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ABSTRACT

Inferring Transcriptional and Post-Transcriptional Network Structure

by Exploiting Natural Sequence Variation

Mina Fazlollahi

Understanding how cellular processes of an organism translate its genome into its

phenotype is one of the grand challenges in biology. Linkage studies seek to identify

allelic variants that manifest themselves as phenotypic variation between individuals

in a population. The advent of high-throughput genotyping and gene expression

profiling technologies has made it possible to use messenger RNA levels as quantitative

traits in linkage studies. This has created new opportunities to study genetic variation

at the level of gene regulatory networks rather than individual genes.

This thesis consists of four parts, each of which outlines a different strategy for inte-

grating genome-wide expression data and genotype data in order to identify transcrip-

tional and post-transcriptional regulatory mechanisms. The data for these analyses

comes from segregating populations of Saccharomyces cerevisiae (baker’s yeast) as

well as Caenorhabditis elegans (roundworm).

The first study focused on inferring the in vitro binding specificity of RNA-binding

proteins (RBPs). We first analyzed a recent compendium of in vivo mRNA binding

data to model the sequence specificity of 45 yeast RBPs in the form of a position-

specific affinity matrix (PSAM). We were able to recover known consensus nucleotide

sequences for 12 RBPs and discovered novel binding preferences for 3 of the RBPs

namely, Scp160p, Sik1p and Tdh3p.

The second study aimed to identify transacting chromosomal loci that regulate ex-

pression of a large number of genes. Traditionally, such loci are discovered by first

mapping expression quantitative loci (eQTLs) for individual genes, and then look-

ing for so-called “eQTLs hotspots”. Our method avoids the first step by integrating



information across all genes, leading to a more elegant method that has increased sta-

tistical power. For yeast, we recovered 70% of the reported eQTL hotspots from two

independent studies, and discovered a new transacting locus on chromosome V. For

worm, we detected six transacting loci, only two of which were previously reported

as eQTL hotspots.

The third study focused on post-transcriptional regulatory networks in yeast, by

mapping the regulatory activity level of RNA binding proteins (RBPs) as a quan-

titative trait in so-called “aQTL” analysis. We used the collection of 15 sequence

motifs with the associated mRNA region combinations that we obtained in our first

study together with mRNA expression data to estimate RBP activities across yeast

segregants. Consistent with a previous study, we recovered the MKT1 locus on chro-

mosome XIV as a genetic modulator of Puf3p activity. We also discovered that Puf3p

activity is modulated through distinct loci depending on whether it is binding to 5′

or 3′ untranslated region (UTR) of its target mRNAs. Furthermore, we identified a

locus on chromosome XV that includes the IRA2 gene as a putative aQTL for Puf4p;

this prediction was validated using expression data for an IRA2 allele replacement

strain.

Our fourth study focused on the detection of loci whose allelic variation modulates

the in vivo regulatory connectivity between a transcription factor and its target genes.

We call these loci connectivity QTLs or “cQTLs”. We mapped the DIG2 locus on

chromosome IV as a cQTL for the transcription factor Ste12p. Dig2p is indeed a

known inhibitor of yeast mating response activator Ste12p. The coding region of the

DIG2 gene contains a single non-synonymous mutation (T83I). We are experimentally

testing the functional impact of this mutation in allele replacement strains. We also

identified the TAF13 locus as a putative modulator of GCN4p connectivity.
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1

Introduction

Traditionally, the field of molecular biology has relied on techniques tackling one or

few genes at a time. The development of DNA microarray technology in the early

1990’s provided the means for measuring expression data of several thousand genes

in a single experiment. Since then, many high-throughput screening techniques have

been developed. The vast amount of genetic data produced brought forth the need for

computationally demanding statistical approaches that extract biological information

using data-driven modeling. Many of these statistical models are directly or indirectly

based on biophysical models describing the interactions between DNA, RNA and

proteins.

The central dogma of molecular biology is illustrated in Figure 1. Protein synthesis

from DNA involves many regulatory stages governed by different classes of protein

complexes. Initiation or inhibition of the transcription of DNA to RNA is conducted

by a class of regulatory proteins known as transcription factors (TFs). By binding

to a specific DNA sequence proximal to the genes, TFs can recruit or block the

binding of transcriptional machinery and thus activate or repress RNA production.

This stage is known as transcriptional regulation. As RNA is being synthesized,

another class of proteins known as RNA binding proteins (RBPs) controls a further

set of processes. These proteins bind to specific sites on RNA located mostly in the

untranslated regions (UTRs) to influence many different processes that contribute to

the conversion of pre-mRNA to mature messenger RNA (mRNA). These include RNA

splicing (i.e. removing segments of the RNA sequence known as introns), localization,

stability, and degradation. These processes are called post-transcriptional regulation
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since they are conducted on RNA after DNA transcription initiation. Messenger RNA

is then transported out of the nucleus for translation to protein by ribosomes.

Figure 1: Central Dogma in Molecular Biology. A large class of proteins known as
transcription factors (TFs), initiate and regulate gene expression resulting in DNA
transcription to RNA. During and after the RNA production another class of proteins,
known as RNA binding proteins (RBPs), interact with RNA and modify it into
messenger RNA (mRNA). This is known as post-transcriptional regulation. RBPs
are also responsible for stabilization or destabilization of mRNAs. The final phase
is translation of mRNA to protein via ribosomes. As explained, there are many
regulatory controls along the path of protein production from genes.

In a steady-state cellular condition one can use statistical mechanical and thermody-

namical approaches to model the binding of TFs and RBPs to their target DNA and

RNA, respectively. There has been a strong focus on TF-DNA interaction and much

less attention has been channeled to RBP-RNA interaction. This is due to two rea-

sons: Firstly, the significant role of RBPs as an important regulator of the cellular gene

expression program was not known. Secondly, unlike the helical structure of DNA, sin-

gle stranded RNA can fold into complex secondary structure requiring more complex

modeling and technologies. Without further regulation after transcription initiation,

one would expect a strong correlation between mRNA levels and protein abundances.

However thorough measurements have shown more than 20-fold variation between

specific mRNAs and their encoded proteins, suggesting post-transcriptional regula-

tion plays a critical role (Gygi et al., 1999). Also, an increasing number of studies

are confirming the involvement of post-transcriptional regulation by RBPs in human

genetic disorders (Cooper et al., 2009; Joshi et al., 2012; Lukong et al., 2008; Poly-

menidou et al., 2012; Sterne-Weller et al., 2011; Yamazaki et al., 2012). All these

studies point to the fact that dissecting the post-transcriptional network is crucial to

understanding how the cell orchestrates gene expression regulation.
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Microarray technology has also been used to compare the genomic sequence of a

specific strain to a reference sequence (i.e. genotyping) (Sapolsky et al.; Winzeler

et al., 1998). This has e.g. allowed detection of several thousands of single nucleotide

polymorphisms (SNPs) between the DNA sequences of the two yeast strains used to

generated the data analyzed in this thesis. Recent deep-sequencing approaches are

capable of detecting SNPs location at much higher resolution for many individuals

in parallel (Mortazavi et al., 2008; Otero et al., 2010; Shendure and Ji, 2008; Swan

et al., 2002). High-resolution genotype maps make it possible to link an observed

quantifiable variable (i.e. quantitative trait) to genotype variation in a population.

This is the main goal in genome-wide association studies (GWAS) and linkage analysis

approaches. GWAS and linkage analysis are applicable to any organism but they are

of high value for human disease studies because they incorporate the only available

strategy to perturb the human genome, viz. natural genetic variation in human

population.

This thesis is organized into six chapters as follows:

Chapter 1 provides background on our current understanding of how gene expres-

sion is regulated in eukaryotic cells, focusing mainly on transcriptional and post-

transcriptional regulation. It also briefly introduces the experimental techniques em-

ployed to obtain the various data sets used in the analyses presented in this thesis.

The techniques include mRNA expression level profiling with microarrays, mRNA-

protein binding measurements, and protein-protein interaction assays.

Chapter 2 gives a summary of existing motif discovery approaches to determine

RNA-binding proteins (RBPs) binding preferences. It then explains our method for

modeling RBP binding preferences in the form of position-specific affinity matrix

(PSAM) from genome-wide in vivo RBP binding data. We applied our motif finding

algorithm to a collection of binding data for 45 RBPs and compared our findings to

the existing RBPs binding preferences.

Chapter 3 describes the linkage analysis approach and summarizes standard expres-

sion QTL (eQTL) methods. It then introduces a novel method for the detection of
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transacting loci applied to two model organisms: Saccharomyces cerevisiae (baker’s

yeast) and Caenorhabditis elegans (roundworm). The loci we detect modulate expres-

sion levels of a large number of genes. Our method uses χ2-statistics in a novel way to

detect transacting loci that have a broad impact on genome-wide mRNA expression

levels.

Chapter 4 explains our approach for detection of genetic loci that modulate the

activity of RBPs (aQTLs). We used the inferred binding preferences from Chapter 2

to map genetic loci (aQTLs) that modulate RBP activity.

Chapter 5 describes our connectivity QTL (cQTL) analysis method, which identifies

genetic loci that modulate the global pattern of regulatory influence of a transcription

factor on its target genes.

Chapter 6 summarizes our findings and discusses possible further directions for the

studies discussed in this thesis.
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Chapter 1

Background

Ever since the discovery of the molecular structure of DNA by James D. Watson and

Francis H. Crick in 1953, the fascination to decode the genome has never ceased.

Besides opening a horizon for curing genetic disorders and diseases such as cancer

and developing personalized medicine, the desire to shed light on the harmonious and

auto-regulatory control in a living cell has fueled this drive. The regulatory control

of the cell in response to internal and external stimuli is not static and unidirectional;

Rather, the products of the genetic code (proteins) dynamically interact with the

genome and significantly affect the outcome. It is important to understand the inter-

actions among different elements and organelles in the cell to comprehend how it can

orchestrate various functions.

The majority of the work in this thesis applies to yeast, still the methodology is ap-

plicable to other organism. The baker’s yeast, Saccharomyces cerevisiae has served as

an important model for eukaryotic organisms. Yeast was the first eukaryote to have

its genome completely sequenced (Goffeau et al., 1996). Genetic manipulation such

as genetic mutations or deletions of yeast is easy and cheap. Even though there are

few aspects of gene regulation that are exclusive to higher eukaryote organisms, most

of the fundamental genetic regulatory machinery has been conserved from yeast to

human. Perhaps the most valuable insight from performing genetic research on yeast
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is achieved by homologous comparison between other eukaryotes. Homologous pro-

teins have some degrees of sequence similarity between different species and they are

thought to possess a common evolutionary origin (Reeck et al., 1987). The homology

existing between the proteins among different organisms implies the conserved func-

tional roles (Tatusov et al., 1997). More than 30% of all the protein encoding genes of

yeast are found to have homology to mammalian proteins (Botstein et al., 1997). We

can gain insight about the function of novel proteins by identifying their homologous

proteins in yeast. All these applications highlight the importance of genetic research

using yeast.

In the first half of this chapter we will discuss cellular structure and interactions

from a genetic point of view for eukaryote organisms and in the second half we will

explain various experimental techniques that has been developed to understand these

interactions both qualitatively and quantitatively.

1.1 Genetic Code

Genes are discrete units through which the genetic information is passed from the

parents to offspring. These genes are positioned linearly along structures called chro-

mosomes in the cell nucleus in eukaryote organisms. Each organism has a different

number of chromosomes. For example the common fruit fly has 8 and humans have

46 chromosomes. The chromosomes of a particular organism make up the genome of

that organism. The genome is made of deoxyribonucleic acid (DNA), which consists

of long chain of units called nucleotides. Each nucleotide has three components, a de-

oxyribose sugar, a phosphate group (PO−3
4 ) and a nucleobase. There are four type of

nucleobases, adenine (A), cytosine (C), guanine (G) and thymine (T). DNA is formed

by nucleobases attached together covalently by a backbone made of alternating de-

oxyribose sugars and phosphate groups. The phosphate group has a net negative

charge by exchanging a proton (H+) to a water molecule present in the nucleus. Each

sugar molecule contains five carbon atoms labeled from 1′ to 5′ as follows, C1′ is



7

linked to the nucleobase, C3′ is attached to the phosphate group of next nucleotide

and C5′ is bound to the phosphate group of the nucleotide itself. DNA strands have

directionality, meaning that for protein synthesis purposes the strands are read from

5′ to 3′ direction. This also implies that all genes on a single DNA strand lie from 5′

to 3′ direction.

DNA is double stranded in its natural state and the two strands are wrapped around

each other in an antiparallel direction to form a double helix structure. The two

strands are attached by hydrogen bounds that exist between the complementary

bases opposite each other on the two strands, A-T and C-G, known as Watson-Crick

base pairings (Watson and Crick, 1953). The DNA double helix structure is displayed

in Figure 1.1. Because the distance between the two strand and each turn of the

helical structure are not equal, the two grooves developed between the strands as

shown in the figure are not equal. The major and minor grooves are recognized by

DNA binding proteins (Dervan and Burli, 1999; Gao et al., 1992; Mamoon et al.,

2002; Singh and Lambowitz, 2001).

Each DNA molecule together with proteins form a highly organized and compact

structure within the nucleus called chromatin. Figure 1.2 shows this multi level

and dense structure. Double helix DNA is wrapped around a bead that consists of

2 copies of each of the core histones H2A, H2B, H3, and H4 proteins to make a

histone octamer complex (Kornberg and Thomas, 1974). The basic organizational

unit of chromatin is called nucleosome. It is 12 nm in diameter. Nucleosomes consist

of 147 base pair of double helix DNA coiled around the histone core about 1.67

turns. Neighboring nucleosomes are about 60 base pair apart. In 1928, Emil Heitz

published his findings on chromatin taking different forms by observing that part of

the chromosomal material of moss stayed compact throughout the cell cycle (Heitz,

1928). He named the condensed part heterochromatin and named the part that

decondensed at times during the cell cycle euchromatin.

It is interesting to know that the intragenic and intergenic non-protein-coding se-

quences make up almost about 98% of human genome (Taft et al., 2007). These
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Figure 1.1: DNA Double Helix Structure. The two strands are attached together
by the hydrogen bonds between the A-T and C-G nucleobases. The base pairing
is known as Watson-Crick base pairing. The nucleobases on each DNA strand are
attached together by a backbone made of altering deoxyribose sugar and phosphate.
The five carbon atoms on the sugar base are labeled from 1′ to 5′. The phosphate
group in a nucleotide is bound to the C5′ and C3′ of each sugar is connected to
the phosphate group of the neighboring nucleotide. Two antiparallel DNA strands
wind around each other and create a double helix structure. The major and minor
grooves, which are formed because of the helical structure, serve as binding platform
for DNA-Protein interactions. The double helix structure and the major and minor
grooves are shown in (a). A-T and C-G interactions through Watson-Crick edge of
the nucleobases by hydrogen bond contacts are presented in (b). Figure from Lodish
et al. (2007).

regions are referred to “genetic dark matter” or “junk DNA”. Increasing evidence

points to the important regulatory roles of these regions, which are often linked to

human complex disease (Melhem and Devlin, 2010). In addition, it is now known that

genes that encode proteins are located in the euchromatin, which is more accessible



9

Figure 1.2: From DNA to Chromosome Structure. Double helix of DNA is wrapped
around beads made of eight histone proteins, one pair of the each of the four type his-
tones. About 147 base pair of DNA coiled around the histone core create nucleosome,
the building block of chromatin. This form of chromatin is known as euchromatin.
Chromatin can also acquire an even more condensed form named heterochromatin.
During the cell devision heterochromatin is highly condensed with the help of scaf-
folding proteins to create the chromosomal structure. Figure by Darryl Leja/National
Human Genome Research Institute.

for proteins regulating gene expression. In other words, genes are not distributed

evenly throughout the chromatin but instead there are regions of high gene density

interspersed with depleted region. Prior to cell division, the chromatin forms an even

more condensed structure known as chromosome.

1.2 Eukaryotic Gene Expression Model

Gene expression is the process in which a ribonucleic acid (RNA) molecule is synthe-

sized from a specific region of the DNA (i.e. gene) to be used for protein production
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in cytoplasm. Upregulation and downregulation of expression of a gene refer to the

induction or repression of RNA production. RNA, like DNA, is a polymeric molecule

in which the deoxyribose sugar and nucleobase thymine (T) of DNA are replaced

by the ribose sugar and uracil (U), respectively. Ribose sugar has a hydroxyl group

(OH−1) attached to carbon C2′ compared to deoxyribose sugar. This makes the RNA

molecules chemically more active than DNA and prone to breakdown by water. The

fact that RNA is less stable than DNA is also biologically justifiable. Since RNA

molecules are constantly produced and recycled after protein synthesis in the cell, a

relatively unstable structure is advantageous; whereas, a stable and chemically pas-

sive structure is preferred for the DNA molecules. Also instability of RNA molecules

allows the cell to adjust itself in short time after abrupt environmental changes when

the synthesis of a specific protein must be shut down. We will discuss later how

RNA molecules are protected from degradation between their synthesis and protein

production.

Now let’s study the series of processes that are conducted in the cell to synthesize

proteins in response to external stimuli. Figure 1.4 illustrates the contemporary

theory of gene expression. External signals such as variation in the concentration

of chemicals and hormones or environmental changes are detected by specific protein

structures on the cell’s membrane. G-protein-coupled receptors (GPCRs) make up the

largest family of transmembrane receptors that activate signal transduction pathway

within the cell (Rosenbaum et al., 2009). Upon detection of external signal, GPCRs

release signal-dependant subunits into the cytoplasm. The subunits are then identified

by specific enzymes such as protein kinase, enzymes that add phosphate groups to

some amino acid residues of a substrate protein resulting in its activation. From

here on depending on the stimuli and regulatory circuits there are several signaling

cascade that result in activation and translocation of an enzyme from cytoplasm to

nucleus.

Transcription factors (TFs) are proteins that bind to a specific nucleotide sequence

on DNA proximal to a gene and upregulate or downregulate the gene expression.
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Figure 1.3: Anatomy of a Typical Gene and Synthesized Mature mRNA Molecule.
(A) Different segments of a gene are shown. The promoter region contains regulatory
elements such as TF binding site and RNA polymerase II transcription initiation
site. The segment shown in pink is the coding region (CD) of the gene that will be
translated to protein amino acid chain by ribosome. As the transcription machinery
continues elongation, the nascent RNA is cleaved off. (B) Different segments of
mature messenger RNA (mRNA). The segment upstream of the first AUG motif is
the 5′ untranslated region (5′ UTR), which is protected from degradation by a cap
attached to it, and the segment downstream of stop codon is the 3′ untranslated region
(3′ UTR), which is protected by a poly-adenosine tail. The segment in between the
translation start codon (AUG) and the stop codon (either UAG, UAA or UGA) is
the open reading frame. This region can be different from the CD of the related gene
because of the splicing process (i.e. exons removal), which are not shown here. The
ORF is translated to amino acids during protein synthesis.

This region, which contain regulatory sites both for induction or repression of gene

expression, is called promoter region (see Figure 1.3A). Here the TF and its cofactors

initiate the transcription process by recruiting RNA polymerase II complex to the

transcription start site (TSS) to the promoter region of the gene. TSS location is

usually at least several hundred bases upstream of the beginning of the coding region

(CD) of the gene.

The promoter region of many genes is partially obstructed by nucleosomes that in-

hibit the binding between the TF and the promoter. Several subunits of transcription

machinery are responsible for chromatin structure modulation, either by displacing



12

the histones complex which are ATP-dependant or by post-translational modifica-

tion of histones (Kouzarides, 2007). For example, the SWI/SNF (SWitch/Sucrose

NonFermentable) complex is one of the major ATP-dependent chromatin remodeling

composed of 12 subunits (Smith et al., 2003; Szerlong et al., 2003). Prior to transcrip-

tion initiation of a gene, this complex alters the position of nucleoseomes occupying

the cis-regulatory site of that gene by forming a DNA loop on the nucleosome sur-

face (Zofall et al., 2006) and it functions with DNA bending proteins to enhance

proper chromatin architecture. The second class of chromatin modifier chemically

alters the histones amino acid tail that are wrapped around the DNA tightly. This

modification such as acetylation of histone tails is a reversible event by deacetylation

required for gene repression (Struhl, 1998; Wolffe, 1996). Both of the chromatin re-

modeling processes decompact the chromatin allowing access to the promoter region

of the gene.

As the nascent RNA polymer curls out of the RNA pol II, it gets covered with proteins

named RNA binding proteins (RBP) and a series of further processes are initiated.

These events are known as post-transcriptional regulation and extend from birth to

death of the RNA transcript by various classes of RBPs (Moore, 2005). First a 7-

methylguanosine cap is attach to the beginning of the RNA (see Figure 1.3 and

Figure 1.4). Besides protecting the RNA molecule from degradation, the cap is also

important for efficient protein synthesis from the RNA template (Fechter and Brown-

lee, 2005). mRNA splicing, by which some specific segments of the pre-messenger

RNA (pre-mRNA) molecule known as introns are cleaved out (i.e. spliced), was first

observed by Berget et al. (1977). The remaining two segment (i.e. exons) after each

splicing event are then ligated back together. At first it was thought that each gene

codes only for one specific protein amino acid chain. It is now evident that in higher

organisms condition-specific combinations of intron splicing can occur. This is known

as alternative splicing and as a result a single gene can encode for two or more pro-

teins (Black, 2003). The intron splicing continues as the RNA pol II continues RNA

elongation phase, even after reaching the end of the coding region of the gene. Once

RNA pol II passes and transcribes the polyadenylation signal sequence (AAUAAA)
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and cleavage signal, the pre-mRNA is cleaved and the poly-adenosine tail (poly(A)

tail) with about 150-300 adenosine residue is added to the end (Mangus et al., 2003).

The poly-A tail plays an important role in stability and transportation of the mature

mRNA to the cytoplasm where the proteins are synthesized.

Figure 1.3B displays different parts of the mRNA molecule. The main body is

comprised of an open reading frame (ORF) in between the 5′ and 3′ untranslated

regions (UTRs). As mentioned earlier, the 5′ UTR is attached to a cap and the 3′

UTR is linked to the poly(A) tail. Protein synthesis is carried out by ribosomes with

translation starting at the first occurrence of AUG nucleotides triplet. As ribosomes

scan the mRNA chain, the nucleotide triplets are translated to amino acids. Amino

acids are the building block of proteins. Codons are the sequential non-overlapping

nucleotide triplets that specify the type of amino acid for protein synthesis. There

are only 20 different types of amino acids found in eukaryote proteins. From the 4

different types of nucleotides existing in mRNA sequence (A, C, G and U), 64 unique

codon can be generated. This means the codon-to-amino acid mapping is degenerate,

with only 20 different amino acids found in natural proteins.

Ribosomes begin translation of mRNA from the start codon (AUG) and continue

reading the ORF until reaching one of the stop codons (UAG, UAA or UGA). As their

name implies, the 5′ and 3′ UTRs are not translated into amino acids. However the

UTRs play a major role in post-transcriptional regulation of mRNA. More specifically,

the 3′ UTR is involved in mRNA stability (Conne et al., 2000; Mignone et al., 2002).

mRNAs that are actively being translated by ribosome are protected from degradation

by protein complex bound to the 5′ UTR cap and 3′ UTR poly(A) tail; Whereas,

translationally inactive mRNAs are targeted for decay enzymes.

In the next section we will expand more on the regulatory circuit in the cell by

focusing on some well studied examples.
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Figure 1.4: A Unified Theory of Gene Expression (see text for details). Figure
from Orphanides and Reinberg (2002).

1.3 Regulatory Control Strategies in the Cell

Regulatory control in a cell is a multi-layer process. Regulation in a cell is often

triggered by an extra-cellular signal. This triggers a chain of overlapping events

within the cytoplasm and nucleus. It starts with post-translational modification of

signal transduction protein in the cytoplasm (e.g. protein phosphorylation) carried

on into nucleus by activating or repressing transcription through chromatin modifi-

cation or activating the transcription factors. The next phase in the chain of events

is the post-transcriptional regulation through pre-mRNA processing, mRNA trans-

port into cytoplasm, localization, mRNA stability and degradation. The next layer

of regulation is conducted during mRNA translation, protein synthesis and post-

translational protein modification. The majority of the regulatory mechanisms are

conducted through modulation of the activity levels of the protein kinases, transcrip-
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tion activators, repressors and RBPs involved in a response pathway of the detected

signal. Furthermore, it is now known that in all eukaryote model organisms except

Saccharomyces cerevisiae, post-transcriptional regulation and more specifically gene

silencing is triggered by RNA interference (RNAi) (Drinnenberg et al., 2009; Filipow-

icz and Sonenberg, 2008; Tomari and Zamore, 2005).

1.3.1 Transcription

The majority of biological regulation occurs at the level of transcription initiation by

the transcription activating factors and repressors. They regulate mRNA transcrip-

tion by assisting or blocking the binding of the transcription machinery to transcrip-

tion start sites (TSS). In the cellular “ground-state” with respect to transcription, the

promoter region of most genes are partially occupied by histones core and transcrip-

tion is repressed. This results in a very low basal transcription level in vivo. Tran-

scription is initiated by sequence-specific recognition of unique upstream activation

sequences (UASs) within the promoter regions by TFs (Ptashne, 1988; Struhl, 1998).

Presence of different types of UASs in the promoter region of a gene indicates the

combinatorial and more complex regulatory network even in the simplest eukaryote

organism (Tuch et al., 2008). Transcription repression can happen by recruiting com-

plexes known as transcription repressors to the upstream repression sequences (URSs)

on the promoter regions that compete with RNA polymerase II complex (Smith and

Johnson, 2000). Repression can also happen through chromatin modification. For

example, by recruiting histone deacetylation complexes, which cause localized con-

densation of the chromatin around the promoter region and thus blocking the binding

of transcriptional machinery (Kadosh and Struhl, 1998).

A well-studied example of transcriptional regulation is yeast galactose1 metabolism.

Gal4 protein is a transcription factor that is required for expression of the genes

encoding enzymes such as GAL1 that are involved in this pathway (Giniger et al.,

1985). Gal4 protein structure consists of two separable domains: a DNA binding

1Galactose is a monosaccharide sugar that is very similar to glucose.
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domain (BD) and an activating domain (AD). The BD recognizes and binds to the

so-called galactose upstream activating sequence (UASG) on the DNA sequence and

the AD interacts with the RNA polymerase II subunits (Keegan et al., 1986). Both

domains are required for transcription activation by Gal4p. In yeast cells that grow in

the absence of galactose, GAL genes are expressed at very low levels. Upon addition

of galactose to the medium, the expression of GAL genes gets highly induced by Gal4p

through active recruitment of RNA polymerase II to the transcription initiation site on

the DNA (Gill and Ptashne, 1987). The second regulator of GAL genes is the repressor

Mig1p, which is active in the presence of glucose (Griggs and Johnston, 1991; Nehlin

et al., 1991). In the absence of both glucose and galactose, Gal4p is bound to the

UASG through its BD region. However, the AD region of Gal4p is bound by inhibitor

Gal80p and Gal4p cannot recruit the RNA pol II complex (Johnston et al., 1987;

Ma and Ptashne, 1987). In the presence of galactose but not glucose, cytoplasmic

Gal3p can localize the nuclear Gal80p to cytoplasm resulting in rapid dissociation

of Gal80p and Gal4p (Jiang et al., 2009). So Gal3p in a way acts as a galactose

sensor. Meanwhile, repressor Mig1p is kept in cytoplasm in a phosphorylated state

and is unable to interfere with Gal4p activity. When glucose is detected by the cell,

the protein kinase that phosphorylates Mig1p is deactivated and dephosphorylated.

Mig1p can then localize in the nucleus and can bind to URS sites and repress the

expression of GAL genes by recruiting a repressing complex containing Tup1p. It is

interesting to know that the URS site for Mig1p binding is also found in the promoter

region of the GAL4 gene itself. So Mig1p reduces the levels of the GAL4 mRNA in

a glucose-dependent manner as well (Griggs and Johnston, 1991).

Some other mechanism of transcriptional regulation includes TF conformational change

during stress response (Eastmond and Nelson, 2006), TF-dependaet chromatin re-

modeling (Young et al., 2002) and TF activation by intermediate products during

amino acid starvation (Wang et al., 1997).



17

1.3.2 Post-Transcription

Post-transcriptional regulation refers to the set of processes performed by RNA-

binding proteins (RBPs) on the precursor mRNA molecule once its transcription

is initiated and are continued until the mRNA degradation phase. As shown in Fig-

ure 1.3B, each mRNA molecule has three regions: the 5′ and 3′ untranslated regions

(UTRs) and the open reading frame (ORF). The ORF segment is scanned and read

by ribosome and proteins are synthesised by translating the codon information. The

two UTRs play an important role in the regulation of mRNA levels. Here we will

discuss the post-transcriptional regulatory mechanisms in more depth.

In the traditional view of gene expression, pre-mRNA processing is performed once

the transcription is completely finished. The RNA molecule is then cleaved off and

splicing, 5′ capping and 3′ poly(A) trail addition is performed. So, transcriptional

and post-transcriptional regulations were long viewed as two discrete and indepen-

dent events. It is now known that some of the pre-mRNA processing take place co-

transcriptionally (Orphanides and Reinberg, 2002). That is, while the RNA polymer

is being synthesised, the 5′ capping and some splicing are performed (Bentley, 2005).

In contrast, the 3′ end poly(A) tail formation is tightly linked to the transcription

termination (Buratowski, 2005).

Splicing is catalyzed by the splicosome, a complex consisting of small nuclear ribonu-

cleoprotein particles (snRNPs) (Wahl et al., 2009). First, specific snRNPs of the

splicosome complex bind to both ends of the splice site (i.e. intron) and are joined by

other snRNPs to loop out the intron segment. The generated stem-loop is then cleaved

and the neighboring exons of the spliced site are ligated. In a study by Beyer and

Ocheim (1991), electron microscopy revealed looped RNAs attached to chromatin.

This observation was among the first experimental evidence of co-transcriptional

splicing. However, the introns mostly close to the 3′-end of the mRNA are spliced

post-transcriptionally. In fact, some pre-mRNAs in the neuronal cells are spliced af-

ter transportation into the cytoplasm by Calcium ion signaling (Glanzer et al., 2005).



18

The functional consequences of co-transcriptional versus post-transcriptional splicing

is still an open question. It could be that the former subjects splicing to transcription-

dependent mechanism and the later might link splicing with some downstream reg-

ulatory mechanism (Han et al., 2011). Only about 5% of yeast genes are found to

contain introns (∼287) and all of them are removed before translation (Juneau et al.,

2006). The presence of introns in higher eukaryotes, like mice or human, compared to

yeast is extremely common. For example, there are about 140,000 introns present in

the human genome. The introns cover about 25.9% of the human genome compared

to exons, which make up only about 1.5% (Gregory, 2005; Juneau et al., 2006). Due

to sparsity and low occurrence of introns in yeast genome, the genetic studies on this

organism are in general less concerned about introns and splicing events.

UTR regions of mRNAs play vital roles in the post-transcriptional regulation of gene

expression. They are involved in mRNA transport between the nucleus and cyto-

plasm, subcellular localization, stability and translation efficiency (Mignone et al.,

2002). These processes are mainly controlled through interaction of RBPs with spe-

cific nucleotide motifs on the mRNA UTR regions and the RNA secondary structure.

The average length of 5′ UTRs varies between 100 and 200 nucleotides among various

organisms. In contrast, the average 3′ UTRs length is organism-dependent. In fungi

this length is about 200 nucleotides and it reaches about 800 nucleotide in humans

and other vertebrates (Mignone et al., 2002). As mentioned earlier, the 5′ UTR is im-

portant for translational efficiency. Specific cap-binding proteins gather at the 5′-end

and any secondary structure that has formed in this region is unfolded. This creates

a platform for binding of the ribosome subunit to the mRNA (Maitra et al., 1982).

Also, translation can be repressed by some RBPs. For example, the iron-repressive

element (IRE) is located in the 5′ UTR of mRNAs that encode proteins required for

iron metabolism pathway and effect translation through RBP-IRE binding regulated

by intracellular iron levels (Hentze et al., 1987; Leipuviene and Theil, 2007).

Another post-transcriptional regulatory mechanism is the subcellular localization of

mRNAs, which results in asymmetric concentration of the synthesized proteins in the
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cytoplasm. This regulation is highly important for development. There are several

strategies for mRNA localization such as active directed mRNA transport and local

stability regulation of the mRNAs in the cytoplasm. Both of these mechanisms are

carried out by RBPs interacting with the signal elements located mainly within the

3′ UTRs (Ainger et al., 1997; Bashirullah et al., 2001).

Finally, RBPs also regulate the stability or instability of mRNA transcripts through

interaction with specific sites on the mRNA untranslated regions. In eukaryotes,

mRNA decay is initiated by shortening of the poly(A) tail at the 3′ end and 5′ cap

removal by deadenylase complex and decapping enzymes respectively (Parker and

Song, 2004). The mRNA stability regulation is mediated through AU-rich elements

mainly in the 3′ UTR region and mRNA decay is initiated by degradation of the

poly(A) tail. 5′ UTRs and ORFs may also play a role in mRNA decay by a process

known as nonsense-mediated mRNA decay (NMD). When a nonsense codon (i.e.

premature stop codon) is followed by junction due to splicing, this type of decay can

occur (Hentze and Kulozik, 1999). The spliced regions of the mRNA are detectable

because a marker protein binds to the junction at the to end of neighboring exons.

This marker protein remains at the junction even after the mRNA transport to the

cytoplasm and during protein synthesis (Kataoka et al., 2000). The ribosome complex

displaces these marker proteins during mRNA translation. However, if the ribosome

disassembles from the mRNA molecule due to a nonsense stop codon, the linker

protein initiates the NMD pathway.

mRNA half-lives are measured by chemically arresting the transcription followed by

DNA microarray assays over a time course (see Section 1.5.1). Such studies per-

formed in yeast revealed that the mRNA encoding metabolic proteins have relatively

long half-lives and the mRNA encoding ribosomal proteins are relatively short-lived,

which vary from couple of minutes to more than 100 minutes (Wang et al., 2002).

mRNA degradation is a highly efficient process in the cell. Since a single mRNA is

used as template to synthesize multiple protein by ribosome, fast mRNA degradation

is crucial for the cell when that specific protein is not needed any more. This is even
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more important in the case of defective mRNAs, which could lead to catastrophic con-

sequences for the cell if that mRNA is not degraded efficiently and quickly (Houseley

and Tollervey, 2009).

As an example, let us focus on the yeast protein Puf3. Puf3p is a RNA-binding

protein that regulates the stability of its target mRNAs post-transcriptionally (Foat

et al., 2005; Gerber et al., 2004; Jackson et al., 2004). It is a member of the Pumilio-

FBF (PUF) protein family domain, whose protein members are highly conserved

both functionally and structurally (Wang et al., 2002; Wickens et al., 2002). Puf3p

is important both for regulation of mRNA degradation and mitochondrial biogenesis

especially in respiratory conditions (Jiang et al., 2010). Foat et al. computationally

and experimentally demonstrated that depending on the type of the carbon source

present in yeast growth medium, Puf3p becomes active and destabilizes its target

mRNAs by binding to consensus motif located in their 3′ UTRs. For example, Puf3p

represses expression of the COX17 gene through promoting the degradation of its

mRNA by deadenylation (Olivas and Parker, 2000). The COX17 gene encodes a

protein that is copper metallochaperone and transfers copper ions to a subunit in

mitochondrion2 (Heaton et al., 2000). In the study by Olivas and Parker, the half-

lives of the COX17 mRNA between yeast wild-type strain and a strain lacking PUF3

gene (puf3∆) were compared after shutting off the transcription. Measurements of

that experiment showed that the half-lives are about 3 minutes and 17 minutes in

the wild-type and mutant strains respectively. So the lack of Puf3p resulted in stabi-

lization of the COX17 mRNA by more than 5-folds. The same study also measured

deadenylation rate of 17.5 residues/min and 2-3 residues/min for the two strains,

again serving as an evidence that Puf3p enhances the deadenylation and degrada-

tion of the COX17 mRNA. One possible explanation for this is that Puf3p might

recruit deadenylase enzyme to its target mRNA or modify the mRNP structure to a

better substrate for the deadenylase (Wickens et al., 2002). It is also possible that

Puf3p binding to the 3′ UTR could accelerate the decapping of the 5′ UTR and en-

hance degradation (Houshmandi and Olivas, 2005). Additionally, by some feedback

2Mitochondria are the organelles in the cytoplasm that are responsible for ATP production.
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signaling mechanism PUF3 gene expression is highly induced during the respiration

state (Jiang et al., 2010).

RNA Turnover Rate Formulation

In a living cell, biochemical molecules such as RNA and proteins are constantly pro-

duced, utilized and recycled. In response to abrupt changes in the environmental

conditions, cell can rapidly response by regulating the state of protein synthesis by

adjusting the mRNA turnover rate. The difference between the transcription rate of a

gene g and the decay rate of its mRNA sets the turnover rate (Foat et al., 2005).

d

dt
[mRNA]g =

αg

Vcell

− τg[mRNA]g (1.1)

Here [mRNA]g, αg and τg represent the mRNA concentration, transcription and de-

cay rate of gene g, respectively. The parameter Vcell refers to the cell’s volume. Note

that the concentration is measured per unit volume. We have discussed some tran-

scriptional regulatory mechanisms in the previous section. Here we will focus on the

decay rate, which depends inversely on the mRNA stability. During the time that

the mRNA is bound to the ribosome and translation is actively carried out, two RNA

binding protein complexes attach to either end of the mRNA molecule and stabilize

it by protecting the 5′-end cap and the 3′-end poly(A) trail from degradation. mRNA

decay is induced when particular RBPs bind to a specific binding site located mainly

on the 3′ UTR of the mRNA and promote deadenylation or repress translation and

thus enhance the mRNA turnover rate.

In an steady state condition, there is no variation in mRNAg concentration macro-

scopically and the right side of the above equation is equal to zero.

Vcell × [mRNA]g =
αg

τg
(1.2)

From the equation above, it is obvious that the mRNA abundances contain both
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transcriptional and post-transcriptional regulatory information. So measuring the

mRNA abundances in a steady state condition can be used for dissecting both TFs

and RBPs regulatory networks.

1.3.3 Translation and Post-Translation

Translation refers to the protein synthesis process during which the mRNA template

is scanned by ribosome and the amino acid chain is synthesized based on the sequen-

tial codon information of the mRNA open reading frame (ORF). The translational

regulation includes processes that control the recruitment of ribosome complex on the

start codon, the elongation, and termination of protein synthesis. Like the regulatory

mechanisms discussed above, translation is a highly regulated process and is tightly

coupled with post-transcriptional regulation. In eukaryotes, translation initiation is

in most cases dependent on the 5′ UTR structure and the presence of the 5′ cap. The

cap-binding protein complexes interact with ribosome through its 40S ribosomal sub-

unit. Also, it has been observed in yeast that decreased translation rate of mRNAs

can trigger degradation (Muhlrad and Parker, 1994; Schwartz and Parker, 1999). Also

as mentioned previously, mRNAs with iron responsive elements (IREs) can recruit

regulatory proteins to inhibit ribosome scanning and repress translation (Leipuviene

and Theil, 2007). In addition to the mRNA-specific translation regulation, transla-

tion can be regulated through modification of the proteins in the basic translation

machinery. For example phosphorylation of the translation initiation factor, eIF4E, is

linked to increased activity of the translational machinery (Duncan et al., 2005). Reg-

ulation of translation processes is crucial for the cell, especially during development,

since it controls the accumulation of the required proteins at the correct location and

time within the cell (Vasudevan et al., 2006).

Post-translational regulation, as its name implies, refers to set of processes that mod-

ify synthesized proteins and regulate their activities or mark the protein for degra-

dation (Benayoun and Veitia, 2009). It includes protein folding, amino acid edit-

ing and adding chemical groups such as methylation (Lee et al., 2005), phosphory-
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lation (Fiedler et al.), acetylation/deacetylation (Kurdistani and Grunstein, 2003).

Many of these modification occur in combination together during any pathway.

Protein methylation is a post-translational modification by which a methyl group

(CH−1
3 ) is added to specific lysine or arginine amino acid residues. This phenomenon

was first time observed in bacteria by Ambler and Rees (1959). Lysine methylation

has exclusively been seen on histones, but arginine methylation has been detected

in various other proteins (Lee et al., 2005). Methylation of several lysine residues

in the H3 nucleosome subunit is associated with euchromatin and transcriptional

activation, whereas methylation of other residues in H3 and H4 nucleosome subunits

is associated with heterochromatin and transcriptional repression (Lee et al., 2005).

Transcriptional repression or activation by histone methylation could be due to the

inhibition of binding of other proteins to histone tails or generating a binding site

for the recruitment of other enzymes and proteins involved in chromatin remodeling

processes.

Histone deacetylation is a reversible mechanism underlaying chromatin remodeling.

Removal of an acetyl group (COCH−1
3 ) from specific lysine amino acid residues on the

histone tails destabilizes the contact between the core histone and DNA and allows for

decompactation of the DNA, providing a platform for transcription factors interaction

with the DNA. Histone acetylation, which is the addition of an acetyl group to the

lysines, reverses this process and leads to compact nucleosome (Wolffe, 1996).

Phosphorylation is the process that modifies the chemical structure of a protein

by adding a phosphate group (PO−3
4 ) to specific serine and threonine amino acids

residues. This can alter the protein’s activity level. Protein phosphorylation was

first reported by Burnett and Kennedy (1954). Protein phosphorylation is another

reversible modification, which can set the activity of wide range of kinases on and

off and it is the basis of signal transduction. Many important cellular processes are

initiated or repressed through a cascade of protein phosphorylation (Fiedler et al.).

Phosphorylation of TFs or RBPs is a way of sequestering them to outside of the

nucleus when not needed during gene expression.
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All of these classes of regulatory mechanisms of gene expression are highly interwoven

and this regulatory network is more complex in the higher eukaryotes. In the next

section we will focus on the protein structure and consider few examples of protein-

DNA and protein-RNA interactions.

1.4 How Do Proteins Recognize Their Targets?

This section concentrates on the topic of target recognition by proteins. As was dis-

cussed in the previous section, the target set of a protein could be promoter regions

on the DNA, RNA transcripts, or other proteins. Transcription factors (TFs) bind to

specific sites on the promoter region of the genes and initiate or suppress transcription.

Most transcription activators and repressors contain a DNA-binding domain that di-

rectly interacts with the DNA. Some factors get recruited to the proper site on the

promoters with the assistance of cofactors. DNA-binding domains (DBD) are sorted

into different protein families based on the domain structures. RNA-binding pro-

teins (RBPs) bind to RNA transcripts and carry out post-transcriptional processing

and mRNA stability regulation. RBPs also contain segments known as RNA-binding

domains (RBD), which are categorized into structural domain families. These do-

mains recognize and bind specific sites on the mRNAs. The third group of protein

domains, in the case of protein kinases, recognize amino acid site on other proteins.

We will mostly elaborate on the TFs and RBPs direct recognition of their targets

from structural and chemical point of view with few examples.

To understand the mechanisms of protein-DNA or protein-RNA recognition, it is

necessary to first study some common binding domain structures. Proteins re made

up of amino acids. Each amino acid consist of a generic part H3NCHRCOOH or

peptide, which acts as the back bone, and a unique side chain or residue (R) attached

to each peptide. There are 20 unique amino acids found that occur naturally in living

organisms. However, due to post-translational modification it is common to find

variations of these 20 basic amino acids in the proteins. During the amino acid chain
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Figure 1.5: Formation of Peptide Bond Between Two Amino Acids. The generic
sequence of a free amino acid can be written as H3NCHRCOOH. The carboxyl group
with negative charge forms a peptide bond with the positive amino group of the
successive amino acid and a water molecule (H2O) is released.

synthesis, the carboxyl group (COOH) of an amino acid reacts with the amino group

(H2N) of the following amino acid and they generate a chemical bond by releasing a

water molecule (H2O) as shown in Figure 1.5. Because the polypeptide chain begins

with the amino group of the first residue and it ends with the carboxyl of the last

residue, the two ends of the protein are referred to as the N-terminal and C-terminal

respectively.

The amino acids’ size, hydrogen-bonding potential and net electric charge are de-

termined by the structural composition of the amino acid side chains as shown in

Figure 1.6. Five amino acids, namely argenine, histidine, lysine, aspartic acid and

glutamic acid, have relatively long and flexible charged side chains. The rest of the

side chains are electrically neutral. However, six amino acids in this group can par-

ticipate in hydrogen bonding due to the polarity of the chemical groups at the end of

their side chains containing nitrogen, oxygen and phosphorus atoms. The remaining

nine amino acids have hydrophobic resides. All of these physical and chemical char-

acteristics of amino acids play a crucial role in protein folding and also recognition

of specific nucleotide sequences for protein-target interactions. In the physiological
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Figure 1.6: Chart Representing the 20 Amino Acids Found in the Proteins of Living
Organisms.

state of the cell, e.g. concentration levels of various chemicals and ions, PH level,

temperature, and cofactors concentration, the protein structure is dictated by its

amino acid sequence (Anfinsen, 1973). The optimal three dimensional protein con-

figuration must be energetically favored such that the newly synthesized polypeptide

chain can reach it in a short time. In some cases, the protein folding is guided with

molecular chaperones that assist the trapped protein conformations in local free en-

ergy minima by an ATP-dependant mechanism (Hartl et al., 2011). The formation of

chemical interactions such as covalent bonds and hydrogen bonds between different

amino acids, hydrogen bonds between polar amino acids and water molecules and

also hydrophobic effect between non polar residues and water molecules, determine
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the protein structure and maintain its stability. It is also important to note that

these structures are highly sensitive to temperature and chemical composition of the

cytoplasm and nucleus. For example, even a slight variation in the temperature of

the cell’s environment can destabilize and deform protein structures and consequently

give rise to the loss of their functionality. If we consider yeast cells in conditions such

as heat shock, the stress response pathway gets induced and expression of about 14%

of yeast genes gets either activated or repressed (Gasch et al., 2000). Since the heat

shock reduces the structural integrity of proteins and promotes protein unfolding,

stress response induces expression of genes encoding protein folding chaperones and

further localizes them in the cytoplasm and mitochondria (Gasch et al., 2000). So

maintaining protein structure is of high concern for the survival of living cells.

In 1913, Nishikawa and Ono observed some ordered molecular structure when study-

ing the x-ray diffraction pattern of silk (Nishikawa and Ono, 1913). This was the first

indication for the existence of the protein structures using crystallography method.

X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy are now

the standard approaches for determining protein structures. Two common structural

pattern that are observed in proteins are the α-helix and the β-sheet. To generate an

α-helix, the amino group of residue i forms a hydrogen bond with the O = C group of

residue i+4. In almost all protein structures, these helices are right-handed, with the

hydrophilic side of the residues facing the exterior and the hydrophobic sides face to-

ward the interior of the helix. A β-sheet is formed from separate polypeptide strands

through hydrogen-bonding interactions, which can have parallel or anti-parallel ori-

entation relative to each other.

To form a compact and stable structure, regions of helices and sheets within the

protein structure are connected with loops or turns. Protein folding causes distant

regions of the protein to interact and produce a stable and functional structure. So

the binding-domain of a protein can be made up of distant regions of the protein.

Figure 1.8 displays examples from 5 different DBD families. For example, two α-

helices connected by a turn generate the helix-turn-helix (HTH) structure. Proteins
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Connexions module: m44402 10

Figure 7: The -helix and -pleated sheet are secondary structures of proteins that form because of
hydrogen bonding between carbonyl and amino groups in the peptide backbone. Certain amino acids
have a propensity to form an -helix, while others have a propensity to form a -pleated sheet.

Every helical turn in an alpha helix has 3.6 amino acid residues. The R groups (the variant groups)
of the polypeptide protrude out from the -helix chain. In the -pleated sheet, the �pleats� are formed by
hydrogen bonding between atoms on the backbone of the polypeptide chain. The R groups are attached
to the carbons and extend above and below the folds of the pleat. The pleated segments align parallel or
antiparallel to each other, and hydrogen bonds form between the partially positive nitrogen atom in the
amino group and the partially negative oxygen atom in the carbonyl group of the peptide backbone. The
-helix and -pleated sheet structures are found in most globular and �brous proteins and they play an

important structural role.

3.3 Tertiary Structure

The unique three-dimensional structure of a polypeptide is its tertiary structure (Figure 8). This structure
is in part due to chemical interactions at work on the polypeptide chain. Primarily, the interactions among
R groups creates the complex three-dimensional tertiary structure of a protein. The nature of the R groups
found in the amino acids involved can counteract the formation of the hydrogen bonds described for standard
secondary structures. For example, R groups with like charges are repelled by each other and those with
unlike charges are attracted to each other (ionic bonds). When protein folding takes place, the hydrophobic R

http://cnx.org/content/m44402/1.5/

Figure 1.7: Two Local Secondary Structures of Proteins: α-helix and β-sheet. The
dotted lines represent hydrogen-bonds. Figure from http://cnx.org/content/

m44402/latest.

with HTH domain interact with the DNA by the insertion of one of their helices into

the major groove of the promoter region of their target genes. Another structural

pattern is known as leucine zipper (bZIP) where two parallel α-helices are connected

together through leucine residues repeating every seven residues. If each of the helices

of the bZIP structure is replaced by two α-helices connected through a single loop, the

structure is named as basic helix-loop-helix (bHLH). The two helix-loop-helix halves

can be same or different proteins, which are dimerized together. Protein structures

can become further stabilized by introduction of other ions such as zinc that can hold

the folds together.

In general, the DNA-binding domain (DBD) of the transcription factors can be clas-

sified based on the structure of its domain. The main structural families are the

zinc stabilized, HTH and zipper type. Figure 1.8 displays a protein member from

five different DNA-binding domain families. The zinc stabilized DBD family contains

the largest number of protein with zipper type being the second largest group. The

residues in the DBD of the TF interact with the nucleotides and also through the

minor and major grooves of the DNA. The DNA grooves have a net negative charge so

only the amino acid residues with net positive charge interact with the grooves.
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Figure 1.8: DNA-Binding Domains of Five Different Transcription Factors of Yeast.
(A) and (B) are two members from the zinc stabilized family with (B) being observed
in fungus only, (C) from leucine zipper, and (D) and (E) are from HTH families.
Figure from Hahn and Young (2011).

One major difference between the target site recognition on DNA and RNA by pro-

teins is due to the difference of groove width. The double stranded regions of RNA

generated by the binding of complementary segments of the RNA molecule, create

deep and narrow grooves such that insertion of protein residues is quiet impossible.

So most RBPs recognize single stranded regions of the RNA. Figure 1.9 presents

human Pum1 protein structure, which is a typical protein from the Pumilio/FBF

(PUF) homology domain family. The RNA-binding domain of Pum1p consists of

eight repeats labeled as R1 to R8. Each repeat is made up of three α helices. The

middle helix of each repeat directly interacts with a single mRNA base and recog-

nizes a specific nucleotide within the binding site on the mRNA UTR regions. The
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Figure 1.9: Protein Structure of Pum1p of Human a Member of PUF Homology
Domain Family. The RNA binding domain of the protein is depicted here. It is
comprised of eight repeats (labeled by R1 to R8), each about 40 amino acids long. The
repeats stack together and form a crescent structure whose concave surface interacts
with the RNA sequence and its convex surface serve as a interaction platform for
cofactors. The target RNA and the nucleotide composition of the binding site is
also shown. Each repeat is responsible for recognition of one nucleotide within the
binding site on RNA sequence. The repeats are made of 3 α-helical segments where
the middle helix interacts with the nucleotides. The interactions between the amino
acids and the nucleotides is based on hydrogen bonds and van der Waals contacts.
Figure from Ryder (2011).

amino acid residues located on the concave side of the Pum1p bind to the mRNA site

by creating hydrogen bonds and van der Waals bonds. The convex side of Pum1p

provides a platform for the interactions with other proteins.

Figure 1.10 depicts the detailed interactions between specific amino acids on the

Pum1p repeats and each of the nucleotides within the consensus binding site on the

mRNA. Each nucleotide is identified by three amino acids at specific positions on the

middle helix of each repeat. Two of the residues make hydrogen bonds or van der

Waals bonds with the nucleobases and the third amino acid establishes stacking inter-

actions with the aromatic rings of the nucleobases. For example, the combination of

serine and glutamate residues at positions 1079 and 1083 detects guanine nucleobase,

that of glutamine and cysteine/serine recognizes adenine, and that of glutamine and

asparagine recognizes uracil (Figure 1.10b).
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Figure 1.10: Detailed Interactions Between the Amino Acid Residues of Pum1p Re-
peats and the Nucleotide Sequence of the target mRNA. Protein repeats are shown by
squares and RNA bases by ovals. Dashed lines indicate hydrogen bonds and parenthe-
ses represent van der Waals contacts. Three amino acid residues from each repeat are
involved with RNA base recognition. On the right side a close up look at the Pum1p
interaction with uracil (top), guanine (middle) and adenine (bottom) are shown. The
nucleotide atoms coloring is as follows: dark blue for nitrogen, red for oxygen, yellow,
light blue, green or purple for carbon atoms. Figure from Cheong and Hall (2006).

Studies focused on understanding protein-target recognition usually approach the

problem by engineering the binding domain of the protein or the binding site on

the target and study the effect of the desired site-directed mutations on the protein

domain and/or target site by measuring the equilibrium binding constants. Cheong

and Hall (2006) developed cultures with mutant Pum1p and measured the binding

constant between the mutant protein and correspondingly mutated binding site on

the target mRNA or wild-type target mRNA. As the first test, they mutated Glu-

1083 and Ser-1079 in repeat 7 to glutamine and asparagine, respectively. This mutant

Pum1p was expected to recognize an uracil at position 2 of the mRNA site. Indeed,

they found that the mutant protein bound the target sequence with UUUAUAUA

site, with 25 times higher affinity than the wild-type UGUAUAUA, confirming that

the identity of this amino acid is important for nucleotide recognition.
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In summary, DNA-binding proteins and RNA-binding proteins are able to recognize

their targets through their binding domains. The DNA-binding domain or RNA-

binding domain consists of proximal or distal regions of the protein that are brought

close spatially by protein folding. The combination of amino acid residues within the

binding domain interact and recognize the identity of the nucleotides on the DNA or

RNA sequence.

1.5 Experimental Techniques for Deciphering the

Genetic Code

In this section, we will briefly describe the experimental methods employed to obtain

various datasets used in this thesis. In general, the experimental methods can be

categorized based on the environment in which they are performed. Experiments

carried out within living cells are labeled as in vivo and those performed outside a

living cell but in a controlled artificial environment are known as in vitro. A main

weakness of the in vitro experiments is that they fail to simulate the exact cellular

conditions of an organism, so the interpretation of the results must be done carefully.

However due to the absence of the complexities and many regulatory interactions

within a living cell, in vitro experiments can focus on one or few types of interactions

and greatly simplify the system under study. Another classification of the methods is

based on the scope of the measurements. A method can be low-throughput screening

or high-throughput screening, where the former focus on few genes or gene products

whereas the later allows genome-wide measurement.

1.5.1 DNA Microarray Technology

The idea of biochips and their application is probably one of the key factors in the

advancement of biological research in the past two decades. It allowed researches

to perform measurements for thousands of biochemical reactions in parallel. The
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chip, which is about 1 cm2 in size, consists of thousands of spots, each with a unique

single stranded nucleotides or amino acids polymers (i.e. probes) attached to a glass

or nylon substrate. Each spot contains many copies of same probe sequence. The

detection of presence or interactions between a polymers sample and the chip is based

on the hybridization between the probes and the polymers in the sample under study

based on reverse complement or protein recognition. Perhaps the most widely used

type of this technology is the DNA microarray, which is used for genome-wide mRNA

expression level profiling. Living cells respond to external stimuli by reprogramming

expression of specific genes, resulting in modified mRNA transcription or turn over

rates. DNA microarrays allow for measuring the absolute mRNAs abundances in a

sample or relative mRNA abundances between two samples/conditions (Schena et al.,

1995; Spellman et al., 1998; van’t Veer et al., 2002). They are also used for detection

of single nucleotide polymorphisms between a DNA sample and a DNA reference

pool (Sapolsky et al.; Winzeler et al., 1998) and for high-throughput identification of

interactions between proteins and target DNAs/RNAs (Gerber et al., 2004; Harbison

et al., 2004; Hogan et al., 2008; Iyer et al., 2001).

First let us discuss the DNA microarray fabrication processes briefly. The microarray

can be fabricated by using spotting or in-situ synthesis. In spotting method, the

nucleotide probes are spotted with fine-pointed pins onto the substrate. A single

probe is first amplified using a polymerase chain reaction (PCR) method. PCR

is a repetitive step of reverse transcription of the DNA by a thermostable DNA

polymerase to yield a double stranded DNA followed by heat treatment to denature

the produced double stranded DNA molecules. The produced strands are then used

as the probes on the microarray. The in-situ methods uses various photolithography

techniques, where the single nucleotides adenine (A), cytosine (C), guanine (G) and

thymine (T) are chemically attached in different order based on a set of location based

patterns. This technique was first developed by Fodor et al. (1991). The probes in

this method are not full-length DNA, but rather oligonucletides3. Currently with the

3Oligonucleotide is a short single-stranded chain of nucleotides with a length usually about couple
of 10 bases.
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in-situ fabrication techniques more than 1 million probes can be synthesised onto

every square cm of the chip. Arrays synthesised by in-situ techniques have higher

probe density and better reproducibility with a much higher cost than the spotting

technique.
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Figure 1.11: The Principle of Genome-Wide Expression Profiling Using cDNA Mi-
croarray Technology. mRNA samples from both cultures are reverse transcribed to
cDNA and fluorescently labeled nucleotides are incorporated (Cy5 and Cy3). The
usage of these two dyes allows the comparison of the two RNA samples on one single
array. The resulting labeled cDNA mixture is hybridized to the array based on the
reverse complement match to the single stranded DNA probes. The array is then
scanned with a laser. The fluorescent scans colors correspond to hybridization in-
tensities for each probe spot. The Cy5/Cy3 fluorescence ratio for each probe reflects
relative abundance of that specific cDNA. Figure from Wyrick and Young (2002).

The microarray experiments are based on the principle illustrated in Figure 1.11,

where relative mRNA abundances are measured between an experimental and the

control yeast cultures. The experimental culture can be cells grown in a different

condition than the control culture, mutated cells relative to the control, or even

related strains or tissues. The cells in both cultures are lysed either by an enzyme

or virus and mRNA content of each is collected and purified separately. Because

RNA by nature is less stable than DNA, the mRNA strands of each sample is first

reverse transcribed in to its complementary DNA strand (cDNA). Note that cDNA

molecules are structurally exactly same as DNA molecule, but since it is made from

mRNA, the cDNA lacks the intron segments. Before applying the samples to the

microarray chip, the cDNA molecules in each of them are labelled using different

fluorescent dyes. As shown in the figure, the single-stranded cDNAs are labelled with
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red fluorescent dye (Cy5) and green fluorescent dye (Cy3) in the experimental and

control samples respectively. The two samples are then mixed in equal proportions

and applied to the microarray. The labelled cDNAs compete to hybridize to the

complementary probes on the substrate slide. Usually this step is carried out at a

specific temperature to minimize the non-specific binding of the cDNAs to the probes

on the microarray. Then the slide is washed and scanned with a laser to quantify the

relative abundance of a specific cDNA strand between the two samples. This relative

abundance is the ratio of the intensity of the red and green light emitted by the dyes.

The mean of the pixels intensities that make up a probe is used in the ratio. On the

microarray the spot complementary to a particular cDNA sequence is presented with

red when the cDNA relative abundance is higher in the experimental sample, green

when the relative abundance is lower in the experimental sample and yellow when

there is no differential expression for that gene is detected between the experimental

and control samples. cDNA microarrays are used for mRNA levels profiling of both in

vivo and in vitro experiments. They can also be used for measuring absolute mRNA

abundances of a single sample where the intensities of a single dye is measured.

One disadvantage of using the DNA microarray is that the ratios do not accurately

represent true expression ratios for very low or very high abundances. For low abun-

dances the signals are very noisy and high abundances can lead to signal saturation

and therefore bias the results. Signal saturation occurs when the actual signal at a

pixel on the chip exceeds the scanner’s detection upper threshold. In these cases,

all pixels with intensities larger than the threshold will be truncated, regardless of

the actual intensities. One way to account for the high abundances is to synthesize

custom designed microaarays that take into account the over-representation of the

specific mRNAs in the sample, that is, to fabricate chips with enriched probes for

the desired spots. Thus the knowledge of the mRNA sequences being interrogated

is crucial for array design. Another method/approach is to remove all of the satu-

rated pixels prior of averaging the intensities for each spot. Also cross-hybridization

between the probes and cDNAs can lead to false positives when analysing the gene

expression profiles (Okoniewski and Miller, 2006).
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1.5.2 TAP-tagged Affinity Purification Binding Method

As mentioned in the previous section, microarrays can be used for genome-wide high-

throughput detection of the interactions between the RNA-binding proteins (RBPs)

ans their target mRNAs. One method for identifying such interactions is known as

RBP immunoprecipitation on chip (i.e. RIP-chip) originally established by Tenen-

baum et al. (2000) to study RNAs associated with RBPs in human cancer cells. The

more recent version of this method performed by Gerber et al. (2004) and Hogan

et al. (2008), was based on the precipitation of the endogenously formed RBP-mRNA

complexes by using a tandem affinity purification (TAP) tagging method originally in-

troduced by Rigaut et al. (1999). It allows for rapid purification of protein complexes

even at low concentration. The tag was constructed by attaching two immunoglobulin

G (IgG) binding domains of protein A of Staphylococcus aureus bacterium, calmod-

ulin binding peptide and a tobacco etch virus (TEV) cleavage site. The tag was fused

in-frame at the C-terminus of the respective open reading frame (ORF) in its original

chromosomal location of the gene encoding the protein of interest (Ghaemmaghami

et al., 2003). It was shown that the function, regulation and stability of most proteins

of yeast were not affected by the fused tag (Gavin et al., 2002) and (Ghaemmaghami

et al., 2003).

Figure 1.12 depicts the RIP-chip procedure. Yeast cells with TAP-tagged RBP

of interest are grown and subsequently are broken down. The tag is presented as

protein A in the figure. As mentioned earlier the TAP tag has IgG binding down

and the tagged RBP-mRNA complex with bind to the IgG column. The complex

is then released from the column by cleavage with TEV protease4 and the RNA is

isolated. This RNA sample is then reverse transcribed in to cDNA and labelled with

red fluorescent dye (Cy5). To control for non-specific RNA-RBP binding, whole cell

mRNA from wild-type cells lacking the TAP tag are also isolated and the generated

cDNAs are labelled with green fluorescent dye (Cy3). The two labelled samples are

then mixed in equal proportion and applied to cDNA microarray. The slides are

4Protease is an enzyme that catalyzes the hydrolytic breakdown of proteins.
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Figure 1.12: Genome-Wide Identification of RNA Associated to RBPs Using Affinity
Purification Experiment. Yeast cells with TAP-tagged RBP of interest are grown
and then lysed. The tag is shown as protein A. The tagged RBPs-RNA complexes
are isolated with IgG-Sepharose and then are released from it by cleavage with TEV
protease. RNAs associated with the released tagged RBP are isolated, and cDNA
copies are labeled with red fluorescent dye (Cy5). RNAs are also isolated from wild-
type cells lacking the TAP tag and their cDNAs are labelled with green fluorescent dye
(Cy3). Both samples are then hybridized to yeast cDNA microarray. The Cy5/Cy3
fluorescence ratio for each spot on the microarray represents its enrichment for binding
to the RBP. Figure from Gerber et al. (2004).

then scanned with a laser and the ratio of the Cy5/Cy3 light intensities reflect the

enrichment of the spots for binding to the tagged RBP under the study.

The RIP-chip method is a rather simple procedure that allows for in vivo detection

of RBP targets expressed at their natural level with negligible distortion on the RBP

activity. However the drawback is the concern of the re-association of the RBP to

RNAs with higher binding affinity after the cell lysis (Mili and Steitz, 2004).

Similarly, such measurements can be done for high-throughput in vivo detection of

genomic DNA associated with a specific DNA-binding protein (DBP). In this case, the

method is called chromatin immunoprecipitation on chip (i.e. ChIP-chip), where the

DNA is fragmented and the DBP-DNA complexes are precipitated with an antibody

relevant for the protein under study followed by the microarray measurements (Iyer

et al., 2001).
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1.5.3 RNA-Seq

RNA-Seq is a high-throughput sequencing-based approach categorized as “next gen-

eration sequencing” or “deep” sequencing technology. RNA-seq technology is based

on the sequencing method by Sanger et al. (1977). The Sanger method utilizes in

vitro DNA replication. The principle of Sanger sequencing is as follows. First the

DNA or cDNA, in the case of RNA, is denatured5. Since the replication can not

start without a starting sequence to which the polymerase can add new nucleotide to

construct the reverse complement of the single stranded DNA, a primer is attached to

the beginning of the single stranded DNA molecule. The primer is a short nucleotide

acid chain with known composition, with its 3′-end annealed to the beginning of the

DNA sequence. The primer is radioactively or fluorescently labeled so that the final

product is detectable. The primer-DNA sample is amplified with PCR process and

then the solution is divided in to four tubes with labels “A”, “C”, “G”, and “T”.

For the DNA replication, a DNA template, normal nucleotides and the DNA poly-

merase enzyme are required. However, Sanger sequencing method uses two different

types of deoxynucleotide, normal nucleotides (dATP, dCTP, dGTP and dTTP) and

dideoxynucleotides (ddATP, ddCTP, ddGTP and ddTTP). The difference between

normal nucleotides and dideoxynucleotides is that when the later are integrated into

the sequence by DNA polymerase, the addition of further nucleotides and the replica-

tion is terminated. The Sanger method takes advantage of this feature for sequencing.

A solution of all four types of the normal nucleotides in equal amounts are added to

each tube. The next step is the addition of ddATP to tube “A”, ddCTP to tube “C”,

ddGTP to tube “G” and ddTTP to tube “T”. The concentration of the dideoxynu-

cleotides in each tube is much smaller than that of the normal nucleotides. Finally

the DNA polymerase is added to each tube and replication is initiated. Note that the

DNA polymerase enzyme starts the replication process from the 3′-end of the DNA

template and moves toward the 5′-end. As the complementary DNA strand is being

5Denaturing of a polymer means to unfold it by a chemical or heating, resulting in a linear
structure. In the case of double stranded DNA this process causes the separation of the strands,
which results in two single stranded DNA molecules.
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synthesized by the polymerase, nucleotides are added one by one on to the growing

chain. However, a dideoxynucleotide is integrated sporadically into the chain instead

of a normal nucleotide, which terminates the chain. So one is expected to observe

the incomplete DNA chains end with ddA in tube “A”, ddC in tube “C”, ddG in

tube “G” and ddT in tube “T”. At this point the strands are denatured again and

the newly produced chains, which were labeled at their primers, are collected from

each tube separately. By sorting the produced chains based on their length for each

tube separately, the sequence information of DNA template can be revealed. DNA

molecules naturally have a negative net charge because the phosphate backbone re-

leases a proton (H+), which is absorbed by water molecules. So placing the DNA

molecules in an electric field causes the molecules to move toward the higher voltage.

If the electric field is applied in a gel medium, then the drag force from the gel on

the travelling DNA molecules is proportional to their length and the molecules are

separated based on their length with the shorted travel furthest. This method is

known as gel shift assay or electrophoretic mobility shift assay (EMSA), which we

will discuss more in the next section. The Sanger sequencing approach is depicted in

Figure 1.13.

Sanger sequencing is low-throughput and expensive and it is not accurate for very

short or very long sequences. In contrast, RNA-seq uses massive and parallel sequenc-

ing of millions of short DNA fragments simultaneously at much lower cost.

Now we will explain the steps involved in the RNA-Seq approach for genome-wide

mRNA sequencing. First the poly(A) mRNA molecules are purified from the cell and

fragmented with an enzyme before or after the cDNA synthesis. Sequencing adaptors

are ligated to both ends of each cDNA fragment. The fragments are the amplified and

sequenced with Illumina Genome Analyser platform (http://www.illumina.com).

cDNA sequencing with Illumina is carried out in two steps: clustering and sequenc-

ing (Nagalakshmi et al., 2010). The clustering station is depicted in Figure 1.14. In

this step, the denatured single stranded cDNA fragment is loaded into the flow cell.

The flow cell surface is packed densely with primers with a solution containing normal
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Figure 1.13: The Sanger Sequencing Approach. (1) A radioactively labeled primer is
annealed to the 3′-end of the single stranded DNA of interest shown in blue. Once the
primer is attached to the DNA, the sample is amplified using a PCR process. The so-
lution is then divided into 4 tubes. Mixture of normal deoxynucleotides (dATP, dCTP,
dTTP and dGTP) in equal amount is added to all 4 tubes. (2) In this step, each tube
receives one of the four dideoxynucleotide (i.e. ddATP, ddCTP, ddTTP and ddGTP).
The concentration of the ddNTP is usually much less than the normal nucleotides.
Adding the DNA polymerase enzyme to the tubes initiates the DNA synthesis. DNA
polymerase carries out the replication by adding the complementary nucleotides of
the bases on the unknown DNA template and synthesis the reverse complement chain.
Occasionally, a dideoxynucleotide will be incorporated into the chain, which prevents
the addition of further nucleotides. For example in tube containing ddATP, the in-
complete chains all end with ddA. (3) The strands in each tube are denatured and
the radioactively labeled chains are extracted separately from each tube and applied
to gel electrophoresis separately. Since the chains have net negative charge, applying
a voltage difference across the gel with higher voltage at the bottom of the gel plate
causes the chains to travel downward in the vertical gel columns. The drag force from
the gel on the nucleotide chains is proportional to their length. So shorter fragments
migrate faster across the gel. The sequence of the new strand can be reconstructed
based on the bands appearing on the gel for each tube as shown. (4) The reverse com-
plement of the inferred strand, is the sequence of the unknown DNA template. Figure
from http://www.bio.utexas.edu/faculty/sjasper/bio212/biotech2.html.
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nucleotide and DNA polymerase enzyme. As the sample is introduced into the flow

cell, the adaptor-cDNA fragments covalently bind to the surface of the flow cell from

end of the fragment. The adaptor on the free end of the cDNA fragment is recognized

by one of the primers attached to the surface. At this point DNA polymerase initi-

ates DNA replication and a second strand is produced from the first cDNA fragment.

These two strands are denatured and since only one end of each of them is attached to

the flow cell surface, the free end adaptor is recognized by a complementary primer

on the surface and strand synthesis is initiated again. This process is repeated to

generate a cluster of identical DNA fragment all covalently attached to a spot on the

surface. Each unique DNA fragment generates one such cluster on the flow cell.

Adapter

DNA fragment

Dense lawn
of primers

Adapter

Attached

DNA

Adapters

Prepare genomic DNA sample

Randomly fragment genomic DNA
and ligate adapters to both ends of
the fragments.

Attach DNA to surface

Bind single-stranded fragments
randomly to the inside surface
of the �ow cell channels.

Bridge ampli�cation

Add unlabeled nucleotides

and enzyme to initiate solid-

phase bridge ampli�cation.

Denature the double
stranded molecules

Nucleotides

a

Figure 1.14: Illumina Gene Analyzer Clustering Step. Figure from Mardis (2008).

The flow cell is used by Illumina Genome Analyser to sequence the cDNA fragments.

This step is depicted in Figure 1.15. Here the concept is similar to Sanger se-

quencing. First the cDNA fragments are denatured and a sequencing primer that is

complementary to the adaptor is attached to each cDNA fragments (i.e. templates)

on the flow cell. Sequencing is then performed by DNA synthesis, adding one base
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pair at a time to the DNA strands in the cluster. Each type of the nucleotides used

are color coded with fluorescent dyes attached to the 3′-OH group, which prevents

addition of further nucleotide by DNA polymerase. This way, the strand synthesis

freezes after each nucleotide addition, allowing the Genome Analyzer’s camera to

record the color of each cluster for identifying the type of the incorporated nucleotide

at each step. The color labels and the OH group are then cleaved off before the next

nucleotide addition cycle. Usually at most 50 base pairs of one or both side of the

fragments are sequenced. The reads are then mapped to a DNA library allowing for

gapped alignment in the case of RNA sequencing to consider for introns. By calcu-

lating the number of reads for each gene in the genome, we are able to calculated the

expression level for the genes.

Figure 1.15: Illumina Gene Analyzer Sequencing Step. Figure from Mardis (2008).

The RNA-Seq approach is not bound by the limitations inherent to microarray mea-

surements. In contrast to the microarray technology, the DNA or cDNA sequences

are directly determined at single base resolution. Another big advantage of RNA-Seq

over hybridization-based methods is the very low background signal for RNA-Seq.

Probe saturation is irrelevant unlike for the microarray which can result in biased

measurements. RNA-Seq has already been applied to sequence the transcriptome
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of various organisms (Nagalakshmi et al., 2008), (Mortazavi et al., 2008), (Cloonan

et al., 2008) and (Wilhelm et al., 2008).

As for any developing technology, the RNA-Seq method has its own challenges and

weaknesses. Once the sequences of the cDNA fragments are obtained, the reads

are mapped to a reference DNA library. So RNA-Seq depends on the quality of the

sequenced genome of an organism or cell line. Also, there is the issue of segments that

are mapped to multiple locations on the genome, partly because the DNA fragments

are not fully sequenced and only about 50 base pairs from one or both ends are

sequenced. Despite these shortcomings, RNA-Seq and in general the deep sequencing

technologies have revolutionized the transcriptomics field.

1.5.4 Protein-Protein Interaction Identification

Proteins are the main elements in the cell that carry out the various processes. So it

is highly important to understand protein interactions. As explained earlier usually

several protein cooperate to conduct a specific task. There are several medium-

throughput methods that study the protein interactions, which we will explain two

common approaches in this section.

Yeast Two-Hybrid Assay

Yeast two-hybrid system is a low-throughput method for in vivo detection of physical

interaction between two different proteins originally generated by Fields and Song

(1989). This method takes advantage of yeast’s Gal4p structural properties. This

protein is a transcription factor that is required for expression of the genes encoding

enzymes for galactose metabolism (Giniger et al., 1985). As explained earlier in

Section 1.3, Gal4p protein structure consists of two separable domains: the DNA

binding domain (BD) and the activating domain (AD). The BD recognizes and binds

to the so-called galactose upstream activating sequence (UASG) on the DNA sequence

and the AD interacts with the RNA polymerase II subunits (Keegan et al., 1986).
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Both domain are necessary for the transcription activation by Gal4p. In the presence

of galactose, Gal4p induces the expression of its targets by recruiting RNA polymerase

II to the transcription initiation site on the DNA (Gill and Ptashne, 1987).

The principle of the yeast two-hybrid assay is demonstrated in Figure 1.16. Let’s

assume that we are interested to test whether two proteins X and Y physically in-

teraction or not. Two hybrid protein complexes are generated as follows. The DNA

binding domain of Gal4p (GAL4-BD) is fused in-frame to the ORF for protein X

and the activating domain of GAL4 (GAL4-AD) is similarly fused in-frame to the

ORF for protein Y. If X and Y do not interact with each other, the two hybrids are

not brought into close proximity and there is no activation of transcription of the

reporter gene6 containing the UASG. However, if X and Y interact with each other in

the nucleus of the yeast cell, the fused hybrids are assembled at the UASG site of the

reporter gene, which leads to activation of transcription. So detection of the reporter

gene transcript in the cell is an indication for the interaction between proteins X and

Y.

Affinity Capture

A different approach for identifying protein interactions is to purify the protein com-

plexes and use a method such as mass spectrometry to identify the protein partners.

The purification of the protein complex is similar to the TAP-tagged affinity purifi-

cation that we described earlier. The tag construct is fused in-frame to the ORF of

the protein of interest and the protein complexes containing the tag are isolated with

an antibody or IgG column similar to the purification procedure described in Sec-

tion 1.5.2. The purified protein complexes are then the proteins in these complexes

are separated using a gel shift assay. Gel shift assay, also known as electrophoretic

mobility shift assay (EMSA), is a standard method for separating polymers such as

proteins or DNA molecules based on their net charge, size and shape (Chelm and Gei-

6Reporter gene is a gene whose expression level can be monitored and measured easily (e.g. green
fluorescent protein). The gene is attached to the promoter region of interest and the construct is
transfected into a cell or tissue.
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Figure 1.16: Yeast Two-Hybrid Assay for Detection of a Physical Interaction between
two proteins X and Y. The two proteins, X and Y, are shown in purple color. The
Gal4p DNA-binding domain (GAL4-BD) is infused in-frame to the ORF of the gene
encoding protein X, shown as the hybrid protein on the left and the activating domain
(GAL4-AD) is infused in-frame to the ORF of the gene encoding protein Y, shown as
the hybrid protein on the right. (a) The X and Y region of the two hybrids are not
interacting and RNA pol II is not recruited to the reporter gene. So the reporter gene
is not expressed. (b) In this case, X and Y interaction brings the two GAL domains
close together and consequently the RNA pol II is recruited and the transcription of
the reporter gene is induced. Figure from Pandey and Mann (2000)

duschek, 1979; Garner and Revzin, 1981). An electric field is applied in a gel plate

(Figure 1.17A). The polymers with larger net charge, shorter length and linear

structure travel through the gel faster since they are less impeded by drag force from

the gel medium. So after applying the solution containing the protein complexes, dif-

ferent bands appear on the gel each representing a different protein (Figure 1.17B).

Some gel shift assays can even separate molecules different in length by one nucleotide

or amino acid. Proteins naturally fold to generate complex 3-dimensional structures

and unlike the DNA sequences that have net negative charge, proteins can be neutral

or have a positive or negative net charge based on their amino acid composition. So

the proteins are usually denatured and coated with negative charge that is propor-

tional to the protein’s length, so that the result of gel assay separation is only based

on the length of different proteins present in the complexes. Once different proteins in

the purified complexes are separated in the gel, each band is physically cut out of the

gel and identified by mass spectrometry based on the mass-to-charge-ratio calculated
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from the flight time in a known electric field (Domon and Aebersold, 2006).

Figure 4.7 Polyacrylamide Gel Electrophoresis

Figure 1.17: Electrophoretic Mobility Shift Assay (EMSA). In biology, it is used for
separating different macromolecules such as protein, DNA or RNA strands based on
the net charge, size and shape. An electric field is applied across the gel plate (A).
The solution containing the macromolecule complexes is injected to the top of one of
the gel channels. DNA and RNA molecules inherently have negative net charge due
to the phosphate back bone. However proteins can have zero, positive or negative
net charge depending on their amino acid composition. Therefore, the proteins are
first unfolded and coated with negative charge proportional to their length. The
macromolecules will move toward the cathode; however, the drag force from the gel
pores on the moving molecules slows them down. The drag force depends on the size
and the shape of the molecules. As a result the macromolecules migrate with different
velocities and each band in the gel is generated by a specific type of macromolecule
(B). EMSA is also used to study the interaction between a known DNA (or RNA) and
the protein of interest. First the DNA-protein or RNA-protein solution and a control
solution without the protein are applied to two separate gel channels. Observing
a band on the mixed solution channel, which has traveled less distance compare to
the control sample, indicate direct interaction between the protein and the DNA (or
RNA) molecules. Figure from Berg et al. (2002).

Another method for protein detection is based on antibody labeling known as Western

blot. It was originally developed by Towbin et al. (1979). In this method, the protein

complexes must first go through a purification and separation as explained earlier.

After the separation step, all the bands are transferred and secured to a membrane.

Detection of a specific protein within the blot is done with an antibody. The antibody

solution is added to the membrane, followed by a rinsing step to remove the unbound

antibody. A secondary antibody, linked to a chemically luminescent agent, is bound

to the first antibody. The image of the membrane with luminescent plots is captured

on a photographic film.
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This method does not differentiate between direct and indirect protein-protein inter-

action. Indirect interaction can happen when the tagged protein and another protein

both bind to different segments of the RNA and does not physically interact or when

when both proteins interact together via a third component.

1.5.5 Delitto Perfetto Approach for Allele Replacement Ex-

periments

In biology, one can learn about the interactions between the genome, transcriptome

and proteome of an organism by applying a modification such as a single nucleotide

polymorphism (SNP) in a specific gene that may be carried into the encoded pro-

tein and study the effect of such modification. For example it is possible to measure

the changes of equilibrium dissociation constant (Kd) for DNA-DBP, RNA-RBP or

protein-protein bindings, when one or more amino acid residues in the binding domain

of the proteins or nucleotide residues of the binding site on DNA or RNA is altered.

These type of reverse genetic7 approaches help to reveal which amino acid residues

or nucleotides are critical for recognition of the binding sites. To perform such mea-

surements, it is necessary to develop the experimental methods that introduce such

mutations in the genes of interest. The Delitto Perfetto method is a site-directed in

vivo mutagenesis approach developed by Storici and Resnick (2006). It is a clean

and rapid method based on homologous recombination originally applied to yeast

cells.

Mutagenesis in this method consists of two steps depicted in Figure 1.18. The

first step involves the integration of a COunterselectable REporter (CORE) into the

location of the gene of interest. Because of the homology between the CORE cassette

flanking sides and the upstream and downstream regions of the gene, a recombination

can sporadically occur. This means that the CORE cassette replaces the coding region

7Reverse genetic approaches investigate the impact of induced genetic modification of a specific
gene (e.g. by inserting mutation, deletion or gene silencing) and infer the gene function through the
detection of physical or biochemical changes of the mutant cell.
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of the gene under study Figure 1.18A.

Storici and Resnick designed the CORE cassette for yeast cells such that it con-

tains two controls for testing the successful integration of the cassette. Yeast cells

are are naturally sensitive to hygromycin antibiotic which can kill the cell. One

design for the CORE cassette includes a reporter that provides resistance to this

antibiotic (Goldstein and McCusker, 1999). This means that only those cells with

the cassette incorporated properly will survive a hygromycin medium. Another very

common control to use an auxotrophic strain. A yeast cell is able to synthesize all of

the amino acids required for its protein synthesis. If the media lacks a certain type

of amino acid, for example uracil, then the uracil synthesis pathway is induced and

uracil is synthesis from the inorganic compounds in the media. This means that a

yeast strain lacking the gene that encodes a protein crucial for uracil synthesis, will

not survive in a medium with uracil deficiency. This can serve as another control to

ensure that the CORE cassette is integrated into the location. We can start with

an auxotrophic strain engineered specific to lack URA3 gene (i.e. ura3−). Then the

CORE cassette is designed to include URA3 gene. Only cells with correct integration

of the cassette will survive media lacking uracil amino acid.

The second step involves complete removal of this cassette with oligonucleotides that

contain a desired allele of the gene of interest between the side flanking regions.

Again, based on the homologous recombination the oligonucleotide will replace the

CORE cassette in some of the cells (Figure 1.18B). These cells are expected to

be for example sensitive to hygromycin again. We used this approach to design an

experiment to test our finding, which is discussed in Chapter 4.

1.6 Summary

In this chapter, we gave an overview on the eukaryotes genome architecture and differ-

ent regulatory mechanism performed by various types of proteins. We introduced the

traditional and contemporary views on gene expression. The traditional model views
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Figure 1.18: Delitto Perfetto Approach for Allele Replacement.

each step of the gene expression program as a separate process; whereas, the contem-

porary model states that different regulatory processes have temporal overlapping and

in a way, each step can regulate its downstream events. That is, transcription, post-

transcriptional processing and translation are tightly coupled and affect one another.

We also provided some experimental approaches for analyzing the genome-wide gene

expression of a cell, protein-DNA and protein-RNA interactions. The methods in-

clude: high-throughput mRNA level profiling by DNA microarrays, protein-target in-

teraction assay, protein-protein interaction and DNA/RNA sequencing. These topics

are necessary for understanding the projects discussed in the next four chapters.
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Chapter 2

Inferring Quantitative

Sequence-to-Affinity Models for

RNA-Binding Proteins

This chapter is adopted from a manuscript co-authored by Mina Fazlollahi, Eunjee

Lee, Xiang-Jun Lu, Pilar Gomez-Alcala and Harmen J. Bussemaker.

2.1 Introduction

Post-transcriptional processing carried out by RNA-binding proteins (RBPs) is criti-

cal for the regulation of RNA abundances. These processes include assembly, splicing,

edition, localization, and stability of RNA transcripts. There have been more studies

that focus on DNA biding factors and their interaction network. Unlike the double

helix structure of the DNA, the RNA molecules fold into complex secondary struc-

tures. Therefore, detection of binding motifs1 associated with RBPs are challenging

due to more complicated structure of RNAs.

1Sequence motif is a short nucleotide or amino acid sequence that is usually referred to as the
binding site for the protein-DNA or protein-RNA interactions.
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In recent years, some studies have focused on identifying stability-associated nu-

cleotide motifs that are critical in regulating RNA steady state rates (e.g. (Foat et al.,

2005; Hogan et al., 2008; Riordan et al., 2011; Shalgi et al., 2005)). By interacting

through these sequence motifs, which are mostly located within the untranslated re-

gions (UTRs) of messenger RNAs (mRNAs), RBPs stabilize or destabilize their target

mRNA transcripts. Some studies look for the enrichment of specific k-meres (i.e. nu-

cleotide sequence of length k) that correlate to mRNA expression profile and mRNA

half-live data (Shalgi et al., 2005). Some other studies attempt to identify k-mers

enriched within the mRNA sequences of the target set of RBPs based on mRNA

binding data (Gerber et al., 2004; Hogan et al., 2008).

Our approach combines biophysical modeling of the interactions among RNA and

RBPs with the use of RBPs genome-wide mRNA binding data. Unlike some other

studies, our motif discovery method does not require a priori RBP target sets. We

searched for potential regulatory elements in mRNA sequences that are recognized

by diverse RBPs. We used a similar approach by (Foat et al., 2006) searching for

binding sites in the form of sequence specific affinity matrices (PSAMs). We were

able to obtain known binding motifs for 15 various RBPs including novel motifs for

Scp160p, Sik1p and Tdh3p.

2.2 Methods

2.2.1 Experimental Data Used

For our motif search, we analyzed genome-wide imunoaffinity purification data for

45 different RNA binding proteins by (Hogan et al., 2008). In this assay, mRNA

molecules bound to C-terminal tandem affinity purification (TAP)-tagged proteins

were isolated at mid-log phase from cells growing in YPDmedia2. The mRNAmixture

2Yeast Extract Peptone Dextrose abbreviated as YPD, is a complete medium for yeast growth
containing yeast extract, glucose, amino acid monomers (peptides) and water.



52

was then hybridized to a DNA and/or oligonucleotide microarray. For each RBP, 2

to 6 experimental replicates were performed, for a total of 132 IP experiments.

2.2.2 Pre-Processing of RBP Binding Data

For our motif analysis, we started from log2-ratios between the microarray intensities

for the immunoprecipated sample and input sample, respectively, for each RBP. To

reduce the effect of outliers, we applied a rank-quantile transformation based on

the standard normal distribution. For each RBP, let x = (x1, x2, · · · , xn) denote the

vector of binding log-ratios across all genes, sorted in ascending order. We first ranked

the data points in each column. Let Pr(X < χ) denote the cumulative distribution

function (CDF) for a standard normal random variable X with mean µ = 0 and

standard deviation σ = 1. As illustrated in Figure 2.1, we then defined χi as the i
th

quantile,

Pr[X < χi] ≡
rank(xi)− 1

2

n
for i = 1, 2, · · · , n (2.1)

and used it to replace the ith element in the vector x. With this transformation, we

ensure that the effect of outliers is diminished.

χ1 χ2 χ3 · · · χ
n−1 χ

n

1

2n

1

n

1

n

1

2n

Figure 2.1: Schematic Representation of Rank-Quantile Transformation Step Applied
to Each Column (Size n) of the Binding Data. We assigned ith-quantile value (χi) to
the ith element based on the rank of data point xi.
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Figure 2.2: Model Used for Quantification of RNA-Protein Binding. Here kon and
koff are equilibrium binding and unbinding rates, respectively.

2.2.3 Quantitative Model of RNA-Protein Binding

Let’s consider a simple situation where a single protein P binds to a RNA strand S as

shown in Figure 2.2. At equilibrium the RNA and the protein from an RNA-protein

complex at rate kon and detach at a rate koff .

The association constant Ka is defined as the ratio of the concentraion of the RNA-

protein complex, [SP ], and the product of the free RNA and protein densities, [S]

and [P ], respectively:

Ka(S) ≡
[SP ]

[S][P ]
=

kon
koff

= e−∆G/RT (2.2)

Here, ∆G is the Gibbs free energy of binding per mole, R is the gas constant, and T

the temperature.

The occupancy N(S) of RNA sequence S by protein P can be written as the fraction

of bound RNA to the total RNA concentration (bound and unbound) (Bussemaker

et al., 2007; Foat et al., 2006).

N(S) =
[SP ]

[S] + [SP ]
=

1
[S]
[SP ]

+ 1
=

[P ]

K−1
a (S) + [P ]

(2.3)

In the low protein concentration regime, where [SP ]≪ [S], or equivalently, Ka ≪ [P ],

we have

N(S) ≈ [P ]Ka(S) (2.4)
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So far we showed that in low protein limit, the occupancy of S is proportional to

association constant Ka. The association constant depends on both the protein P

binding domain and RNA strand nucleotide compositions. Next, we want to quantify

Ka in terms of the nucleotide information of binding site on the RNA strand. We are

going to make a second assumption: additivity of binding energies for each nucleotide

base in the binding region. As far as the RNA sequence is concerned, we further

assume the binding energies only depend on the nucleotide type (A, C, G or U)

and their position in the binding side (Benos et al., 2002). With this assumption,

we neglect any dinucleotide or higher order dependencies. It might seem a crude

assumption. However, as a first order approximation in modeling the RNA-protein

interactions, we were able to recover many experimentally validated binding motifs

as explained in Section 2.3.1. Let’s assume the reference binding site Sref be the

nucleotide sequence that has the highest Ka to protein P . Also assume Smut is single

nucleotide mutation of base b at position j relative to Sref .

wbj ≡
Ka(Smut)

Ka(Sref)
= e−∆∆Gjb/RT , ∆∆Gjb = ∆G(Smut)−∆G(Sref) (2.5)

By quantifying the effect of all three possible point mutations of the reference base

at every position in the binding site, we can calculate the relative occupancy N(S) of

a sequence S with more than one mutation form the reference sequence Sref . Thus,

the occupancy of a particular binding site S of length Lφ is:

N(S) = [P ]ka(Sref)

Lφ
∏

j=1

wjbj(S) (2.6)

The occupancy N(S) for the entire sequence S equals the sum of occupancies for each

binding site of size Lφ sliding over the whole sequence of length L shifted one position

at a time.
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N(S) = [P ]Ka(Sref)
L−Lw+1
∑

i=1

Lφ
∏

j=1

wjbi+j−1(S) (2.7)

We can label the sum term as in vitro specificity (or affinity) K of the mRNA to

protein p. So the occupancy equation can be rewritten:

N(S) = [P ]Ka(Sref)K(S) (2.8)

In the next section we will explain RNA-binding proteins motif search using Ma-

trixREDUCE software. MatrixREDUCE performs PSAM training based on the

model discussed in this section.

2.2.4 Motif Search for RNA-Binding Proteins

Our RNA-binding proteins (RBPs) motif discovery approach is shown in Figure 2.3.

To detect the motifs, we used the MatrixREDUCE program from the REDUCE Suite

package (http://bussemakerlab.org/software/REDUCE) to perform a genome-wide

fit of a position-specific affinity matrix (PSAM) to the rank-quantile log2-ratios of

RBP binding data. MatrixREDUCE builds a multivariate linear model originally de-

veloped by Foat et al. (2006, 2005). We used the enhanced version of MatrixREDUCE

implemented by Dr.Xiang-Jun Lu.

The MatrixREDUCE algorithm consists of two steps: seed motif finding and PSAM

optimization. The seed motif finding seeks to identify the sequence motif of desired

length whose occurrence best correlates with the binding signal within all of the motifs

with possible nucleotide combinations. The motif size is allowed to vary from to 1 to

8 nucleotides. Once the optimal motif has been identified, it is used as a seed for the

optimization procedure. Let’s assume the optimal motif has length L. First a matrix

of size 4 × L, representing each nucleotide A, C, G, and T/U at positions 1 to L is

constructed. At every column (i.e. position in the seed motif) the best nucleotide
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element is given Ka equal to one and unacceptable nucleotides (i.e. the other three

element) are given a very small number close to zero. Optimization step aims to find

the optimal weight matrix by minimizing an error function:

(C, {Fe}, {Wjb}) = argmin
∑

e

∑

g

(Zge − Fe

Lg−Lφ+1
∑

i=1

Lφ
∏

j=1

wjbi+j−1(Sg) − C)2 (2.9)

where Z represents the rank-quantile binding data in our case. The parameters e and

g stand for experiment indices and genes, respectively. The optimization is based on

the Levenberg-Marquardt (LM) algorithm to find the optimal Wjb’s. LM algorithm

is a blend of gradient descent and Gauss-Newton iteration (Madsen et al., 2004).

Once the Optimization step converges for this PSAM, the residues of Z is the used

for the next seed finding and optimization iteration. By default the affinity of best

binding site is equal to 1. That is the weights for every position in the optimized

PSAM is normalized relative to the best nucleotide. The C parameter represents

the genome-wide basal expression level when no preferred motif is present on the

sequence.

We split every column of the binding data randomly into two sets of equal sized

training and test sets and ran MatrixREDUCE on the training set of all experimental

replicates of a RBP (φ) simultaneously (using command line option -mf). For every

RBP, we searched for binding motifs on the whole mRNAs, 5′ UTRs, ORFs and 3′

UTRs sequences separately. For some of the RBPs, we also ran the software without

-mf argument because one of the experimental replicates out of 2 was missing more

than 40% of the data points, Idh1p, Nrd1p, Tdh3p and Vts1p.

We obtained the Saccharomyces cerevisiae UTR sequences from a study using RNA-

seq method to obtain the transcriptional landscape of the yeast genome by (Nagalak-

shmi et al., 2008). The mRNA open reading frame (ORF) sequences were down-

loaded from Yeast Genome Database (SGD; http://www.yeastgenome.org). For all

RBPs we searched for PSAMs from length 1 to 10 iteratively with p-value cut-off of
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Figure 2.3: The Flowchart Representation of Our Motif Search Approach (see text
for details).
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0.001.

2.2.5 Computational Validation of Obtained PSAMs

We calculated the affinity scores of the discovered PSAMs using the AffinityProfile

software from the REDUCE Suite package. We then calculated the Pearson t-value

and Spearman p-value for the correlation of the affinity scores to the test data set. We

further tried to capture any low specificity flanking sides of the motif for the PSAM

that passed the cross-validation step. We extended both of the flanking sides at

most one nucleotide position (i.e. added column (1,1,1,1) to the flanks of the PSAM)

and ran the OptimizePSAM software from the same package using the PSAM with

added columns on the sides as seed. We continued adding columns to the sides of

the PSAM until no nucleotide’s weight at the added side flanks is less than 0.1. In

the case of Nrd1p PSAM optimization we neglected this criteria where one of the

matrix element for G nucleotide at position 8 was equal to 1.0× 10−7. Further flank

addition and optimization of this PSAM resulted in optimization divergence even

after several rounds. At the end of every optimization round, we cross-validated the

newly extended PSAM by calculating Pearson t-value and Spearman p-value. After

this step, we ran OptimizePSAM using the full data on the PSAMs passed cross-

validation steps.

The final set of PSAMs was obtained from the PSAMs that pass the test for specificity

to their own IP experiment among all the experiment and If the affinity of a specific

PSAM on UTRs and/or ORFs had the highest correlation to at least one of the

relevant IP experiments among the 132 experiments, that RBP-mRNA region combi-

nation would pass our test. In the case of YLL032C we had to use the whole mRNA

sequences to calculate the affinity for the factor to pass the specificity test.
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2.2.6 Functional Assessment of the Novel motifs

Gene Ontology Enrichment Analysis

Gene Ontology (GO) (Ashburner et al., 2000) is a unifying tool among many eu-

karyotic organisms. Many proteins in any given eukaryote are involved in the same

biological pathway. Because the experimental research on model organisms like bud-

ding yeast Saccharomayces cerevisiae, the nematode worm Caenorhabditis elegans and

fruitfly Drosophila melanogaster developed independently, the need for a common lan-

guage for describing the roles of genes or gene product (annotation) was necessary.

Each GO category represents a particular organism-independent biological process,

molecular function or cellular component. Figure 2.4 displays a GO category for

DNA metabolism process shared among all eukaryotes. The genes involved in each

category from three organisms yeast, fruitfly and mouse are listed.

a

Figure 2.4: Example of a Gene Ontology (GO) Category. It depicts the genes of 3
different organisms categorized under “DNA metabolism process”. Figure from Ash-
burner et al. (2000).

We used GO enrichment scoring analysis to detect the underlying regulatory program,

cellular state or cellular component for the novel motifs. For each GO category, we

tested whether the Affinity scores for a PSAM on ORF or UTR sequences are as-

sociated with a specific biological pathway or not. We applied the non-parametric
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Mann-Whitney-Wilcoxon test to determine whether the affinity scores of mRNA re-

gions within a particular GO category have a different distribution than the affinity

scores for all other mRNAs. We used an iterative procedure for removing the effect of

redundant nested GO categories which was implemented originally in the T-profiler

algorithm (Boorsma et al., 2005). We only considered GO categories that have at

least 10 genes. To correct for multiple testing, we performed a Bonferroni correc-

tion on the resulting p-values accepting only categories with p-values smaller than

0.01/N where N is the number of unique GO categories. We also used Student’s t-test

to verify whether genes enriched in GO categories were significantly upregulated or

downregulated for a specific category based on the t-value sign.

To perform the GO enrichment analysis, we downloaded packagesGO.db, and org.Sc.sgd.db

for yeast from the Bioconductor website within the R statistical programming envi-

ronment (http://www.Bioconductor.org).

Correlation to Condition-Specific Expression Data

To further validate the novel motifs, we correlated the affinity scores of the 25 factors

to expression data from 173 different stress conditions (Gasch et al., 2000). The stress

conditions include: heat shock, oxidative or reductive chemical agents, nutrients or

amino acids starvation, and osmosis. To calculate the correlations, we performed a

multiple linear regression of the genome-wide mRNA expression levels of each condi-

tion to the affinity scores of all of the selected RBP-region combination and compared

the Pearson t-values among different conditions.
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2.3 Results

2.3.1 RBP Binding Motif Search

Our motif discovery method is depicted in Figure 2.5. We used the MatrixREDUCE

software from the REDUCE Suite package, which takes as inputs the nucleotide

sequences and RBP binding logratios for all mRNAs. To reduce the effect of outliers,

we transformed the binding data to quantiles of a standard normal distribibution

based on their ranks. We randomly picked 50% of the data as a training set.

To define the sequences, we used the annotations from (Nagalakshmi et al., 2008) and

extracted 5′ and 3′ untranslated regions (UTRs), open reading frames (ORFs) and

whole mRNA nucleotide sequences. For every RBP, we performed our genome-wide

motif search on whole mRNAs, ORFs, 5′ and 3′ UTRs separately. One motivation

for this was to allow for functional differences between these various parts of the

mRNA transcript. Also we observed that some cases, using the whole mRNA sequence

seemed to reduce the signal to noise ratio. For instance, for Nrd1p and Puf2p, we

were not able to find any significant binding site using the full mRNA, whereas by

using only the 3′UTRs for our search, we were able to find a significant motif.

After the training step, we calculated the affinity scores using the derived PSAMs

(see methods section) and only accepted those that passed our cross-validation step

using the other 50% of binding data (test set). We optimized these PSAMs by

adding flanking positions (maximum of one nucleotide added to either sides at every

optimization iteration) to capture any low specificity sites that were not captured

during our training step. After each optimization round, we cross-validated to check

for over fitting. Finally we optimized these PSAMs on full data. Out of 45 proteins,

we were able to obtain PSAMs for 20 different RBPs Table 2.1.

Most mRNA regulations are carried out through protein interactions with the 3′

UTR of mRNAs. However it can be possible that some proteins bind to 5′ UTR or

ORFs and thus be involved in activation or suppression of difference mRNAs. For
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Table 2.1: PSAM Training Statistics From the MatrixREDUCE Software
RBP mRNA Pearson t-values Spearman p-values Accepta

Region on IP experiments on IP experiments

Gbp2 ORFs 25.3, 19.5, 15.8, 1.2 ×10−133, 3.1×10−105, 1.9 ×10−31, Yes
14.6 4.0 ×10−27

Idh1 ORFs 9.1, 15.8 2.7 ×10−27, 1.3 ×10−86 No
Khd1 ORFs 27.2, 25.7, 28.5, 3.0 ×10−89, 2.0 ×10−74, 2.0 ×10−109, Yes

23.1, 22.2 3.6 ×10−68, 1.0 ×10−50

Mrn1 mRNAs 21.8, 21.0, 18.5, 1.3 ×10−83, 3.0 ×10−68, 1.8×10−71, No
12.9 8.4×10−19

Msl5 ORFs 9.3, 13.8 3.2 ×10−1, 1.8 ×10−11 Yes
Nab2 ORFs 23.8, 22.4, 21.3, 1.7 ×10−142, 1.5 ×10−114, 3.3 ×10−122, Yes

18.8 3.4 ×10−114

Nrd1 3′ UTRs 4.2, 7.7, 8.4 3.0 ×10−8, 1.6 ×10−13, 3.1 ×10−16 Yes
Pin4 3′ UTRs 6.3, -1.0, 11.5 1.5 ×10−7, 1.9 ×10−4, 4.0 ×10−15 Yes
Pub1 3′ UTRs 28.3, 27.2, 30.0 8.7 ×10−143, 1.6 ×10−145, 2.8 ×10−152 Yes
Puf1 ORFs 17.9, 3.3, 6.9, 2.3 ×10−65, 7.0 ×10−25, 2.1 ×10−19, No

20.3 1.8 ×10−89

Puf2 3′ UTRs 15.6, 18.2, 17.6, 9.0 ×10−12, 2.4 ×10−27, 6.8 ×10−15, Yes
16.5 1.3 ×10−21

Puf3 3′ UTRs 22.1, 22.8, 21.7, 1.1 ×10−24, 1.6 ×10−17, 2.2 ×10−19, Yes
25.0, 23.2 8.0 ×10−26, 1.6 ×10−39

Puf4 mRNAs 21.9, 30.9, 27.8, 2.3 ×10−73, 1.7 ×10−123, 2.1 ×10−73, Yes
24.3 1.7 ×10−43

Puf5 mRNAs 19.6, 16.8, 18.2, 4.6 ×10−67, 1.0 ×10−37, 3.5 ×10−30, Yes
18.9 3.5 ×10−38

Rna15 ORFs 16.6, 22.1, -2.4 3.1 ×10−89, 1.5 ×10−136, 1.4 ×10−5 No
Scp160 ORFs 15.2, 24.7, 35.9, 1.9 ×10−72, 4.4 ×10−166, 4.4 ×10−290, Yes

38.7, 35.1 0, 0
Sik1 5′ UTRs 13.7, 13.9 1.4 ×10−49, 9.1 ×10−62 Yes
Tdh3 ORFs 34.0, 5.6 9.0 ×10−272, 7.9 ×10−16 Yes

YLL032C mRNAs 22.7, 13.0 3.7 ×10−112, 6.1 ×10−19 Yes
Yra2 mRNAs 11.4, 10.3 2.4 ×10−14, 1.9 ×10−11 No

a Acceptance Based on Specificity Test.
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Figure 2.5: Overview of Our Motif Discovery Approach. We applied MatrixRE-
DUCE software to rank-quantile transformed binding data (training set) and mRNA
sequences. We repeated this analysis by replacing the full mRNA sequences by 5′

UTRs, ORFs and 3′ UTRs separately. We accepted the PSAMs only if they passed
cross-validation and specificity test (exclusive correlation of affinity scores for a RNA-
binding protein affinity to its own Binding data).

example yeast Khd1p represses FLO11 post-transcriptionally by binding to its coding

region (Wolf et al., 2010). To consider this, we checked the correlation between 132

IP experiment and affinity of each mRNA region separately and only accepted those

RBP-region combinations that are significantly correlated to their own RBP binding
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Figure 2.6: Specificty Test for Obtained PSAM affinities. Scatter plot for correlation
of RBP binding data to the affinity scores of the 20 PSAMs calculated on (A) full
mRNA sequences, (B) 5′ UTRs, (C) ORFs, and (D) 3′ UTRs. The x-axis represents
PSAM affinity and each blue dot corresponds to the Pearson t-value of the correlation
of PSAM affinity to a particular RBP binding experiment. The red dots indicate the
binding measurements that correspond to the labeled RBP on the x-axis. Only the
RBPs in combination of mRNA regions that passed specificity test were accepted
(i.e. the red dot appeared at the top of the blue dots). There was a total of 25
combinations that were accepted.

experiments. We further narrowed done the accepted set of combinations by selecting

only those combinations that showed exclusive correlation of the affinity scores to their

binding data (specificity test). Figure 2.6 displays the results of specificity test for

the 20 PSAMs for mRNAs, 5′ UTRs, ORFs and 3′ UTRs separately.

Figure 2.7A shows the PSAM logos for 15 out of 20 PSAMs that passed the speci-

ficity test. Among the 20 PSAMs from the training step, 5 did not pass the specificity

test. They include Idh1p, Mrn1p, Puf1p, Rna15p and Yra2p (results not shown). The

Affinity calculated using these 5 PSAMs were highly correlated to other RBP binding
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data. Figure 2.7B shows all the 25 RBP-region combinations that passed the speci-

ficity test. There was an exception with Scp160p-ORF where the affinity is slightly

more correlated to Bfr1p IP experiment (green dots). However Bfr1p is reported to

associate with cytoplasmic mRNP complexes containing Scp160p (Lang et al., 2001).

We observe that there is a large gap between the relevant IP experiments (red dots)

and the rest of the IP experiments (blue dots) for the affinity of 3′ UTR of Pub1p,

Puf2p, Puf3p, Puf4p and Puf5p. This indicates that these PSAM are highly specific

to the binding data for their RBPs.

2.3.2 Recovered Motifs for RBPs

Out of the 15 PSAMs, 12 PSAMs are consistent with the motifs reported for these

RBPs using the same binding data, which is a validation for our PSAM search

method (Gerber et al., 2004; Hogan et al., 2008).

The first protein in our PSAM list is Gbp2p. Our discovered motif GRNGNNGR (R

is A/G), which is enriched in the ORFs. Gbp2 is involved in mRNAs export from

the nucleus to the cytoplasm. The motif reported for this protein by Riordan et al.

(2011) HGGUGW (H is A/C/U, W is A/U) is compatible with our finding, however

our PSAM is more specific.

Khd1p is involved in the asymmetric localization of ASH1 in daughter cells, which is

a transcription inhibitor of mating type switch protein encoded by HO gene. Khd1p

binds to CNN repeats in coding regions of mRNA /textitin vitro (Hasegawa et al.,

2008). In a more recent study by (Wolf et al., 2010) they report enrichment of YCAY

(Y is C/U) element in the mRNAs bound to Khd1p.

MSL5p is part of the complex that is responsible for splicing pathway initiation of

pre-mRNAs (Abovich and Rosbash, 1997). Another study found that Msl5p binds

to branch-point sequence UACUAAC, which confirms the motif we identified for this

protein (Garrey et al., 2006).

Another protein in our study is Nab2p which is involved in mRNA poly(A) tail
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Figure 2.7: List of Known and Novel RBP Motifs Obtained by Our Motif Search
Method. (A) List of Known and Novel RBP Motifs Obtained by Our PSAM Search
Method. These 15 PSAMs passed cross-validation and specificity tests. (B) Speci-
ficity test. Scatter plot for the factors specificity test where the Pearson t-values of
univariate linear fit coefficients between 132 RBP binding experiments and 25 se-
lected PSAM-region combinations are presented. Only the factors with at least one
self RBP IP experiment t-value (red dots) appearing at the top are shown. The only
exception is for Scp160 (ORF) where we have a higher correlation to Bfr1p binding
data (green dots). We accepted this PSAM, since Scp160p and Bfr1p are known to
interact and are co-imunopercipitated in IP measurements.
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formation control and export of mRNA from nucleus to cytoplasm (Hector et al.,

2002; Kelly et al., 2010). Our Nab2 element is highly enriched with Adenine, which

confirms its tendency to bind to mRNA poly(A) tail.

The PSAM we found for Nrd1p has a core motif CUUG. This protein is subunit

of Nrd1p-Nab3p-Sen1p complex, which mediates the termination of small nucleolar

RNAs (snoRNAs) (Vasiljeva et al., 2008). Previously it has been reported that Nrd1p

binds to GUA[AG] and Nab3p recognizes UCUU (Carroll et al., 2004; Lunde et al.,

2011). Since Nab3p and Nrd1p form a complex, it is not surprising that we found a

motif that is a partial match to both of the consensus motifs.

The motif we obtained for Pin4p looks similar to the motif reported by (Hogan et al.,

2008).

In the case of Pub1p, our motif is a U-rich element. Pub1p is a poly(U) binding

protein that is essential for stability of many mRNAs (Anderson et al., 1993; Li et al.,

2010; Matunis et al., 1993).

Among the proteins that we were able to capture the binding site nucleotide sequence,

there are 4 members of Pumilio/FBF (PUF) homology domain family. Puf2p is one

of the members of PUF protein family, where not much is known about its specific

physiological role. It interacts preferentially with mRNAs that encode membrane-

associated proteins (Gerber et al., 2004). In a recent study, it was shown compu-

tationally and experimentally that Puf2p binds to a dual UAAU motif connected

through a linker in between (Yosefzon et al., 2011). Our PSAM search algorithm was

able to capture the same motif. It is interesting to note that Puf2p binding site is com-

pletely different from the consensus UGUA motif that Puf3p, Puf4p and Puf5p bind

to (Foat et al., 2005; Gerber et al., 2004; Miller et al., 2008). This is because unlike

these 3 proteins, Puf2p has 6 PUM repeats and its amino acid sequence is the most

identical to another member of this family, Puf1p. Puf3p binds nearly exclusively to

mRNAs that encode mitochondrial proteins (Gerber et al., 2004) and is involved with

mitochondrial localization of nuclear-encoded mRNAs (Saint-Georges et al., 2008).

Puf3p is also enhances COX17 mRNA degradation by binding to UGUR-AUA on
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its 3′ UTR (Olivas and Parker, 2000). Puf4p is known to bind to UGUAUAUUA

site on 3′ UTR of HO endonuclease mRNA and together with Puf5p, they negatively

regulate this mRNA (Hook et al., 2007; Miller et al., 2008). Puf4p is also known to

bind preferentially to mRNA encode ribosomal proteins (Gerber et al., 2004). The

binding sites we found for Puf3p, Puf4p and Puf5p all in agreement with the reported

motifs in the works mentioned earlier.

YLL032C is an un-annotated protein that may interact with ribosomal complexes (Fleis-

cher et al., 2006). Our algorithm found a motif AUACC as reported by (Hogan et al.,

2008).

Recovering these motifs for 12 RBPs acts as positive controls for our approach. It

indicates that our method successfully can detect the composition of RBPs binding

sites using genome-wide binding data without depending on training on the target

set.

2.3.3 Novel Binding Motifs for Scp160p, Sik1p and Tdh3p

Our method detected 3 novel binding sites for the RBPs including Scp160p, Sik1p

and Tdh3p. To further validate these new motifs, we calculated the Pearson test

t-values for correlation of the affinity scores of the 25 RBP-region combinations to

the expression data for 173 different stress conditions (Gasch et al., 2000). We also

performed Gene Ontology (GO) scoring analysis on the in vitro affinity scores using

Wilcoxon-Mann-Whitney (WMW) test.

Scp160p is a RNA binding protein involved in mating response pathway (Guo et al.,

2003). It contains multiple heterogeneous nuclear ribonucleoprotein K-homology

(KH) domains3. Using the stress condition expression data, Scp160 affinity for ORF

sequences is highly anti-correlated to YPD stationary phase, YPD, nitrogen depletion

and heat shock conditions with t-values about -14, -14, -10 and -7 respectively. In con-

3KH domain is a protein domain that binds RNA and single stranded DNA. This domain is
about 70 amino acids long.
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trast the positively correlated conditions were: cold shock (t-value ∼ +10) and hypo

osmotic shock (t-value ∼ +9). Pseudohyphal differentiation, a filamentous growth

form of the budding yeast overlapping partly with mating pathway, is induced by

nitrogen starvation (Gimeno et al., 1992). GO analysis based on the mRNA affin-

ity scores for Scp160p showed enrichment for nitrogen compound metabolic process

(p-value = 4.16× 10−9).

Sik1p (Nop56) is component of the box C/D snoRNP complexes that direct 2′-O-

methylation of pre-rRNA during its maturation. Sik1p affinity score on both 5′ UTRs

and ORFs. We observed positive correlation of ORF affinity scores to the YPD sta-

tionary phase growth (t-value ∼ +6) and also significant correlation to heat shock

stress conditions (t-value ∼ +7). Spb1p is a nucleolar AdoMet-dependent methyltran-

ferase also involved in rRNA processing (Kressler et al., 1999). Spb1p is homologous to

E. coli Ftsj/Rrmj heat shock protein, which also acts as 2′ O-methyltransferase (Bugl

et al., 2000). It could be that Sik1p also has a direct or indirect role in rRNA methy-

lation regulation under heat shock and that is why we observed up-regulation of

Sik1p activity in the heat shock conditions. GO analysis shows significant negative

correlation to ribosome and rRNA related categories.

Tdh3p encodes Glyceraldehyde-3-phosphate dehydrogenase, which is required during

gluconeogenesis and is essential for yeast cells to grow on non-carbohydrate sources

such as ethanol and glycerol (McAlister and Holland, 1985). This enzyme is also

found in cytoplasm and cell wall (Delgado et al., 2001). Using stress condition data,

we found that Tdh3p is up-regulated when cells are exposed to menadione, a synthetic

nutritional compound, (t-value ∼ +5) and down-regulated in the presence of sorbitol,

a type of sugar that is naturally found in some fruits, (t-value ∼ -6) and in nitrogen

depleted conditions (t-value ∼ -5). The GO scoring analysis for the affinity scores for

this factor showed these categories as significantly enriched: intrinsic to membrane

(p-value = 1.79 × 10−79), thiolester hydrolase activity (p-value = 4.44 × 10−8), glu-

cosyltransferase activity (p-value = 8.92 × 10−7) and glycerophospholipid metabolic

process (p-value = 8.24× 10−7).
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The GO enrichment analysis results for all the three novel motifs are consistent with

the functional validation by stress condition expression data.

2.4 Conclusion

Our motif discovery approach is based on biophysical modeling of the binding of RBPs

to target RNAs. It detects potential regulatory elements within RNA sequences that

are recognized by diverse RBPs. Our algorithm searches for binding sites in the form

of sequence specific affinity matrices (PSAMs). Most approaches either impose a

threshold to filter RBPs binding data or use gene expression data in combination

with mRNA half-lives to identify stability motifs associated with RBPs. Measuring

mRNA half-lives requires transcription arrest, which can interfere with the post-

transcriptional control of mRNAs under study (Grigull et al., 2004). Hence, the

interpretation and usage of mRNA half-lives should be done cautiously. By contrast,

our model is not based on defining a target set or mRNA half-lives.

The biophysical model our method that is based on is only strictly valid in the low

protein concentration regime. In other words, for the cases where RBP concentra-

tion is much smaller than dissociation constant (Kd). This may not be completely

correct for some RBPs. Still, the PSAMs discovered for 12 RBPs agree with previ-

ously reported consensus motifs in other studies. In addition, we discovered three

novel motifs for Scp160p, Sik1p and Tdh3p. The functional validation results from

GO enrichment analysis and condition-specific genome-wide mRNA expression data

suggest that these novel motifs could indeed be the binding site for Scp160p, Sik1p

and Tdh3p. Experimental follow up are required for further validation of these new

findings.
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Chapter 3

Novel Method for Mapping

Trans-Acting Loci

3.1 Introduction

The DNA sequence of a typical gene usually varies from one individual to another

even between the members of a genetically related population. Knowledge of genetic

variation among these individuals helps us understand why some of the members are

more susceptible to a disease or why some are more responsive to a particular treat-

ment. It can also be used to determine for example which genes influence product

yield in crops or why some are more tolerant to environmental stresses. The central

goal of linkage studies is to statistically associate an observed phenotype to the geno-

type (i.e. genetic sequence) among genetically related individuals. The pheynotype

can be any quantitative trait measurable for every individual in the population such

as: morphological characteristics, chemical level of compounds in the blood/tissues,

tumor count, or even the mRNA abundance of each gene in the cells/tissues of the

members of the population under study. The last one is possible courtesy of the

advances in high-throughput mRNA expression profiling techniques. In recent years,

a growing number of studies have carried out linkage analysis to identify causal loci
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for human genetic diseases such as: Alzheimer disease (Schellenberg et al., 1991),

Schizophrenia (Schwab et al., 1995), breast cancer (Smith et al., 2006), pancreatic

cancer (Klein et al., 2007), asthma (Celedon et al., 2007), hypertension (Guo et al.,

2012) and bipolar disorder (Badner et al., 2012). This approach has also been applied

to identify genes influencing the crops yield or animal products quality (Aslam et al.,

2011; Heidari et al., 2011).

Combining quantitative trait profile data with the added information from natural

genetic sequence variation in the segregating population, one can link the observed

phenotype to influential genes or gene products, encoded at specific as genetic loci.

This approach is called quantitative trait loci (QTL) analysis. From gene sequence

to mRNA level, there are many layers of regulation involved such as chromatin state,

transcriptional rate, mRNA processing, localization and stability as discussed in Sec-

tion 1.3. One can still simply apply QTL analysis to discover the causal genetic

variations manifesting in mRNA expression differences among the members. This

approach is called expression QTL or eQTL. If a locus regulates the expression of a

large number of genes, then it is considered to be an eQTL “hotspot”.

In this chapter we will first explain the common eQTL approach and discuss its short-

comings. We will then present our eQTL hotspot detection approach. Finally we will

discuss the result of applying this method to Saccharomyces cerevisiae (baker’s yeast)

and Caenorhabditis elegans (roundworm). To validate our method, we compared our

results for yeast to the eQTL hotspots reported by two independent studies (Brem

et al., 2002; Zhu et al., 2008). Our findings overlapped with 70% of the loci from the

mentioned studies. Our analysis also discovered a new locus on chromosome V. For

worm data, we recovered 2 loci and discovered 4 new loci by comparing our results

to (Rockman et al., 2010).
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3.1.1 eQTL Approach

Studying the cellular state of a single organism (RNA and protein levels) in different

biological conditions tells us about genes critical for survival in those specific condi-

tion. Studying cellular states of many related organisms simultaneously, can unravel

small genetic perturbations manifesting a continuous spectrum of traits (Jansen and

Nap, 2001). As we mentioned earlier, linkage studies identify causal loci within a

set of genetically related individuals (samples) with respect to one or both parents

(reference). Mating results in the segregation of the parental genetic material passed

to the offsprings or segregants. When two haploid cells from two different yeast strain

mate, four segregants or spores are generated. Each of the spores will have a unique

genotype, which is the result of the recombination between the parental chromosomal

material. The different allele combination along the chromosomes causes a pertur-

bation in the gene expression compared to the parental strains. Since the genotype

of each segregant is different, the gene expression pattern is unique for each of the

segregants. Figure 3.1 explains the traditional approach for eQTL detection.

The traditional approach for eQTL detection is to split the segregants at each marker

based on their inherited parental allele type at that marker and then compare the

differential mRNA expression levels distribution of a gene between the two subsets.

This approach basically relies on the F-statistic of analysis of variance (ANOVA).

Here the differential mRNA level of each gene is considered as an individual trait and

separately tested for linkage to the chromosomal marker. A common way to calculate

a significance threshold to distinguish significant linkages is to permute the expression

levels of each genes to obtain the linkage to all the markers. This is done usually at

least N=100 times to get the empirical null distribution for linkage of each gene to

the markers. Then the FDR corresponding to a F-statistic threshold is obtained as

the ratio of the number of linkages above the threshold averaged over the N shuffled

data to the number of linkages for the actual data. Detection of eQTL hotspots is

then based on a clustering procedure that identifies loci with many significant eQTL

linkages.
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Figure 3.1: The Common Approach for the Detection of Expression Quantitative
Trait Loci (eQTL). Here the population of 40 segregants (samples) is obtained by
crossing two parents (reference). The DNA material of each segregant is sequenced
and a genotype map indicating the type of the parental allele inherited at each marker
location on chromosomes is obtained (cyan and pink). These different alleles are
detectable based on the natural polymorphism existing in the genetic sequences of the
parents. The differential mRNA levels of each segregant relative to the reference are
measured using microarray experiments. These relative mRNA levels are then treated
as quantitative trait. The segregants mRNA levels of each gene is then split into 2
subsets based on their inherited allele at each chromosomal marker. By performing
eQTL analysis the markers for which mRNA levels of the 2 subset is significantly
different (upregulated or downregulated) distinguished from those with no significant
change (N.S.). The plot on the right is used to present the results. The horizontal
and vertical axes represents chromosomal marker locations and genetic location of
genes significantly affected by eQTLs, respectively. Red dots indicate upregulation
and green downregulation of gene expression. A gene can be affected by multiple
eQTLs (horizontal dashed line), by distal eQTL (off diagonal dots) or local eQTL
(diagonal dots). Figure from Jansen (2003).
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A shortcoming of this approach is that it is not capable of detecting hotspots that

marginally regulate the expression of large number of genes. Our method is able

to detect such loci. In our method we calculate a single χ2-statistic that integrates

the genome-wide differences in the expression levels of the two segregant subset.

It does not need to consider whether the genes are upregulated or downregulated.

In summary, our method is able to identify eQTL hotspots based on the collective

regulatory effect of each locus on a large number of genes.

One way to validate the detected QTLs is an experimental approach based on allele

replacement between the two parental genotype background. Each detected hotspot

marker usually contains between 10 to 100 genes. Hypothetically for each of the genes

located in a detected chromosomal marker region one could swap the two alleles be-

tween the two parents and measure the genome-wide expression profile. By analyzing

the effect of the incorporated allele, the causal gene or genes could be identified.

The power of the any eQTL detection analysis depends on the genotype map resolu-

tion and population size. In other words, the higher the density of single nucleotide

polymorphism (SNPs) locations, and the larger the population, the more precisely

the eQTLs are detected. This means pinpointing the causal gene will be simpler.

However, there exists a biological limitation known as linkage disequilibrium. Link-

age disequilibrium refers to the dependence of inheritance of alleles at nearby loci. It

can be overcome to some extent by a larger number parental crossings in non-human

populations, which will increase the rate of cross-over between these loci.

3.2 Methods

3.2.1 Experimental Data Used

We performed this analysis for two different organism: Saccharomyces cerevisiae

(baker’s yeast) and C. elegans (roundworm).



76

For yeast we used differential mRNA expression data for two parental strains: a stan-

dard laboratory strain (BY) and a wild isolate from a California vineyard (RM), as

well as 112 segregants from a cross between these parental strains, collected during

mid-log phase growth in rich (YPD) media performed by Brem et al. (2002). Expres-

sion levels were measured for 6215 genes using a two-color microarray experiment,

with the same BY mRNA sample being used as a reference for all experiments (i.e.

log2(sample/BY)). For each sample two experimental replicates were performed with

dyes swapped. We used the average of the two log-ratios for each gene. Follow-

ing Brem et al., we excluded ORFs rejected by (Kellis et al., 2003). We also averaged

log-ratios for 13 ORFs that were spotted twice. Finally, we normalized each array

by subtracting the mean log-ratio across all genes. Genotyping of the segregants was

performed using oligonucleotide arrays at a total of 2957 independent markers along

16 chromosomes by (Brem et al., 2002). Figure 3.2 displays the experimental cross

between the two strains.

Figure 3.2: Experimental Data for Yeast eQTL Hotspots Analysis. Here two strains of
yeast, a laboratory strain (BY) and a wild isolate from a vineyard (RM), were crossed
to obtain 112 segregants. The differential mRNA levels for each segregant relative to
the BY parental strain were obtained using microarray experiments. Genotyping was
performed at 2957 markers along the 16 chromosome of yeast. Figure from Rockman
and Kruglyak (2006).

For worm we used mRNA differential expression data collected by (Rockman et al.,

2010). The data included RNA abundances of synchronized young adults of 214 re-

combinant inbred advanced intercross lines (RIALs) from a biological cross between
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a laboratory strain (N2) and a wild isolate from Hawaii (CB4856). All microarray

experiments were done with the same reference pool (mixed growth stage and mixed

N2 and CB parental strains) for a total of 14,792 distinct genes. The genotypes were

mapped for 1455 chromosomal markers along chromosomes 1 through 5 and X. Using

RIALs supposedly will reduce linkage disequilibrium and increase the recombination

rate (Darvasi and Soller, 1995). To develop RIALs, first the parental lines were crossed

to create an F1 generation consisting of both male and hermaphrodite progeny. F2

individuals were obtained by performing the four possible crosses of F1. The same

procedure was used to generate F3 progeny from F2. After these steps, F3 gametes

were crossed by eight breeding designs (Rockman and Kruglyak, 2008). Random mat-

ing was continued until F10. To expand the population, two lines were derived from

each plate containing tenth-generation hermaphrodites. Each of the lines was then

propagated by selfing a randomly selected hermaphrodite for each of 10 generations,

for a total of 20 generations starting from the parental strains. Figure 3.3 depicts

this procedure.

3.2.2 Pre-Processing of the Expression Data

We calculated z-scores of expression data. For each gene, we calculated the mean and

standard deviation among segregants. We then calculated z-score using the equation

below.

zgs =
Ags − µg

σg

(3.1)

Here Ags refers to the mRNA log2-ratio of gene g for segregant s, and µg and σg

stand for the mean and standard deviation of the mRNA levels of gene g among the

segregants, respectively. This transformation is necessary because our eQTL detection

is based on χ2-statistic (as explained in the next section).
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Figure 3.3: Recombinant Inbred Advanced Intercross Lines for (RIALs). This proce-
dure was used for C.elegans data starting from two parental lines represented as A
and B. Random mating was performed among the individuals of Fi to obtain Fi+1

generation. This was done until reaching F10 generation. From then on until F20

the population was propagated by self-fertilization. Figure from Genetics Society of
America website (GSA).
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3.2.3 χ2-statistic Analysis

In this section we will first discuss the χ2-distribution and then its application for our

eQTL analysis.

The χ2 distribution derives its importance from its relation to the sum of squares

of standard Gaussian distributed random variables (µ = 0 and σ = 1). Given N

independent standard Gaussian random variables xi the sum of squares

Q =
N
∑

i=1

x2
i (3.2)

has a χ2-distribution with N degrees of freedom. This makes a χ2-distribution a

gamma distribution with θ = 2 and α = N/2. Here the null hypothesis is that xi’s

are sampled from N random normal variables. Note that the expected value 〈Q〉 is
equal to N , the degrees of freedom.

We want to use χ2-statistic to test whether the z-scores show a pattern of coherent

variation among segregants. To this end, let us formulate the quantity that we cal-

culate χ2-statistic for. At each marker m, we split the segregants based on the allele

(A or B) inherited at that position. We then calculate the sum of the difference of

z-scores between the two subsets, normalized by square-root of sum of the popula-

tion of the two subsets. Note that the denominator is not necessarily equal to total

population size, since there can be missing data points. The equation below defines

∆Z for each marker and each gene.

∆Zgm =

∑

{s}A@m
zgs −

∑

{s}B@m
zgs√

NA@m +NB@m

(3.3)

Then Qm for each marker is:

Qm =
G
∑

g=1

∆Z2
gm (3.4)
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with G equal to the total number of genes. We calculate Qm independently for each

marker. To check for statistical significance, we calculate a p-value for each Qm-value.

To do this we use the χ2 distribution function with G degrees of freedom as shown in

Figure 3.4. Here we have a multiple testing situation with M markers. To correct

for it, we use the Bonferroni correction and only accept those markers as significant

that have p-values smaller than 0.01/M .

χdf
2

f d
f(x

)

sampled χdf
2

p−value

Figure 3.4: p-value Calculation of a Sampled χ2 Value. Here fdf (x) represents χ2

probability distribution function with df degrees of freedom. The p-value of a given
χ2 is equal to the area under the upper tail of the distribution colored in red.

3.2.4 Forward Selection of Peaks for χ2 Profile

Due to linkage disequilibrium, fine mapping of causal QTLs is difficult. It requires a

higher genetic marker recombination rate in the population to break the association

of closely linked markers. To detect the causal markers, we developed an algorithm

to iteratively seek the significant markers by removing the effect of selected markers

at each iteration. The steps are shown in Algorithm 1. Starting from the χ2 vector

Qm across all markers, we selected the marker m∗
new with the largest χ2 value. This

marker is added to the set of selected markers {m∗}, which is initially empty. We then
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remove the effect of this marker from all the other markers by calculating the residuals

of a linear regression across all genes of ∆Zgm on ∆Zgm∗ . Using the residuals egm,

we calculate a new Q value for each marker m to be used in the while loop condition

at the beginning of the next round. At each iteration, we calculate the residuals of

the original ∆Z values by performing a multiple regression on the ∆Zg{m∗} values

for the set of selected markers {m∗}. This procedure is repeated until Qm is no

longer significant for any marker. We used Bonferroni correction to determine the

significance threshold at an expected number of positives equal to 0.01.

Algorithm 1 Algorithm for Forward Selection of Significant χ2 Peaks

while max (χ2) > threshold do
{m∗} = {{m∗}previous, m∗

new = argmax
m

χ2
m}

for all m do
(C∗, F ∗) = argmin

C,F
(
∑

g (∆Zgm − C − F ·∆Zg{m∗})
2)

egm = ∆Zgm − C∗ − F ∗ ·∆Zg{m∗}

χ2
m ←−

∑G
g=1 e

2
gm

end for
end while

3.2.5 Gene Ontology Enrichment Analysis on Selected Peaks

By using GO enrichment scoring it is possible to relate the ∆Z’s to the underlying

transcriptional program, cellular state or cellular component (see Section 2.2.6).

We used GO categories to test whether the ∆Z’s of selected markers are associated

with a specific biological pathway or not. We performed GO enrichment analysis on

the ∆Zgm’s for the selected markers {m}. For each selected marker, we apply the

non-parametric Mann-Whitney-Wilcoxon test to determine whether the ∆Z values

for genes within a particular GO category have a different distribution than the ∆Z’s

for all other genes. We performed a Bonferroni correction on the resulting p-values

accepting only categories with p-values smaller than 0.01/N where N is the number

of unique GO categories with at least 10 genes. We used an iterative procedure

for removing the effect of redundant nested GO categories which was implemented
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originally in the T-profiler algorithm (Boorsma et al., 2005). We also used Student’s

t-test to verify whether genes enriched in GO categories were significantly upregulated

or downregulated for a specific parental allele based on the t-value sign.

To perform the GO enrichment analysis, we downloaded packages GO.db, and then

org.Sc.sgd.db for yeast and org.Ce.eg.db for worm from the Bioconductor website

(http://www.Bioconductor.org) within the R statistical programming environment.

3.2.6 Correlation to Known Transcription Factors Binding

Specificities for Yeast

Besides GO enrichment analysis, we used another information source to understand

the biological significance of the selected genetic loci. The idea is that if a polymor-

phism at a marker with significant eQTL signal affects the transcriptional regulation

by a specific DNA-binding transcription factor (TF), then the ∆Z for that marker

is expected to correlate to that TF’s promoter binding preference across all genes.

To do this, we sought for significant correlation between the ∆Zgm of the selected

markers and the promoter specificities of the transcription factors.

In order to calculate the promoter specificities, we first obtained the genetic sequence

of the parental strains BY from Saccharomayces cerevisiae genome database (SGD;

http:://www.yeastgenome.org). We used 600 base pairs upstream sequences of

coding region start site of each gene. Next, we obtained a collection of 124 position

weight matrices (PWM) representing binding preferences of yeast TFs from MacIsaac

et al. (2006). The elements in the PWMs represent the information about the nu-

cleotide frequencies at each position in the set of target DNA binding sites. Together

with the promoter sequences specific to each segregant-genotype at selected markers,

we calculated sequence specificities. This step is explained in detail in (see Equa-

tion 2.7). Finally we used a multiple regression on all genes between each selected

marker ∆Z and the specificities of the set of TFs.

We used the Benjamini-Hochberg method (Benjamini and Hochberg, 1995) to correct
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for multiple testing at 1% false discovery rate. The Benjamini-Hochberg method tries

to estimate the expected fraction of false positives based on the data size and p-values.

Within a group of results ranked by increasing p-value: p1 ≤ p2 ≤ · · · ≤ pm, for a

desired false discovery (FDR) rate at q, k is the largest i for which

pi ≤
i

m
q (3.5)

In our case m is the number of chromosomal markers and q is equal to 0.01. All

results with p-value larger than pk were considered insignificant. This method is less

stringent that Bonferroni multiple testing correction.

3.3 Results

We applied our eQTL hotspot analysis to two organisms, Saccharomyces cerevisiae

(baker’s yeast) and Caenorhabditis elegans (roundworm). For yeast, we used genome-

wide mRNA expression data for 5423 genes from a study performed by Brem et al.

(2002). The dataset included the expression data for two parental strains, a laboratory

strain (BY) and a wild isolate from a vineyard in California (RM), as well as segregants

from the parental genetic cross. The data included 6 biological replicates for BY

strain, 12 for RM strain and 1 replicate for each of 112 segregants. The microarray

measurements were done relative to BY strain mRNA levels. The same study also

provided the genotype map of 2956 markers for all of the 130 yeast samples. For

worm we used expression data from Rockman et al. (2010). The data contained the

RNA abundances of synchronized young adults of 214 recombinant inbred advanced

intercross lines (RIALs) from a biological cross between a laboratory strain (N2) and

a wild isolate from Hawaii (CB4856). All microarray experiments were done with

the same reference pool (mixed growth stage and mixed parental strains) for total of

14,792 distinct genes. The same study also determined the genotype at 1455 markers

for each of the lines.
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Figure 3.5 depicts an overview of our approach. Our method requires the expression

data and genotype data as inputs. The expression data is represented as a matrix

whose rows correspond to genes and whose columns contain the genome-wide mRNA

expression profile for one of the segregants. The genotype data is displayed as a

matrix containing binary information, whose rows correspond to genetic markers and

whose columns provide the inherited parental allele for particular segregant. The first

step involves normalization of the expression data for every gene (i.e. row) across the

segregants. We will explain the importance of this normalization later in this section.

For each marker, we split the segregants based on the genotype profile of that marker

and calculate the difference of the sums of the normalized expression data at that

marker for the respective alleles. Once we have built the matrix of differences for

each gene and each marker, we can calculate the χ2-statistic for every marker by

summing the square of elements of this marker over all genes (see Methods). A large

value of the χ2-statistic for a particular marker indicates the presence of differential

expression that is coherent across a subset of the genes, without the need to specify

any specific genes or gene sets. Whenever the χ2 value derived from the signature

of differential expression between the two sub groups of segregants defined by a split

based on the genotype data at a specific marker is statistically significant, it implies

a broad trans-acting effect across many genes driven by the allelic variation at that

locus.

The initial step, which involves normalization of the mRNA expression levels for each

gene across the segregants, is important in two regards. First, since our method

uses χ2-statistic to test the significance of each marker as a trans-acting locus, we are

mathematically required to sum the squares of standard normalized random variables.

More importantly, we are interested to detect the loci that regulate gene expression

through the added value of genotype segregation. So the eQTL detection is not based

on the comparison of the expression levels between the genes, but rather it is the

comparison of the expression levels between the segregants. Thus, it is important to

set the variance of the expression level distribution of each gene among the segregants

to one.
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Figure 3.5: Overview of Our eQTL Hotspot Detection Approach. First the expression
data is converted to z-scores per each gene (i.e. row). Next for each chromosomal
marker m, the zscores of each gene g is split based on the inherited allele at that
marker among all segregant into two subsets. The sum of the difference of the zs-
core of the two subsets is calculated for each combination of (g, m), which builds
the matrix of ∆Z. The last step involves the calculation of Qm at each marker m
and plot it along the markers chromosomal position. Qm is expected to behave like
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Figure 3.5: (Cont. Caption) χ2-distribution. Markers with large Qm value indicate
that the cumulative effect of the genotype at m on the gene expression is significant.

The final step involves the detection of influential markers. Linkage disequilibrium

reduces the resolution of any QTL methods. We performed an iterative procedure

that is based on forward selection (see Methods). In the next sections we will discuss

the results of our analysis applied to yeast and worm.

3.3.1 Recovering 70% of the Previously Reported And Dis-

covering a New eQTL Hotspot for Saccharomyces cere-

visiae

Figure 3.6 presents the χ2-statistic profile for the 2956 markers along the 16 chro-

mosomes of yeast both for the real expression data (blue) and null data (red). The

null data was generated by shuffling the expression levels of each gene among the

112 segregants. We observe that in the case of the randomized data, the χ2 values

oscillate around the expected value equal to the degrees of freedom (df) of the χ2

distribution. In our case df is the number of genes equal to 5423. However, when the

original expression data are used, we observe a distinct profile compared to the null

data. The peaks represent putative eQTL hotspots.

We applied a forward selection procedure to detect the influential loci. Figure 3.7

displays the iterations of our marker selection procedure. Linkage disequilibrium

reduces the resolution of marker detection by widening the significant peaks. It

can also manifest itself between distal loci. To improve the QTL hotspot detection

accuracy, our method attempts to reduce the influence of the detect significant loci

at each iteration round (see Methods). The black arrows in Figure 3.7 mark the

location of the newly selected significant marker at each iteration. We detected a

total of 11 markers as significant with Bonferroni correction at 1% corresponding to

χ2-threshold ∼ 5904. Detailed information for the selected peaks is summarized in
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Figure 3.6: eQTL Hotspots Peak Profile for Yeast. We calculated the allele specific
difference of the sums of expression data z-scores at each chromosomal marker (∆Z)
and then calculated χ2 for all the 2956 markers. The blue plot resulted from using
expression data and the red was for the case where we permuted the expression vector
of each gene randomly among the segregants while keeping the genotype map intact.
Then we calculated ∆Z using the permuted expression data z-scores. It serves as the
null distribution for the χ2 values. It oscillates around the expected value ∼ 5,400
(i.e. the number of genes).
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Table 3.1.

To validate our findings, we compared our results to the results from two independent

studies, Brem et al. (2002); Zhu et al. (2008), where two different eQTL approaches

were applied to the same dataset employed in our analysis. The first study applied

the traditional eQTL method, which treats the expression data directly as a quantita-

tive trait and detects the significant eQTLs based on analysis of variance (ANOVA)

F-statistic at each marker and finally clustering the results to identify the eQTL

hotspots. The second study is based on Bayesian network construction to identify

the hotspots. Figure 3.8 presents the results comparison. Our method was able to

capture 70% of the reported loci by one or both of the mentioned studies. This suc-

cess establishes the strength and accuracy of our method for eQTL hotspot detection.

It also increased our confidence to apply our approach to another organism as well as

incorporate it our final project explained in Chapter 4. In addition, our method was

able to detect a novel locus on chromosome V that was not reported by either of the

two studies.

3.3.2 Assessment for Possible Regulatory Roles for the De-

tected Yeast eQTL Hotspots

In order to understand the biological function underlying these eQTL hotspots we

employed two strategies, correlation to transcription factors (TFs) binding preferences

and gene ontology (GO) enrichment analysis. We assessed whether the difference of

expression levels between the two subgroups of segregants, ∆Z, for the detected loci

are associated with any known TFs binding preferences. If the ∆Z’s at one of the

candidate eQTL hotspot markers significantly correlate with the binding specificities

of a TF or a group of functionally-related TFs, then this implies the possibility of

the involvement of these TFs in the regulation of the expression of the genes linked

to this locus. For the second assessment, we checked whether the ∆Z’s are enriched

for a specific biological process, molecular function and cellular component based on
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Figure 3.7: Forward Selection of Peaks for Yeast. The red line represent the significant χ2 threshold Bonferroni corrected at
1%. The black arrows mark the newly selected marker at each round. We Captured total of 10 significant markers.
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Figure 3.8: eQTL Hotspots Peak Profile for Yeast Comparing Selected Peaks with
Two Independent Studies (Brem et al., 2002; Zhu et al., 2008). Our method was able
to recover 70% of the peaks reported in these studies. In addition, we were able to
discover a new eQTL region on chromosome V. The red horizontal line represents the
significant χ2 threshold for Bonferroni corrected at 1%.
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the Gene Ontology (GO) categories.

We analyzed the multiple correlation between the ∆Z of each of the selected markers

and a collection of binding preferences for 123 transcription factors from MacIsaac

et al. (2006). The results are presents in the heatmap of Figure 3.9. Each column

corresponds to one selected marker. Only those correlations that were significant at

a 1% FDR level are colored. For a marker, when the expression of genes enriched for

a particular TF’s binding site is higher for segregants inheriting the BY allele than

RM allele at one of the detected marker, we have positive correlation (indicated in

yellow). However, when these genes are relatively more upregulated for segregants

inheriting RM allele than BY, we have negative correlation (indicated in cyan). The

significant threshold for the p-value is about 2.5 × 10−4 corresponding to |t-value|
∼ 3.7. The rows were clustered based on the similarity of the correlation profiles

for each TF among the selected markers. To measure for the enrichment for each

GO categories, we used non-parametric Mann-Whitney-Wilcoxon test p-values with

Bonferroni correction to control for false positives at 1% level.

We will now discuss both analyses results for each detected marker among chromo-

some I to XVI. The forward selection order of the detected markers is included in

Table 3.1. We will first focus on the loci on chromosomes III, V, VIII and XII, which

have been previously reported by Brem et al. (2002); Zhu et al. (2008).

For the marker on chromosome III, we did not detect any significant positive correla-

tion of the ∆Z to the TFs specificities. On the other hand, the negatively correlated

TFs are more significant including Gcn4p, Leu3p, Uga3p and Bas1p with t-values

equal to -10.24, -7.52, -4.71 and -3.90 and -3.49 respectively. Gcn4p, Leu3p and

Bas1p are all transcriptional activators of amino acid biosynthesis, with the two later

involved in synthesis of specific amino acids, namely leucine, isoleucine, valine and

histidine (Arndt et al., 1987; Friden and Schimmel, 1988), whereas Gcn4p is the gen-

eral transcription activator in amino acid starvation (Hinnebusch and Fink, 1983).

Uga3p is active in the presence of GABA and activated genes required for GABA1

1gamma-Aminobutyric acid, GABA, is a type of amino acid.
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utilization as a nitrogen source (Talibi et al., 1995). The top enriched GO category

for BY allele is structural constituent of ribosome 5.71 x 10−49 and most enriched for

RM allele is amino acid biosynthetic process 4.49 x 10−30. The appearance of this

locus was expected. This is due to the experimental design of the RM parental strain.

The RM strain, used in the genetic crossing, lacks LEU2 and URA3 genes. The tran-

scription of LEU2 is repressed in the presence of leucine and the protein encoded by

it acts as catalyser in the leucine amino acid biosynthesis pathway (Kohlhaw, 1988).

LEU2 gene is located on chromosome III within the significant region detected by

our method. The segregants that inherit this region form the RM parental strain

are also auxotrophic for leucine and can not survive media depleted in this amino

acids (see Section 1.5.5 for auxotrophic effect). Even though, the growth medium

of the segregants contained leucine and Leu2p was not required, it seems that the

lack of LEU2 in the RM strain has caused a significant perturbation in the amino

acid metabolism network compared to the BY strain.

For the peak located on chromosome V, only Cha4p and Gcn4p passed the signifi-

cance threshold with t-value equal to 3.81 and -5.13 respectively. Go analysis ranked

the structural constituent of ribosome category (p-value=1.18 × 10−88) as the most

positively correlated and organic acid metabolic process (p-value=5.00 × 10−18) as

the most negatively correlated category. As mentioned in the previous paragraph,

the RM strain that was used in the experiment by Brem et al. (2002) had been

engineered to not possess the URA3 gene. URA3 encodes for an enzyme that cat-

alyzes a step in the uracil biosynthesis pathway, more specifically, it is involved in

the metabolism of uridylic acid. Uracil starvation can induce URA3 gene expression

about 5 fold (Lacroute, 1968). So the fact that the most negative GO category is the

organic acid metabolic (i.e. uridylic acid) supports that this the linkage at this locus

is due to RM lacking URA3 gene.

The marker located at the beginning of chromosome VIII, the only TFs that signif-

icantly correlated to the ∆Z at this locus were Ste12p (t-value=10.50) and Cha4p

(t-value=-6.83). Ste12p is a transcription factor that induces the genes involved in
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mating and pseudohyphal/invasive growth pathways (Dolan et al., 1989; Liu et al.,

1993). The most positively and negatively enriched GO categories were the regulation

of RNA metabolic process and gene expression with p-values equal to 1.86×10−13 and

4.72×10−78 respectively. Two genes involved in mating response pathway are located

near this marker: MATa/MATα and GPA1. Yeast have two mating types, a and

α. The mating type identity of a cell is determined based on having either MATa or

MATα alleles (Marsh et al., 1991). Two haploid yeast cells mate only if one cell has

a and the other cell possesses α allele of the MAT gene. So by default the BY and

RM parental stains that are involved in a genetic cross have to have a allelic variation

at MAT locus. The second gene in this region that is involved in mating response

pathway is GPA1. The protein encoded by GPA1 is involved in dampening of the

mating-induced signal (Dietzel and Kurjan, 1987). This gene is located closer to the

detected marker than the MAT gene. Since this region contain important genes that

are involved in mating pathway, it is not surprising that the promoter specificity of

Ste12p correlates to this loci.

For the peak located on chromosome XII, we only found one slightly significant posi-

tive correlation: Msn4p with t-value of 4.04. Msn4p is a protein activated in the stress

conditions such as heat shock, glucose starvation, oxidative shock (Martinez-Pastor

et al., 1996). The top positively enriched GO category was the catabolic process (p-

value=1.92× 10−19). As for the negatively correlated TFs, Hap1p and Cha4p stood

at the top of the list with t-values equal to -7.86 and -6.35, respectively. Hap1p is

involved in gene expression regulation in response to levels of oxygen and heme in

the cell environment (Keng, 1992). The most negatively enriched GO category was

the ribosome biogenesis with p-value=6.91 × 10−54. Gaisne et al. (1999) found that

the coding region of HAP1 in BY strain carries a Ty1 insertion. This insertion is

absent in the RM strain (Brem et al., 2002). The existing mutation within HAP1

gene between BY and RM supports the possibility of HAP1 as the regulator located

within the selected region on chromosome XII.

We expected to detect significant linkage at these four loci. The two genes, LEU2
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and URA3, were deliberately deleted in the RM parental strain. So these two aux-

otrophic mutations were generated based on the experimental design and served as

positive controls for the linkage (Brem et al., 2002). The linkage to the MAT locus

on chromosome VIII is also due to the existing allele variation between the mating

BY and RM strains. Finally, the detected linkage on chromosome XII, is caused by

the natural mutation in Hap1 gene in the BY strain. These allelic variations served

as positive controls for our method and we were able to recover all of them. Now we

will discuss the rest of the detected loci.

The peak on chromosome II is the most significant detected eQTL hotspot. Based

on the heatmap, the ∆Z’s at this marker displays a significant positive correlation

to Cha4p (t-value= 11.25) and correlate less significantly to Gln3p (t-value= 4.28).

Cha4p is the activator of transcription of CHA1 gene, which encodes a protein that

enable yeast cells to survive on L-serine and L-threonine as nitrogen source (Holmberg

and Schjerling, 1996). Gln3p is also related to nitrogen utilization regulation (Mine-

hart and Magasanik, 1991). This protein positively regulates the expression of the

genes that were suppressed in low level of nitrogen. It seems that the regulatory

pathway influenced by this marker has interaction with nitrogen catabolization2. On

the negative side of the correlation spectrum, we have Adr1p with t-values of -5.73.

Adr1p is required for transcription of genes required for ethanol, glycerol and fatty

acid utilization (Tachibana et al., 2005). GO analysis for this maker scores ribosome

biogenesis with p-value= 1.13 × 10−107 as the most enriched for BY allele category

and mitochondrial part with p-value= 2.82 × 10−44 as the most enriched for RM

allele.

The peak on chromosome XIII is located about 50k base pairs into the beginning of

the chromosome. The TFs that passed the significant correlation threshold with their

corresponding t-values are as follows: Zap1p 3.87, Leu3p 4.24, Nrg1p 4.31, Bas1p 4.91

and Hap4p -4.64. Zap1p induces transcription of its target genes in the presence of

zinc and represses the transcription of some genes in the low zinc levels (Zhao et al.,

2The metabolic processes that break down molecules into smaller units and release energy.
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1998). Nrg1p is required for glucose repression of some genes (Zhou and Winston,

2001) and also is involved in the repression of FLO11 gene, which is required for inva-

sive and pseudohyphal growth (Kuchin et al., 2002). The top positively enriched GO

categories is the amino acid metabolic process (p-value=1.34× 10−16). This category

is related to the function of Leu3p and Bas1p. Hap4p is the subunit of the complex

that activates the transcription of genes involved in cellular respiration (Forsburg and

Guarente, 1989). Cellular respiration is a set of catabolic reaction that uses oxygen

to convert nutrients into useful energy. The top negative GO category is again re-

lated to ribosome: cytosolic ribosome (p-value=3.43 × 10−37). However the rest of

significant negatively enrich GO categories are related to transmembrane transporta-

tion. There are two genes located in this region that are involved in transmembrane

transport. They are NUP188 and SMA2 with 9 and 2 coding SNPs, respectively. The

NUP188 gene encodes a protein that is a subunit of the nuclear pore complex (NPC).

Nup188p is involved in the structural organization of NPC and the nuclear envelope

permeability. Sma2p is a meiosis-specific prospore membrane protein.

The locus detected on chromosome XIV is the most significant locus after the peak on

chromosome II. Correlation to Fkh1p is slightly significant with t-value=3.90. This

protein is involved in regulation of the expression of G2/M phase genes. Rpn4p 4.31

and Gcn4p -4.03. RPN4 encodes a protein that induces the degradation of unneeded

or damaged proteins. The significant negatively enriched GO category is mitochon-

drial part (p-value=1.40× 10−74), mitochondrial translation (p-value=2.67× 10−33),

sulfur compound biosynthetic process (p-value=7.07×10−7) and phosphorylation (p-

value=5.5 × 10−7). Positively enriched GO categories are as follows: cytosolic3 part

(p-value=4.37×10−27), actin4 binding (p-value=5.37×10−12) and nucleosome assem-

bly (p-value=1.12× 10−6). This region contains many genes encoding mitochondrial

proteins and also several proteins involved in actin organization.

Peak 9 is located on chromosome XV and the genome-wide linkage to this locus was

3Cytosol is the intracellular or cytoplasmic fluid.
4Actin is a network of proteins that form microfilaments and are responsible for cytokinesis and

cell morphogenesis.
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Figure 3.9: (Cont. Caption) Transcription Factors in vitro Binding Specificities. Here
∆Z of each marker was independently regressed by a multiple linear fit against the
affinity scores of 123 TF PSAMs from MacIsaac et al. (2006). We plotted these cor-
relation t-values using a color scale heatmap clustering the rows. We also calculated
correlation coefficient p-values and used them to get the significant threshold at 1%
false positive discovery rate. To correct for the multiple testing, we used the ap-
proach by Benjamini and Hochberg (1995). We only colored those correlations that
were significant at this threshold |t-value|=3.4.

highly significant. Here is the list of the TFs that significantly correlated to this

locus: Gcn4p (t-value=4.19), Cha4p (t-value=4.54), Adr1p (t-value=-7.46), Sut1p

(t-value=-5.10) and Msn2p (t-value=-3.81). Sut1p is involved in sterol5 uptake and

in the induction of genes required for growth in low oxygen levels (Ness et al., 2001).

Msn2p is a transcriptional activator that is active in stress conditions and binds DNA

at stress response elements of its target genes. Msn2p and Msn4p are paralog. The

significant positively enriched GO categories were: nitrogen compound metabolic pro-

cess (p-value=1.11× 10−37), amino acid biosynthetic process (p-value=4.22× 10−11),

and cellular localization (p-value=1.28 × 10−10). Negatively enriched categories are:

mitochondrial part (p-value=1.82 × 10−45), generation of precursor metabolites and

energy (p-value=1.26 × 10−12, and nucleobase and nucleotide metabolic process (p-

value=5.79 × 10−9). The positive GO category are related to the function of Cha4p

and Gcn4p.

The 10th peak, detected also on chromosome XV, is the least significant locus among

the 10 detected loci. This locus was significantly correlated to Hap4p (t-value=-

8.36). The most positively enriched GO category was amino acid metabolic process

(p-value=3.38×10−17). Besides the top negatively correlated GO category, which was

cytoplasmic part (p-value=5.64×10−26), the rest of significant categories were related

to mitochondria and ion transmembrane transportation. Since Hap4p is involved in

cellular respiration that takes place in mitochondria, the result from TF correlation

and GO enrichment analysis both indicate the linkage between this locus and cellular

respiration.

5Sterols are essential lipid components of eukaryotes cellular membranes.
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The second peak on chromosome V is the novel locus detected by our method. Cha4p

and Stb2p are positively correlated to this locus with t-values 9.38 and 4.28 respec-

tively. Stb2p has been shown to interact with the Sin3p-Rpd3p histone deacetylase

complex (Kasten and Stillman, 1997). Sin3p is involved in activation and suppression

of many cellular processes, including mating-type switch, cell growth, maintaining

telomere6 length and chromatin integrity. The most positively enriched GO category

is the ribosome biogenesis category (p-value=1.05 × 10−101). The significant neg-

ative correlations include: Msn4p, Gcn4p and Hap4p with t-values equal to -4.25,

-3.98, -3.89 respectively. All these 3 TFs are found to coordinate the transitions

between phases of the metabolic cycle of yeast (Rao and Pellegrini, 2011). Inter-

estingly, we found the most negatively correlated GO category is catabolic process

(p-value=6.31× 10−15) and energy derivation by oxidation of organic compounds (p-

value=1.19× 10−8). The genes with roles related to these TFs and GO categories are

as follows: SWI4, a transcriptional activator that regulates transcription of cyclins

and genes required for DNA synthesis and repair, also interacts with Sin3p; DOT6,

involved in rRNA and ribosome biogenesis and subunit of the histone deacetylase

complex, involved in telomeric gene silencing and filamentation; ALD5, mitochon-

drial component, involved in regulation or biosynthesis of electron transport chain

components and acetate formation; RGI1, involved in energy metabolism under res-

piratory conditions, induced upon intracellular iron depletion; CEM1, possible role

in fatty acid synthesis and is required for mitochondrial respiration.

6Telomeres are repetitive nucleotide sequences located at the end of each chromosome and protect
them from degradation.
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Table 3.1: Yeast eQTL Hotspots Results, obtained by forward selection with signifi-
cant threshold with Bonferroni correction at 1%.
No. Selection Max χ2 Position of No. of Genes in Putative

Order Selected Marker Selected Region Regulator

1 1 24.7× 103 Chr2: 548,401 327 ?

2 5 16.4× 103 Chr3: 91,977 122 LEU2

3 9 9.6× 103 Chr5: 117,048 65 URA3

4 7 15.3× 103 Chr5: 350,744 149 SWI4, DOT6, ALD5, RGI1, CEM1

5 6 11.8× 103 Chr8: 111,690 73 GPA1, MAT

6 4 16.2× 103 Chr12: 662,627 161 HAP1

7 8 11.2× 103 Chr13: 49,903 83 NUP188, SMA2

8 2 22.7× 103 Chr14: 449,639 186 Mitochondial & actin genes

9 3 22.8× 103 Chr15: 174,364 151 GPD2, SKM1, DDR2

10 10 8.7× 103 Chr15: 563,943 103 AZF1, IDH2
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3.3.3 Recovered and Novel eQTL Hotspots for C.elegans

Figure 3.10 presents the χ2-statistic profile for the 1455 markers along the chromo-

somes of worm for the real expression data (blue) and null data (red). The null data

was generated by shuffling the expression levels of each gene among the 214 RIALs.

We observe that in the case of the randomized data, the χ2 values oscillates around

the expected value equal to the degrees of freedom (df) of the χ2 distribution. In our

case df is the number of genes equal to 13,500. However, when the actual expression

data was used, we observe a distinct profile compared to the null data. The peaks

represent putative eQTL hotspots.

A region on chromosome I has a χ2-statistic significantly below the expected value

both for the expression data and the null data. By looking at the allelic composition

of markers within this region, we realized that the samples’ allele is almost entirely

inherited from the Bristol parental strain. We are not sure whether it is a experimental

artifact or there is a biological reason for it. It could be that the worm, which acquired

Hawaii parental allele at these marker, did not survive the experimental medium in

combination with the allelic composition of other markers. As we mentioned earlier,

we had normalized the expression data for each gene among the 214 samples. This

means that at markers with mostly one type of the genotype, the ∆Z’s are almost

close to zero and resulting in a small χ2-statistic.

Like we did for yeast analysis, we applied a forward selection procedure to detect the

influential loci. Figure 3.11 displays the iterations of our marker selection procedure.

The black arrows in the figure mark the location of newly selected significant marker

between each iteration. We detected a total of 6 markers as significant with Bonferroni

correction at 1% corresponding to χ2-threshold ∼ 14,213. The detailed information

for the selected peaks are summarized in Table 3.2.

We compared our results to the results from Rockman et al. (2010), where the mRNA

expression levels of each gene was treated as quantitative traits and a nonparametric

interval mapping approach and clustering were used to detect the significant eQTLs
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Figure 3.10: eQTL Hotspots Peak Profile for Worm. We calculated the allele specific
difference of the sums of expression data z-scores at each chromosomal marker (∆Z)
and then calculated χ2 for all the 1455 markers. The blue plot resulted from using
expression data and the red was for the case where we permuted the expression vector
of each gene randomly among the segregants while keeping the genotype map intact.
Then we calculated ∆Z’s using the z-scores of the permuted expression data. It serves
as the null distribution for the χ2 values. It oscillates around the expected value ∼

13,500 (i.e. the number of genes).
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Figure 3.11: Forward Selection of Peaks for Worm. The red line represent the signif-
icant χ2 threshold Bonferroni corrected at 1%. We captured a total of 6 peaks.
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hotspots. The interval mapping method uses the likelihood analysis to tests the

linkage at each marker with considering its two neighbouring markers in the linkage

region to estimate the QTL location more precisely (Lander and Botstein, 1989).

The nonparametric approach uses the generalized Wilcoxon rank-sum statistics and

interval mapping developed by (Kruglyak and Lander, 1995). Figure. 3.12A displays

the results of our χ2-statistic analysis, and Figure. 3.12B results from Rockman

et al.. Our method was able to capture 2 of the reported markers on chromosomes

IV and X.

3.3.4 Assessment of Possible Regulatory Roles for the De-

tected Worm eQTL Hotspots

We used GO enrichment analysis to test whether the detected eQTL hotspot are

biased toward a specific biological function.

The first peak is located on chromosome II. The GO enrichment analysis at this

locus showed relative enrichment for RIALS that inherited the Bristol parental al-

lele for these categories: cell cycle (p-value=5.86 × 10−24), protein tyrosine phos-

phatase activity (p-value=2.45 × 10−18), DNA metabolic process (p-value=3.94 ×
10−11), reproductive cellular process (p-value=2.27× 10−9), proteasome complex (p-

value=2.13× 10−8), structural constituent of cuticle (p-value=6.07× 10−8), biopoly-

mer modification (p-value=2.74× 10−7) and embryonic development ending in birth

or egg hatching (p-value=5.56−10). These categories are involved in a variety of pro-

cesses and not related to a specific function. However the categories with relative

enrichment for RIALs inheriting Hawaii allele are less dispersed: regulation of cellu-

lar process (p-value=1.85×10−46), synapse (p-value=2.09×10−16), signal transducer

activity (p-value= 1.66 × 10−9), growth (p-value=3.79 × 10−7), tetrapyrrole bind-

ing (p-value=4.19× 10−6) and behavior (p-value=5.73× 10−6). Three categories are

related to the nervous system of the nematode.

The second peak is located on chromosome IV and it is one of the peaks that was
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Figure 3.12: eQTL Hotspots Peak Profile for Worm Comparing Selected Peaks with
an Independent Study (Rockman et al., 2010). Our method was able to recover two of
the peaks reported in that study (A). The red horizontal line represents the significant
χ2 threshold for Bonferroni corrected at 1% level. eQTL hotspots from Rockman et al.
(2010) detected at 5% FDR rate (B). Three top significant loci are shown with the
arrows. Figure (B) from Rockman et al. (2010).
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detected by Rockman et al. (2010). These categories that are enriched for Bristol allele

are: embryonic development ending in birth or egg hatching (p-value=9.23× 10−106)

and DNA metabolic process (p-value=6.76 × 10−13). The categories enriched for

Hawaii allele are mostly related to signal transduction through the cellular membrane:

integral to membrane (p-value=7.16 × 10−57), transmembrane transporter activity

(p-value=7.28 × 10−20), G-protein coupled receptor protein signaling pathway (p-

value=4.63× 10−20), lipid glycosylation (p-value=7.47× 10−11). So it is possible that

a SNP within this region regulates the function of the cellular membrane. Other GO

categories are: iron ion binding (p-value=7.25× 10−9) and peptidase activity, acting

on L-amino acid peptides (p-value=2.84× 10−7).

The third peak is located several dozen kb into chromosome V. Many enriched GO cat-

egories for Bristol allele are related to three processes: metabolic, oxidation-reduction

and transportstion. Here is the list of significant categories: oxidoreductase activity

(p-value=2.82×10−17), transporter activity (p-value=3.72×10−13), metabolic process

(p-value=5.28×10−12), cellular metabolic process (p-value=2.16×10−21), biosynthetic

process (p-value=1.40 × 10−16), primary metabolic process (p-value=2.90 × 10−20),

catalytic activity (p-value=1.55 × 10−19), ion transport (p-value=8.12 × 10−14), cel-

lular macromolecule metabolic process (p-value=2.96× 10−10), nucleosome assembly

(p-value=2.46×10−9), signal transducer activity (p-value=2.22×10−9), oxidation re-

duction (p-value=1.36×10−9), phosphorylation (p-value=1.44×10−7) and transmem-

brane transport (p-value=1.96×10−7). There were only two significant GO categories

enriched for Hawaii allele: structural constituent of cuticle (p-value=1.85×10−21) and

phosphorus metabolic process (p-value=1.38× 10−12).

Peak 4 is located on chromosome V. This locus has the largest χ2 value. The pos-

itively enriched significant categories were mostly related to membrane: membrane

part (p-value=4.40× 10−84), membrane (p-value=9.53× 10−17), signal transducer ac-

tivity (p-value=2.16×10−16) integral to membrane (p-value=6.74×10−17). The most

negatively enriched categories was the embryonic development ending in birth or egg

hatching category (p-value=1.07−144).
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Table 3.2: Worm eQTL Hotspots Results, obtained by forward selection with signifi-
cant threshold with Bonferroni correction at 1%.

No. Selection Max χ
2

Position of

Order Selected Marker

1 2 27.2× 103 Chr2: 3,397,001

2 4 26.4× 103 Chr4: 4,779,016

3 5 20.2× 103 Chr5: 16,796

4 1 53.2× 103 Chr5: 13,031,355

5 6 26.7× 103 ChrX: 4,900,879

6 3 44.5× 103 ChrX: 12,750,713

The fifth peak is located on the sex chromosome X and it was also reported by Rock-

man et al. (2010). This locus was positively enriched for the embryonic develop-

ment ending in birth or egg hatching (p-value=5.73×10−116), nuclear RNA (ncRNA)

metabolic process (p-value=3.23×10−11) and cellular catabolic process (p-value=5.97×
10−9). The negatively correlated GO categories were highly enriched for categories

related to membrane: membrane part (p-value=5.07× 10−38), integral to membrane

(p-value=4.03 × 10−18), ion channel activity (p-value=1.08 × 10−13), G-protein cou-

pled receptor protein signaling pathway (p-value=2.04 × 10−13), structural molecule

activity (p-value=5.98× 10−13).

Finally, 6th peak is also located on the sex chromosome X. This locus is also posi-

tively correlated to the embryonic development ending in birth or egg hatching (p-

value=3.52× 10−117). Other positively enriched GO category for this locus were the

cellular response to stress category (p-value=1.27×10−8), glycerolipid metabolic pro-

cess (p-value=7.73×10−8) and ncRNA metabolic process (p-value=8.98×10−8).

3.4 Conclusion

In this chapter, we have presented the method developed for the detection of trans-

acting genetic loci that regulate the expression of large number of genes. It uses
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mRNA expression levels and genotype data to identify these loci. At each marker,

we first calculate the difference of the sums of the expression level z-scores between

the samples inheriting different genotypes. Then, we calculate a χ2-statistic for every

chromosomal marker position using the difference of the sums of all genes. The

traditional approach for identifying the expression quantitative trait loci or “eQTL”

hotspots considers the expression levels of each gene as a quantitative trait and uses

ANOVA and clustering to find these hotspots. In contrast, our approach uses all of

the genes and does not require enforcing any significant threshold on the expression

levels.

We applied our method to S. cerevisiae and C. elegans. We used the expression data

and genotype data of 108 yeast segregants generated from a genetic cross between

the BY and RM strains (Brem et al., 2002). We identified 10 loci for yeast, of

which 9 were reported previously (Brem et al., 2002; Zhu et al., 2008). Four loci

appeared because of the lack of LEU2 and URA3 genes in the RM strain due to the

experimental design, the mating locus allelic variation between the parental strain,

and a natural mutation existing in the HAP1 gene of the BY strain. These four

loci served as positive controls for our method. Therefore, the detection of them

increased our confidence in the validity of our method. We found a novel locus on

chromosome V with a possible role in regulation of mitochondrial respiration and

ribosome biogenesis. The putative regulator at this locus and the rest of the detected

loci can be validated by allele replacement experiments (see Section 1.5.5).

For worm, we used the expression data and genotype data of 214 RIALs developed

from the N2 and Bristol strains (Rockman et al., 2010). Our analysis detected 6 loci,

with 2 having been discovered previously by (Rockman et al., 2010).

Our method can be applied to a population of segregants/offsprings of any organism

whose genome-wide expression data and genotype data are available. In a way, we

consider the genome of an organism as a system that has intrinsic resonance modes.

Hence, the trans-acting loci resemble these modes to which the regulation of a large

number of pathways is linked. By using the natural sequence variations within a



108

related population, we can “excite” these resonance modes. So, our method can be

thought of as a way of seeking these “trans-acting resonances” or “nuclear genetic

resonances”.
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Chapter 4

Harnessing Natural Sequence

Variation to Dissect

Post-Transcriptional Networks in

Yeast

This chapter is adopted from a manuscript co-authored by Mina Fazlollahi, Eunjee

Lee, Xiang-Jun Lu, Pilar Gomez-Alcala and Harmen J. Bussemaker.

4.1 Introduction

With the advancement of high-throughput sequencing technologies, linkage studies

have become a significant tool for deciphering genetic regulatory networks. Linkage

studies seek to identify the genetic loci that correspond to an observed phenotype

among genetically related individuals. A common approach is to treat the mRNA

expression levels as heritable traits and use them to identify expression quantita-

tive trait loci (eQTL) hotspots that regulate the expression of a larger number of

genes.
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Our approach uses differential mRNA expression data and genotype data of a seg-

regating population together with sequence specificities for RNA-binding proteins

(RBPs) as a priori information. The goal is to identify chromosomal loci (i.e. genes)

that modulate the activity levels (i.e. traits) of the RBPs under study. We call

these loci activity quantitative trait loci or “aQTLs” (Lee and Bussemaker, 2010).

Our method consists of two steps. We first use the sequence specificities of RBPs

and segregant-specific mRNA expression data to infer the activity levels of RBPs

for each segregant. These inferred activity levels are treated as quantitative traits

used in the second step. The second step aims to detect the aQTLs based on the

significance of the difference between the distributions of the activities when splitting

the segregants based on the inherited parental alleles at each chromosomal marker.

RNA binding proteins perform post-transcriptional processing of the RNA transcript.

Many RBPs are also involved in the stability regulation of the mRNAs by binding to

stability associated motifs mostly located within the untranslated regions (UTRs) of

the mRNA. Therefore, the significant aQTL that we detect could be involved in the

post-transcriptional stability regulation of the mRNAs.

We used the affinity scores of the 25 RBP-region combinations, which we obtained

with our motif discovery approach presented in Chapter 2, to infer the activity levels.

We used the expression and genotype data of 108 segregants generated from a genetic

cross between the BY and RM strains in yeast (Smith and Kruglyak, 2008). Using

the estimated affinity scores of the 25 factor combinations together with the mRNA

differential expression levels for every segregant in the population, we inferred the

activity levels of the RBPs for every individual. We treated these activity levels as

quantitative trait to discover loci modulating them.

For the aQTL analysis we recovered a known locus that contains the MKT1 gene,

which has been shown to modulate the activity levels of Puf3p (Lee et al., 2009).

Interestingly, we found that depending on the interaction of Puf3p with the 5′ or 3′

UTRs of its target mRNAs, there are different loci regulating this protein’s activity.

We also found a locus on chromosome XV containing the IRA2 gene as a putative
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activity modulator for Puf4p. We further tested it by using parental IRA2 allele

replacement data obtained by Smith and Kruglyak (2008). The difference in the

expression between the two mutant strains with reciprocal IRA2 alleles significantly

correlated with Puf4p sequence specificities. This indicates the possible role for IRA2

as modulator of Puf4p activity level.

4.2 Methods

4.2.1 Experimental Data Used

For the aQTL analysis, we used genome-wide mRNA expression data for 108 haploid

segregants from a genetic cross between two parental strains (BY and RM) (Smith

and Kruglyak, 2008). As differential expression values, we used log2-ratios between

segregants and a reference consisting of a mixture of the BY and RM strains. Geno-

type data for the same segregants at 2956 markers was obtained from the authors of

(Brem et al., 2002).

4.2.2 Inferring Segregant-Specific of RNA-Binding Protein

Activities

From our RNA-binding proteins (RBPs) motif discovery analysis we obtained 25

independent RBP-region combinations (see Chapter 2). As in the work by (Lee and

Bussemaker, 2010), we used the affinity scores of the obtained position specific affinity

matrices (PSAMs) as a predictor for mRNA differential expression levels in the low

protein concentration region established by (Bussemaker et al., 2007; Foat et al.,

2006). We considered the occupancy of a given mRNA region by a particular RBP

to be proportional to the total affinity of a desired PSAM for a sliding window along

the whole mRNA, 5′ or 3′ untranslated region (UTR) or open reading frame (ORF)

sequences (see Equation 2.7). We performed a genome-wide multiple regression on
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the 25 RBP-region combinations presented in Chapter 2 of every segregant mRNA

expression log2-ratios to infer segregant-specific activity levels of the RBPs (see also

Figure 4.2).

ygs = β0s +
∑

φ

βφsKφg (4.1)

where ygs represents the differential mRNA levels of gene g for segregant s relative

to the reference. The affinity score the mRNA sequence of gene g is denoted as

Kφg corresponding to a RNA-binding protein φ. Here, the regression coefficient βφs

represents the activity level of RBP φ for segregant s.

4.2.3 aQTL Mapping

Significant aQTL region were discovered by splitting the multiple regression coefficient

between BY and RM at every marker and testing for the significance of the difference

between the distributions of the two groups of coefficients using composite interval

mapping (CIM) method for maximum resolution (Zeng, 1994). CIM uses multiple

regression on multiple markers to obtain a more precise mapping of the QTL. We

used CIM implementation in R/qtl package by Broman et al. (2003). LOD score, an

acronym for ‘logarithm of the odds ratio’ was calculated to check for the linkage effect.

The odds ratio is the probability of observing a specific genotype in the population

given linkage at a particular recombination fraction (θ) versus the same probabil-

ity computed conditional on independent genotype assortment (θ = 0.5) (Chotai,

1984).

z(θ) = log10[p(r; θ)/p(r; 0.5)] (4.2)

For example, a LOD score of 3 means that the probability of observing the linkage

considering a random recombination has odds of ∼ 0.001. Thus, high values of LOD

score favor the linkage hypothesis.

We calculated LOD score to test the linkage of the RBPs inferred activities to each
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locus. We performed 200 independent random permutations on the expression data

for each gene among the segregants (preserving the genotype data) to get LOD

score threshold at 1% FDR level. We obtained this threshold for each factor sep-

arately.

To ensure that the detected aQTL regions for the RBPs are modulated by trans-

acting factors and also not dominated by a single gene eQTL, once we obtained

the significant regions we re-did the analysis after eliminating 3 groups of genes:

gene that encode the RBPs, genes fully or partly located within about 10 kb up-

and down-stream of obtained aQTL regions and genes with significant eQTL peak

located 20 kbp window around detected aQTL marker and have affinity higher than

50% of max affinity score for the RBP under study. To find the last group, we did

our QTL analysis using the expression of each gene as a trait and calculated LOD

score for every marker using CIM method. We combined these 3 groups of genes and

eliminated them for each RBP separately, thus not affecting the activity calculation

of each factor by eliminating unrelated genes for it. Same procedure was performed

for calculating aQTL profile using the protein levels.

4.2.4 Protein-Protein Interaction Data

We downloaded the latest version (April 2012) of protein-protein interaction from

the Biogrid website (http://thebiogrid.org) for yeast as of April 2012. We used

it to detect any known genetic or physical interaction with the genes located in our

detected aQTL regions. The physical interaction refers to the case where the two

proteins directly or through a cofactor bind together in order to initiate or inhibit

a process. Two common approaches to test the physical interaction between two

proteins are: two-hybrid assay and affinity-capture (see Section 1.5.4). Whereas,

a genetic interaction is inferred when the two proteins do not directly interact but

rather are involved in connected pathway or process. For example, one approach to

test genetic interaction is when the deletion or mutation of a gene rescues the growth

defect of a yeast strain containing a mutation or deletion of another gene. This assay
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is known as synthetic rescue. Other types of approaches such as positive (or negative)

genetic interaction can also be employed to identify genetic interactions. The positive

genetic interaction is based on the observation that mutation or deletion of two genes

separately result in a more severe phenotypic defect than expected when compared

to the combined mutations or deletions in the same cell. Conversely, negative genetic

interaction is detected when the combined effect of mutations or deletions of two

separate genes is more severe than expected.

4.2.5 Validation of Predicted Locus-RBP Associations

We used gene expression profiles for two mutant strains growing in glucose medium

collected by Smith and Kruglyak (2008) where IRA2 alleles were swapped between

the BY and RM strains. We label the strain carrying the RM allele of IRA2 in the

BY background as (RM@IRA2) and the strain carrying the BY allele of IRA2 in the

RM background as (BY@IRA2). The reference sample used for the gene expression

measurements was pooled parental mRNA (BY and RM). To obtain the net effect

of the IRA2 allele replacement on the genome-wide mRNA levels, we subtracted the

mean log-ratio of the related background of each mutated strain (shown RM@IRA2

strain below).

yBY→RM@IRA2
g = log2

(

[mRNAg](RM@IRA2, glucose)

[mRNAg](pool)

)

−log2
(

[mRNAg](BY, glucose)

[mRNAg](pool)

) (4.3)

We performed multiple regression between the above data vector and the affinity

scores of 25 RBP-region combinations. Similarly, we calculated the relative mRNA

expression for the RM strain when IRA2 was swapped with the BY allele and the

RM background and applied multiple regression analysis. To capture the effect of

the IRA2 allele swap between the two backgrounds, we subtracted the regression

coefficients between the two cases for all the 25 combinations. We then permuted the

two y vectors for all genes 1000 independently to calculate the statistical significance
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threshold at 1% FDR level (|y| > 2.7).

4.3 Results

4.3.1 Genetic Linkage Analysis

Boorsma et al. (2008) experimentally validated that predicting the modulation of a

transcription factor (TF) activity at post-transcriptional level is possible by scoring

mRNA differential expression levels of putative targets of the TF. As for the activity

levels, it has been shown that they vary among members of a population of an organ-

ism and can be treated as a quantitative trait for genetic linkage analysis to capture

polymorphisms that modulate the activity of the transcription factors (Lee and Busse-

maker, 2010). We have applied a similar approach to detect the post-transcriptional

and translational network and identify transacting-loci that control the activity of

RBPs in yeast both at mRNA expression levels and protein levels respectively.

The segregants generated from the genetic cross between the BY and RM strains each

have a distinct allelic combination of the parental genotypes. Therefore, the gene

expression levels of every segregant is uniquely perturbed relative to the reference,

compared to the rest of the segregants. We used the segregant-specific genome-wide

mRNA expression levels to predict RNA-binding protein (RBP) activity levels for

each of the 108 segregants (Smith and Kruglyak, 2008). Figure 4.1 displays the

steps involved in the analysis. To calculate the RBP affinity scores, we used the

25 RBP-region combinations that we obtained by our motif discovery approach (see

Figure 2.7). We first scored all genes by calculating the affinity of the PSAM using

the chosen sequence (whole mRNA, UTRs or ORFs) and Equation 2.7. Then we

performed multiple regression on all 25 factor affinities of each segregant mRNA ex-

pression data. We considered the coefficients of the regression as the quantitative rep-

resentation of the RBP activities. We used composite interval mapping (CIM) (Zeng,

1994) to map aQTLs for each RBP-region combination. To correct for multiple test-
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Figure 4.1: Overview of the aQTL Approach. Genome-wide affinity scores were cal-
culated using position-specific affinity matrix (PSAM) and sequences. The affinity
scores were used to infer segregant-specific RBP activities. The activities were ob-
tained by multiple linear regression on differential mRNA expression levels to the
affinity scores. The regression coefficients represent the RBP activity levels for each
segregant. For linkage analysis, the activities were treated as quantitative traits.
Whenever the distribution of the inferred activity levels of a RBP depends on the
genotype variation of a specific chromosomal marker, we would obtain a high LOD
score at that marker and it indicates the presence of an aQTL (at 1% FDR level).
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ing, we calculated the LOD score thresholds corresponding to a 1% false discovery

rate (FDR) by performing 200 permutations (see Methods).

Figure 4.2 illustrates the genome-wide linear regression of mRNA differential ex-

pression of a particular segregant on the 3′ UTRs affinity scores for Puf3p (A) and

Puf4p (B). In each case, the slope represents the activity level of the RBP under

study. In practice, we used multiple linear regression of differential mRNA levels of a

segregant on all 25 RBP-region combinations mentioned above (see Equation 4.1).

The inferred activities were treated as a quantitative phenotype for our aQTL anal-

ysis.
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Figure 4.2: Scatter Plots for Activity Calculation for a Particular Segregant. Activ-
ity level is the slope of the linear fit on the gene expression levels to the 3′ UTRs
affinity scores for Puf3p (A) and Puf4p (B). For this particular segregant, Puf4p is
significantly active whereas Puf3p is slightly active.

Figure 4.3A shows the clustered heatmap for the RBP activities Pearson correlation

and Figure 4.3B shows the affinity scores Pearson correlation. We observed that

even though the affinities of most of the factors are uncorrelated, most RBP activity

levels are negatively or positively correlated. This could reflect that at the mRNA

expression levels, some of the RBPs activities are modulated by the same upstream

mechanism even though the RBPs have different target sets as shown schematically

in Figure 4.3C. An example for supporting this idea are Puf4 (3′ UTR) and Sik1p

(ORF). The affinity correlation between these two factors is 0.04 (p-value = 0.01),
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Figure 4.3: (A) Clustered heatmap of Peasrson correlations calculated for the inferred
activity levels of 25 factors. The activities were calculated using multiple regression
on the genome-wide expression levels to the RBP affinities on selected mRNA regions.
(B) Affinity Pearson correlations. For the comparison convenience, we have kept the
same order for the affinity correlation heatmap as in the clustered heatmap of panel
(A). (C) Possible scenario for observing more significant correlations between inferred
activity levels of the RBPs. Panel (A) Shows that there is a significant negative corre-
lation between Puf4p activity on 3′ UTRs and Sik1p activity on ORFs (Wilmes et al.,
2008); However, Puf4p and Sik1p have distinct set of target genes (weak correlation
between their affinities as observed in panel (B)).

C

which indicate they little target set overlap; However, their activities are highly cor-

related with correlation of -0.72 (p-value < 1 × 10−16). In Wilmes et al. (2008) by

high-throughput measurements, they found that Sik1p and Puf4p have negative ge-
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netic interaction (see Section 4.2.4), which confirms our negative activity correlation

between the two proteins. Both proteins are involved in ribosome biogenesis.

4.3.2 Decoupling of Activities of Two PUF Protein Family:

Puf3p and Puf4p

We also focused on Puf3p ad Puf4p activity to check their correlation in more detail

Figure 4.4. The biding site for these two PUF family members differ in the length of

the gap between UGUA and AUA and they have distinct target sets (as shown in the

affinity correlation heatmap of Figure 4.3B. Foat et al. (2005) studied the activity

levels of several proteins including Puf3p and Puf4p using expression data for many

different stress conditions. Their finding indicated that Puf3p and Puf4p, activity

level is highly anti correlated when cells were exposed to different sugar sources. Using

expression data by (Gasch et al., 2000), we calculated the activity levels between each

stress condition and the affinity of 25 factors. Figure 4.4A shows the activity levels

for Puf3p (3′ UTR) and Puf4p (3′ UTRs). There is a significant negative correlation (r

= -0.67, p-value < 1×10−16). Our results confirm that their activity levels among the

segragants are not correlated (r = +0.047, p-value= 0.63) shown in Figure 4.4B.

This suggests that their activity modulation is linked to different genetic loci and

different pathways are responsible for activating or suppressing these two proteins.

Thus we can decouple the aQTL for these two proteins using genetic differences

naturally occurring in the segregants, which is not observed simply by exposing the

cells to stress conditions.

Figure 4.5 displays the aQTL profile for Puf3p whose activity were inferred based

on affinity score of 3′ UTRs. The significant LOD score threshold at 1% FDR is

indicated with the red horizontal line. Two loci are marked with “*”. The LOD score

of the locus on chromosome IV is insignificant. The strip chart corresponding to the

split of the inferred activity levels of Puf3p at this marker is shown above it with a

black arrow. There is no significant difference in the distribution of the activities of
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Figure 4.4: Decoupling of Puf3p and Puf4p activity in Segregants in Comparison to
Stress Conditions. (A) Scatter plot of inferred activity levels for (Gasch et al., 2000)
stress conditions shown for Puf3p (3′ UTRs) and Puf4 (3′ UTRs). To infer the activ-
ities, we performed a multiple regression on the mRNA levels of each experimental
condition to all 25 factor affinity scores. (B) Scatter plot of inferred activity among
108 segregants for the same two factors.

r= -0.67
p-value < 1 × 10−16

r= +0.047
p-value= 0.63

segregants inheriting the BY allele and segregants inheriting the RM allele at this

marker. On the other hand, the split of the activities based on the genotype at the

marker on chromosome XIV are significantly different and results in a large LOD

score. This indicates the presence of an aQTL.

To make sure that the detected aQTLs are trans-acting, we eliminated the genes

that encode the RBPs from the expression data and also the group of genes that

are located within about 10 kb upstream and downstream of the detected aQTL.

Furthermore, to eliminate any effect caused by eQTL of only a few genes at the

detected aQTL, we obtained the set of genes with significant eQTL LOD score within

a region of about 20 kb around the aQTL locus and among them we eliminated the

genes with affinity higher than 50% of the maximum affinity score for the RBP under

study. Figure 4.6 presents the motivation for eliminating these three set of genes.

For example, the peak on chromosome XII for Puf3p (5′ UTRs) becomes insignificant

when we eliminate the PUF3 gene located within this locus (Figure 4.6A). Also, the
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Figure 4.5: LOD Score Profile for Puf3p Using 3′ UTR Affinity Scores. The red
line indicates the significant threshold at 1% FDR. The LOD score for the marker on
chromosome IV is insignificant because the activity level distribution of the two subset
of segregants based on the genotype at this marker are not significantly different.
Whereas the two distributions are significantly different for the activity split based
on the genotype of the marker on chromosome XIV.

elimination of the YER124C gene, located on chromosome V, causes the significant

peak on chromosome II to disappear for Msl5p (3′ UTRs). The expression of this

gene is linked to this locus on chromosome II and its 3′ UTR scores more than 50% of

the maximum affinity score for Msl5p (Figure 4.6B). Therefore, we eliminated the

outliers by using such strategy.

By eliminating these three groups of genes, we are confident that the observed varia-
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Figure 4.6: Elimination of Outliers for aQTL. For each of the 25 combinations, we
eliminated the gene encoding the RBP, genes located within the 20 kb around the
detected aQTL, and genes with significant eQTL peak within the 20 kb region of
aQTL and estimated affinity score more than 50% of the max score for that RBP.
These three groups of outlier genes are eliminated from the expression data and
affinity scores for each RBP.(A) The peak on chromosome XII becomes insignificant
after elimination of the PUF3 gene form the expression data and affinity scores. (B)
The removal of YER124C, located on chromosome V, causes the peak on chromosome
II to vanish for Msl5p.

Puf3p

(5′ UTRs)

Msl5p

(3′ UTRs)

tion in the activity levels of RBPs are not due to a very few local or distal polymor-

phisms that effect the expression of few genes. We eliminated these three groups of

genes from the expression data and affinity scores for each RBP separately. If a new

peak emerged after this elimination step, we again checked and eliminated the genes

in the vicinity of that new peak to make sure our analysis is self-consistent. Fig-

ure 4.7 displays the summary of significant markers, indicated by blue color at the

marker coordinates, for the first round of the analysis where all genes were included

and the last round where the three groups of genes were eliminated consistently.

Detailed information for the identified aQTLs is summarized in Table 4.1. It lists

any known physical or genetic interactions of the RBPs and other genes or gene

products (also see Figure 4.8 and Figure 4.10).
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Figure 4.7: aQTL results for all of the 25 accepted RBP-mRNA-region combina-
tions. (A) shows the significant peaks obtained by composite interval mapping (CIM)
method when all genes were included (first round), and (B) shows the results after
eliminating neighboring genes of the peaks, genes with significant eQTL at these
peaks and genes encoding the RBPs (last round).
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Table 4.1: Yeast RNA Binding Proteins aQTL Results, Based on 200 Permutations
on mRNA Expression Data at 1% FDR Level

RBP mRNA aQTL Region Max Direct Interaction Reference

Regiona LOD-Score Interaction Type

Khd1 3′ UTRs Chr15 14.6
154,310-193,910

Msl5 3′ UTRs Chr15 15.1
136,328-170,944

Pub1 3′ UTRs Chr15 6.0
154,310-193,910

Puf2 5′ UTRs Chr2 5.8
533,269-567,220

Puf2 5′ UTRs Chr15 7.0
154,310-193,910

Puf3 5′ UTRs Chr2 7.0 POP7 GIb (Wilmes et al., 2008)
555,788-592,862

Puf3 3′ UTRs Chr11 6.3 LAP4 PIc (Breitkreutz et al., 2010)
229,053-247,943

Puf3 3′ UTRs Chr14 12.1 MKT1 GI (Lee et al., 2009)
449,640-502,315

Puf4 5′ UTRs Chr15 10.4
154,310-193,910

Puf4 ORFs Chr15 12.7
154,310-193,910

Puf4 3′ UTRs Chr15 10.7
154,310-193,910

YLL32C mRNAs Chr15 6.5
141,634-170,944

a The affinity scores calculated for the indicated mRNA region, which is used for inferring the activity levels.
b Genetic Interaction
c Physical Interaction
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4.3.3 Recovered aQTL for Puf3p

Figure 4.8 presents the aQTL results for Puf3p and the corresponding line plots for

the inferred activity distribution of the segregants based on their inherited allele at

the significant aQTL markers (blue and red dots). Our method recovered a locus on

chromosome XIV for Puf3p when we calculated its activity using 3′ UTRs sequences

Figure 4.8C,F. This locus was previously discovered computationally and experi-

mentally by (Lee et al., 2009). They have suggested that MKT1 regulates p-body

abundance, which consequently regulates Puf3p target abundance. Lee et al. (2009)

tested the effect of the MKT1 deletion on Puf3p target mRNAs in the RM strain.

The genome-wide mRNA expression profile of the MKT1∆ strain demonstrated that

Puf3p targets are significantly down-regulated.

We used BLAST (Altschul et al., 1997) to align the protein sequences of MKT1 for

RM strain and S288c1 strain, an isogenic strain to BY strain. We identified two amino

acid mutations between the two strains at position 30, the glycine amino acid (G) in

RM is switched to aspartic acid (D) in S288c, and at position 453, the arginine in

RM (R) is replaced with a lysine (K) in S288c.

Besides MKT1, there are 29 other genes located in this region of which one has a

role related to Puf3p. TOM7 is a Component of the translocase of outer membrane

(TOM) complex responsible for recognition and initial import steps for all mitochon-

drially directed proteins and it promotes assembly and stability of the TOM complex

(Meisinger et al., 1999) and (Model et al., 2001). However, we did not identify any

coding or non-coding polymorphisms for TOM7 mRNA including the UTR regions

between S288c and RM. This makes MKT1 a more plausible candidate as the mod-

ulator of Puf3p activity when bound to 3′ UTRs of its targets. See Figure 4.8F for

the distribution of the inferred segregant-specific activity of Puf3p for a split based

on the inherited alleles at the MKT1 locus.

1S288c is a laboratory yeast strain that is isogenic to the BY strain with only about 39 SNPs
occuring between the their genomes.
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Figure 4.8: Puf3p aQTL Profile. Results for the trans-acting genetic modulators of
Puf3p activity, mapped using our aQTL method. The significant threshold at 1%
FDR level are calculated using 200 independent permutations of the expression data
(red horizontal lines). We obtained a separate aQTL profile for Puf3p when using
affinity scores on the 5′ UTRs (A), ORFs (B), and 3′ UTRs (C). The significant
aQTL peaks survived after filtering out for the three groups of genes mentioned
earlier. We identified POP7 as a putative modulator of Puf3p activity levels when
inferred from the 5′ UTRs for the locus on chromosome II (A). The corresponding
split of the activity levels at this marker is shown in panel (D). We detected two
possible modulators, LAP4 on chromosome XI and MKT1 on chromosome XIV, for
Puf3p activity levels when inferred from the 3′ UTRs (C). (E) and (F) present the
activity level splits at these two loci.
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Figure 4.9: Region Around the MKT1 Gene on Chromosome XIV. We found that
at least one SNP in a gene in this region might be significantly effecting the ac-
tivity levels of Puf3p on (3′ UTRs) between the BY and RM strains. Two related
genes are located in this region: MKT1 and TOM7. The MKT1 gene has two cod-
ing SNPs between the RM and S288c strains. Figure generated by SGD website
(http://www.yeastgenome.org).
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4.3.4 Puf3p Activity Modulated Through Different Loci De-

pending on Binding to 5′ UTRs or 3′ UTRs

Previously it was mostly known that Puf3p interacts with the 3′ UTRs of its targets

and no evidence of functional interaction with the 5′ UTR has been reported. As

mentioned above, Puf3p activity is modulated through a locus on chromosome XIV

when considering its binding to 3′ UTRs of its targets. However considering Puf3p

binding to 5′ UTRs, we were able to link its activity level variation to a locus on

Chromosome II (see Figure 4.8A,D). This region contains POP7, which is reported

to have positive genetic interaction with Puf3p (Wilmes et al., 2008). Alignment of

POP7 gene between RM and S288c strains revealed a coding polymorphism at amino

acid position 58 on the Pop7p sequence. The histidine (H) in RM strain is replaced

by a glutamine (Q) in S288c. Pop7p is the subunit of both RNase MRP and nuclear

RNAse P; RNase MRP cleaves pre-rRNA, while nuclear RNase P cleaves tRNA pre-

cursors to generate mature 5′ ends and facilitates turnover of nuclear RNAs (Cham-

berlain et al., 1998) and (Houser-Scott et al., 2002). This region also contains CDC28

and also several mitochondrial related genes such as ETHA1 and FZO1. ETHA1 is

involved in ethyl ester biosynthesis and is localized to the mitochondrial outer mem-

brane. Perhaps FZO1 has a function closer to Puf3p. Fzo1p is an integral membrane

protein involved in mitochondrial outer membrane tethering and fusion and it has a

role in mitochondrial genome maintenance. These findings indicate that the activity

modulation of Puf3p is linked to different genomic locations and networks depending

on where it binds to the mRNA.

Besides MKT1 locus, we identified a second locus as a putative modulator of Puf3p

activity levels when inferred from 3′ UTRs affinity scores. This locus, which is

marginally significant, contains the LAP4 gene on chromosome XI (Figure 4.8C,E).

Lap4p contains 4 coding polymorphism between RM and S288c.
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4.3.5 Independence of Puf4p Activity Modulation to the Mo-

tif Location on its Target mRNAs

Puf4p aQTL profile is shown in Figure 4.10. Whether Puf4p binds to 5′ UTRs, ORFs

or 3′ UTRs of its targets, its activity regulation is controlled by a locus on chromosome

XV. This locus contains REX4 and BRX1. Both of them are involved in pre-rRNA

possessing and ribosome assembly. The coding region of the REX4 gene contains

three coding SNPs between the RM and S288c strains as follows: the asparagine (N)

at position 34, phenylalanine (F) at position 155, lysine (K) at position 248 in RM

are mutated to lysine (K), leucine (L), and arginine (R) in S288c, respectively. There

is a single non-coding polymorphism at position 243 within the coding region, the

thymine in RM is mutated to cytosine in S288c.

It is known that Puf4p interacts with mRNAs encoding nucleolar rRNA-processing

factors. The inferred activity distribution of the segregants based on their inherited

parental allele at the locus on chromosome XV is shown in Figure 4.10D-F. It is

interesting to note that the sign of Puf4p activity levels in segregants inheriting BY

and RM alleles at this locus switches between 5′ UTRs and 3′ UTRs.

4.3.6 Validation of Detected Loci with IRA2 Allele Swap

Data

To pinpoint more precisely the putative modulators located within the detected loci

responsible for the variation in activity levels of the RBPs, further investigation by

narrowing down the significant aQTL regions and then using allele swap data for the

genes located in the detected regions is required. Using the segregant expression data

from (Smith and Kruglyak, 2008), we found that the activity variation for 6 of the 25

RBP-region combinations are linked to the same region on chromosome XV. One of

the genes located in this region is IRA2, which encodes a GTPase-activating protein

that negatively regulates Ras proteins and controls intercellular cAMP levels (Tanaka
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Figure 4.10: Puf4p aQTL Profiles. Results of the trans-acting genetic modulators of
Puf4p activity levels mapped using our aQTL method. The significant thresholds at
1% FDR level were calculated using 200 independent permutations of the expression
data (horizontal red lines). The peaks on chromosome XV survived after filtering
out for the 3 groups of genes mentioned earlier. (A-C) show aQTL profile for Puf4p
activity inferred from 5′ UTRs, ORF and 3′ UTRs affinity scores, respectively. Puf4p
activity showed a significant linkage to a locus on chromosome XV irrespective of
which mRNA region we used for affinity calculation. This locus includes the IRA2
gene. More interestingly, the sign of Puf4p activity levels in segregants inheriting BY
and RM alleles at this locus switches between 5′ UTRs and 3′ UTRs.
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et al., 1990). The mRNA expression levels for two stains were measured by (Smith

and Kruglyak, 2008): a strain carrying RM IRA2 allele in BY background and the

other strain carrying BY IRA2 allele in RM background. With our analysis we found

that activity of Khd1p on 3′ UTRs, Puf2p on 5′ UTR and Puf4p on 3′ UTR are

correlated to mRNA expression difference between the two mutant strains (Pearson

t-values= -2.7, +4.4 and -5.1) at 1% FDR level (t-value= 2.5). The signs are for

the case of subtracting the effect of RM allele from BY allele. This further validates

the observation of the aQTL at this chromosomal location for Puf4p is caused by

polymorphism is IRA2 and the role of the IRA2 gene as a putative modulator of the

activity levels of Puf4p.

FLO gene family encodes cell-wall glycoproteins that regulate cell-cell and cell-surface

adhesion (Guo et al., 2000). When FLO11 is expressed, diploid cells form pseudo-

hyphal filaments; whereas when FLO11 is silent, pseudohyphal differentiation and

invasive growth is abolished (Lambrechts et al., 1996). Khd1p represses FLO11 at

the transcriptional level through its inhibition of ASH1 and at the post-transcriptional

level by directly repressing translation of FLO11 gene (Wolf et al., 2010)(Note: Khd1

binds repetitive pattern in ORF of FLO11). In a study on genetic regulation of the

FLO gene family by (Halme et al., 2004) they showed experimentally that mutations

in IRA2 gene could potentially cause increase in FLO11 expression.

The second factor, which its activity was linked to this region on chromosome XV,

is Puf2 (5′ UTR). It is reported that Puf2p preferentially interacts with mRNAs

encoding membrane-associated proteins (Gerber et al., 2004).

The third factor which has the highest correlation to IRA2 locus is Puf4p (3′ UTR).

As mentioned previously, there are 2 genes with function related to ribosome are

located in this region.
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4.4 Conclusion

We have presented a method for identifying trans-acting genetic modulators of gene

expression, which uses mRNA expression and genotyping data from a segregating

population. We used this method to detect activity QTL (aQTL) of RNA-binding

proteins (RBPs). The activities are inferred from RBP binding preferences and the

expression data. The inferred activity levels of the RBPs are treated as quantitative

traits and where mapped to the chromosomal marker using genotype data. Our

method aims to identify post-transcriptional regulatory mechanism underlying genetic

variation in gene expression levels.

We applied our aQTL method to a data set for 108 segregants from a genetic cross

between two yeast strains (Smith and Kruglyak, 2008). We used RBP sequence

specificities obtained by our motif discovery approach presented in Chapter 2. We

calculated the affinity scores for the 25 RBP-region combinations. We detected 12

locus-RBP linkages out of which one was previously reported. We recovered the

MKT1 locus on chromosome XIV as a putative modulator of Puf3p activity inferred

from 3′ UTRs (Lee et al., 2009). Interestingly, we found different loci as modulators

of Puf3p when using the 5′ and 3′ UTRs, respectively. We also found IRA2 as a

possible modulator of Puf4p activity.
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Chapter 5

Modulators of Connectivity

Between Transcription Factors and

Their Target Genes

5.1 Introduction

This study focused on the detection of genetic loci whose allelic variation modulates

the in vivo regulatory connectivity between a transcription factor (TFs) and its target

genes. We call these loci connectivity QTLs or “cQTLs”. Our method for discovering

aQTLs incorporates the binding preferences of the TFs and mRNA levels of the

individuals in a segregating population of yeast to infer activity levels of the TFs.

We further use the activities to calculate the genotype-specific susceptibilities of each

gene to TF activity variation existing between the individuals in the population. This

variation occurs due to the allelic variation naturally inherited between the segregant

of a genetic cross between two different yeast strains. Finally we used these genome-

wide susceptibilities to TFs to construct a χ2-statistic to identify the cQTLs.

The model used in this study is illustrated in Figure 5.1. Transcription factors bind

to the promoter region of their target genes to initiate or repress DNA transcription
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Figure 5.1: Connectivity Quantitative Trait Loci (cQTL) Model. Many TFs require
cofactor proteins to tether effectively to the promoter region of their target genes
(cofactor shown as P1). In these cases the cofactor proteins usually contain a DNA
binding domain in their amino acid sequence allowing them to bind to DNA. In some
other cases, cofactors may assist the recruitment or blocking of the binding of the
transcription machinery to the transcription start site (cofactor shown as P2). This
could be achieved by chromatin remodeling to make the RNA polymerase complex
binding site accessible. Another situation (not shown) could be that TF activity is
suppressed by a protein (i.e. inhibitor) where the detachment of the two will allow
the binding of the TF to the promoter regions. Mutations (shown by red starts) in
the amino acid chain of these cofactor could effect the efficiency of the transcription
of the target genes by the TFs. We are interested to identify genetic loci (i.e. the
chromosomal locations of these cofactors) whose allelic variation modulates the in
vivo connectivity between the transcription factors (TF) and their target genes. We
call these loci connectivity QTL or “cQTL”.

to RNA. In yeast, promoter regions are segments of DNA typically about 600 base

pairs long that are located upstream of open reading frame of each gene. These

regions contain cis-regulatory elements through which TFs are able to regulate their

targets.

Many TFs require cofactor proteins to tether effectively to the promoter region of

their target genes (cofactor shown in Figure 5.1 as P1). In these cases the cofactor

proteins usually contains a DNA binding domain in their amino acid sequence allowing

them to binding to DNA as well. An example for this case in yeast is the recruitment

of Met4p to the promoter of genes involved in sulfur metabolism pathway (i.e. MET

genes) with the help of Cbf1p (Thomas et al., 1992). Met4p has been identified as the

main transcriptional activator of this pathway and the expression of most, if not all,

MET genes is strictly depends on Met4p recruitment to their promoters. It has been

shown that several other cofactors besides Cbf1p enhance this recruitment including
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Met28p, Met31p and Met32p (Blaiseau and Thomas, 1998; Siggers et al., 2011).

In some other cases, cofactors may assist the recruitment or blocking of the bind-

ing of the transcription machinery to the transcription start site (cofactor shown in

Figure 5.1 as P2). Multiprotein bridging factor 1 (MBF1) is shown to mediate

Gcn4p-dependent transcriptional activation by bridging the DNA-binding domain of

Gcn4p and subunit of RNA polymerase II complex (Takemaru et al., 1998). Gcn4p is

the transcriptional activator of genes involved in amino acid synthesis. TFs can also

facilitate the binding of transcription machinery by chromatin remodeling. A very

well known case is yeast transcriptional initiation of galactose metabolism, a type of

monosaccharide sugar. GAL genes are induced when galactose is present in the cell

medium . Upon detection of transcription activation signal, Gal4p will facilitate the

binding of RNA polymerase II to the GAL1 promoter by replacing the nucleosome

blocking the TATA box on the promoter (Axelrod et al., 1993).

Another situation (not shown in the figure) is when the TF is suppressed by a complex

inhibiting it from binding to the promoter of its targets. In this case the cofactor

act as inhibitor of TF activity. The detachment of the two will allow the recruitment

of the TF to the promoter regions. Yeast mating response activation serves as an

example for this case. Ste12p, activator of mating response in yeast, is bound by

Dig2p in the absence of mating pheromones. This inhibits the binding of Ste12p

to its target genes. In the presence of pheromone, Dig2p gets phorphorylated and

detaches from Ste12p. This allows Ste12p to bind to the mating genes and initiate

their transcription.

In all these cases, mutations (shown by red stars in the figure) in the amino acid

chain of these cofactor could affect the efficiency of the transcription of the target

genes by the TFs. Our analysis aimed to identify the causal mutations (cQTL). We

mapped the DIG2 locus on chromosome IV as a cQTL for the transcription factor

Ste12p. Dig2p is indeed a known inhibitor of yeast mating response activator Ste12p.

The coding region of the DIG2 gene contains a single non-synonymous mutation

(T83I). We are experimentally testing the functional impact of this mutation in allele
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replacement strains. We also identified the TAF13 locus as a putative modulator of

GCN4p connectivity.

5.2 Methods

5.2.1 Experimental Data Used

We analyzed genome-wide mRNA expression data collected by Smith and Kruglyak

(2008). The data included mRNA levels of two strains of yeast: a laboratory strain

(BY) and a wild isolate from a vineyard in California (RM) and 108 segregants pro-

duced from a BYxRM genetic cross. All samples were grown in two conditions: 2%

glucose and 1% ethanol medium. The reference mRNA pool for microarray hybridiza-

tion consisted of equal amounts of mRNA from both parents (BY and RM) grown in

both glucose and ethanol conditions. For our analysis we used log2(sample/reference)

for samples grown in glucose condition. We also used the genotype map of 2956 mark-

ers along yeast 16 chromosomes identified with oligonucleotide microarray performed

by Brem et al. (2002).

5.2.2 Representation of Transcription Factors Promoter Bind-

ing Preferences

We used binding preferences for 124 transcription factors (TFs) in the form of position

weight matrix (PWM) from MacIsaac et al. (2006). The elements in the PWMs

represent the information about the nucleotide frequencies at each position in the

set of target DNA binding sites. In that study, PWMs were trained on chromatin

immunoprecipitation (ChIP) binding data for 172 TFs. The TFs binding data are

collected by Harbison et al. (2004).The two motif finding algorithms used by MacIsaac

et al. were designed to find evolutionarily conserved motifs among a set of genes co-

regulated by a specific TF based on expectation-maximization (EM) algorithm and
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local sequence alignment.

We used the convert2psam utility from the REDUCESuite v2.0 software package (see

http://bussemakerlab.org) to convert each PWM to a position-specific affinity

matrix (PSAM) (Foat et al, 2005, 2006; Bussemaker et al, 2007). The base counts at

each position within the PWM were divided by that of the most frequent base to get

an estimate for the relative affinity associated with each point mutation away from

the optimal-binding sequence (Foat et al., 2006). The resulting PSAM affinity scores

on promoter sequences of genes were used to infer segregant-specific changes in TF

activity levels.

5.2.3 Calculation of Segregant-Specific Promoter Affinity

For our analysis we only used 123 PSAMs from the study mention above. We ex-

cluded Hap3p PWM due to exact similarity to Hap5p PWM. To calculate TF speci-

ficities, we first downloaded 600 base pair nucleotide sequences upstream of open

reading frame of every gene from Saccharomayce cereviciae Genome Database (SGD;

http://www.yeastgenome.org) for the BY strain. This database is based on ge-

netic information for the S288c yeast strain, a strain that is isogenic to BY with

total of 39 single nucleotide polymorphisms (Schacherer et al., 2007). We obtained

the genetic sequences of the second parental strain from the Broad Institute web-

site (http://www.broadinstitute.org) for the RM11-1a strain. We then used the

Bioperl interface for the BLAST software (Altschul et al., 1997) to identify pairs of

orthologous genes between BY and RM by aligning the coding sequences of the two

strains. We used 600 base pairs upstream sequences of each orthologous pair to de-

fine BY and RM specific promoter sequence. Using the genotype map we located

the allele type of every gene for each of 108 segregants. This step was first imple-

mented by Lee and Bussemaker (2010). Affinity scores (K) were calculated based on
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Equation 2.7.

Kφ(s) =

Ls−Lφ+1
∑

i=1

Kφi =

Ls−Lφ+1
∑

i=1

Lφ
∏

j=1

wφjbi+j−1
(s) (5.1)

Here, φ is an index over proteins, s is for sequences, Ls is for the length of the

sequences, Lφ is the binding site lengths, w stands for weight matrix elements and

b denotes the nucleotide type at position i + j − 1. We first used the genotype map

and genetic chromosomal coordinates from SGD to build an allele map for genes-

segregants. Using this map, we then calculated the promoter affinity scores for each

TF for every segregant using the corresponding parental promoter sequence.

5.2.4 Inferring TFs Activity Levels

As demonstrated by Equation 2.7, the in vivo mRNA steady state differential levels

between one of the sample segregant and parental reference pool are proportional to

the sequence affinity. The occupancy itself is proportional to the in vitro promoter

affinity considering a low protein density regime. In this regime we can define a

protein’s activity level as correlation between predicted promoter affinities and the

genome-wide transcriptional response of on of the segregants as shown in Figure 5.2.

The slope represents the activity level of the protein. For the expression levels in

the plot, the promoter affinity explains only 2% of the variance in the signal (r2 ∼

0.02).

Extending this model to include genotyphic variation between the segregants in the

population is shown in the equation below (From (Lee and Bussemaker, 2010)).

log2([mRNAg]sample)− log2([mRNAg]ref) ∝ Nφg,sample −Nφg,ref

≈ [φ]sampleKφg,sample − [φ]refKφg,ref

= ([φ]sample − [φ]ref)Kφg,sample

+ [φ]ref(Kφg,sample −Kφg,ref)

(5.2)
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Figure 5.2: Inferring Transcription Factor Activity Level From Predicted Promoter
Affinity and Genome-Wide Regulatory Response. In low protein regime, one can
assume a linear relation between mRNA expression levels and predicted promoter
affinity for a TF. The slope represent the activity level, which is a function of the
protein’s concentration. Each point in the scatter plot represents a gene.

[φ]sample and [φ]ref are the protein concentrations in the sample and the reference pool

respectively. Note that the first term captures all the trans-acting modulators that

cause differences in the activity level of the protein. These effects could be muta-

tions in the nucleotide sequence of the gene encoding protein φ which can result in

mutations in protein’s amino acid sequence, Polymorphism in the protein’s cofactors

amino acid sequence resulting in variation in their interaction efficiency and finally

dissimilarity in chromatin content between the sample and the reference pool. The

cis effects are absorbed by the second term in the above expression. It accounts for

the differences in the nucleotide sequence of the preferred binding site on the pro-

moter region of target gene g of protein φ. We can rewrite the last equation using

trans and cis terms (Lee and Bussemaker, 2010). This regression is illustrated in

Figure 5.4B.

ygs = β0s +
∑

φ

βtrans
φs Kφgs +

∑

φ

βcis
φs (Kφgs − 〈Kφg〉ref) (5.3)
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Here ygs is the log2-ratio of the mRNA levels of gene g between the sample and the ref-

erence pool. Since the reference pool is a mixture of equal amounts of parental strains,

the term 〈Kφg〉ref is equal to the average of BY and RM promoter affinities.

Several of the TFs in the MacIsaac et al. (2006) collection are involved in the same

or interacting complexes such as Met4p and Met32p, both part of sulfur metabolism

pathway, or Msn2p and Msn4p, both involved in the yeast stress response pathway.

This means that the proteins related together through a protein complex or genetic

pathway, regulate the same target genes and their affinities are highly correlated. To

circumvent this multicolinearity issue among the promoter affinities, we used multiple

ridge regression (Hoerl and Kennard, 1970) instead of a multiple linear regression to

calculate βtrans
φs and βcis

φs . Ridge regression minimizes simultaneously the residual sum

of squares and a penalty term for a parameter λ to estimate the model parameters.

In this case, the predictors are slightly biased but more precise (variances are smaller

than with the Least-Squares method).

{{A}, b} = argmin(‖y − b− AX‖2 + λ‖A‖2), λ > 0 (5.4)

We used λ = 0, 0.002, 0.004, ..., 1 and chose the λ that resulted in minimum cross-

validation. We only used βtrans
φs representing inferred activity levels for all further

analyses.

As we will explain in the next section, we used the inferred activity levels together with

mRNA expression data to calculate susceptibilities (X) to every protein φ activity

variation for each gene g. Using expression data of all genes in activity calculation

step, will result in circularity between susceptibilities and mRNA expression level of

each gene. To avoid this situation, we eliminated one gene at a time from the mRNA

expression data and affinity promoter data sets. We label this new gene set with

{−g}, indicating the elimination of gene g. We then performed ridge regression to

obtain {βtrans}{−g} and {βcis}{−g} on the expression data and affinity data for the rest

of the genes. As we will discuss later in the result section, this step was crucial in our

analysis.
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5.2.5 Calculation of Genome-Wide TF Susceptibilities

We used the mRNA expression data and the activity levels to infer the susceptibilities

(X). Xφg is a measure of connection or responsiveness of gene g to the variation in

activity levels of protein φ. In other words, it is the partial derivative of the expression

level of gene g with respect to the activity level of protein φ:

Xφg =
∂yg

∂βtrans
φs,{−g}

(5.5)

Since the explicit form of yg as a function of the activity is not known, we assume a

linear relationship as a first order approximation. We applied multiple ridge regres-

sion between mRNA levels of gene g and activity levels among the segregants. This

regression is illustrated in Figure 5.4C.

{{Xφg}, bg} = argmin(
∑

s

(ysg −
∑

φ

(βtrans
sφ,{−g}Xφg)− bg)

2 + λ
∑

φ

X2
φg) (5.6)

We used the same range of values for the λ parameter as reported in the previous

section. The regression coefficients represent the inferred susceptibilities. As we

explained earlier, the susceptibility of each gene g to factor φ is obtained from activity

levels that were calculated independent of mRNA levels of that same gene. This step

was necessary to avoid any circularity in calculation of the susceptibilities.

5.2.6 Selection Criteria for TFs Based on the Inferred Sus-

ceptibilities

Out of 123 TFs, we accepted only those for which susceptibility Xφg was highly

correlated to their estimated promoter affinity scores. If we assume that the sus-

ceptibilities represent functional connection and promoter affinity scores represent

biophysical connection to protein φ activity levels, one would expect high correlation

between the two. For promoter affinities, we used the average affinity of the BY
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and RM strains for each gene. We then calculated t-values for Pearson correlation

between the susceptibilities and the promoter affinities. We accepted a TF only if

this correlation was above 1% FDR level and was the highest t-value compared to

correlation to the affinities of all the other 122 factors (See Figure 5.6).

The factors, which passed the criteria described above, also showed exclusive cor-

relation of susceptibilities to affinities when multiple ridge regression was replaced

with a univariate linear regression. Since Ridge implementation of R first normalizes

the columns of the independent variable (i.e. inferred activities), we decided to use

the normalized activities for the case of univariate regression to be consistent when

comparing the results of the two cases.

5.2.7 Functional Validation of Selected TFs

As validation for our selection process, We used genome-wide mRNA levels over a time

course of controlled over-expression of some of the factors from (McIsaac et al., 2013).

The measurement is based on transcriptional activator complex Gal4p-DBD.ER.VP16

(GEV). GEV is constructed by fusing the DNA-binding domain (DBD) of Gal4p into

the human estrogen receptor (ER) and portion of herpes simplex virus protein VP16.

The GEV construct is active only in the presence of β-estradiol. This hormone results

in localization of inactive cytoplasmic GEV into the nucleus. GEV then binds to the

Gal4p consensus upstream activation sequence (UASGAL), which was infused in the

promoter region of the desired genes and causes the over-expression of its mRNA

within minutes following hormone addition to the cells culture (McIsaac et al., 2011).

We calculated the correlation of inferred susceptibilities to the genome-wide mRNA

levels at different time points, starting from time=0 when the over-expression of factor

φ was induced. A different construct was used for the over-expression of Gcn4p,

where a zinc-finger binding domain was fused to the ER.VP16 complex (ZEV) and

the promoter region of the GCN4 gene was modified to contain the ZEV-binding

sites (McIsaac et al., 2012).
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We also performed Gene Ontology (GO) enrichment analysis on the genome-wide

inferred susceptibilities to each TF by a univariate linear regression. We calculated

Wilcoxon-Mann-Whitney p-value and Pearson t-value for GO categories with at least

10 members. We used Benjamini and Hochberg (1995) method to correct for multiple

testing at 1% FDR level as significance threshold. The Benjamini-Hochberg method

tries to estimate the expected fraction of false positives based on the data size and p-

values. We first sorted the p-values for all genes in increasing order: p1 ≤ p2 ≤ · · · ≤
pm. For a desired false discovery rate (FDR) at q, k is the largest i for which

pi ≤
i

m
q (5.7)

In our case, m is the number of GO categories equal to 1891 and q is equal to

FDR level of 1%. All GO categories with p-value larger than pk were considered

insignificant. We used an iterative procedure for removing the effect of redundant

nested GO categories that was implemented originally in the T-profiler algorithm

by Boorsma et al. (2005) (see Section 2.2.6).

5.2.8 Defining positive and negative target sets for the TFs

We used the susceptibilities of the selected factors to define the set of positive and

negative target sets. For each gene and protein φ, we first obtained the p-value of

the regression coefficient explained in the previous section. For corrected for multiple

testing based on the method from Benjamini and Hochberg (1995). In this case the

number of tests was equal to the number of chromosomal markers and FDR level was

set to 1%. We grouped the significant targets into positive and negative sets based

on the sign of the susceptibilities to be used in the cQTL discovery analysis.
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5.2.9 Calculation of Genotype-Specific Susceptibilities to TFs

Once we had filtered the TFs based on the criteria discussed above, we calculated

genotype-specific susceptibilities to the selected TFs, XBY and XRM , for every gene

g at each marker location m. To do this, we first split the segregants based on

their genotype at a marker m. Then we separately calculated the univariate linear

regression coefficient between mRNA levels of gene g and activity levels of protein φ

for each segragant subset, as indicated in Figure 5.3.

{{Xgeno
φgm}, b} = argmin(

∑

{s}geno@m

(ysg − βtrans
sφ,{−g}X

geno
φgm )− b)2) (5.8)

Here geno refers to the parental genotype: BY or RM. Note that the activity levels

were inferred from gene set missing gene g as explained earlier. We performed this

step for every gene g at every marker m.

5.2.10 cQTL Discovery Using χ2-statistic

We used χ2-statistic to check whether the susceptibilities to factor φ are significantly

different when splitting the segregants based on their genotype at marker m. We first

calculated ∆tφgm for every gene at every marker as given by the equation below. SE

stands for the standard error of the slope from the univariate regression explained in

the previous section.

∆tφgm =
XBY

φgm −XRM
φgm

√

(SEBY
φgm)

2 + (SERM
φgm)

2
(5.9)

Next we calculated the χ2-statistic for each marker m by squaring the ∆t’s and

summing them for all genes given by

χ2
φm =

Ng
∑

g=1

∆t2φgm (5.10)
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Figure 5.3: Calculation of Genotype-Specific Susceptibilities X on Synthetic Data.
The susceptibilities are calculated at each marker first by splitting the segregants
based on their genotype: BY or RM at that marker. Then XBY

φgm and XRM
φgm are

calculated by a univariate linear regression of mRNA levels of a gene g to the activity
levels of protein φ on the two segregants subset separately. Note that the activity
levels were calculated on the gene set missing the gene g ({−g}). Each point in this
plot represents one of the 108 segregatns.

where Ng is the total number of genes. If there is no significant linkage of the sus-

ceptibilities to the loci m for one of the segregant subsets, then ∆tφgm is expected

to behave like a standard normal random variable. In other words, with no linkage

the value of χ2-statistic is expected to equal to Ng. So by calculating χ2-statistic

at this marker, we can have a single measure to test the significance of this loci for

modulation of connection between the protein φ and its targets.

Finally, we performed a forward selection to extract significant markers similar to

method explained in Section 3.2.4. It tries to iteratively select the loci that con-

tribute significantly to the χ2-statistic marker profile. At each iteration the effect of

the previously selected markers are removed from ∆t’s and the residuals are used for

the next iteration. We performed this selection rounds until all residual χ2 values
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fell below a significant χ2 threshold. To calculate this threshold, we used Bonfer-

roni correction at 1%. To define the significant cQTL region, we extended the region

around each selected marker in both direction until hitting the significant χ2 threshold

value.

For each TF, φ, this entire procedure was done for three gene sets: all 4482 genes,

positive targets and negative targets.

5.2.11 Protein-Protein Interaction Data

To identify putative causal genes, or quantitative trait genes (QTGs), within a cQTL,

we downloaded yeast protein-protein interaction dataset from the Biogrid website

(http://thebiogrid.org) as of April 2012. We only looked into interactions that

involved physical interaction between the TF and other proteins (i.e. cofactors). We

considered only those cofactors where the gene encoding them were located in the

detected significant cQTL regions. We identified novel putative modulators of the

TF-target connectivity for two factors, Ste12p and Gcn4p. We will discuss these

findings in the results section of this chapter.

5.2.12 Gene Ontology Analysis on ∆t of Detected Loci

Finally we performed Gene Ontology (GO) enrichment analysis on ∆tφgm for each

selected marker m. This step was applied to Ste12p and Gcn4p only. We calculated

Wilcoxon-Mann Whitney p-value and Pearson t-value for GO categories with at least

10 member genes. We used the Benjamini-Hochberg method to correct for multi-

ple testing at 1% FDR level as significance threshold. Again, we used an iterative

procedure for identifying the enriched GO categories.



147

5.3 Results

The goal of the analysis presented in this chapter is the detection of proteins modu-

lating the strength of the functional connection between a transcription factor protein

and its target genes. We surveyed genome-wide mRNA expression data for a collec-

tion of yeast strains measured by (Smith and Kruglyak, 2008). The data included

differential mRNA expression levels of 108 segregants produced by a genetic cross

between two yeast strains mating: a laboratory strain (BY) and a wild strain from a

vineyard in California (RM). The mRNA abundances were measured with DNA mi-

croarray relative to a reference pool consisting equal amount of both parental strains

grown both in glucose and ethanol. For our analysis we only used the expression data

of segregants grown in glucose. We also use the segregants genotype map for 2956

chromosomal marker location (Brem et al., 2002).

5.3.1 Inferring Segregant-Specific TFs Activity

Our method is illustrated in Figure 5.4. As prior knowledge, our method uses

the transcription factors’ (TFs) binding preferences to cis-regulatory element on

the promoter regions of genes Figure 5.4A. To predict the binding specificities

we used a compendium of weight matrices representing binding preferences for 123

TFs (MacIsaac et al., 2006) and 600 base pair upstream sequence of each gene. We cal-

culated the upstream affinity scores by summing the scores of a sliding window along

the upstream sequence of each gene. We calculated the genotype-specific promoter

affinities for every segregant based on their inherited allele (see Methods).

Figure 5.4B depicts the step for inferring the segregant-specific transcriptional ac-

tivity levels. This step uses the matrix of expression data whose rows correspond

to genes, and its columns contain the genome-wide differential mRNA levels of one

of the 108 segregants. Using the expression data and the predicted in vitro binding

affinities, we calculated the activity levels by performing a linear regression between

the two. The TF activity levels of a particular segregant was obtained by calculating
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the slope from regressing the expression data on the promoter affinities. As will be

clear, using these inferred activities for estimating the genome-wide susceptibilities

creates a substantial circularity. To avoid this, we eliminated the rows corresponding

to a particular gene in the expression data and affinity data. We then regressed this

new expression dataset to the new affinity dataset. This way, the activity levels that

will be used to estimate the susceptibility of a gene are independent of the mRNA

level of that gene. The effect of this elimination step on susceptibilities is shown in

Figure 5.5. The variation of inferred activity levels between the segregants reflects

the transcriptional circuit differences among them. Mutations in the amino acid chain

of a TF and/or its cofactor as well as differences in the expression level of the cofac-

tors, and variations in the chromatin state near the binding site can all create the

observed variations in the mRNA levels between the segregants (trans-effects). This

can also be the result of critical mutations in nucleotide sequence of the preferred

binding site on the promoter region by the TF (cis-effect). We used the portion the

activity level of the TFs that are modulated by trans-effects, βtrans, in our subsequent

analyses (see Equation 5.3).

Figure 5.4C explains the details of genome-wide susceptibility calculation step of

our method. This step calculated the susceptibility of every individual gene to the

variation of TF activity level. We performed a linear regression of mRNA levels of a

gene to the inferred TF activity levels across all segregants. The slopes from the linear

regressions represent the susceptibilities. These susceptibilities in turn were used to

select the set of TFs whose functional connectivity (i.e susceptibility) is correlated

with their biophysical connectivity (i.e. promoter affinity).

After the selection step, the genotype-specific susceptibilities are calculated by split-

ting the segregants at each chromosomal marker based on their inherited parental

alleles and separately regressing the mRNA levels to the activity levels (see Fig-

ure 5.4D). The genotype information is represented by a matrix whose rows corre-

spond to one of the 2956 markers, and whose columns contain the allele-type of the

loci for a particular segregant. The differences in the susceptibilities of the two subset
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Figure 5.4: Connectivity Quantitative Trait Loci (cQTL) Detection Method. (A)
Our method uses binding preferences in the form of position specific affinity matrix
(PSAM) of 123 yeast TFs as prior information. We start by calculating the affinity
scores of the PSAMs on the promoter region of every gene. We used 600 base pairs up-
stream of the begining of the coding region of each gene as an estimate for its promoter
region. This is done by summing the affinity scores of a window sliding along each
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Figure 5.4: (Cont. Caption) upstream sequence. (B) Next, we perform a linear
regression of the genome-wide expression data on the estimated promoter affinity
scores. We do this regression separately for each segregant. The regression slope is the
inferred protein activity level. Also to prevent any circularity in further calculations,
we eliminated one gene at a time (i.e. excluding a row from the segregants expression
matrix and affinity matrix) and applied the linear regression on the reduced gene set
{−g}. In other words, we obtained the activity matrix for {−g} gene sets for G times.
Here G is the total number of genes in the gene set. (C) In this step, we infer the
susceptibility (i.e. responsiveness) of expression of each gene to the variation in the
TF activity levels. We do this by applying a linear regression between the expression
data of each gene g and the activity matrix calculated on the gene set {−g}. The
slope of the fit represents the susceptibility of the gene to activity levels of the TF.
The inferred susceptibilities are used to select the set of TFs for the next step. The
selection is based on correlation of susceptibilities and promoter specificities of the
TFs (see Methods). (D) For each selected TF, we calculate the genotype-specific
specificity by splitting the segregant based on their inherited parental allele type (BY
or RM) at a marker m and performing a linear regression on each segregant subset
between the expression levels of each gene g and activity levels of each selected TFs
calculated on the gene set {−g}. We conducted this step for every gene and every
marker. (E) Using the genotype-specific susceptibility data, we construct the ∆t
matrix where each element is a standardized susceptibility difference for each gene at
each marker. The last step involves the calculation of a χ2-statistic for each marker
by summing the squared ∆t’s of all genes at each marker. Significant peaks in the χ2

profile are identified as cQTLs.

are treated as quantitative phenotype for our method.

The final step involves the calculating of a χ2-statistic at each marker by summing

the squares of z-scores of the susceptibility differences. The χ2 value quantifies the

significance of the global susceptibility differences at a marker. When these differ-

ences depend on the inherited allele at a loci for significant number of genes, then

it implies that the locus is influential, and indicates the presence of a cQTL (see

Figure 5.4E).

5.3.2 Selected TFs Based on Their Susceptibilities

As we discussed in the previous section, using all genes to calculate the activity levels

creates a circularity in the susceptibility calculations. To avoid this, we eliminate one



151

gene at a time from the expression data and promoter affinity data and performed a

linear regression on the new data sets. The inferred activity levels are independent

of the mRNA levels of the eliminated gene. This removes the circularity when using

the activity levels for susceptibility calculation. Figure 5.5 demonstrates the effect

of the gene-elimination step on the susceptibility levels. When including all genes

to infer the TF activity levels, we observed a significant correlation for the promoter

affinity and susceptibility to a particular TF as shown in Figure 5.5A. We displayed

the correlation levels in a heatmap structure where the rows correspond to the TF

affinity scores and columns correspond to susceptibilities to TFs.

Figure 5.6 summarizes the selection step results. The selection criteria are based

on the exclusive correlation of functional connectivity (i.e. susceptibilities) and the

biophysical connectivity (i.e. promoter affinities) of the TFs. We tested this by

calculating the Pearson correlation t-values between the genome-wide susceptibilities

and promoter affinities. Figure 5.6A shows the correlation results for the case where

the susceptibilities were calculated by a multiple ridge regression of the expression

level of a gene on the activity level of all TFs. The x-axis represents the susceptibilities

to each of the 123 TFs. For a particular TF, if the regulation is exclusive then

the genome-wide susceptibilities to its activity variation should most significantly

correlate to the promoter affinity scores of that TF (i.e. the red dot should be above

blue dots for that TF). The green line represents the t-value threshold at 1% FDR

level using Benjamini-Hochberg method for multiple testing correction (t-value ∼

4.22, p-value ∼ 3.9 ×10−6). For some of these TFs the susceptibilities were poorly

correlated to their promoter affinities indicating that the data and the model were

not adequate to capture the correct susceptibility levels. For 12 of the TFs, we

measured a high and exclusive correlation between susceptibilities and their promoter

affinities. This list includes Chap4p, Gcn4p, Hap4p, Ino4p, Leu3p, Met32p, Msn2p,

Pdr3p, Rcs1p, Stb5p, Ste12p and Sut1p. As mentioned earlier, the susceptibilities

to these TFs were calculated using multiple ridge regression. The next step requires

the calculation of genotype-specific susceptibilities for each gene and every marker.

By performing this regression we obtain the regression coefficients for each segregant
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Figure 5.5: (Cont. Caption) g and activity levels of a TF. The activity levels of the
TFs were inferred using the expression levels of (A) all of the genes and (B) all of the
genes excluding a gene g to be used for obtaining susceptibility of that gene.

subset. However we also need the standard error of the slope to calculate the ∆t

matrix given by Equation 5.9. One possible approach to calculate these errors is to

use bootstrapping. However doing so is computationally intensive. For this reason,

we decided to also obtain the susceptibilities by performing a univariate regression

between the mRNA expression of each gene g and the activity levels of a particular

TF. These susceptibilities were then used in our selection step. The results are shown

in Figure 5.6. In this case only 12 TFs passed our criteria: Cha4p, Gln3p, Gcn4p,

Ino4p, Leu3p, Mcm1p, Msn2p, Msn4p, Rcs1p, Sip4p, Ste12p and Swi5p. In the case

of Msn2p, the TF that correlated the most was Msn4p. However these two proteins

are know to be involved in stress response activation and both bind to promoter

genes containing stress response element (Martinez-Pastor et al., 1996; Schmitt and

McEntee, 1996). Schmitt and McEntee showed that Msn4p can partially compensate

for the lack of Msn2p function in MSN2∆ mutant yeast strains.

We accepted a total of 7 TFs that passed our criteria in both cases. This list contains

Cha4p, Gcn4p, Ino4p, Leu3p, Msn2p, Rcs1p and Ste12p. Meeting the first criterion

(see Figure 5.6A) ensures that the significant correlation between the susceptibilities

and the affinity scores for each of these 7 TFs is not due to over-fitting. Meeting

the second criterion (see Figure 5.6B) guarantees that the susceptibilities to each of

these TFs can be calculated in a manner independent of the transcriptional regulation

by other TFs. In other words, the usage of a univariate linear regression for the

calculation of the susceptibilities is acceptable.

Figure 5.7 displays the scatterplot of the susceptibilities and the promoter affinity

scores for Gcn4p and Ste12p. In both cases, The two quantities were highly corre-

lated.
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Figure 5.7: Susceptibilities Versus Promoter Affinities Scatter plots for (A) Gcn4p
and (B) Ste12p. The susceptibilities were obtained by applying a multiple ridge
regression between the mRNA expression levels of each gene and all of the activity
levels of the TFs.

5.3.3 Functional Validation of Susceptibilities for the Selected

TFs

In this section we present the results of functional validation of the susceptibilities to

the selected TFs by using two different approaches.

Correlation to TF Over-Expression Data

We obtained genome-wide mRNA levels of a time series measurement where the

mRNA of a particular TF was over-expressed (McIsaac and others; unpublished).In

that study, they controlled the over-expression of the mRNA of genes including GCN4,

MSN2 and RCS1 based on transcriptional activation constructs GEV and ZEV (see

Methods). This construct becomes active with the addition of β-estradiol hormone

to the culture and induces the expression of the listed genes. Upon this activation,

we expect to observe changes in the direct targets of these TFs and as time goes on
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the indirect targets get induced as well. We used this data to validate our inferred

susceptibilities to Gcn4p, Msn2p and Rcs1p.

Figure 5.8 presents the correlation of the over-expression data measured at different

time points to the affinities/susceptibilities to 123 TFs. The affinities/susceptibilities

to the TF that was over-expressed, are indicated in red. We see that in all three

cases, Gcn4p, Msn2p and Rcs1p, the correlation of their in vitro occupancy (i.e.

affnity) to their in vivo functionality (i.e. over expression data) is significant and the

highest among all other TF correlation (see panel A, C and E). This also justifies

that the DNA-binding specificities in the form of PSAMs contain relevant functional

information (Gao et al., 2004). For all three TFs, the correlation of the susceptibilities

to over-expression data improves at later times. This might be due to the fact that

there is a time delay between the activation onset of the GEV (or ZEV) construct and

the synthesis of the transcription factor of interest (i.e. translation); Furthermore,

only the direct targets of the TF are induced at first and then its indirect targets

are influenced. So it takes some time for the system to each its equilibrium state.

Whereas the susceptibilities were inferred from a steady-state condition where the

system is at equilibrium, the correlation improves for the later time points for all of

the 3 cases. We observe that the susceptibilities have significant correlation to the

over-expression data for each of the TFs.

Figure 5.9 displays the scatter plots for these 3 TFs at 6 different time points after

the addition of the β-estradiol hormone to the culture. As shown also here, in all

three cases the correlation between the over-expression data and the susceptibilities

is relatively weaker at earlier time points and improves with time. We can conclude

that our inferred susceptibilities do capture the functional connectivity of the genes

to the activity level variations for the case of Gcn4p, Msn2p and Rcs1p.
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Figure 5.8: Correlation of the Time Series Over-Expression Data to the Affinities and
Susceptibilities to 123 TFs. The x-axis represents the over-expression data at different
time point. Each point corresponds to the Pearson t-value of the correlation between
the affinities/susceptibility to a TF and the mRNA levels in the over-expression ex-
periment. The t-value of the affinity/susceptibilities to Gcn4p, Msn2p and Rcs1p are
indicated in red. The affinities to these three TFs are exclusively correlated to the
over-expression data. The results in panel (A), (C), and (E) demonstrate that their
in vitro occupancies correlate significantly to their in vivo function. Susceptibilities
to Gcn4p and Rcs1p are exclusively correlated to the over-expression data after the
first two time points (panel (B) and (F)). The Msn2p over-expression data correlated
higher to the susceptibilities to Msn4p, a paralog of Msn2p. At later time points the
correlation for Msn2p improves (panel (D)).
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Figure 5.9: Functional Validation of Selected TFs Based on Over-Expression Data.
We obtained the genome-wide mRNA levels for controlled over-expression of a
group of TFs from McIsaac et al. (2013). We calculated how well our inferred
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Figure 5.9: (Cont. Caption) susceptibilities to (A) Gcn4p, (B) Msn2p, and (C) Rcs1p
are correlated to the over-expression data. We expected a relatively low correlation
for early time points and higher correlation for later time points. This plots confirms
that the inferred susceptibilities have captured the functional connection to the TFs.

Gene Ontology (GO) Enrichment Analysis

As a second validation, we used the Gene Ontology Consortium (Ashburner et al.,

2000) to identify any enrichment in the inferred susceptibilities toward a particular

biological function or molecular structure. We expected to detect enrichment toward

the GO categories that are related to the TFs function. We considered only the GO

categories with at least 10 genes. We applied the Wilcoxon-Mann-Whitney test on the

susceptibilities of the selected TFs. We accepted the GO categories with enrichment

higher than the significant threshold at 1% FDR level using Benjamini-Hochberg

method for multiple testing correction(p-value threshold ∼1.0 ×10−3).

Cha4p is the transcriptional activator for catabolism1 of hydroxyamino acids. (Holm-

berg and Schjerling, 1996). Cha4p regulated transcription of the gene CHA1, which

encodes for a protein that allows the yeast to grow on media with L-serine or L-

threonine as sole nitrogen source by removing of the amino group NH2 from the

amino compounds. We found many significant GO categories among which was

the glycoprotein metabolic process category with positive correlation (p-value =

2.02× 10−13).

Gcn4p transcriptionally activates genes involved in amino acid biosynthetic in re-

sponse to amino acid starvation (Hinnebusch and Fink, 1983). Detailed examination

of its targets revealed that it also activates genes involved in glycogen homeostasis,

mitochondrial carrier proteins, vitamin biosynthesis and autophagy (Natarajan et al.,

2001). Also increasing number of studies are connecting Gcn4p to the initial step for

nucleosome displacement and recruitment of RNA pol II to the transcription start

site (Natarajan et al., 1999). We found total of 43 enriched GO categories among

1The metabolic processes that break down molecules into smaller units and release energy.
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which was the amino acid biosynthetic process category (p-value = 3.6×10−11).

Ino4p is a transcriptional activator required for genes involved in phospholipid syn-

thesis (Schwank et al., 1995). We did not detect any significant and relevant GO

category for this transcription factor.

Leu3p regulates genes involved in branched chain amino acid biosynthesis and am-

monia assimilation (Friden and Schimmel, 1988). It can also act as a repressor in

high levels of leucine amino acid. Two related GO categories that were significant

were cellular biosynthetic process (p-value = 1.9× 10−11) and branched chain family

amino acid biosynthetic process (p-value = 5.4× 10−4).

Msn2p is the transcriptional activator that is active in stress conditions and regu-

lates the general stress response of yeast (Martinez-Pastor et al., 1996; Schmitt and

McEntee, 1996). During activation of stress response the expression levels of about

500 genes are effected. The induced genes include those with function in protein fold-

ing, protein degradation and energy generation and repressed genes are dominated

by functions in translation and protein synthesis, ribosomal proteins, processing of

rRNAs and tRNAs and different aspects of cell growth (Causton et al., 2001; Gasch

et al., 2000). We measured positive enrichment for categories such as oxidation re-

duction (p-value = 4.9× 10−20) and many relevant negatively enriched categories in-

cluding ribosome biogenesis (p-value = 7.6× 10−90), DNA-directed RNA polymerase

III complex (p-value = 1.6× 10−5), tRNA modification (p-value = 9.4× 10−5).

Rcs1p is a transcription factor that is involved in iron utilization and homeosta-

sis (Yamaguchi-Iwai et al., 1995). Among the enriched categories was transition

metal ion transport (p-value = 2.1× 10−4).

Ste12p is a transcription factor that is activated by a MAP kinase signaling cas-

cade (Elion et al., 1993; Roberts and Fink, 1994). Upon activation, it induces the

genes involved in mating or pseudohyphal/invasive growth pathways (Dolan et al.,

1989; Liu et al., 1993). We found two relevant enriched categories site of polarized

growth (p-value = 1.7×10−10) and reproductive process (p-value = 1.5×10−5).
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The results from GO enrichment analysis for these 7 proteins indicate that the inferred

susceptibilities contain relevant functional and biological connection to the TFs.

5.3.4 cQTL Discovery

Our hypothesis is that if a locus influences the strength of connectivity between a TF

and its targets, we expect to observe a significant difference between the susceptibil-

ities based on the inherited parental allele at that locus for the target genes. If there

is no significant linkage to that locus, then the susceptibility differences are expected

to behave like a standard normal random variable. So by calculating a χ2-statistic

corresponding to a split of the segregants based on the genotype at the marker, we

can test the significance of that locus for modulation of connectivity of a protein to its

target genes. We can then calculate a χ2-statistic for each of the 2956 marker and ob-

tain a chromosomal profile of the χ2 values. For each of the 7 selected TFs, we either

used all the genes or only the positive targets (see Methods). As explained earlier in

Chapter 3, linkage disequilibrium results in relatively low resolution for identifying

underlying causal loci. Thus we applied a forward selection algorithm to detect these

causal loci. We found cQTL with known interaction for Gcn4p and Ste12p.

5.3.5 Detecting Modulators of Gcn4p-Target Connectivity

Figure 5.10 displays the cQTL analysis results for Gcn4p. We first calculated the

χ2 using all genes and identified significant markers by applying our forward selection

step. Figure 5.10A shows the χ2-statistic profile for chromosomal markers. We used

1% level with Bonferroni method for multiple testing correction (threshold p-value =

3.4×10−6 corresponding to χ2-statistic = 4921). We identified a total of 5 markers as

significant cQTL (black circle in the plot). The significant regions around each of the

selected markers is shown in red color. Again, we only considered proteins that are

involved in physical interaction with Gcn4p. Among these proteins, we only displayed

those that are the product of genes located in the significant cQTL regions (green solid



162

circles). We identified a locus on chromosome IV that contains 72 genes including the

SRB7 gene. The protein product of this gene, Srb7p, is a subunit of the RNA poly-

merase II mediator complex (Hengartner et al., 1995). Gcn4p and Srb7p interaction

has been experimentally validated (Natarajan et al., 1998; Park et al., 2000). How-

ever, we did not detect any coding or non-coding SNPs within the coding region of

Srb7p between RM and S288c2 strains, indicating that the Gcn4p-target connectivity

could be affected by variation existing in the upstream regulation of the SRB7 gene

expression between the two yeast strains. Also it could be that this cQTL is linked to

other genes located within this region whose protein interaction with Gcn4p has not

been identified. We also identified a marker on chromosome XVI whose associated

region contains 59 genes including the ARP7 gene. This gene encodes a protein that

is a component of both the SWI/SNF and RSC chromatin remodeling complexes (Sz-

erlong et al., 2003). SWI/SNF (SWitch/Sucrose NonFermentable) complex is one

of the major ATP-dependent chromatin remodeling composed of 12 subunits (Smith

et al., 2003). Prior to transcription initiation of a gene, this complex alters the posi-

tion of nucleoseomes occupying the cis-regulatory site of that gene by forming a DNA

loop on the nucleosome surface (Zofall et al., 2006), and Arp7 function with DNA

bending proteins to enhance proper chromatin architecture (Szerlong et al., 2003).

It has been demonstrated that Arp7p and Gcn4p interact and recruit SWI/SNF to

its targets promoter region (Natarajan et al., 1999; Neely et al., 1999). Alignment

of ARP7 between the two strains revealed two non-coding SNPs. These SNPs could

affect the steady-state abundance of Arp7p by post-transcriptional and translational

mechanisms.

We also calculated a χ2-statistic profile using only positive targets of Gcn4p at 5%

FDR level(see Methods for the details). These are the target genes that are induced

upon increased activity of Gcn4p. The results is presented in Figure 5.10B. By

applying forward selection, we identified 3 significant markers (threshold p-value =

3.4×10−6 corresponding to χ2-statistic = 332.4). The most significant selected marker

2S288c is a laboratory yeast strain that is isogenic to the BY strain with only about 39 SNPs
occuring between the their genomes.
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is located in a region close to TAF13 gene on chromosome XIII, which indicated with

a black arrow in the plot. By aligning the amino acid sequences of Taf13p from the

RM and S288c strains, we identified 3 coding SNPs (see Figure 5.11). This region

encompasses a total of 59 genes. Considering that 55 proteins have been identified

that are involved in direct physical interaction with Gcn4p, the p-value for detecting

one of these proteins in this region by chance is equal to 9% based on hypergeometric

probability distribution. Therefore, it is highly likely that the polymorphisms within

the TAF13 gene are responsible for the observed linkage to this region on chromosome

XIII.

Taf13p is one of the proteins comprising TFIID which itself is a subunit of the RNA

polymerase II holoenzyme. It has been demontrated that Gcn4p and TFIID complex

physically interact (Lim et al., 2007). Next section provides more details on the

interaction between Taf13p and Gcn4p and its role in RNA pol II transcriptional

initiation. Considering the significance of the χ2-statistic at this locus, it is plausible

to think that mutations in the subunits TFIID complex can effect the efficiency of

transcription initiation by Gcn4p.

Finally, we applied this step to the Gcn4p negative targets, genes that are repressed

by Gcn4p activity (results not shown). However we could not get any significant loci

involving known protein interaction with Gcn4p.

5.3.6 Interaction between Taf13p and Gcn4p

TFIID is a transcription factor complex that is required for RNA polymerase II-

mediated transcription of protein-coding genes. Recognition of promoter of the DNA

by the TFIID complex is required for the recruitment of RNA pol II to the transcrip-

tion start site. The results of genome-wide studies indicate that TFIID functions

primarily at the TATA-less promoters (Burker and Kadonaga, 1996). This is fa-

cilitated by the interaction between the transcription activating factor, in our case

Gcn4p, and the TFIID complex. It has been demonstrated experimentally that a sub-
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Figure 5.10: Detection of Taf13p as cQTL Modulator for Gcn4p Positive Targets.
(A) Using all genes (4482), (B) Using only positive targets at 5% FDR level with
Benjamini-Hochberg multiple testing correction (224 genes). We performed forward
selection to detect significant peaks at 1% level with Bonferroni correction. Only
when we considered positive targets of Gcn4p we were able to detect the marker close
to TAF13. By aligning TAF13 protein sequences with BLAST software between RM
and S288c strains, we identified 3 coding SNPs for Taf13p between the two strains.
In both plots the detected markers by forward selection algorithm are marked with
black circles, the significant regions around each selected markers with red color and
the direct physical interaction of Gcn4p and genes product located in the significant
regions with solid green circles. The horizontal red line represents the χ2-statistic
significant threshold at 1% level with Bonferroni correction.
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Figure 5.11: Taf13p Sequence Alignment Between the S288c and RM Strains. Here
Query is for the S288c strain and Sbjct is for the RM strain. We identified 3 coding
polymorphisms between the two sequences. The three polymorphisms are pointed
out with red ovals
. Figure generated by BLAST (Altschul et al., 1997).

unit of TFIID, Taf13p, interacts with Gcn4p in vivo (Lim et al., 2007). The TFIID

acts like the bridge between the TF and the RNA pol II, any mutation TAF proteins

could effect the efficiency of the transcription rate of Gcn4p target genes.

5.3.7 Detecting Putative Modulators of Ste12p-Target Con-

nectivity

Figure 5.13 displays the cQTL analysis results for Ste12p. We first calculated the

χ2 using all genes and identified significant markers by applying our forward selection

step. Figure 5.13A shows the χ2-statistic profile for the chromosomal markers. We

used 1% level with Bonferroni method for multiple testing correction resulting in a

threshold p-value = 3.4× 10−6 corresponding to a χ2-statistic = 4921. We identified

a total of 6 markers as significant cQTL (black circle in the plot). The significant

regions for each of the selected markers are shown in red. Since we are interested

in cofactors whose allelic variation modulates connectivity between the TF and its

targets, we only considered proteins that are involved in physical interaction with

Ste12p. Among these proteins, we only displayed those that are the product of genes

located in the significant cQTL regions (green solid circles). We identified a locus
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Figure 5.12: Model for RNA Polymerase II-Mediated Transcriptional Activation In-
volving the TFIID Complex. The RNA transcriptional machinery consists of many
subunits: RNA pol II, Mediator and general transcription complexes including TFIID.
TFIID subunit itself is comprised of TATA-binding protein (TBP) and about a dozen
TBP-associated factors (TAFs). This machinery gets recruited to the transcription
start site with the help of transcription activating factor, in our case Gcn4p, that
binds to the upstream activation sequence (UAS) and, also the nucleosome displace-
ment complex SWI/SNF. TFIID-dependent pol II recruitment typically is for the
promoters lacking TATA element. The TFIID subunit recognizes either the initiator
or down stream promoter element (DPE), both of which are present in TATA-less
promoters. Figure from Chen and Hampsey (2002).

on chromosome IV that contains 125 genes including the DIG2 gene. This marker is

closest to DIG2 on this chromosome (Green solid circle and black circle overlap; shown

with black arrow). The protein product of this gene, Dig2p, is a known inhibitor of

Ste12p activity (Cook et al., 1996; Pi et al., 1997; Tedford et al., 1997).

We then used BLAST (Altschul et al., 1997) to align the protein sequences of Dig2p in

the RM strain and the S288c strain, strain isogenic to the BY strain. We identified a

single amino acid polymorphism shown in Figure 5.14. At position 83 the isoleucine

amino acid (I) in RM is mutated to threonine (T) in S288c (see Figure 5.14). Three

other genes whose protein product have shown to interact with Ste12p are located near

the DIG2 locus: ADA2, SAM2 and SMT3. Among these three, Smt3p has the most

closely related function in pheromone response pathway. Smt3p is a small ubiquitin-

related modifier protein (SUMO) where it is shown to be responsible for switching

from filamentous growth to the mating differentiation program in the presence of

pheromone (Wang and Dohlman, 2006). Through alignment of the Smt3p protein

sequence between RM and S288c strains, we identified no coding SNPs. Experimental
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validation is needed to further investigate the role of either of the DIG2 and SMT3

SNPs as causal cQTL of Ste12p activity at this locus. However, since the χ2-statistic

at DIG2 location is significantly larger than at the SMT3 locus, we expect the former

to be the main modulator. We also identified two more loci containing known protein

interactions with Ste12p: Kss1p on chromosome VII and Mss11p on chromosome XIII,

with zero and about 30 coding SNPs between RM and S288c strains respectively. Both

of these protein are mainly involved in invasive filamentous growth in nutrient poor

conditions (Cook et al., 1996; Gagiano et al., 2003). The kinase activity of Kss1p, a

member of the mitogen3-activated protein kinases (MAPKs), induces filamentation.

However, in both cases the χ2-statistic are only marginally significant.

We also calculated χ2-statistic profile using only 139 positive targets of Ste12p at 5%

FDR level(see Methods for the details). These are the target genes that are induced

upon increased activity of Ste12p. The results are presented in Figure 5.13B. By

applying forward selection, we identified 3 significant markers on chromosomes IV,

IX and XV (threshold p-value = 3.4 × 10−6 corresponding to χ2-statistic = 227.2).

The selected marker on chromosome IV is again the DIG2 locus.

We used the hypergeometric distribution to estimate the probability that this region

contains one of the known protein interactions with Ste12p. There are total of 40

identified proteins to have physical interaction with Ste12p. Considering the total

number of yeast genes about 6000 where 22 are located within this region, the prob-

ability for observing one of the cofactors such as Dig2p at this locus equals 0.9%.

Considering this low probability and the results from χ2-statistic profile and forward

selection, we think that DIG2 locus has the most potential to act as the modulator of

Ste12p connectivity among the other selected loci for the used experimental datasets.

To validate this hypothesis, we are performing a DIG2 allele replacement experiment

between BY and RM4 (see Figure 5.15). The allele swap method is based on the

delito perfetto approach, explained in details in Section 1.5.5 (Storici and Resnick,

2006). The idea is to compare the activity levels of Ste12p between the new strains

3Mitogen is the chemical that triggering mitosis and cell division.
4The experiment is designed by Harmen Bussemaker and Ivor Muroff.
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Figure 5.13: Detection of Dig2p as a Putative cQTL Modulator for Ste12p, (A) using
all genes (4482), (B) using only positive targets at 5% FDR level with Benjamini-
Hochberg multiple testing correction (139 genes). We performed forward selection
to detect significant peaks at 1% level with Bonferroni correction. In both cases the
marker closest to DIG2 location was selected. Aligning Dig2 protein sequences with
BLAST software between the RM and S288c strains, we found a SNP at amino acid
number 83 switched from isoleucine in RM to threonine in S288c. In both plots the
detected markers by forward selection algorithm are markered with black circles, the
significant regions around each selected markers with red color and the direct physical
interaction of Ste12p and genes product located in the significant regions with solid
green circles. The horizontal red line represents the χ2-statistic significant threshold
at 1% level with Bonferroni correction.
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Figure 5.14: Dig2p Sequence Alignment Between S288c and RM Strains. Here Query
is for the S288c strain and Sbjct is for the RM strain. We identified a single poly-
morphism between the two sequences at amino acid 83 where an isoleucine (I) in RM
is replaced by threonine (T) in S288c (indicated with red oval). This amino acid
is located on moderate phosphorylation site on Dig2p which can effect the binding
strength of other cofactors or the phosphorylation complex involving Fus3p. MAPK
Fus3p phosphorylates the serine or threonine residues of its target protein immedi-
ately followed by proline amino acid. The mutation on position 83 is right upstream
of serine-proline, which makes it a likely site for Fus3p-dependent phosphorylation
(see Section 5.3.8). Figure generated by BLAST (Altschul et al., 1997).
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under different levels of pheromone exposures.

Figure 5.15: DIG2 gene allele replacement between the BY and RM strains.

Finally, we calculated the χ2-statistic profile using the negative targets of Ste12p,

genes that are repressed by Ste12p activity (results not shown). However we could

not identify any significant loci involving known protein interaction with Ste12p.

5.3.8 Dig2p, an Inhibitor of Ste12p Activity

In this section we expand more on the Saccharomyces cerevisiae (baker’s yeast)

pheromone response pathway, focusing mainly on the interaction between Ste12p and

Dig2p based on the current literature (Bardwell, 2005; Cook et al., 1996; Garring-

ton and Johnson, 1999; Houser et al., 2012; Tedford et al., 1997). The intracellular

signal transduction pathway by which the yeast responds to the presence of mating

pheromones is known as the yeast mating pheromone response pathway. Yeast have

two mating types, a and α. The mating type identity of a cell is determined based on

having the genotype MATa or MATα. MATa cells secrete a-factor pheromone and

respond to α-factor pheromone. Conversely, MATα cells secrete α-factor pheromone

and respond to a-factor pheromone. As a result of mating and fusion of two haploid

cells MATa and MATα, a MATa/MATα diploid cell is formed. When a yeast cell

detects the opposite mating type pheromone in its surroundings, it initiates a series

of physiological changes to prepare for mating. These include significant changes in

the expression levels of mating related genes, arrest of the cell cycle processes such

as DNA and RNA replication for cell growth.

Mating is initiated by the binding of the pheromone to the transmembrane receptor on
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the cell surface. The receptor releases a compound which initiates a cascade of protein

kinase. We fast forward to the last step of the cascade, the mitogen activated protein

kinase (MAPK) conducted by two MAPKs Kss1p and Fus3p. They phosphorylate

their target proteins on serine or threonine residues that are immediately upstream

of a proline residue on the protein amino acids chain (Payne et al., 1991). The main

phosphorylation substrates of Fus3p and Kss1p are Ste12p/Dig2p/Dig1p transcrip-

tion factor complex. Figure 5.16 illustrates the interaction network between these

proteins. Tec1p/Dig1p and mostly Kss1p are involved in activation and regulation of

yeast filamentous growth under poor nutrient condition and so we neglect this part

of the network. Ste12p has a DNA binding domain that recognizes the TGAAACA

motif on the promoters of its targets validated both experimentally and computation-

ally (Dolan et al., 1989; MacIsaac et al., 2006). This motif is known as the pheromone

response element (PRE). However, Dig1p and Dig2p bind and inhibit Ste12p bind-

ing to PREs in the absence of pheromone. In strains lacking DIG1 and DIG2, the

genes induced by pheromone are upregulated. Fus3p is shown to constantly shuttle

between the cytoplasm and nucleus, whereas Dig2p is a nuclear resident protein (van

Drogen et al., 2001). Upon pheromone stimulation, the Fus3p level rises about four-

fold (Bardwell et al., 1996). Activated Fus3p and Kss1p directly phosphorylates Dig1p

and Dig2p. This results in dissociation of Ste12p. The active Ste12p then binds the

PRE in the promoter of its targets such as FUS1 gene. However, two independent

studies have demonstrated a decrease in pheromone induced FUS1 mRNA in strains

lacking the DIG2 gene (Chou et al., 2008; Houser et al., 2012). This means that

Dig2p has a positive role in regulation of mating response. Houser et al. suggested a

model where bound Ste12p-Dig2p complex protects Ste12p from degradation. Hence

upon pheromone stimulation, the steady-state level of active Ste12p is high. Ste12p

also can bind to its promoter and upregulate its own expression (Dolan and Fields,

1990). Active Fus3p also phosphorylates Ste12p enhancing its degradation where it

contributes to the attenuation of the mating response (Esch et al., 2006). As soon as

the two mating cells fuse and form a diploid cell, the pheromone response pathway

needs to be turned off. In the zygote the interaction between a-factor receptor and
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α-factor receptor is thought to play a role in transition of the zygote to vegetative

growth regime (Roth et al., 2000).
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Figure 5.16: A Model for Transcriptional Regulation by the Pheromone Response
Pathway Involving Ste12p and Dig2p (indicated in red). Blue arrows represent
ppFus3-dependent phosphorylation. Green arrows are for positive fedback loops. For
example, increased transcription of FUS1 mRNA, will result in more Ste12p binding
to mating genes. The symbol φ indicates component degradation. In this model
Dig2p binds to Ste12p inhibiting it form binding to mating genes. While Ste12p is
bound by Dig2p, it is preserved from degradation. In the presence of pheromones,
Fus3p phosphorylates Dig2p resulting in free Ste12p. Ste12p then can bind and ini-
tiate mating genes upregulation. Figure from Houser et al. (2012).

Considering the critical role of Dig2p in pheromone response activation by Ste12p, we

believe the DIG2 locus is a putative modulator of Ste12p-target connection based on

our cQTL analysis. Furthermore, the detection of a coding SNP causing a polymor-

phism in therionine near a high Fus3p-dependant phorphorylation site on Dig2p in

S288c strain (highly likely occurring in BY strain as well) strengthen our fining. The

validation of this result is possible with DIG2 allele replacement experiment between

BY and RM strains.
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5.4 Conclusion

In this chapter, we have presented a method for identifying loci that modulate the

connectivity of transcription factors (TFs) to their target genes. It takes the expres-

sion data, genotype data and TF binding preferences as inputs. Our approach builds

on the concept from Chapter 4 of inferring the TF activity levels by exploiting the

natural sequence variation existing between the segregants. In our analysis, we used

the segregant-specific activity levels of the TFs that are modulated by trans-acting

loci to infer gene-specific susceptibilities to the variation of these activities. These loci

can affect TF activities through different mechanisms such as variation in phospho-

rylation levels or availability of cofactors. For each gene and chromosomal marker,

the difference of the susceptibilities to a particular TF between two subgroups of

segregants split based on the inherited parental alleles at that marker, are calculated.

The χ2-statistic obtained by summing the squares of these differences of all genes for

each marker is a measure of each locus as a possible cQTL.

We applied our method to a population of 108 yeast segregants generated from a

genetic cross between the BY and RM strains (Smith and Kruglyak, 2008). We

found a locus on chromosome XIII containing TAF13 whose activity could modulate

the connectivity between Gcn4p and its positive targets. The most interesting finding

was the detection of the putative role for DIG2, located on chromosome IV, as a

modulator of Ste12p connectivity. Validation of both of these finding can be achieved

with allele replacement experiments.
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Chapter 6

Future Directions

We have presented in thesis several approaches that tackle different aspects of gene

expression regulatory program of an eukaryotic cell. We first presented our motif dis-

covery approach that aims to identify stability associated motifs in mRNA sequences

for various RNA-binding proteins. We then presented novel linkage approaches to de-

tect genes (i.e. chromosomal loci) that regulate different layers of cellular gene expres-

sion regulation by exploiting natural sequence variation existing among related family

members of a population. There are many layers involved in gene regulation including

signal transduction, chromatin remodeling, transcription initiation, elongation, RNA

splicing and post-transcriptional processing, mRNA transport, localization, mRNA

stability and translation. The central goal of our first linkage approach is to detect

genetic loci that regulate the expression of large number of genes with no reference

to any specific regulatory stage. Our second linkage approach focuses on loci that

modulate post-transcriptional activities of RNA-binding proteins (RBPs). Our final

approach moves further downstream of regulatory path of the interaction between

proteins and their targets. We attempted to identify genetic loci that modulate the

connectivity of the transcription factors (TFs) and their targets. We will now address

some possible future directions and potential applications of our approaches.

First of all, every project presented in this thesis led to some hypotheses that re-
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quire further experimental validation. We identified novel motif for three RNA-bing

proteins, Scp160p, Sik1p and Tdh3p. We can test these motifs by experiments that

engineer the nucleotide composition within the predicted binding site on the target

mRNAs or completely deleting the region containing these motifs. By performing a

gel shift assay to measure the dissociation constants (Kd) for mutated samples and

the RBP under study or performing mRNA expression microarray to study the down-

stream phenotypic effects of these modification, we can confirm these findings. With

our linkage approaches, we found several loci that regulate gene expression levels,

RBPs activity levels and connectivity of TFs to their targets that were provided with

predictions for putative underlying regulators. For example, we identified that the

DIG2 gene is a possible modulator of Ste12p connectivity. We can test the validity

of this finding a the DIG2 allele replacement experiment.

Among the improvements that could be made to our motif discovery for RBPs is

to integrate the RNA secondary structure in to the model. Our previous attempt

was to treat this effect as a multiplicative weighing factor for each nucleotide based

on the Boltzmann probability that the nucleotide is unpaired. However, it did not

improve the statistical power of our approach. There has been some studies that have

successfully contained RNA secondary structure information into their model for few

specific factors (Foat and Stormo, 2009; Ray et al., 2013; Riordan et al., 2011).

One improvement to the linkage approaches presented in Chapter 3 and 5, detection of

the trans-acting loci of gene expression and cQTL, would be to include more detailed

information from the linkage disequilibrium. This could increase the resolution of our

forward selection procedure.

Our innovative and unique methods based on the χ2-statistic has greatly increased

statistical power for detecting loci that even marginally regulate the expression of

large number of genes. This is because our method does not enforce a threshold

on the linkage of individual genes, but rather considers the commutative effect on

gene expression. One very interesting application would be to apply this approach

to human data, specially to cancer data and human disorders caused by uncommon
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genotype variants.



177

Glossary

Allele - specific version of the nucleotide sequence of a gene

Amino Acid - structural unit of a protein.

aQTL - activity quantitative trait loci; chromosomal loci (i.e. genes) that modulate

the activity levels of a protein (i.e. trait)

Base Pair - pairing and bonding of A nucleotide to T, and C to G by hydrogen

bonding

Caenorhabditis elegans (C. eleganse) - specific worm species (roundworm) as

one of the model organisms

Chip-chip - chromatin immunoprecipitation on chip, an experimental method for

measuring the protein-DNA interaction

Chromatin - combination of DNA and proteins that make up genetic code of an

organism and is stored in the nucleus of a cell

Chromatin Remodeling - mechanisms for decompacting chromatin required for

transcription

CIM - Composite interval mapping method which corrects for linkage disequilib-

rium to some extent by reducing the linkage between neighboring chromosomal

markers

cis-regulatory Element - region of DNA that regulates the expression of the nearby

genes
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Codon - group of three nucleotide that are translated into amino acids during protein

synthesis from an mRNA template

cQTL - connectivity quantitative trait loci; chromosomal loci (i.e. genes) that mod-

ulate the connectivity (or responsiveness) between a protein and its targets

Deoxyribonucleic Acid (DNA) - nucleotide chains inside the nucleus of a cell

containing an organism genetic code

Dissociation Constant (Kd) - equilibrium constant that measures the fraction of

unbound components to the bound components for a chemical reaction

eQTL - expression quantitative trait loci; genetic loci (i.e. genes) that regulate the

expression of genes (i.e. trait)

FDR - false discovery rate

Gene - regions of DNA sequences that are translated into proteins

Gene Expression - the level of mRNA molecules transcribed from a gene

Gene Expression Regulation - mechanism that control the mRNA level of a gene

by regulating the transcriptional rate and/or mRNA decay rate

Gene Ontology (GO) - database containing the annotation of genes of several or-

ganisms, which sorts the genes into three main group: cellular component,

molecular function and biological process

Genotype - the genetic sequence of a specific individual

in vitro - experiments or measurements that are performed outside a living cell but

in a control environment

in vivo - experiments or measurements that are carried out inside a living cell/organism

Kinase - class of proteins that can chemically modulate other proteins

Linkage Disequilibrium - the inheritance of specific parental alleles of different

genomic loci more or less than by chance for the offspring/segregants
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messenger RNA - mature RNA that is transported to the cytoplasm for protein

synthesis by ribosomes

Microarray - chip for measuring gene expression (mRNA levels)

Motif - sequence pattern for a TF or RBP binding site

Nucleosome - structures made of segments of DNA wound around protein cores,

being the fundamental units of chromatin

Nucleotide - building blocks of DNA and RNA including A, C, G and T/U

Open Reading Frame (ORF) - region of RNA molecule containing the informa-

tion for protein synthesis

Phenotype - morphological, biochemical and physiological characteristics of an in-

dividual/cell

Post-Transcriptional Processing - processes carried out by RNA-binding protein

including: splicing, transportation, localization and stability of RNAs

Promoter - non-coding DNA region for transcription factor binding

PSAM - position-specific affinity matrix containing the binding preferences of a

protein

Quantitative Trait Loci (QTL) - regions of DNA containing genes linked a quan-

titative trait (i.e. characteristic)

Ribonucleic Acid (RNA) - transportable version of genes, used for protein syn-

thesis

RNA-Binding Protein (RBP) - protein binding to RNA transcript and carry out

diverse post-transcriptional processing

RNA polymerase II - main component of gene transcription machinery that pro-

duces RNA

rRNA - ribosome RNA, type of RNA molecules with role in biogenesis of ribosomes
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Ribosome - cell organelles that translate mRNAs to amino acid chains during pro-

tein synthesis

Ridge Regression - type of biased regression minimizing the sum of the least squares

error function and a penalty term

r-squared - statistical measure representing the percentage of the variance in de-

pendent variable explainable by the independent variables

Saccharomayces cerevisiae. - specific yeast organism (baker’s yeast)

Single Nucleotide Polymorphism (SNP) - single nucleotide variation of a DNA

sequence compared to a reference sequence

Splicing - process of removal of segments of RNA transcript before protein synthesis

Susceptibility - measure of responsiveness of target genes to the variation in activity

level of a protein

Target Genes - the set of genes that their expression is regulated by a protein

Transcription - the process of copying a particular segment of DNA (i.e. gene) into

RNA

Transcription Factor (TF) - protein binding to DNA regulating expression of tar-

get genes

Translation - the process of translating the genetic information contained in mRNA

to the amino acid chain during protein synthesis

UTR - untranslated region are regions of mRNA transcript at either end required

for stability regulation

WMW test - Wilcoxon-Mann-Whitney test, a non-parametric test used to test

whether two independent samples are drawn from the same population

YPD - medium containing required nutrients for yeast cell growth
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