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ABSTRACT 

Stressed Astrocytes: Insights on the Pathology of Alexander Disease 

Eileen Guilfoyle 

Alexander disease (AxD) is a rare and fatal neurological disorder caused by mutations in the gene that 

encodes glial fibrillary acidic protein (GFAP), an intermediate filament protein found in astrocytes in the 

central nervous system.  The clinical presentations of AxD are diverse, ranging from onset in infancy to 

onset in early adulthood, and include seizures, psychomotor retardation, ataxia, and a variety of 

neurological signs related to abnormal brain stem function.  The defining neuropathological hallmark is 

the presence of cytoplasmic, proteinaceous inclusions called Rosenthal fibers in astrocytes.  Although 

GFAP expression is astrocytic, AxD patients also show de/dysmyelination and variable amounts of 

neuronal loss, most severely in infantile-onset patients. Astrocytes undergo severe morphological 

changes, beyond that of typical reactive astrocytes, and develop several forms of cell stress.  However, 

how stressed astrocytes cause the loss of myelin in this disease is unknown.  In this work I have 

conducted a largely immunohistological investigation of AxD patient tissue, model mice, and primary 

astrocytes cultured from the AxD model mice, focusing on factors that might provide insight into the 

pathological manifestations of AxD and paying particular attention to those factors which might 

contribute to de/dysmyelination.  

To gain insight on the morphological transformation of astrocytes in AxD, I analyzed GFAP in the 

hippocampus of the most severely affected AxD mouse. Astrocytes in these mice lose their star-like 

shape, and become hypertrophic and often multinucleated.  They accumulate large amounts of GFAP.  

Subsequent study of primary cultured astrocytes from AxD mice revealed that these cells have 

perinuclear inclusions of GFAP surrounded by displaced microtubules and displaced Golgi.  



 

 
 

I next investigated another mechanism of stress that may affect astrocyte function in AxD.  Work in our 

lab and others’ has demonstrated proteasomal inhibition in AxD astrocytes.  Because the unfolded 

protein response in the endoplasmic reticulum (ER) can be enacted by proteasomal inhibition, I 

examined the immunohistochemical expression of two proteins commonly increased under conditions 

of ER stress.  We found BIP/Grp78, an ER chaperone, increased in AxD patient astrocytes and model 

mice.  Additionally, the CCAAT enhancer binding protein homologous protein (CHOP) was expressed by a 

small subset of astrocytes in the AxD mouse hippocampus, unveiling ER stress as a potential 

contributory factor in AxD pathology. 

Work in other labs has found iron in astrocytes in AxD model mice.  To further elucidate mechanisms of 

cellular stress in AxD, I conducted an immunohistochemical analysis of iron and several regulatory 

proteins in AxD patients and found, by enhanced Perls’ staining, Fe3+ in Rosenthal fibers and iron and 

ferritin accumulated in astrocytes.  This finding is in marked contrast to what one sees in the normal 

CNS, with little staining of astrocytes, and easily detectable staining of oligodendrocytes. 

Finally, I examined the localization of the cell surface glycoprotein CD44, along with several related 

proteins, including its ligand hyaluronan.  I found CD44 protein expression greatly increased in the white 

matter, cortex and hippocampus of AxD patients and in the hippocampus of AxD mice.  Additionally, 

through use of a biotinylated hyaluronan binding protein, I found abnormally high levels of hyaluronan 

in the hippocampus of AxD mice in the same areas where increases in CD44 were found.  Work 

elsewhere has found CD44 and hyaluronan in other disorders that affect myelination, and experiments 

have revealed an inhibitory effect of hyaluronan on oligodendrocyte development and myelination. 

The studies in this thesis contribute novel stressors to the list of those that impact astrocytes in AxD and, 

in particular, suggest the accumulation of iron in astrocytes as potentially important to the pathological 

manifestations of AxD.  Additionally, my research has revealed dramatic increases in the expression of 



 

 
 

CD44 in AxD astrocytes which, in conjunction with widespread increases in hyaluronan, may be critical 

to understanding the mechanisms underlying the de/dysmyelination that occur in this disease.   
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Alexander Disease:  a brief history 

In 1949 W. Stewart Alexander, an Australian physician, described a case of a 15 month old boy who was 

admitted to the hospital presenting with progressive megalencephaly, hydroencephalus, frequent 

vomiting, psychomotor delays and almost continuous screaming and who died 4 weeks later of massive 

pulmonary emboli.  Remarkably, the pathological examination revealed abundant inclusions in 

hypertrophic astrocytes that stained brightly for eosin and were located throughout the white matter 

and in subpial locations, especially surrounding blood vessels (Alexander, 1949).  Pathologists would 

later identify these protein aggregates found within astrocytes as Rosenthal fibers (Eng et al., 1998), first 

described a case of syringomyelia (Rosenthal, 1898; Wippold et al., 2006). 

Additional cases in infants and children were described, and although a range of clinical presentations 

were noted, all cases shared extensive, especially frontal, white matter loss or deficiency and the 

presence of Rosenthal fibers (Crome, 1953; Friede, 1964; Wohlwill et al., 1959).  Authors of these papers 

and Alexander himself had proposed disease names, but in 1964 Friede jettisoned these and established 

“Alexander Disease” (AxD) eponymously honoring the physician who first described it (Friede, 1964). 

Rosenthal fibers were also reported in cases involving older children and adult patients who presented 

with less severe features and had a slower clinical course (Herndon et al., 1970; Pridmore et al., 1993; 

Russo et al., 1976;Seil et al., 1968).  Eventually, three clinical subtypes based upon age of onset were 

suggested to characterize AxD – infantile (onset within 24 months of birth), juvenile (onset from ages 2 

through 14) and adult (onset over age 14) (Borrett and Becker, 1985; Pridmore et al., 1993; Russo et al., 

1976).  Infant patients typically suffer a disease course which includes seizures, megalencephaly, 

developmental delays and a leukodystrophy associated with severe loss of myelin in the frontal lobe. 

Death usually occurs within the first decade of life.  The progression and clinical manifestations of 

juvenile and adult forms are usually less severe, but vary widely with bulbar symptoms, spasticity and 
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ataxia being common between them.  While the disease course is sometimes slower in these AxD 

patients, it too is usually fatal. 

Rosenthal fibers  

Description 

In reporting the sixth case of AxD, Friede stressed that the most consistent feature of all of the cases 

described were what we now know as Rosenthal fibers and this has held (Friede, 1964; Gorospe et al., 

2002; Herndon et al., 1970; Li et al., 2005). These astrocytic inclusions are most easily found around 

blood vessels and at the pial and subependymal surfaces (see Fig 3A) and in infant cases predominate in 

the subcortical white matter (WM), but can be found in all regions of the CNS.  Irregular in shape, some 

bead-like and others elongated, Rosenthal fibers have a distinct hyaline or glassy appearance, staining 

bright pink with eosin (Alexander, 1949; Crome, 1952; Wohlwill and Paine, 1958).  Light and electron 

microscopic studies of patient tissue have reported a range of sizes, most between 10µm-40µm in 

length, but as small as 0.2 µm, and others as large 100µm in size (Herndon et al., 1970; Towfighi et al., 

1983).   

Ultrastructurally, Rosenthal fibers are electron-dense, granular and membraneless aggregates, which 

are in close association to intermediate filaments – many seeming to radiate from the electron dense 

core(s) (see Fig3B)(Borrett and Becker, 1985; Gullotta and Kuchelmeister, 1986; Herndon et al., 1970; 

Seil et al., 1968; Tihen, 1972; Tomokane et al., 1991; Towfighi et al., 1983; Walls et al., 1984; Wippold et 

al., 2006).  Electron dense material can be a solid mass or loosely scattered deposits or a combination 

where a core (or cores) is surrounded by smaller deposits (Tomokane et al., 1991).  Small deposits are 

thought to be an initial stage of Rosenthal fiber formation and these can sometimes be found in 

perinuclear locations (see Fig 3B) (Eng et al., 1998; Herndon et al., 1970; Townsend et al., 1985).  

Because some of these have been found in biopsies of children in early stages of diseases, it has been 
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hypothesized that Rosenthal fibers s start at this location and eventually travel to a resting location at 

astrocyte endfeet (Messing and Goldman, 2004).  

 There seems to be no correlation between numbers of Rosenthal fibers and extent of demyelination at 

autopsy (Friede, 1964). In general, the distribution of Rosenthal fibers correlates with GFAP levels, which 

are highest in the white matter and subpial locations.  

Components of Rosenthal fibers  

Immunohistochemical studies of AxD patient tissue have shown anti-GFAP staining around the periphery 

of Rosenthal fibers, corresponding to where filaments are seen ultrastructurally (Borrett and Becker, 

1985; Goldman and Corbin, 1988; Janzer and Friede, 1981; Towfighi et al., 1983).  However, 

immunogold electron microscopy studies have demonstrated that GFAP is a component of electron 

dense cores of Rosenthal fibers (Dinda et al., 1990; Johnson and Bettica, 1989; Tomokane et al., 1991), 

along with alpha B-crystallin and HSP27 (Tomokane et al., 1991).  By this method, ubiquitin was found in 

the cores of smaller and scattered osmiophilic clumps while in larger cores, ubiquitin was found 

primarily in the outermost positions (Tomokane et al., 1991). 

Rosenthal fibers were partially purified biochemically from the AxD brain by the Goldman lab using 2% 

SDS and found to contain GFAP, ubiquinated alpha B-crystallin and HSP27 (Goldman and Corbin, 1991; 

Iwaki et al., 1989; Iwaki et al., 1992).  By immunostaining, Rosenthal fibers were also found to contain 

the S20 proteasome (Tang et al., 2010), p62, LC3 (Tang et al., 2008), p-JNK (Tang et al., 2006) and 

Plectin, a cytoskeletal linker (Tian et al., 2006). 

Rosenthal fibers are not unique to AxD 

While AxD is best defined from a pathologist’s perspective by the presence of Rosenthal fibers, these 

inclusions are not unique to the disease and are also found surrounding reactive lesions such as slow 

growing tumors, cysts, vascular malformations and in some cases of chronic inflammation like glial scars 
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in multiple sclerosis.  They are perhaps best known in pilocytic astrocytomas, but have also be found in 

other neoplasms such as ganglioglioma (for more complete list, see Fig 4 ) (Wippold et al., 2006).   

Nickel implantation controversy 

Intriguingly, Rosenthal fiber-like structures also have been found in the endfeet of astrocytes in the rat 

brain after nickel implantation (Kress et al., 1981).  Because blood brain barrier disruption was also 

found in these rats, the authors hypothesized that Rosenthal fibers contained plasma proteins engulfed 

under circumstances of chronic blood brain barrier disruption.  This was a controversial proposal, but 

there was support (Herndon, 1999).  While there have been reports of lymphocyte invasion in AxD, 

especially in the brain stem (Rankin et al., 1977; Russo et al., 1976; Soffer and Horoupian, 1979; Towfighi 

et al., 1983), widespread inflammation or blood barrier disruption has not been suggested and at least 

one of these reports may be due to reported concomitant viral infection (Soffer and Horoupian, 1979).  

Subsequent to the Kress et al. publication, Rosenthal fibers were found negative by immunostaining for 

serum proteins such as globulins, albumin and fibronectin (Seil et al., 1968; Tomokane et al., 1991; 

Towfighi et al., 1983).  Moreover, subsequent research does not support that Rosenthal fibers are due 

to disruption of the blood brain barrier, and the Rosenthal fiber-like structures found by Kress et al. 

were determined not to be Rosenthal fibers (J. Goldman, unpublished observation). 

GFAP protein and GFAP mutation 

GFAP protein 

GFAP was first purified from plaques obtained from post-mortem tissue from multiple sclerosis patients 

(Eng et al., 1971).  The human gene resides on chromosome 17q21 and encodes a 432 amino acid long 

polypeptide with a molecular weight of 55 kDa (Bongcam-Rudloff et al., 1991; Reeves et al., 1989).  The 

gene has nine exons and shows high homology between species (Isaacs et al., 1998; Reeves et al., 1989).  

Specifically, human and mouse GFAP show high homology (Brenner et al., 1990).  GFAP shares the highly 

conserved structure of other intermediate filament proteins – a central alpha-helical rod domain flanked 
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by a non-conserved n- terminal head and c-terminal tail which allow many of these proteins to interact 

and form the characteristic approximately 10nm diameter filaments (Geisler and Weber, 1982; Parry 

and Steinert, 1992; Steinert and Roop, 1988).  Intermediate filament proteins have been classified into 

subtypes based upon similarities in the amino acid composition of the rod domain, the overall charge of 

the protein and the predicted structure and ability to co-assemble with other intermediate filaments 

(Steinert and Roop, 1988).  Using these classifications, GFAP is a type III intermediate filament protein, 

along with vimentin, with which it can interact.   

In the mature CNS, GFAP is expressed in astrocytes of the white matter and hippocampus and in those 

found at the sub-pial and sub-ependymal areas.  They are also found in neuronal precursor cells in the 

subgranular zone of the hippocampus (Doetsch et al., 1999) and subependymal layer of the cerebral 

cortex (Roelofs et al., 2005).  Outside of the CNS, GFAP is found in the perisinusoidal stellate cells of the 

liver and its expression decreases as these cells differentiate (Buniatian et al., 1996a; Buniatian et al., 

1996b). 

GFAP has several splice isoforms.  Astrocyte lineage cells express GFAP alpha predominantly.  GFAP beta 

is found mainly in the peripheral nervous system, expressed at low levels by Schwann cells (Hagiwara et 

al., 1993), whereas GFAP gamma is found both in the CNS and in mouse bone marrow and spleen 

(Brenner, 1994; Zelenika et al., 1995).  Delta GFAP (Condorelli et al., 1999), also known as epsilon GFAP 

(Hol et al., 2003; Nielsen et al., 2002a), is also expressed in the CNS, varies from the other isoforms in 

that its c-terminal tail is almost entirely unique in amino acid sequence (Hol et al., 2003). 

GFAP Mutations 

Background 

Prior to the events which led to the discovery that GFAP mutations were the basis of most AxD cases, 

thought on the origin of the disease were mixed. Rare familial cases were identified, but the majority of 
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reported disease cases did not appear to be passed on from parents (Johnson et al., 1996; Pridmore et 

al., 1993; Schwankhaus et al., 1995).  The sporadic nature of the disease with its wide range of clinical 

manifestations and ages of onset (Borrett and Becker, 1985; Herndon et al., 1970; Pridmore et al., 1993; 

Russo et al., 1976; Springer et al., 2000; van der Knaap et al., 2001) made it unclear if AxD was genetic or 

environmental (Pridmore et al., 1993), though if genetic, it was postulated to be a recessive mutation 

based upon the number of unaffected parents and family members (Reichard et al., 1996).   

An unexpected and monumental leap in the understanding of the origin of AxD was made by Messing et 

al. with the development of a glial fibrillary acidic protein (GFAP) transgenic mouse (Messing et al., 

1998). This mouse carries several copies of the human GFAP gene driven by its own promoter in 

addition to the endogenous murine GFAP and was developed to study the role of elevated GFAP levels 

in reactive gliosis (Messing et al., 1998).  Concomitant with very high levels of GFAP, these mice were 

found to have astrocytes with enlarged cell bodies and, by GFAP immunostaining, hypertrophic cell 

processes.  Surprisingly, some astrocytes were found to contain Rosenthal fibers.  Ultrastructurally, 

these Rosenthal fibers were found to be identical to some found human AxD patients.  Cultured primary 

astrocytes from these mice displayed perinuclear inclusions that bore high similarity on an electron-

microscope level to similarly-located Rosenthal fibers from a 17-month old infant (Eng, 1985).  These 

findings made a powerful case that Rosenthal fibers were a cell autonomous response to excess GFAP 

and that AxD was, in fact, a primary disorder of astrocytes. 

GFAP had been earlier been proposed as a candidate gene responsible for AxD (Becker and Teixeira, 

1988).  It was not until Rosenthal fibers were found in GFAP transgenic mice, and DNA sequencing 

became feasible that the gene for this intermediate filament protein gene became the prominent 

candidate for AxD and the GFAP gene from patients was probed for mutations.  In 2001 Brenner et al. 

significantly advanced the field by reporting they had amplified and sequenced each exon and several 
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adjoining introns of the GFAP gene from 11 AxD patients whose diagnosis had been confirmed at 

autopsy and found that 10 of 11 contained non-conservative, heterozygous missense mutations in GFAP 

while two control leukodystrophy cases were found be normal.  The heterozygosity of the mutation 

suggested that the GFAP mutation was acting in a dominant fashion.  The missense mutations all 

affected Arginine residues at four different positions, which were located on both the rod and tail 

regions of the protein.  Parental DNA, where available, was analyzed specifically for the mutations found 

in their children and all were found to be normal, demonstrating that these particular mutations arose 

sporadically and thus the disease was not genetically based(Brenner et al., 2001).   

A total of 78 unique mutations in the coding region of GFAP account for most of the currently diagnosed 

cases of AxD (Prust et al., 2011) (see Fig 5).  Most of AxD mutations allow the mutated proteins to 

dimerize and assemble into 10nm filaments with the exception of R416W, which aggregates into 

broader and shorter configurations (Nielsen et al., 2002b).  The mutated proteins, however, have been 

found to form aggregates in cells and in primary culture, which inhibits proteasome activity (as reviewed 

by Brenner et al., 2008). 

Gain-of-function mutation 

The full role of GFAP has not been fully elucidated, so it is impossible to rule out the possibility that AxD 

pathology comes from a loss-of-function.  Arguments that disease mutations are gain of function have 

predominated in reviews in the literature (Messing et al., 2001a; Messing et al., 2001b; Messing et al., 

2012b; Quinlan, 2001).  The first argument proposed is that GFAP null mice do not have Rosenthal fibers 

or any pathology resembling AxD.  The phenotype of GFAP null mice is extremely subtle – they have full 

lifespans, reproduce normally and have unimpaired gross motor skills (Pekny et al., 1995; Shibuki et al., 

1996) and are no different than wild type mice (WT) in response to several injury paradigms including 

kainic acid administration and stab wound (Gomi et al., 1995), but do show susceptibility to blunt head 
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injury (Nawashiro et al., 1998), ischemia (Nawashiro et al., 1998; Tanaka et al., 2002) and hypotonic 

stress (Anderova et al., 2001), though mechanisms are unknown.  Minor changes in astrocyte 

morphology vis-a-vis shortened processes were shown with ultrastructural and dye injection studies 

(Anderova et al., 2001; Liedtke et al., 1996; McCall et al., 1996).  Other studies suggested primary 

astrocytes from GFAP-null mice had altered expression of extracellular matrix (ECM) components, but 

this isn’t entirely clear from in vivo studies (Wang et al., 1997).  Additionally, blood brain barrier 

alterations were found in vivo and suggested in a cell culture model (Liedtke et al., 1996; Pekny et al., 

1995).  The second argument is that only overexpression of GFAP or missense mutations of the disease 

can cause Rosenthal fibers or other pathology seen in AxD (Quinlan, 2001).  Finally reviewers make the 

case that most of the missense mutations in AxD allow for filament formation are not like null, nonsense 

or frameshift mutations that may occur in other intermediate filament disorders where there is loss of 

function. 

GFAP mutations alone do not seem sufficient for the phenotype  

Two arguments have been raised in support of the proposition that GFAP mutations alone may not be 

sufficient for the phenotypic expression of the disease and that genetic or environmental modifiers may 

be necessary to trigger the disease in affected individuals.  First, there are adult individuals who have 

GFAP mutations but who are as of yet asymptomatic.  These were identified as part of analysis of the 

DNA of relatives of patients in the three familial cases of AxD (as reviewed by Messing et al., 2012a).  

While some have suggested inherited GFAP mutations act at nearly 100% penetrance (Messing et al., 

2012a; Stumpf et al., 2003), this estimate seems questionable because it is based only on the 

percentage of individuals whose DNA was analyzed, while more than half of unaffected siblings of 

affected individuals in these families have not been tested for GFAP mutations. Two adult siblings in 

these families whose ages have not been revealed to protect their identity are positive for the 

mutations of their siblings but as of publication of the review in early 2012, are unaffected. 
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The second argument that there may be additional factors at hand other than GFAP mutations in AxD is 

that identical genetic mutations of GFAP rarely produce common ages of onset, clinical symptoms or 

disease courses.  This has been most frequently noted in the R416W mutations which can be both type I 

and type II (or Infant, Juvenile and Adult onset) (Brenner et al., 2001; Gorospe et al., 2002; Li et al., 2006; 

Thyagarajan et al., 2004).  It should be noted that the leukodystrophies express similar variables in 

expression. 

Support for this argument comes from the fact that AXD cases have been found to present with other 

genetic mutations or after illnesses.  For example, laboratory testing of an infant onset type I patient 

who presented with refractory epilepsy and hypotonia found increased concentrations of lactate in the 

plasma, mitochondria with structural abnormalities and decreased cytochrome-c oxidase activity – 

collectively suggesting mitochondrial disease.  MRI examination was conducted at 5 months and while 

the child showed some WM abnormalities, AxD was not suspected.  At 14 months the changes were 

consistent with diagnosis of AxD and the child was subsequently found to have a unique mutation 

(N386I) in the tail region of GFAP (Caceres-Marzal et al., 2006).  Neither parent bore a GFAP mutation.  

This child suffered a severe course of progress of the disease and died at the age of 22 months.  While 

some cases of AxD and intermediate filament diseases may cause apparent mitochondrial abnormalities, 

the nature of the defects found in this child were very unlikely secondary to AxD (Brenner et al., 2008).  

Another patient was found to have one of twelve reported R88C mutations and also had a rare 

polymorphism of mitochondrial DNA which had been previously found in a patient with mitochondrial 

myopathy.  Although this patient was reported to undergo a less severe course of AxD than most others 

with this mutation and still lives (Brenner et al., 2008), it is plausible that the mitochondrial dysfunction 

in this case may have contributed to the onset and the severity of the disease. 
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Potential environmental triggers may be ones that can produce increased levels of GFAP, such as brain 

trauma, high fever and infection which push GFAP levels over a threshold.  This may be the case in a 

patient whose onset of seizures symptomatic of AxD occurred after receiving a polio vaccine at four and 

a half months an experiencing a high fever.  Other cases have been reported which presented after brain 

trauma (Namekawa et al., 2002) and high fever and /or infection (Herndon et al., 1970; Kyllerman et al., 

2005; Shiroma et al., 2003), and several adult cases have presented after prolonged medical illness 

(Mastri and Sung, 1973; Riggs et al., 1988; Schwankhaus et al., 1995) 

AxD is an astrogliopathy  

Because heterozygous mutations in the gene encoding the intermediate filament GFAP have been found 

in most cases of AxD (Brenner et al., 2001; Li et al., 2005; M et al., 2009), and this protein is 

predominantly expressed in astrocytes, the disease is considered the best example of a disorder that is 

primary to these glial cells, or an astrogliopathy.  Upon observing what we now know as Rosenthal fibers 

in astrocytes, Alexander presciently predicted the disease to be an astrocytic disorder.  While this was 

later opposed (Crome, 1953; Herndon, 1999; Vogel and Hallervorden, 1962), the concept of an 

astrocytic disease gained support when Friede’s pathological study showed a consistent involvement of 

“eosinophilic deposits” in astrocyte endfeet (Friede, 1964).  While GFAP is expressed in neural stem cells 

and in non-myelinating Schwann cells of the peripheral nervous system, none of these cells have 

Rosenthal fibers nor are tissues where these cells types reside affected with any pathology, possibly 

suggesting that to manifest itself, GFAP levels in cells need to reach a certain threshold (as reviewed by 

Messing et al., 2012a).  

Though AxD is a primary disease of astrocytes, astrocyte loss has not been extensively documented.  

Pathological examinations of patient tissue have noted a loss of oligodendrocytes, CA1 neurons and 

axonal degeneration and the activation of microglia (Gorospe et al., 2002; Walls et al., 1984). 
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AxD and other leukodystrophies 

De/dysmyelination in AxD  

The mechanism by which this primary disease of astrocytes causes de- and dysmyelination is not known.  

Diseased astrocytes may be deficient in their ability provide oligodendrocytes or lineage cells with 

essential trophic factors or impaired in their ability to make contact with these cells.  Astrocytes could 

themselves be the source of inflammatory or toxic factors or activate other cells such as microglia to 

become toxic to oligodendrocytes.  One major mechanism by which astrocytes in AxD could damage 

other cells in the CNS, including oligodendrocytes, is through the loss of normal function in glutamate 

uptake and potassium and other ion buffering.  Deficits in astrocytic ability to perform normal regulatory 

functions in the CNS could create a toxic environment and be damaging to oligodendrocytes and 

neurons. 

Leukodystrophies 

AxD is classified as a leukodystrophy, however there are two distinct patterns of myelination defects in 

this disease that can be detected by Magnetic Resonance Imaging (MRI).  The first, which occurs in 

infant onset, type I patients, is characteristic of a leukodystrophy and involves a symmetric loss and 

frontal predominance (See Fig 1 and Fig 7, right).  The other is that more typical for type II patients and 

involves the brain stem and cerebellum. 

Genetic disorders which cause a defect directly related to the synthesis and maintenance of myelin are 

called leukodystrophies, while disorders causing secondary myelin damage are called 

leukoencephalopathies (Kohlschutter and Eichler, 2011). The former term, however, is used more 

broadly to describe hereditary or metabolic white matter abnormality (Barkovich and Messing, 2006).  

AxD shares with other leukodystrophies variable age of onset – infant, juvenile and adult - and a variety 

of manifested phenotypes, sometimes based upon the severity of mutation, but also within identical 

genetic mutations (as reviewed by Kohlschutter and Eichler, 2011).  The variable age of onset for 
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leukodystrophies is most likely is due to the fact that while the majority of myelination occurs during the 

first two years of life, the process in some parts of the brain may not be complete until adolescence or 

young adulthood (as reviewed by Baumann and Pham-Dinh, 2001; Gorospe and Maletkovic, 2006).  Like 

Canavan disease, megalencephalic leukodystrophy with cysts and vanishing WM disease, AxD shows a 

frontal predominance.  And like X-linked adrenoleukodystrophies and megalencephalic 

leukodystrophies, “U fibers,” or the white matter just under the cortex, are often spared (Friede, 1964; 

Kohlschutter and Eichler, 2011).  However, while other leukodystrophies, like X-linked 

adrenoleukodystrophies and megalencephalic leukodystrophies are active demyelinating, AxD does not 

show similar progression on an MRI, so appears to perhaps be a dysmyelinating disorder (van der Voorn 

et al., 2009).  While Leigh’s syndrome does not produce typical frontal myelin loss, it is symptomatically 

similar to AxD and before genetic testing the two diseases were sometimes confused.  

Diagnostic tools  

Because the most common mutations in GFAP have been identified, DNA sequencing for mutations in 

GFAP has been established as the gold standard to confirm a diagnosis for AxD (Brenner et al., 2001).  

While there are no molecular markers specific for AxD that are currently known, laboratory tests are 

helpful in the context of ruling out other disorders, especially leukodystrophies, which do possess 

specific or suggestive molecular markers.  While GFAP has been found in the CNS of three out of three 

patients tested (Takanashi et al., 1998), the intermediate filament is similarly found in a wide range of 

neurological conditions and is not specific to AxD (Liem and Messing, 2009).  Early in the disease, an 

extremely reliable diagnostic tool was brain biopsy and histological examination for the presence of 

Rosenthal fibers, but this has been largely done away with in favor of genetic sequencing.   

MRI patterns of AxD  

MRI is a highly sensitive and specific tool for analyzing deficits in myelin and myelination and has proved 

powerful in diagnosing AxD (Hess et al., 1990; Takanashi et al., 1998; van der Knaap et al., 1996; van der 
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Knaap et al., 2001; van der Knaap et al., 1995).   For a disease of such diverse clinical features, MRIs of 

type I cases are remarkably consistent (Prust et al., 2011; van der Knaap et al., 2001) and have a 

characteristic frontal predominance of white matter loss (see Fig 6) and symmetric white matter 

abnormalities (see Fig 1, center), however, this is shared with other leukodystrophies, especially ones 

with a metabolic basis like metachromatic leukodystrophy.   

Diagnosis of the disease took a significant leap in 2001 when van der Knaap et al. established criteria to 

be used for MRI diagnosis of AxD.  The authors analyzed the MRIs of three AxD patients who had 

autopsy confirmation of diagnosis, and established five MRI criteria for AxD – four of which had to be 

met to establish diagnosis.  They then applied these to 217 cases of children with leukoencephalopathy 

of unknown origin and 19 cases fulfilled these criteria.  Four of these children were subsequently tested 

by biopsy and all were confirmed as AxD (van der Knaap et al., 2001).  These criteria were a significant 

advance in the field (Gorospe et al., 2002; Prust et al., 2011) and are considered highly reliable for 

diagnosis (Barkovich and Messing, 2006; Kohlschutter and Eichler, 2011). 

Because adult patients have less regular and often focal demyelination, their cases have been cases 

have been confused with Multiple Sclerosis (Herndon et al., 1970; Li et al., 2005; Schwankhaus et al., 

1995; Seil et al., 1968) or low grade gliomas (Duckett et al., 1992), especially pilocytic astrocytomas, 

putatively because the presence of Rosenthal fibers creates similar spectra on MRIs (van der Voorn et 

al., 2009).  And in fact diagnostic distinction between reactive gliosis and low-grade infiltrating gliomas 

sometimes presents a pathological challenge (as reviewed by Rivera-Zengotita and Yachnis, 2012)  

Age of onset: an important indicator of AxD severity 

From the identification of the first Infant, Juvenile and Adult cases, age of onset has been recognized as 

an important indicator of AxD severity (Borrett and Becker, 1985; Pridmore et al., 1993; Russo et al., 

1976).  However, recently, Prust along with 33 co-authors published an impressive study which reviewed 
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185 previously reported cases of AxD along with 30 new cases, assessing clinical and radiologic data 

(Prust et al., 2011).  They assessed the relationship between age of onset and clinical data, and used 

Wilcoxan rank sum tests to identify variables associated with survival.  Not surprisingly, these authors 

found that earlier age of onset was a strong predictor of severity of both a patient’s clinical 

manifestations and the results of MRI.  The authors found onset earlier than the age of four was 

predicted by seizures, febrile seizures, motor delay, cognitive delay, history of failure to thrive, history of 

paroxysmal deterioration (that associated with an illness or injury), macrocephaly and classical MRI 

features of AxD as defined by van der Knapp (see diagnosis, above) except for those related to brain 

stem abnormalities.  Clinical phenotypes that predicted late onset (greater than the age of four) were 

bulbar symptoms, autonomic dysfunction, gait disturbance, ataxia, dysarthria, dysphonia, ocular 

movement abnormalities and palatal myoclonus and MRI being “atypical,” with respect to van der 

Knaap et al. criteria (van der Knaap et al., 2001).  The abnormalities most commonly seen through 

magnetic resonance imaging MRI in adult patients were posterior white matter fossa abnormalities and 

atrophy of the brain stem, atrophy of the cerebellum or atrophy of the spinal cord (see Fig 1).  

Classifications of AxD – type I and type II 

While acknowledging age of onset as an important predictor, Prust et al. argue for a more nuanced view 

of AxD.  Using statistical methods to analyze the age of onset in 215 cases and 6 dichotomous variables 

that the authors judge to represent the phenotypic spectrum of AxD expressed across the lifespan, as 

well as an assessment of MRI data as being typical or not according to accepted standards set by van der 

Knapp (van der Knaap et al., 2001) to fit a latent class analysis, Prust et al. identified “type I” as a more 

severe form of the disease and “type II” as a less severe form (Prust et al., 2011).  (See Fig 2).  They 

obtained admirable correct class membership assignments with 0.96 for type I and 0.90 for type II.  Post 

hoc analysis showed that patients with type I AxD usually presented before the age of 4, while type II 

patients developed clinical signs and symptoms throughout their lifespans.  Survival analysis predicted 
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that there was a 2.0 fold increase in incidence of mortality for type I patients (mean survival 17.3 +/- 3.6) 

over type II patients (mean survival 25.0 +/- 1.9).  This study significantly simplified classification of 

disease severity among the many ages of patients it affects and will be useful to describe patients who 

are symptomatically more like patients who typically present at other ages of onset.  For example for 

the 10% of patients assigned to type I who presented after the age of four and the approximately 28% of 

type II patients presented before this age.  This classification will be especially useful in conjunction with 

age-of-onset and, where applicable, age at death to give a concise, if not altogether thorough 

understanding of a patient’s disease course.  

AxD mouse models 

Several lines of GFAP transgenic mice have been developed which have the WT, human GFAP expressed 

in several copies and driven off of its own promoter (Messing et al., 1998).  Lines of this mouse 

expressing the highest levels of human GFAP died by 14 days postnatal of unknown causes and these 

contained more Rosenthal fibers than did lines which expressed less human GFAP and had a normal 

lifespan.  The current transgenic mouse line that is used (73.7) is less in body weight than its normal 

counter parts but lives a normal lifespan (Hagemann et al., 2005). In addition to the human GFAP 

transgenic 73.7 (Tg) mouse, several knock-in lines have been developed (Hagemann et al., 2006) which 

reproduce the genetic modifications found in AxD by expressing missense mutations in one copy of the 

mouse GFAP.  The R76H mouse carries the mouse homologue to human R79H while the R236H mouse 

carries a genetic change analogous to R239H in AxD patients – the most lethal of all AxD mutations 

(Hagemann et al., 2006).  Because the R236H mouse has the most severe phenotype and because it is 

the only knock-in mouse I use for our studies, I will limit all further references to knock-in (KI) mice to it, 

unless otherwise specified.   
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Both the KI and Tg mice have increased levels of GFAP protein as determined by ELISA and have 

Rosenthal fibers, though fewer Rosenthal fibers than is typically seen in patients and not generally at 

blood vessels (Hagemann et al., 2006; Hagemann et al., 2005; Messing et al., 1998).  However, the mice 

have relatively normal lifespans, show no show detectable myelin loss, and appear to have normal levels 

of myelin basic protein (Hagemann et al., 2006). KI mice were found to be substantially more susceptible 

to Kainic acid induced seizures and subsequent neuronal damage compared with WT mice (Hagemann 

et al., 2006).  Additionally they die after seizure at much greater numbers than do WT mice.   

A third type of mouse is derived from mating the TG mouse with the KI mouse (Tg/KI).  This mouse has a 

particularly severe phenotype and dies between four and five weeks, from seizures, but like the Tg and 

KI mice, the Tg/KI mouse is reported to show no indication of myelin abnormalities (Hagemann et al., 

2006; Hagemann et al., 2012).  It is also known that there is a synergistic increase in the amount of GFAP 

protein they produce and the insoluble fraction of GFAP protein almost doubles over that of the Tg 

mouse (Hagemann et al., 2006).   

AxD and cellular stress 

AxD patients and model mice, flies and primary astrocytes and cell lines expressing mGFAP and/or 

transgenic GFAP have been found to undergo many biochemical changes, which may involve or are 

indicative of a stress response as they accumulate high levels of GFAP.  Some of these are discussed 

below. 

Heat shock proteins 

One of the first indicators of a stress response in AxD was the discovery that the heat shock proteins 

alpha B-crystallin (Iwaki et al., 1989) and HSP27 (Iwaki et al., 1992) are major constituents of Rosenthal 

fibers.  Furthermore, the mRNA transcript and protein expression of these heat shock proteins by 

Western blot were both found elevated in brains of AxD patients (Head et al., 1993). 
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Proteasomal inhibition in AxD  

The ubiquitin-proteasome pathway is the primary pathway for elimination of cytosolic proteins.  The 

proteasome is composed of a 20S core where proteins are degraded via three catalytic enzymatic 

activities – trypsin-like, chymotrypsin-like and peptidyl-glutamyl peptide hydrolase-like (PGPH) (Pickart 

and Cohen, 2004) – and the 19S lid that possesses ubiquitin receptors and ATPase activity, which strips 

ubiquitin from substrates before they are presented to the 20S proteasome (Vembar and Brodsky, 

2008).  Accumulation and aggregation of misfolded proteins associated with pathological conditions, 

including CNS disorders, have been hypothesized to occur because of defects in either the ability of 

mutant proteins to bind the proteasome or the impaired proteolytic capacity of the cell (as reviewed by 

Johnston, 2006).   

Inroads leading to an understanding of how a mutation in an intermediate filament protein can be so 

pernicious have been made by the Goldman lab.  Tang et al. demonstrated that there is decreased 

proteasomal activity in AxD patient tissue by showing significantly decreased degradation of 

chymotrypsin and PGPH substrates in lysates of frozen autopsy tissue obtained from the white matter of 

patients with the R239C, R239H and the R416W mutations versus controls (Tang et al., 2006).  The 

authors also suggest that astrocytes may be involved in this impairment as that the 20S proteasome and 

ubiquitin are localized to Rosenthal fibers in patient tissue immunohistochemistry (Tang et al., 2006).  

Additional support for proteasomal inhibition in AxD astrocytes comes from Cho et al., who found 

proteolytic activity impaired in primary astrocytes from Tg and KI mice (Cho and Messing, 2009). 

In vitro experiments by Tang et al. demonstrated that, like other intermediate filament proteins, both 

WT human GFAP and R239C are able to bind the 20S proteasome in both the Triton-X soluble (or 

“unassembled”) and the pellet (or “assembled”) fraction via reciprocal co-immunoprecipitation and in 

vitro co-sedimentation assays in transfected COS7 cells (Tang et al., 2010).  The “unassembled” mutant 

GFAP significantly inhibited proteasome activity in vitro.  Furthermore the “unassembled” mutant GFAP 



19 
 

 

comprised a collection of oligomers, the largest ones not seen in the “unpolymerized” WT GFAP.  The 

addition of alpha B-crystallin to the mutant GFAP oligomers returned the size distribution of the 

population to the WT GFAP distribution and also relieved the proteasome inhibition.  Additionally Tang 

and colleagues showed that U251 cells stably expressing WT or R239H GFAP and exposed to the 

proteasomal inhibitors MG132 and lactacystin show an increase in GFAP by Western blot indicating a 

feed forward mechanism by which GFAP is increased in AxD (Tang et al., 2006).  Proteasomal inhibition 

in these cells activate the mitogen-activated protein kinase stress pathways leading to the activation of 

JNK and p38 map kinases and these in turn activate AP-1 transcription factors, increasing the 

transcription of GFAP.  

Autophagy is indicated in AxD 

Autophagy is another means by which Rosenthal fibers in AxD patient tissue are surrounded by positive 

signal for an antibody against LC3, a marker for autophagosomes (Tang et al., 2008).  Electron 

microscopic images of AxD patient tissue and AxD mice show double membraned autophagosomes in 

close proximity to Rosenthal fibers (Tang et al., 2008).  These results suggest that autophagy may be 

increased in AxD astrocytes in order to degrade GFAP and other proteins associated with Rosenthal 

fibers or these characteristic protein inclusions themselves. 

Oxidative stress  

AxD patients, model mice and model flies all have indications of oxidative stress.  Rosenthal Fibers were 

found to contain a pyrrole modification arising from the lipid peroxidation product 4 hydroxy-2-nonenal 

(HNE) (Castellani et al., 1998).  Both Tg and KI mice crossed to a reporter mouse expressing a transgene 

consisting of the core antioxidant response element (ARE) from the NADH quinone oxidoreductase 

(Nqo1) promoter placed in front of the human placental alkaline phosphatase gene (ARE-hPAP) showed 

robust antioxidant gene expression (Hagemann et al., 2006; Hagemann et al., 2005). In the KI mice these 

ARE-hPAP expressing cells were found in the hippocampal fissure, corpus collosum, cingulum, rostral 
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migratory stream, lateral olfactory tract and glomerular layer of the olfactory bulb.  Interestingly, the 

only subset of GFAP positive cells in these mice expressed ARE-hPAP (Hagemann et al., 2006).  

Inducible expression of ARE-driven genes is thought to be largely mediated through Nrf2 (Chan and Kan, 

1999; Itoh et al., 1997; Itoh et al., 1999), a transcription factor activated under conditions of oxidative 

stress (as reviewed by Hayes and McMahon, 2001) and which mediates many phase II detoxification 

response genes.  In a microarray gene expression analysis of the olfactory bulb of the AxD Tg mice, at 3 

week (early) and 4 month (late) time points, many genes driven by Nrf2 were found upregulated both 

early and late, indicating that oxidative stress response is an early phenomena (Hagemann et al., 2006).  

It should also be noted that in addition to Nrf2, other nuclear transcription factors including c-Jun, Nrf1, 

Jun-B, and Jun-D can bind to the ARE and regulate expression and induction of NQO1 gene (Jaiswal, 

2000) 

Oxidative stress may also be indicated by the presence of iron found increased in astrocytes of AxD 

model mice, where it is normally found in oligodendrocytes.  Fe3+ iron was found by modified Perls’ 

stain to be greatly increased in astrocytes of the olfactory bulb and hippocampus in AxD KI and Tg mice, 

and this was also found true for ferritin by immunostaining (Hagemann et al., 2006; Hagemann et al., 

2005; Hagemann et al., 2012).   

Primary astrocytes from AxD KI and Tg mice are more susceptible to H202 toxicity than those from wild-

type counterparts, and this may be an indication that that iron is too elevated in these cells, making 

Fenton chemistry possible (Cho and Messing, 2009). 

In a Drosophila model of AxD, expression of human R79H GFAP (and to a lesser extent, WT hGFAP) in 

glia produces Rosenthal fiber-like aggregates, and a non-cell autonomous oxidative stress response that 

is toxic, through glial glutamate transporters, to neurons (Wang et al., 2011).  Overexpressing heat shock 

proteins/chaperones ameliorates both Rosenthal fiber-like aggregation and the neuronal lethal 
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phenotype, while overexpressing antioxidant genes or treating with oral antioxidants attenuates the 

lethal phenotype, but have no effect on aggregates (Wang et al., 2011).  These data suggest oxidant 

stress as a primary mechanism in AxD neurotoxicity (Wang et al., 2011). 

Impaired glutamate uptake and astrocyte coupling in AxD 

AxD KI mice lose expression of Glt-1 and have compromised glutamate uptake (Tian et al., 2010). Both 

Glt-1 protein and transcript are found reduced in the Tg/KI mice (Hagemann et al., 2009), and 

collaborative work on Tg/KI mice that will be published along with some of the work in this thesis has 

confirmed and extends this, demonstrating not only impaired glutamate uptake and loss of GLT-1 in 

Tg/KI mice, but also loss of coupling of astrocytes (Sosunov et al., 2013).   

Reactive astrocytes 

The condition of reactive astrocytes – astrogliosis, or reactive astrocytosis – has many defined 

characteristics, but is often detected by an increase in the amount of GFAP immunoreactivity (GFAP-IR) 

(as reviewed by Eddleston and Mucke, 1993).  The hypertrophied or enlarged appearance of GFAP 

processes on astrocytes is a characteristic response to injury, inflammation, viral infection and 

degenerative diseases of the CNS.  The expression of GFAP can be induced by cytokine production by 

infiltrating mononuclear cells and/or resident microglia and autocrine stimulation by factors such as 

LCN2 (Zamanian et al., 2012).   

Astrocyte proliferation during astrogliosis 

Astrocytes have been shown to proliferate during models of astrogliosis.  Stab wound induces 

[3H]thymidine incorporation  into cells that also expressed GFAP (Miyake et al., 1988).  More recently, 

fate mapping studies have shown that while most reactive astrocytes are derived from phenotypic 

transformation of existing astrocytes, a small subset of astrocytes do in fact divide after stab wound 

(Buffo et al., 2008) and after the induction of experimental autoimmune encephalomyelitis (EAE) (Guo 
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et al., 2011).  In the EAE spinal cord only fibrous astrocytes in the white matter divide and proliferate 

while the reactive astrocyte population in the grey matter is derived exclusively from phenotypically 

transformed protoplasmic astrocytes. 

The detrimental effects of reactive astrocytes have been especially noted with respect to myelination, 

perhaps because they are more apparent, but more recently reactive astrocytes have been shown to be 

essential for the beneficial effects of withstanding CNS injury, and improving recovery after 

experimental autoimmune encephalomyelitis, particularly in their ability to prevent invasion by 

inflammation producing cells (Bush et al., 1999; Faulkner et al., 2004; Voskuhl et al., 2009). 

Expression of stem cell-like or early genes in reactive astrocytes  

Subsets of reactive astrocytes are able to show features of stem and progenitor cells (Buffo et al., 2010).  

Reactive astrocytes re-express many proteins present in high amounts during development in precursor 

cells such as, vimentin and nestin, but are absent or less present in mature cells (Fawcett and Asher, 

1999; Ridet et al., 1997).  The reactive response in terms of gene expression is heterogeneous to specific 

type of CNS insult at an early timepoint after injury (Zamanian et al., 2012).  The morphological 

transformation of reactive astrocytes also varies in severity, as well as upon distance from the wound or 

neuropathological lesion. 

Reactive astrocytes are not homogeneous 

A recent and microarray study used GFP transgenic mice driven from the Aldh1l1 promoter, a gene 

which codes formaldehyde dehydrogenase 1 family, member L1, a protein found in all astrocytes, unlike 

GFAP.  The authors identified a set of genes differentially regulated by astrocytes isolated from mice one 

day after undergoing reactive gliosis in two separate models of brain injury – ischemia produced by 

middle cerebral artery occlusion and intraperitoneal lipopolysaccharide (LPS) injection.  While 

approximately half of the genes differentially expressed were common to both models of reactive 
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gliosis, the other half was unique to each injury model, indicating that while reactive astrocytes have 

common markers, astrogliosis, at least in the one day post injury timeframe the authors chose to 

document, is a heterogeneous response specific to the injury type (Zamanian et al., 2012).   

The transcripts that were most highly induced and common to both models of injury were Lcn2 and 

Serapina3n.  Lcn2 codes for lipocalin2, a secreted protein which has increased expression in a wide 

variety of pathological states and which has bacteriostatic effects through its capture and depletion of 

iron binding molecules called siderophores that are used by some bacteria as a means of iron acquisition 

and which may be involved in cellular iron acquisition and/or depletion (Goetz et al., 2002; Schmidt-Ott 

et al., 2007; Yang et al., 2002).  Lcn2 has recently been implicated as an autocrine mediator of reactive 

gliosis through upregulation of GFAP in astrocytes (Chia et al., 2011; Lee et al., 2009).  Serapina3n is an 

inhibitor of peptidase activity and its expression is increased after nerve injury and inflammation 

(Gesase and Kiyama, 2007; Takamiya et al., 2002).   

Thesis overview 

In Chapter 2, I undertake an immunohistological examination of GFAP expression in astrocytes in mouse 

models to gain insight on how their transformed shape and other endogenous stressors might impact 

other cells in the CNS.   

In Chapter 3, I explore the causes of demyelination more directly by examining the expression of CD44, 

a cell surface glycoprotein that is specifically expressed by astrocytes in the white matter and sub-pial 

and subventricular regions, where Rosenthal fibers are found in abundance.  We also examine several of 

its binding partners -the extracellular matrix molecule hyaluronan, its principal ligand, and the 

ezrin/radixin/moesin proteins, which link CD44 to the cytoskeleton.  

In Chapter 4, I briefly introduce iron’s importance to the brain and its regulation in the CNS.  Additionally 

I reviews the ways that iron can be toxic to cells and potential destructive.  I then present the results of a 
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brief histochemical analysis of two infant onset, type 1 AxD patients and a control patient using a 

modified Perls’ iron stain for Fe3+ and antibodies to ferritin, ferroportin and ceruloplasmin to examine 

these iron related proteins. 

In Chapter 5, I review the results of these experiments and relevant discussion points and discuss their 

interpretation and significance.  I also put forth future directions that are suggested as a result of my 

work.  Chapter 6 provides a detailed description of the materials and methods utilized to carry out this 

thesis project. 

Tissue used in these studies 

Where possible, I used AxD patient tissue for immunostaining and Western blot.  Human autopsy tissue, 

however, is limiting because it often represents the end course of a disease, and therefore I also used 

AxD mice.  Very few studies have been conducted using the mice produced as a cross between the Tg 

and KI AxD strains. As described above, it is known that these mice do not show any overt loss of myelin 

and die between 30—35 days, most likely from seizures (Hagemann et al., 2006).  The increased lethality 

of these mice whose individual strains show normal lifespans suggest that the synergistic increase in 

levels of GFAP leads to overwhelming astrocyte dysfunction and subsequent lethality (Hagemann et al., 

2006). 

In autopsy tissue I mainly examine the subcortical white matter, where there is extensive demyelination 

and Rosenthal fibers in type I patients.  However, because in the mouse the amount of subcortical white 

matter is small and because early studies did not show demyelination in these animals, I chose to focus 

on the hippocampus in the mouse for several reasons: first, unlike protoplasmic astrocytes of the cortex, 

astrocytes in the hippocampus express high levels of GFAP; particularly in the stratum lacunosum; 

second, the hippocampus is a major locus for seizure activity and AxD type I patients suffer from 

seizures while the Tg/KI mice die of seizures; third, CD44, a protein we examine later in this thesis, is 
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expressed abundantly in the stratum lacunosum-moleculare, a hippocampal layer that contains 

myelinated fiber projections from the entorhinal cortex that synapse on dendrites of pyramidal and 

dentate neurons (See Fig 7).  
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Chapter 1: Figures 

Figure 1. Typical MRI of AxD 
 

 

 

 

 

 

Magnetic Resonance Images (MRIs) typical for an infant onset, type I patient show symmetrical white 
matter abnormality.  (Image from Messing A et al. J. Neurosci. 2012; 32:5017-5023). 
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Figure 2. Type I and Type II AxD– Comparison of age of onset, clinical features, radiological features 
and survival  

 

 Type I Type II 

Age of onset Before age 4 Across lifespan 

Clinical features Seizures 

Macrocephaly 

Encephalopathy 

Sudden deterioration after 
insult or injury 

Failure to thrive 

Developmental delay 

Autonomic dysfunction 

Bulbar symptoms 

Ocular movement abnormalities 

Palatal myoclonus (muscle spasms in 
palate which make noise in ears) 

Few or no neurocognitive or 
development deficits 

Radiological features Classical radiological features Atypical radiological features 

Survival Survival 2  years +/- after 
diagnosis 

Survival as long as 25 years after 
diagnosis 

(from Prust et al. Neurology 2011; 77:1287-94) 
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Figure 3. Morphological features of Rosenthal fibers 

 

  

(A) Rosenthal fibers concentrated in the astrocytic endfeet surrounding a blood vessel (V) in 
the brainstem of a 1-year-old child with Alexander disease. Hematoxylin and eosin stain, 
paraffin section. (B) Rosenthal fibers (arrow) surrounded by intermediate filaments 
(arrowhead) in an astrocyte cell body from a 17-month-old child with Alexander disease, 
viewed by transmission electron microscopy [reprinted from Eng et al. (1998), their Fig. 5B.]

(A) Hematoxylin and eosin stain of the brain stem of a 1-year-old child shows abundant Rosenthal fibers 
(arrows), stained darker pink, in perivascular astrocyte endfeet surrounding a blood vessel (V).  (B) Loosely 
scattered electron positive deposits (arrow) surrounded by intermediate filaments (arrowhead) form a 
perinuclear Rosenthal fiber in the astrocyte of a 17 month old child.  (N) nucleus.  Transmission electron 
microscopy. 

(Modified from: Messing A et al. J. Neurosci. 2012; 32:5017-5023). 
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Figure 4. Lesions demonstrating Rosenthal fibers 
 

Category  Examples 

Reactive Lesions 

Parenchyma surrounding slowly growing, 
low-grade tumors 

Hemangioblastoma, 
craniopharyngioma 

Parenchyma surrounding cysts Syringomyelia, pineal cyst 

Parenchyma surrounding vascular 
malformations 

Arteriovenous malformations, 
cavernomas 

Parenchyma surrounding chronic 
inflammation 

Multiple sclerosis 

Neoplastic 
 Pilocytic astrocytoma 

Ganglioglioma 

Genetic/Metabolic  Alexander disease 

(Wippold FJ et al. Am. J. Neuroradiol. 2006; 27:958-61). 
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Figure 5.   Reported AxD associated GFAP mutations as of 2011 
 

 

 
 
 
 
 
 
 
 
 
 
 

(Messing A et al. J. Neurosci. 2012; 32:5017-5023) 
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Figure 6. Extensive demyelination in type I infant onset AxD 
 

  

(A) Coronal section showing a cavitation and near total loss of white matter.  (B) T1-weighted 
MRI of an 8-month-old patient showing cystic degeneration in the frontal and parietal lobes. 
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Figure 7. Hippocampus 
 

 

 

 

 

 

 
 

m Santiago Ramón y Cajal. 1911 
• Adapted from Santiago Ramón y Cajal. 1911 

Adapted  

 

 

 

 

 

(A) Toluidine blue stained rat hippocampus showing the distribution of different layers. Key: DG: 
Denate Gyrus; GrcL: Granular cell layer; MoL: Molecular cell layer; S Luc: Stratum Lucidum; Lac mol: 
Lacunosum Moleculare; SR: Stratum Radiatum; SO: Stratum Oriens (adapted from Rodríguez- 
unpublished photograph courtesy of Markel Olibarria) (B) Scheme of the hippocampus illustrating the 
main types of neurons of the principal layers: Granular cell neurons populate the Grcl extending the 
dendritic tree to the MoL and projecting mossy fibers the pyramidal neurons of the CA3. Both 
pyramidal neurons in the CA3 and CA1 display apical and basal dendritic trees (Adapted from Rolls, 
2009).  

Markel Olabarria 2011 
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Chapter 2 

Alexander disease astrocytes: 

morphologically and ER stressed 
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Introduction 

In this chapter, through immunoanalysis and Western blot of AxD mice and patient tissue, I explore 

manifestations of morphological stress in astrocytes and a novel stressors to which AxD astrocytes might 

be subject.  Astrocytes and cell lines expressing mGFAP and/or transgenic GFAP have been found to 

undergo many biochemical changes, which may involve or are indicative of a stress response as they 

accumulate high levels of GFAP.  These include an inhibition of proteasomal activity, induction of 

autophagy, activation of mitogen-activated protein kinase stress pathways leading to the activation of 

JNK and p38 kinases, upregulation of small heat shock protein genes encoding alpha B-crystallin and 

Hsp27, and loss of GLT-1, a major glutamate transporter in astrocytes (Cho and Messing, 2009; Tang et 

al., 2010; Tang et al., 2006; Tang et al., 2008; Tian et al., 2010).  Oxidant stress is indicated by iron 

accumulation in astrocytes of KI and Tg mice, vastly increased expression of genes driven by antioxidant 

response element (Hagemann et al., 2006; Hagemann et al., 2005) and the presence of advanced 

glycation end products and 4-hydroxynoneal in Rosenthal fibers (Castellani et al., 1998; Castellani et al., 

1997).  

Astrocytes in AxD patients experience severe morphological transformation, beyond that of a typical 

reactive astrocytes, including formation of Rosenthal fibers, hugely distended cell bodies, greatly 

hyperphotried processes and binucleated and otherwise abnormal nuclei.  In the first part of this 

chapter, I use AxD model mice and primary cells to explore phenotypic changes in astrocytes that might 

lend insight to the changes we see the astrocytes of patients. I find that along with an almost 4-fold 

increase in GFAP protein in the hippocampus, there are profound changes in astrocyte phenotype, 

especially in the s stratum lacunosum moleculare.  GFAP immunostaining reveals hypertrophied 

processes on many of these cells, and additional some processes which appear retracted or “collapsed.” 
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BIP.  In the second part of this chapter, I examine the endoplasm reticulum (ER) and the unfolded 

protein response (UPR) in AxD.  The ubiquitin proteasome system is important for clearance of proteins 

marked for degradation by ER quality control mechanisms, and proteasomal inhibition can induce ER 

stress (Mancini et al., 2000; O'Hare et al., 1999; Ward and Kopito, 1994).  Because there are many 

indicators of proteasomal inhibition in AxD, I hypothesize that the ER stress pathways are activated in 

AxD.  BIPI conducted an immunohistological examination of AxD patients and mice, and found increased 

expression of BIP/Grp78 in astrocytes.  Additionally I found present the CCAAT enhancer binding protein 

homologous protein (CHOP) in some astrocytes of the Tg/KI mice.   

ER has essential roles in lipid and sterol synthesis, intracellular calcium homeostasis and protein 

secretion (as reviewed by Ma and Hendershot, 2004).  In this last role, roughly one third of all proteins 

enter the endoplasmic reticulum as part of the secretory pathway (as reviewed by Kanapin et al., 2003).  

Here, they are folded to their native conformation and acquire post-translational modifications that 

include lipidation, glycosylation and formation of intra and inter-molecular disulfide bonds (as reviewed 

by Ma and Hendershot, 2004).  Quality control is maintained in the ER by a set of resident chaperones 

and multiple check points that assure only properly folded proteins exit the ER while unfolded proteins 

are retained in the ER, remaining associated with chaperones before they are degraded (as reviewed by 

Fewell et al., 2001; Hammond and Helenius, 1995).  This degradation process for failed proteins is 

termed endoplasmic reticulum associated degradation (ERAD) (Werner et al., 1996).  Much work has 

been conducted in yeast elucidating mechanisms of ERAD, but it is unknown whether mammals share all 

of these mechanisms with yeast (as reviewed by Vembar and Brodsky, 2008).  It is known that some 

proteins marked for ERAD are ubiquinated and degraded by the proteasome, that chemical inhibitors of 

the proteasome can inhibit this process, and that the activity of the proteasome is required for some 

ERAD designated proteins to leave the ER (Mancini et al., 2000; O'Hare et al., 1999; Ward and Kopito, 

1994).  Experiments have demonstrated that specific ERAD designated proteins can leave the ER under 
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condition of proteasomal inhibition.  These are transported on microtubules to perinuclear organelles 

called aggresomes where they are then degraded by autophagosomes (as reviewed by Johnston, 2006).  

ER stress is known as any process that disrupts the balance between the folding load and the capacity of 

the folding machinery (as reviewed by Ron and Walter, 2007).  The term “unfolded protein response” 

(UPR) grew out of several proof-of-principle experiments establishing that folding-incompetent proteins 

could induce a response that induced transcriptional and translational increases in ER resident 

chaperones (Adams and Rose, 1985; Gething et al., 1986; Kozutsumi et al., 1988; Zimmer et al., 1999).  It 

has since been established that pathways activated by as part of the UPR, however, can also be caused 

by conditions other than excess or folding-incompetent proteins, such as those that interfere with ER 

calcium stores (Paschen et al., 2003; Sambrook, 1990), nutrient stress (Harding et al., 2005; Scheuner et 

al., 2001; Schroder et al., 2000), viral infection,  iron deprivation, hypoxia/ischemia and oxidative stress, 

as well as differentiation of cells to highly secretory types (Calfon et al., 2002; Iwakoshi et al., 2003).  

This has led to the introduction of the more inclusive term “integrated stress response” (ISR) in addition 

to unfolded protein response (as reviewed by Markowitz et al., 2007). 

Under conditions of ER stress, a set of coordinated transcriptional responses are introduced to bring the 

ER back to homeostasis and proper protein folding.  These activities are mediated by three 

transcriptional pathways, which are transduced by the proteins PERK, IRE1 and ATF6.  These proteins are 

located in the ER membrane facing the lumen and, under normal physiological conditions, are bound by 

the ATP-dependent ER chaperone BIP (immunoglobulin heavy-chain binding protein).  During conditions 

of ER stress, BIP dissociates from these proteins and functions in protein chaperone activity in the 

lumen, freeing PERK, IRE1 and ATF6 to mediate transcriptional events.  ATF6 translocates to the Golgi 

where it is processed to an active form that then functions as a transcription factor.  IRE1 dimerizes and, 

through subsequent activation of RNase activity, splices the transcription factor XBP1 to a form that is 

potent for transcriptional activation.  PERK is unique in that it participates in three UPR/ISR-mediated 
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events, both translational attenuation and activation and additionally, through activation of Nrf2, 

antioxidant response (as reviewed by Cullinan and Diehl, 2006).  Transcriptional attenuation occurs via 

phosphorylation and subsequent inactivation of the elongation factor, eif2alpha, and during this process 

genes that respond to transcription factor ATF 4 are preferentially transcribed (as reviewed by Schroder 

and Kaufman, 2005).  PERK phosphorylation of bZIP transcription factor Nrf2 allows it to translocate to 

the nucleus and activate transcription through the ARE (antioxidant response element) (Jian et al., 2008; 

Schroder and Kaufman, 2005) (Fig A).  

In Chapter 1, studies conducted by the Goldman lab were described that suggest that proteasomal 

inhibition is a major contributor to the pathology caused by AxD.  In vitro and cell culture experiments 

have  demonstrated that  mutant and human WT GFAP cause proteasomal inhibition and the 20S 

proteasome is associated with Rosenthal fibers in patient tissue (Tang et al., 2010; Tang et al., 2008).  

Additionally, primary cells from Tg and KI mice show impaired proteolysis by the proteasome (Cho and 

Messing, 2009).  Because inhibition of the proteasome was found to impair the ERAD process (as 

reviewed by Vembar and Brodsky, 2008) and there is strong evidence for proteasomal inhibition in AxD 

astrocytes, I hypothesized that ER stress might be a factor in AxD. 

Results 

GFAP is increased in AxD Tg/KI mice at 2 and 4 weeks  

Because accumulated GFAP in astrocytes is thought to trigger many pathological manifestations of AxD, 

I first examined GFAP distribution and levels in the most severely affected of AxD mice, the Tg/KI mouse 

that has a lifespan of less than 30 days, and found, as expected, a dramatic increase in the GFAP protein 

in Tg/KI animals over controls at both time points because these mice carry extra copies of human GFAP 

and its promoter in addition to their endogenous WT and mutant GFAP genes (Messing et al., 1998).  In 

the WT hippocampus at 2 weeks, most of the immunostaining for GFAP could be seen in the stratum 

lacunosum moleculare (str. lac.-mol.) (Fig 1A, left), while in the 4 week old WT more GFAP 
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immunoreactivity was apparent in the stratum radiatum (str. rad.), which contains the dendrites of the 

CA1 pyramidal cells, and the stratum moleculare (str. mol.), which contains the dendrites of the granule 

cells of the dentate gyrus (See Chapter 1 Fig 7 for anatomy of the hippocampus).  Tg/KI animals, in 

contrast, had already, by 2 weeks, immunoreactivity for GFAP in both the str. rad. and the str. mol. in 

addition to that in the str. lac.-mol. (Fig 1A, right) and in the 4 week old Tg/KI mouse this appeared to 

greatly increased (Fig 1B, right).  The increases in GFAP in the Tg/KI mice that were observed by 

immunofluorescence, were also observed by Western blot analysis (Fig 1C).  Note that for Tg/KI animals 

there are many faint bands at upper levels in the gel that  may represent ubiquitinated GFAP protein 

and, likely, dimers (~100kDa) and tetramers (~200kDa) (Fig 2C).  In addition there is a band migrating at 

a faster rate immediately below the major band at approximately 49 kDa, which may represent a 

proteolytically or otherwise cleaved species that is not present in WT animals (Fig 2C).  Quantification of 

the GFAP protein levels of three independent experiments using densitometric analysis demonstrated a 

roughly 3-fold increase in GFAP expression in Tg/KI mouse at two weeks (***p < 0.0005) and a 4 fold 

increase at 4 weeks (****p < 0.00005) (Fig 1D).  GFAP levels in the Tg/KI animals also increased 

significantly between 2 and 4 weeks (*p < 0.05), while there was no significant increase in WT GFAP (Fig 

1D).  

Severe morphological changes are seen in astrocytes in the str. lac. of 4 week old Tg/KI mice 

We noticed that astrocytes in the str.lac.-mol., which appeared to be the first of the regions we 

examined to become immunoreactive to GFAP in the WT animals, are severely morphologically affected, 

characterized by hypertrophic processes and cell bodies.  To assess the morphological changes that may 

ensue from increased GFAP expression, we first examined astrocytes in this severely affected portion of 

the hippocampus.  In 4 week old Tg/KI mouse, the str. lac.-mol. contains many cells that appear to have 

lost processes and have a rounded appearance (Fig 2A right, arrow).  Similar cells examined at high 

magnification (Fig 2B and C), have greatly accumulated GFAP in the cell body and display single 
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hypertrophied processes (Fig 2C, arrow), and what appear to be retracted or “collapsed” GFAP+ cell 

processes (Fig 2B, arrow).  Nuclei are often abnormal or binucleated (Fig 4B, arrowheads).  

GFAP and Alpha Tubulin are found together in perinuclear inclusions 

In order to obtain another perspective on the morphologically transformed cells in the Tg/KI mouse, I 

turned to cell culture and examined primary astrocytes from.  Both Tg and Tg/KI cells in culture show 

perinuclear inclusions.  In these experiments, I used Tg cells due to their resilience, and the fact that 

their inclusions are similar to those seen in Tg/KI mice, though less numerous.  I examined these cells for 

the expression of GFAP, along with alpha tubulin to visualize microtubules.  WT cells at low 

magnification (Fig 3A) show few GFAP+ cells – a commonly reported observation for mouse primary 

astrocytes.  Tg cells (Fig 3B) show many cells with perinuclear ring-like inclusions; arrows point to three.  

We were surprised to see microtubules in close association with these ring-like inclusions (Fig 3B).  

When examined by high magnification, WT cells (Fig 3C) had filamentous GFAP+  and alpha tubulin + 

processes, while  Tg cells (Fig 3D) show ring-like inclusions of GFAP around centers that lack 

immunofluorescence.  GFAP is in the innermost part of these inclusions, while alpha tubulin is at the 

outermost part and the periphery (Fig 3D, arrows). 

Golgi is mislocalized in Tg primary astrocytes with perinuclear inclusions 

Positioning of the Golgi is impacted by microtubule stability (Hehnly et al., 2010), therefore I next 

examined several organelle markers with GFAP to determine if they also might be impacted by 

perinuclear inclusions.  I used a cis Golgi marker GM130, along with GFAP, to immunostain Tg primary 

cells, and found that in cells with perinuclear inclusions the golgi appeared mislocalized in comparison to 

neighboring cells with normal filamentous GFAP expression (Fig 4A and B, arrows).  We examined these 

cells with high magnification and confocal 3D reconstruction to better understand these inclusions and 

found the cis Golgi appeared associated with or underneath a GFAP “cap” (Fig 4D and F).   
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AxD patients show accumulated BIP expression in white matter astrocytes 

In order to determine if ER stress pathways are part of the pathology of AxD, I used 

immunohistochemistry to examine the expression of the ER chaperone BIP in AxD patient cortex and 

underlying white matter.  I began my investigation with BIP because the antibodies were available and 

reported to be successful for immunostaining of both mouse and human tissue (Kovacs et al., 2009).  At 

low power, I immediately saw a significant contrast between control (Fig 5A) and AxD R416W (Fig 5B) 

immunostains.  While the control patient had high levels of BIP immunoreactivity in the cortex flanking 

the WM, and light immunostaining within the WM (Fig 5A, arrows), the R239H patient showed the 

reverse – WM with high levels of BIP immunoreactivity (Fig 5B, arrows) and cortex with low levels.  The 

R416W patient WM (Fig 5C, arrows) did not show more immunostaining than in the cortex but did show 

less of a contrast between the WM and grey matter than control.  Upon higher magnification (Fig 5D, E, 

F, G, H and I) differences between AxD and control became far clearer.  The control WM showed many 

oligodendrocytes with BIP immunoreactivity in small cell bodies some with characteristic lacey 

processes (Fig 5G, arrows) and astrocytes with discrete, compact perinuclear BIP staining (Fig 5G, red 

asterisk) are displayed.  Almost all oligodendrocytes cell bodies, which have small nuclei, show BIP 

immunoreactivity (some marked with black arrows) and BIP immunostaining can be observed into lacey 

processes (Fig 5G, black arrow, top).  The tissue section from the AxD R239H patient displays 

hypertophic astrocytes and many Rosenthal fibers that immunostained a very light blue with 

hemotoxylin.  In the WM of the AxD R239H patient, almost all astrocytes have granular deposits of BIP in 

their cell bodies (Fig 5H, red asterisks).  Especially coarsely stained astrocytes can be seen at lower right.  

Some oligodendrocytes cell bodies can be observed with a tight ring of immunostaining to around their 

cell bodies, and several seem to have very little or no reactivity to BIP (Fig 5H, black arrows).  The 

R416W patient has a relatively well-preserved cortex and astrocytes are striking in their accumulation of 

BIP, which often appears slightly granular.  Several perinuclear Rosenthal fibers can be seen in the tissue 
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(Fig 5I, lower right red asterisk) and the more lightly immunostained Rosenthal fibers are surrounded by 

darker, granular BIP immunostaining here. 

BIP is significantly elevated at 2 weeks and 4 weeks in AxD Tg/KI mice  

To study further the role of BIP in AxD astrocyte pathology I turned to AxD model mice to determine if 

BIP was increased in these animals.  First, I looked at the most severely affected animal, the Tg/KI mouse 

which dies at about 30-35 days.  I examined the total hippocampus for BIP immunostaining at low 

magnification (Fig 6A and B) and there appeared to be some increases in Tg/KI animal, especially in the 

CA1 in the 4 week old Tg/KI. 

Because neurons stain for BIP, it would be difficult to measure astrocyte-specific BIP levels by Western 

blot, so we counted BIP positive and GFAP+ astrocytes on images and found significant increases in BIP 

already in 2 week-old mice (*p=0.037, Fig 6C), progressing to a more dramatic difference at 4 weeks of 

age (**p=0.008; Fig 6C).  Layer specific analysis showed that changes at 2 weeks of age only take place in 

the str. lac.-mol. (*p=0.041; Fig 7C and D) while at 4 weeks of age differences in BIP expression become 

striking and is significantly higher in both str. lac.-mol. and stratum radiatum (str. rad.) (**p=0.008 and 

*p=0.041; Fig 7C and D). 

Expression of BIP in astrocytes of one year old Tg Mouse 

Having observed a widespread increase in BIP among most astrocytes in the 4 week old Tg/KI mouse, I 

examined the one year old mice.  WT mouse GFAP positive astrocytes showed very low levels of BIP 

immunostaining (Fig 8A, arrows).  Likewise, in the Tg animal some GFAP positive astrocytes were 

observed with very little or no expression of BIP (Fig 8B and C, arrows), but strikingly some GFAP positive 

astrocytes in the one year old Tg mice showed very high and aberrantly localized expression of BIP, an 

ER resident protein (Fig 8B and C, yellow arrowheads).  Thus, in contrast to the Tg/KI mouse, there is a 
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heterogeneous pattern of BIP immunostaining among the GFAP positive population of cells in the TG 

mouse hippocampus. 

CHOP is co-expressed with BIP in a subset of astrocytes  

Both BIP and CHOP are regulated downstream of the three main initiators of the unfolded protein 

response.  However, while BIP is a generally thought a pro-survival chaperone, CHOP is induced when 

the balance between folding demand and capacity cannot be resolved favorably by the UPR.  In four 

week old Tg/KI animals, I consistently saw several GFAP positive astrocytes with CHOP staining in nuclei 

(Fig 9B-F, small yellow arrowheads) and, to a lesser extent, in the cell body immediately adjacent to the 

nucleus (Fig 9B, F, large yellow arrowheads).  While induction of BIP was widespread in the 4 week old 

Tg/KI mouse, I observed only a few CHOP positive astrocytes.  I generally saw more CHOP positive 

astrocytes close to the pyramidal layer in the CA1, however only four animals were examined.  WT 

animals (Fig 9A, top panels) show little or no CHOP labeling at 4 weeks of age.  2 week Tg/KI animals 

show a variable number of CHOP positive astrocytes ranging from 1 to 6 counts per analyzed 

hippocampus. 

A note:  I attempted to immunostain patient tissue with an antibody for CHOP, but I found no reactivity 

in either AxD patient or control (data not shown). 

Discussion 

In this chapter I revealed severe phenotypic changes in astrocytes in the Tg/KI mice that resulted in the 

conversion of star-like protoplasmic astrocytes in WT mice to cells that have hypertrophied or 

“collapsed” GFAP positive cell bodies and are multinucleated or have other nuclear abnormalities in 

connection with the accumulation of GFAP (Figs 1 and 2) (Sosunov et al., 2013).  I next found that 

primary Tg astrocytes in culture have large perinuclear rings of GFAP filaments and a disrupted 

microtubule network and Golgi apparatus (Figs 3 and 4).  Additionally, I present strong 
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immunohistological evidence that supports my hypothesis that ER stress in astrocytes is a component of 

the fatal pathology of AxD: first, I found BIP at higher levels in astrocytes in AxD patient tissue; second, I 

found significantly higher reactivity to BIP in astrocytes in the Tg/KI mouse at both 2 and 4 weeks; third, 

in the Tg/KI mice I found CHOP in astrocytes of the hippocampus at 4 weeks. While I have not explored 

the mechanism by which these proteins are induced, these results support a role for the induction of the 

unfolded protein response.  

High levels of GFAP expression in AxD mice coincide with morphological transformation of astrocytes  

The expression of mutant GFAP in AxD patients causes massive increases in the levels of GFAP in 

astrocytes both by immunofluorescence and by Western blot.  Viewed at a terminal stage, these 

diseased astrocytes gain thick processes, exhibit distended cell bodies and display abnormal nuclei 

which are sometimes multinucleated.  Morphologically they undergo dramatic changes to reach this end 

state.  

I examined the most severely affected AxD mice, the Tg/KI for GFAP expression and immunoreactivity.  

We found GFAP to be increased almost 4 fold over WT mice by Western blot at both 2 weeks and 4 

weeks (Fig 1D).  By immunofluorescence for GFAP, these cells at 4 weeks displayed an extremely 

reactive phenotype.  Some, especially in the str. lac.-mol., had undergone what seemed to be 

“collapsed” cell bodies (Fig2B, arrows) and others had greatly hypertrophic processes (Fig 2C, arrows).   

Astrocytes of the hippocampus, like other protoplasmic astrocytes, form a highly organized network 

with individual cells regulating and integrating neuronal and vascular interactions within discrete regions 

(Bushong et al., 2004; Tout et al., 1993).  In order to carry out these functions astrocytes must be able to 

extend fine processes into small domains between cells.  The loss of thin GFAP+ processes we saw in 4 

week old Tg/KI mice (Fig 2B, C), may be indicative of loss of the fine processes.   In fact, collaborative 

work with the Tg/KI mice where astrocytes from the str. lac.-mol. were injected with Lucifer yellow 
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demonstrated loss of fine processes in these astrocytes, which may have severe consequences for the 

surrounding cells with respect to uptake of glutamate and potassium.  AxD KI mice have compromised 

glutamate uptake (Tian et al., 2010) and collaborative work on Tg/KI mice that will be published along 

with some of the work in this thesis has confirmed and extends this demonstrating not only impaired 

glutamate uptake in Tg/KI mice, and loss of GLT-1 in these mice, but also loss of coupling of astrocytes 

and impaired potassium uptake in some more phenotypically transformed cells (Sosunov et al., 2013). 

The results in this chapter and these collaborative studies suggest AxD astrocytes are extremely 

transformed and differ in morphology from “typical” reactive astrocytes.  For example, the cell 

morphology of astrocytes after an electrically-induced cerebral cortex lesion was studied by 

Wilhelmsson et al. (Wilhelmsson et al., 2006).  The authors injected reactive astrocytes with dye in the 

tissue surrounding, but not immediately adjacent to, the lesion.  These astrocytes showed hypertrophic 

processes by reactivity to GFAP antibodies, and dye injection demonstrated that the soma and main 

processes were thicker, however these cells retained their bushy morphology and fine processes 

(Wilhelmsson et al., 2006).  Similar injury models have been employed that demonstrate that 

concomitant with glial scarring of the lesion, reactive astrocytes not immediately adjacent to the lesion 

itself eventually return to normal levels of GFAP reactivity (Mathewson and Berry, 1985), and this has 

been found to be true in other models of CNS injury, allowing investigators  to conclude that the glial 

reactions not involving astrocytes within the glial scar itself, are reversible upon removal of the stimulus 

for reactivity (Kalman, 2004).  Because AxD is an astrogliopathy, the initial reactivity stems from the cell 

itself and therefore there is no resolution. 

Binucleation of astrocytes 

The presence of multiple nuclei on astrocytes in the Tg/KI mice (Fig 2A) suggests that they are driven to 

proliferate, but cytokinesis is inhibited.  Phosphorylation of intermediate filaments by Cdk1, Plk1, Rho-

kinase and Aurora-B kinases is required during cytokinesis (Izawa and Inagaki, 2006).  The accumulation 
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of GFAP in AxD astrocytes may in some way interfere with intermediate filament phosphorylation at a 

critical time in mitosis, leading to failure of cytokinesis and a polyploid state.  A polyploidy state may in 

turn dramatically increase the amount of GFAP produced by any given cell, thus contributing to a feed-

forward mechanism of cellular stress.   

Perinuclear rings of GFAP and microtubules in primary Tg astrocytes 

Transgenic human GFAP mice express several copies of human GFAP in addition to their endogenous 

GFAP.  In the cultured astrocytes from the Tg mice, I observed in some cells large perinuclear inclusions, 

composed on the exterior by caged or capped GFAP (Fig 3D, 4C-F).  The GFAP inclusions are surrounded 

by rings of disrupted microtubules.  The “rings” of GFAP proteins are reminiscent of intermediate 

filament expression in astrocytes after microtubule network disruption using drugs, such as colchicine 

(Sotelo et al., 1980).  These experiments demonstrated that organized intermediate filaments require 

assembled microtubules and these interactions were found to not be direct, but to occur via 

intermediate filament linking proteins (as reviewed in Sonnenberg and Liem, 2007).  Plectin is one such 

linker protein and has been found in AxD patient Rosenthal fibers (Tian et al., 2006).  The overexpression 

of plectin rescues aggregated mutant GFAP in co-transfected cells, restoring a filamentous phenotype 

(Tian et al., 2006).  There are several possibilities of why plectin has this effect:  aggregation of proteins 

in AxD may be caused by an insufficient linker protein to intermediate filament protein ratio; 

alternatively, phosphorylation status of intermediate filament proteins may also impact plectin binding 

(Foisner et al., 1991).  Conversely hyper-phosphorylation of intermediate filaments is known to induce 

cytoplasmic aggregates of disassembled intermediate filaments (Chou et al., 1990), some of which are 

distributed around the centrosome during early mitosis.  It is possible then that the perinuclear 

inclusions observed in the Tg cells may be caused by insufficient plectin or altered phosphorylation of 

GFAP, vimentin or nuclear lamins.  
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Aberrant expression of BIP in ER of AxD Patients 

In AxD patient tissue, I observed both increased expression and a grainy appearance to BIP 

immunoreactivity.  The R239H patient, in particular, shows an overwhelmingly high level of 

immunostaining of BIP in the white matter and grain expression in astrocytes (Fig 1H), which was also 

observed in the R416W patient, where a distinct, perinuclear accumulation of BIP appears in a granular 

pattern.  Although the literature does not readily suggest what these grainy bodies may be, perhaps 

they are accumulated proteins in the ER.   

BIP expression has been found protective to cells (Yu et al., 1999), and this has been demonstrated in 

astrocytes.  In a model of ischemia, transient transfection of BIP into mouse primary astrocytes is 

protective against cell death through Ca+ stabilization and suppression of mitochondrial-produced 

oxidative stress (Ouyang et al., 2011). 

ER stress is an early and widespread response in Tg/KI animals  

We found that WT mice expressed BIP at relatively high levels in pyramidal and granular cell neurons 

and in scattered cells that appeared to be neurons throughout the hippocampus.  Some WT astrocytes 

also showed detectable levels of BIP, but were low in immunoreactivity in comparison to neurons.  

Because the basal expression of BIP by neurons precluded accurate measurement of BIP by Western 

blot, we counted BIP positive and GFAP positive cells to quantitate astrocytic expression of BIP.  The 

increase in the total number of Tg/KI astrocytes with BIP expression versus WT was found significant at 

both 2 and 4 weeks Fig 6C).  While the number of BiP positive and GFAP positive cells in the str. lac.-

mol., an area of the hippocampus where there is early GFAP expression, appeared to reach its highest 

level at 2 weeks of age and remain at this level (Fig 7D).  However, the decrease in expression by WT 

astrocytes, in comparison to the unchanged levels of BIP, accounted for the large increase in BIP 

expression between 2 weeks and 4 weeks (Fig 3D).  This effect was also true for overall expression of BIP 

in the hippocampus – while numbers of BIP positive and GFAP positive cells are approximately equal at 2 
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weeks and at 4 weeks, the overall fold change over WT expression increases considerably – a 3.5-fold 

change in the 2 week Tg/KI animal and an 8-fold change its 4 week counterpart (Fig 6C).  There is not a 

significant change in BIP reactivity in the str. rad. of the 2 week old Tg/KI animal and this most likely 

reflects the low relative level of GFAP reactivity at this age, in comparison to the 4 week old animal (Fig 

6A and B). 

These results suggest that the induction of BIP in the hippocampus of Tg/KI mice is a response to 

tremendous increases in levels of GFAP.  By 4 weeks many astrocytes in the hippocampus are 

undergoing a stress response, in contrast to the one year old Tg mouse, where only occasional very high 

GFAP expressing, morphologically aberrant astrocytes experience the same stress.  

ER stress and KI mouse mortality after Kainic Acid induced stress 

Kainic acid administration to rodents causes cell death of neurons and is accompanied by an increase in 

the number of GFAP-positive astrocytes in the hippocampus (Yang et al., 1997).  While AxD KI mice have 

little discernible pathology, they were found to be substantially more susceptible to Kainic acid induced 

seizures and subsequent neuronal damage compared with WT mice (Hagemann et al., 2006).  

Additionally they die after seizure at much greater numbers than do WT mice.  More recently, Kainic 

acid administration to mice was shown to upregulate ER stress markers BIP and OASIS in astrocytes in 

the str. rad. and str. lac. (Chihara et al., 2009).  The authors found more neuronal death in OASIS-/- mice 

after kainic acid insult, suggesting OASIS as the protective proteins in astrocytes.  Astrocytes from OASIS-

/- mice express less BIP than WT mouse primary astrocytes after ER stress (Kondo et al., 2005).  OASIS is 

a less well-characterized ER stress protein, most likely due to the fact that there are no functional 

commercial antibodies available.  Like IRE1 and ATF6, OASIS is a transcription factor and is expressed in 

astrocytes (Kondo et al., 2005).  OASIS null mice have shown more neuronal damage after kainite acid 

administration and less GFAP expression.  The authors concluded that the reduction in the number of 

GFAP-positive cells in OASIS -/- mice is not due to the degeneration of GFAP-positive cells following 
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kainic acid treatment, but from lack of cell division as measured by dUTP labeling.  Taken together, these 

results suggested that the increased presence of astrocytes in the kainic acid induced brain is protective 

as is BIP induction.  Taking these data into consideration it is possible that the high mortality observed in 

the KI mice after kainic acid exposure may be due to increased sensitively to ER stressors, due to high 

basal activation levels.  However, if exacerbated by other stressors that require a functioning ERAD 

system, such as the protection astrocytes confer to neurons, under conditions of kainic acid exposure 

the system could potentially fail and cell death could ensue. 

BIP in 1 year Tg animal suggests unresolved ER stress  

In WT 1 year old animals, immunostaining for BIP in GFAP positive cells was limited to a small area close 

to the nucleus (Fig 8A, arrows), while in one year old Tg animals BIP protein expression was 

heterogeneous among GFAP+ cells.  Some cells some had very low or no immunoreactivity (Fig 8B and C, 

arrows) while others had strong but rather diffuse BIP immunostaining that appeared to occupy a large 

volume around the cell body of extremely pathological-appearing astrocytes, by GFAP expression (Fig 8B 

yellow arrowheads).  This was a consistent observed feature.  While study of a wider range of ages of 

both Tg and KI animals is necessary in order to more fully understanding the UPR/ISR in these animals, 

the high consistency of BIP immunostaining in these very morphologically aberrant astrocytes that have 

accumulated high levels of GFAP, along with what appears to be a potentially enormously distended ER, 

suggests, first that accumulated GFAP may be linked to accumulation of BIP.  Second, if BIP expression is 

denoting the physical location of the ER, then some Tg astrocytes have an abnormally large ER and 

perhaps correspondingly high numbers of proteins within.  Finally, the potentially abnormally large ER in 

these animals suggests chronic ER stress, yet the UPR/IPR has favorably enacted adaptive mechanisms 

and by-passed apoptosis.  This may be an intrinsic quality of astrocytes to withstand greater levels of 

stress than other cells, a quality of astrocytes in culture (Goldbaum et al., 2006; Griot et al., 1990; Husain 

and Juurlink, 1995).  In cells, adaptation to short term demands of increased protein synthesis and 
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folding are part of normal ER function, and studies have shown that the volume of the ER necessary to 

accommodate an accumulation of unfolded protein will expand with need while other systems are put 

in place to enhance degradation of proteins (Menzel et al., 1997; Takewaka et al., 1999). 

Possible causes of UPR in In AxD 

Inferring that the large increases we see in BIP by immunostaining in astrocytes in AxD patients and mice 

indicates the UPR/ISR is enacted, I suggest three possible events in AxD that might converge to causing 

ER stress in astrocytes – increased protein processing through the ER, proteasomal inhibition and 

inhibition of autophagy.  First, in AxD it is likely that increased protein synthesis and therefore increased 

protein trafficking through the ER is taking place.  Studies in our lab have shown that both mGFAP and 

GFAP can cause proteasomal inhibition and that this in turn activates JNK and p38 kinase (Tang et al., 

2010; Tang et al., 2006) which can activate AP-1 mediated transcription.  Another gene transcription 

pathway that is activated in AxD mice, and that likely contributes to increased processing of genes 

through the ER, is gene expression driven by the ARE (Hagemann et al., 2006; Hagemann et al., 2005). 

The ERAD pathway targets proteins rejected from ER quality control mechanisms to the proteasome.  In 

AxD there is abundant evidence that the proteasome is inhibited in astrocytes (Cho and Messing, 2009; 

Tang et al., 2010).  Therefore, this means of potential ERAD inhibition seems likely in AxD, however the 

activation of the UPR may also be caused, or at least aggravated, by possible inhibition of autophagy.  

Alternate methods of ERAD associated proteolysis occur through trafficking of proteins to aggresomes 

where they can be degraded by autophagosomes – double-membraned structures that engulf 

substrates and deliver them to lysosomes for degradation (as reviewed by Vembar and Brodsky, 2008).  

A third event can be enacted to degrade both the ER and accumulated substrate in case of ERAD failure 

and this too involves autophagy-mediated degradation of accumulated proteins and portions of the ER 

itself (Ogata et al., 2006). 
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Inhibition of mTOR induces autophagy in animal models of Huntington disease (Ravikumar et al., 2004), 

and pS6, a well-known marker for mTOR activation, is abundantly expressed in the Tg/KI mice (Sosunov 

et al., 2013).  Stress pathways enacted by proteasomal inhibition, in tandem with a demonstrated 

oxidative stress response, may increase protein processing through the ER and elevate the volume of 

ERAD-destined proteins.  Meanwhile, the mechanisms responsible for the degradation of these proteins, 

proteasomal clearance on one hand, and aggresomes to autophagosomes on the other, are or may be 

impaired.  These are likely contributors to the induction of the UPR in AxD astrocytes and the ability of 

the Tg animal to withstand this level of ER stress, may lie in the relatively few astrocytes with high levels 

of BIP in comparison to that which were demonstrated in the Tg/KI mouse (Fig 6C).  

BIP loss in patient oligodendrocytes may signal impaired myelination 

In both AxD patients I examined, there appeared to be less BIP in oligodendrocytes than in control 

tissue.  Humans have many more oligodendrocytes than do rodents.  In human white matter, these cells 

can often be identified by their small, compact cell bodies.  In control patient tissue, oligodendrocytes 

were of note because they seemed to exhibit a substantial level of endogenous BIP (Fig 5G).  

Oligodendrocytes possess huge membrane areas that can outweigh their cell bodies by up to 100 fold 

(Wiggins et al., 1974) and thus their metabolic demands are high for protein and lipid synthesis.  While 

the transcript for myelin basic protein is transported to distal tips of cell processes and translated locally 

(Ainger et al., 1993), other myelin proteins such as proteolipid protein (PLP), myelin-associated 

glycoprotein and myelin oligodendrocyte glycoprotein are processed through the ER.  Therefore, the ER 

of oligodendrocytes may be under considerable demand, especially during myelination, which occurs 

through childhood, and thus during the age of our patients, and requires the assistance of additional 

chaperones.  Along these lines, the induction of components of the ER stress response pathway in 

oligodendrocytes via IFN gamma administration was found protective to oligodendrocytes in mouse 

models of MS (Lin et al., 2007).   
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We observed a decrease in BIP immunostaining in oligodendrocytes in one AxD patient (Fig 5I, black 

arrow), and what appeared to be a decrease in the pattern of perinuclear expression of BIP in another 

(Fig 5H, black arrows) in contrast to control counterparts (Fig 5G).  This may be indication that they have 

decreased synthesis of myelin-related proteins, and may serve as a useful marker to assess in 

understanding the de/dysmyelination that occurs in AxD. 

CHOP expression may not be pro-apoptotic  

I found CHOP in a small subset of BIP positive and GFAP positive astrocytes in the Tg/KI mice.  CHOP was 

detected either in the nucleus or the cytoplasm, but not in both of these areas together (Fig 8 and 9).  If 

expressed under conditions of ER stress, CHOP is generally thought to be proapoptotic (as reviewed by 

Kim et al., 2008; Maytin et al., 2001; Wang et al., 1996) and this was demonstrated in primary rat 

astrocytes undergoing oxygen glucose deprivation (Benavides et al., 2005). In this model of cell stress, 

CHOP was found expressed in the nucleus of astrocytes that eventually underwent apoptosis (Benavides 

et al., 2005).  CHOP expression, however, may not necessarily be demonstrative of cells undergoing 

apoptosis.  In neonatal rats presenting with virus infection of the CNS, CHOP was detected in both 

neurons and astrocytes in the hippocampus and cerebellum, but subsequent cell death occurred only in 

neurons (Williams and Lipkin, 2006).  Of note was that no BIP was found in neurons, but astrocytes in 

these same animals co-expressed BIP and CHOP, which may be one reason they were able to withstand 

infection (Williams and Lipkin, 2006).  
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Chapter 2:  Figures 

Figure A.  The unfolded protein response / integrated stress response (UPR . ISR) 

 

  

In response to stress, the endoplasmic reticulum chaperone protein BiP utilization by unfolded 
proteins frees the 3 initiators of the ISR: ATF6, IRE1α, and PERK. ATF6 is translocated to the golgi and 
cleaved releasing ATF6-p50, a transcription factor. Free IRE1α splices uXBP1 to sXBP1 which can now 
be translated. PERK phosphorylates 2 known substrates, eIF2α and Nrf2. eIF2α depresses general 
translation initiation, but favors translation of ATF4. ATF6-p53, sXBP1, and ATF4 translocate to the 
nucleus and activate transcription of chaperone proteins like BiP to re-establish homeostasis. 
Concomitantly, phosphorylation of Nrf2 by PERK disrupts interaction between Keap1 and Nrf2 leading 
to translocation of Nrf2 to the nucleus and transactivation of antioxidant genes including GST and xCT. 
Together, these responses reduce oxidative stress and establish protein refolding. (Markowitz, White, 
Kolson, & Jordan-Sciutto, CellScience, 2009).
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Figure 1. GFAP is significantly increased in Tg/KI mice 
 

 

(A, B)  GFAP Immunofluorescence in hippocampus of Tg/KI mice at 2 and 4 weeks of age.  Tg/KI mice at 2 

weeks (A, right) and 4 weeks (B, right) show high reactivity with antibodies for GFAP when compared to 

age-matched WT.  (C) Western blot analysis of GFAP in hippocampi (10ug total protein/lane) of 2 and 4 

week WT and Tg/KI mice.  GAPDH is assessed as a loading control. One blot of  three shown. (D) 

Quantitative evaluation of GFAP levels based upon optical densities normalized to the level of GAPDH, 

shows GFAP is significantly higher in Tg/KI hippocampus than in WT hippocampus at both 2 weeks (***p 

< 0.0005) and 4 weeks (****p < 0.00005).  Additionally the there is a significant difference in the 

increase in GFAP between 2 weeks and 4 weeks (*p < 0.05).  Note that all GFAP immunoreactive bands 

were scanned for optical density evaluation, not only the 50 kDa band.  Data are mean +/- standard 
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error of mean (SEM) of 3 independent experiments.  Two way ANOVA with Tukey test; *p < 0.05, 

***p < 0.0005, ****p < 0.00005. 
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Figure 2. Phenotypic changes in astrocytes in 4 week Tg/KI str. lac.-mol. 
 

 

Morphological changes to astrocytes in the 4 week Tg/KI mouse hippocampus are especially apparent in 

the str. lac.-mol.  (A) Low magnification image of str. lac-mol. in WT and Tg/KI mouse with 

immunofluorescence for GFAP.  DAPI is used to visualize nuclei.  (A) WT mice show many GFAP+ 

astrocytes that display thin GFAP+ processes extending from cell bodies in a star-like manner.  Some 

GFAP+ processes collect around the blood vessels of the str. lac.-mol. (A, left arrow).  In Tg/KI str. lac.-

mol., GFAP+ immunoreactivity reveals rounded, large cells lacking main branches (A, arrow).  (B, C) High 

magnification images of the str. lac.-mol. reveal astrocytes with greatly diminished numbers of GFAP+ 
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cell processes and hypertrophied appearance of those that remain (C, arrows) and cells that have 

seemed to have had their GFAP processes retract or “collapse” to entirely fill cell bodies with GFAP 

immunoreactivity (B, arrows).  Many of these astrocytes have binucleated (B, arrowheads), lobulated or 

otherwise abnormal nuclei.   Confocal microscopy.  
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Figure 3. Primary astrocytes from Tg mice form perinuclear inclusions of GFAP and microtubules 
 

 

Primary Tg astrocytes triple stained for the expression of GFAP (red), alpha tubulin (green) to visualize 

microtubules and DAPI (blue) for nuclei.  (A) WT cells at low magnification display few GFAP+ cells – a 

commonly reported observation for mouse primary astrocytes.  (B) Most Tg cells show GFAP expression 

and many cells contain perinuclear ring-like inclusions, arrow point to three.  Microtubules (green) are in 
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close association with these inclusions.  (C) WT cell at high magnification display lacey, filamentous 

GFAP+ and alpha tubulin+ processes.  (D) Tg cells at high magnification show ring-like inclusions of GFAP 

around what appear to be “hollow” centers.  Triple staining shows that GFAP is in the innermost part of 

these inclusions while alpha tubulin surrounds (far right panel). 
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Figure 4. Golgi is mislocalized in cells with perinuclear GFAP aggregates 
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Tg primary mouse astrocytes grown for 2-4 days in vitro after replating from culture flasks were fixed 

and co-immunostained for GFAP and GM130, a marker for the cis Golgi and DAPI showing nuclei.  

(A, B) Arrows mark cells with perinuclear inclusions while arrowhead marks normal-appearing cell.  Note 

that the golgi (red) in inclusion-bearing cells appears mislocalized (A, B, arrows, left panel), in 

comparison to golgi in normal appearing Tg cell (B, left panel arrowheads).  (D, F) 3-D reconstruction of 

cells bisected in position of box in (C, E) respectively.  GFAP (red) often appears on top of or associated 

with cis Golgi (green).  Arrows in C, E represent direction from which images were reconstructed.   
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Figure 5. Increased immunohistochemical expression of BIP in astrocytes of AxD patients 
 

 

(A-C) Immunohistochemical analysis of BIP expression in subcortical white matter and adjoining cortex 

at low magnification.  (A) Control patient cortical section shows high levels of BIP in neurons of the grey 

matter which flanks, above and below, the white matter (arrows), that appears lightly immunostained at 

this low magnification (4x).  This is in stark contrast to the heavily stained white matter of an AxD patient 

with the R239H mutation (arrows) in (B) where the surrounding cortex appears lightly stained in 

comparison.  (C) The white matter from a AxD patient with a R416W mutation (arrows) in (C) has more 

intense immunoreactivity to BIP than the control patient (A), but less so than the R239H mutation (B).  



62 
 

 

Heavily stained neurons can be seen in the flanking cortical tissue to the right and the upper left-hand 

corner.  Boxed selections in (D-F) are shown at higher magnifications below.  (G-I) High-power 

magnification of white matter in boxed sections, above.  (G) Control patient white matter shows an 

astrocyte (G, asterisk) with compact BIP in the cell body, around the nucleus.  Many oligodendrocytes 

(black arrows), show BIP immunoreactivity compactly located in cell bodies – staining can sometimes be 

seen in lacey processes (arrowhead).  (H and I) Almost all astrocytes in white matter of AxD patient have 

granular deposits of BIP in their cell bodies (asterisks, H). Most oligodendrocytes seem to have 

diminished or no BIP immunostaining, and no lacey processes are visibly immunostained (black arrows, 

H).  Rosenthal fibers are not appreciably stained with BIP.  (I) Astrocyte on the lower right contains a 

large, perinuclear Rosenthal fiber which appears lighter than does the surrounding granular BIP 

immunostaining (asterisk, I).  This is in contrast with the large Rosenthal fiber on the top left which is 

just barely rimmed by BIP (red arrow).  Oligodendrocytes are marked with black arrows, and show 

remarkably less BIP immunostaining, than do oligodendrocytes in control brain tissue.  
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Figure 6. Immunofluorescent expression of BIP is increased in Tg/KI mice 
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(A-B).  Immunofluorescence for BIP was performed in the (A) 2 week (B) and 4 week hippocampus of WT 

and Tg/KI AxD mouse.  Co-immunostaining for GFAP is shown in lower panel.  Confocal images of 

merged stack are shown.  (C) Quantitative analysis of BIP+ and GFAP+ cells finds the number of BIP+ 

astrocytes increased at 2 weeks (*p=0.037) and 4 weeks (**p=0.0085) in Tg/KI total hippocampus.  The 

numbers of labeled cells in a 1-mm2 area of the indicated hippocampal regions were calculated as 

described in materials and methods.  Data are mean +/- standard error of mean (SEM) of 3 independent 

experiments.  Two way ANOVA with Tukey test; *p < 0.05, ***p < 0.0005, ****p < 0.00005. 

.   
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Figure 7. BIP is associated with GFAP+ astrocytes in hippocampus of Tg/KI mice 
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Immunofluorescent expression patterns of BIP in the 2 week (A) and 4 week (B) hippocampus of WT and 

Tg/KI AxD mouse.  (A) In 2 week AxD mouse str. lac.-mol., highest immunoreactivity to BIP in WT (top 

panel) is in GFAP negative cells (yellow arrowheads), most likely neurons.  Astrocytes (white arrows) are 

lightly immunostained.  In Tg/KI animal (bottom panel) many astrocytes show immunostaining for BIP 

(white arrows), as do GFAP negative cells.  (B) 4 week WT animal Str. Rad. (top panel) shows BIP 

immunostaining  in GFAP negative cells (yellow arrowheads), most likely neurons.  Astrocytes (white 

arrows) show light or no immunostaining - less than do 2 week WT astrocyte in (A).  In Tg/KI animals 

(bottom panel) many GFAP positive cells are double immunostained with BIP.  Confocal images of 

merged stack are shown.  (C, D)  Quantitative analysis of BIP+/GFAP+ cells in the  str. rad. (C) confirms a 

significant increase in BIP+/GFAP+ cells in this at 4 weeks (*p=0.042), but not at 2 weeks while the str. 

lac.-mol. (D) shows a significant increase at both 2 weeks (*p=0.041 ) and 4 weeks (**p=0.008).  The 

numbers of labeled cells in a 1-mm2 area of each of the hippocampal layers were calculated as described 

in materials and methods.  Data are mean +/- standard error of mean (SEM) of 3 independent 

experiments.  Two way ANOVA with Tukey test; *p < 0.05, ***p < 0.0005, ****p < 0.00005. 
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Figure 8. BIP expression is increased in morphologically aberrant astrocytes in 1 year Tg mice 
 

 

Immunofluorescence for BIP (red), GFAP (green) and DAPI (blue) in the str. rad. of 1 year WT and Tg 

mice.  (A) WT GFAP+ astrocytes (arrows) have compact BIP expression in cell body.  (B) Tg shows an 

astrocyte with aberrant morphology and with what appears to be greatly thickened and retracted 

processes (yellow arrowhead) while nearby a typical appearing reactive astrocyte has very little BIP 

expression in comparison (white arrow).  (C) High magnification image of a blood vessel in the Tg mouse 

with GFAP processes surrounding it.  Perivascular astrocyte with aberrant GFAP expression (yellow 

arrow, middle) has large area of reactivity to BIP, while nearby astrocyte (white arrow) appears to have 
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little or no detectable BIP immunostaining while the astrocyte on the left, with much higher levels of 

GFAP has greatly elevated BIP (yellow arrowhead, left).  Note BIP appears to associate with proximal 

GFAP processes on this cell in addition to the cell body.   
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Figure 9. CHOP is co-expressed with BIP in a subset of Tg/KI astrocytes   
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Immunofluorescence for CHOP in the 4 week AxD Tg/KI mouse.  CA1 str. rad. (A-C) of WT mouse (A) 

shows very light immunoreactivity to CHOP in what appears to be GFAP positive processes (white 

arrows).  Astrocytes in Tg/KI animals (B, C) show strong CHOP immunoreactivity in BIP positive and GFAP 

positive cells (yellow arrowheads).  One cell here displays CHOP in the cytoplasm (C, large yellow 

arrowhead), while other have nuclear expression of CHOP.   GFAP positive cells with no reactivity (white 
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arrows) are far more abundant than these images demonstrate.  (D) str. mol. (E, F) str. lac.-mol.  Tg/KI 

GFAP+ cells with CHOP immunoreactivity in the nucleus can be seen (yellow arrowheads).  A cell is 

identified that displays CHOP in the cell body in contrast to most others in the str. lac.-mol. (F, large 

yellow arrowhead). 
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Chapter 3 

Characterization of CD44, hyaluronan and  

Ezrin Radixin Moesin proteins in Alexander disease 
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Introduction 

A gene expression study conducted on the olfactory bulb of AxD Tg mice found the mRNA transcript for 

CD44 was elevated in these mice at both 3 weeks (+ 5 fold) and 4 months (+14 fold) (Hagemann et al., 

2005).  In the normal human brain CD44 is found in fibrous, sub-pial and sub-ependymal astrocytes, 

regions where there is higher constitutive expression of GFAP and abundant numbers of Rosenthal 

fibers in AxD patients.  In this chapter, I characterize the expression of CD44 in the brains of AxD patients 

and mouse models.  Second, I explore via immunohistochemistry the expression of its principal ligand, 

hyaluronan, in the AxD Tg/KI mouse.  Finally, I examine the ezrin radixin moesin (ERM) proteins that are 

associated with the cytoplasmic tail of CD44 in AxD patient tissue and in 1 year old KI mice. 

CD44 is a single pass cell surface glycoprotein that was first purified by Underhill and colleagues from 

white blood cells (Underhill et al., 1985) and was found to be the principal receptor for the extracellular 

matrix molecule, hyaluronan (Aruffo et al., 1990).  CD44 has been found in the mature mammalian CNS 

localized to the fibrous, sub-pial, sub-ependymal astrocytes (Girgrah et al., 1991; Picker et al., 1989; 

Quackenbush et al., 1985)and in Muller cells of the retina (Chaitin et al., 1994). 

Multiple isoforms of CD44 are generated from a single gene by alternative splicing of 10 (mouse) and 9 

(human) non-conserved variant exons which lie between two highly-conserved constant regions 

(Screaton et al., 1992). The most common isoform, CD44s (for standard), is produced by the excision of 

all variant exons between the two constant regions, and because it is found on hematopoietic cells is 

sometimes referred to as CD44H (Peach et al., 1993).  This isoform, found expressed in human white 

matter by Western blot (Girgrah et al., 1991), has a molecular weight of approximately 50kDa, but 

because of extensive post-translational modifications is usually found to run on SDS gels at between 75-

85kDa.   
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The extracellular region of CD44s, encoded by the first five non-variant axons, is a globular domain and 

at its far amino terminal end resides a stretch of 90 amino acids called the “link domain” that can bind 

the extracellular matrix molecule, hyaluronan, and other glycosaminoglycans (Peach et al., 1993; 

Sherman et al., 1994).  The link domain is also found in another glycoprotein, the link protein, which 

stabilizes the interaction between hyaluronan and aggrecan in the extracellular matrix (Neame and 

Barry, 1993).  Other extracellular matrix proteins – collagen, laminin, fibronectin and osteopontin – can 

bind to the globular domain of CD44, but their binding sites are not characterized and there appears to 

be no cellular signaling which is generated by their interaction with CD44 (Borland et al., 1998; as 

reviewed by Ponta et al., 2003). 

Larger splice isoforms of CD44 are generated by insertion of any number of the ten variant domains 

between the globular domain and the transmembrane domain.  The largest among these, CD44v1-10, is 

expressed by colorectal cancer cells and keratinocytes (as reviewed by Lesley et al., 1993; Ponta et al., 

2003; Ponta et al., 1994).  In theory, hundreds of splice isoforms of CD44 are possible (van Weering et 

al., 1993) and several dozen have been detected (Lesley et al., 1993).   

CD44 has been found to function as a platform organizer for cell surface proteins and metalloproteases 

(as reviewed by Ponta et al., 2003) and as a co-receptor for several proteins including Met (Nestl et al., 

2001), ERB1 and ERB2 (Yu et al., 2002) and with the Beta1 and Beta2 integrins (Fujisaki et al., 1999; 

Koopman et al., 1990; Lee et al., 2007b; Vermot-Desroches et al., 1995).  Most of these co-receptor 

interactions are associated with variant isoforms (as reviewed by Ponta et al., 2003). 

The c-terminal, cytoplasmic domain of CD44 has sites that bind the phosphorylated ERM (P-ERM) of 

proteins (Legg and Isacke, 1998; Tsukita et al., 1994; Yonemura et al., 1998), and a separate site for an 

association with ankyrin (Lokeshwar et al., 1994).  Deletion of the ankyrin binding domain of CD44 

dramatically reduces its binding to hyaluronan (Lokeshwar et al., 1994) and there are conflicting reports 
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of the importance of the ERM-binding region to  hyaluronan binding (Brown et al., 2005; Legg and 

Isacke, 1998).   

The affinity CD44 has for hyaluronan has been reported to be impacted by many factors: isoform 

expressed, receptor number and clustering, post-translational modifications; the phosphorylation of 

CD44 cytoplasmic domain and mitogenic stimuli (as reviewed by Ponta et al., 2003).  There are five 

potential N-linked glycosylation sites on CD44, all of which if mutated abrogate binding (Bartolazzi et al., 

1996), however the actual necessity of N-linked or O-linked glycosylation for hyaluronan binding varies 

between cell type, likely due to influence of the other factors mentioned above (Bartolazzi et al., 1996; 

Bennett et al., 1995; Katoh et al., 1995; Lokeshwar and Bourguignon, 1991).   

CD44-hylauronan interactions in astrocytes have not been well documented.  In general, interactions 

with high molecular weight (HMW) tend to mediate cell migration (Bourguignon et al., 2007; Thomas et 

al., 1992), pericellular matrix assembly (Knudson et al., 1993), cell aggregation (Green et al., 1988) and 

the endocytosis and  subsequent clearance of hyaluronan in low-pH vesicles (Culty et al., 1990; Miyake 

et al., 1990; Stamenkovic et al., 1991; Tammi et al., 2001)Membrane-associated metalloproteases are 

able to cleave the extracellular domain of CD44 close to the transmembrane domain, creating a soluble 

fragment(Okamoto et al., 1999b).  This proteolysis occurs and is regulated by multiple signaling 

pathways including PKC, cellular calcium influx, members of the Rho family of GTPases and the Ras 

oncoprotein (Okamoto et al., 1999a).  Subsequent to this cleavage, sequential presenilin-1 mediated 

processing of the transmembrane region (Lammich et al., 2002; Murakami et al., 2003) produces an 

intracellular domain that travels to the nucleus and acts as a transcription factor for, among other 

genes, CD44 itself (Okamoto et al., 1999b).  Mettaloprotease processing and subsequent intracellular 

domain generation is preferentially observed on immortalized cancer cells and is thought to contribute 

to cell motility (Okamoto et al., 1999b).   
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In development CD44 is expressed on an astrocyte-restricted precursor found in the rat spinal cord (Liu 

et al., 2004) and the white matter of the mouse cerebellum (Cai et al., 2012).  When sorted from 

embryonic brains and cultured without  growth factors, most of these astrocyte restricted precursors 

cells die, however surviving cell differentiate into GFAP+ astrocyes and under no conditions differentiate 

into  neurons or oligdendorcytes.  CD44 is also expressed on neuronal precursor cells (NPCs) derived 

from brains of the rat and human embryo (Baghbaderani et al., 2011; Rampon et al., 2008).  

In pathologies of the CNS, CD44 is found on reactive astrocytes both in white and grey matter.  It has 

been found on astrocytes of patients with Multiple Sclerosis (MS) (Cruz et al., 1986; Girgrah et al., 1991), 

children with perinatal white matter injury (Buser et al., 2012), and in canine distemper disorder 

(Alldinger et al., 2000) where astrocytes are a viral target.  In rodent models of disease and injury, CD44 

has been found in astrocytes in EAE mice (Haegel et al., 1993), EAE rats (Kim et al., 2004) and in 

SOD1G93A ALS model mice (Matsumoto et al., 2012).  The transcript has also been found upregulated in 

astrocytes at very early timepoints after both middle cerebral artery occlusion and LPS injection 

(Zamanian et al., 2012).   

CD44 is widely expressed in cancer cells and is a marker for cancer stem cells (Visvader and Lindeman, 

2008).  In rodent CNS gliomas it has been observed to be preferentially expressed on cells located on the 

invasive front of the tumor and is seen on cells that escape through GFAP positive cells which separate 

the tumor from the surrounding parenchyma (Wiranowska et al., 2006).  Additionally, CD44 is found on 

astrocytoma cell lines one of which, interestingly, has been demonstrated to bind and internalize myelin 

basic protein preferentially via a spice variant (Owh et al., 1997). 

We found CD44 to be a compelling candidate to explore with respect to AxD pathology for three 

reasons: first, its elevation at both early and late time periods as determined by microarray (Hagemann 

et al., 2005); second, the expression pattern of CD44 in the normal brain—astrocytes in the white 
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matter, sub-pial and subependymal regions—parallels that of normal astrocytes with higher levels of 

GFAP expression, and of Rosenthal fibers in AxD; and third, its expression in association with 

demyelinating tissue (Alldinger et al., 2000; Buser et al., 2012; Cruz et al., 1986; Girgrah et al., 1991; 

Haegel et al., 1993; Kim et al., 2004; Matsumoto et al., 2012).  Here I characterize CD44 expression in 

AxD patient tissue and in that of AxD model mice.  Additionally, I characterize the expression of the 

extracellular matrix molecule hyaluronan, the principal ligand of CD44 (Aruffo et al., 1990).  Finally, I 

characterized ERM proteins, which are able to link CD44 to the actin cytoskeleton.  I reveal several novel 

findings in increased expression of CD44 and ERM proteins in both AxD mice and in patient tissue, and 

hyaluronan in Tg/KI mice. 

Results 

AxD patients have increased immunohistochemical expression of CD44 

In the normal human brain, CD44 is expressed in fibrous, sup-pial and sub-ependymal astrocytes, areas 

where normally GFAP is highly expressed and in AxD patients, and where there are abundant Rosenthal 

fibers and pathological astrocytes.  In order to determine if CD44 protein is elevated in expression in 

patients as is its transcript in AxD Tg mice (Hagemann et al., 2005), we conducted by an 

immunohistochemical analysis of CD44 expression in  two AxD patients and two control patients using a 

monoclonal antibody that recognizes all isoforms of the protein. We first examined the subcortical white 

matter and proximal cortex.  In the control patient the white matter showed very light, diffuse 

immunostaining of much of the white matter and was especially strong around blood vessels (Fig 1A, 

white arrow).  Individual astrocytes (Fig 1C, black arrow) and long, thin astrocytic processes could be 

distinguished, some extending into the adjoining cortex where there was little overall CD44 reactivity 

(Fig 1C, white arrows).  In comparison to control tissue, in the AxD R239H patient subcortical white 

matter, there was very intense overall immunostaining of the white matter that extended well into the 

proximal cortex (Fig 1B, D), unlike that of the control patient. Immunostaining was not ascribable to 
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individual cells or even blood vessels, except for occasional enlarged astrocytes which could be more 

easily distinguished in the proximal cortex (Fig 1B and D). Immunostaining in AxD patient tissue was also 

found greatly increased at the pial surface (Fig 1F), in comparison to controls (Fig 1E).  We next 

examined the hippocampus, where protoplasmic astrocytes express high levels of GFAP and where in 

autopsy tissue of AxD patients, there is extensive loss of CA1 neurons(Tian et al., 2010).  In the control 

patient, there was a thin band of intense CD44 immunoreactivity in the str. lac. mol. (Fig 1G, arrowhead) 

and diffuse overall immunostaining of the hilus (Fig 1G, “Hilus”), especially around blood vessels, similar 

to what we observed in the control white matter.  In the AxD R416W hippocampus there was intense 

and greatly increased immunoreactivity to CD44 in the str. lac. mol., CA1 and hilus (Fig 1H, arrowhead, 

arrows and “Hilus,” respectively).  When I compared CD44 protein expression by Western blot in three 

patients versus two controls, differences in CD44 expression levels were not apparent (Fig 1L).  This may 

be due to degradation of tissue stored and freeze-thawed many times over long periods and also to the 

fact that we attempted to isolate white matter, which is often difficult in type I patients because it is 

degraded and substantially cavitated.  

CD44 is elevated in at 2 and 4 weeks in AxD Tg/KI mouse 

We next examined total protein levels and the anatomic expression of CD44 in the Tg/KI mouse 

hippocampus at 2 and 4 weeks.  Immunofluorescent expression of the CD44 in the WT mice was strictly 

confined to a distinct arc covering the str. lac.-mol. and an immediately adjacent portion of the str.rad. 

at both 2 (Fig 2A, left) and 4 weeks (Fig 2B, left).  At 2 weeks in the Tg/KI mouse, an intensely abnormal 

expression pattern of CD44 can already be seen (Fig 2A, right).  The diffuse overall immunostaining of 

WT str. lac.-mol. is gone and instead, many focal increases of CD44 immunoreactivity can be detected 

throughout the str. lac.-mol. and extending into the proximal str. rad. and most of the str. mol.  By 4 

weeks, CD44 immunoreactivity extends into the entire str. rad. mol. and appears elevated throughout 

the hippocampal layers we examined.  Western blot analysis of CD44 protein expression in the Tg/KI 
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mouse hippocampus at 2 and 4 weeks confirmed what we had found by immunofluorescence (Fig 2C) 

and densitometric analysis demonstrated that there was an approximately 2.5-fold increase in CD44 in 

the Tg/KI hippocampus at 2 weeks (*p < 0.05) and a greater than 3 fold increase at 4 weeks 

(***p < 0.0005).  Additionally, CD44 levels rose significantly in the Tg/KI hippocampus between 2 weeks 

and 4 weeks (*p<0.05) where there was no significant rise in CD44 in the WT hippocampus between 

those two timepoints. Data are mean +/- standard error of mean (SEM) of 3 independent experiments.  

Two way ANOVA with Tukey test; *p < 0.05, ***p < 0.0005, ****p < 0.00005. 

Comparison of CD4 and GFAP in all AxD mice 

Next I examined CD44 in the hippocampi of Tg/KI mice at 4 weeks along with GFAP expression and 

compared it to WT, KI and Tg littermates (Fig 3).  In line with previous reports (Hagemann et al., 2006; 

Messing, 1998), many astrocytes in the hippocampi in the Tg and KI animals displayed high levels of 

GFAP versus WT (Fig 3E and H), although the GFAP+ astrocytes in both were less widely distributed than 

in the Tg/KI mice (Fig 3K).  The Tg/KI mice show very high levels of CD44 at 4 weeks (Fig 3J) and this 

coincided anatomically with areas of increased GFAP signal (Fig 3K and L).  Astrocytes in the KI and Tg 

mice accumulated CD44 in the str. mol. and str. rad. immediately adjacent to the str. lac.-mol., but to a 

much lesser extent than in the Tg/KI mice (Fig 3D and G).  In the 4 week Tg and KI mice, reactive-like 

astrocytes were observed mainly in the str. lac.-mol. (Fig 3E and H, arrows), similar to the pattern 

observed in Tg/KI mice younger than 2 weeks (Sosunov et al., 2013).  Thus, both the Tg and KI mice 

showed pathological changes in expression of GFAP and CD44 similar to, but far less severe, than those 

in the Tg/KI mice. 

Heterogeneous expression of CD44 in Tg/KI mice occurs in GFAP positive astrocytes 

While the increased levels of GFAP immunostaining seemed to be coincident with increases seen in 

CD44 in KI, Tg and Tg/KI mice (Fig 3), we next examined more closely 4 week old WT and Tg/KI mice for 

co-expression of these two proteins.  At low magnification, 4 week old WT animals display a single swath 
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of intense diffuse CD44 immunoreactivity that covers the entire str. lac.-mol., extending into the str. rad. 

and this cannot be ascribed to individual cells.  At this same magnification in 4 week Tg/KI animals, many 

individual astrocytes can be seen that display CD44 immunoreactivity around GFAP positive cells (Fig 4B, 

yellow arrowheads); however, the immunostaining is heterogeneous from astrocyte to astrocyte.  Some 

GFAP+ positive cells next to GFAP+/CD44+ cells show little or no detectable CD44 (Fig 4B, white arrows).  

We noted especially high signal for CD44 that was very closely associated with GFAP+ processes that 

was not associated with a nucleus in this merged stack (yellow arrowheads).  We looked more closely at 

CD44 in two week WT animals using higher magnification at the str.lac./str. mol. border and found CD44 

signal to be heterogeneous on WT astrocytes also (Fig 4C).  Some astrocytes could be observed with 

diffuse membrane staining (Fig 4C, yellow arrowhead) while others appeared to have no membrane 

staining (white arrow Fig 4C).  In addition to the GFAP+ processes, which appear to be extending from 

the dentate gyrus is also CD44+, it is likely that the WT expression of CD44 in the str. lac./str. rad. of the 

hippocampus stems from astrocytes.  

Aberrant CD44 immunostaining of astrocytes in 4 week old Tg/KI animal 

Astrocytes have many fine, intricate processes, which allow them to make contact with other cells.  As a 

plasma membrane protein, CD44 displays a diffuse and fluffy appearance when observed in the 4 week 

str. lac.-mol. by high magnification (Fig 4D).  This is similar to what I observed on astrocytes in 2 week 

old WT animals (Fig 4C).  When I examined astrocytes at high magnification in the 4 week Tg/KI SLM I 

see what appears to be a reticulated expression of CD44 on membranes.  In the WT, the staining looks 

granular and fairly homogeneous, while in the Tg/KI it looks less granular and more linear, with a lack of 

immunostaining in between these short lines.  This is similar to the change we observe in other 

astrocytic membrane proteins, Glast and Glt-1, that we observed in the Tg/KI hippocampus of animals of 

this age (Sosunov et al., 2013).  Thus, it appears that the plasma membrane of astrocytes is remarkably 

different in the 4 week old Tg/KI animal compared with WT animals.   
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Hyaluronan accumulates Tg/KI mouse  

Because CD44 is the principal receptor for the extracellular matrix molecule hyaluronan (Aruffo et al., 

1990), I next examined the distribution of hyaluronan in the hippocampus of the 2 and 4 week Tg/KI 

mice and WT controls using a biotinylated hyaluronan-binding protein, and subsequently visualized 

using a fluorescently labeled streptavidin probe.  We double stained these sections with an antibody to 

CD44.  The hyaluronan staining in WT animals at both 2 (Fig 5A) and 4 (Fig 5B) weeks of age was strictly 

limited to the str. rad. and could also be observed above the pyramidal cell layer in the stratum oriens.  

The str. lac.-mol. and str. mol. have a far lower hyaluronan signal than the str. rad.  When I compared 

CD44 with hyaluronan in these same WT animals and merged the images (Fig 5A and B bottom panel) 

the degree to which the two occupied separate but adjacent layers in the hippocampus was striking as 

was the lack of immunoreactivity in the str. mol. (Fig 5B bottom).  Thus, the hyaluronan binding protein 

distribution did not match that of CD44 in the WT hippocampus.  In contrast, the hyaluronan staining in 

the Tg/KI animals was visible throughout the hippocampus at both 2 weeks (Fig 5A) and 4 weeks (Fig 5B) 

as was the distribution of CD44.  The specificity of the biotinylated probe for hyaluronan was 

demonstrated by treating a 4 week Tg/KI section with bovine testicular hyaluronanidase before 

immunostaining with the biotinylated hyaluronan-binding protein and streptavidin-labeled fluorescent 

secondary antibody (Fig 5C).  Because AxD disease patients show pathology at the pial surface, I also 

examined the pial surface of the cortex of 4 week Tg/KI mice and found increased expression of 

hyaluronan here also (Fig 5D).  The immunostain also shows far more GFAP in the upper cortical layers 

in the Tg/KI mouse.  To quantitate hyaluronan expression, optical density measures were taken and 

found to be significantly increased in the total hippocampus of Tg/KI mice at 4 weeks (*p=0.035) (Fig 5E) 

and when optical density was quantitated by hippocampal layers, hyaluronan expression was found 

significantly increased at 4 weeks in Tg/KI animals in the str. mol. (**p=0.007 ) and str. lac. (*p=0.035) 

over WT counterparts (Fig 5G). 
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AxD patient tissue shows increased immunohistochemical staining of P-ERM  

Because CD44 can associate with actin and the underlying cytoskeleton through interactions with 

phosphorylated ERM proteins (P-ERM), I was next interested in examining the expression of ERM 

proteins in AxD patient tissue.  Cortical sections that included underlying white matter of a R239H 

patient and an age-matched control were examined (Fig 6).  First I used an antibody that is reported to 

recognize the total pool of ERM proteins, both phosphorylated and non-phosphorylated, to examine the 

white matter and adjacent cortex (Fig 6A and 6B).  The AxD patient showed total ERM staining in some 

astrocytes (Fig 6B, white arrows) and faint localization to Rosenthal fibers.  The control patient showed 

only staining of blood vessels (Fig 6A).  Next I used an antibody for P-ERM that recognizes the activated 

pool of ERM proteins to examine patient tissue.  While there was no reactivity to P-ERM antibody in the 

control cortex or white matter (Fig 6F) and none in AxD cortex (Fig 6G), AxD patient white matter was 

positive for P-ERM (Fig 6C, D and E).  In well-preserved portion of AxD patient white matter, there is an 

increased overall staining for P-ERM (Fig 6C) and individual astrocytes can be seen with 

immunoreactivity to P-ERM in their cell bodies (Fig 6C, white arrows).  In deeper, more pathological 

white matter, where there is widespread loss of myelin, immunostaining of astrocytes is dramatic (Fig 

6D and E).  There are many streaks of relatively straight processes that are immunostained for P-ERM 

and some can be seen to localize to astrocytes (yellow arrowhead).  In addition there are intensely 

immunostained and unusual clusters of Rosenthal fibers (red arrows).  

Glioblastomas have high levels of immunoreactivity to ezrin (Geiger et al., 2000).  Accordingly, I 

immunostained two serial sections of glioblastoma tissue for P-ERM (Fig 6H) and total ERM (Fig 6I) as 

positive controls, and found the necrotic core (Fig 6H, arrows) to be more reactive to P-ERM than total 

ERM, demonstrating that increased reactivity shown by AxD tissue to the P-ERM antibody versus total 

ERM antibody by AxD tissue is most likely a function of difference in affinity of antibodies to antigens 

and not a function of AxD pathology. 
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ERM proteins are greatly increased in 1 year old KI mice 

Given the increased expression of CD44 in patients and mice, the striking immunostaining of patient 

tissue with P-ERM and the potential for CD44 and ERM proteins to interact (Legg and Isacke, 1998; 

Tsukita et al., 1994; Yonemura et al., 1998), I examined several different genotypes of AxD mice for 

expression of P-ERM.  We used an advanced age for Tg and KI mice, reasoning that the pathology may 

be more severe with aging.  In 1 year old WT mice examined at low magnification, I observed a light, 

diffuse overall immunostaining for P-ERM (Fig 7A).  However, in the 1 year old KI (Fig 7B) and 9 month Tg 

(Fig 7C) there was intense focal immunoreactivity for P-ERM in the str. rad. and the stratum oriens, 

while the diffuse overall immunostaining observed in WT mice did not seem to be present  (Fig 7A and 

B).  In 1 month WT there was almost no detectable P-ERM in contrast to the 1 year WT.  Surprisingly, the 

1 month old Tg/KI mouse had less immunoreactivity to P-ERM than did both the 1 year KI and Tg mice.  

There was less P-ERM immunostaining than in the aged Tg and KI mice, but still above that for one 

month WT, while there was the high immunoreactivity to P-ERM in both KI and Tg animals.  I further 

characterized ERM protein expression with respect to CD44 and GFAP in the 1 year KI mouse.  When we 

co-immunostained for CD44 and P-ERM, CD44 expression was more widespread (Fig 7F) and the two 

proteins were variably coexpressed on the same cells (Fig 7G).  Some cells were found to coexpress 

CD44 and P-ERM (Fig 7G bottom panel, arrow), while many cells do not (Fig 7G top panel).  I next co-

immunostained for GFAP and P-ERM and found interestingly that at least some of the abnormal P-ERM 

immunoreactivity was associated with GFAP positive cells (Fig 7I, J and K, arrows).  Notable and surprise 

was the bizarre pattern of P-ERM expression in relation to GFAP (Fig 7J and K).  These immunostains 

suggested the astrocyte membrane may be retracted.  In order to determine if this was true, I next co-

immunostained the KI mouse hippocampus with P-ERM and GLT-1, an astroctytic membrane-localized 

glutamate transporter.  I found that cells with abnormally close association between P-ERM and GFAP 
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did not show alteration in GLT-1 immunostaining.  Thus, while P-ERM appears to have lost its association 

with the membrane, the membrane is intact (Fig 7L). 

Total moesin and total ezrin are dramatically increased in 1 year old KI mice and moesin co-localizes 
with CD44 

To try to gain insight on which of the three ERM proteins are aberrantly associated with GFAP positive 

cells, I further characterized KI mice for total ezrin (Fig 8) and total moesin (Fig 9) expression.   Ezrin has 

been found to be associated with fine astrocytic processes ensheathing synapses (Derouiche and 

Frotscher, 2001).  Given the morphological changes we observed in AxD astrocytes (Chapter 2 Fig 2-4) 

(Sosunov et al., 2013), I was interested in analyzing immunofluorescent expression of this membrane to 

cytoskeletal linker protein in the AxD mouse hippocampus.  We found ezrin expression  increased in the 

1 year old KI mouse (Fig 8B, bottom), however if tissue section were not treated with antigen retrieval 

ezrin expression was difficult to determine (Fig 8A) and therefore we did not determine if there is co-

expression of this protein with CD44 (Fig 8A).  Co-immunostaining with GFAP revealed some that some 

ezrin immunoreactivity was closely associated with GFAP+ processes (Fig 8B, bottom), especially in the 

stratum oriens (Fig 8B, bottom).  Moesin immunostaining is also increased in comparison to WT (Fig 9A 

and B) and moesin and CD44 appear to have a high co -expression with cd44 (Fig 9A). 

Discussion 

In this chapter, I used immunohistochemistry and Western blot analysis to study the expression and 

distribution of CD44, along with its ligand hyaluronan, and ERM proteins which are able to link many cell 

surface receptors, including CD44, to the underlying cytoskeleton.  Because the expression of these 

proteins has never been characterized in AxD patients or model mice, these findings are novel and some 

are notable.  First I discovered that CD44 is increased in expression in the CNS of AxD patient tissue and 

dramatically increased in the hippocampus of Tg/KI AxD mice.  I noted that this expression in the mouse 

coincided spatially and temporally to increases in the levels of GFAP.  Most remarkably I found 
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widespread increases in the amount of hyaluronan that was recognized by a biotinylated hyaluronan 

binding protein   Finally, I found in patient tissue and AxD 1 year old KI mice increased and unusual 

expression of Phospho-ERM proteins (PERM).  Further characterization of CD44 and ERM proteins 

determined a high degree of co-immunostaining between cd44 and moesin.  

High levels of Hyaluronan immunostaining in Tg/KI mice  

I found very high levels of hyaluronan immunostaining in both the 2 week and 4 week Tg/KI mouse.  

While other AxD model mice and AxD patient tissue has not been stained for hyaluronan, the 

overwhelming presence at both two weeks and four weeks of age, along with CD44, suggests that this 

may be a significant finding.  Hyaluronan serves as an organizer of the extracellular matrix in cartilage 

(Knudson, 1993) and from experiments showing neurocan and chondroitin sulfate release after 

hyaluronanidase treatment, it appears to function similarly in the hippocampus (Forster et al., 2001).   

CD44 and hyaluronan also found together in demyelinating disorders  

Type I AxD is a leukodystrophy.  Infant AxD patients have massive, frontal myelin loss and type II 

patients often have focal white matter lesions that would suggest myelin damage or loss that was not 

able to be repaired.  The mechanism by which a mutation in GFAP causes the de/dysmyelination in AxD 

is entirely unknown.  We found greatly increased expression of CD44 on astrocytes and a widespread 

and significant increase in the CD44 ligand hyaluronan in the hippocampus of AxD Tg/KI mice and found 

CD44 increased in AxD patient tissue (hyaluronan expression was not assayed in patients).  CD44 on 

astrocytes (Alldinger et al., 2000; Back et al., 2005; Buser et al., 2012; Cruz et al., 1986; Girgrah et al., 

1991; Haegel et al., 1993; Kim et al., 2004) and, more recently, hyaluronan in the surrounding ECM (Back 

et al., 2005; Buser et al., 2012; Sloane et al., 2006) have been noted in other diseases and disorders 

where myelin is lost.   
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The role for CD44 in astrocytes in conditions of demyelination has not been elucidated.  One author 

hypothesized that the white matter injury itself may be the source of increased CD44 on astrocytes 

(Alldinger et al., 2000), drawing from a study that a found a 100kDa splice variant of CD44 on an 

astrocytoma line could preferentially bind and internalize myelin basic protein, which in turn increased 

the expression of CD44 on these cells (Owh et al., 1997).  A T-cell-like role for astrocytes expressing the 

v6 CD44 isoforms has also been proposed (Haegel et al., 1993), partially due to the fact that primary 

astrocytes in culture stimulated with cytokines express the same v6 isoform of CD44 as that is expressed 

by activated T cells. 

Post-translational modifications are critical for the functioning of CD44 with respect to binding and 

uptake of hyaluronan.  We found that in human tissue cd44 was expressed at about 80 kDA and this did 

not appear to vary between patient tissue and control tissue.  In mice CD44 this was at a slightly lower 

molecular weight than in humans – at about 72kDa.  In four week animals, two of three experiments 

showed slightly higher MW for the Tg/KI mice over AxD patient controls (only one shown).   

CD44 isoforms 

CD44 mRNA can be extensively processed to isoforms larger than CD44s.  Treatment of rat primary 

astrocytes with TNF alpha induces expression of the v6 isoform (Haegel et al., 1993), which migrates 

more slowly on a Western blot than does CD44s.  As mentioned above, CD44 on our Western blot 

analysis of AxD patient tissue ran at about 80kDA and no larger isoforms were observed.  In Tg/KI mouse 

lysates at both 2 weeks and 4 weeks, the IM7 antibody, which reacts with the epitope of CD44 common 

to all splice isoforms, also showed no evidence of more slowly migrating bands.  However, because 

these splice isoforms are likely expressed at lower levels, they may not have been detected.  Western 

blot of AxD and control patient tissue showed no difference with respect to CD44 expression.  This is 

contradictory to my immunohistochemistry of CD44, which showed a much higher presence of CD44 in 

AxD tissue.  The IM7 antibody we used requires non-reducing conditions, which may affect the ability to 
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detect differentially post-translationally modified species of CD44.  Collectively, these reasons further 

support a thorough biochemical analysis of CD44 in both mouse and human tissue, including 

immunoprecipitation of CD44 to determine if alternates are expressed.    

Reactive astrocytes and CD44 

The likelihood that increased CD44 is specific to white matter disorders is unlikely.  It is widely expressed 

on reactive astrocytes in a range of CNS diseases and after injury, including as early as one day after LPS 

induced inflammation and or middle cerebral artery occlusion (Zamanian et al., 2012), suggesting that 

both the presence of cytokines and conditions of oxidative stress or hypoxia impact its expression.   

Along with increased levels of CD44, I also found profound changes in shape to these astrocytes.  

Because CD44 participates in a diverse number of events related to cell motility, such as the extravasion 

of leukocytes and migration of cancer cells (as reviewed by Marhaba and Zoller, 2004), and participates 

in both the retraction and extension of cell processes in migration (Marrero-Diaz et al., 2009), it is 

possible that the increase in CD44 expression on these astrocytes mediates this shape change through 

interactions with the underlying ECM.   

In the four week old animal I noticed that some of the highest levels of immunoreactivity to CD44 were 

with GFAP+ processes that could not be traced to a perinuclear cell body within the image (Fig 4B, 

yellow arrowheads).  This suggests these processes were distal from the cell body and possibly 

extending.  I noticed that CD44 was much more closely associated with the GFAP+ processes in these 

cells than in some other CD44+ cells, suggesting that the plasma membrane may be retracting into a 

hypertrophied GFAP process or vice versa.   CD44 is expressed on cells transformed from an epithelial to 

a mesenchymal phenotype, where cells re-express stem cell markers (as reviewed by Marhaba and 

Zoller, 2004).  These cells may participate in the transformation of astrocytes to a reactive phenotype.  

In cultured astrocytes cd44-hyaluronan interactions induce Rac1 signaling and cytoskeleton-mediated 
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migration, and this may be indicated in these cells by the abundance of hyaluronan (Bourguignon et al., 

2007).   

It is also possible that the CD44 on these cells is inhibitory to proliferation.  A subset of reactive 

astrocytes in models of injury and disease are able to proliferate (Buffo et al., 2008; Guo et al., 2011; 

Miyake et al., 1988).  CD44-null NPCs hyperproliferate both in vitro and in the subgranular zone of older 

adult mice.  It is possible that CD44 serves as an inhibitory molecule to astrocyte proliferation, possibly 

through interactions with hyaluronan.   

In AxD, as in other conditions of reactive gliosis where CD44 is found on astrocytes, we do not know the 

what role this membrane glycoprotein plays, however its abundant expression on GFAP + astrocytes in 

the hippocampus of these mice offers an opportunity for biochemical analysis of isoforms expressed, 

post-translational modifications and through co- immunoprecipitation assays the determination of 

associated proteins.  In other words, AxD mice present an opportunity to potentially elucidate the role 

of CD44 in reactive astrocytes. 

Hyaluronan increase may have inhibitory effects on OPC differentiation and neurogenesis  

The high levels of hyaluronan observed in AxD Tg/KI mice could be significant to the pathology of AxD 

with respect to myelination and deficits in memory and learning observed in the mouse.  Hyaluronan or 

hyaluronic acid (HA), is a very large glycosaminoglycan that consists of highly regular repeats of multiple 

disaccharide units of glucuronic acid and N-acetylglucosamine (Toole, 2004).  It is produced by 

hyaluronan synthetases, HAS1, HAS2 and HAS3, which are located just under the plasma membrane of 

cells (Luke and Prehm, 1999).  Hyaluronan usually exists as a high molecular weight (250kDa-4,000kDa), 

and at this high molecular weight has been demonstrated to initiate angiogenesis, motility of cells and 

cell growth.  Hyaluronan has a very short half-life.   
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The mechanisms of hyaluronan signaling, synthesis, degradation and uptake are much better 

understood in the periphery than in the CNS.  For example, it is known that hyaluronan receptor for 

endocytosis (HARE) and hyaluronanidases such as the GPI-linked HYAL-2 are involved in uptake and 

degradation of hyaluronan (Sampson et al., 1992; Weigel and Weigel, 2003).  In the CNS, where HARE is 

not found (Weigel and Weigel, 2003), it is hypothesized but not yet demonstrated that uptake of 

hyaluronan occurs through CD44-mediated interactions on astrocytes.  Thus, the impaired function of 

astrocytes in AxD could impede this process. 

Hyaluronan is highly expressed in the CNS in development and thought to provide a hydrated and 

otherwise beneficial environment that facilitates growth and migration of developing cells (Bignami and 

Asher, 1992).  As rodents develop, hyaluronan expression at the perinatal period in the CNS declines – 

about the same time that vimentin decreases, GFAP expression increases and myelination begins 

(Bignami and Dahl, 1985). 

There are a number of “hyaluadherins” other than CD44 that might mediate molecular change, including 

RHAAM, CDC37, Hbp, IHABP4, TSG-6, LYVE-1, LEC (as reviewed by Girish and Kemparaju, 2007).  In 

addition, other ECM proteins can adhere to hyaluronan such as versican, aggrecan, link protein, 

brevican, neurocan and fibrinogen (as reviewed by Girish and Kemparaju, 2007).  Interactions of 

hyaluronan with these components of ECM may also have an effect in the Tg/KI hippocampus. 

Interestingly, small, potentially more pathological LMW fragments of hyaluronan can be produced by 

both hyaluronanidases and inflammatory events such reactive oxygen species (Agren et al., 1997; 

Moseley et al., 1997; Sampson et al., 1992) and these LMW fragments have been shown to participate in 

signaling and generate a variety of cytokines, including monocyte chemoattractant protein-1 (MCP-1) 

(McKee et al., 1996), which was found highly upregulated in the Tg mice via microarray (Hagemann et 

al., 2005) and that I have found increased in AxD Tg/KI mice primary cultures (E. Guilfoyle, E. Hod 
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unpublished data).  The molecular weight determination for hyaluronan in the Tg/KI hippocampus have 

not yet determined, therefore the effect of excess hyaluronan in the Tg/KI mouse hippocampus is 

difficult to predict.  

The aberrant presence of hyaluronan in AxD mice may have inhibitory effects on oligodendrocyte 

precursor cell (OPC) proliferation and differentiation.  Studies from two separate groups studying 

hyaluronan in the context of MS and animal demyelination have demonstrated that the presence of 

hyaluronan is inhibitory to OPC differentiation (Sloane et al., 2010).  While one group found HMW 

hyaluronan preferentially inhibitory to OPCs, Sloane and colleagues, in a more extensive study, found 

that LMW hyaluronan generated from HMW hyaluronan by hyaluronanidase expression on OPCs 

inhibitory through interaction with TLR2 expressed by OPCs in MS lesions in conjunction with MyD88 

(Sloane et al., 2010).  This suggests several avenues of research with respect to the expression of 

hyaluronan in AxD and its inhibitory effects on OPCs.  It may be mechanism for demyelination in AxD or 

the inhibition of myelin repair. 

The increase and aberrant localization of hyaluronan in AxD mice may also have effects on adult 

neurogenesis.  This may explain why older AxD model mice show deficits in memory and learning 

(Hagemann et al. unpublished results).  The presence of hyaluronan in the adult dentate gyrus 

subgranular zone has been shown to be necessary to maintain NPCs at a quiescent state (Su et al., 

2010).  CD44 is expressed on neonatally-derived NPCs (Rampon et al., 2008), so it may be through 

interactions with this receptor that inhibition takes place.  CD44-null NPCs hyper-proliferate in vitro and 

in the subgranular zone of older adult mice, giving rise to elevated numbers of doublecortin 

mmunoreactive cells in this region.  Additionally, CD44-null mice have memory and learning deficits 

which are consistent with abnormal neurogenesis (Su et al., 2010).  It should be noted that the critical 
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reference with respect to adult neurogenesis and cd44 (Su et al., 2010) was presented as a talk at 

Society for Neuroscience  in 2010 and does not appear to have been subsequently published.   

There seem to be several ways possible that the pathology I observed with respect to hyaluronan and 

CD44 might impact neurogenesis in the hippocampus of older KI or Tg mice.  The abnormal presence of 

hyaluronan in the hippocampus may inhibit differentiation of NPCs.  On the other hand, because I have 

not yet determined the molecular weight of the hyaluronan expressed in the hippocampus, it is possible 

that it is in a smaller LMW form, possibly due to reactive oxygen species (ROS).  In addition, in the 

dentate gyrus, there is very severe CD44 pathology in, presumably, astrocytes (I did not examine this 

area closely).  The presence of CD44 on astrocytes where they are not normally expressed could 

interfere with the endogenous hyaluronan in the subgranular zone – either by facilitating uptake or 

aggregation of the molecule.   CD44-hyaluronan interactions with respect to NPCs in the adult 

hippocampus presents an interesting area for further exploration.   

CD44 and vimentin 

Recently the hyaluronan binding domain of CD44 has been found able to interact with the head domain 

of vimentin like GFAP, a type III intermediate filament protein and one found in increased levels in AxD 

and the Tg/KI mice (Sosunov et al., 2013) as well as in reactive astrocytes in many other disorders.  Cell 

surface vimentin expressed by endothelial cells was demonstrated to bind soluble CD44 and the 

interaction was suggested to be direct (Pall et al., 2011).  While there is no evidence to suggest CD44 is 

shed by astrocytes in AxD or model mice, vimentin was found secreted by activated macrophages, 

dependent upon phosphorylation of the protein (Mor-Vaknin et al., 2003), and using mass 

spectrometric, proteomic approaches, vimentin has also been identified as a protein found in the 

conditioned media of astrocyte cultures (Greco et al., 2010; Keene et al., 2009).  Because we found 

vimentin to be increased in the Tg/KI mice in the same anatomic region as GFAP, and because vimentin 

is upregulated in reactive astrocytes, it is worth further investigation to determine if secreted vimentin 
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may interact with CD44, especially because this interaction may interfere with the uptake of hyaluronan 

and/or block CD44-hyal signaling 

Ezrin, radixin and moesin proteins and AxD 

ERM proteins are broad family of proteins know to function in cell polarity, membrane trafficking and  

cell motility.  ERM proteins, in their phosphorylated state, link CD44 and many other plasma membrane 

proteins, such as ICAMs, to the underlying actin cytoskeleton.  Ezrin has been demonstrated to be 

localized with actin in fine perisynaptic astrocytic processes (Derouiche and Frotscher, 2001), and ERM 

proteins potentially link GLAST to the underlying cytoskeleton through interactions with NHERF-1 (Lee et 

al., 2007a). 

Unusual P-ERM immunostaining in patients and in 1 year old KI mice  

I found two interesting patterns of reactivity for P-ERM.  In intact WM of the R239H patient (Fig 6C), I 

found a striking increase via immunohistochemistry in P-ERM in AxD patient tissue (Fig 6A) and a similar 

striking change in one year old KI mice (Fig 7D-K), but such dramatic changes in P-ERM staining were not 

observed in the one month old Tg/KI mouse, suggesting these changes might occur with prolonged 

accumulation of GFAP and/or astrocyte reactivity.  In order to better understand the P-ERM 

immunoreactivity, I examined tissue from the one year KI mice with antibodies that react to the total 

pool of ezrin (Fig 8) and moesin (Fig 9).  I found a large increase in the expression of both proteins in 

GFAP positive astrocytes in the 1 year old KI mouse, but the WT mouse showed little immunostaining for 

either protein (Fig 8B and 9A).  When I examined CD44 co-expression with these proteins, moesin 

appeared to colocalize with CD44 to a greater extent than did ezrin.  This may provide an additional clue 

to CD44 function in the AxD mouse hippocampus. 
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Ezrin 

In human astrocytes, ezrin weakly stains peripheral processes (Geiger et al., 2000).  In rat, ezrin in 

astrocytes has been found by electron microscopy to localize with actin to small processes associated 

with synapses (Derouiche and Frotscher, 2001).  Later studies demonstrated that ezrin and the 

metabotropic glutamate receptors (mGluRs) 3 and 5 are compartmentalized to these processes and 

require phosphorylated ezrin for formation and motility and that glutamate and glutamate analogues 

induced rapid motility of these processes that is mediated by mGluRs 3 and 5 (Lavialle et al., 2011). 

There are sparse reports of increased ERM protein expression in reactive astrocytes, however ezrin 

expression had been documented in association with neuronal death in cerebral HIV infection (Geiger et 

al., 2006).  In this study, reactive astrocytes, as assessed by increased staining of GFAP, were found in all 

patients, however only in case of encephalopathy was ezrin increased.  Additionally in cases where 

neuronal apoptosis could be detected, ezrin immunoreactivity was highest (Geiger et al., 2006)  

Moesin 

In human tissue, expression of moesin has been found in both normal and reactive astrocytes, and in 

both its staining is distinct from that of ezrin in that it resides mainly in the cytoplasm of the cell body 

and extends into processes (Stemmer-Rachamimov et al., 1997).  Our human tissue immunostaining 

pattern for P-ERM was just this, so it is possible that we are preferentially observing expression of 

phosphor-moesin here.  Moesin has been found to be strongly expressed in human tissue by pyramidal 

neurons of the hippocampus (Stemmer-Rachamimov et al., 1997), and is also the dominant ERM protein 

expressed by cultured differentiated hippocampal neurons (Jeon et al., 2002).  Moesin is phosphorylated 

by PKC and Rho A in response to glutamate and has been found important to the formation of new 

filopodia in dendrites in pre-synaptic active boutons (Kim et al., 2010).   
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ERM proteins are very similar in structure, but moesin is unique in that has fewer amino acids than do 

ezrin and radixin so it migrates at a unique length than do ezrin and radixin, which are found at ~80kDa 

on SDS gels.  Moesin, unlike ezrin and radixin, shows a striking resistance to Calcium-mediated 

proteolysis (Shcherbina et al., 1999).  This attribute is thought important to its role as the major ERM 

protein expressed in lymphocytes and blood cells which have active calcium signaling mechanisms 

(Shcherbina et al., 1999) and may be the reason it is expressed preferentially on pyramidal neurons.  

Interestingly, calcium-mediated cleavage of GFAP, via Calpain, generates a species of the protein which 

migrates at 2-3 kDa less than the intact protein, which migrates at ~50 kDa.  Our Western blot analysis 

of GFAP using a rabbit polyclonal antibody shows a significant band that migrated at this approximate 

MW in Tg/KI mice, but not at all in WT mice (Fig 1).  We also obtained this faster migrating ~ 48kDa band 

for Tg/KI hippocampus, but not WT using a separate mouse monoclonal antibody.   

Also of note regarding ERM proteins, overexpression of moesin and ezrin has been found to disrupt 

stable microtubule formation involved with vesicle and cytoskeletal trafficking in retroviral infection 

(Haedicke et al., 2008; Naghavi et al., 2007), and this is interesting with respect to the microtubule 

disruption I observed in Tg mouse primary astrocytes.  We did not examine P-ERM expression with 

respect to microtubules in culture.  
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Chapter 3: Figures 

Figure 1. CD44 expression in AxD patient tissue by immunohistochemistry and Western blot 
  

Control Alexander Disease 

A. B. 

C. D. 

E. F. 

G. H. 

Hilus Hilus 
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Immunohistochemistry of R239H AxD patient sub-cortical white matter and adjoining cortex (A-D).  

(A-B) Low magnification of (A) control patient shows diffuse immunostaining throughout the white 

matter with especially heavy staining around large blood vessels (white arrow)  and no visible 

immunostaining, at this low magnification, of adjoining cortex (black arrow), while (B) AxD patient 

shows high immunoreactivity to CD44 in white matter and immunostaining also into the adjoining  

cortex (black arrow).  (C-D) Higher magnification images show in (C) control that there is light diffuse 

immunostaining of much of the white matter.  Individual astrocytes can be detected in the white matter 

(black arrow) and long, linear and thin astrocytic processes extend into the adjoining cortex (white 

arrows).  Thin astrocyte processes cannot be observed in the (D) AxD patient and individual cell that 

appear to be CD44+ reactive astrocytes can only be observed in the adjoining cortex (black arrow).  

(E-F) Pial surface of (E) control patient tissue shows light immunostaining only at the pial surface (black 

arrows), while (F) AxD patient shows heavy immunostaining for CD44 into lower layers of the cortex 

(black arrows).  (G-H) Low magnification of the hippocampus (G-H) shows (G) control patient with a thin 

band of intense CD44 reactivity in the str. lac. (arrowhead) and diffuse immunostaining of the hilus (as 

marked).  The CA1 can be observed (black arrow) with faint immunostaining in contrast to that of the 

str. lac.  (H) At the left, AxD R416W patient shows greatly increased immunoreactivity to CD44 in the str. 

lac. (arrowhead) but far more CD44 in the CA1 sector of the str. rad. (black arrow) and hilus.  (I) Western 

I. 
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blot analysis of CD44 in two controls and three AxD patients with tissues taken from neocortex and 

white matter were assessed for expression of CD44 and found to be roughly equal.  GAPDH is shown as 

a loading control.  20ug  total protein. 
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Figure 2. CD44 is increased in hippocampus of AxD Tg/KI mouse at 2 and 4 weeks 
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Confocal images of CD44 immunofluorescence in (A) 2 week and (B) 4 week hippocampus of Tg/KI and 

WT mice.  (C) Western blot analysis of CD44 protein in hippocampi of 2 week and 4 week WT and Tg/KI 

mice.  GAPDH is assessed as a loading control.  One of three independent experiments are shown.  

(D) Quantification of optical density of CD44 bands in Western blot shows a significant increase of CD44 

expression of Tg/KI mice at 2 weeks (*p=0.025) and 4 weeks of age (**p=0.00037).  Data are mean +/- 

standard error of mean (SEM) of 3 independent experiments.  Two way ANOVA with Tukey test; *p < 

0.05, ***p < 0.0005, ****p < 0.00005. 
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Figure 3. Immunohistochemical profile of CD44 and GFAP in hippocampus of all AxD model mice at 
4 weeks 

 

Immunofluorescence for CD44 (red) and GFAP (green) in the 4 week WT, KI, Tg and  Tg/KI  mice.  WT 

animals (top panels A, B, C) show normal distribution and labeling pattern of CD44 and GFAP in the 

hippocampus. CD44 in (A) is localized to a distinct arc centering on the str. lac.-mol. and GFAP 

immunostaining (B) is also higher in in this area where there are abundant blood vessels surrounded by 

GFAP positive endfeet.  Increased immunostaining for both GFAP and CD44 occurs in the KI mouse 

(panels D, E, F) and merged image (F) shows that these increase are coincident and occur in both the str. 

lac.-mol. (arrow, E) and the adjoining str. mol.  The TG mouse (panels G, H, I) shows similar increases in 

str. lac.-mol. GFAP (white arrow, H) that coincides with increases with CD44.  The most severely affected 
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of the AxD mice, the Tg/KI, is shown in panels at bottom (J, K, L) where GFAP immunoreactivity (K) is 

greatly increased beyond the str. lac.-mol. and into the str. rad. (white arrow, K) where CD44 is also 

greatly increased.  Merged stack confocal images. 
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Figure 4. CD44 is increased heterogeneously by a subset of GFAP positive astrocytes 
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Immunofluorescent expression of CD44 in WT and Tg/KI hippocampus at 4 weeks.  (A) WT.  CD44 is 

localized to a distinct diffuse arc of reactivity centering on the str. lac.-mol.  Individual cells cannot be 

detected at this magnification.  (B) Individual CD44+ cells can be distinguished in Tg/KI hippocampus 

where they are associated with enlarged GFAP+ astrocytes.  CD44 can be localized to some, but not all, 

individual astrocytes -- some cells have greater expression while others appear to express far less or 

none at all (white arrows).  (C) Immunofluorescence of artificially enhanced CD44 expression (ImageJ) 

shows that 2 week WT astrocytes in the str. mol. layer of CD44 appear to express low levels of CD44 that 

is also heterogeneous. Images at right are higher magnification of boxed selection in images at left.  

CD44+/GFAP+ astrocyte is seen (yellow arrowhead) while GFAP+ astrocyte without CD44 expression is in 

the nearby str. mol. (white arrow).  Note the long, radial GFAP process that is CD44 positive extending 

from dentate gyrus.  CD44 expression (green) is more diffuse around GFAP positive cells.  (D) High 

magnification single Z-series image of 4 week WT and Tg/KI str. lac.-mol. astrocytes.  CD44 reactivity in 

WT animal (top) appears bushy and diffuse and surrounds a GFAP (blue) positive astrocyte (arrow).  In 

lower panel Tg/KI astrocyte (arrow) has a larger GFAP positive cell body (blue) and thicker proximal 

processes along with an altered, more linear CD44 immunoreactivity.  Single Z-series images.  
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Figure 5. Hyaluronan is increased in AxD Tg/KI mice at 2 and 4 weeks 
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Reactivity to a streptavidin-labeled probe to biotinylated hyaluronan binding protein (HABP) is shown in 

green.  (A,B) Double immunofluorescence for  HABP and  CD44 (red) in WT and Tg/KI mice at both 2 

weeks (A) and 4 weeks (B).  Specificity of staining is shown by hyaluronanidase treated and untreated 

sections from 4 week Tg/KI mice (C).  Double immunofluorescence for HABP and GFAP (red) in the 

cortex and pial surface of 4 week Tg/KI and WT mice shows higher levels of GFAP and increased binding 

of HABP at the neocortical pial surface of Tg/KI mice.  Optical density of overall immunofluorescence in 

(E) hippocampus (*p=0.035 ) and of hippocampal layers at (F) 2 weeks and (G) 4 weeks (* p=0.042: **p 

=.007) (G).  Data are mean +/- standard error of mean (SEM) of 3 independent experiments.  Two way 
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ANOVA with Tukey test; *p < 0.05, ***p < 0.0005, ****p < 0.00005. Data are mean +/- standard error of 

mean (SEM) of 3 independent experiments.  Two way ANOVA with Tukey test; *p < 0.05, ***p < 0.0005, 

****p < 0.00005.  
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Figure 6. Immunohistochemical expression of ERM proteins in AxD patient tissue 
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Total-ERM (A-B) in the white matter and adjacent cortex of control (A) and R239H AxD patient.(B). 

Astrocytes in AxD patient shows accumulation of ERM (white arrows) while control (A) shows reactivity 

only in blood vessels.  P-ERM (C-G) in sub-cortical white matter of AxD R239H patient (Fig C-E), control 

cortex and white matter border(F) and R239H cortex (G).  (C) Less affected white matter of R239H shows  

astrocytes with P-ERM reactivity in the cell body (arrows, C).  Boxed image in (D) is shown at higher 

magnification in (E) where white arrows mark 2 of many astrocytes whose cell bodies are filled with P-

ERM immunoreactivity.  Astrocyte marked with white arrow on right shows long straight astrocyte 

process extending from cell body of the astrocyte (yellow arrowhead).  Similar processes appear 

throughout the white matter.  Red arrows point to unusual perinuclear bundles of Rosenthal fibers 

surrounded by P-ERM reactivity.  No immunoreactivity to P-ERM is shown in control white matter and 

adjacent cortical section (F) or in R239H patient cortex (G).  Glioblastoma (H-I) sections are positive 

controls for P-ERM (H) and Total ERM (I).    
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Figure 7. Immunofluorescent expression profile of P-ERM in AxD mice 
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P-ERM immunofluorescent expression in (A) 1 year WT, (B) 1 year KI, (C) 9 month Tg, (D) 4 week WT and 

(E) 4 week Tg/KI.  P-ERM expression is increased in the str. rad and stratum oriens of 1 year KI and 1 year 

Tg mice and to a lesser extent in the 4 week Tg/KI mouse.  (F) CD44 and P-ERM co-expression in str. rad 

and stratum oriens of 1 year KI mice.  (G) Higher magnification of CD44 and P-ERM co-expression in str. 

rad. of 1 year old KI mice shows heterogeneity in co-localization of CD44 and P-ERM.  The top panel 

shows little colocalization between some cells with high reactivity to P-ERM and CD44, while lower 

panel shows a cell with high coreactivity to antibodies for both proteins.  (H-L) Colocalization of P-ERM 

with GFAP in WT and KI animals demonstrates that aberrant P-ERM expression in KI animals (I-K) is 

associated with GFAP positive cells (arrows).  WT shows little P-ERM expression (H).  Co-localization in KI 

animal of P-ERM, membrane protein GLT-1 and GFAP (L) in a single optical slice demonstrates that while 

P-ERM expression is aberrant, the astrocyte membrane does not appear to be completely retracted as is 

P-ERM expression in this cell.  
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Figure 8. Immunofluorescent expression profile of total ezrin in 1 year old KI mouse 
 

 

Immunofluorescence of ezrin in 1 year old KI mouse.  (A) Co-immunofluorescence of ezrin with CD44 in 

the 1 year KI mouse demonstrates more overall immunostaining for CD44 than ezrin.  Coexpression of 

proteins is not apparent in cells highly reactive to CD44.  (B) Co-immunofluorescence of ezrin with GFAP 

in 1 year old WT (top panel) and 1 year KI mouse (bottom panel) shows co-expression in some cells of 1 

year old KI mouse (right panel).  There is little reactivity to ezrin in 1 year WT mice (left-panel).  
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Figure 9.  Immunofluorescent expression profile of total moesin in 1 year old KI mouse 
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Immunofluorescent expression of moesin in 1 year old WT and KI hippocampus.  (A) Co-

immunofluorescence of moesin with CD44 and KI mouse is shown.  (C) Higher magnification.   WT mice 

show little moesin reactivity.  High immunoreactivity to CD44 in KI mouse appears to be coincident in 

many cells with the expression of moesin.  Most cells that are brightly immunostained with CD44 also 

show some expression of moesin.  An exception is noted in higher magnification images in (C) (arrow).  

Co-immunofluorescence of moesin with GFAP in 1 year old WT and KI mice (B).  WT animals shows little 

expression of moesin, while KI animals show  in WT animals while KI animals show a much higher 

immunoreactivity that, especially in the stratum oriens, coincides with GFAP positive cells. 
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Chapter 4 

A brief histochemical analysis of Iron, ferritin, 

ceruloplasmin and ferroportin in the Alexander disease CNS 
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Introduction 

Iron, the 23rd element of the Periodic table, is necessary for the growth and survival of almost every 

organism.  This d-block transition element can exist in oxidation states ranging from -2 to +6, by 

participating in electron transfer reactions, but in biological systems these states are limited to the 

ferrous (Fe2+), ferric (Fe3+) and ferryl (Fe4+) states and in this work I will only discuss Fe2+ and Fe3+.  

The interconversion of oxidation states allows iron to reversibly bind ligands, through its unoccupied d 

orbitals, and its preferred ligands are oxygen, nitrogen and sulfur. These properties make this metal an 

essential cofactor and well-suited to participate in generally three types of reactions – oxygen transport 

and storage, electron transfer and substrate oxidation-reduction (redox) (as reviewed by Beard, 2001).  

In the CNS, iron participates in the control of many metabolic signaling pathways including respiration, 

myelination and neurotransmitter synthesis (as reviewed by Beard, 2001; Crichton et al., 2011; 

Richardson et al., 2010; Todorich et al., 2009).  The same properties that allow iron to drive one-electron 

reactions, also give iron the ability to generate radicals or “free radicals” – any species that has an 

unoccupied electron orbital and is thus able to exist on its own (as reviewed by Halliwell, 1992).  Radicals 

derived from oxygen are called reactive oxygen species (ROS).  These, iron-derived and not, are 

generated constantly in cells as by-products of normal metabolic processes and are effectively 

scavenged by a cell’s physiological antioxidant defenses (Marks et al., 2009; Valko et al., 2005).  

Disrupted iron homeostasis can cause excessive ROS which may overpower antioxidant defenses, 

causing oxidative stress and damage to DNA, lipids and proteins (as reviewed by Valko et al., 2005). 

In Chapter 1, I discussed how Fe3+ iron was found by modified Perls’ staining  to be greatly increased in 

astrocytes of the olfactory bulb and hippocampus in AxD KI and Tg mice; this was also found true for 

ferritin by immunostaining (Hagemann et al., 2006; Hagemann et al., 2005; Hagemann et al., 2012).  Iron 

and ferritin are found prevalently in oligodendrocytes in the normal brain (as reviewed by Connor and 

Menzies, 1996).  Microglia accumulate iron and ferritin when iron is released under pathological 
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circumstances such as cerebral hemorrhage, hypoxia-ischemia and MS (Bishop and Robinson, 2001; 

LeVine, 1997; Wu et al., 2003).  Therefore, iron accumulation in astrocytes in AxD mice is abnormal and 

suggests that iron metabolism is misregulated in the CNS of AxD mice.  

This is interesting with respect to AxD pathogenesis for several reasons.  First, because astrocytes 

express proteins that allow transport of iron into and out of cells and make contact with endothelial 

cells of the blood vessels, through which the vast majority of iron enters the CNS, it has been 

hypothesized that astrocytes play a role in the distribution of iron from blood vessels into the brain 

(Dringen et al., 2007; Jeong and David, 2006).  If this is true, then accumulation of iron in astrocytes 

might suggest that distribution of iron to other cells in the CNS may in some way be impaired.   

Second, iron is critical to myelination (as reviewed by Todorich et al., 2009), and in AxD myelination is 

severely impacted.  As reviewed in Chapter 1, type I AxD is a leukodystrophy and children suffer 

extensive frontal de/dysmyelination while type II patients show areas of focal demyelination suggestive 

of a defect in the ability of these cells to remyelinate (Prust et al., 2011).  Accordingly, the accumulation 

of iron in AxD astrocytes may represent impaired iron efflux from these cells, resulting in a deficiency in 

the extracellular supply of iron for use by oligodendrocytes and therefore which might impact 

myelination and remyelination. 

Finally, because iron is a well-known initiator of ROS (as reviewed by Valko et al., 2005), its increase in 

astrocytes might deplete them of antioxidant defense mechanisms ultimately producing oxidative 

damage to DNA, as well as lipids and proteins.  Transition metal-mediated oxidative stress is 

hypothesized to play a role in several neurodegenerative diseases including Parkinson’s disease, 

Amyotrophic lateral sclerosis, aceruloplasminemia and Alzheimer disease (as reviewed by Carri et al., 

2003; Crichton et al., 2011; Kono, 2012; Rouault and Cooperman, 2006) and, as discussed in Chapter 1, 

there are multiple indications of oxidative stress or an oxidative stress response in AxD patients 
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(Castellani et al., 1998; Castellani et al., 1997), AxD model mice and primary cells (Cho and Messing, 

2009; Hagemann et al., 2006; Hagemann et al., 2005; Hagemann et al., 2012) and AxD model drosophila 

(Wang et al., 2011).  If there is evidence of iron accumulation in astrocytes of AxD patients, as there is in 

model mice, it could present a plausible hypothesis about how iron-mediated oxidative stress may 

exacerbate the proteasomal inhibition known in AxD astrocytes , deplete astrocytes of endogenous 

antioxidant defenses and activate multiple signaling cascades . This could ultimately impede their ability 

to maintain a hospitable environment for oligodendrocytes and neurons.  

Iron metabolism 

Iron metabolism in the periphery 

Mammals obtain iron from their diet, and therefore many of the mechanisms of iron uptake from the 

gut and its subsequent transport to blood serum and use by individual cells have been well 

characterized.  The proton-coupled divalent metal transporter 1 (DMT1) transports Fe2+ iron from the 

apical membrane of duodenal enterocytes in the intestine into the lumen of these cells after it has first 

been reduced to Fe2+ by the duodenal cytochrome b reductase (Dcytb) (as reviewed by Wang and 

Pantopoulos, 2011).  Iron not utilized by these cells is either stored in the iron storage protein, ferritin, 

or exported to the plasma from the basolateral membrane by the iron efflux transporter ferroportin 1 

(FPN1) (previously known at DCT1 or Nramp2) (Abboud and Haile, 2000; Donovan et al., 2000; McKie et 

al., 2000).  As iron exits the cell it most likely oxidized by hephaestin, a membrane-bound ferroxidase 

closely associated with and important for FPN1-mediated Fe2+ exit from cells (Donovan et al., 2000; 

Kaplan and Kushner, 2000; McKie et al., 2000; Vulpe et al., 1999; Yeh et al., 2009).  In the plasma, an 

excess of high affinity transferrin, mediates Fe3+ transport, but also contributes to the health of the 

organism by keeping iron bound in a non-reactive state. 
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The transferrin cycle 

Many cells outside of the CNS obtain iron from the transferrin cycle (Fig B) (as reviewed by Wang and 

Pantopoulos, 2011).  Transferrin bound to Fe3+ (holo-transferrin) in the plasma binds with high affinity 

to the transferrin receptor (TfR1) expressed on the surface of cells.  The transferrin and receptor 

complex is endocytosed in clathrin coated pits and transported to endosomes, which are acidified by a 

proton pump triggering the release of iron from the transferrin-receptor complex.  Fe3+ iron is 

converted to soluble Fe2+ iron by a ferrireductase such as STEAP3 and transported from the endosome 

to the cytosol via DMT1, which takes on a second role in some cells in transport of Fe2+ iron from the 

endosome.  Without iron, TfR1 and transferrin dissociate and transferrin is recycled to the plasma while 

TfR1 remains on the cell surface (as reviewed by Wang and Pantopoulos, 2011).   

Brain iron metabolism 

While some mechanisms of uptake and delivery of iron in the CNS are similar to that in the periphery, 

many of the specifics of brain iron metabolism are unique and others have yet to be uncovered.  

Transferrin-bound iron in the plasma travels into the blood vessels of the brain.  Here, the blood brain 

barrier (BBB) consisting of blood vessel endothelial cells (BVECs) in contact with pericytes and astrocyte 

endfeet (as reviewed by Moos et al., 2007) prevents plasma, transferrin and many other molecules from 

freely entering the brain.  While all BVECs have both a luminal and abluminal membrane, only BVECs of 

the blood brain barrier have polarity in their protein expression, induced by the contact of the endfeet 

of astrocytes with these cells (as reviewed by Abbott et al., 2006).  Tfr1 is found on the luminal 

membrane (as reviewed by Bradbury, 1997; Moos and Morgan, 2000), which is exposed to plasma, 

while the abluminal membrane of BVECs are covered by astrocyte endfeet, brain interstitial fluid and in 

some cases neuronal processes (as reviewed by Rouault and Cooperman, 2006).  Labeled transferrin 

receptor is endocytosed by BVECs but very little radiolabeled transferrin or its receptor subsequently 
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enter the CNS (Gosk et al., 2004; Moos and Morgan, 2001).  Apotransferrin is recycled to the blood, 

while iron is left within endothelial cells. 

The mechanism by which iron leaves the endosome and subsequently enters the CNS is uncertain 

because DMT1, crucial for the transferrin cycle and for endosomal export of iron, is not found in BVECs 

in the rat, but is instead has been found both by immunohistochemistry and by electron microcopy on 

astrocytic processes where these cells make contact with BVECs (Wang et al., 2002).   

Within the CNS indications are that iron exceeds the binding capacity at of transferrin, so that some of it 

in a non-transferrin bound form (Moos and Morgan, 1998, 2000).  Thought on how non-transferrin 

bound iron exits endosomes or BVECs and moves within the CNS to cells varies widely and has not yet 

been demonstrated (Connor, 2002; Moos et al., 2007; Rouault and Cooperman, 2006). 

In addition to the iron derived from the vasculature, functional studies using radiolabeled iron injected 

into hypotransferrinemia mice have demonstrated that a small amount of iron in the CNS is derived 

from the cerebrospinal fluid (CSF), but that transferrin is not necessary for this uptake, which occurs via 

the choroid plexus.  Transfer of radiolabeled iron emanating from CSF, however, is low and the diffusion 

rate limited, reaching only the nearest cells (Moos, 1996; Ueda et al., 1993).   

Iron levels in the CNS during development 

The level of iron taken into the normal brain changes dramatically during development and varies within 

region and cell type.  In the rat cerebellum pons and cortex, iron, transferrin and ferritin levels are 

higher at birth than at any other time (Roskams and Connor, 1994).  These levels decrease until day 17 

when ferritin and total iron begin to rise, but transferrin levels remain constant (Roskams and Connor, 

1994).  The high levels of iron at birth may be explained by iron that reaches the CNS before the BBB is 

formed.  Indeed, in the developing brain, ameboid cells, resembling macrophages, stain with high levels 

of iron (Connor et al., 1995; LeVine and Goldman, 1988).  The midbrain region, which includes the iron-
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rich regions such as the globus pallidus, substantia nigra, and red nucleus, has consistently high levels of 

iron, ferritin and transferrin at all ages (Roskams and Connor, 1994). 

Peak Iron influx coincides with the period of myelination 

Studies by Connor’s group find that Tfr1 levels expressed by endothelial cells also fluctuate during 

development and are highest at P15 (Gosk et al., 2004; Moos and Morgan, 2001), which coincides with 

the peak period of myelination in the rodent.  Levels of radiolabeled Trf1 antibody (OX26) injected into 

rats were twice that at 15 days postnatal (P15) than at postnatal day 0 (P0), and this is twice that than in 

adults (P70) (Moos and Morgan, 2001).   On one hand this might suggest that high uptake of iron into 

endothelial cells coincides with a high need of iron for myelination or because transferrin receptor is 

upregulated in the brains of rats fed a low iron diet (Chen et al., 1995), but it might also suggest 

transferrin receptor upregulation at this age is due to the decreases in iron from levels found at birth.  

Levels of radiolabeled OX26 did not change between iron deficient and sufficient rats at P15 and the 

authors suggest this may be due to the receptor expression having reached a capacity during this period 

of myelination (Moos and Morgan, 2001).   

Iron in oligodendrocytes and its importance to myelination 

Iron is detected by MRI and subcellular fractionation at higher levels in the white matter than it is in grey 

matter (Curnes et al., 1988; Rajan et al., 1976), and within the white matter oligodendrocytes 

consistently stain strongest for iron in humans (Connor et al., 1990; Dwork et al., 1988; Morris et al., 

1992), rats (Benkovic and Connor, 1993) and mice (LeVine, 1991).  Iron is essential to the onset and 

maintenance of myelin (Connor, 1994; Connor and Menzies, 1996; Todorich et al., 2009), a lipid-rich 

cellular organelle of oligodendrocytes that enable these cells to ensheath axons providing greatly 

increased conduction of electrical impulses (Lemke, 1992).  



122 
 

 

While iron is important to any cell, it is especially so to oligodendrocytes in order to meet the high 

metabolic demands required to establish and maintain lipid and cholesterol-rich membrane sheaths that 

can sometimes outweigh their cell bodies by 100 fold (Wiggins et al., 1974).  Iron-containing enzymes 

important to metabolism and biosynthesis such as glucose-6-phosphate dehydrogenase, dioxygenase, 

succinic dehydrogenase, NADH dehydrogenase and the cytochrome oxidase system are all elevated in 

oligodendrocytes compared to other cells in the CNS (Cammer, 1984).  Additionally HMG-CoA reductase, 

which catalyzes the NADPH-dependent reduction of HMG-CoA to mevalonate, the first committed 

reaction and a major regulatory step in cholesterol synthesis, is also enriched in oligodendrocytes 

(Pleasure et al., 1984).  

The labeling of iron and myelin proteins in oligodendrocytes in the developing brain suggests that the 

appearance of iron immediately precedes genesis of myelin.  Perls’ labeling of oligodendrocytes in the 

developing brain find iron-positive patches surrounding blood vessels (Burdo et al., 1999).  These same 

areas around blood vessels are where focalized areas of myelinogenesis occurs during the second post-

natal week (as reviewed by Connor and Menzies, 1996).  

Iron deficiency causes hypomyelination and impacts OPC proliferation 

Chronic severe iron deficiency in rats induced through maternal iron deprivation between gestational 

day 5 through weaning produces hypomyelination in 25 day old rats (Ortiz et al., 2004; Wu et al., 2008) 

in the subcortical white matter but not the hippocampus, and these mice also have behavioral 

impairments in surface righting reflex, negative geotaxis reflex, vibrissae-evoked forelimb placing test 

and novel object recognition task (Wu et al., 2008).  A less severe course of iron deprivation can also 

negatively impact myelination.  Both pre-weaning (postnatal days 4-12 or 4-21) and post-weaning 

(postnatal days 21-63) iron deprivation in rats causes myelin deficiency in the cerebrum and hindbrain 

(Beard et al., 2003).  
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Using this same model of maternal iron deprivation as described above, glial precursor cells in the 

developing spinal cord and corpus callosum were assessed for proliferation by measuring the number of 

cells positive for the glial precursor cell marker A2B5 and for BrdU incorporation, which had been 

injected into the mothers.  At embryonic day 17 (E17) there were significantly higher numbers of these 

cells in the iron deprived pups in all areas of the brain assessed, including the spinal cord and corpus 

callosum.  The same rats were assessed at P7 and P14 for GalC expression, a marker of mature 

oligodendrocytes (Morath and Mayer-Proschel, 2002).  While there were fewer GalC+ cells in the spinal 

cord, surprisingly, at P7 and P14 there were 3-fold and 1.5-fold more of these cells in the corpus 

callosum. This result suggests that iron has both a regional and developmental impact on myelination. 

In vitro, iron has also been found to impact oligodendrocyte precursor cell (OPC) proliferation. The 

oligodendrocyte line cell ONL-93 is inhibited from proliferating by both Ferric and Ferrous iron chelators, 

and the application of excess ferric ammonium citrate (FAC) prevents the inhibition of proliferation by 

the Fe3+ iron chelator deferoxamine (Hohnholt et al., 2010; Morath and Mayer-Proschel, 2001) 

Astrocytes and iron metabolism 

Because astrocytes make contact with endothelial cells where iron enters the brain (Brightman and 

Reese, 1969; Kacem et al., 1998), it has been hypothesized that astrocytes play a role in brain iron 

uptake.  Electron microscopy has confirmed the immunohistochemical expression of DMT1 in astrocytic 

processes at endfeet where they make contact with BVEC’s in the rat brain (Burdo et al., 2001; Wang et 

al., 2002).  However, by immunohistochemistry, transferrin receptor has not been found in these cells in 

the rodent brain (Giometto et al., 1990; Moos, 1996) or human brain, although transferrin receptor is 

expressed by primary rat astrocytes in culture (Qian et al., 1999).  These results suggest astrocytes in 

vivo are capable of uptake of Fe2+ via DMT1, but not transferrin-bound iron, however may be induced 

to do so under conditions of stress.   
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Conner et al. examined immunohistochemical expression of iron, transferrin and ferritin in the adult 

brain and found that while the majority of iron, ferritin and transferrin was found in oligodendrocytes in 

all areas of the brain, a subset of astrocytes were positive for iron, ferritin and transferrin in several 

subcortical regions examined, including the basal ganglia, striatum, hippocampus and amygdala (Connor 

et al., 1990).  In the aging brain, however transferrin expression was routinely seen in white matter 

astrocytes, while its expression was unchanged in the grey matter.  Transferrin mRNA is expressed in 

cultured astrocytes (Espinosa de los Monteros et al., 1990), so this expression may be due to gene 

activation later in life in these cells.   

Iron efflux from astrocytes 

FPN1, the only known transporter for iron efflux (McKie and Barlow, 2004), has been found in primary 

rat astrocytes, C6 cells and rat astrocytes in vivo (Burdo et al., 2001; Jeong and David, 2003) and primary 

astrocytes from the mouse express mRNA for FPN1 (Jeong and David, 2003).  FPN1 is stabilized on the 

cell surface of rat C6 glioma cells by expression of the ferroxidase, ceruloplasmin (Cp) (De Domenico et 

al., 2007).  In the human brain mRNA for Cp has been found localized specifically to a subpopulation of 

astrocytes surrounding the brain microvasculature and surrounding dopaminergic neurons in the 

substantia nigra (Klomp and Gitlin, 1996). 

Interestingly, FPN1 expression in astrocytes has been found important to remyelination.  Knockout of 

FPN1 specifically in astrocytes, by crossing mice expressing tomoxifen-inducible Cre driven from the 

GLAST promoter (GLAST::CreERT2) with ferroportin floxed mice (FPNflox/flox) for five days in post-

weanlings and then administering the focal demyelinating agent lysophosphatidylcholine, was 

demonstrated to decrease the subsequent remyelination of FPN1 KO mice versus that in controls (Schulz 

et al., 2012).  Immunostaining of the tissue found cells positive for both Olig2 and proliferation marker 

KI67 were significantly fewer (p ≤ 0.05) in the astrocytes of FPN1 KO mice.   
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The labile iron pool, the hydroxyl radical and ROS  

In a normal cell, free iron, also known as the chelatable or “labile iron pool,” constitutes less than-5% of 

total iron in a cell.  This pool of catalytically active iron exists in both Fe2+ and Fe3+ states (as reviewed 

by Kakhlon and Cabantchik, 2002; Valko et al., 2005) and  available for use in the cell, for example, as a 

cofactor by cellular enzymes involved in DNA and RNA synthesis, respiration and metabolism.  Iron in 

the labile iron pool is often bound by low molecular weight chelators such as citrate, phosphate, 

carboxylates and also nucleotides.  These can bind iron in a way that at least one of its six coordination 

sites is available for catalytic activity (as reviewed by Valko et al., 2005).   

The properties of transition metals, like iron, that allow them to catalyze electron transfers and make 

them excellent cofactors but also enable hydroxyl radical generation through the Fenton reaction (Fig A, 

equation 2).  Here Fe2+ in the labile iron pool reacts with hydrogen peroxide to generate Fe3+ and the 

hydroxyl radical, the most reactive free radical in biological systems (as reviewed by Nappi and Vass, 

2002).  The reaction of Fe3+ with superoxide produces Fe2+, which is then available for the Fenton 

reaction.  Because superoxide and hydrogen peroxide are both produced liberally as by-products during 

oxidative metabolism and other cellular processes, any iron in a reactive state, is at risk generating the 

hydroxyl radical (Dringen et al., 2007; McCord, 2004).   

Like iron, copper is another transition metal that can undergo redox cycling and generate the hydroxyl 

radical and other reactive oxygen species (as reviewed by Valko et al., 2005), however because free 

copper in a cell is so limited, estimated at only one atom of free copper per normal cell (Rae et al., 

1999), iron has been found to be the predominant metal participating in the Fenton reaction when 

Jurkat cell are challenged with H202 (Barbouti et al., 2001). While this chapter focuses on iron and 

therefore iron-mediated oxidative stress, is important to note that free copper can cause similar 

damage, if available. 
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Damage to molecules by the hydroxyl radical 

The hydroxyl radical can damage nucleotides, lipids and proteins.  A brief summary of such modifications 

are below. 

DNA.  One of the early events to occur after oxidative stress exposure in the human cell is DNA damage 

(as reviewed by Halliwell, 1992).  Hydroxyl radical, but not other oxygen radicals like superoxide, 

damage DNA when iron or low molecular weight iron chelates bind DNA at phosphates in the backbone 

or purine or pyrimidine bases.  Here, iron can reside at a center for repetitive generation of the hydroxyl 

radical.  Because the hydroxyl radical is extremely diffusion limited, this positions allows it to make DNA 

modifications (as reviewed by Valko et al., 2005; Welch et al., 2002).  Products of this oxidation of DNA 

include single and double strand breaks, modified bases, DNA-protein cross-links and chemical 

modification of the sugar moiety (as reviewed by Valko et al., 2005).  

Lipids.  Lipid oxidation (or peroxidation) occurs when iron-induced oxygen radicals attack 

polyunsaturated fatty acid residues of membrane and circulating phospholipids, which are enriched in 

the brain (as reviewed by Valko et al., 2005). The function of membrane-bound organelles such as 

mitochondria can be compromised and furthermore produce extremely reactive aldehydes, such as 

malondialdehyde (MDA), acrolein and 4’ hydroxynonenal (HNE).  These aldehydes are more stable than 

the hydroxyl radical and can do additional damage to proteins located within the membranes from 

which they have been generated or travel distances and even escape the cells to do harm (as reviewed 

by Halliwell, 1992; Uchida, 2003; Valko et al., 2005). 

Protein Modifications.  Metal catalyzed damage to proteins include introduction of carbonyl groups, 

oxidative cleavage, loss of histidine residues, bityrosine cross-links, reduction of intramolecular disulfide 

bridges, and the formation alkyl radicals which can further damage proteins  (Lipinski, 2011; Valko et al., 

2005). 
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Antioxidant Defense 

Three means of antioxidant defense are known to be employed in cells and organisms to deal with both 

normal and pathological ROS.  First, the prevention of ROS formation occurs through deterrence of 

electron leakage from reactive metals.  Proteins that bind iron in a redox inactive form such as ferritin, 

transferrin and lactoferrin contribute to this effort.  Second, the interception of oxidative damage by 

scavenging can remove partially reduced oxygen species before they can react with free iron.  

Antioxidant enzymes such as catalase, superoxide dismutase and glutathione peroxidase are important 

in this respect. The third mechanism for antioxidant defense in a cell is the repair or swift removal of 

damaged molecules (as reviewed by Carri et al., 2003; Welch et al., 2002).   

Clearance of oxidatively or HNE-modified molecules   

Oxidatively modified proteins are often efficiently cleared from the cell. For example, the oxidation of 

IRP2 by iron drives its ubiquination and subsequent proteasomal degradation (Iwai et al., 1998).  

Efficient degradation of other oxidatively modified proteins can alternatively occur in a non-proteolytic 

specific manner (as reviewed by Dalle-Donne et al., 2006) and HNE-modified proteins have been found 

to be degraded by a ubiquitin and lysosomal-dependant, but proteasomal independent pathway 

(Marques et al., 2004).  

Not all oxidatively or HNE modified proteins are efficiently cleared, however.  Hydroxyl radical damage 

to proteins may also cause protein aggregation.  For example, reduction of intramolecular disulfide 

bridges followed by the exposure of hydrophobic epitopes can have such an effect (as reviewed by 

Lipinski, 2011).  This appears to be the case with beta amyloid (Aβ) which is covalently crosslinked and 

aggregates when exposed to HNE in cell free systems (Siegel et al., 2007).  



128 
 

 

GSH and removal of damaged lipids 

GSH has been found important to the prevention of HNE-modified damage by first acting to reduce lipid 

hydroperoxides before they react with redox metals to produce very destructive epoxides and 

aldehydes, one of which is HNE, and second through detoxification of lipids by its conjugation to lipid 

adducts, catalyzed by glutathione S-transferases (Malone and Hernandez, 2007).  GSH conjugated to 

lipid adducts are subsequently removed from the cell.  

Summary 

Given the potentially damaging effects of iron-induced ROS, I undertook the work in this chapter to 

determine if there is evidence that iron is misregulated in astrocytes of AxD patients, as has been found 

in AxD model mice (Hagemann et al., 2006; Hagemann et al., 2005; Hagemann et al., 2012).  I conducted 

a histochemical analysis of two infant onset, type 1 AxD patients and a control patient using a modified 

Perls’ iron stain for Fe3+ iron and antibodies to ferritin, ferroportin and ceruloplasmin.  I focused on 

regions of the subcortical white matter where GFAP expression in astrocytes is normally high and in AxD 

where there is an abundant presence of Rosenthal fibers and extensive demyelination.  In addition I 

sometimes examined the pial surface, where there also abundant Rosenthal fibers, and the brain stem 

where there is considerable pathology, especially in adult patients.  I detected abnormal accumulation 

of iron and ferritin in astrocytes.  Iron was detected in Rosenthal fibers accumulated in the cell bodies of 

astrocytes in the brain stem.  Ferritin, ferroportin and ceruloplasmin were found greatly increased in 

astrocyte cell bodies.  These results suggest that iron is misregulated in astrocytes in AxD patients.  At 

the conclusion of this chapter, I propose a model for the pathological exacerbation of AxD by iron. 

Results 

Fe3+ Iron accumulates in Rosenthal fibers and astrocytes in AxD patient tissue 

Fe3+ iron has been found greatly increased in AxD mouse astrocytes (Hagemann et al., 2006; Hagemann 

et al., 2005; Hagemann et al., 2012).  In order to determine if similar increases in iron occur in AxD 
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patients, I used a modified DAB-enhanced Perls’ stain (Nguyen-Legros et al., 1980a) on 5m-thick 

deparaffinized sections to visualize Fe3+ iron in two infant onset, type I AxD patients, one with the 

R239H mutation and another with the R416W mutation, age 10 and 7, and compared these to tissue 

from an infant, aged 22 months.  In the R239H and control patients we first examined sections of the 

cortex which also contained subcortical white matter, areas where there are abundant Rosenthal fibers 

(Fig 1A and B).  In the R239H AxD patient, positive iron staining in Rosenthal fibers in the white matter 

was apparent even at low magnification (Fig 1B, left of open arrowheads), while at low magnification in 

control, there was little positive immunostaining except in blood vessels (Fig 1A).  Higher magnification 

images in control tissue revealed positive iron staining in cells with small nuclei, resembling 

oligodendrocytes (Fig 1C, arrows), in addition to blood vessels (open arrowhead).  This agrees with 

published reports of iron localization in white matter in oligodendrocytes (Connor et al., 1990; Dwork et 

al., 1988; Morris et al., 1992).  At higher magnification in the R239H patient white matter Rosenthal 

fibers were clearly distinguishable (Fig 1D, arrowheads) and many were located around blood vessels 

(Fig 1D, BV).  This characteristic feature of Rosenthal fiber-staining can be observed in a hematoxylin and 

eosin stain of a similar white matter section from the same patient where Rosenthal fibers, stained 

bright pink, are of similar shape and location around blood vessels (Fig 1E).  

In AxD patients, the pial surface of the cortex consistently shows abundant Rosenthal fibers. We were 

interested to see if these too contain Fe3+ iron, so next examined the pial surface of the AxD R239H 

patient and the control patient.  Similar to what we saw in the white matter, we found iron staining 

apparent in the abundant Rosenthal fibers at the pial surface of the R239H patient, even at low 

magnification (Fig 1G, arrowheads), but none at the pial surface or adjoining cortex in the control 

patient (Fig 1F, arrowheads).  Higher power magnification of the pial surface of this patient revealed iron 

positive Rosenthal fibers at both the pial surface and in the adjacent cortex including many surrounding 

a blood vessel (Fig 1H, arrowheads).  We noticed no Fe3+ oligodendrocytes in the AxD tissue, however 
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given many Rosenthal fibers are roughly the size and shape of oligodendrocyte nuclei, we can make no 

conclusions about the presence or absence of Fe3+ iron in AxD patient oligodendrocytes without 

counterstaining for oligodendrocyte markers. 

The brain stem is an area where in AxD there is atrophy and focal demyelination in some adult, type II 

cases, and deficits such as speech and swallowing difficulties in some type I AxD patients can be traced 

to this area.  I examined brain stem sections from the R416W patient for Fe3+ iron and found intense 

iron staining throughout this tissue and astrocytes were apparently positively stained (Fig 1I,l blue 

arrowheads figure 1I).  At higher magnification we could localize some of the iron staining to completely 

filled cell bodies and proximal processes of cells that appeared to be astrocytes (Fig 1J, blue 

arrowheads).  AxD patient sections incubated in a control solution without potassium ferrocyanide 

showed no positive staining for iron (data not shown).  

Ferritin is increased in AxD patient tissue 

Most cells store excess iron in ferritin.  In this way the transition metal accumulates in a non-reactive, 

biochemically inert form and is kept as a reserve for cellular iron needs (as reviewed by Harrison and 

Arosio, 1996).  In the normal adult human brain, ferritin is occasionally found in astrocytes in the 

striatum, hippocampus, and amygdala (Connor et al., 1990).  Because iron in a cell can trigger 

translational activation of ferritin through IRP1 and IRP2 (as reviewed by Arosio and Levi, 2002), we 

sought to determine if ferritin was detectable in AxD astrocytes.  Ferritin is composed of 24 subunits of 

H ferritin and L ferritin, expressed by separate genes and which are expressed at varying ratios based 

upon cell type and tissue (as reviewed by Harrison and Arosio, 1996).  In order to detect either of these, 

we used an antibody that recognizes both of these ferritins in our DAB-enhanced immunohistochemistry 

of R239H AxD patient and control white matter, where we had previously found iron positive Rosenthal 

fibers.  In the control tissue we found light, diffuse perinuclear ferritin immunostaining of cells 

resembling oligodendrocytes (Fig 2A, black arrows).  Several other cells had detectable ferritin 
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immunostaining, but were difficult to identify without double immunostaining with cell markers.  In the 

AxD R239H patient we found ferritin to be greatly increased throughout the white matter.  Large nuclei 

of reactive astrocytes can be seen (Fig 2B, blue arrowheads) and are surrounded by both light and more 

prominent immunostaining for ferritin in their cell bodies.  Many Rosenthal fibers, stained light blue 

with a hematoxylin counterstain, can be observed.  Some are surrounded by intense positive 

immunostaining for ferritin (Fig 2B, black arrowheads), which indicates that ferritin is in the processes of 

astrocytes that contain Rosenthal fibers. Cells with small, round nuclei, representing oligodendrocytes 

also appear to stain positive for ferritin (Fig 2B, black arrows), as they had in control tissue. 

Ferritin is expressed by astrocytes in AxD mouse hippocampus 

Given the high Fe3+ iron and ferritin in patients, and that high Fe3+ iron that had been observed in mice, 

we next examined the one year old KI R236H mouse using immunofluorescence for ferritin and GFAP, in 

order to identify astrocytes.  In the wild type mouse, few cells were positive for ferritin, however we did 

find occasional cells resembling oligodendrocytes (Fig 3A, arrow).  Additionally there was a light 

punctate reactivity to ferritin in what appeared to be a white matter tract in the stratum oriens (Fig 3A).  

Examining the KI mouse stratum oriens, we found increased immunoreactivity to ferritin, all of which 

appeared to be stemming from GFAP+ astrocytes (Fig 3B, white arrows) and none from 

oligodendrocytes.  The immunoreactivity appeared to fill most of the astrocytes, including fine 

processes not positive for GFAP.  Additionally, in AxD model mice we often saw punctate 

immunoreactivity to GFAP that does not appear to be contiguous with a cell process (Sosunov et al., 

2013), perhaps resembling Rosenthal fibers or representing small astrocyte processes.  In the KI mouse 

we observed these focal areas of GFAP immunoreactivity and some were positive for ferritin (Fig 3B, 

small blue arrows).  In the time since conducting these experiments, Hagemann, Messing et al. have 

published data demonstrating ferritin immunostaining in astrocytes of KI mice (Hagemann et al., 2012), 

supporting our findings here. 
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Ceruloplasmin and Ferroportin are increased in AxD patient tissue  

While Fe3+ iron and ferritin are sometimes observed in some astrocytes of adults, which increases with 

aging, particularly in the striatum (Connor et al., 1990), detection of iron and ferritin in subcortical 

astrocytes is not common, especially on the scale that we observed here.  In normal white matter, 

oligodendrocytes are the cells that predominantly stain positive for iron and ferritin in the human brain 

(Connor et al., 1990; Dwork et al., 1988; Morris et al., 1992).  Though it is rare, the best -known 

condition that causes abnormal iron accumulation in astrocytes (Kaneko et al., 2002b; Oide et al., 2006) 

and the liver is aceruloplasminemia (Acp), a rare autosomal recessive disease caused by mutations in the 

ferroxidase ceruloplasmin (Cp) (Harris et al., 1995; Morita et al., 1995).  Interestingly, astrocytes show 

large iron-positive protein accumulations in astrocyte endfeet in this disorder (Kaneko et al., 2002b; 

Oide et al., 2006).  Cp safely oxidizes Fe2+to Fe3+, coupling this to the controlled reduction of oxygen to 

water (as reviewed by Vassiliev et al., 2005).  Two isoforms of Cp are found in primary astrocytes from 

rodents.  Secreted Cp has been found in mouse astrocytes (Klomp et al., 1996) while rats express both 

secreted (Zahs et al., 1993) and an alternately spliced glycophosphatidylinositol (GPI)- bound form (Patel 

and David, 1997).  The ferroxidase activity of Cp has been found necessary to maintain the cell surface 

stability of FPN1 which is recognized by a ubiquitin ligase while bound by Fe2+i (De Domenico et al., 

2007).  FPN1 is an iron efflux protein which possesses a unique protein sequence and shares no 

homology with other transporters, so is thought to be the sole means by which iron can be transported 

from cells (McKie and Barlow, 2004).  Because FPN1 cell surface expression has been linked with the 

ferroxidase activity of ceruloplasmin, it has been hypothesized that iron accumulation in the brain in Acp 

stems from a lack of iron efflux from astrocytes (De Domenico et al., 2007; Jeong and David, 2003).  

Given that iron accumulation in astrocytes has been found in both AxD and Acp, we sought to determine 

the immunohistological expression of FPN1 and Cp in AxD and control tissue.  We first examined the 

deep, subcortical white matter, an area of intense Rosenthal fibers and diminished myelination in many 
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patients, with an antibody for FPN1 and found in the control patient many cells including astrocytes (Fig 

1A, blue arrowheads) and oligodendrocytes (Fib 4B, black arrows) were positive.  In the AxD R416W 

patient the immunostaining for FPN1 in astrocytes was striking.  All astrocytes appeared to be positive 

for FPN1 and many had large accumulations of the protein in the cell body cytoplasm (Figure 4B, blue 

arrowheads).  Furthermore while there was a diffuse background staining of the parenchyma, astrocytes 

appeared to be the primary cells expressing the protein.  Oligodendrocytes could be observed, but some 

did not appear to express FPN1 (Fig 4B, black arrows).  Ferroportin can also be seen accumulated in the 

cell body of binucleated astrocytes (Fig 4B, *).  Expression of FPN1 in the deep white matter of the 

R239H patient, which appeared to be extensively demyelinated, showed intense FPN1 reactivity.  Many 

light blue hematoxylin stained Rosenthal fibers can be seen and the majority are strongly rimmed in 

positive immunostaining for FPN1 (Fig 4C, black arrowheads) indicating that there is FPN1 reactivity in 

astrocyte cell bodies and processes which contain Rosenthal fibers.  Individual cells were difficult to 

identify, but a heavily immunostained astrocyte can be seen (Fig 4C, blue arrowhead).   

We next looked at the expression of Cp in the AxD R416W and control patients’ deep white matter using 

an antibody that should recognize both secreted and GPI-linked forms of this protein.  In the control 

tissue there many cells positively immunostaining for Cp that were difficult to identify without double 

immunostaining for cell markers.  In the AxD R416 patient we found greatly increased reactivity to the 

ceruloplasmin antibody throughout the parenchyma, some of which was difficult to ascribe to individual 

cells.  In this patient we also observed intense accumulations of ceruloplasmin in clusters of binucleated 

and multinucleated astrocytes (Fig 4E, white arrowheads).  

Discussion 

In this chapter I present a brief but novel immunohistochemical study of Fe3+, ferritin and Cp and FPN1 

in the CNS of AxD patients.  I show evidence that there is an accumulation of iron and ferritin in 
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astrocytes of children with type I AxD.  Additionally, I present evidence that there is ferroportin 

accumulation in the cell bodies of astrocytes of two AxD patients and an overall increase in 

immunostaining with an antibody for Cp in a single AxD patient.  These results expand the findings of 

Hagemann and colleagues who found an accumulation of iron in astrocytes in Tg and KI AxD mice 

(Hagemann et al., 2006; Hagemann et al., 2005; Hagemann et al., 2012).  I also confirm their observation 

that there is an increase in ferritin immunofluorescence in astrocytes in KI animals (Hagemann et al., 

2012).  I note striking similarities between Rosenthal fibers and protein inclusions in Acp and suggest 

that the unusual and high levels of iron and ferritin we have found in AxD patient tissue may, as in other 

disorders, serve as a source for oxygen radical generation.  At the conclusion of this chapter, I propose a 

model for the pathological exacerbation of AxD by iron.  

Rosenthal Fibers and astrocytes contain Fe3+  

Despite a wide range of disease courses and neuropathological findings that are observed in AxD (Prust 

et al., 2011), Rosenthal fibers are found universally.  I found discrete deposits of Fe3+ that coincided in 

shape and location to Rosenthal fibers in white matter of the R239H patient (Fig 1B, D and H).  In 

contrast, when I examined this same patient and type of tissue for the iron storage protein ferritin, I was 

surprised to find large amounts of this protein dispersed throughout the tissue in varying intensity and 

located in what appeared to be astrocytes (Fig 2B).  Ferritin staining was not within Rosenthal fibers, but 

instead around them, sometimes very strongly rimming the edges.   

These findings might be interpreted by comparison to previous studies of Perls’ staining of the liver, 

which is high in iron and ferritin content.  In liver, dispersed soluble ferritin gives only a faint background 

staining by Perls’ method, whereas hemosiderin, a product of iron overload produced when a cell’s 

capacity to synthesize ferritin is exceeded, is prominently Fe3+ stained (as reviewed by Harrison and 

Arosio, 1996).  Considering my obesrvations of the R239H subcortical white matter in light of these 

studies, several things are suggested.  First, iron contained within ferritin is most likely accumulated 
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throughout most of astrocytes, though is unable to be detected by Perls’ staining due to limitations in 

this technique (as reviewed by Todorich et al., 2009). Second, I cannot be certain that Rosenthal fibers 

do not contain ferritin because immunohistological determination of protein content within Rosenthal 

fibers is difficult to assess through standard light microscopy, due to difficulty of penetrating these 

extremely dense structures with antibodies.  However, because the Perls’ staining was strong, it is likely 

that the iron that is seen in Rosenthal fibers is most likely precipitated out of ferritin or otherwise 

pathologically accumulated.  Finally because the iron in Rosenthal fibers is unlikely to be normally bound 

by ferritin, it may be available for reactions that produce damaging oxygen radicals.   

In contrast to the discrete Fe3+ positive Rosenthal fibers in the R239H patients, there is strong staining 

of whole astrocyte cell bodies in the brain stem of the R416W patient.  This suggests massive 

accumulation of Fe3+ iron in these cells.  Although I did not immunostain this section with antibodies for 

ferritin, it is possible that this high amount of iron might overwhelm cellular ferritin.   

These two patterns of Fe3+ iron localization in cells, discretely in Rosenthal fibers in the white matter of 

one patient, and vividly in the cell bodies of astrocytes in another, are quite different.  While it is likely 

there are differences in the endogenous amounts of iron found in the subcortical white matter and the 

brain stem it is also possible that this disparity may arise from differences in what may be protoplasmic 

astrocytes in the brain stem and fibrous astrocytes in the white matter and inherent differences in iron 

transport and regulatory mechanisms between these cell types and regions of the brain.    

The iron storage disorder Aceruloplasminemia and AxD share similarities  

Iron in astrocytes, as observed in these children with AxD, is not common.  Two noted instances where 

iron is observed in astrocytes is in the adult, and especially, aging hippocampus and striatum (Connor et 

al., 1990; Schipper et al., 1998) and in the cerebral cortex and basal ganglia in aceruloplasminemia (Acp).  

Acp is caused by mutations in the gene encoding Cp (Harris et al., 1995; Morita et al., 1995).  Because 
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the ferroxidase activity of Cp has been found necessary to maintain the cell surface stability of the iron 

export transporter FPN1 (De Domenico et al., 2007), the iron accumulation in astrocytes in Acp is 

hypothesized to originate from impaired iron efflux from these cells.  Acp onset is usually in middle age 

and CNS disturbances of ataxia, involuntary movement, parkinsonism and cognitive dysfunction are 

thought to reflect sites of iron deposition in the basal ganglia and cerebral cortex (Miyajima et al., 2003). 

The similarities between Rosenthal fibers and the protein inclusions in Acp are notable.  Similar to 

Rosenthal fibers, Acp patients bear Fe3+ iron containing, membraneless, proteinaceous, electron dense 

inclusions in astrocytes, many at perivascular endfeet (Oide et al., 2006).  These have been noted be 

similar to “grumose foamy bodies” (GSFBs) found in other disorders (Arai, 1995).  Both Rosenthal fibers 

and the GSFB-like inclusions in Acp immunostain for ubiquitin, HNE and GFAP (Kaneko et al., 2002b; 

Oide et al., 2006).  Like in AxD, by electron microscopy (see Chapter 1, Fig 3B), GFAP filaments can be 

seen ringing these inclusions (Kaneko et al., 2002b).  GSFBs in other disorders have HSP27 and alpha B-

crystallin, although these are not reported in Acp.  In contrast to Rosenthal fibers, GSFBs in Acp can 

become much larger than the average Rosenthal fiber, and are only mildly eosinophilic.  Notably, 

whereas Rosenthal fibers do not generally immunostain positive for even GFAP, except around their 

periphery, because they are so dense, GSFBs immunostain positive for ferritin, and for GFAP, possibly 

because they are more diffuse in their electron density so antibodies are able to penetrate the surface, 

which is not generally the case in AxD. 

Abnormal and multi-nucleated astrocytes in AxD are well-documented (for example see Fig 4B asterisk, 

4C arrowheads); similarly, some of these same striking features can be observed in nuclei in astrocytes 

in the basal ganglia and cerebral cortex in Acp patients in cells that also stain positive for Fe3+ (Oide et 

al., 2006).  Finally, I find similar the two patterns of Fe3+ iron localization that are observed in AxD 

tissue. Both GSFBs and Rosenthal fibers appear to stain positive for Fe3+ while the rest of the astrocyte 
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process normally does not, however in other astrocytes Fe3+ appears to fill much of the cell body (Fig 1I, 

J) (Oide et al., 2006). 

Clinical and pathologic studies of Acp patients suggest that iron-mediated oxygen radical damage 

through increased lipid peroxidation and mitochondrial dysfunction are likely primary causes of the 

clinical manifestation of this neurological disorder (as reviewed by Kono, 2012).  The similarities to AxD 

patients with respect to iron accumulation in astrocytes, nuclear abnormalities and protein inclusions 

that contain iron, HNE, ubiquitin and GFAP suggest that iron found in AxD astrocytes might inflict similar 

oxidative damage 

GFAP is oxidatively modified in Acp 

Carbonylation is thought the most frequent oxidative modification to proteins (England and Cotter, 

2005), and is can occur in four ways:  (1) oxidative cleavage of protein backbone, (2) direct oxidation of 

leucine, arginine or histidine , (3) reactive aldehyde-generated (HNE), and (4) glycation or glycation 

product reaction with lysine residues (as reviewed by Curtis et al., 2012).  An assay that detects such 

modified proteins can be used to isolate these and separate them on a gel for protein determination.  

This type of experiment demonstrated that GFAP is one of the largest groups of such oxidatively 

modified proteins in the cerebral cortex of an Acp patient (Kaneko et al., 2002a).  A portion of 

carbonylated GFAP was found at about 40kDa, and therefore may be oxidatively cleaved by this process 

(Kaneko et al., 2002a), though Kaneko et al. do not rule out proteolytic cleavage of GFAP into smaller 

peptides.  This suggests several important things:  first, that normal human GFAP is subject to iron-

mediated oxidative damage; second, that GFAP accumulates in Acp; and finally, that iron accumulation 

in astrocytes in AxD may mediate carbonylation of normal human GFAP and extensively modify it.   
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The degradation of some oxidatively modified proteins is mediated by proteasomal inhibition 

The degradation of carbonylated proteins is thought to occur in a non-proteolytic specific manner (as 

reviewed by Dalle-Donne et al., 2006).  However, several carbonylated proteins have been identified 

that are susceptible to accumulation after proteasomal inhibition.  A carbonyl assay identified seven 

proteins that were preferentially resistant to degradation by the proteasome after iron treatment of 

RD4 cells (Drake et al., 2002).  These include the heat shock protein HSP27, Cu/Zn SOD and ER 

chaperone calreticulin (Drake et al., 2002).  Though a number of studies have suggested carbonylated 

proteins are efficiently degraded (Drake et al., 2002; Dukan et al., 2000; Grune et al., 2004; Grune et al., 

2003; Huang et al., 1995; Levine et al., 1981), others suggest that  aggregation of these proteins is 

prevalent (Maisonneuve et al., 2008).  A review on the topic suggests aggregation of carbonylated 

proteins occurs as they become more heavily carbonylated and that these will inhibit the proteasome 

(Dalle-Donne et al., 2006).  

Rises in iron meets proteasomal inhibition --Implications for AxD  

By extrapolation, these results suggest that existing proteasomal inhibition in AxD by mGFAP and excess 

GFAP would inhibit degradation of a subset of oxidatively modified proteins that are degraded through 

the proteasome, should levels of free iron in an astrocyte transiently rise.  Additionally, the presence of 

proteins such as the superoxide scavenger, Cu/SOD, the heat shock protein, HSP27 and the ER 

chaperone, calreticulin in this pool of oxidatively modified proteins, makes apparent the impact that 

ROS might have on lost protein function.  For example, in the case of Cu/SOD its loss of function could 

allow an increase in oxidative stress, due to lost scavenging of superoxide radical.  Additionally, the 

presence of Cu/SOD in the cytosol after having been oxidatively modified would make it additionally 

vulnerable to further modification by radicals which may expose hydrophobic residues and promote 

aggregation and/or allow for the release of copper.  In the case of aggregation, these proteins might 

further inhibit the proteasome or through aggregation, contribute to cell toxicity.  The release of copper, 
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on the other hand, would further the oxidative stress already presents in the cell.  In AxD, existing 

proteasomal inhibition, compounded by what might be transient rises in iron, could create feed-forward 

mechanisms of oxidative stress and proteasomal inhibition. 

Iron expression in AxD mice is downstream of Nrf2 signaling in astrocyte 

I find iron and ferritin accumulated in pathological manner in AxD patient astrocytes, however it is not 

known how or when this occurs in the disease process.  Experiments with AxD KI and Tg mice suggest 

that iron accumulation is downstream of an oxidative stress response driven by Nrf2.  AxD Tg and KI 

mice accumulate iron and ferritin astrocytes (Hagemann et al., 2006; Hagemann et al., 2005; Hagemann 

et al., 2012). They also show a robust oxidative stress response, including expression of genes driven 

from the ARE promoter (Hagemann et al., 2006; Hagemann et al., 2005), which includes many Nrf2 

regulated genes, including H-ferritin and L-ferritin.  When Nrf2 null mice are crossed with AxD KI mice or 

Tg mouse to create a Nrf2 null-Tg or Nrf2 null KI, much of the iron detectable by modified Perls’ staining 

is eliminated (Hagemann et al., 2012).  Additionally and surprisingly, these mice suffer no ill effect from 

Nrf2 elimination.  The ameliorated iron accumulation in the Nrf2-null AxD mouse crosses are a strong 

case for iron expression being downstream of an activated antioxidant response in these mice.   

Possible Initiators of iron accumulation 

Given that the AxD mice show iron accumulation downstream of Nrf2 activation, determining the source 

of the iron in AxD patients is critical to understanding the mechanisms of this disease and for developing 

therapeutic treatments.  Here I discuss ways in which iron might increase in astrocytes, aside from 

defects in influx or efflux mechanisms, as is suspected in Acp.  

Initiators of iron may be factors that impact iron regulatory proteins directly to increase the free iron 

pool, such as nitric oxide, superoxide or those that work through indirect mechanisms, such as 

proteasomal inhibition, depletion of GSH or signaling through HIFs/ HO-1.  Finally it is conceivable that 
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associations of between GFAP and menin1 may impact the increase in iron.  I briefly summarize each of 

these below. 

Proteasomal inhibition  

Proteasome inhibition has been found a factor in AxD (Chen et al., 2007; Cho and Messing, 2009; Tang et 

al., 2010; Tang et al., 2006) The degradation of iron regulatory protein2, (IRP2) is known to occur 

through the proteasome (Iwai et al., 1998).  Experiments which used the proteasome inhibitor 

lactacystin on the dopaminergic neuronal cell line MES23.5 found an early increase in the labile iron 

pool and accompanying cell death after treatment (Li et al., 2012).  Lactacystin treatment also increased 

IRP2 protein, but not IRP1, which is not degraded by the proteasome.  The levels of DMT1, Transferrin 

Receptor, FPN1 and H-Ferritin were analyzed by Western blot, but only DMT1 and TfR1 were increased 

in the same early time period.  Knocking down DMT1, as well as applying chemical inhibitors to DMT1, 

had little effect on the iron increase, but antibodies to Tfr1 did have this effect.  Finally, shRNAi of IRP2 

attenuated the changes seen in Tfr1 and H-ferritin and cell death relative to its ability to decrease 

expression of IRP2.  The authors did report results of shRNAi on total iron levels.  These results suggest 

that a plausible origin for increase of iron I see in AxD patient astrocytes originates from IRP2-mediated 

upregulation of genes involved in influx of iron into cells via proteasomal inhibition. 

Superoxide 

Because superoxide can increase iron in a cell, cellular stresses or events that might increase this oxygen 

radical or inhibit the function of SOD have the potential to increase iron.  While superoxide is not as 

reactive as the hydroxyl radical, it can increase the labile iron pool in two ways (Liochev and Fridovich, 

1994).  First, it can release iron stored in ferritin, adding to the labile iron pool and therefore making it 

immediately available for the Fenton reaction (Biemond et al., 1984; Liochev and Fridovich, 1994).  

Second, hydroxide also releases iron from the iron-sulfur cluster of aconitase inactivating it (Liochev and 
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Fridovich, 1994).  As with ferritin, this produces an immediate increase in the labile iron pool, but 

additionally, the inactivation of aconitase, through a conformational change, converts this protein to IRP 

1, which binds iron regulated elements (IREs) on a group of mRNAs, many of which are involved in iron 

metabolism (as reviewed by Tong and Rouault, 2007).  For example, mRNA for FPN1 and L-ferritin and 

H-ferritin both contain an IRE on their 5’ UTR to which IRP1 binds, inhibiting translation.  The opposite 

effect is elicited by IRP1 interaction with the IRE(s) on the 3’ UTRs of mRNA transcripts for DMT1 and 

transferrin receptor (see Figure C) (as reviewed byRouault, 2006).  Therefore, the generation of the 

superoxide radical can cause an increase in the labile iron pool. 

Nitric oxide 

Nitric oxide promotes constitutive activation of IRP1, by modifying its iron-sulfur cluster (Soum and 

Drapier, 2003).  Both ROS and reactive nitrogen species (RNS) have been reported to bind IRP1, resulting 

in constitutively increased IRP1 binding that may result in reduced FPN1 and ferritin.  It also results in 

increased TfR1 protein and DMT1 levels and thus increases the cellular labile iron pool.  In cell culture IL-

1beta treatment of primary human astrocytes increases the expression of inducible nitric oxide 

synthetase (Jana et al., 2005), and therefore injury or inflammatory conditions produced by bacterial or 

viral infection where this cytokine may be released could trigger an influx of iron into astrocytes.  Under 

normal circumstances this might be tolerated while the cell adapts and recover.  However AxD 

astrocytes, under the stress of proteasomal inhibition might both inhibit the proteolytic processing of 

the increased pool of oxidatively modified proteins, and additionally suffer additional proteasomal 

inhibition from this pool.  

Heme Oyxgenase 1 (HO-1) 

Iron accumulation in the mitochondria of aging astrocytes occurs as a by-product of HO-1-mediated 

degradation of heme, which is caused by oxidative challenge of astrocytes (Schipper, 2004).  Increases in 

http://europepmc.org/abstract/MED/15683721/?whatizit_url_gene_protein=http://www.uniprot.org/uniprot/?query=IL-1beta&sort=score
http://europepmc.org/abstract/MED/15683721/?whatizit_url_gene_protein=http://www.uniprot.org/uniprot/?query=IL-1beta&sort=score
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HO-1 occur as a result of the hypoxia inducible factor 1, under hypoxic conditions or other conditions of 

oxidative stress.  With respect to our results, it is unclear if there is iron accumulation in the 

mitochondria of AxD astrocytes.  

GSH-depletion  

In dopaminergic N27 cells, inhibiting GSH by using buthionine sulfoxamine (BSO), an inhibitor of γ-

glutamyl-cysteine ligase (GCL), the rate-limiting factor in de novo glutathione synthesis, increased the 

labile iron pool.  Interestingly, this increase was found independent of either IRP1/IRP2 or hypoxia 

inducible factor (HIF) induction, but was found dependent on H2O2 and protein synthesis (Kaur et al., 

2009).  GSH is a major cellular antioxidant and has many roles in cellular homeostasis (Arrigo, 1999; 

Cotgreave and Gerdes, 1998; Dringen et al., 2000).  It could be depleted through conditions of intense 

oxidative stress of many sources.  Additionally because it detoxifies HNE through its conjugation to 

modified lipids, its depletion could also occur after/during lipid peroxidation (as reviewed by Valko et al., 

2005).  GSH is also important to provide reducing power in the cell, so is under especially high demand 

when a cell is uses glycolysis instead of aerobic respiration.  Any factors that might singly or together 

increase the demand for GSH might act to increase iron.  

GFAP – Menin interactions may impact iron status of cells 

GFAP interacts with a number of non-structural proteins, one is a protein known as menin which is 

encoded by the tumor suppressor gene, multiple endocrine neoplasia type 1 (MEN1) (as reviewed by 

Wu and Hua, 2011).  By GST pull-down analysis and co-immunoprecipitation experiments, Menin was 

found to associate with intermediate filaments GFAP and vimentin in glioma cells (Lopez-Egido et al., 

2002).  The head domain of these proteins was found essential to the interaction, and 

immunofluorescence studies showed endogenous menin to aggregate with GFAP and vimentin when 

the IF network was disrupted with overexpression of tail-less GFAP (Lopez-Egido et al., 2002).  GFAP and 
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vimentin are hypothesized to sequester menin at the S and early G2 phases of the cell cycle (Lopez-

Egido et al., 2002). 

As a tumor suppressor, Menin represses cell proliferation and cell cycle in multiple ways and also 

interacts with transcription factors, such as, NF-κB, PPARγ and VDR, to induce or suppress gene 

transcription (as reviewed by Wu and Hua, 2011).  Menin also suppresses the activity of the AP-1 

transcription factor JunD (Naito et al., 2005), known to interact with the cis antioxidant response 

elements (ARE) on 5’ untranslated regions of genes involved with antioxidant response.  Because menin 

has the potential to affect such a wide range of transcription factors, it is possible that modification of 

its normal activity, through aberrant interactions with these two intermediate filaments might influence 

gene transcription that could affect iron.  In any case, if GFAP/Vimentin are impacting Menin’s normal 

transcriptional interactions these might increase as these intermediate filaments become more 

numerous or more altered. 

Iron begets iron – positive feedback 

In addition to generating the hydroxyl radical through the Fenton reaction, Fe2+ can react with 

molecular oxygen in the Earth’s ubiquitously aerobic environment to produce Fe3+ and superoxide 

(Fig A, equation 4) (as reviewed by Valko et al., 2005).  Superoxide can immediately increase the labile 

by extracting iron from ferritin and from the iron-sulfur cluster of aconitase, however this second action, 

through activation of IRP1, can additionally impact the translation of iron regulatory proteins in a way 

that increases overall free iron in a cell, despite its iron status. (See Superoxide, above for mechanism.)  

Activation of signaling pathways by iron 

The transcription factors NFkB, AP-1 and p53 are all sensitive to redox active metals, however the most 

significant and sensitive to activation are the NFkB and mitogen-activated protein (MAP) kinase/AP-1 (as 

reviewed by Valko et al., 2005).  NFkB primarily mediates the inflammatory response, while the AP-1 is 
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involved in cell growth and differentiation.  The p53 transcription factor serves as a guardian of a critical 

cell-cycle checkpoint and inactivation of p53 allows the uncontrolled cell divisions that occur in human 

cancer (as reviewed by Meplan et al., 2000).  Notably, because GFAP has both AP-1 and NFkB elements 

on its promoter (Pennypacker et al., 1994; Rossi et al., 2005), an increase in iron-mediated ROS may 

increase GFAP, contributing to a feed-forward activation of the disease progression. 

Of note is that HNE activates an antioxidant response.  Treatment of optic nerve head astrocytes with 

HNE induces the expression of Nrf2, which induces the expression of antioxidant response genes, 

including glutathione S-transferases (Malone and Hernandez, 2007).  This enzyme catalyzes the 

conjugation of GSH to lipid adducts, thereby detoxifying them (Di Ilio et al., 1986). 

Iron and oxidative stress in other neurodegenerative disorders 

With the addition of iron as a component of Rosenthal fibers, there are similarities not only between 

these protein inclusions and those in Acp, but I also add what may be an important component to list of 

similarities between Rosenthal fibers and the extracellular plaques of Alzheimer disease and Lewey 

bodies of Parkinson’s disease.  Fe3+ iron joins, HNE, the heat shock proteins HSP27 and alpha B-

crystallin and ubiquitin as components of membraneless protein inclusions (Castellani et al., 1998; 

Castellani et al., 2000; Head et al., 1993; Hirsch et al., 1991; LeVine, 1997; Renkawek et al., 1993; Sayre 

et al., 1997; Shinohara et al., 1993; Tomokane et al., 1991; Yoritaka et al., 1996).  Because iron-mediated 

oxidation reactions have been implicated in the pathogenesis of these other disorders, it is imperative 

that we begin to widen our view and learn not only from Acp (as discussed above), but from the 

extensive research that has been conducted over many years on Alzheimer disease and Parkinson’s 

disease and consider iron as a potential damaging factor in AxD. 
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Iron potentiates AxD pathology – A Model  

We found aberrantly high levels of iron in astrocytes of two AxD type I patients.  Though I have no direct 

evidence, I propose that iron-induced oxidative stress contributes to the accumulation of GFAP and 

proteasomal inhibition in AxD.  Though I feel iron is important to the formation of protein 

aggregates/Rosenthal fibers in AxD, we have left this out of the model for the sake of simplicity – 

protein aggregates/Rosenthal fibers may be implied by “proteasomal inhibition.” 

I propose the following simplified model for the potentiation of AxD pathology by iron-induced ROS in 

astrocytes (Figure 5):  First, as demonstrated by work in our lab, and supported by work in others, 

mutations in GFAP and accumulation of GFAP inhibit the proteasome (Chen et al., 2011; Cho and 

Messing, 2009; Tang et al., 2010; Tang et al., 2006), which initiates the JNK/p38 stress pathway, thereby 

activating AP-1 transcription factors that can increase GFAP and in doing so, generate a positive 

feedback loop (Tang et al., 2006).  An increase in the labile iron pool may occur as a result of 

proteasomal inhibition (Li et al., 2012) and/or may additionally increase through other means such as 

GSH depletion, oxidative or nitrosative stressors, or the interaction of GFAP with menin (Lopez-Egido et 

al., 2002). Next, free iron produces ROS through the Fenton reaction.  Fourth, ROS damages 

biomolecules such as DNA, lipids and proteins and the lipid peroxidation product HNE additionally may 

damage proteins. Finally three positive feedback loops are enacted by ROS:  (1) excessively oxidatively 

modified proteins can exacerbate proteasomal inhibition, (2) iron-mediated ROS activates the 

transcription factors, NFkB and AP-1, which can additionally increase GFAP (Brambilla et al., 2005; 

Pennypacker et al., 1994), and subsequently inhibit the proteasome, and (3) hydroxide radical releases 

iron from proteins and activates IRP1, additionally increasing free iron pool. 

Conclusion 

In this chapter I contribute to the increasing body of work which suggests there is oxidative stress 

involved in the pathological manifestations of AxD.  My histological examination of the CNS of two AxD 

http://www.google.com./search?hl=en&biw=1366&bih=508&q=nitrosative+stress&spell=1&sa=X&ei=Fsp1UYKiEYXG0AGxoYHACQ&ved=0CCsQvwUoAA
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patients found Fe3+ iron and ferritin accumulated in astrocytes, where normally this occurs in 

oligodendrocytes.  This furthers work from the Messing lab that found Fe3+ and ferritin increased in 

astrocytes in AxD KI and Tg mice (Hagemann et al., 2006; Hagemann et al., 2005; Hagemann et al., 

2012).  Additionally, I found FPN1 and CP abundantly localized in cell bodies of astrocytes in patient 

tissue. 

In this chapter I note that iron accumulation in AxD patient astrocytes is comparable to that found in 

astrocytes in Acp.  Protein inclusions in these cells are strikingly similar.  Because the clinical 

manifestations of Acp are thought to stem from iron-mediated oxygen radical damage (as reviewed by 

Kono, 2012), I propose that the iron accumulation in AxD patients is likely to cause oxygen radical 

generation and contribute to the clinical manifestations of AxD.  
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Chapter 4 Figures 

Figure A. Iron and Free Radicals 
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Figure B.  Transferrin Cycle   

Developing erythroid cells, as well as most other cell types, acquire iron from plasma Tf.  Iron-

loaded holo-Tf binds with high affinity to TfR1 on the surface of cells, and the complex undergoes 

endocytosis via clathrin-coated pits.  A proton pump promotes acidification of the endosome to pH 

5.5, triggering the release of Fe3+ from Tf that remains bound to TfR1. The ferrireductase STEAP3 

reduces Fe3+ to Fe2+, which is transported across the endosomal membrane by DMT1 to the 

cytosol or, possibly, directly to mitochondria in erythroid cells.  Following the release of iron, the 

affinity of Tf to TfR1 drops ~500-fold, resulting in its dissociation.  In the final step of the cycle, apo-

Tf is secreted into the bloodstream to recapture Fe3+.  (Wang, 2001 Biochm. J). 
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Figure C. IRP1 and IRP2 bind iron responsive elements  
 

 

Regulation of ferritin (a) and transferrin (b) mRNAs by high (+Fe) and low (-Fe) iron availability.  
Under +Fe conditions iron regulatory proteins (IRPs) are unavailable to bind the iron response 
element (IRE) either due to conformational change (IRP1) or oxidative modification and 
degradation (IRP2). This increases ferritin synthesis and inhibits TfR synthesis. (Adapted from 
Rouault, 2006 . Nat. Chem.Biol)  
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Figure 1. Immunohistochemical profile of Fe3+ in AxD patient autopsy tissue  
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(A and B)  Subcortical white matter (left of arrowheads) and adjacent cortex (right of arrowheads) of 

control (A) and AxD R239H (B) patient.  Note in (B) the abundance of positively stained, globular 

Rosenthal fibers in white matter.  The subcortical white matter is examined at higher magnification in 

control (C) and R239H (D-E) patient tissue.  In control patient (C), iron staining appears in cells with small 

nuclei, characteristic of oligodendrocytes (black arrows) and also in blood vessels (BV).  R239H AxD 

patient (D) shows positive staining for Fe3+ iron in Rosenthal fibers around a blood vessel (BV) and 

throughout the white matter.  Rosenthal fibers (arrow heads) are seen staining strongly for eosin (bright 

pink) in hematoxylin and eosin stain of AxD R239H patient (E).  Pial surface (open arrowheads) is 

examined (F and G).  AxD R239H patient shows abundant Rosenthal fibers positively stained for Fe3+ 

iron lining the pial surface (G) and these can be seen in more detail (arrowheads) at higher magnification 

(H). Note Rosenthal fibers surrounding a nearby blood vessel (BV).  In the brainstem of a AxD R416W 

patient there is intense Fe3+ iron staining as seen at low magnification(I), though even here Fe3+ 

positive astrocytes can be detected (I, blue arrowheads). At higher magnification, astrocytes in the 

brainstem can be seen filled with Fe3+ iron (J, blue arrowheads).  
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Figure 2. Ferritin accumulates in astrocytes of R239H AxD Patient 

 

 

In control patient (A), an antibody with reactivity to both H and L ferritin stains oligodendrocytes (black 

arrows) and blood vessels.  In AxD R23(H patient (B), ferritin staining is principally in astrocyte cell 

bodies (blue arrows) and can be seen in close association with the periphery of Rosenthal fibers (black 

arrowheads), which indicates ferritin is within astrocyte processes which contain these cytoplasmic 

inclusions.  Ferritin can also be observed in small cells resembling oligodendrocytes (black arrows).  
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Figure 3. Ferritin immunostaining in one year old mouse 

 

 

Immunofluorescence for GFAP (red) and Ferritin (green) in Str. oriens in hippocampus of wild type (WT) 

(A) and R236H KI GFAP (B) mouse.  (A) WT shows immunostaining in what is likely an oligodendrocyte 

cell body (white arrow).  (B) AxD mouse, in contrast, displays ferritin immunostaining in much of the cell 

body and distal fine processes in several GFAP+ astrocytes (white arrows).  Some focal areas of GFAP 

immunoreactivity are also positive for ferritin (small blue arrows). 
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Figure 4. Ferroportin and ceruloplasmin immunohistochemistry in AxD patient tissue 
 

 

In control tissue (A), oligodendrocytes (black arrows) and astrocytes (blue arrowhead) cell bodies are 

positive for the iron transporter FPN1.  In R416W AxD tissue (B), however there is intense accumulation 

of FPN1 in cell bodies of many astrocytes (B, blue arrow heads) some binucleated (B, *). Cells resembling 

oligodendrocytes in AxD R416W appear to express less ferroportin than do control (B, black arrows). In 

AxD R236H tissue (C) a high overall immunostain for ferritin is seen in greatly degraded tissue.  Several 

Rosenthal fibers stain for FPN1 (black arrowheads), indicating the FPN1 immunoreactivity is in an 
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astrocyte process.  Few cells can be clearly distinguished, but an astrocyte can be seen (C, blue 

arrowhead).  In control tissue (D), Ceruloplasmin (Cp) is seen in or around many different types of cells 

that are difficult to identify without counter staining.  In R416W patient (E), Cp accumulates in the cell 

bodies of multinucleated astrocytes (white arrows). 
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Figure 5. Iron in astrocytes may potentiate AxD pathology – a model 
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(1) Mutations in GFAP and accumulation of GFAP inhibit the proteasome, proteasomal inhibition 

activates the JNK/p38 stress pathway, thereby activating AP-1 transcription factors, which can increase 

GFAP transcription generating a positive feedback loop.  This primary destructive mechanism is 

potentiated by the (2) increase of iron into the labile iron pool, which might occur primarily through 

proteasomal inhibition and/or which might additionally occur through other means such as GSH 

depletion, oxidative or nitrosative stress, or the interaction of GFAP with menin.  (3) Iron through the 

Fenton reaction produces ROS.  (4) ROS damages biomolecules such as DNA, lipids and proteins, and the 

lipid peroxidation product, HNE, additionally damages proteins.  Finally three potentially destructive 

positive feedback loops are enacted by ROS:  (A) excessively oxidatively modified proteins exacerbate 

proteasome inhibition, (B) iron-mediated ROS activates NFkB and AP-1 transcription factors, which 

increase GFAP transcription, further inhibiting the proteasome, and (C) ROS releases iron from proteins 

and also can directly activate iron regulatory proteins, thereby increasing the labile iron pool. 

  

http://www.google.com./search?hl=en&biw=1366&bih=508&q=nitrosative+stress&spell=1&sa=X&ei=Fsp1UYKiEYXG0AGxoYHACQ&ved=0CCsQvwUoAA
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Chapter 5 

Conclusion  
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In this thesis work I have conducted a largely immunohistological investigation of AxD patient autopsy 

tissue and that from  model mice, focusing on factors that might provide insight into the pathological 

manifestations of AxD, with particular attention to those factors which might contribute to the 

de/dysmyelination in type I patients. In this thesis I report several novel findings in AxD patients and in 

Tg/KI model mice.  In this final chapter, I will briefly summarize the findings and salient discussion points 

from each of the three data chapters.  I additionally discuss relevant points with respect to Chapter 4 

and oxidative stress.  Finally, I briefly suggest future directions that arise from my findings. 

AxD astrocytes are morphologically and ER stressed 

Previous AxD research has demonstrated that astrocytes in AxD are under many forms of stress, 

including proteasomal inhibition imparted by mutant and excess GFAP (Chen et al., 2011; Cho and 

Messing, 2009; Tang et al., 2010; Tang et al., 2006).  In Chapter 2, I explored other forms of stress that 

may affect an astrocyte’s ability to function.  In the hippocampus of the Tg/KI I found that profound 

morphological changes accompany large increases in GFAP expression in astrocytes (Chapter 1, Fig 1).  

These astrocytes have hypertrophied processes and some appear greatly retracted or “collapsed,” 

especially in the str. lac.-mol. (Chapter 1, Fig 2A and B).  Many have binucleated or otherwise abnormal 

nuclei (Chapter 2, Fig 2B). 

I gained additional insight on these the morphological changes observed in vivo by studying primary 

astrocytes from AxD Tg mice.  I found that in some astrocytes the expression of the hGFAP transgene 

has greatly impacted the localization of GFAP+ filaments.  Large perinuclear rings of GFAP 

immunostaining can be observed (Chapter 2, Fig 3D).  These GFAP inclusions are surrounded by alpha 

tubulin, indicating that both the intermediate filament and microtubule networks are misplaced 

(Chapter 2, Fig 3).  In these same cells I also find that the Golgi apparatus appears disrupted (Chapter 2, 

Fig 4).   
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Finally, I examined endoplasm reticulum (ER) stress and the unfolded protein response in AxD.  I report 

the novel finding in that there is greatly increased expression of the ER chaperone BIP/Grp78 in 

astrocytes in patient tissue (Chapter 2, Fig 5).  I confirm this elevation of BIP expression in astrocytes in 

the Tg/KI mouse and found it coincides temporally and spatially with aberrant appearing astrocytes 

(Chapter 2, Fig 6 and 7).  In addition to BIP, I found another marker for the unfolded protein response, 

CHOP, in a subset of astrocytes in the Tg/KI mice (Chapter 2, Fig 7).   

CD44, Hyaluronan and P-ERM are Increased in AxD  

In Chapter 3 I first explored levels of CD44, a protein normally found in fibrous astrocytes of the white 

matter and therefore presenting a possible relevance to myelin and myelination.  Hagemann and 

colleagues had reported in results of a microarray analysis of the Tg mouse olfactory bulb that CD44 

mRNA was increased +5.0 fold at 3 weeks and +14.0 fold at 4 months.  I furthered this work, finding 

immunohistochemical staining of CD44 greatly increased in the CNS of AxD patient tissue (Chapter 3, Fig 

1) and dramatically increased in the hippocampus of Tg/KI AxD mice by both western blot and 

immunofluorescence (Chapter 3, Fig 2).  I noted that CD44 expression in the mouse coincided spatially 

and temporally to increases in the levels of GFAP.   

CD44 is a receptor for the extracellular matrix molecule hyaluronan.  I found remarkable increases in the 

amount of hyaluronan that was recognized by a biotinylated hyaluronan binding protein in the Tg/KI 

mouse.  I note this finding may be particularly important in the pathogenesis of AxD because it has been 

found to be inhibitory to oligodendrocyte precursor cell differentiation (Back et al., 2005; Sloane et al., 

2010). 

Ezrin, radixin and moesin (ERM) proteins link CD44 and other cell surface proteins to the cytoskeleton.  I 

report novel findings with respect to unusual expression of P-ERM in astrocytes in AxD patient tissue 
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(Chapter 3, Fig 6D and E) and the 1 year old KI mice (Chapter 3, Fig I-K), though this did not necessarily 

coincide with expression of CD44 (Chapter 3, Fig 7G). 

Iron is a component of Rosenthal fibers and is found in astrocytes of AxD patients 

In Chapter 4 I explored iron (Fe3+) and several related proteins in two AxD type I patients and one 

control patient.  The Messing lab found immunohistochemical expression of iron and ferritin increased 

in astrocytes in AxD KI and Tg mice (Hagemann et al., 2006; Hagemann et al., 2005; Hagemann et al., 

2012).  I further explored this essential transition metal in AxD patient autopsy tissue due to its 

importance to oligodendrocytes and myelination (as reviewed by Todorich et al., 2009) and because of 

its potential to generate destructive ROS (as reviewed byValko et al., 2005).  By enhanced Perls’ stain we 

found Fe3+ in Rosenthal fibers in the white matter of one AxD patient (Chapter 4, Fig 1B, D and H) and in 

the brain stem of another AxD patient, found Fe3+ staining completely filling astrocyte cell bodies 

(Chapter 4, Fig 1I and J).  In the control patient white matter, Fe3+ was only found in oligodendrocytes 

and blood vessels (Chapter 4, Fig 1A and C).  Using tissue from the same patient and brain region where I 

found Fe3+ in Rosenthal fibers, I found dramatic increases in the iron storage protein ferritin throughout 

the cell bodies of astrocytes, but this antibody did not react to Rosenthal fiber cores (Chapter 4, Fig 2B).  

I note that the literature reports pathological accumulation of iron in astrocytes in the 

neurodegenerative disorder aceruloplasminemia (Kaneko et al., 2002b; Oide et al., 2006), caused by a 

loss-of-function mutations in the ferroxidase ceruloplasmin.  I note the striking similarities between 

Rosenthal fibers and the protein inclusions in that disease which are also located in perivascular endfeet 

of astrocytes, some of which contain abnormal nuclei, similar to those in AxD patients (Oide et al., 

2006).  In both aceruloplasminemia and AxD, membraneless, electron dense protein inclusions contain 

Fe3+, the lipid peroxidation product HNE, and GFAP (Castellani et al., 1998; Kaneko et al., 2002b; Oide et 

al., 2006).  The literature suggests iron-mediated oxygen radical damage plays a central role in the 

neurodegeneration of the disease (as reviewed by Kono, 2012). 
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Iron-mediated oxidative stress may be an important contributor to the pathological manifestations of 
AxD 

Knowing these things about aceruloplasminemia, and greatly supported by research in AxD which 

suggests oxidative stress may play a role in its pathology (Castellani et al., 1998; Cho and Messing, 2009; 

Hagemann et al., 2006; Hagemann et al., 2005; Castellani, 1997), especially that which suggests this is an 

early event (Hagemann et al., 2005, Wang et al., 2011), I suggest that iron-mediated oxidative stress in 

astrocytes plays a significant role in AxD pathogenesis.  In Chapter 4, I described ways that proteasomal 

inhibition may interfere with degradation of oxidatively modified proteins and that oxidatively modified 

proteins may exacerbate proteasomal inhibition.  Finally, I describe three potential positive feedback 

loops that may be enacted by ROS:  (1) excessively oxidatively modified proteins exacerbate 

proteasomal inhibition, (2) iron-mediated ROS activates NFkB and AP-1 transcription factors increase 

GFAP levels that inhibit the proteasome and (3) ROS releases iron from proteins and activates iron 

regulatory proteins, thereby increasing the labile iron pool. 

To my knowledge, oxidative stress was first proposed as to be a factor in AxD by Rudy Castellani in 1997, 

before there was evidence that mutations in GFAP were the basis of most AxD cases.  Castellani and his 

colleagues found advanced glycation end products (AGEs) in Rosenthal fibers (Castellani et al., 1997).  

Castellani compared Rosenthal fibers to Lewy bodies in Parkinson disease and extracellular plaques in 

Alzheimer disease because they both contain HNE, AGEs, and the heat shock proteins alpha B-crystallin 

and HSP27 (Castellani et al., 1998).  Castellani points out that alpha B-crystallin is major component of 

Rosenthal fibers (Goldman and Corbin, 1988; Iwaki et al., 1989) and has a high lysine content, making it 

susceptible to AGE and HNE modifications.  He suggests that these post-translational modifications to 

proteins, coupled with oxidative stress, may be the common element in inclusion formation between 

Rosenthal fibers, Lewey bodies and plaques.  In this work I add iron to the list of commonalities between 

Rosenthal fibers and these inclusions (Chapter 4, Fig 1B, D, G, H) (Castellani et al., 1998; Castellani et al., 
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2000; Head et al., 1993; Hirsch et al., 1991; LeVine, 1997; Renkawek et al., 1993; Sayre et al., 1997; 

Shinohara et al., 1993; Tomokane et al., 1991; Yoritaka et al., 1996).  The findings I present in Chapter 4 

support Castellani’s suggestion that oxidative stress and post-translational modifications play a role in in 

Rosenthal fiber formation (Castellani et al., 1997).  However, as is thought to occur in other 

neurodegenerative diseases (Halliwell, 2006), I suggest proteasomal inhibition caused by mutations in 

GFAP or excess GFAP play a causative role in the accumulation of these post-translationally modified 

proteins. 

Future Directions 

Iron 

Iron accumulation in astrocytes – is it a universal feature of AxD? 

The most potentially important finding of the work I have presented in my thesis is the determination of 

Fe3+ in Rosenthal fibers and the pathological accumulation of iron and ferritin in astrocytes of AxD 

patients.  If this iron accumulation in astrocytes is found a universal feature in all patients, than it 

positions iron-generated oxidative stress within astrocytes and suggests many pathological 

consequences for astrocytes and the cells surrounding them.  Critically, antioxidant and chelation 

therapies may be plausible treatments where none currently exist.  Less optimistically, the iron in AxD 

astrocyte that we found might represent an end stage and untreatable event or and furthermore offer 

little insight on early disease mechanisms.  

In any case, an extremely important future direction for AxD research is to conduct a wide(r)-scaled 

histochemical characterization of Fe3+ and ferritin in, at minimum, both infant/type I and adult/type II 

patients, and age matched controls.   

If this analysis is conducted it would be important to obtain sections from common or similar brain 

region from each patient analyzed, if available.  Based on the results of my initial experiments presented 
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in Chapter 4, I would suggest at minimum looking at three sections.  First, I would examine a cortical 

section that includes subcortical WM.  This will be important to assess iron in astrocytes and RFs in this 

severely affected region in type I patients.  Additionally, results from the experiments presented here 

suggest this is a fruitful location with respect to iron pathology.  Second, and along these same lines, I 

would use sections from the brain stem, because this is a region that shows pathology by MRI, especially 

in the adult (Prust et al., 2011) and children have clinical presentations such as swallowing disorders that 

originate from damage to this region.  Further, in AxD there have been reports of lymphocyte invasion in 

the brain stem (Rankin et al., 1977; Russo et al., 1976; Soffer and Horoupian, 1979; Towfighi et al., 

1983).  It is possible that the massive accumulation of iron we saw in the R416W patient may have 

stemmed from an event separate from mutations in GFAP.  In any case, analyzing a wider sample of 

patient brain stem tissue will help us understand this unusual accumulation of iron.  A third section I 

would recommend is one from the substantia nigra or another high iron area in order to understand 

what occurs to AxD astrocytes in a setting where there is “normally” high levels of iron.  One report 

suggests that iron in the substantia nigra increases 10-fold between the first year of life and the age of 

40 (Zecca et al., 2001).  

What will the result of this experiment yield?  

The results of this study will tell us if iron accumulation in astrocytes is a universal feature of AxD.  If this 

is the case it suggests one of two things.  First, that pathological accumulation of GFAP mediates 

subsequent iron accumulation, perhaps through the effects of proteasomal inhibition on IRP2 (Li et al., 

2012).  This conclusion may be supported by the iron accumulation in astrocytes that is observed in both 

the AxD Tg and KI mice, presumably in the absence of a genetic or environmental trigger.  Second, if iron 

accumulation is identified as a common pathological feature of all AxD patients, it could also suggest 

that an iron trigger may be necessary for the phenotypic expression of AxD.  
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If iron accumulation in astrocytes is not a feature of all astrocytes and Rosenthal fibers in AxD, then it 

suggests that GFAP accumulation alone is not sufficient to cause an accumulation of iron in AxD 

astrocytes.  Based upon the composition of the groups of patients that do and do not have iron 

astrocytic accumulation it might suggest several features of iron accumulation.  For example, if all infant 

onset patients have iron accumulation but adult patients do not it suggests that iron is either a result of 

the severe infant onset phenotype or perhaps that iron is the trigger driving such a phenotype.  

Iron triggering factors  

Questions have been raised regarding the sufficiency of GFAP mutations alone to bring about the 

phenotypic expression of AxD.  A central argument towards this end is the presence of individuals who 

carry mutations in GFAP, yet are asymptomatic and who have been identified in studies of three familial 

AxD cases (Messing et al., 2012b).  If environmental or genetic triggers do play a role in the development 

of AxD, iron could be such a candidate. Identifying potential genetic or environmental triggering factors 

or those that predispose individuals to a more severe phenotype may give us insight on disease 

pathogenesis and suggest preventive or therapeutic strategies.  

Potential genetic triggering factors might include those that impact iron status.  For example, relatively 

common occurring mutations on genes that encode hemochromatosis (Hfe), transferrin and 

ceruloplasmin are known.  These mutations often leave individuals asymptomatic (Bulaj et al., 2000; 

Phatak et al., 2002), however they might trigger an AxD phenotype.  Pre-existing iron pathology has long 

been suggested to be a contributing factor to Alzheimer disease (Goodman, 1953) and a recent studies 

of 160 Alzheimer disease patients and 79 healthy elderly controls analyzed which several common point 

in genes encoding Hfe and transferrin in relation to developing Alzheimer disease and it was determined 

that mutations in Hfe along with associated liver iron abnormalities increased the probability of 

developing this disorder (Giambattistelli et al., 2012).  Genotyping DNA from AxD patients for such 
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common mutations could be likewise fruitful in this respect.  Environmental factors such as head 

injuries, hypoxia ischemia, and infection have been suspected of playing a triggering role in AxD due to 

their ability to increase GFAP in astrocytes; however, if we consider iron as a triggering factor, we might 

look with a different perspective at these same events.  

Therapeutics and Diagnostics 

If iron is determined to be a factor in AxD it presents, not only the treatment potential, in the form 

antioxidants and chelation therapies, it also presents an opportunity to use several MRI techniques in 

diagnosis and potentially, research.  This could yield valuable information about the progression of the 

disease (Bartzokis and Tishler, 2000; Schenck and Zimmerman, 2004). 

 Iron Challenge of Mice – can we induce AxD pathology? 

Another future direction that may stem from this work, and might be further suggested by work 

described above is iron challenging AxD KI and Tg mice.  As mentioned above, if iron pathology in 

astrocytes is determined to be common to all AxD patients, it might suggest that iron is downstream 

from GFAP accumulation.  This is supported by data from the Tg and KI mice, that both show iron in 

astrocytes, yet don’t have spontaneous seizures and do not de/dysmyelinate despite carrying the GFAP 

mutation associated with the most severe AxD phenotype in patients(Hagemann et al., 2006; Hagemann 

et al., 2005; Hagemann et al., 2012).  While there are manifold reasons that might contribute to the lack 

of pathology in mice, this work might suggest that species differences in the ability of mice to favorable 

store iron in a non-reactive form might allow them to remain asymptomatic.  In order to test these 

questions I propose iron challenging mice in an effort to bring about AxD pathology.  Two ways this 

hypothesis might be tested are to first iron challenge the Tg and the KI mice with an excessively high-

iron diet and/or iron injections at a level that is just tolerated by WT mice.  Second, by crossing the KI or 

the Tg mouse with the H-Ferritin+/- mouse (Thompson et al., 2003).  While the H-ferritin null mouse is 

embryotic lethal this mouse develops normally but shows half the normal H-Ferritin of WT mice.  
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Additionally, this mouse shows signs of oxidative stress.  The increase in iron in AxD mice, coupled with 

the decrease in ferritin of these H-Ferritin heterozygous mice, may be sufficient to induce AxD 

pathology.  Other null and heterozygous mice, such as the LCN -/- mouse, might also be crossed with 

AxD mice to determine effects on decreases in iron regulatory proteins and accumulation of GFAP.  
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Chapter 6 

Materials and Methods 
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Mice 

The mouse lines have been previous described:  (1) a transgenic line (Tg 73-7) in which the normal 

human GFAP is expressed in several copies (Messing et al., 1998); (2) a knock-in line (KI – K146B) in 

which one of the GFAP genes bears an R236H mutation (the mouse homologue of one of the most 

common human mutation sites) (Hagemann et al., 2006); and (3) a mouse that contains both several 

copies of the human GFAP and the mutated mouse GFAP, derived from the mating Tg 73-7 and KI R236H 

mice (Hagemann et al., 2006).  The Tg line was initially generated in an FVB background, but the mice 

were crossed into a B6 background over 5 generations before they were used for these experiments.  

The KI line was initially generated in mice with a B6 background.  All animal use was performed under 

the guidelines of the Columbia University Institutional Animal Care and Use Committee.  

Human Tissue 

Tissue was obtained postmortem from cerebral hemispheric white matter of control subjects or AxD 

patients and stored at -80 C.  For immunohistochemistry the tissue was fixed in formalin then embedded 

in paraffin. Immunostaining and Western blot analyses were carried out with fixed and frozen 

(respectively) CNS tissues from Alexander patients with R79C, R239H and two patients with R416W 

mutations.  All AxD cases were diagnosed based on histopathological examination and confirmed by the 

molecular genetic analysis for GFAP mutation.  All were children who manifested the disease as infants 

and expired within the first decade (10 years, 29 months, and 7 years).  All showed typical type I 

pathology for AxD, including severe leukodystrophy and numerous Rosenthal fibers.  All post-mortem 

intervals were less than 10 hours.  Control patient frozen central nervous system tissue for Western blot 

analysis were from two children, one with no neurological disease, 20 months of age, 18 hour 

postmortem interval and the other with Werdnig-Hoffman disease (non-AxD, non-leukodystrophy 

neurological disease without Rosenthal fibers), 22 months, 6 hr postmortem interval.  Control patients 
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for immunohistochemistry were an 8 month old male with congenital heart disease and the above 

mentioned Werdnig-Hoffman disease patient. 

Histology and immunohistochemistry 

Mice were anesthetized with ketamine-xylazine before intracardiac perfusion with 4% 

paraformaldehyde in PBS.  Brains were removed and kept in the fixative for 12 - 16 h (40 C). 40 m 

coronal sections were prepared with a vibratome (Leica VT1000S) and stored in cryoprotectant solution 

at -200 C before usage.  

Primary antibodies were used against: glial fibrillary acidic protein (GFAP): monoclonal (1:1000, G3893, 

Sigma-Aldrich, St. Louis, MO), rabbit polyclonal (1:1000, Z 0334, Dako, Carpinteria, CA), and chicken 

polyclonal (1:500, PCK-591P, Covance, Berkeley, CA); Ferritin: Rabbit polyclonal (1:400, Sigma-Aldrich, 

St. Louis, Mo.); Ferroportin (MTPI): Rabbit polyclonal (1:75 48 hours, Alpha Diagnostics) ; Ceruloplasmin: 

sheep polyclome (1:750); CD44: rat monoclonal (1:150, # 14-0441, eBioscience, Inc. SanDiego, CA) or a 

mouse monoclonal (1:500, #M7082, clone 1485, DAKO, on human sections performed by the 

Departmental Immunocytochemistry laboratory); BIP: goat polyclonal (1:100 Santa Cruz); CHOP: rabbit 

(1:100 Abcam); biotinylated hyaluronan binding protein (1:100 Novus); filamentous actin: rhodamine-

conjugated Phalloidin (1:40 with secondary antibodies). Phospho-Ezrin, Radixin, Moesin (P-ERM) rabbit 

polyclonal (1:400, #3149, Cell Signaling Technologies); Total Ezrin, Radixin, Moesin (P-ERM) rabbit 

polyclonal (1:400, #3142, Cell Signaling Technologies); Moesin, rabbit polyclonal (1:400, #3150, Cell 

Signaling Technologies); Radixin, rabbit polyclonal (1:400, #2636, Cell Signaling Technologies).  Generous 

gifts of  Y 1/2 (1:200 Millipore)  and rabbit GM-130 (1:200 BD) antibodies were provided by Dr. Richard 

Vallee (Columbia University) and goat anti-BIP/Grp78 (1:150, Santa Cruz) by Dr. Phyllis Faust (Columbia 

University).  Secondary antibodies included: anti-mouse Alexa Fluor 488, 594, and 633; anti-chicken 

Alexa Fluor 488, 594, 633; anti-rabbit Alexa Fluor 594; all from goat or donkey (1:300 or 1:600). 
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Double and triple-immunofluorescence:  After blocking with 10% normal goat (or donkey) serum (30 

min, at room temperature (RT)), free-floating sections were incubated in a mixture of primary antibodies 

raised in different species for overnight (40 C). For visualization, Alexa Fluor -conjugated secondary 

antibodies were applied for 1 h at RT. Fluorescent Nissl reagent (NeuroTrace 640/660 deep-red, 1:150, 

Molecular Probes) was used (30 min, RT) for visualization of general histological structure in double 

immunostaining. DAPI (Vector Lab) was used with triple immunostaining. Blocking serum, primary, 

secondary antibodies, and fluorescent Nissl reagent were applied in 0.2 % Triton X-100 in PBS. Sections 

for fluorescent microscopy were mounted on slides in Vectashield (Vector Lab).  To control the 

specificity of immunostaining, primary antibodies were omitted and substituted with appropriate 

normal serum.  Slides were viewed using a Nikon A1R MP confocal microscope.  3D reconstructions 

were generated from stacks of images with confocal microscope software NIS-Elements.  Image analysis 

was performed with the ImageJ 1.32 (NIH, USA). 

Hyaluronidase from bovine testes (Sigma) was prepared in 20 mM sodium phosphate buffer  pH 7.0,  

with 77 mM NaCl, and .1 mg/ml 

at 37C.  Tissue was then rinsed, blocked in BSA and stained 1:100 with biotinylated hyaluronan binding 

protein (Novus). A fluorescent probe conjugated to streptavidin was used to visualize hyaluronan.  

Human sections, 5µm thick, followed the immunostaining protocol described above with the addition of 

antigen retrieval before blocking.  After deparaffinization of sections the tissues were antigen retrieved 

with 0.6% Sodium Citrate buffer pH 6.0 for 30 minutes in a rice cooker, allowed to return to room 

temperature then rinsed and placed in a solution of 0.3% H202 for 10 minutes followed by rinsing.  

Secondaries were species-specific biotinylated antibodies (Vector Laboratories, Burlingame CA).  The 

avidin-biotin immunoperoxidase method with 3,3’-diaminobenzidine tetrahydrochloride was used to 



172 
 

 

visualize bound primaries.  Control sections, immunostained by the procedure, but with the omission of 

primary antibodies. 

Modified Perls’ Stain for Fe3+ iron:  After sections (5.0 µm) were deparaffinized in xylene and 

rehydrated in graded ethanol, sections were then immersed in a solution of 0.03% H2O2 for 30 min., 

then incubated in 2% potassium ferrocyanide in aqueous hydrochloric acid (2%) for 24 hrs. and 

subsequently incubated in 0.75mg/ml 3,3’-diaminobenzidine for 5-10 min (modified from Nguyen-

Legros et al., 1980b). 

BIP/GFAP Positive Cell Counts in Hippocampus  

Confocal (Nikon specifications) stack images of double immunostained hippocampal sections for BIP and 

GFAP (counterstained with Nissl) were used to determine the total number of BIP positive cells that 

were also GFAP positive in the str. lac. and str. rad. of the CA1 subfields in 5 representative non-

consecutive sections throughout the dorsal hippocampus.  BIP positive and GFAP positive cells were 

intensely labeled, which made them easy to identify with equal chance of being counted and only cells 

with clearly outlined nuclei (stained with Nissl or DAPI) were taken into consideration.  The number of 

BiIP positive and GFAP positive cells was determined blindly by a single observer; therefore, counting 

bias was kept to a minimum.  

CD44 and Hyaluronan Binding Protein Optical Density (OD) Measurement  

Double immunostained hippocampal slices for CD44 and HBP (counterstained with Nissl or DAPI) were 

imaged using confocal scanning microscopy (Nikon) at constant settings, recording layers at every 0.5 

μm (1024 x 1024 pixel resolution, observed area 644 x 644 m) and parallel confocal planes were 

superimposed. Using computer-assisted imaging analysis (Image J 1.32j, NIH, USA), I analyzed the 

expression and density of CD44 and HBP labeling respectively at 2 and 4 weeks of age in both Tg/KI and 

WT mice by measuring their optical density (OD) as described previously .  Briefly, the staining was 
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observed throughout the thickness of the section (40 μm).  No differences were observed in CD44 and 

HBP immunoreactivity respectively throughout the thickness of the section in Tg/KI and WT animals; 

hence the changes in OD were used as measure of increased CD44 and HBP expression. The OD was 

calculated from a relative scale of intensity ranging from 0 to 255, with readout of 0 corresponding to 

the area with very low CD44 or HBP expression and 255 corresponding to the densest area of labeling. 

The calibration density was kept constant for measuring all sections to avoid experimental variances. 

CD44 and HBP densities of the str. mol., str. lac. and str. rad. were measured independently and a single 

measurement was obtained from every sub-region in each hemisphere.  Measurements of mean density 

were taken and averaged from each of the three hippocampal layers, as well as the total hippocampus, 

in both the left and the right hemisphere of each slice. The results are shown as CD44 or HBP optical 

density (IOD/pixel).  

Western blots 

The hippocampus was dissected from mice and tissue was either frozen on dry ice and then stored at -

80C until use or lysed directly in ice-cold buffer (Invitrogen product # fnn0011) to which a 10% SDS stock 

had been added to make a 2% SDS solution.  Lysis buffer was supplemented with protease inhibitor 

cocktail tablets and phosphatase inhibitors (HALT, Thermo).  Tissue was digested for 45 minutes on ice 

with regular mechanical disruption with a large-orifice pipette tip, sonicated twice for 3 seconds and 

spun at 14,000 RPM for 10 minutes.  Protein determination of the supernatant was determined with 

Pierce 660nm reagent (Thermo) supplemented with Ionic compatibility reagent (Thermo) as per 

manufacturer’s instructions.  Equal amounts of protein were added to loading buffer and, where noted, 

reducing agent as per manufacturer’s instructions (Invitrogen).  The proteins were subjected to SDS-

PAGE using NuPage 4-12% Tris-Bis gels and transferred to nitrocellulose membranes.  The transfer 

membrane was blocked with 5% skimmed milk in TBS (50 mM Tris-HCl, pH 7.5, 150 mM NaCl) for one 

hour at room temperature and then incubated overnight at 4oC in 5% skim milk in 0.1% Tween 20 in TBS 
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(TBS-T buffer)  the following primary antibodies used rat anti-CD44 (IM7) for mouse 1:4000 anti-rabbit 

GFAP anti-GAPDH (1:3000 Millipore)  Blots were then washed 3x in TBST and then  incubated in blocking 

solution with, for patient tissue westerns, horseradish-peroxidase conjugated rabbit or mouse 

secondary  (1:1000) Pierce Biotechnology, Rockford, IL) using SuperSignal West Dura Extended Duration 

substrate (Pierce ) or Licor fluorescent probes for mouse tissue and cell culture. 

Cell culture media: Unless otherwise stated, all media reagents were purchased from Sigma (St. Louis, 

MO).  DMEM (Invitrogen, Carlsbad, CA) was supplemented with 10% FBS (Invitrogen, Carlsbad, CA), and 

100 g/ml penicillin/streptomycin (Invitrogen).  

Cell Culture:  Mixed glia cultures were generated in a modified method of McCarthy and De Vellis 

(McCarthy and de Vellis, 1980).  The forebrains of P0- P2 mouse pups were removed, stripped of 

meninges, and mechanically and enzymatically dissected in a modification of a procedure described 

elsewhere (Gensert and Goldman, 2001).  Briefly, tissue was shredded using forceps and digested in a 

solution containing 0.125% trypsin (Invitrogen), 20U/ml papain (Roche Applied Science, Indianapolis, 

IN), and 285U/ml DNAse (Sigma, St. Louis, MO) at 37oC for 30 min. in an incubator (0.5% CO2).  

Undigested tissue was transferred to a falcon tube with 5 ml. of culture media and triturated with a 5 ml 

pipet.  The single cell suspension was centrifuged at 800rpm for 10 minutes and the cell pellet 

resuspended in cell culture media and plated at one brain per 25cm2 flask.  Media were changed every 

2-3 days. When cells had reached 80% confluence in 7-10 days, cells were shaken at 160 RPM for 18 

hours followed by and one hour at 190 RPM and then treated for 1-4 hours with 50 µm leucine methyl 

ester to selectively kill microglia and rinsed twice with DMEM warmed to 37 deg.  Cells were allowed to 

recover overnight in media before sub-plating for immunostaining on coverslips in 24 well plates. Briefly, 

media was aspirated, 3ml of 0.03% Trypsin was added and cells were incubated at 36oC for 2-5 min. 

When cells had lifted, trypsin was neutralized with an equal amount of 10% horse serum in DMEM and 
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cells suspended in solution were then collected, and centrifuged at 1000xg for 10 min and replated at a 

density of 4x104 cells/cm2.  All animal experiments were performed under the guidelines of the 

Columbia University Institutional Animal Care and Use Committee.   

Immunofluorescence Staining of Primary Astrocytes:  Cultured cells grown on in 24 well dishes on 

coverslips were rinsed twice with PBS and fixed in a 4% paraformaldehyde (PFA) solution or with ice-

cold methanol for 7 minutes for 20 min at RT stored in PBS at 4oC until use. Cells were blocked with 10% 

donkey serum (Sigma) with 0.3% Triton-X 100 (Sigma) for one hour at room temperature and all primary 

antibodies (see above) were applied overnight at 4C, followed by washes in PBS (15min x 2) and 

secondary antibodies at one hour at room temperature in the dark  

Statistical Analysis   

Data are expressed as mean ± SEM.  Two-way ANOVA for multiple groups, with Tukey test, and Pearson 

correlation coefficient were used as appropriate.  p < 0.05 was considered significant.  Quantification 

was performed using Image J (NIH) and statistics were performed in GraphPad. 
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