required to solve the problem within error ε. The information complexity, typically

denoted by n(ε), is the minimal number of information operations required to solve the

problem within error ε. As a result, the information complexity is a lower bound on the

computational complexity of the problem. For many problems, the information complexity is

proportional to the computational complexity, even though there are exceptions. IBC focuses

on the study of the information complexity of a problem in different settings, such as the

worst case, the average case, the randomized and probabilistic settings. Recently, IBC was

extended to the quantum setting [35].

A problem is typically defined by a class of functions F = {f : A → B}, and a solution

operator S : F → G, where F and G are normed spaces. We approximate the solution

S(f) by Un(f), an algorithm that uses n information operations. The goal is to compute an

1For the definition of weak tractability see Section 1.2
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ε-approximation of the solution element S(f), namely

‖S(f)− Un(f)‖G ≤ ε ∀f ∈ F,

where ε is the error constraint.

Let

N(f) = [L1(f), L2(f), . . . , Ln(f)]

be the information we have about f , where L1, L2, . . . , Ln are continuous linear function-

als on F . The permissible information operations are either arbitrary linear functionals

(L1(f), L2(f), . . . , Ln(f) ∈ Λall) or just function evaluations (L1(f), L2(f), . . . , Ln(f) ∈ Λstd).

We use the real number model with queries. In this model we can store and perform

arithmetic operations on real numbers exactly with unit cost. Under fairly modest assump-

tions, such as the stability assumption and the error demand assumption [49, pg. 101], results

in this model are predictive of results in fixed precision arithmetic.

Consider algorithms that use n information operations of the form

An(f) = φ(N(f)),

where φ : N(F )→ G.

We need to choose the error criterion, as well as the setting, to completely specify the

problem. The worst case error under the absolute error criterion is defined as

ewor(An, S, F ) = sup
f∈F
‖S(f)−An(f)‖G.

The nth minimal error

ewor(n) = ewor(n, S, F ) = inf
An
ewor(An, S)

is the minimal error we can achieve for any algorithm An(f) that uses n information opera-

tions. Let nwor(ε, S, F ) denote the minimal number n for which there exists an algorithm An

having worst case error ε, so that

nwor(ε, S, F ) = min{n | there exists An with ewor(An, S, F ) ≤ ε}.

This is the information complexity of S in the worst case.
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For the normalized error criterion the error becomes ewor(An, S, F )/ewor
0 , where ewor

0 de-

notes the initial error

ewor
0 = ewor

0 (S, F ) = inf
g∈G

sup
f∈F
‖S(f)− g‖G,

namely the minimal worst case error of a constant algorithm An(f) = g, ∀f ∈ F .

In the average case setting we consider the average performance of an algorithm with

respect to a probability measure µ defined on Borel sets of F . The space F is a subset of the

separable Banach space F̃ . Similarly to what we did above, we consider a solution operator

S : F̃ → G, where G is a separable Banach space. Then ν = µS−1 is a probability measure

on the set of solution elements S(f).

Consider a measurable algorithm A = φ ◦ N : F → G. The average case error of the

algorithm is

eavg(A,S, F ) =

(∫
F
‖S(f)−A(f)‖2µ(df)

)1/2

.

So far, we have assumed that the information N has fixed cardinality. Alternatively,

the total number n(f) of information operations on the problem element f can be obtained

through computing successive values yi = Li(f). In particular, suppose we have already cal-

culated the values y1 = L1(f) up to yi = Li(f, y1, y2, . . . , yi−1). Based on those values, one de-

cides whether another functional Li+1 is needed. If not, n(f) = i and N(f) = [y1, y2, . . . , yi].

Otherwise, yi+1 = Li+1(f, y1, y2, . . . , yi) is evaluated.

Now consider boolean functions of the form teri : R→ {0, 1} known as termination func-

tions, that decide whether on the ith step another functional is needed (teri(y1, y2, . . . , yi) =

1) or not (teri(y1, y2, . . . , yi) = 0). As a result, the cardinality n(f) is

n(f) = min{i | teri(y1, y2, . . . , yi) = 1},

with the convention that min ∅ =∞.

In the average case we define the average cardinality of N to be

cardavg(N) =

∫
F
n(f)µ(df).

We consider the average cardinality to be a measure of the cost of the algorithm A. Thus we

can compare different algorithms with average cardinality at most n. Define

eavg(n) = inf{eavg(φ ◦N,S, F ) | cardavg(N) ≤ n}.
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For the absolute error, we define the information complexity of S

navg(ε, S, F ) = min{n | there exists A = φ ◦N with cardavg(N) ≤ n, eavg(A,S, F ) ≤ ε}.

Similarly, for the normalized error the information complexity of S is

navg(ε, S, F ) =

min{n | there exists A = φ ◦ N with cardavg(N) ≤ n, eavg(A,S, F ) ≤ ε eavg(0)},

where eavg(0) is the average error of the optimal constant algorithm, which is considered to

be the initial cost in the average case setting.

For more information on the error definitions and complexity in various settings and error

criteria, the reader is referred to [49; 66; 67].

1.2 Tractability of multivariate problems

Multivariate continuous problems are common in chemistry, finance, physics and computa-

tional sciences. They are continuous problems defined on spaces of functions with d variables,

where d is considered large. For example, a path integral can be approximated by another

d-dimensional integral, provided that d is sufficiently large. The Schrödinger equation for p

particles in R3 is another important example of a multivariate continuous problem, where

d = 3p. Since the number of particles is usually large, the dimension of the wavefunction

solving the Schrödinger equation is large as well.

Recall the notions we presented in Section 1.1 such as error and information complexity in

the worst and average case, with the only difference being the inclusion of the dimension d of

the problem Sd. We present definitions and examples of multivariate problems in Sections 2.2

and 3.1. For more details see [49].

Tractability provides a characterization of the intrinsic difficulty of the problem as ex-

pressed by the information complexity of the problem n(ε, d) := n(ε, Sd). It is important that

n(ε, d) should not grow exponentially in either ε−1 or d, since the problem is intractable oth-

erwise. Moreover, if the information complexity is exponential in d we follow R. E. Bellman

[10] in saying that the problem suffers from the curse of dimensionality. Thus a necessary
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condition for tractability is

lim
ε−1+d→∞

lnn(ε, d)

ε−1 + d
= 0. (1.1)

When the condition (1.1) holds, the problem is weakly tractable.

To gain a better understanding of the difficulty of the problem, other types of tractabil-

ity are widely used as well. The most commonly used type of tractability is polynomial

tractability, introduced in [73], for which

n(ε, d) ≤ Cε−pdq,

for C, p, q ≥ 0 constants. This means that we have polynomial tractability when the informa-

tion complexity is upper-bounded by a polynomial in ε−1 and d. When q = 0, we have strong

polynomial tractability, which in turn implies that the problem’s intrinsic difficulty does not

depend on the number of variables.

Another type of tractability, quasi-polynomial tractability, has attracted interest [29]. It

originates from the need to further categorize the type of tractability for weakly tractable

problems. The computational complexity of a weakly tractable problem might be greater

than any polynomial and less than any exponential in d and ε−1, but a more accurate char-

acterization might be critical.

Finally, one can consider other tractability criteria. For example one may require that

tractable problems are those whose information complexity n(ε, d) is not exponential in d or(
log ε−1

)κ
, with κ ≥ 1 a constant. This criterion implies that “efficient” algorithms are only

those with “sub-exponential” cost in both the dimension of the problem d and any power of

the number of bits required for the accuracy ε.

Weak tractability is represented in this case by the notion of lnκ-weak tractability, with

κ ≥ 1 a constant. The necessary condition for lnκ-weak tractability is

lim
ε−1+d→∞

lnn(ε, d)

(ln ε−1)κ + d
= 0. (1.2)

Furthermore, a problem is polylog tractable when the information complexity is upper-

bounded by a polynomial in ln ε−1 and d. Similarily, the problem is strongly polylog tractable

if the information complexity does not depend on d and depends polynomially in ln ε−1.
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Results based on these new types of tractability have been presented for linear and linear

tensor product problems in the worst case [52] and for the integration of weighted Korobov

spaces [43].

1.3 Quantum Computing

1.3.1 Quantum mechanics

A quantum mechanical system is described by a complete complex vector space H = {ψ :

Ω × R → C} equipped with an inner product structure 〈·|·〉, i.e. a Hilbert space. The state

of the quantum system corresponds to an element of the space |ψ〉 ∈ H, where the element

is normalized, i.e. ‖ψ‖ =
√
〈ψ|ψ〉 = 1. For example, the state of a one qubit system is an

element of C2, while a state of an n qubit system is represented by an element in the tensor

product space Hn = C2 ⊗ · · · ⊗ C2 =
(
C2
)⊗n

.

The evolution of the state of a closed quantum system is described by a partial differential

equation, the Schrödinger equation

i~
∂

∂t
|Ψ(x, t)〉 = H(t) |Ψ(x, t)〉, (1.3)

where H(t) is the time-dependent Hermitian operator known as the Hamiltonian of the

system, i =
√
−1 and ~ is the reduced Planck constant, following the notation in [60]. Since

H(t) is Hermitian, the state evolves according to

|Ψ(t)〉 = Ut |Ψ(0)〉,

where Ut is a unitary transformation.

One method to solve the Schrödinger equation analytically is by separation of variables.

Namely, one can look for solutions |Ψ(x, t)〉 that are products of the form

|Ψ(x, t)〉 = |ψ(x)〉|φ(t)〉.

This leads to

H|ψ(x)〉 = E |ψ(x)〉, (1.4)

for H a time-independent Hamiltonian operator, E ∈ R and x the state variable, see [30].

Note that E is an eigenvalue of H and |ψ(x, t)〉 is an eigenfunction corresponding to E.
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Equation (1.4) is known as the time-independent Schrödinger equation2 and its solution

|Ψ(x, t)〉 is

|Ψ(x, t)〉 = e−itH/~ · |Ψ(x, 0)〉.

Observe that e−itH/~ is unitary, since H is Hermitian.

For a p particle quantum system with masses m1,m2, . . . ,mp the above equation becomes−~2
p∑
j=1

1

2mj

3∑
k=1

∂2

∂x2
j,k

+ V (x)

 |ψ(x)〉 = E |ψ(x)〉, (1.5)

where {x1,1, x1,2, x1,3, . . . , xp,1, xp,2, xp,3} denotes the set of the state variables, assuming that

the state of each particle belongs to R3.

We can simplify equation (1.5) if we assume that all particles have the same mass m with

~2/m = 1. The time independent Schrödinger equation then becomes(
−1

2
∆ + V (x)

)
|ψ(x)〉 = E|ψ(x)〉, (1.6)

where ∆ =
∑3p

j=1
∂2

∂x2j
is the Laplacian operator.

The Schrödinger equation determines several important properties of the quantum system.

Firstly, the solution of the time dependent form (1.3) corresponds to the state |Ψ(x, t)〉 of the

system at time t > 0, given the initial state |Ψ(x, 0)〉. For a multiparticle quantum system,

finding the solution of (1.5) is an extremely hard computational problem given arbitrary initial

state and Hamiltonian. The cost of any algorithm solving the problem in its generic form is

at least exponential in the dimension of the problem and consequently in p. There are cases

however where this problem is easy. In addition, the lowest eigenvalue of the Hamiltonian

operator in (1.4) is the ground state energy of the quantum system, which is widely used in

physics and chemistry. Later in this thesis we present algorithms to approximate the ground

state energy for Hamiltonians that correspond to smooth, bounded potentials.

For more details on the subject, we refer the reader to [30; 39; 47; 60].

1.3.2 Quantum algorithms

The idea of using quantum mechanical systems for computational tasks originates in Richard

Feynman’s proposal to use such systems to simulate quantum mechanics [27]. Feynman’s

2also known as Sturm-Liouville equation in mathematics [54].
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main idea is based on the belief that those exact features that hinder the simulation of the

quantum system by a classical one can be beneficial when used by a quantum-based com-

putational machine. Deutsch, based on Feynman’s suggestion, developed a quantum Turing

machine (QTM) that is computationally equivalent to the classical Turing machine [20].

This implies that a quantum computer can solve the same problems a classical one can. Even

more importantly there are problems for which the quantum algorithm is exponentially faster

than any deterministic classical algorithm; e.g. the Deutsch and Josza algorithm [21] and

performing a continuous time walk on a specific graph [14]. However these are toy problems.

In mid 90’s two very important quantum algorithms where developed. Peter W. Shor

showed a quantum algorithm for factoring any large number N into its prime factors [61]

with poly(logN) running time. Any known classical algorithm for the same problem is

exponentially slower than the quantum algorithm. A few years later, Lov K. Grover presented

an oracle based quantum algorithm finding a specific element in an unstructured database [31].

His algorithm finds that element with high probability after O(
√
N) queries to the oracle,

while any classical algorithm requires Ω(N) queries.

These developments have led to a surge of interest on quantum algorithms for both dis-

crete and continuous mathematical problems. Examples include approximate counting [12],

approximating the median [46], solving linear systems of equations [33], evaluating NAND

formulas [4; 25], implementing Markov based (Szegedy) quantum walks [44], finding the lowest

eigenvalue of the Sturm-Liouville equation [50; 55], quantum summation and integration[34;

35; 36; 48], path integration [68], numerical gradient estimation [38], performing a walk on

a graph in both the quantum and the classical setting [16], triangle finding [45] and element

distinctness [3].

A quantum algorithm on n qubits is described by a series of unitary matrices applied in

sequential order

|ψ〉 = UKQfUK−1Qf · · ·U1QfU0|ψ0〉,

where U0, . . . , UK do not depend on the function f . The unitary matrix Qf is a quantum

query, and depends on m function evaluations of f computed at some points xi, i = 0, 1, . . .m

in the domain of the function, where m ≤ 2n and n the number of qubits. K denotes the

number of quantum queries the algorithm requires.
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For discrete problems f is usually considered to be a Boolean function f : {0, 1, . . . , 2n} →

{0, 1}. A bit query [31] is defined by

Qf |j〉|k〉 = |j〉|k ⊕ f(j)〉,

where |j〉 ∈ Hn, |k〉 ∈ H1 and ⊕ denotes addition modulo 2.

On the other hand, for continuous problems we generally assume that f is a real valued

function, namely f : D → R. Here we use different types of queries, such as

Qf |j〉|k〉 = |j〉|k ⊕2m α(f(β(j)))〉, (1.7)

where |j〉 ∈ Hn, |k〉 ∈ Hm, β : Hn → D, α : R → Hm and ⊕2m is addition modulo 2m [35;

36].

Abrams and Williams used the query

Qf |j〉|0〉 =
√

1− f(j)2|j〉|0〉+ f(j)|j〉|1〉

Qf |j〉|1〉 = −f(j)|j〉|0〉+
√

1− f(j)2|j〉|1〉

in their studies for integration [2]. A similar query was used by Novak in his study [48] of

the complexity of integration for the Hölder class

Qf |j〉|0〉 =
√

1− f(j)|j〉|1〉+
√
f(j)|j〉|0〉

Qf |j〉|1〉 =
√
f(j)|j〉|1〉 −

√
1− f(j)|j〉|1〉

Whenever bit queries are mentioned throughout the thesis, it is implied that they are of

the type defined in (1.7).

At the end of the quantum algorithm a measurement is performed on the final state |ψ〉.

We obtain a result j, with certain probability P (j), based on the final state of the register

on which we perform the measurement.

The cost of a quantum algorithm is usually measured with respect to the number of

quantum queries required to approximate the solution of a problem to within error ε and

with probability p > 3/4. In fact, any probability p > 1/2 would also suffice.
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1.3.3 The quantum gate model

Apart from the query-based computational model presented in Section 1.3.2, another wide-

spread model of quantum computation is the quantum gate model [22]. It has been proven

to be polynomially equivalent to the Quantum Turing Machine [74]; see also [20] for more on

the Quantum Turing Machine model of computation. The quantum systems are represented

by qubits, namely vectors in the two-dimensional Hilbert space C2, with the unit vector

basis {|0〉, |1〉}. This model introduces elementary gates, transformations that are considered

easy to execute. Quantum transformations acting on a small number of qubits are usually

considered elementary, for example (see [47])

H =

 1/
√

2 1/
√

2

1/
√

2 −1/
√

2

 , S =

 1 0

0 i

 , T =

 1 0

0 eiπ/4

 ,

X =

 0 1

1 0

 , Y =

 0 −i

i 0

 , Z =

 1 0

0 −1

 .
The gates X, Y , Z, are the Pauli matrices, while H, T , S = T 2, are the Hadamard, π/8 and

phase gates respectively. All of these are single qubit gates. A commonly used two qubit

gate is the “CNOT” gate

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


which acts as CNOT |a〉|b〉 = |a〉|b⊕ a〉, i.e. it flips the second qubit if the first qubit is 1,

otherwise it does nothing. It is represented by the circuit

•

One of the most important properties of the quantum gate model is that there are sets

of gates comprised of a finite number of single and double qubit gates that are universal,

namely any unitary operation can be approximated by gates of the set [23]. For example,

{H,T,CNOT} is a universal set of gates for quantum computation [47] and is known as the
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Clifford3 and T gate set. In the case where one deals with single qubit unitaries the Clifford

gates are comprised of the H and S gates. On the other hand, in the case of multiple qubit

unitaries the CNOT gate is included in the set. Clifford gates are generally considered easier

to implement than general unitaries in many technologies and can be made universal with

the addition of a single non-Clifford gate (in our case the T gate). It is common to design

quantum circuits for algorithms using gates from this set as building blocks.

3The Clifford set of gates contains the Hadamard, phase and CNOT gates. Hence the Clifford and T gate

set contains the Hadamard, phase, CNOT and T gates. However, since the phase gate is equivalent to two T

gates acting one after the other, it is sometimes ommited. We include the phase gate in the Clifford and T

gate set throughout the thesis.
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Contributions to Information-Based

Complexity
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Chapter 2

On the tractability of linear tensor

product problems in the worst case

2.1 Introduction

Consider the approximation of a problem S = {Sd}, where each of the Sd, d ≥ 1, is a

continuous linear operator defined on a space of functions f of d variables. Such problems

are known as linear multivariate problems. Moreover, consider algorithms that approximate

Sd(f) using finitely many evaluations of arbitrary continuous linear functionals.

As already stated, the information complexity (for brevity, the complexity) is the minimal

number of evaluations n(ε, d) required to approximate Sd with accuracy ε. We remark that

there are a variety of error criteria that one may consider for the accuracy of the algorithms

but we limit ourselves to the worst case setting and the absolute error criterion.

In general Si+1 is not necessarily related to Si, for i = 1, 2, . . . , d − 1. This is not the

case though for linear multivariate tensor product problems. These are linear multivariate

problems obtained by taking the tensor product of d copies of a single univariate linear

problem. Thus

Sd = S⊗d1 ,

where S1 is a given continuous linear operator.

In this case, the complexity of approximating Sd with accuracy ε depends on the singular
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values of S1 and, particularly, on their rate of decay [49, Ch. 5.2].

The squares of the singular values of S1 are the eigenvalues, {λi}i∈N, of the operator

S∗1S1, where the eigenvalues are indexed in non increasing order. Moreover, the relationship

between the tractability of S = {Sd} and the {λi}i∈N is studied in detail in [49, Thm. 5.5].

In particular, we know that if a problem is weakly tractable with λ1 = 1 and λ2 ∈ (0, 1) then

λn = o((lnn)−2), as n→∞.

Proving the converse is Open Problem 26 in [49], which we solve.

2.2 Linear Tensor Product Problems in the wost case setting

A linear tensor product problem is defined in [49, Ch. 5.2] as a tensor product of a single

univariate linear problem.

Let H1 be an infinite dimensional separable Hilbert space of real univariate functions with

its inner product denoted by 〈·, ·〉H1 , and let G1 be an arbitrary Hilbert space.

Assume that S1 : H1 → G1 is a compact linear operator. The operator

W1 := S∗1S1 : H1 → H1

is positive semi-definite, self-adjoint and compact. Let us denote its ordered eigenvalues by

{λi}, where λ1 ≥ λ2 ≥ · · · ≥ λi ≥ . . . . They are the squares of the singular values of S1. We

denote the eigenpairs of W1 by {(λi, ei)}i∈N.

For d ≥ 1, define Hd =
⊗d

j=1H1 to be the tensor product of the space H1. This is a

space of real functions of d variables. Similarly, let Gd =
⊗d

j=1G1. The linear tensor product

problem is defined by considering the operator

Sd :=
d⊗
j=1

S1 : Hd → Gd.

Observe that Sd is compact and that ‖Sd‖Hd =
∏d
j=1

[
λ1

]1/2
. The problem S = {Sd} is

called the linear tensor product problem.

The non-negative definite, self adjoint and compact operator

Wd := S∗dSd : Hd → Hd
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has eigenpairs

{λd,i, ed,i}i∈Nd with λd,i =

d∏
j=1

λij and ed,i =

d⊗
j=1

eij ,

for all i = [i1, i2, . . . , id] ∈ Nd. Let λd,βj denote the j-th largest of all the λd,i and let ed,βj

denote the corresponding eigenvector. Clearly, λd,β1 = λd,1,...,1 = λd1.

Suppose we can use arbitrary linear continuous functionals as information operations.

Then it is known, see e.g. [66], that the algorithm

An,d(f) =
n∑
j=1

〈f, ed,βj 〉HdSded,βj

minimizes the worst case error among all possible algorithms using at most n information

operations. The worst case error is defined as

e(An,d) = sup
f∈Hd, ‖f‖Hd≤1

‖Sdf −An,d(f)‖Gd .

It is also known that e(An,d) =
√
λd,βn+1 .

For accuracy ε, the worst case information complexity of the problem Sd for the absolute

error criterion is defined as the minimal number of information operations needed to guarantee

that the worst case error is at most ε, and is given by

n(ε, d) = |{i ∈ Nd : λd,i > ε2 }|,

where |{·}| denotes the cardinality of the set.

2.3 Prior work

The relationship between the complexity n(ε, d) of linear tensor product problems and the

singular values of S1 is extensively studied in [49, Thm. 5.5]. More precisely, the complexity

depends on the eigenvalues {λi}i∈N of the operator W1. The problem S = {Sd} is intractable

when λ1 > 1 and λ2 > 0. Furthermore, the problem remains intractable even when λ1 =

λ2 = 1.

When λ1 = 1 and λ2 ∈ (0, 1) the problem is weakly tractable as long as the remaining

eigenvalues decay sufficiently fast. More specifically, if a problem is weakly tractable then

λn = o((lnn)−2), as n → ∞. It is also demonstrated that λn = o((lnn)−2(ln lnn)−2), as
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n→∞ is a sufficient condition. This condition is stronger than necessary, as we demonstrate

in the following section.

2.4 Weak Tractability

Open Problem 26 in [49] asks whether λn = o(ln−2 n) is a necessary and sufficient condition

for a problem to be weakly tractable. We give an affirmative answer below.

Theorem 1. Consider the linear tensor product problem in the worst case setting S = {Sd}

with λ1 = 1 and λ2 ∈ (0, 1) with the absolute error criterion. Then S is weakly tractable iff

λn = o((lnn)−2) as n→∞.

Proof. We know that λn = o((lnn)−2) is a necessary condition for weak tractability of S [49,

Thm. 5.5]. We show that it is also a sufficient condition.

When λn = o(ln−2 n) one may proceed as in [49] to obtain lnn(ε, 1) = o(ε−1). Indeed,

n(ε, 1) = min{n : λn+1 < ε2} ≤ min{n : lnn = o(ε−1)}.

When λ2 ≤ ε2 we know that n(ε, 1) ≤ 1 and so we consider the case λ2 > ε2.

For d ≥ 2, we are interested in eigenvalue products satisfying

λj1λj2 · · ·λjd > ε2. (2.1)

Let k be the number of indices ji ≥ 2, i.e., λji < 1. The inequality above implies

λk2 > ε2, (2.2)

and we know that k ≤ ad(ε), where

ad(ε) = min

(
d,

⌈
2

ln ε−1

lnλ−1
2

⌉
− 1

)
,

see [49, Thm. 5.5] for the details.

There are
(

d
ad(ε)

)
ways to select the (d − ad(ε)) indices jr that must be equal to 1, i.e.,

λjr = 1, due to (2.1) and (2.2).

Let jmax be the largest index of the eigenvalues in (2.1). Then λjmax ≥ λj1 · · ·λjd > ε2,

which implies jmax ≤ n(ε, 1). Note that there are no more than a(d) ≤ d choices for the

location of the largest index.
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Consider now the second largest index j′max of the eigenvalues in (2.1). Then we have

λ2
j′max
≥ λj′max

λjmax ≥ λj1 · · ·λjd > ε2, which implies that λj′max
> ε and so j′max ≤ n(ε1/2, 1).

(Similarly, we see that the i-th largest index is at most n(ε1/i, 1).)

Thus, we estimate n(ε, d) by

n(ε, d) ≤
(

d

ad(ε)

)
[n(ε1/2, 1)]ad(ε)−1n(ε, 1)d.

Taking logarithm we obtain

lnn(ε, d) ≤ ln

[(
d

ad(ε)

)
[n(ε1/2, 1)]ad(ε)−1n(ε, 1)d

]
= ln

(
d

ad(ε)

)
+ (ad(ε)− 1) lnn(ε1/2, 1) + lnn(ε, 1) + ln d

≤ ad(ε) ln d− ln(ad(ε)!) + ad(ε) lnn(ε1/2, 1) + lnn(ε, 1) + ln d

≤ ad(ε) ln d+ ad(ε) lnn(ε1/2, 1) + lnn(ε, 1) + ln d.

Dividing by (ε−1 + d) and taking the limit as ε−1 + d→∞ yields

lim
ε−1+d→∞

lnn(ε, d)

ε−1 + d
≤ lim

ε−1+d→∞

[
ad(ε) ln d

ε−1 + d
+
ad(ε) ln[n(ε1/2, 1)]

ε−1 + d
+

lnn(ε, 1)

ε−1 + d
+

ln d

ε−1 + d

]
.

Using lnn(ε, 1) = o(ε−1) and ad(ε) = Θ(min(d, ln ε−1)), we consider the limit of each of the

four terms in the right hand side above.

The limit of the first term is zero. Indeed, as in [49], if x = max(d, ε−1), then

min(d, ln ε−1) ≤ lnx

and

lim
ε−1+d→∞

min(d, ln ε−1) ln d

ε−1 + d
≤ lim

ε−1+d→∞

ln2 x

x
= 0.

The limit of the second term is zero since

lim
ε−1+d→∞

min(d, ln ε−1) · o(ε−1/2)

ε−1 + d
= 0.

Observe that if we had o(ε−1) instead of o(ε−1/2) in the numerator, then for d = Θ(ε−1) the

limit would not be zero, which was the complicating factor in [49].

For the third term, it is easy to see that

lim
ε−1+d→∞

lnn(ε, 1)

ε−1 + d
= lim

ε−1+d→∞

o(ε−1)

ε−1 + d
= 0.
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Finally, the limit of the fourth term is trivially zero.

Hence,

lim
ε−1+d→∞

lnn(ε, d)

ε−1 + d
= 0,

and the problem is weakly tractable.

This result carries over to the normalized error criterion. The information complexity in

this case is

n(ε, d) =

∣∣∣∣∣{[j1, j2, . . . , jd] ∈ Nd|
d∏

k=1

λjk > ε2λd1}

∣∣∣∣∣ ,
since the initial error of the optimal algorithm is

√
λd,1 = λ

d/2
1 . If we define λ′j = λj/λ1, we

have

n(ε, d) =

∣∣∣∣∣{[j1, j2, . . . , jd] ∈ Nd|
d∏

k=1

λ′jk > ε2}

∣∣∣∣∣ .
This corresponds to the absolute error criterion for the univariate eigenvalues λ′j , with λ′1 = 1.

Hence we obtain tractability conditions analogous to those for the absolute error criterion for

the case λ1 = 1. As a result the Theorem 5.6 [49] is modified to

Theorem 5.6. Consider the linear tensor product problem S = {Sd} for the normalized error

criterion in the worst case setting and for the class Λall with λ2 > 0.

• Let λ1 = λ2. Then S is intractable and for all ε ∈ (0, 1) we have

n(ε, d) ≥ 2d

• Let λ2 < λ1. Then S is polynomially intractable.

• S is weakly tractable iff

λ2 < λ1 and λn = o((ln n)−2) as n→∞.

Similarily as above, our result carries over to linear weighted tensor product problems in

the worst case setting. Theorem 5.8 in [49] lists tractability conditions for such problems for

the normalized error criterion and the class Λall. We modify it for the case where λ2 < λ1
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Theorem 5.8. Consider the linear weighted tensor product problem in the worst case setting

Sγ = {Sd,γ} for compact linear Sd,γ : Hd,γ → Gd defined over Hilbert spaces Hd,γ and Gd

with λ2 > −0. We study the problem Sγ for the normalized error criterion and for the class

Λall. The weight sequence γ = {γd,u} satisfies

γd,∅ = 1 and γd,u =∈ [0, 1] for all non− empty u ⊆ {1, 2, . . . , d}.

Let n(ε, d) = n(ε, Sd,γ) denote the information complexity of Sd,γ and λ2 < λ1.

• If there is a non-zero weight γd,u for a non-empty u and Sγ is weakly tractable, then

λn = o
(
(lnn)−2

)
as n→∞.

• If λn = o
(
(lnn)−2

)
then Sγ is weakly tractable for all weight sequences.

The reader is referred to [49, Ch. 5.3] for the definition and details on weighted linear

tensor product problems.

2.5 Future work

A research direction worth pursuing is to study how different tractability criteria affect

tractability requirements. For example, one may require that tractable problems are not ex-

ponential in both d and any power of ln ε−1, as discussed in Section 1.2. Preliminary results

regarding necessary and sufficient conditions for lnκ-weak and (strong) polylog tractability

have been presented in [52].
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Chapter 3

Tractability of tensor product

problems in the average case setting

3.1 Introduction

In this chapter we study the complexity of linear tensor product problems in the average case

setting under the absolute error criterion. More specifically, we are interested in determining

whether there are cases of multivariate problems where weak tractability holds but polynomial

tractability does not. This problem is also known as Open Problem 28 in [49].

A linear problem S = {Sd} is obtained though a sequence of continuous linear operators

Sd, each defined on a space of functions of d ≥ 1 variables [49]. As we saw in Section 2.2, the

tensor product structure is introduced in the worst case setting by setting

Sd = S⊗d1 ,

where S1 is defined on a space of univariate functions. This construction is modified for

the average case setting. For the solution operator Sd : Fd → Gd, only the target space Gd

needs to be a tensor product space Gd = G⊗d1 , where G1 is a Hilbert space. The space Fd is

equipped with a Gaussian measure that is derived from a given Gaussian measure on F1. We

will go over the details later.

We are interested in algorithms approximating the operator Sd using n evaluations of

arbitrary linear functionals and we consider their average error. The information complexity
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is the minimal number of evaluations needed to approximate Sd to within accuracy ε. To

underline the dependency on ε and d, we denote the complexity by n(ε, d).

We remind the reader that a problem is polynomially tractable iff n(ε, d) grows as a

polynomial in d and ε−1. In particular, when n(ε, d) is bounded by a quantity independent

of d and polynomial in ε−1 the problem S is strongly polynomially tractable.

A problem is weakly tractable iff

lim
ε−1+d→∞

lnn(ε, d)

ε−1 + d
= 0,

otherwise the problem is intractable. Hence, a problem is weakly tractable if its complexity

is not exponential in either ε−1 or d.

The complexity of linear tensor product problems in the average case setting is character-

ized by the eigenvalues of the covariance operator of the induced measure on the space G1.

These eigenvalues, due to the tensor product structure, determine the rate of decay of the

eigenvalues of the covariance operator in the d-dimensional problem and, through them, they

determine the (average) error of optimal algorithms.

3.2 Linear Tensor Product Problems in the Average Case Set-

ting

We briefly introduce linear tensor product problems in the average case setting as defined in

[49, Ch. 6].

For d ≥ 1, let

Sd : Fd → Gd,

be a linear operator mapping a separable Banach space Fd to a separable Hilbert space Gd.

We assume the space Gd is the tensor product of d copies of a separable Hilbert space G1, i.e.,

Gd = ⊗di=1G1. Thus Gd is spanned by ⊗di=1gi, gi ∈ G1, and has an inner product structure

defined by

〈⊗di=1gi,⊗di=1hi〉Gd =

d∏
i=1

〈gi, hi〉G1 for gi, hi ∈ G1.
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Hence,

Sdf =
∑
j∈Nd
〈Sdf, ηd,j〉Gdηd,j for f ∈ Fd,

where

ηd,j = ⊗dk=1ηjk j = [j1, j2, . . . , jd] ∈ Nd, (3.1)

and {ηi}i∈N is an orthonormal system in G1.

Consider a zero-mean Gaussian measure µd on Fd with
∫
Fd
‖Sdf‖2Gd µd(df) < ∞. Let

νd = µdS
−1
d be the induced measure on Gd, which is also a zero-mean Gaussian measure. Let

Cνd denote the covariance operator of νd and let (λd,j , ηd,j), j ∈ Nd, be its eigenvalues and

the corresponding eigenvectors.

We also assume that the eigenvalues satisfy the conditions below, to preserve the tensor

product structure of Gd and its orthonormal system {ηd,j}j∈Nd . For d = 1, we have λ1,j = λj ,

with λ1 ≥ λ2 ≥ . . . ≥ 0 and
d∑
j=1

λj = trace(Cν1) <∞.

For d ≥ 1, we assume

λd,j = Πd
k=1λjk for all j = [j1, j2, . . . , jd] ∈ Nd, (3.2)

and

trace(Cνd) =
∑
j∈Nd

λd,j =

( ∞∑
i=1

λj

)d
.

A linear tensor product problem in the average case setting is the multivariate problem

S = {Sd} with the eigenpairs of the covariance operator Cνd satisfying the conditions (3.1)

and (3.2).

For notational convenience, let us now reindex the eigenvalues and eigenvectors to obtain

{λd,j}j∈Nd = {λd,i}i∈N and {ηd,j}j∈Nd = {ηd,i}i∈N, respectively. Also assume the eigenvalues

are ordered, so that λd,1 ≥ λd,2 ≥ · · · ≥ 0.

Suppose that we can use arbitrary linear functionals on Fd as information operations, i.e.,

we can use functionals from the class Λall, as denoted in [49; 66]. Then it is known, see e.g.

[66], that the algorithm

Ad,n(f) =
n∑
i=1

〈Sdf, ηd,i〉Gdηd,i (3.3)
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minimizes the average error

e(Ad,n) =

(∫
F1

‖Sdf −Ad,n(f)‖2Gd µ(df)

)1/2

,

among all possible algorithms using at most n information operations. It is also known that

the error of this optimal algorithm is obtained from the truncated trace of Cνd , with

e(Ad,n) =

( ∞∑
i=n+1

λd,i

)1/2

. (3.4)

The information complexity of the problem Sd for accuracy ε with the absolute error

criterion is the minimal number of information operations needed to guarantee that the

average case error is at most ε, and is given by

n(ε, d) = min

{
n :

∞∑
i=n+1

λd,i ≤ ε2

}
.

3.3 Prior work

Linear tensor product problems in the average case setting are discussed in [49, Ch. 6].

We briefly review some of the results, which motivate Open Problem 28 in the book [49].

Additional details can be found in [49, Th. 6.5, Th. 6.6].

Recall that we deal only with the absolute error criterion, since linear tensor product

problems are intractable in the average case setting with the normalized error criterion for

λ2 > 0.

If the one-dimensional eigenvalues satisfy
∑∞

j=1 λj ≥ 1 then the linear tensor product

problem S = {Sd} is intractable. From this point on we consider the case

∞∑
j=1

λj < 1, λ2 > 0.

Then the following are equivalent:

1. S is polynomially tractable.

2. S is strongly polynomially tractable.

3. There exists a τ ∈ (0, 1) such that
∑∞

j=1 λ
τ
j ≤ 1.
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Moreover, if λj = O(j−p) with p > 1, the following are equivalent:

1. S is weakly tractable.

2. S is polynomially tractable.

3. S is strongly polynomially tractable.

4.
∑∞

j=1 λj < 1.

Combining the above with

∞∑
j=1

λτj ≤ 1 for τ ∈ (0, 1) iff

∞∑
j=1

λj < 1 and λj = O(j−p) for p > 1,

(see, [49, p. 258] for the proof) we conclude that the only possibility for a linear tensor

product problem to be weakly tractable but not polynomially tractable is if

λj = O

(
1

j lnq(j + 1)

)
q > 1.

We are interested in finding for which q the linear tensor product problem S is weakly

tractable but not polynomially tractable. This is the Open Problem 28 in [49].

3.4 Tractability

We are interested in estimating the information complexity n(ε, d). Let a =
∑∞

j=1 λj . From

(3.2) and
∑

j∈Nd λd,j =
(∑∞

j=1 λj

)d
, the error of the zero algorithm, which does not use any

information at all, is ad/2. Hence, the only remaining case to be studied is when the required

accuracy satisfies ε2 < ad.

Lemma 1. Consider the eigenvectors of Cνd given by

ηd,j = ηj1 ⊗ · · · ⊗ ηjd ,

where j = [j1, j2, . . . , jd], for jk = 1, . . . ,m, and k = 1, . . . , d. The average error of the

algorithm

φd,md(f) =
m∑

j1,...,jd=1

〈Sd(f), ηd,j〉ηd,j
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is bounded from above by

e2(φd,md) ≤ d ad−1 tm,

where tm =
∑∞

j=m+1 λj.

Proof. The error of φd,md satisfies

e2(φd,md) =
∑

j1,...jd≥1

λj1 . . . λid −
m∑

j1,...jd=1

λj1 . . . λid

=
∑

j1>m,j2,...,jd≥1

λj1 . . . λjd +
∑

j1≤m,j2,...,jd≥1

λj1 . . . λjd −
m∑

j1,...jd=1

λj1 . . . λjd

= tma
d−1 +

∑
j1≤m,j2,...,jd≥1

λj1 . . . λjd −
m∑

j1,...jd=1

λj1 . . . λjd

≤ 2tma
d−1 +

∑
j1,j2≤m,j3,...,jd≥1

λj1 . . . λjd −
m∑

j1,...jd=1

λj1 . . . λjd

...

≤ dad−1tm.

We remark that the algorithm φd,md minimizes the average error among all algorithms that

use the information 〈Sd(f), ηd,j〉 although this information is not optimal, in general. The

reason is that the eigenvectors ηd,j do not correspond to the md largest eigenvalues. Hence,

if m is large enough and φd,md satisfies the accuracy demand ε then md is an upper bound

of n(ε, d).

Theorem 2. Consider the linear tensor product problem S = {Sd} in the average case setting

with
∑∞

j=1 λj < 1, λ2 > 0, for the absolute error criterion and the class of Λall.

• S is weakly tractable iff

tn =
∑
j>n

λj = o

(
1

ln2(n+ 1)

)
.

• Suppose that

` = lim
j→∞

λjj ln3(j + 1)

exists. Then S is weakly tractable iff ` = 0.



CHAPTER 3. TRACTABILITY OF TENSOR PRODUCT PROBLEMS IN THE
AVERAGE CASE SETTING 27

Proof. We begin by showing that

tn =
∑
j>n

λj = o

(
1

ln2(n+ 1)

)
is a sufficient condition for weak tractability. Let ε−1 and/or d be sufficiently large. The

error of the algorithm φd,md of Lemma 1 satisfies

e2(φd,md) ≤ dad−1tm = dad−1 sm

ln2(m+ 1)
,

where sm = o(1).

Let m = m(ε, d) be the smallest integer such that

e2(φd,md) ≤ dad−1 sm

ln2m
≤ ε2 < ad.

Then m→∞ as ε→ 0 and/or d→∞. Clearly n(d, ε) ≤ md and

lnm ≥ (dad−1sm)1/2ε−1.

By definition of m(ε, d), there exists a constant c such that

lnm(ε, d) ≤ c (dad−1sm(ε,d)−1)1/2ε−1.

Hence,

lim
ε−1+d→∞

lnn(ε, d)

ε−1 + d
≤ lim

ε−1+d→∞

d lnm(ε, d)

ε−1 + d
= lim

ε−1+d→∞

c d3/2
[
ad−1sm(ε,d)−1

]1/2
ε−1

ε−1 + d
= 0.

On the other hand, it is relatively easy to show that

tn =
∑
j>n

λj = o

(
1

ln2(n+ 1)

)
,

is a necessary condition for weak tractability. One can use the same proof used in [49, p.

178] for the worst case. For completeness, we include it here. Assume S is weakly tractable,

i.e.,

lim
ε−1+d→∞

lnn(ε, d)

ε−1 + d
= 0.

Setting d = 1, we get
(
ε−1 + 1

)−1
= o(ln−1 n(ε, 1)) as ε → 0, so that, ε = o(ln−1 n(ε, 1)).

Also

ε2 ≥ e2(A1,n(ε,1)) ≥ tn(ε,1).
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So

tn = o(ln−2(n+ 1)).

This completes the proof of the first part of the theorem.

For the second part of the theorem it is easy to see that ` = 0 is a necessary condition for

weak tractability. Indeed, let d = 1 and let ε be sufficiently small. Assume that the problem

S is weakly tractable and that there exists a constant c such that ` = limj→∞ λjj ln3(j+1) ≥

c > 0. Then

tn = e2(A1,n) ≥ c
∑
j>n

1

j ln3(j + 1)
= Ω

(
1

ln2(n+ 2)

)
and we have a contradiction.

We now show that the condition ` = 0 is sufficient for weak tractability. Let

λj =
g(j)

j ln3(j + 1)
.

Since ` = 0 we have g(j) = o(1). Let ε−1 and/or d be sufficiently large. We have

tn =
∑
j>n

g(j)

j ln3(j + 1)
≤ sn

ln2(n+ 1)
,

where sn = supj>n g(j) = o(1). Hence tn = o(ln−2(n+ 1)), and the first part of the theorem

yields that S is weakly tractable.

Remark. In the second part of Theorem 2 we assumed that the limit of λjj ln3(j + 1)

exists as j → ∞ and we showed a necessary and sufficient condition for weak tractability.

On the other hand, if this limit does not exist the problem may still be weakly tractable.

Indeed, the condition tn =
∑

j>n λj = o(ln−2(n+ 1)), implies that nλ2n = o(ln−2(n+ 1)).

Therefore,

λn = o

(
1

n ln2(n+ 1)

)
is a necessary condition for weak tractability. Moreover, proceeding in a way similar to that

in the proof of Theorem 2, we can show a second necessary condition, namely

lim inf
n→∞

λnn ln3(n+ 1) = 0.

It is interesting to observe that as long as the slower converging subsequence of eigenvalues

does not contribute excessively to tn the problem can be weakly tractable. We illustrate this

by an example.
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Let k0 be a sufficiently large integer. For k = k0, k0 + 1, . . . let j = dek2e, and

λi =
1

j ln3+γ(j + 1)
i = j + 1, . . . , dj + j ln(j + 1)e,

with γ ∈ (1/2, 1). So we have a segment of dj ln(j+1)e eigenvalues that are equal and the first

eigenvalue in the segment, λj , goes to zero faster than the last λdj+j ln(j+1)e. Furthermore,

since k0 is large enough the segments are disjoint. We define the remaining eigenvalues by

λj =
1

j ln3+γ(j + 1)
.

Hence, λn = o(n−1 ln−2(n+ 1)) and lim infn→∞ λnn ln3(n+ 1) = 0. However

lim sup
n→∞

λnn ln3(n+ 1) =∞

since γ < 1. Thus the limit ` of Theorem 2 does not exist. Nevertheless, S is weakly tractable.

Indeed,
dj+j ln(j+1)e∑

i=j+1

λi ≤ c′
1

ln2+γ(j + 1)
,

where c′ is an absolute constant. The contribution of all such segments starting at j = dek2e,

where k ∈ N, to tn is

c′
∑

j=dek2e>n, k∈N

1

ln2+γ(j + 1)
≤ c′ 1

ln2+γ(n+ 1)
+ c′′

∫
x2>lnn

dx

x2(2+γ)
= o

(
1

ln2(n+ 1)

)
,

where c′′ is an absolute constant and the last equality holds since γ > 1/2. It is easy to

see that the contribution to tn of the remaining eigenvalues is also o(ln−2(n + 1)). Since

tn = o(ln−2(n+ 1)) the problem S is weakly tractable, as claimed.

Finally, it is relatively easy to see that a problem can be weakly tractable even though it

is not polynomially tractable. We state this fact in the following corollaries.

Corollary 1. Consider the linear tensor product problem S = {Sd} in the average case

setting with
∑∞

j=1 λj < 1 for the absolute error criterion and the class of Λall. If λj =

Θ
(
(j lnq(j + 1))−1

)
then the problem is weakly tractable if and only if q > 3.

Proof. This follows directly from Theorem 2.
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Corollary 2. Consider the linear tensor product problem S = {Sd} in the average case

setting with
∑∞

j=1 λj < 1 and λ2 > 0 for the absolute error criterion and the class of Λall.

Then S is weakly tractable but not polynomially tractable iff

tn =
∑
j>n

λj = o

(
1

ln2(n+ 1)

)
.

and

lim sup
j→∞

λjj
p =∞ for all p > 1.

Proof. The proof is immediate from Theorem 2 and [49, Th. 6.7].

3.5 Future work

A research direction worth pursuing is to examine how other tractability criteria affect the

tractability requirements for linear tensor product problems in the average case setting. One,

for example, may study tractability conditions for lnκ-weak tractability or (strong) polylog

tractabilityfor linear and linear tensor product problems.
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Computing
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Chapter 4

A fast algorithm for approximating

the ground state energy on a

quantum computer

4.1 Introduction

In this chapter and the following one, we study algorithms estimating the ground state energy

of a time-independent Hamiltonian corresponding to a multiparticle system; see Section 1.3.1

for details on the time-independent Schrödinger equation. More specifically, we consider the

time-independent Schrödinger equation for p particles in the d dimensional unit cube with

Dirichlet boundary conditions If the potential is a function of only state variables then the

ground state energy is given by the smallest eigenvalue E0 of the equation

(−1
2∆ + V )ψ0(x) = E0ψ0(x) for all x ∈ Id := (0, 1)d,

ψo(x) = 0 for all x ∈ ∂Id,

where ψ0 is a normalized eigenfunction and E0 denotes the ground state energy, which is the

smallest eigenvalue of the Hamiltonian H. For simplicity we assume that all masses and the

normalized Planck constant are one.

This eigenvalue problem is called the time-independent Schrödinger equation in the physics

literature and the Sturm-Liouville eigenvalue problem in the mathematics literature. We want
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to approximate E0 with relative error ε.

Here, ∆ is the d-dimensional Laplacian and V ≥ 0 is a function of d variables. The

dimension is proportional to the number of particles, e.g. d = 3p. For many applications

the number of particles p and hence d is huge. We consider algorithms that approximate E0

using finitely many function evaluations of V . Moreover, we assume that V and its first order

partial derivatives ∂V/∂xj , j = 1, . . . , d, are continuous and uniformly bounded by 1.

Such eigenvalue problems can be solved by discretizing the Hamiltonian operator and ap-

proximating the corresponding matrix eigenvalue. Eigenvalue problems involving symmetric

matrices are conceptually easy and methods such as the bisection method can be used to

solve them with cost proportional to the matrix size, modulo polylog factors. The prob-

lem with the time independent Schrödinger equation, especially the one corresponding to a

multi-particle system, is that the discretization leads to a matrix of dimension that grows

exponentially in d. Thus the resulting cost is prohibitive when d is large. Moreover, as we will

see later for the potentials considered here, it can be shown that any deterministic classical

algorithm must have cost that grows exponentially in d, i.e. the problem suffers from the

curse of dimensionality.

On the other hand, in certain cases, quantum algorithms may be able to compute accurate

eigenvalue estimates with cost that does not grow exponentially in d, even though any classical

deterministic algorithm in the worst case suffers from the curse of dimensionality. This is

illustrated later in this chapter and in [54], where we show that if the potential is smooth,

nonnegative and uniformly bounded by a relatively small constant then there exists a quantum

algorithm approximating the ground state energy with relative error ε and cost proportional

to dε−(3+η), where η is an arbitrary positive constant.

We stress that we are not dealing with an arbitrary eigenvalue problem. Estimating the

ground state energy of general local Hamiltonians is a QMA complete problem [40]. QMA

is the quantum analogue of the complexity class NP which is equipped with deterministic
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verifiers, or the complexity class MA which is equipped with probabilistic verifiers1.

4.2 Phase estimation

Quantum algorithms are a sequence of unitary transformations; see Section 1.3.2 for details.

The eigenvalues {λj}j=0,1,...,N−1 of any N × N unitary matrix W can be expressed in the

form λj = e2πiφj for φj ∈ [0, 1). Phase estimation is a quantum algorithm that approximates

the phase φj of an eigenvalue λj of the unitary matrix W . It requires the implementation

of the corresponding eigenvector |uj〉 of W and the implementation of matrix exponentials

W 2t , for t = 0, 1, . . . , b − 1, where b is a parameter related to the accuracy requirement and

the probability of success of the algorithm. The circuit that implements phase estimation is

presented in the following figure.

|0〉 H •

QFT †
|0〉 H •

b qubits
...

...
· · ·

|0〉 H •

|uj〉 / W W 2b−2
W 2b−1



Figure 4.1: Quantum circuit implementing the phase estimation procedure. We assume

that the eigenstate |uj〉 and the controlled exponentials W 2t are implemented exactly, for

t = 0, 1, . . . , b− 1.

In many problems the eigenvector |uj〉 and/or the matrix exponentials cannot be imple-

mented exactly. We typically deal with this problem by constructing approximations to the

eigenvector and/or the matrix exponentials. This results in decreased probability of success

for the phase estimation procedure.

More details on phase estimation can be found in [47, pg. 221–226] and [1; 37].

1The relation of QMA to other complexity classes is depicted in the following inclusions

P ⊆ NP ⊆ MA ⊆ QMA ⊆ PSPACE
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4.3 Discretization error

The finite difference method is frequently used to discretize partial differential equations, and

approximate their solutions. The method with mesh size h = (m + 1)−1 yields an md ×md

matrix Mh = −1
2∆h + Vh, where ∆h denotes the discretized Laplacian and Vh the diagonal

matrix whose entries are the evaluations of the potential on a regular grid with mesh size h.

Mh is a symmetric positive definite and sparse matrix. For a potential function V that

has bounded first order partial derivatives, we have [69; 70]

|E0 − Eh,0| ≤ c1dh, (4.1)

where Eh,0 is the smallest eigenvalue of Mh. Consider Êh,0 such that

|Eh,0 − Êh,0| ≤ c2dh. (4.2)

Then we have |1 − Êh,0/E0| ≤ C ′h. This inequality follows by observing that E0 ≥ dπ2/2,

for any V ≥ 0.

4.4 Prior work

The ground state eigenvalue problem has been extensively studied in [50; 55], where upper

and lower bounds on the complexity of the problem under the absolute error criterion have

been presented.

For the univariate version of the problem it is known [55] that

nworst(ε, 1) = Θ(ε−1/2)

in the deterministic worst case setting, while

nrand(ε, 1) = Θ(ε−2/5)

in the randomized setting. In the quantum setting there are two different types of information

operators (queries) we can use for this problem, the bit query (see (1.7)) and the power query.

The power queries refer to powers of an exponential of the form eizMh , where Mh is the
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Hermitian matrix obtained from the discretization of the Hamiltonian operator and z ∈ R is

a coefficient. We can approximate the eigenvalue using

nbit query(ε, 1) = Θ(ε−1/3)

bit queries or

npower query(ε, 1) = Θ(log ε−1)

power queries [55]. The number of power queries is optimal [11].

Let us now consider V and a perturbation V . Then the eigenvalues E0(V ) and E0(V ) are

related according to

E0(V ) = E0(V ) +

∫
Id

(V (x)− V (x))ψ2
1(x;V )dx+O(‖V − V ‖2∞), (4.3)

where ψ1(·;V ) denotes the eigenfunction corresponding to E0(V ), see [50].

For the multivariate version of the problem, equation (4.3) relates the eigenvalue problems

to multivariate integration. Using lower bounds on multivariate integration in the worst case,

randomized setting [66] and quantum setting [48] the information complexity lower bounds

are

nworst(ε, d) = Ω(ε−d)

nrand(ε, d) = Ω
(
ε−2d/(d+2)

)
nbit queries(ε, d) = Ω

(
ε−d/(d+1)

)
npower queries(ε, d) = Ω(log ε−1)

Upper bounds on the information and computational complexity can be obtained in the

worst case by discretizing the problem and approximating the eigenvalue using the bisection

method [72]

nworst(ε, d) = O(ε−d)

compworst(ε, d) = O(cε−d + ε−d log ε−1)

where c depends on d, see [50].
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For the randomized setting, equation (4.3) can be used to derive upper bounds on both

the information and the computational complexity. Once the problem is discretized, Monte

Carlo is employed to approximate the weighted integral. Thus

nrand(ε, d) = O(ε−max(2/3,d/2))

comprand(ε, d) = O(cε−max(2/3,d/2) + ε−d log ε−1)

Observe that the algorithm is optimal only when d ≤ 2. It is an open problem whether it is

optimal when d > 2.

A quantum algorithm can be derived modifying the algorithm for the randomized case.

In order to approximate the integral in (4.3) amplitude amplification [28] is used in the place

of Monte Carlo. The algorithm approximates E1 with accuracy ε and probability at least 3/4

using O(ε−d/2) classical function evaluations, O(ε−d/2) bit queries, O(d2 log2 ε−1) quantum

operations and O(ε−2d log ε−1) classical arithmetic operations.

The upper bound in the quantum setting can be significantly improved using a phased

estimation based quantum algorithm. More specifically, this algorithm uses

nbit queries(ε, d) = O(ε−6 log2 ε−1)

bit queries, O(d log ε−1) qubits and O(dε−6 log4 ε−1) other quantum operations. Alterna-

tively, the algorithm uses

npower queries(ε, d) = O(log ε−1)

power queries and O(log2 ε−1 + d log ε−1) other quantum operations.

4.5 Quantum algorithm

We assume that ε < 2/(dπ2) since otherwise we can approximate the smallest eigenvalue with

relative error ε with constant cost. Indeed, for V uniformly bounded by one, the smallest

eigenvalue E1(V ) satisfies E0(0) ≤ E0(V ) ≤ E0(0) + 1, where E0(0) = 1
2dπ

2 is the smallest

eigenvalue of −1
2∆. Thus,

|E0(V )− E0(0)|
E0(V )

≤ 1

E0(0)
=

2

dπ2
.
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Therefore it suffices to deal only with the case ε < 2/(dπ2).

First we discuss our algorithm in general terms and then we provide a complete analysis.

The key observation is that the discretization we outlined above and the estimation of the

smallest eigenvalue of the resulting matrix can be implemented on a quantum computer with

cost that does not grow exponentially with d. This is accomplished by modifying quantum

phase estimation. First we provide a high level description of the algorithm and then give all

its details and the resulting error and cost estimates.

Sketch of the algorithm:

1. Consider the discretization Mh = −1
2∆h + Vh of −1

2∆ + V and choose h ≤ ε leading to

the desired accuracy. The matrix

W = eiMh/(2d),

is unitary since Mh is Hermitian.

2. For W , use phase estimation to approximate the phase corresponding to eiEh,0/(2d) with

the following modifications:

(a) Use the approximate eigenvector

|0〉⊗b|ψ0〉⊗d

as an initial state, where |ψ0〉⊗d is the ground state eigenvector of −∆h and can

be implemented efficiently; see the discussion following (4.6) below for details.

(b) For t = 0, . . . , b − 1, replace W 2t that are required in phase estimation, using

approximations given by high order splitting formulas that deal with the expo-

nentials of −1
2∆h and Vh separately and can be implemented efficiently; see the

discussion leading to (4.9) below for details.

The effect of the modifications is to somewhat decrease the success probability while

increasing the cost of phase estimation. Nevertheless, the resulting success probability is at

least 2
3 , and the cost for implementing the initial state and the approximate powers of W

does not suffer from the curse of dimensionality. (The actual value of the success probability
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is not important since it exceeds 1
2 and can be boosted to become arbitrarily close to one;

see [47, pg. 153] for details.)

Theorem 3. Phase estimation with an approximate initial state and approximate powers of

W with probability at least 2
3 yields an estimate of E0 with relative error ε and total cost

Cd ε−(3+δ),

for any δ > 0, using C ′d log ε−1 qubits, where C and C ′ are constants. The pseudocode for

the algorithm is listed in Algorithm 1.

Next we discuss the details of our algorithm, which will lead us to the proof of the

theorem. Let h = (m+ 1)−1, where m = 2d− log2 εe − 1. Clearly, h ≤ ε < 2/(dπ2) < 1/4 due

to our assumption at the beginning of this section. This leads to the desired accuracy while

ensuring the discretization is not trivial. The eigenvalue of W that corresponds to Eh,0 is

eiEh,0/(2d) = e2πiϕ0 , where

ϕ0 = Eh,0/(4πd)

is the phase and belongs to the interval [0, 1) since Eh,0 ≤ 2dh−2 sin2(πh/2) + 1 ≤ dπ2/2 + 1.

Quantum phase estimation approximates the phase ϕ0 with b-bit accuracy, where b =

d− log2 εe. The output of the algorithm is an index j ∈ [0, 2b−1] such that |ϕ0−j 2−b| ≤ 2−b.

Hence,

|Eh,0 − 4πdj 2−b| ≤ c2dε. (4.4)

Combining (4.1) and (4.4) we conclude

|E0 − 4πdj 2−b| ≤ c1dε+ c2dε = cdε. (4.5)

Hence the algorithm approximates the ground state eigenvalue E0 by

Êh,0 := 4πdj 2−b.

The estimate Êh,0 holds with probability at least 8/π2 (see, e.g., [28]) assuming:

• The initial state of the algorithm is |0〉⊗b|zh,0〉, where |zh,0〉 is the eigenvector of Mh

that corresponds to Eh,0.
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Algorithm 1 GroundStateEnergy(ε, d, V )

Require: d to be a positive integer.

Require: ε ∈ (0, 2/π2d). Note that for relative error ε ≥ 2/π2d the problem can be solved

with constant cost.

Require: V : [0, 1]d → [0, 1] to be provided by an oracle (black box).

1: b← d− log2 εe

2: m← 2b − 1

3: h← (m+ 1)−1

4: Initial state : |0〉⊗b|ψ0〉⊗d {The right register holds the eigenvector of the discretized

Laplacian, with mesh size h. The corrdinates of |ψ0〉 are given in equation (4.7)}

5: ApproxW(b, h, m, d, V , W̃ ) {This subroutine call returns W̃ which is a list of the

approximations of the exponentials W 2t = e(−1
2 ∆h+Vh)2t/(2d), t = 0, . . . b − 1. These

approximations are denoted by W̃t, t = 0, . . . , b− 1; see Algorithm 2 for details.}

6: Apply Hadamard to the left b-qubit register:

(
H⊗d ⊗ I

)
|0〉⊗d|ψ0〉⊗d →

1

2b/2

1∑
i0,i1,...,ib−1=0

|ib−1ib−2 · · · i1i0〉|ψ0〉⊗d

7: Apply W̃0. . . W̃b−1, controlled by the left b qubits, to the state above:

→ 1

2b/2

1∑
i0,i1,...,ib−1=0

|ib−1jb−2 · · · i1i0〉W̃
ib−1

b−1 · · · W̃
i1
1 W̃

i0
0 |ψ0〉⊗d

8: Apply the inverse Fourier transform FT † to the register holding the leftmost b qubits:

→ (FT † ⊗ I)

 1

2b/2

1∑
i0,i1,...,ib−1=0

|ib−1ib−2 · · · i1i0〉W̃
ib−1

b−1 · · · W̃
i1
1 W̃

i0
0 |ψ0〉⊗d



9: Measure the first b qubits in the computational basis: outcome (jb−1, . . . , j1, j0)

10: j ←
∑b−1

k=0 jk2
k

11: Êh,0 ← 4πdj/2b

12: return Êh,0
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Algorithm 2 ApproxW(d, b, h, m, V , W̃ )

Require: d, b, m are positive integers; m and b are defined in Algorithm 1.

Require: V : [0, 1]d → [0, 1] to be provided by an oracle (black box).

Require: W̃ to be a list where this subroutine will hold the approximations W̃t for t =

0, . . . , b− 1, that it computes. This list is returned to the calling program.

1: Let Vh be the md×md diagonal matrix obtained by discretizing the function V on a grid

with mesh size h = (m+ 1)−1.

2: Norm1 ← h−2 sin2(πm/(2(m+ 1))) {The norm of H1 = −∆h/(4d).}

3: Norm2 ← 1/(2d) {Upper bound of the norm of H2 = Vh/(2d).}

4: k ←
⌊√

1
2 log25/3(80 e 2b/d) + 1

2

⌋
{Note k ≥ 1 by definition of b.}

5: ck ← 8
3k
(

5
3

)k−1 {See also [56, Eq. 7].}

6: H1 = −∆h/(4d ·Norm1)

7: H2 = Vh/(2d ·Norm1)

8: for t = 0 to b− 1 do

9: εt ← 2t+1−b/40

10: M ←
(

8 e 2t Norm2
εt

)1/(2k)
2 e ck
2k+1

11: NumberOfIntervals← dM Norm1 2te

12: IntervalSize← Norm1 · 2t/NumberOfIntervals

13: pk ← (4− 41/2k−1)−1

14: S2(IntervalSize)← e−iH1IntervalSize/2e−iH2IntervalSizee−iH1IntervalSize/2

15: for j = 2 to k do

16: Let

S2j(IntervalSize) ← [S2j−2(pkIntervalSize)]2 [S2j−2((1− 4pk)IntervalSize)]

× [S2j−2(pkIntervalSize)]2

17: end for

18: W̃t ← [S2k(IntervalSize)]NumberOfIntervals

19: end for

20: return W̃ = (W̃0, W̃1, . . . , W̃b−1)
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• We are given the matrix exponentials W 2t , t = 0, . . . , b− 1.

However, we do not know |zh,0〉 in our case, so we use an approximation. Similarly, we

use approximations of the W 2t for t = 0, . . . , b− 1, to simulate the evolution of the quantum

system that evolves with Hamiltonian H = Mh/(2d). We will compute the cost to implement

these approximations so that (4.5) holds. All these approximations affect the estimate 8/π2

of the success probability of phase estimation, but only by a small amount.

The initial state of our algorithm is

|0〉⊗b|ψ0〉⊗d, (4.6)

where |ψ0〉⊗d is the ground state eigenvector of the discretized Laplacian. We know [19] that

the coordinates of |ψ0〉 are

ψ0j =
√

2h sin(jπh), j = 1, . . . ,m, (4.7)

and |ψ0〉⊗d has unit length. Since h is proportional to ε, the matrix Mh has size md×md, with

m = Θ(ε−1). Therefore, |ψ0〉⊗d ∈ Cmd and can be represented using log2m
d = O(d log2 ε

−1)

qubits and can be implemented with d · O(log2 ε−1) quantum operations using the Fourier

transform; see e.g., [41; 71]. We point out that here and elsewhere the implied constants in

the big-O and Θ notation are independent of d and ε. (From a practical standpoint, it is

possible to further reduce the cost of the initial state using the algorithm in [37] but we do

not pursue this alternative since the analysis of the algorithm becomes more involved.)

Expanding |ψ0〉⊗d using the eigenvectors of Mh we have

|ψ0〉⊗d =

md−1∑
k=0

dk|zh,k〉.

The approximate initial state reduces the success probability of phase estimation by a factor

equal to the square of the magnitude of the projection of |ψ0〉⊗d onto |zh,0〉, to become

|d0|2 · 8/π2; see, e.g., [1; 37].

We will see that |d0|2 > π2/10. Indeed, we estimate |d0| using the approach in [72,

pg. 172], which is based on the separation of the eigenvalues of Mh. In particular, we have

1 ≥ (Eh,1 − Eh,0)2(1− |d0|2),



CHAPTER 4. A FAST ALGORITHM FOR APPROXIMATING THE GROUND STATE
ENERGY ON A QUANTUM COMPUTER 43

where Eh,0 and Eh,1 are the smallest and second smallest eigenvalues of Mh. We estimate

Eh,1 − Eh,0 from below using the two smallest eigenvalues of −∆h to obtain Eh,1 − Eh,0 ≥

2h−2(sin2(πh)− sin2(πh/2))− 1.

This yields that the success probability of phase estimation with the approximate ground

state eigenvector is at least

8

π2

(
1− 1

(2h−2(sin2(πh)− sin2(πh/2))− 1)2

)
>

4

5
, (4.8)

where h ≤ 1/4. (The overall success probability of the algorithm is also affected by the

approximation of the exponentials; once we address that we will provide a final estimate.)

Now let us turn to the approximation of the matrix exponentials. We simulate the evolu-

tion of a quantum system with Hamiltonian H = Mh/(2d) for time 2t for t = 0, 1, . . . , b− 1.

Let H = H1 +H2 where H1 = −∆h/(4d) and H2 = Vh/(2d). Recall that h is the largest mesh

size satisfying h ≤ min(ε, 1/4). The eigenvalues and eigenvectors of the discretized Laplacian

are known and the evolution of a system with Hamiltonian H1 can be implemented with

d · O(log2 ε−1) quantum operations using the Fourier transform in each dimension; see e.g.,

[47, pg. 209]. The evolution of a system with Hamiltonian H2 can be implemented using two

quantum queries and phase kickback. The queries are similar to those in Grover’s algorithm

[47] and are defined in (1.7).

In particular, we use a splitting formula S2k of order 2k + 1 for k ≥ 1 to approximate

W 2t = ei(H1+H2)2t by a product of the form

Nt∏
`=1

eiA`z` , (4.9)

where A` ∈ {H1, H2} and suitable z` that depend on t and k.

The splitting formula S2k is due to Suzuki [63; 64]. It is used to approximate ei(B+C)∆t,

where B and C are Hermitian matrices. This formula is defined recursively by

S2(B,C,∆t) = eiB∆t/2eiC∆teiB∆t/2

S2k(B,C,∆t) = [S2k−2(B,C, pk∆t)]
2S2k−2(B,C, (1− 4pk)∆t)

×[S2k−2(B,C, pk∆t)]
2,

where pk = (4− 41/(2k−1))−1 for k = 2, 3, . . . .
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Unfolding the recurrence above and combining it with [56, Thm. 1] we obtain that the

approximation of W 2t has the form

W̃ 2t = eiH1at,0eiH2bt,1eiH1at,1 · · · eiH2bt,LteiH1at,Lt , (4.10)

where st,0, . . . , st,Lt and zt,1, . . . , zt,Lt and Lt are parameters for t = 0, . . . , b− 1. The number

of exponentials involving H1 and H2 in the expression above is Nt = 2Lt + 1. The precise

definition of the W̃ 2t for t = 0, . . . , b− 1 is presented in pseudocode listing Algorithm 2.

Let ‖ · ‖ be the matrix norm induced by the Euclidean vector norm. From [56, Thm. 1

and Cor. 1] the number Nt of exponentials needed to approximate W 2t by a splitting formula

of order 2k + 1 with error εt for t = 0, . . . , b− 1 is

Nt ≤ 16e‖H1‖2t
(

25

3

)k−1(8e 2t‖H2‖
εt

)1/(2k)

,

for any k ≥ 1. The total number of exponentials required for the approximation of all the

W 2t is bounded from above as follows

N =

b−1∑
t=0

Nt ≤ 16e‖H1‖
(

25

3

)k−1

(8e‖H2‖)1/(2k)

×
b−1∑
t=0

2t
(

2t

εt

)1/(2k)

(4.11)

≤ 16e‖H1‖2b
(

25

3

)k−1 (
160e 2b‖H2‖

)1/(2k)
,

where we obtained the last inequality by setting εt = (2t+1−b)/40 for t = 0, . . . , b − 1. It is

easy to check that
∑b−1

t=0 εt ≤
1
20 . Thus the success probability of phase estimation can be

reduced by twice this amount [47, pg. 195]. Using (4.8) we conclude our algorithm succeeds

with probability at least
4

5
− 1

10
>

2

3
.

The largest eigenvalue of −∆h is 4dh−2 sin2(πmh/2). Since H1 = −∆h/(4d) we have

‖H1‖ ≤ 4dh−2

4d ≤ ε−2. Since V is uniformly bounded by one and H2 = Vh/(2d) we have

‖H2‖ ≤ 1/(2d). Hence, the algorithm uses a number of exponentials of H1 and H2 that

satisfies

N ≤ 16e

(
80e

d

)1/(2k)(25

3

)k−1

ε−2 2b(1+1/(2k)).
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Since we have chosen b = d− log2 εe we obtain

N ≤ C̃
(

80e

d

)1/(2k)(25

3

)k−1

ε−(3+1/(2k)),

for any k > 0, where C̃ is a constant.

The optimal k∗, i.e., the one minimizing the upper bound for N in (4.11), is obtained in

[56, Sec. 5] and is given by

k∗ =

⌊√
1

2
log25/3

80e 2b

d
+

1

2

⌋
= O

(√
ln

1

dε

)
as dε→ 0,

by the definition of b. The number of exponentials corresponding to k∗ satisfies

N∗ = O
(
ε−3e
√

ln(1/(dε))
)

as dε→ 0. (4.12)

We remark that of the N∗ matrix exponentials, roughly half involve H1 and the remaining

involve H2; see (4.10). Since each exponential involving H2 requires two queries the total

number of queries is also N∗.

Hence the number of quantum operations, excluding queries, to implement the initial

state, the matrix exponentials involving H1 and the inverse Fourier transform yielding the

final state of phase estimation is

N∗ ·O(d log2 ε−1). (4.13)

Equations (4.11), (4.12) and (4.13) yield that the total cost of the algorithm, including

the number of queries and the number of all other quantum operations, is

Cdε−(3+δ),

where δ > 0 is arbitrarily small and C is a constant.

Summarizing our results we see that the dependence on d in the number of qubits is linear,

as is the cost. As far as the number of qubits is concerned, this is not really surprising. The

algorithm uses phase estimation to approximate an eigenvalue of a matrix whose size is

proportional to ε−d × ε−d. The number of coordinates of the corresponding eigenvector is

proportional to ε−d and therefore is represented using a number of qubits proportional to

d log2 ε
−1.
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We now turn to the cost. The depth of the quantum circuit realizing the algorithm grows

as N∗ which is given in (4.12). Clearly, ε−3e
√

ln 1/(dε) ≤ ε−3e
√

ln(1/ε), for any d. Thus N∗

is bounded from above by a quantity independent of d. Recall that N∗ is the total number

of matrix exponentials the algorithm uses. Roughly half of these exponentials involve the

discretized Laplacian ∆h and the rest involve the discretized potential Vh.

Each of the matrix exponentials involving the d-dimensional ∆h is implemented efficiently

with cost proportional to d log2 ε−1 using the quantum Fourier transform. Hence the cost of

all matrix exponentials involving ∆h depends linearly on d.

We consider the cost of the matrix exponentials involving Vh. Each exponential can be

implemented with two quantum queries. We assume the cost of each query is constant. Hence

the cost of all matrix exponentials involving Vh is 2N∗ times the cost of a quantum query.

Thus the sum of the cost of all matrix exponentials and, therefore, the cost of the algorithm

depends linearly on d.

4.6 Discussion

This cost analysis has the advantage that it reveals the computational effort spent on solving

the ground state eigenvalue problem unobscured by the actual cost of evaluating V (i.e., the

the cost of a quantum query). The analysis is not limited in any way, since for any particular

choice of V when the actual cost of a query is known, it suffices to multiply the cost of the

query by the number of queries and add the product to (4.13) to obtain an aggregate cost

estimate.

For multiparticle systems studied in physics and chemistry, the number of dimensions

d is directly proportional to the number of particles p. For instance, p particles in three

dimensions yield d = 3p. Thus the dependence on p of the number of qubits and the cost of

the algorithm is linear.

Finally, our analysis assumes a perfect physical realization of a quantum computer. How-

ever, for the implementation of the algorithm, one needs to address decoherence and other

sources of error for a specific underlying architecture. This may significantly increase the re-

quired computational resources. Such a study exists for phase estimation and the Abrams and



CHAPTER 4. A FAST ALGORITHM FOR APPROXIMATING THE GROUND STATE
ENERGY ON A QUANTUM COMPUTER 47

Lloyd algorithm [1] applied to the ground state eigenvalue of the transverse Ising model [17];

see also the references therein and [32]. This study is broad enough to cover Shor’s algo-

rithm and conveys the general idea in our case as well. It concludes that for the current

state of the art in quantum logic array architectures the existing fault tolerance and error

correction techniques impose significant resource requirements in the implementation of these

algorithms.

4.7 Future work

There are several interesting research directions motivated by this work.

Firstly, one may consider the ground state energy problem for p particles of different

masses m1,m2, . . . ,mp. The time-independent Schrödinger equation related to the problem

is (1.5). We can consider Dirichlet boundary conditions, just as we did in this chapter. The

problem is more complicated though, since the discretized Laplacian is replaced by a weighted

version, with weights depending on the masses mj .

Another important research question relevant to our work is the approximation of energies

corresponding to excited eigenstates of the Hamiltonian. The related eigenvalues of H are

not necessarily approximated within O(dh) by the corresponding eigenvalues of Mh. However

it could be possible to use phase estimation to approximate the smallest energies with an

approach similar to ours.
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Chapter 5

Estimating the ground state energy

of the Schrödinger equation for

convex potentials

5.1 Introduction

In the previous chapter, we discussed the ground state estimation problem for potentials that

are smooth under certain conditions, and uniformly bounded by a relatively small constant.

Here, we design a quantum algorithm that overcomes the restriction on the magnitude of the

uniform bound on the potential.

Once again, we consider the smallest eigenvalue E0 given by(
−1

2
∆ + V

)
ψ0(x) = E0 ψ0(x) for all x ∈ Id = (0, 1)d, (5.1)

ψ0(x) = 0 for all x ∈ ∂Id, (5.2)

where x is the d-dimensional spatial variable and ψ0 is a normalized eigenfunction. The

boundary conditions are for p particles in a box, where d = 3p. Furthermore we assume

that all the masses and the normalized Planck constant are one for simplicity and that the

potential V satisfies certain conditions.

It is natural to investigate conditions for V beyond those of Chapter 4 and [54] where

quantum algorithms, possibly implementing perturbation methods, approximate the ground
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state energy without suffering from the curse of dimensionality. Indeed, in this chapter we

assume that V and its first order partial derivatives ∂V/∂xj for j = 1, . . . , d are continuous

and uniformly bounded from above by constants C > 1 and C ′ > 0 respectively, in addition

to V being non-negative and convex.

Our algorithm solves the eigenvalue problem for a sequence of Hamiltonians H` = −1
2∆+

V`, for ` = 1, 2, . . . , L, where V` = ` · V/L. In each of the L stages, the algorithm produces

an approximate ground state eigenvector of H` that is passed on to the next stage. The

fact that V is convex allows us to use the bounds on the fundamental gap [6] and to select

L accordingly so that the ground state eigenvectors of the successive Hamiltonians have a

large enough “overlap” between them. This means that the (approximate) ground state

eigenvector of H` is also an approximate ground state eigenvector of H`+1. Our algorithm

uses a measurement at every stage, which produces with a certain probability an outcome

that approximates the ground state energy of the Hamiltonian H with relative error ε. We

select the parameters of the algorithm so that the total success probability is at least 3/4.

The resulting cost (including quantum queries and quantum operations) is proportional to

c(k) · ε−(3+ 1
2k

) · C
4−2η
1−η + 5−2η

2k(1−η) · d1+ 4−2η
1−η + 3

2k(1−η)

and the number of qubits is

3 log ε−1 +
2− η
1− η

· log(Cd) + Θ
(
d · log ε−1

)
.

In the expressions above k is a parameter such that the order of the splitting formula that

we use for Hamiltonian simulation is 2k + 1, c(k) increases with k, and η > 0 is arbitrary.

A direct consequence of our algorithm is that the state produced, approximates1 the

ground state of the discretized Hamiltonian within 1−O((1/Cd)2). We modify the algorithm

to derive approximations of the ground state of the discretized Hamiltonian within O(δ),

where δ = o(1/(Cd)2). The resulting cost is proportional to

c(k) · C1+ 1
2k · d2− 1

2k · ε−(3+ 1
2k ) · δ−1− 1

2k
− 1

2−η−
1

k(2−η)

and the number of qubits is

3 log ε−1 + log δ−1 + Θ
(
d log ε−1

)
.

1We use the expression “a state |a〉 approximates |b〉 within δ” to denote that | 〈a|b〉 |2 ≥ 1− δ.
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Results in this chapter are based on work in [51].

5.2 Discretization error

The discretization of the time-independent Schrödinger equation for smooth uniformly bounded

potentials is studied in Section 4.3. We include the details here for completeness.

The finite difference method is frequently used to discretize partial differential equations,

and approximate their solutions. The method with mesh size h = 1
n+1 yields an nd × nd

matrix Mh = −1
2∆h + Vh, where ∆h denotes the discretized Laplacian and Vh the diagonal

matrix whose entries are the evaluations of the potential on a regular grid with mesh size

h = 1
n+1 .

Mh is a symmetric positive definite and sparse matrix. For a potential function V that

has bounded first order partial derivatives, we have [69; 70]

|E0 − Eh,0| ≤ c1dh, (5.3)

where Eh,0 is the smallest eigenvalue of Mh. Consider Êh,0 such that

|Eh,0 − Êh,0| ≤ c2dh. (5.4)

Then we have |1− Êh,0
E0
| ≤ c′h. The inequality follows by observing that E0 ≥ dπ2/2, for any

V ≥ 0.

5.3 Quantum Algorithm

We consider the Hamiltonian H` = −1
2∆ + ` V/L and the discretized Hamiltonian Mh,` =

−1
2∆h + ` Vh/L, where the value of L will be chosen appropriately later. We proceed in L

stages. In the `th stage, we solve the eigenvalue problem for H` (and Mh,`) and pass the

results to the next stage. The eigenvalue problem is solved using phase estimation.

In the following section we present some properties of phase estimation. In Sections 5.3.2

and 5.3.3 we present quantum algorithms for estimating the ground state energy of H and

the ground state eigenvector of Mh respectively.
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5.3.1 Eigenvector approximation through phase estimation

Let A, ‖A‖ ≤ R, be an nd × nd Hermitian matrix. Then the eigenvalues of U = eiA/R

have the form eiλR, where λ denotes an eigenvalue of A. Equivalently eiλ/R = e2πiφλ , where

φλ = λ/(2πR) ∈ (0, 1) is the phase corresponding to λ.

Consider the phase estimation algorithm presented in Section 4.2 and [47, Fig. 5.2, 5.3]

Besides the (approximate) eigenvector, phase estimation uses matrix exponentials of the form

U τ = eiAτ/R to accomplish its task. Frequently, approximations Ũτ are used instead. For

instance, when A is given as a sum of Hamiltonians each of which can be implemented

efficiently one can use a splitting formula [63; 65] to approximate Uτ . Let the initial state

and the matrix exponentials in phase estimation be as follows:

• Initial state: We have |0〉⊗b in the top register, that deals with the accuracy, and |ψin〉

in the bottom register.

• Matrix exponentials: We have a unitary matrix Ũ2t approximating U2t = eiA2t/R, for

t = 0, 1, . . . , b−1. Assume that the total error in the approximation of the exponentials

is bounded by εH , i.e.
b−1∑
j=0

‖U2j − Ũ2j‖ ≤ εH , (5.5)

which implies that

‖U t − Ũt‖ ≤ εH , for t = 0, 1, . . . , 2b − 1

Denoting by {λj , |uj〉}j=0,1,...,nd−1 the eigenpairs of A we have

|ψin〉 =
∑
j

cj |uj〉. (5.6)

Proposition 1. Consider the phase estimation with initial state |0〉⊗b⊗|ψin〉 and the unitaries

Ũt, for t = 1, 2, . . . , 2b − 1. Let m be the measurement outcome of phase estimation and

|ψm〉 the final state after the measurement on the bottom register. Let c′0 = 〈ψm|u0〉 and

c0 = 〈ψin|u0〉 where |u0〉 is the ground state eigenvector. If

• b is such that the phases satisfy |φj − φ0| > 5
2b

for all j = 1, 2, . . . , nd − 1 and

• |c0|2 ≥ π2

16 ,
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then with probability

p ≥ |c0|2 ·
4

π2
− 2

b−1∑
j=0

‖U2j − Ũ2j‖

we get a result m such that

•
∣∣φ0 − m

2b

∣∣ ≤ 1
2b+1

and

• if 1− |c0|2 ≤ γεH then 1− |c′0|2 ≤ (γ + 14)εH ,

• if 1− |c0|2 ≥ γε1−η
H , for η ∈ (0, 1), then |c′0| ≥ |c0|,

where γ is a positive constant.

Proof. After the application of H⊗b on the first register the state becomes

1

2b/2

2b−1∑
k=0

|k〉
nd−1∑
j=0

cj |uj〉

The state of the system after the application of the controlled Ũt, t = 0, 1, . . . , b− 1 is

nd−1∑
j=0

cj
1

2b/2

2b−1∑
k=0

|k〉Ũk|uj〉 =
1

2b/2

nd−1∑
j=0

cj

2b−1∑
k=0

|k〉
(
Uk|uj〉+Dk|uj〉

)
,

where Dk = Ũk −Uk. Then ‖Dk‖ ≤ εH . Since |uj〉, j = 0, 1, . . . , nd − 1, are the eigenvectors

of U , the state can be written as |ψ1〉+ |ψ2〉, where

|ψ1〉 =
1

2b/2

nd−1∑
j=0

cj

2b−1∑
k=0

|k〉Uk|uj〉 =
1

2b/2

nd−1∑
j=0

cj

2b−1∑
k=0

|k〉e2πikφj |uj〉,

and

|ψ2〉 =
1

2b/2

nd−1∑
j=0

cj

2b−1∑
k=0

|k〉Dk|uj〉 =
1

2b/2

nd−1∑
j=0

cj

2b−1∑
k=0

|k〉|xj,k〉,

where |xj,k〉 := Dk|uj〉. Clearly ‖|xj,k〉‖ ≤ εH , for all k = 0, 1, . . . , 2b−1 and j = 0, 1, . . . , 2b−

1.
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The next step in the phase estimation is to apply FH ⊗ I, where FH is the inverse Fourier

transform. The state becomes |ψFH 〉 =
∣∣ψ1,FH

〉
+
∣∣ψ2,FH

〉
, where

∣∣ψ1,FH
〉

=
1

2b/2

nd−1∑
j=0

cj

2b−1∑
k=0

FH |k〉e2πikφj |uj〉

=
1

2b

nd−1∑
j=0

cj

2b−1∑
k,l=0

e
2πik

(
φj− l

2b

)
|l〉|uj〉

=

nd−1∑
j=0

cj

2b−1∑
l=0

α(l, φj)|l〉|uj〉

where

α(l, φj) :=
1

2b

2b−1∑
k=0

e
2πik

(
φj− l

2b

)
(5.7)

and ∣∣ψ2,FH
〉

=
nd−1∑
j=0

cj
1

2b/2

2b−1∑
k=0

FH |k〉|xj,k〉 =
nd−1∑
j=0

cj
1

2b

2b−1∑
k,l=0

e−2πilk/2b |l〉|xj,k〉.

Finally we measure the top register on the computational basis states. The resulting state

is

|ψm〉 =
|ψ1,m〉+ |ψ2,m〉
‖|ψ1,m〉+ |ψ2,m〉‖

,

where

|ψ1,m〉 =
1

2b

nd−1∑
j=0

cj

2b−1∑
k=0

e
2πik

(
φj−m

2b

)
|m〉|uj〉 =

nd−1∑
j=0

cjα(m,φj)|m〉|uj〉,

and

|ψ2,m〉 =
1

2b

nd−1∑
j=0

cj

2b−1∑
k=0

e−2πimk/2b |m〉|xj,k〉 (5.8)

We now consider the magnitude of the projection of the resulting state |ψm〉 on the ideal

state, namely |c′0| = |〈ψm|m,u0〉|.

We have

| 〈ψm|m,u0〉 |2 =

∣∣∣c0α(m,φ0) + 1
2b

∑nd−1
j=0 cj

∑2b−1
k=0 e−2πimk/2b 〈u0|xj,k〉

∣∣∣2
‖|ψ1,m〉+ |ψ2,m〉‖2

(5.9)

Without accounting for the simulation error, with probability at least |c0|2|α(m,φ0)| ≥

4 |c0|2/π2 we get a result m such that
∣∣φ0 − m

2b

∣∣ ≤ 1
2b+1 , see [28, Thm. 11]. If we account for
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the simulation error, the probability of getting such a result becomes at least

|c0|2 ·
4

π2
− 2

b−1∑
j=0

‖U2j − Ũ2j‖,

see [47, pg. 195]. From now on, the analysis considers that specific result m.

From Lemma 4 we have ‖|ψ2,m〉‖ ≤ εH . In addition

〈ψ2,m|m,u0〉 ≤ ‖|ψ2,m〉‖ · ‖|m,u0〉‖ ≤ εH .

Hence, according to Lemma 3 and for εH <
√

8/π2, equation (5.9) becomes

|c′0| > |c0|

 |α(m,φ0)|√∑nd−1
j=0 |cj |2 · |α(m,φj)|2

− 7
εH
|c0|


= |c0|

 1√∑nd−1
j=0 |cj |2 ·

|α(m,φj)|2
|α(m,φ0)|2

− 7
εH
|c0|


= |c0|

 1√
|c0|2 +

∑nd−1
j=1 |cj |2 ·

|α(m,φj)|2
|α(m,φ0)|2

− 7
εH
|c0|

 (5.10)

Note that |α(m,φ0)|2 ≥ 8/(2π2) = 4/π2, see [28]. Let

k := {j : |α(m,φj)|2 = max
i≥1
|α(m,φi)|2}.

Then |α(m,φk)|2 ≤ 1
(2·2b·2−b+2)2

= 1/64, see [28, Thm. 11], where the size of the grid is 2b

and the minimum distance of any phase φj (where j = 1, 2, . . . nd − 1 from m/2b) is at least

2−b+2, according to the assumptions of Proposition 1. Hence (5.10) becomes

|c′0| > |c0|

 1√
|c0|2 + π2

256 ·
∑nd−1

j=1 |cj |2
− 7

εH
|c0|


= |c0|

 1√
|c0|2 + π2

256 · (1− |c0|2)
− 7

εH
|c0|

 , (5.11)

since
∑nd−1

j=0 |cj |2 = 1.

Now examine the different cases, depending on the magnitude of |c0|.
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Case 1: 1− |c0|2 ≤ γεH , for a constant γ. Then (5.11) becomes

|c′0| > |c0|
(

1− 7
εH√

1− γεH

)
,

since f(x) =
(
x+ π2

256(1− x)
)−1/2

is a monotonically decreasing function for x ∈ [0, 1]. Hence

|c′0|2 > |c0|2
(

1− 14√
1− γεH

εH +
49

1− γεH
ε2
H

)
≥ (1− γεH) ·

(
1− 14√

1− γεH
εH +

49

1− γεH
ε2
H

)
= 1− γεH − 14εH

√
1− γεH + 49ε2

H

≥ 1− γεH − 14εH + 49ε2
H ≥ 1− (γ + 14)εH ,

since 1− γεH < 1. This concludes the first part of the theorem.

Case 2: 1− |c0|2 ≥ γε1−η
H , for η ∈ (0, 1) and γ > 0. Then (5.11) becomes

|c′0| > |c0|

 1√
1−

(
1− π2

256

)
γε1−η

H

− 7
εH
π/4

 ,

since f(x) =
(
x+ π2

256(1− x)
)−1/2

is a monotonically decreasing function for x ∈ [0, 1−γε1−η
H ]

and |c0|2 ≥ π2

16 .

Note that (1− a)−1/2 ≥
√

1 + a, for |a| ≤ 1. Hence

|c′0|2 > |c0|2
(

1 +

(
1− π2

256

)
γε1−η

H − 56

π
εH

√
1 +

(
1− π2

256

)
γε1−η

H +
282

π2
ε2
H

)

> |c0|2
(

1 +

(
1− π2

256

)
γε1−η

H −O(εH)

)
> |c0|2,

for εH sufficiently small.

We now present a modified version of Proposition 1, where we have extended the first

register with t0 qubits. Similarly as before, we assume that (5.5) holds.

Theorem 4. Let |ψm′〉 be the final state in the bottom register after the measuring m′ on the

top register of the phase estimation procedure with initial state |0〉⊗(b+t0)|ψin〉 and unitaries

Ũt, for t = 1, . . . , 2b+t0 − 1 and t0 ≥ 1. Let c′0 = 〈ψm′ |u0〉 and c0 = 〈ψm′ |u0〉, where |u0〉 is

the ground state eigenvector. If
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• b is such that the phases satisfy |φj − φ0| > 5
2b

for all j = 1, 2, . . . , nd − 1.

• |c0|2 ≥ π2

16 .

Then with probability

p ≥ |c0|2
(

1− 1

2(2t0 − 1)

)
−

(
5π2

25
+

1− π2

16

25

)
· 1

2t0
− 2

b+t0−1∑
j=0

‖U2j − Ũ2j‖

we get a result m′ satisfying

• m′ ∈ G, with G =
{
m ∈ {0, 1, . . . 2b+t0 − 1} :

∣∣∣φ0 − m′

2b+t0

∣∣∣ ≤ 1
2b

}
and

• if 1− |c0|2 ≤ γεH then 1− |c′0|2 ≤ (γ + 14)εH

• if 1− |c0|2 ≥ γε1−η
H , for η ∈ (0, 1), then |c′0| ≥ |c0|

where γ denotes a positive constant.

Proof. Just as in Proposition 1 we reach a similar version of equation (5.9)

|
〈
ψm′ |m′, u0

〉
|2 =

∣∣∣c0α(m′, φ0) + 1
2b

∑nd−1
j=0 cj

∑2b+t0−1
k=0 e−2πim′k/2b+t0 〈u0|xj,k〉

∣∣∣2
‖
∣∣ψ1,m′

〉
+
∣∣ψ2,m′

〉
‖2

,

Without accounting for the simulation error, with probability at least

|c0|2 ≥ |c0|2 ·
(
1− (2(2t0 − 1))−1

)
we get a result m′ such that m′ ∈ G, with

G =

{
m ∈ {0, 1, . . . 2b+t0 − 1} :

∣∣∣∣φ0 −
m′

2b+t0

∣∣∣∣ ≤ 2t0

2b+t0
=

1

2b

}
,

see [28, Thm. 11]. Moreover, according to Lemma 5 the probability of getting a result m′ ∈ G

with
|α(m′,φj)|2
|α(m′,φ0)|2 ≤

π2

32 for all j ≥ 1 is at least |c0|2
(

1− 1
2(2t0−1)

)
−
(

5π2

25
+

1−π
2

16
25

)
· 1

2t0
.

Accounting for the simulation error, the probability of getting such results is at least

|c0|2
(

1− 1

2(2t0 − 1)

)
−

(
5π2

25
+

1− π2

16

25

)
· 1

2t0
− 2

b+t0−1∑
j=0

‖U2j − Ũ2j‖,

see [47, pg. 195]. From now on we consider only such results.
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As in Proposition 1, we reach equation (5.10). For the results of interest, we have

|α(m′,φj)|2
|α(m′,φ0)|2 ≤

π2

32 , for j ≥ 1 Hence (5.10) becomes

|c′0| > |c0|

 1√
|c0|2 + π2

32 ·
∑nd−1

j=1 |cj |2
− 7

εH
|c0|


= |c0|

 1√
|c0|2 + π2

32 · (1− |c0|2)
− 7

εH
|c0|

 , (5.12)

since
∑nd−1

j=0 |cj |2 = 1.

Now examine the different cases, depending on the magnitude of |c0|.

Case 1: 1− |c0|2 ≤ γεH , for a constant γ. Then (5.12) becomes

|c′0| > |c0|
(

1− 7
εH√

1− γεH

)
,

since f(x) =
(
x+ π2

32 (1− x)
)−1/2

is a monotonically decreasing function and |c0|2 ≤ 1. Hence

|c′0|2 > |c0|2
(

1− 14√
1− γεH

εH +
49

1− γεH
ε2
H

)
≥ (1− γεH) ·

(
1− 14√

1− γεH
εH +

49

1− γεH
ε2
H

)
= 1− γεH − 14εH

√
1− γεH + 49ε2

H

≥ 1− γεH − 14εH + 49ε2
H ≥ 1− (γ + 14)εH ,

since 1− γεH < 1. This concludes the first part of the theorem.

Case 2: 1− |c0|2 ≥ γε1−η
H , for some η ∈ (0, 1) and γ > 0. Then (5.12) becomes

|c′0| > |c0|

 1√
1−

(
1− π2

32

)
γε1−η

H

− 7
εH
π/4

 ,

since f(x) =
(
x+ π2

32 (1− x)
)−1/2

is a monotonically decreasing function and |c0|2 ≥ π2/16.

Note that (1− a)−1/2 ≥
√

1 + a, for |a| ≤ 1. Hence

|c′0|2 > |c0|2
(

1 +

(
1− π2

32

)
γε1−η

H − 56

π
εH

√
1 +

(
1− π2

32

)
γε1−η

H +
282

π2
ε2
H

)

> |c0|2
(

1 +

(
1− π2

32

)
γε1−η

H −O(εH)

)
This concludes the proof, since we can discard the O(εH) terms.
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5.3.2 A quantum algorithm estimating the ground state energy

Let Mh,` = −1
2∆h + `

LVh with |u0,`〉 the corresponding ground state eigenvectors, for ` =

1, 2, . . . , L. At each stage we approximate the minimum eigenvalue of Mh,` within relative

error ε.

We first introduce some useful notation. Phase estimation requires two quantum registers

[47, Fig. 5.2, 5.3]. The upper register determines the accuracy and the probability of success

of the algorithm and the lower register holds an approximation of the ground state of Mh,`.

Let |ψin,`〉 the initial state on the lower register at the `th stage of the algorithm and |ψout,`〉

the state on the same register once the stage is complete.

We use as initial state for our algorithm the state |ψin,1〉 = |ψ−∆h
〉, i.e. the eigenstate of

the discretized Laplacian. By choosing an appropriately large L, and lower bounds on the

eigenvalue gap between the first and the second eigenvalues of Hamiltonians involving convex

potentials, we ensure that the initial state of the algorithm has good overlap with the ground

state of Mh,1. Using the results of Theorem 4 we maintain this good overlap throughout

all the stages with high probability. As in the Theorem, we use b + t0 qubits on the upper

register. The b qubits are used to control the accuracy of the method and the t0 qubits are

used to boost the probability of success of each stage.

We provide an overview of the algorithm.

1. Run phase estimation on Wh,` = e−iMh,`/R for ` = 1, 2, . . . , L, starting from Wh,1, with

R a parameter to be defined later. We modify phase estimation as follows:

• Number of qubits: The upper register has b + t0 qubits, while the lower register

has d log2 h
−1 qubits.

• Input state: The upper register is initialized to |0〉⊗(b+t0). The lower register of

the first stage is initialized to |ψ−∆h
〉. Furthermore we set |ψin,`〉 := |ψout,`−1〉 for

` = 2, 3, . . . , L.

• Implementation of exponentials: Implement each exponential W 2j

h,` participating

on the `th stage, for j = 0, 1, . . . , t0 + b − 1 using Suzuki splitting formulas [63;

65].
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2. Output: Let j ∈ {0, 1, . . . , 2t0+b − 1} be the result of the measurement on the upper

register after the last stage. Output Êh,0 = 2π ·R · j · 2−(b+t0)

Let λj,` be the jth eigenvalue of Mh,`. The phase corresponding to this eigenvalue is

φj,` =
λj,`
2πR

.

Set R = 3dh−2 � 2dh−2 +C = ‖− 1
2∆h + Vh‖. This choice of R guarantees that φj,` ∈ [0, 1)

for all j = 0, 1, . . . , nd − 1 and ` = 1, 2, . . . , L.

We refer to the algorithm as repeated phase estimation or RPE in short, since the algorithm

uses repetitions of the phase estimation procedure.

5.3.2.1 Error analysis

We know (eq. (5.3), (5.4)) that we can achieve relative error O(h) if we approximate the

ground energy of Mh,L with error at most dh. This implies that the algorithm has to approx-

imate the eigenvalues λ0,` within error dh, for all ` = 0, 1, . . . , L, which in turn requires φ0,L

to be approximated with error dh
2πR . This translates to 2−b ≤ dh

2πR , which in turn leads to

b =

⌈
log

2Rπ

dh

⌉
=
⌈
log(6πh−3)

⌉
= log Θ

(
h−3

)
. (5.13)

5.3.2.2 Preliminary Analysis

We need to quantify how the results of one stage of the algorithm affect the success probability

of the next stage in the case of the Schrödinger equation with convex potential.

The fundamental gap for Hamiltonians of the form −1
2∆ + V , where V is a convex

potential, is at least 3π2/(2d), see [6]. The gap between the first and second eigenvalues of

Mh,`, for ` = 1, 2, . . . , L, is reduced by O(dh), see [69; 70]. For h = o(d−2), the gap is at least

3π2

2d − o(d
−1) ≥ π2

d . Set 2−b < 1
5 ·

π2

d·2πR , which implies h < 2π2

5 ·
1
d2

according to (5.13). This

leads to |φ0−φj | ≥ 5
2b

, for all j ≥ 1. As a result, for h = o(d−2) the requirements of Theorem

4 hold.

Let L = ω(d) to be specified later. Consider the (`−1)th stage, with initial state |ψin,`−1〉

and Hamiltonian Mh,`−1. Assume | 〈ψout,`−1|u0,`−1〉 | = 1 − κδ, where κ > 0 a constant and

δ ∈ [0, 1) a quantity that is δ = ω((Cd)2/L2). That means that |ψin,`−1〉 is not a good
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approximation of |u0,`−1〉. In addition, assume that εH = o(δ). Then the magnitude of the

projection of the resulting state |ψout,`−1〉 of this stage onto the ground state eigenvector

follows from Theorem 4, as shown below.

Corollary 3. Let | 〈ψin,`−1|u0,`−1〉 |2 = 1− κδ, where κ > 0, δ ∈ [0, 1) and δ = ω(εH). Then

| 〈ψout,`−1|u0,`−1〉 |2 ≥ 1− π2 + 1

32
κδ, ` ≥ 2.

Proof. We reconsider the case 2 of Theorem 4. Retracing the steps, we reach to

| 〈ψout,`−1|u0,`−1〉 |2 > | 〈ψin,`−1|u0,`−1〉 |2
(

1 +

(
1− π2

32

)
κδ −O(εH)

)
= (1− κδ)

(
1 +

(
1− π2

32

)
κδ −O(εH)

)
= 1− π2

32
κδ −O(εH) + κδ ·O(εH)

≥ 1− π2 + 1

32
κδ,

where the last inequality is due to δ ∈ [0, 1) and δ = ω(εH).

Note that after stage `− 1, phase estimation has improved the approximation of |u0,`−1〉.

In addition, | 〈ψin,`|u0,`〉 | = | 〈ψout,`−1|u0,`〉 | determines the probability of success of the `th

stage. In order to calculate this probability, we need to consider the projection of |u0,`−1〉

onto |u0,`〉.

Taking into account the lower bound on the gap between the first two eigenvalues of Mh,`,

we express |u0,`−1〉 in terms of the eigenstates of Mh,` to get

‖V/L‖2∞ ≥ (1− | 〈u0,`−1|u0,`〉 |2)

(
π2

d

)2

⇒ | 〈u0,`−1|u0,`〉 |2 ≥ 1−
(
Cd

π2L

)2

, (5.14)

for ` = 2, . . . , L, see [50].

Lemma 2. Let

| 〈ψout,`−1|u0,`−1〉 |2 ≥ 1− κ′δ

| 〈u0,`−1|u0,`〉 |2 ≥ 1−
(
Cd

π2L

)2

,

with δ = ω
((

Cd
L

)2)
. Then

| 〈ψout,`−1|u0,`〉 |2 ≥ 1− κ′δ − o(δ) ` ≥ 2,
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where κ′ > 0 a constant.

Proof. Let θ1 := arccos | 〈ψout,`−1|u0,`−1〉 | and θ2 = arccos | 〈u0,`−1|u0,`〉 |.

Then | 〈ψout,`−1|u0,`〉 |2 ≥ sin2(θ1 + θ2). Note that

cos2(θ1 + θ2) =
1

2
[1 + cos(2(θ1 + θ2))] =

1

2
[1 + cos(2θ1) cos(2θ2)− sin(2θ1) sin(2θ2).

Now cos2(θ1) = 1
2 [1 + cos(2θ1)] ≥ 1− κ′δ, which leads to

cos(2θ1) ≥ 1− 2κ′δ.

Similarly

cos(2θ2) ≥ 1− 2

(
Cd

π2L

)2

.

Furthermore

sin2(2θ1) = 1− cos2(2θ1) ≤ 1−
[
1− 2κ′δ

]2 ≤ 4κ′δ,

and similarly sin2(2θ2) ≤ 4
(
Cd
π2L

)2
. According to the above

cos2(θ1 + θ2) ≥ 1

2

1 +
(
1− 2κ′δ

)
·

(
1− 2

(
Cd

π2L

)2
)
−
√

4κ′δ ·

√
4

(
Cd

π2L

)2


≥ 1− κ′δ + 2κ′δ

(
Cd

π2L

)2

−
(
Cd

π2L

)2

− 2
√
κ′ ·

√
δ ·
(
Cd

π2L

)2

≥ 1− κ′δ − o(δ)

since
(
Cd
π2L

)2
= o(δ) and

√
δ
(
Cd
π2L

)2
=
√
δ · o(δ) = o(δ).

Consider errors εSj,` for the exponentials W 2j

h,` such that the total error for each stage is∑t0+b−1
j=0 εSj,` ≤ εH = O

((
Cd
L

)2)
. We use Corollary 3, and Lemma 2 to get

| 〈ψout,`−1|u0,`〉 |2 = 1− π2 + 1

32
κδ − o(δ) ≥ 1−

(
π2 + 1

32
+ 10−3

)
κδ,

where κ > 0 is a constant, δ = ω
((

Cd
L

)2)
and ` ≥ 2.
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5.3.2.3 Initial state

The initial state of our algorithm is the ground state eigenvector |ψ−∆h
〉 of the discretized

Laplacian. We have |ψ−∆h
〉 = |z〉⊗d, where |z〉 is the ground state eigenvector of the n × n

matrix corresponding to the one dimensional problem. The coordinates of |z〉 are

zj =
√

2h sin(jπh), for j = 1, 2, . . . , n.

and it can be implemented in a number quantum operations proportional to log2 h−1, see

[41]. Thus, the implementation of the initial state of the algorithm |ψ∆h
〉 requires a number

of quantum operations proportional to d log2 h−1.

According to (5.14) we have

| 〈ψin,1|u0,1〉 |2 ≥ 1−
(
Cd

π2L

)2

, (5.15)

since |ψin,1〉 := |u0,1〉.

5.3.2.4 Success probability

According to the analysis in Sections 5.3.2.2, 5.3.2.3, we have

| 〈ψin,`|u0,`〉 |2 ≥ 1− δ,

for any δ = ω
((

Cd
L

)2)
and ` = 1, 2, . . . , L, as long as the total error due to the approximation

of exponentials at each stage is O
((

Cd
L

)2)
. As a result,

| 〈ψin,`|u0,`〉 |2 ≥ 1− κ1

(
Cd

L

)2−η
, (5.16)

for κ1 > 0 a constant and any η > 0.

According to Theorem 4, the total probability of success of the algorithm after L steps is

Ptotal ≥
(

min
`=1,2,...,L−1

| 〈ψin,`|u0,`〉 |2 ·
(

1− 1

2(2t0 − 1)

)
−

(
5π2

25
+

1− π2/16

25

)
1

2t0
− 2

b+t0−1∑
j=0

‖W 2j

h,` − W̃ 2j
h,`‖

L (5.17)
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We use Suzuki splitting formulas to approximate the exponentials W 2j

h,`, for j = 0, 1, . . . , t0 +

b− 1, see [63; 65]. Let εSj,l = ‖W 2j

h,` − W̃ 2j
h,`‖. We pick

εSj,l := 2j−(b+t0) ·
(
Cd

L

)2

,

The total error at each stage is
b+t0−1∑
j=0

εSj,l ≤
(
Cd

L

)2

and the choice of εSj,l implies that

‖W k
h,` − W̃ k

h,`‖ ≤
(
Cd

L

)2

for k = 0, 1, . . . 2t0+b − 1. Using (5.16) and the inequality above, (5.17) becomes

Ptotal ≥

((
1− κ1

(
Cd

L

)2−η
)
·
(

1− 1

2(2t0 − 1)

)
−

(
5π2

25
+

1− π2/16

25

)
1

2t0
− 2

(
Cd

L

)2
)L (5.18)

Set t0 such that 1
2(2t0−1)

≤
((

Cd
L

)2−η)
, i.e.

t0 =

⌈
log

(
L

Cd

)2−η
⌉
. (5.19)

Then (5.18) becomes

Ptotal ≥

[(
1− κ1

(
Cd

L

)2−η
)
·

(
1−

(
Cd

L

)2−η
)
− 6π2

25

(
Cd

L

)2−η
− 2

(
Cd

L

)2
]L

≥

[
1−

(
κ1 + 3 +

6π2

25

)(
Cd

L

)2−η
]L

Let κ2 := κ1 + 3 + 6π2

25
for brevity. Then

Ptotal ≥

[
1− κ2

(
Cd

L

)2−η
]L
≥
(

1− (κ2 · (Cd)2−η/L1−η)2

L

)
· e−κ2·(Cd)2−η/L1−η

,

since
(
1− x

n

)n ≥ (1− x2

n

)
· e−x for |x| ≤ n and n > 1. For this case we take x = κ2 · (Cd)2−η

L1−η ,

n = L and the requirements are satisfied when L is sufficiently large, which we will choose

below.
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Set the number of stages to

L = (Cd)(2−η)/(1−η). (5.20)

Then the probablity of success becomes

Ptotal ≥
(

1− κ2
2

L

)
· e−κ2 =

(
1− κ2

2

(Cd)(2−η)/(1−η)

)
· e−κ2 ≥ 1

2
· e−κ2 = Ω(1),

for d sufficiently large. Hence, the choice of L in (5.20) guarantees that the algorithm has

constant probability of success. Moreover, we can get Ptotal ≥ 3/4 if we repeat the algorithm

and choose the median as the final result.

5.3.2.5 Cost

The Suzuki splitting method expresses the exponentials W 2j

h,` = e−iMh,`/R, in terms of expo-

nentials involving either −∆h or Vh. The exponentials involving −∆h can be implemented

in O(d log2 h−1) quantum operations [41]. Furthermore the exponentials involving Vh can be

implemented with two bit queries. Approximately half of the exponentials involve −∆h and

half involve Vh. Consequently the number of exponentials provides a good estimate on the

cost of the algorithm.

Let Nj,` be the number of exponentials used to simulate W 2j

h,`, let N` be the number of

the exponentials required for the `th stage and let N be the total number of exponentials

required for the algorithm. Then

N` =

t0+b−1∑
j=0

Nj,` ≤
t0+b−1∑
j=0

2·5·5k−1 ·‖−∆h/R‖2 ·2j
(

4e · 2 · 2j‖ `L ·
Vh
R ‖2

εSj,`

)1/(2k)

·4e · 2
3

(
5

3

)k−1

,

where k determines the order of the Suzuki splitting method [56]. However ‖ −∆h/R‖2 ≤ 1

and ‖ `L ·
Vh
R ‖ ≤

`
L ·

C
3dh−2 , which leads to

N` ≤
t0+b−1∑
j=0

80e

3
· 5k−1 ·

(
5

3

)k−1

· 1 · 2j ·

(
4e · 2 · 2j · `L ·

C
3dh−2

2j−(b+t0) · (Cd)−2/(1−η)

)1/(2k)

≤ 80e

3
· 5k−1 ·

(
5

3

)k−1

·
(

8e

3

)1/(2k)

·
(

2b+t0
)1/(2k)

· C
(

1+ 2
1−η

)
/(2k) · d

(
2

1−η−1
)
/(2k)

· h1/k ·
t0+b−1∑
j=1

2j
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≤ 80e

3
·
(

25

3

)k−1

·
(

8e

3

)1/(2k)

· (24π)1+ 1
2k · C

2−η
1−η+ 5−2η

2k(1−η) · d
2−η
1−η+ 3

2k(1−η)

· h−(3+ 1
2k

) ·
(
`

L

)1/(2k)

,

since
∑t0+b−1

j=0 2j ≤ 2t0+b ≤ 24π ·(Cd)
2−η
1−η ·h−3. Denote by c(k) the constant on the expression

above that depends on k, namely c(k) := 80e
3 ·

(
25
3

)k−1 ·
(

8e
3

)1/(2k) · (24π)1+ 1
2k . We have

N =

L∑
`=1

N` ≤ c(k) · C
2−η
1−η+ 5−2η

2k(1−η) · d
2−η
1−η+ 3

2k(1−η) · h−(3+ 1
2k

) ·
L∑
`=1

(
`

L

)1/(2k)

≤ c(k) · C
2−η
1−η+ 5−2η

2k(1−η) · d
2−η
1−η+ 3

2k(1−η) · h−(3+ 1
2k

) · L

≤ c(k) · C
4−2η
1−η + 5−2η

2k(1−η) · d
4−2η
1−η + 3

2k(1−η) · h−(3+ 1
2k

).

For relative error O(ε), it suffices to set h ≤ ε. In that case

N ≤ c(k) · ε−(3+ 1
2k

) · C
4−2η
1−η + 5−2η

2k(1−η) · d
4−2η
1−η + 3

2k(1−η) . (5.21)

The eigenvalues and eigenvectors of the discretized Laplacian are known and the evolution

of a system with a Hamiltonian involving −∆h can be implemented with d · O(log2 ε−1)

quantum operations using the Fourier transform in each dimension; see e.g., [47, pg. 209].

The evolution of a system with a Hamiltonian involving Vh can be implemented using two

quantum queries and phase kickback. Hence the number of quantum operations required to

implement the algorithm is proportional to

c(k) · ε−(3+ 1
2k

) · C
4−2η
1−η + 5−2η

2k(1−η) · d1+ 4−2η
1−η + 3

2k(1−η) .

The analysis leads to the following theorem.

Theorem 5. Consider the ground state estimation problem for the time-independent Schrö-

dinger equation (5.1), (5.2). The repeated phase estimation procedure of L = (Cd)(2−η)/(1−η)

stages with

• Number of qubits: The upper register has q = 3 log ε−1 + 2−η
1−η log(Cd) + O(1) qubits,

while the lower register has Θ
(
d log ε−1

)
qubits.

• Input state: The upper register is initialized to |0〉⊗q. The lower register of the first stage

is initialized to |ψ−∆h
〉. Furthermore we set |ψin,`〉 := |ψout,`−1〉 for ` = 2, 3, . . . , L.
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SCHRÖDINGER EQUATION FOR CONVEX POTENTIALS 66

• Implementation of exponentials: Implement each exponential W 2j

h,` using Suzuki splitting

formulas of order 2k + 1 with simulation error εSj,` = 2j−q · (Cd)−2/(1−η), for j =

0, 1, . . . , q − 1, and ` = 1, 2, . . . , L.

approximates the ground state energy E0 with relative error O(ε), for ε = o(d−2), using a

number of bit queries proportional to

c(k) · ε−(3+ 1
2k

) · C
4−2η
1−η + 5−2η

2k(1−η) · d
4−2η
1−η + 3

2k(1−η)

and a number of quantum operations proportional to

c(k) · ε−(3+ 1
2k

) · C
4−2η
1−η + 5−2η

2k(1−η) · d1+ 4−2η
1−η + 3

2k(1−η) ,

where c(k) := 80e
3 ·

(
25
3

)k−1 ·
(

8e
3

)1/(2k) · (24π)1+ 1
2k , with constant probability of success.

The final state on the lower register |ψout,L〉 has overlap

| 〈ψout,L|u0〉 |2 ≥ 1−O
(

(Cd)
− 2−η

1−η
)
.

with the ground state eigenvector |u0〉 of Mh.

5.3.3 A quantum algorithm approximating the ground state eigenvector

In Section 5.3.2 we demonstrated a quantum algorithm estimating the ground state energy

of the Hamiltonian H (eq. (5.1),(5.2)). It turns out we can use the same algorithm with

different parameters, to estimate the ground state eigenvector of the discretized Hamiltonian

Mh, while we also estimate the ground state energy of H with relative error O(ε).

The following algorithm

• estimates the ground state energy of the Hamiltonian H with relative error ε,

• approximates the ground state |u0〉 of the discretized Hamiltonian Mh with a state |ψ〉

such that

| 〈u0|ψ〉 |2 ≥ 1−O(δ),

where 0 < δ < 1 a parameter.

We remark that for δ = Ω((Cd)
− 2−η

1−η ) we can use the algorithm in Section 5.3.2. From

now on we assume that δ = o((Cd)
− 2−η

1−η ).
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5.3.3.1 Error analysis

We work as in Section 5.3.2.1 to get the same number of qubits b as in (5.13), namely

b =

⌈
log

2Rπ

dh

⌉
=
⌈
log(10πh−3)

⌉
= log Θ

(
h−3

)
.

5.3.3.2 Success probability

Equations (5.18) and (5.19) remain the same. What changes is the number of stages L. Since

we require

| 〈ψout,L|u0〉 |2 ≥ 1−O(δ)

we set

(Cd/L)2−η = δ ⇒ L = Cd/δ1/(2−η). (5.22)

Just as before, the success probability of the algorithm after L stages is

Ptotal ≥
(

1− (κ2 · (Cd)2−η/L1−η)2

L

)
· e−κ2·(Cd)2−η/L1−η

=

(
1− o(1)

L

)
· e−o(1) ≥ 3/4,

according to our choice of L in (5.22) and the fact that δ = o
(

(Cd)
− 2−η

1−η
)

, since for larger δ

we can use the algorithm in Section 5.3.2 as we pointed out.

5.3.3.3 Simulation error

Just like before, we pick

εSj,` := 2j−(b+t0)/(L/Cd)2,

which according to our choice of L becomes

εSj,` = 2j−(b+t0)δ2/(2−η).

Note that 2·
∑b+t0−1

j=0 εSj,l = O
(
δ2/(2−η)

)
, which is asymptotically smaller than O

((
Cd
L

)2−η)
=

O (δ).

5.3.3.4 Cost

We work as before. Using the bounds on the number of exponentials [56] required to simulate

W 2j

h,` we have

N` =

t0+b−1∑
j=0

Nj,` ≤
t0+b−1∑
j=0

2 ·5 ·5k−1 · ‖∆h/R‖2 ·2j
(

4e · 2 · 2j‖ `L ·
Vh
R ‖2

εSj,`

)1/(2k)

· 4e · 2
3

(
5

3

)k−1

,
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where k determines the order of the Suzuki splitting method. Since ‖∆h/R‖2 ≤ 1 and

‖ `L ·
Vh
R ‖ ≤

`
L ·

C
3dh−2 we have

N` ≤
80e

3
· 5k−1 ·

(
8e

3

)1/2k

·
(

5

3

)k−1

· 2(b+t0)/(2k) ·
(
`

L

)1/2k

·
(
C/(dh−2)

δ2/(2−η)

)1/(2k)

·
t0+b−1∑
j=0

2j

≤ 80e

3
· 5k−1 ·

(
8e

3

)1/2k

·
(

5

3

)k−1

· 2
b+t0
2k (1+ 1

2k ) ·
(
`

L

)1/(2k)

· C1/(2k) · d−1/(2k) · h1/k

· δ−
1

k(2−η)

≤ 80e

3
· 5k−1 ·

(
8e

3

)1/2k

·
(

5

3

)k−1

· (24π)1+ 1
2k ·

(
`

L

)1/(2k)

· C1/(2k) · d−1/(2k)

· h−(3+ 1
2k ) · δ−

1
k(2−η) ,

since 2b ≤ 12πh−3 and 2t0 ≤ 2δ−1. Once again, denote by c(k) the expression c(k) :=

80e
3 · 5

k−1 ·
(

8e
3

)1/2k · (5
3

)k−1 · (24π)1+ 1
2k . The total number of exponentials required is

N =

L∑
`=1

N` ≤ c(k) · C1/(2k) · d−1/(2k) · h−(3+ 1
2k ) · δ−

1
k(2−η) ·

L∑
`=1

(
`

L

)1/(2k)

≤ c(k) · C1/(2k) · d−1/(2k) · h−(3+ 1
2k ) · δ−

1
k(2−η) · L

≤ c(k) · C1+ 1
2k · d1− 1

2k · h−(3+ 1
2k ) · δ−1− 1

2k
− 1

2−η−
1

k(2−η)

For relative error O(ε), it suffices to set h ≤ ε. In that case

N ≤ c(k) · C1+ 1
2k · d1− 1

2k · ε−(3+ 1
2k ) · δ−1− 1

2k
− 1

2−η−
1

k(2−η) (5.23)

The analysis above leads to the following theorem.

Theorem 6. Consider the ground state energy eigenvector and ground state eigenvector

estimation problem for the time-independent Schrödinger equation (5.1),(5.2). Assume where

δ = o((Cd)
− 2−η

1−η ). The repeated phase estimation procedure of L = Θ(Cd · δ−1/(2−η)) stages

with

• Number of qubits: The upper register has q = 3 log ε−1 + log δ−1 + O(1) qubits, while

the lower register has Θ(d log2 ε
−1) qubits.



CHAPTER 5. ESTIMATING THE GROUND STATE ENERGY OF THE
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• Input state: The upper register is initialized to |0〉⊗q. The lower register of the first stage

is initialized to |ψ−∆h
〉. Furthermore we set |ψin,`〉 := |ψout,`−1〉 for ` = 2, 3, . . . , L.

• Implementation of exponentials: Implement each exponential W 2j

h,l using Suzuki splitting

formulas of order 2k+1 with simulation error εSj,l = 2j−q ·δ2/(2−η), for j = 0, 1, . . . , q−1.

approximates the ground state energy E0 with relative error O(ε), for ε = o(d−2), using a

number of bit queries proportional to

c(k) · C1+ 1
2k · d1− 1

2k · ε−(3+ 1
2k ) · δ−1− 1

2k
− 1

2−η−
1

k(2−η)

and a number of quantum operations proportional to

c(k) · C1+ 1
2k · d2− 1

2k · ε−(3+ 1
2k ) · δ−1− 1

2k
− 1

2−η−
1

k(2−η) ,

where c(k) := 80e
3 · 5

k−1 ·
(

8e
3

)1/2k · (5
3

)k−1 · (24π)1+ 1
2k , with probability of success at least 3/4.

The final state on the lower register |ψout,L〉 has overlap

| 〈u0|ψout,L〉 |2 ≥ 1−O (δ) ,

with the ground state eigenvector |u0〉 of Mh.

5.4 Future work

The repeated phase estimation algorithm could be applicable in other classes of potentials.

There is, however, an important requirement a potential function must satisfy in order to

be a good candidate for the algorithm; there are known lower bounds on the fundamental

gap2 of the Hamiltonians H` the algorithm runs phase estimation on at each stage. These

lower bounds determine the values of the algorithm’s parameters. However, there are cases

where the established lower bounds on the fundamental gap might not be large enough,

forcing the repeated phase estimation algorithm to perform poorly. The number of stages

L of the algorithm have to be at least proportional to the reciprocal of the eigenvalue gap.

As a result, lower bounds that are exponentially small in d are problematic and result in a

2difference between the smallest and second smallest eigenvalues
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number of stages of RPE that is exponential in d. If, however, one relinquishes the convexity

requirement, one can still derive lower bounds on the fundamental gap, but may involve

more parameters about the geometry of the domain, or the potential function [7]. For more

information on the fundamental gap see [6; 7; 75].

Another important problem is to estimate the ground state energy of the time-indepen-

dent Schrödinger equation corresponding to (1.5), as discussed in Chapter 4. However, lower

bounds on the fundamental gap could be more difficult to derive.

Finally, given lower bounds on the fundamental gap for other classes of potentials, one

may study other ways to choose the Hamiltonians H1, H2, . . . ,HL for each stage of the algo-

rithm. We remark that classes of potentials with larger bounds on the fundamental gap are

better candidates for our method. Hence, one may approach the target Hamiltonian initially

considering Hamiltonians with larger bounds on the fundamental gap, and for the final stages

use Hamiltonians involving the potentials with lower bounds in the fundamental gap. This

approach could provide better bounds on the cost of the algorithm.
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Chapter 6

Circuit design for the quantum

NAND evaluation algorithm

6.1 Introduction

Consider a boolean NAND formula φ with variables x1, x2, . . . , xN , with N a positive integer.

Such formulas consist of NAND gates and variables xi ∈ {0, 1}, for i = 1, 2, . . . , N . If the same

variable appears multiple times in the formula, we treat each occurrence separately. Thus N

counts multiply occurring variables multiple times. Every boolean formula corresponds to a

tree whose internal vertices are NAND gates.

The quantum algorithm for balanced boolean formulas [4, Fig. 2] evaluates a balanced

NAND formula of input size N , using a quantum walk on a binary tree. We implement a

modified version of the algorithm on a tree of fanin-k, with k ∈ {2, 3, . . .} a constant.

We design two quantum circuits for the above version of the algorithm. The circuit in

Section 6.4 implements the algorithm using arbitrary single qubit gates and their controlled

variants, CNOT and Toffoli gates. The total number of gates it requires is O(
√
N · logN).

The circuit in Section 6.5 uses gates from the Clifford group and the π/8 gate. When

gates from Section 6.4 can be implemented exactly using gates from the Clifford group and

the π/8 gate, we provide the quantum circuits. Otherwise, we employ the Solovay-Kitaev

algorithm to implement the single gates approximately. In order to approximate a single qubit

transformation with error ε0, Solovay-Kitaev requires O(logc 1/ε0) gates, where c = 3.97; see
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[18]. Our design requires O(
√
N · logN · logc(N/ε)) gates from the Clifford group and T gates.

The results of this chapter are based on work in [57].

6.2 Prior work

One can classically compute the evaluation of a balanced binary AND-OR tree with zero

error in expected time O(N0.754) using alpha-beta pruning; see [58; 62]. This algorithm is

optimal, even for bounded error classical algorithms [59].

In 2008, Farhi et.al. presented a continuous-time quantum walk based algorithm [25] for

the balanced NAND formulas corresponding to a complete binary tree. The algorithm has a

runtime of O(
√
N) in the Hamiltonian oracle model [26] and is optimal in the continuous-time

query setting, since the lower bound on the quantum setting is Ω(
√
N); see [9]. Moreover, it

can be converted in the more conventional discrete quantum oracle query model, with cost

O(N1/2+o(1)); see [15]. Later, in 2010, Ambainis et.al. showed an optimal discrete-time coin

walk based quantum algorithm evaluating a formula φ corresponding to a complete binary

tree using O(
√
N) queries to the input oracle [4, Fig. 2].

Recently the implementation of quantum walks has attracted interest. In 2009, Douglas

and Wang demonstrated quantum circuits for quantum walks on graphs such as circle and

glued trees [24]. Later, Chiang et.al. demonstrated a method implementing quantum walks

corresponding to arbitrary sparse classical random walks [13].

6.3 Discrete-time quantum coin walk

The algorithm presented in [4] evaluates a balanced NAND formula of input size N , using a

quantum walk on a binary tree. We implement a modified version of the algorithm on a tree

of fanin-k. For k = 2 the following algorithm is the one presented in [4, Fig. 2] for binary

NAND trees.

The algorithm of interest runs phase estimation1 on top of a quantum walk as follows:

1see Section 4.2 for more on the phase estimation algorithm



CHAPTER 6. CIRCUIT DESIGN FOR THE QUANTUM NAND EVALUATION
ALGORITHM 73

• Initialization: Let M = O(
√
N). Prepare three quantum registers in the state(

1√
M

M−1∑
i=1

(−i)t|t〉

)
⊗
∣∣r′′〉|rightmost〉.

The first register holds the counter for the phase estimation, the second register holds

the index for the vertex, and the final register holds the direction. There are k+1 possi-

ble directions, k directions ”upwards”, denoted by ci ∈ UP = {rightmost, . . . , leftmost},

and one down direction.

• Quantum walk. If the first register is |t〉, perform t steps of the following discrete-time

quantum walk. Let |v〉|c〉 the last two registers.

1. If the vertex is a leaf, then apply the phase flip (−1)f(u), using the controlled

oracle Of |j〉|b〉 = |j〉|b⊕ f(j)〉, where j = 0, . . . , N − 1 enumerates the leaves, and

f is the input function.

2. If |v〉 is an internal degree k + 1 vertex, then apply the operator

R|u〉 = 2|u〉〈u| − I,

where |u〉 is the equal superposition among all possible directions, namely

|u〉 =
1√
k + 1

(|down〉+ |leftmost〉+ · · ·+ |rightmost〉).

3. If |v〉 = |r′〉 apply the diffusion operator

R|u′〉 = 2
∣∣u′〉〈u′∣∣− I,

where ∣∣u′〉 =
1

N1/4
|down〉+

√
1− 1

N1/2
|rightmost〉.

4. If |v〉 = |r′′〉 do nothing.

• Walk step.

– If |c〉 = |down〉, then walk down to the parent of the vertex and set |c〉 to the

direction it came from.
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•r′′

•r′

•r

•• •

• • •• • •• • •

Figure 6.1: An example of a graph the algorithm in Section 6.3 is applied on.

– If |c〉 = |ci〉 with ci ∈ UP, then walk ’up’ to the corresponding child of |v〉 and set

|c〉 = |down〉.

• Phase estimation. Apply the inverse Fourier transform on the first register and

measure in the computational basis. Return 0 if and only if the outcome is 0 or M/2.

The algorithm is applied to a graph consisting of a complete k-ary tree and a line of two

vertices, r′ and r′′. The vertex r′ is connected to the root of the tree r, and r′′ is connected

to the vertex r′. An example of a graph of this form is provided in Figure 6.1.

6.4 Quantum circuit using arbitrary single qubit, CNOT and

Toffoli gates

In this section we present an asymptotically optimal quantum circuit that implements the

algorithm using arbitrary single qubit gates and their controlled versions, CNOT and Toffoli

gates.

6.4.1 Labelling scheme

The coin is labelled using b := dlog2(k + 1)e as in Table 6.1.

Let C denote the set of the coin labels. Clearly C ⊆ {0, 1}b.
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Direction Value Binary Representation

down 2b − 1 1b

rightmost 0 0b

...
...

...

leftmost k − 1 Bin(k − 1)

Table 6.1: Encoding of the coin states for the coin walk on a k-ary tree. Bin(x) denotes the

binary representation of the value x.

Now we label the vertices of the tree. Let L denote the total levels of the tree, not counting

the root, namely L = logkN . Each vertex is assigned a basis state of the space C(L+1)b+1.

We set the first qubit to |0〉 for any tree vertex, in order to differentiate it from r′ and r′′

whose first qubits are set to |1〉. We label each vertex using the labels of the directions in

the path from the root to the vertex. Namely, the vertex label represents the path from the

root leading to it.

For example, a vertex in the j-th level of the tree is represented by (L+ 1)b+ 1 qubits of

the form

0 0b . . . 0b 1b cj−1 . . . c1
44 11 44 jj 44

Padding 0s marks the level directions

Figure 6.2: Label of a vertex in the j-th level of the tree.

where ci ∈ C, for i = 0, . . . , j − 1.

6.4.2 Coin walk on a complete k-ary tree

Let |v〉 = |0vLvL−1 . . . v0〉, where vi ∈ C for i = 0, 1, . . . , L, be the label of a vertex in the tree

and |c〉 the coin. According to the labelling scheme, the following transformations describe

the walk on the tree

• Moving down

|0〉 |vL〉 |vL−1〉 . . . |v0〉
∣∣1b〉

** ** **pp

|0〉
∣∣0b〉 |vL〉 . . . |v1〉 |v0〉
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• Moving up towards direction ci (the first b+ 1 qubits must be 0, since v belongs in the

tree, and simultaneously v = leaf and c = down is impossible).

|0〉
∣∣0b〉 |vL−1〉 . . . |v0〉 |ci〉

..tt tt tt

|0〉 |vL−1〉 |vL−2〉 . . . |ci〉
∣∣1b〉

The circuit implementing the walk on the tree is presented below. It requires one auxiliary

qubit.

Figure 6.3: The circuit implementing the quantum walk on a tree.

6.4.3 Walking on the graph

Next we implement the walk on the vertices r′ and r′′. First we label |r′〉 and |r′′〉 by
∣∣10(L+1)b

〉
and

∣∣10(L+1)b−11
〉

respectively. The transformations that are required are

1. |r′〉|down〉 is transformed to
∣∣10(L+1)b

〉∣∣0b〉. It should be replaced with
∣∣10(L+1)b−11

〉∣∣0b〉.
2. |r′〉|rightmost〉 is transformed to

∣∣10(L+1)b
〉∣∣1b〉. It should be replaced with

∣∣0Lb+11b
〉∣∣1b〉.

3. |root〉|down〉 is transformed to
∣∣0(L+1)b+1

〉∣∣1b〉. It should be replaced with
∣∣10(L+1)b

〉∣∣0b〉
and the auxiliary qubit has to be reset from |1〉 to |0〉.

4. |r′′〉|rightmost〉 is transformed to
∣∣10Lb−110b

〉∣∣1b〉. It should be replaced with
∣∣10(L+1)b

〉∣∣1b〉.
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Since there are only two vertices in the line, the transformations can be implemented using

Gray codes [47, pp. 191–194]. Hence the circuit implementing one step of the discrete-time

quantum walk is

Implements transformations for r′ and r′′

• • • . . . • • . . . • • . . . . . . •
/

SWAP1 SWAP2

. . . . . . . . . . . .
...

.../ . . . . . . . . . . . .

. . . . . . . . . . . .

. . . • . . . . . . . . .

b qubits
...

... · ·
· · · ·. . . • • • . . . . . . . . .

• . . . • • • . . . • . . . . . .

• • • • . . . • • • . . . • • • • • . . . . . . • • •
coin · ·

· · · ·• • • • . . . • • • . . . • • • • . . . . . . • •
• • • • . . . • • • . . . • • • . . . . . . •


|0〉 • |0〉



6.4.4 Diffusion

There are three cases of diffusion depending on the vertex |v〉 of the tree the algorithm

operates on.

6.4.4.1 Diffusion on the leaves

In order to implement the diffusion on the leaves, an input oracle Of ,

Of |j〉|0〉 = |j〉|f(j)〉, j = 0, 1, . . . , N − 1

is required. Note that after proper re-indexing, the order of the leafs is revealed by the Lb

least significant qubits of the vertex label. We use phase kickback in order to introduce the

(−1)f(j) factor in the amplitude [39, Chp. 6.2]. The circuit is

Of
Lb qubits

...
...

|0〉−|1〉√
2

|0〉−|1〉√
2
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6.4.4.2 Diffusion on r′

The diffusion operator is the 2b × 2b matrix

R|u′〉 = −I


2

kL/2
− 1 − 2

kL/4

√
1− 1

kL/2

I

− 2
kL/4

√
1− 1

kL/2
1− 2

kL/2


The operator R|u′〉 can be implemented by the circuit

. . . U1 . . . eiπ

. . . • . . .

b qubits · ·
· · · ·

. . . • • • . . .

• . . . • • • . . . •


using Gray codes, where

U1 =

 2
kL/2
− 1 − 2

kL/4

√
1− 1

kL/2

− 2
kL/4

√
1− 1

kL/2
1− 2

kL/2


is a single qubit gate. U1 can be expressed in terms of single qubit rotations and possibly a

global phase [47, Thm. 4.1]. In Section 6.5, we express U1 in terms of Clifford and T gates,

using the Solovay Kitaev algorithm [18].

6.4.4.3 Diffusion on internal vertices

The diffusion on the internal vertices is a reflection around the state that denotes the equal

superposition of all the possible coin outcomes, namely |u〉 = 1√
k+1

∑
j∈C |j〉. It can be

implemented as

P|u〉 2
∣∣0b+2

〉〈
0b+2

∣∣− I P †|u〉

coin ...
...

...
...

|0〉 |0〉

|0〉 |0〉
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using P|u〉, a circuit to prepare |u〉 using two auxiliary qubits, presented below.

The unitary P|u〉 can be implemented as follows. Starting with
∣∣0b〉|0〉 we create the

equal superposition state 1
2b/2

∑2b−1
j=0 |j〉|0〉. We next apply the quantum bit query OC that

represents the characteristic function for the set C, namely OC |j〉|0〉 = |j〉|χC(j)〉, to get

|ψ〉 = 1
2b/2

∑2b−1
j=0 |j〉|χC(j)〉, which can be written as

√
k + 1

2b/2

 1√
k + 1

∑
j∈C
|j〉|1〉

+

√
2b − (k + 1)

2b/2

 1√
2b − (k + 1)

∑
j /∈C

|j〉|0〉


Let

|good〉 = |u〉 =
1√
k + 1

∑
j∈C
|j〉

and

|bad〉 =
1√

2b − (k + 1)

∑
j /∈C

|j〉.

As a result

|ψ〉 =

√
k + 1

2b/2
|good〉|1〉+

√
2b − (k + 1)

2b/2
|bad〉|0〉

Note that the states |good〉 and |bad〉 are orthonormal. We construct the state |good〉 ap-

plying amplitude amplification with known amplitudes2 [28, Sec. 2.1] to turn the state |ψ〉

to |good〉. More specifically, the preparation of |u〉 works as follows

1. Append a qubit initialized to |0〉

2. Perform the single qubit rotation

R1(k) =

 √
1− α

α −
√

α
α√

α
α

√
1− α

α


on the appended qubit, where α = (k+1)/2b, α = sin2(π/(4m+2)) with m = d π

4θα
− 1

2e

and θα = arcsin(
√
α). The rotation R1(k) is a single qubit Ry(θk) rotation, where

θk = 2 arcsin
√

α
α . Let |ψα〉 denote the resulting state.

3. Perform a conditional phase shift, with every state whose last two qubits are |1〉|1〉

receiving a phase factor −1.

2k (and, as a result, b) are known in advance.
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4. Rotate the resulting state according to the unitary matrix

Rψα = 2(|ψα〉〈ψα|)− I

m times, where m = 0 if k = 2b − 1 and m = 1 otherwise.

Hence, the circuit implementing P|u〉 is

|0〉 H

OA

eiπ

P|ψα〉 2
∣∣0b+2

〉〈
0b+2

∣∣− I P †|ψα〉

|0〉 H |u〉


b qubits

...
...

...
...

|0〉 H

|0〉 • |0〉

|0〉 R1(k) • |0〉



P|ψα〉 R|ψα〉

The reflection operator 2
∣∣0b+2

〉〈
0b+2

∣∣− I retains the phase for
∣∣0b+2

〉
, while it introduces

a factor of −1 on the amplitude of every other basis state. It can be implemented using an

auxiliary qubit as follows

eiπ

b+2 qubits
...

eiπ



6.4.4.4 The circuit implementing the diffusion

Combining the diffusion circuits together, the circuit implementing the diffusion is
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• •
/ • •
/

Of

vertex ...
...

...
/
|v0〉

|0〉−|1〉√
2

|0〉−|1〉√
2

coin /

R|u〉 R†|u〉

R|u′〉

R†|u〉
|0〉

|0〉



6.4.5 Initial state preparation

The initial state is(
1√
M

M−1∑
t=0

(−i)t|t〉

)∣∣r′′〉|right〉 =

(
1√
M

M−1∑
t=0

(−i)t|t〉

)∣∣∣110(L+1)b−1
〉∣∣∣0b〉,

where M = O(
√
N). The only register whose initialization is of interest is the first one,

namely 1√
M

∑M−1
t=0 (−i)t|t〉. Observe that

1√
M

M−1∑
t=0

(−i)t|t〉 =
1√
M

(M/4)−1∑
k=0

(|4k〉+ (−i)|4k + 1〉+ (−1)|4k + 2〉+ i|4k + 3〉).

Thus the first register is initialized using controlled phase shifts

|0〉
H e3πi/2 eiπ eπi/2

|0〉
H

dlog2Me ...

|0〉
H • •

|0〉
H • •
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The circuit above is equivalent to

|0〉
H

|0〉
H

dlog2Me ...

|0〉
H A B C

|0〉
H • •


where

A =

 e3πi/2 0

0 1

 =

 −i 0

0 1

 , B =

 1 0

0 eiπ

 =

 1 0

0 −1


and

C =

 1 0

0 eπi/2

 =

 1 0

0 i

 = S.

6.4.6 Circuit for the algorithm

The circuit implementing the one step of the coin walk V is

|v〉
/

Diffusion step Walk step|c〉
/

where |v〉 and |c〉 denote the vertex and coin states respectively.

The algorithm we implement is phase estimation with dlog2Me = O(log2

√
N) power

queries on V and initial state (
1√
M

M−1∑
t=0

(−i)t|t〉

)∣∣r′′〉|right〉.

As a result, the circuit implementing the algorithm is
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|0〉

State Preparation

. . . •

QFT †
|0〉 . . . •

... · ·
·

|0〉 • . . .

|r′′〉 /
V

. . .

VM/4 VM/2∣∣0b〉 / . . .

Figure 6.4: The quantum circuit implementing the algorithm of Section 6.3.

6.4.6.1 Circuit cost

Theorem 7. There exists a quantum circuit of single qubit, controlled versions of single

qubit gates, CNOT gates and Toffoli gates that implements the algorithm in Section 6.3 using

O(
√
N · logN) gates.

Proof. We count separately the type and number of gates used at each part of the circuit

constructed in the previous sections.

The state preparation circuit is implemented using

• O(log
√
N) Hadamard gates,

• 1 single-controlled

 −i 0

0 1

 gate,

• 1 single-controlled

 1 0

0 −1

 gate,

• 1 single-controlled

 1 0

0 i

 gate.

One step of the walk can be implemented using

• multiply controlled Hadamard gates,

• multiply controlled single qubit gates such as R1(k) gate, U1 gate, universal phase gate −1 0

0 −1

, other phase shift gates such as

 1 0

0 −1

,

 −i 0

0 1

 and

 1 0

0 i

,

that are also used in state preparation.
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• multiply controlled CNOT gates,

• 9 oracle calls on multiply controlled OC and 1 oracle call on the multiply controlled

input oracle Of .

and the conjugate transpose versions of those gates.

Any multiply controlled on n qubits single qubit gate (denoted by Cn-U) can be imple-

mented using 2n− 2 Toffoli gates, a single controlled U gate and n− 1 auxilliary qubits [47,

pp. 183–184]. Hence we can represent the circuit in terms of single controlled single qubit

gates and Toffoli gates. The total number of such elementary gates required to implement

one step of the walk is CV = O(L) = O(logN).

The controlled applications of V in the phase estimation routine are implemented using∑dlog2Me−1
j=0 2j · CV ≤MCV = O(

√
N · logN) elementary gates.

Furthermore, the inverse Fourier transform requires O(log2M) = O(log2N) gates. It

consists of Hadamard gates and gates of the form C1-Rj with

Rj =

 1 0

0 e2πi/2j

 , for j = 2, 3, . . . , dlog2 Me.

Altogether, the circuit requires O(
√
N · logN) elementary gates and O(

√
N) oracle calls

on OC and Of .

6.5 Implementation using Clifford and T gates

Consider the Clifford and T gates. This set of gates is universal, in the sense that it is

possible, using gates solely from this set, to approximately implement any unitary matrix.

Recall that it consists of the Hadamard gate

H =

 1/
√

2 1/
√

2

1/
√

2 −1/
√

2

 ,
the π/8 gate

T =

 1 0

0 eiπ/4

 ,
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the phase gate

S = T 2 =

 1 0

0 i

 ,
the conjugate transpose versions T † and S† and finally the CNOT gate. Let G denote the set

of these gates.

We represent each of the gates used in Section 6.4 using gates from G. Some of them,

such as the controlled H or the controlled T gates can be implemented exactly, while others

are approximated using the Solovay-Kitaev theorem [47], in a constructive way [18]. The

resulting circuit approximates the exact circuit of section 6.4 with error O(ε).

We remind that any multiply controlled single qubit gate Cn-U (where U acts on 1

qubit and Cn is controlled on n qubits) can be implemented using 2n − 2 Toffoli gates, a

single controlled U gate and n − 1 auxilliary qubits [47, pp. 183–184]. Since Toffoli gates

can be implemented exactly using gates from G (see Section 6.5.1), we only deal with the

implementation of the C1-U gates that appear in Section 6.4.

6.5.1 Exact gate implementation

The following gates from the circuit in Section 6.4 can be implemented exactly, using Clifford

and T gates:

• The Toffoli gate [5]

• T † • T † T † P •

• = T • • T † •

H T • T • H

• The C1-H gate [5]

• H • H T † H • H

H = S† • H T H S
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• The C1-

 −i 0

0 1

 gate

• • • • • • −i 0

0 1

 = S S S

,

the C1-

 1 0

0 −1

 gate

• • • 1 0

0 −1

 = S S

and C1-

 1 0

0 i

 gate

• • 1 0

0 i

 = S

used in initial state preparation.

6.5.2 Approximate implementation of the circuit

The remaining gates, namely C1-R1(k), C1-U1 and C1-Rj for j = 4, 5, . . . dlog2Me, are likely

not exactly implementable by the Clifford group and T gates [42]. For that reason, we employ

the Solovay-Kitaev theorem [47]. For any single qubit gate we can construct a circuit [18]

of gates from the set G that approximates the gate within error ε0 using O(logc ε−1
0 ) gates.

Note that if a single qubit gate U is approximated by a circuit within ε0, the gate C1-U is

approximated within ε0 as well.

Theorem 8. There exists a quantum circuit of Clifford and T gates that implements algo-

rithm in Section 6.3 with O(ε) error, using O(
√
N · logN · logc(N/ε)) gates.

Proof. We initially apply Solovay-Kitaev to build quantum circuits comprising of gates in G

that approximate the single qubit gates R1(k) and U1 within error Θ(ε/
√
N). There is a
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constant number of such gates per application of the walk V . Hence the total error for one

application of the quantum walk is Θ(ε/
√
N). Phase estimation requires

∑dlog2Me−1
j=0 2j =

O(M) = O(
√
N) applications of the walk V . Hence the total error before the inverse quantum

Fourier transform is O(ε).

Using the Solovay-Kitaev algorithm we further approximate the inverse Fourier trans-

form. If the inverse Fourier transformation is applied on at least four qubits, it cannot

be implemented exactly using our allowed gate set [42]. We approximate each Rj , for

j = 4, 5, . . . , dlog2Me gate with error Θ(ε/ log2N)). Note that C1-R2 = C1-S and C1-

R3 = C1-T , which can be implemented exactly as shown later. The total error for the inverse

Fourier transform is O(ε), since it requires O(log2
√
N) gates.

As a result, the final error of the circuit is O(ε). The probability of success is reduced by

at most twice that amount [47, pg. 194], namely O(ε).

Finally, we calculate the total number of Clifford and T gates used. Recall that the

Solovay-Kitaev algorithm requires O(logc(1/ε0)) gates for error ε0. Hence one step of the

quantum walk requires O(logc(
√
N/ε)) gates for approximation of each gate and a total of

O(logN · logc(N/ε)) gates. Consequently, the circuit prior to the application of the inverse

Fourier transform requires

O(
√
N · logN · logc(N/ε))

gates. The inverse Fourier transform requires

O

(
log2N · logc

(
log2N

ε

))
gates. In conclusion, the total number of gates in the set G that are required for error O(ε)

is

O(
√
N · logN · logc(N/ε)).

Note that to implement the approximation of the controlled gates we have to represent

the controlled versions of the H, CNOT, T and S gates using only gates from G. This has

already been accomplished for H and CNOT gates. C1-T is implemented using an auxiliary
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qubit [5] as

• • S† T T • H T H • T † T † S •

T = • • • • • •

H • T † T † T T • H

where the upper qubit is the control, the middle qubit is the target and the bottom qubit is

the ancilla. Since S = T 2, we implement C1-S trivially, using the circuit for C1-T .
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Chapter 7

Conclusions and future work

In this thesis we study algorithms for multivariate problems.

In Chapters 2 and 3 we study linear tensor product problems in the worst and average

case setting respectively. We provide necessary and sufficient conditions for weak tractability

under the absolute error criterion. In addition, we provide necessary and sufficient conditions

for such problems to be weak but not polynomially tractable in the average case setting.

There are other tractability criteria that one may consider; see Section 1.2. For example,

it is an open problem to derive necessary and sufficient conditions for linear tensor product

problems in the average case setting to be lnκ-weakly tractable, for κ > 1. Our techniques in

Chapter 3 could be useful for that purpose. Some preliminary results in the worst case setting

have already been presented [52], extending techniques we developed in [53] (also presented

in Chapter 2).

In Chapters 4 and 5 we studied the time-independent Schrödinger equation and developed

quantum algorithms approximating the smallest eigenvalue of the Hamiltonian for certain

classes of potentials. Our methods are based on phase estimation and in the case of smooth

potentials uniformly bounded by a relatively small constant the algorithm vanquishes the

curse of dimensionality classical deterministic algorithms suffer from. In the case of convex

smooth potentials (Chapter 5) we are also able to approximate the ground state eigenvector

of the discretized Hamiltonian within arbitrary distance.

There are still open questions related to eigenvalue estimation of Hamiltonians corre-

sponding to multiparticle systems. For instance, it seems possible to derive algorithms with
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better cost, since there is still gap between upper and lower bounds for the problems we

study. Furthermore, the question of whether randomized algorithms can estimate the ground

state energy for smooth uniformly bounded potentials with cost polynomial in d and ε−1

is still open. If the lower bound is proven to be exponential in d, we would have the first

non trivial case of a problem where quantum computers perform significantly better than

any randomized and by extension any classical algorithm. One can also design quantum

algorithms dealing with other interesting classes of potentials. Finally, estimating the ground

state energy for the time-independent Schrödinger equation for particles of different masses

(1.5) is an open problem.

In Chapter 6 we present results in [57] regarding the implementation of a modification

of the NAND evaluation algorithm in [4, Fig. 2] on complete k-ary trees. We present two

quantum circuits. The first circuit consists of arbitrary single qubit gates and their controlled

variants. It requires O(
√
N · logN) gates and is asymptotically optimal. The other approx-

imates the previous circuit and consists of gates only from the Clifford and T gate set. It

requires O(
√
N · logN · logc(N/ε)) gates for error ε, where c is the constant implied in [18].

It is still an open problem to derive estimates (up to constants) on the number of quantum

gates required to implement the algorithm for certain values of k, e.g. k = 2.
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[55] A. Papageorgiou and H. Woźniakowski. Classical and quantum complexity of the Sturm-

Liouville eigenvalue problem. Quantum Information Processing, 4:87–127, June 2005.



BIBLIOGRAPHY 97

[56] A. Papageorgiou and C. Zhang. On the efficiency of quantum algorithms for Hamiltonian

simulation. Quantum Information Processing, 11:541–561, 2012. 10.1007/s11128-011-

0263-9.
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Appendix A

Appendix on repeated phase

estimation

In this Appendix, we derive useful Lemmas for use in the repeated phase estimation algorithm

of Chapter 5.

Lemma 3. For 0 ≤ εH <
√

8
π2 , |c0|2 ≥ π2

16 we have

|α(m,φ0)− εH |√∑nd−1
j=0 |cj |2|α(m,φj)|2 + εH

>
|α(m,φ0)|√∑nd−1

j=0 |cj |2|α(m,φj)|2
− 7εH ,

where c0 and a(m,φ0) are defined in (5.6) and (5.7), respectively.

Proof. We first show |α(m,φ0)|√∑nd−1
j=0 |cj |2|α(m,φj)|2+εH

> |α(m,φ0)|√∑nd−1
j=0 |cj |2|α(m,φj)|2

−γεH for γ > 2. Indeed

|α(m,φ0)|√∑nd−1
j=0 |cj |2|α(m,φj)|2 + εH

>
|α(m,φ0)|√∑nd−1

j=0 |cj |2|α(m,φj)|2
− γεH

⇔ γ >
|α(m,φ0)|√∑nd−1

j=0 |cj |2|α(m,φj)|2(
√∑nd−1

j=0 |cj |2|α(m,φj)|2 + εH)

It suffices to take γ > 4. Indeed
√∑nd−1

j=0 |cj |2|α(m,φj)|2 ≥ |α(m,φ0)||c0| ≥ 1
2 , since

√
4
π ≤ |α(m,φ0)| ≤ 1 due to the fact that

∣∣m
2b
− φ0

∣∣ ≤ 2−(b+1) [28], and |c0| ≥ π/4.
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Hence

|α(m,φ0)− εH |√∑nd−1
j=1 |cj |2|α(m,φj)|2 + εH

>
|α(m,φ0)|√∑nd−1

j=1 |cj |2|α(m,φj)|2 + εH

− 2εH

>
|α(m,φ0)|√∑nd−1

j=1 |cj |2|α(m,φj)|2
− (γ + 2)εH ,

for γ > 4. Take γ = 5 to complete the proof.

Lemma 4. Consider |ψ2,m〉 as defined in (5.8). Then ‖|ψ2,m〉‖ ≤ εH

Proof. We have

‖ψ2,m‖ = ‖ 1

2b

nd−1∑
j=0

cj

2b−1∑
k=0

e−2πimk/2b |m〉|xj,k〉‖

≤ 1

2b

2b−1∑
k=0

∣∣∣e−2πimk/2b
∣∣∣ ‖|m〉‖ · ‖ nd−1∑

j=0

cj |xj,k〉‖

=
1

2b

2b−1∑
k=0

‖Dk

nd−1∑
j=0

cj |uj〉‖

≤ 1

2b

2b−1∑
k=0

‖Dk‖ · ‖
nd−1∑
j=0

cj |uj〉‖

=
1

2b

2b−1∑
k=0

‖Dk‖ ≤ εH ,

since ‖Dk‖ ≤ εH , and ‖
∑nd−1

j=0 cj |uj〉‖ = 1.

Lemma 5. Under the conditions of Theorem 4, i.e. m′ is the result of phase estimation for

which
∣∣∣ m′

2t0+b
− φ0

∣∣∣ ≤ 1
2b

, |φj − φ0| > 5
2b

for all j = 1, 2, . . . , nd− 1 and |c0|2 ≥ π2/16, we have

|α(m′, φj)|2

|α(m′, φ0)|2
≤ π2

32

with probability p(t0) ≥ 1−
(

5π2

25
+

1−π
2

16
25

)
· 1

2t0
.

Proof. Let M2 = 2t0+b. For j ≥ 1 we have [28]

|α(m′, φj)|2 ≤
1

4(M2∆j)2
≤ 1

22t0+6
, (A.1)
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where ∆j =
∣∣∣ m′M2
− φj

∣∣∣ = φj − m′

M2
≥ 4

2b
, since φj > m′/M2. Additionally,

∣∣α(m′, φ0)
∣∣2 = M−2

2 · sin2(M2∆0π)

sin2(∆0π)
≥ sin2(M2∆0π)

(M2∆0π)2

= sinc2(M2∆0π) =
sin2(M2φ0π)

M2
2 (∆0π)2

(A.2)

since ∆0 < 2t0/M2 is small enough. Hence,

|α(m′, φj)|2

|α(m′, φ0)|2
≤ π2

4

(
∆0

∆j

)2 1

sin2(M2φ0π)
.

Note that ∆j > 2t0+2/M2. As a result

|α(m′, φj)|2

|α(m′, φ0)|2
<
π2

26
· 1

sin2(M2φ0π)
(A.3)

Note that the upper bound in (A.3) depends on how close M2φ0 is to an integer or not,

or equivalently, what is the fractional part of m′ −M2φ0 for m′ ∈ G. Assume, without loss

of generality, that the closest result m0 to M2φ0 is such that m0 −M2φ0 = Y · 2−q < 1/2,

namely m0 > M2φ0. We denote by m`, for ` = −2t0 ,−2t0 + 2, . . . , 2t0 − 1, the measurement

result such that m` −M2φ0 = `+ Y · 2−q. These are all the elements of G.

Case 1: Let 1/2 > Y · 2−q ≥ 1/4. Then

sin2(M2φ0π) = sin2
(
M2

(
m` − `− Y · 2−q

)
π
)

= sin2(Y · 2−qπ) ≥ sin2(π/4) ≥ 1/2,

which according to equation (A.3) implies

|α(m`, φj)|2

|α(m`, φ0)|2
≤ π2

32
, (A.4)

for all m` ∈ G.

Case 2: We now examine the case where Y · 2−q < 1/4, i.e. q ≥ 2. In this case we deal

with results m` in the set G for which the bound of interest
|α(m`,φj)|2
|α(m′,φ0)|2 may become greater

than π2

32 . We show that these results occur with probability at most

(
5π2

25
+

1−π
2

16
25

)
2−t0 .

Initially we consider m0. Equation (A.2) becomes

|α(m0, φ0)|2 ≥ sin2(Y · 2−qπ)

(Y · 2−qπ)2
= sinc2(Y · 2−qπ).

Note that Y · 2−q < 1/4, hence sinc(·) is decreasing. As a result

|α(m0, φ0)|2 ≥ sinc2(2−qπ) ≥

(
2−qπ − (2−qπ)3

6

2−qπ

)2

=

(
1− π2

6 · 22q

)2

,
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since sin(x) ≥ x− x3

3! , for x < 1. Furthermore, since q ≥ 2 and from equation (A.1) we get

|α(m0, φj)|2

|α(m0, φ0)|2
≤ 1

4 · 22(t0+2)
·
(

1− π2

6 · 22q

)−2

<
1

28
·
(

1− π2

6 · 24

)
<
π2

32
, (A.5)

since t0 ≥ 1 and q ≥ 2.

We now examine the remaining results m` for ` = ±1,±2, . . . ,±(2t0 − 1),−2t0 . From

equation (A.2) we have

|α(m`, φ0)|2 ≥ sinc2((`+ Y · 2−q)π) =
sin2(Y · 2−qπ)

((`+ Y · 2−q)π)2
≥ 2−2(q+1) · 8

(`+ Y · 2−q)2π2
,

since 1/4 > Y · 2−q ≥ 2−(q+1) and sinx ≥ 2
√

2
π x, for x < π/4. From equation (A.1) we have

|α(m`, φj)|2

|α(ml, φ0)|2
≤ π2

8
· (`+ Y · 2−q)2 · 22(q+1)

22t0+6

which for ` ≥ 1 implies

|α(m`, φj)|2

|α(ml, φ0)|2
≤ π2

29
· (`+ 1)2

22t0
· 22(q+1) := β(`, q, t0) (A.6)

and for ` ≤ −1 implies

|α(m`, φj)|2

|α(ml, φ0)|2
≤ π2

29
· `

2

22t0
· 22(q+1) := β(`, q, t0) (A.7)

If q is large enough (namely M2φ0 is very close to m0), we might have β(`, q, t0) > π2/16,

for some results ml. Let B = {` ∈ {−2t0 + 1,−2t0 + 2, . . . , 2t0 − 1} : β(`, q, t0) > π2/32} the

set of the indices of those results, with B− = {` ∈ B : ` < 0} and B+ = {` ∈ B : ` > 0}. In

addition `1 is minimum element of the set B+ and `2 is the maximum element of B−.

For any ` ∈ B+ we have

π2

29
· (`+ 1)2

22t0
· 22(q+1) > π2/32⇒ (`+ 1)222q >

27 · 22t0π2

25π2
= 4 · 22t0 . (A.8)

Similarily, for any ` ∈ B− we have

π2

29
· `

2

22t0
· 22(q+1) > π2/32⇒ `222q >

27 · 22t0π2

25π2
= 4 · 22t0 . (A.9)

From [28, Thm. 11] and for ` ∈ B+ we have

|α(m`, φ0)|2 = M−2
2 · sin2((`+ Y · 2−p)π)

sin2
(
`+Y ·2−q
M2

· π
) ≤ (Y · 2−q · π)2(

2
√

2
π (`+ Y · 2−q)π

)2 ≤
π2

22q · `2 · 23
(A.10)
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since Y · 2−q < 1/4. Similarly for ` ∈ B− we have

|α(m`, φ0)|2 ≤ (Y · 2−q · π)2(
2
√

2
π (`+ Y · 2−q)π

)2 ≤
π2

22q · (`+ 1/4)2 · 23
(A.11)

Let P1(B) the probability of getting a result m` ∈ B. We have

P1(B) =
∑
`∈B

nd−1∑
j=0

|cj |2|α(m`, φj)|2 =
∑
`∈B−

nd−1∑
j=0

|cj |2|α(m`, φj)|2 +
∑
`∈B+

nd−1∑
j=0

|cj |2|α(m`, φj)|2

We can write

∑
`∈B−

nd−1∑
j=0

|cj |2|α(m`, φj)|2 =
∑
`∈B−

|c0|2|α(m`, φ0)|2 +
nd−1∑
j=1

|cj |2|α(m`, φj)|2


and

∑
`∈B+

nd−1∑
j=0

|cj |2|α(m`, φj)|2 =
∑
`∈B+

|c0|2|α(m`, φ0)|2 +
nd−1∑
j=1

|cj |2|α(m`, φj)|2


Note that
∑nd−1

j=1 |cj |2 = 1 − |c0|2 ≤ 1 − π2

16 according to the Lemma’s assumptions, and

|α(m`, φj)|2 ≤ 2−(2t0+6) from (A.1). Using the bound from (A.11) we have

∑
`∈B−

nd−1∑
j=0

|cj |2|α(m`, φj)|2 ≤
∑
`∈B−

(
|α(m`, φ0)|2 +

1− π2/16

22t0+6

)

≤ π2

22q+3

`2∑
`=−2t0

1

(`+ 1/4)2
+ (`2 + 2t0)

(
1− π2

16

)
1

22t0+6

≤ π2

22q+3

`2∑
`=−2t0

1

(`+ 1/4)2
+

(
1− π2

16

)
1

2t0+6
.

We now take cases in order to calculate
∑`2

`=−2t0
1

(`+1/4)2
depending on the value of `2.

Case 2.1 Let `2 = −1. Then

`2∑
`=−2t0

1

(`+ 1/4)2
=

24

32
+

∫ −1

−2t0

1

(x+ 1/4)2
dx ≤ 24

32
+

4

3
=

28

9
.

As a result, ∑
`∈B−

nd−1∑
j=0

|cj |2|α(m`, φj)|2 ≤
7

18
· π

2

22q
+

(
1− π2

16

)
1

2t0+6
. (A.12)
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Case 2.2 Let `2 < −1. Then

`2∑
`=−2t0

1

(`+ 1/4)2
≤
∫ `2+1

−2t0

1

(x+ 1/4)2
dx ≤ 1

−`2 − 5/4
.

As a result,

∑
`∈B−

nd−1∑
j=0

|cj |2|α(m`, φj)|2 ≤
π2

22q+3
· 1

−`2 − 5/4
+

(
1− π2

16

)
1

2t0+6
. (A.13)

Similarly we examine the probability of the results m` for ` ∈ B+. Using the bound from

(A.10) we have

∑
`∈B+

nd−1∑
j=0

|cj |2|α(m`, φj)|2 ≤
∑
`∈B+

(
|α(m`, φ0)|2 +

1− π2/16

22t0+6

)

≤ π2

22q+3

2t0−1∑
`=`1

1

`2
+ (2t0 − `1 + 1)

(
1− π2

16

)
1

22t0+6

≤ π2

22q+3

2t0−1∑
`=`1

1

`2
+

(
1− π2

16

)
1

2t0+6
.

We now consider different values of `1, to calculate
∑2t0−1

`=`1
1
`2

.

Case 2.3 Let `1 = 1. Then

2t0−1∑
`=`1

1

`2
= 1 +

∫ 2t0−1

1

1

x2
dx ≤ 2.

As a result, ∑
`∈B+

nd−1∑
j=0

|cj |2|α(m`, φj)|2 ≤
π2

22q+2
+

(
1− π2

16

)
1

2t0+6
. (A.14)

Case 2.4 Let `1 > 1. Then

2t0−1∑
`=`1

1

`2
≤
∫ 2t0−1

`1−1

1

x2
dx ≤ 1

`1 − 1
.

As a result,

∑
`∈B−

nd−1∑
j=0

|cj |2|α(m`, φj)|2 ≤
π2

22q+3
· 1

`1 − 1
+

(
1− π2

16

)
1

2t0+6
. (A.15)
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Let `1 = 1, `2 = −1. Then from (A.12),(A.14)

P1(B) ≤
(

7

18
+

1

4

)
π2

22q
+

1− π2/16

25
· 1

2t0
.

From (A.8),(A.9) we have 22q > 22t0+2 and 22q > 22t0 . Hence

P1(B) ≤
(

7

18
+

1

4

)
π2

22t0+2
+

1− π2/16

25
· 1

2t0
≤ 1− π2/16

24
2−t0 , (A.16)

for t0 sufficiently large.

Let `1 = 1, `2 < −1. From (A.13),(A.14)

P1(B) ≤ π2

22q+3
· 1

−`2 − 5/4
+

π2

22q+2
+

1− π2/16

25
· 1

2t0
.

From (A.8),(A.9) we have 22q > 22t0 and 22q > 22t0+2

`22
. Hence

P1(B) ≤ π2

23
· `22

(−`2 − 5/4)2
· 2−(2t0+2) +

1− π2/16

25
· 1

2t0
+

π2

22t0+2

≤
(
π2

23
+

1− π2/16

25

)
2−t0 , (A.17)

since
`22

−`2−5/4 ≤ 2t0+1 and for t0 sufficiently large.

Let `1 > 1, `2 = −1. From (A.12),(A.15)

P1(B) ≤ 7

18
· π

2

22q
+

π2

22q+3
· 1

`1 − 1
+

1− π2/16

25
· 1

2t0
.

From (A.8),(A.9) we have 22q > 22t0+2 and 22q > 22t0+2

(`21+1)2
. Hence

P1(B) ≤ 7

18
· π2

22t0+2
+

1− π2/16

25
· 1

2t0
+

π2

22t0+2
+

π2

22t0+5
· (`1 + 1)2

`1 − 1

≤
(
π2

23
+

1− π2/16

25

)
2−t0 , (A.18)

since (`1+1)2

`1−1 ≤ 3 · 2t0 and for t0 sufficiently large.

Now consider `1 > 1, `2 < −1. From (A.13),(A.15)

P1(B) ≤ +
π2

22q+3
· 1

−`2 − 5/4
+

1− π2/16

25
· 1

2t0
+

π2

22q+3
· 1

`1 − 1
.

From (A.8),(A.9) we have 22q > 22t0+2

(`1+1)2
and 22q > 22t0+2

`22
. Hence

P1(B) ≤ π2

22t0+5
· (`1 + 1)2

`1 − 1
+

1− π2/16

25
· 1

2t0
+

π2

22t0+5
· `2

−`2 − 5/4

≤
(

5π2

25
+

1− π2/16

25

)
2−t0 . (A.19)
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Finally, combining the results from (A.16) ,(A.17),(A.18) and (A.19) we have

P1(B) ≤
(

5π2

25
+

1− π2/16

25

)
2−t0 .
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