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Abstract

Background: Fetal hemoglobin level is a heritable complex trait that strongly correlates swith the clinical severity of sickle
cell disease. Only few genetic loci have been identified as robustly associated with fetal hemoglobin in patients with sickle
cell disease, primarily adults. The sole approved pharmacologic therapy for this disease is hydroxyurea, with effects largely
attributable to induction of fetal hemoglobin.

Methodology/Principal Findings: In a multi-site observational analysis of children with sickle cell disease, candidate single
nucleotide polymorphisms associated with baseline fetal hemoglobin levels in adult sickle cell disease were examined in
children at baseline and induced by hydroxyurea therapy. For baseline levels, single marker analysis demonstrated
significant association with BCL11A and the beta and epsilon globin loci (HBB and HBE, respectively), with an additive
attributable variance from these loci of 23%. Among a subset of children on hydroxyurea, baseline fetal hemoglobin levels
explained 33% of the variance in induced levels. The variant in HBE accounted for an additional 13% of the variance in
induced levels, while variants in the HBB and BCL11A loci did not contribute beyond baseline levels.

Conclusions/Significance: These findings clarify the overlap between baseline and hydroxyurea-induced fetal hemoglobin
levels in pediatric disease. Studies assessing influences of specific sequence variants in these and other genetic loci in larger
populations and in unusual hydroxyurea responders are needed to further understand the maintenance and therapeutic
induction of fetal hemoglobin in pediatric sickle cell disease.
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Introduction

In sickle cell disease, higher fetal hemoglobin (HbF) levels

diminish de-oxygenated sickle globin polymerization in vitro [1]

and reduce the incidence of disease morbidities in vivo [2,3]. HbF

is a heritable complex trait [4,5]. Only three genetic loci have been

validated as strongly associated with higher HbF in sickle cell

disease: the 59 beta globin locus (HBB) [5,6,7,8,9], although not

the sickle mutation; the BCL11A repressor of HbF [5,6,7,8,10,11];

and the HS1L-MYB intergenic region [5,6,8,12]. Other candidate

regions have not been confirmed [10,13,14].

Hydroxyurea is the only approved pharmacologic therapy for

sickle cell disease. Its clinical and laboratory effect is understood to

result largely from enhanced HbF expression [3,15,16], although

induction occurs to a highly variable extent [3,4,16,17,18].

Children generally have higher baseline HbF levels than adults

[13,18] and a stable [15] and overall more robust HbF response to

hydroxyurea [13,18,19]. Hydroxyurea-induced HbF is also

a heritable trait [4] that generally correlates with baseline levels

[18,19,20]. To date, only limited reports have examined relation-

ships between hydroxyurea-induced HbF and specific genetic

polymorphisms in adults with sickle cell disease [13,21] and did

not explore the recently identified major loci of interest. Genetic
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determinants for this clinically relevant marker of drug response

have not been confirmed in children [17,19]. Such insight would

be useful for elucidating mechanisms of hydroxyurea induction

and for predicting individual response.

Our multi-site observational study examined associations

between baseline and hydroxyurea-induced HbF in children with

sickle cell disease and candidate single nucleotide polymorphisms

(SNP) in several genes associated with adult sickle cell HbF levels.

Our results indicate: 1) A 33% contribution of baseline to induced

levels; 2) Confirmation of single marker associations between the

HBB and epsilon globin (HBE) and BCL11A loci and baseline HbF

in children; 2) Association between HBE and hydroxyurea-

induced HbF; 3) Additive effects of these SNPs on baseline and

induced HbF in children.

Materials

Ethics
Studies were performed under the policies of and with specific

approval from the Institutional Review Board (IRB) at Columbia

University and the corresponding body at each of the other

participating institutions: Yale University IRB, Albert Einstein

College of Medicine IRB, Weill Cornell University Medical

School IRB, University of Rochester Research Subjects Review

Board, Children’s Mercy Hospitals and Clinics IRB, Children’s

Hospital & Research Center Oakland IRB. Written informed

consent from parents of participating children and informed assent

from children were obtained according to each institution’s IRB

policies.

Participants
Observational analysis of children attending sickle cell clinic was

performed at five sites (see author affiliations), including pro-

spective observation during 2010. The Oakland site provided

archived data and samples. Clinical inclusion and exclusion

criteria conformed to those previously described [18,22]. Inclusion

criteria are: HbSS or HbS-B0 thalassemia, ages 5–21 years.

Exclusions criteria are: pregnancy, current or recent painful crisis,

fever or other acute illness within three weeks prior to evaluation,

transfusion within the prior 100 days or active transfusion therapy,

abnormal elevated serum creatinine or liver transaminases. We

excluded siblings to ensure genetic independence. Laboratory data

at steady state represented the most recent values obtained during

routine care or an average of three values from well visits over the

preceding 6–12 months, if available. Percent HbF (%HbF) was

determined by routine HPLC and was used as a quantitative trait

at steady state for baseline and for drug-induced levels.

Duration of hydroxyurea treatment was for at least six months

and was initiated for comparable clinical indications across sites

(nearly all for repetitive painful crises and/or acute chest episodes).

Stable hydroxyurea dosing was three months at or near maximal

dose by ANC criteria, excluding data from subjects on less than

20 mg/kg/day, even if for dose-limiting toxicity. Across the six

sites, drug dose averages ranged from 23.8–29 mg/kg/day and

did not statistically differ between sites (F = 1.554, p = 0.210).

Adherence to hydroxyurea was defined as parent report of at least

80% of prescribed doses. Laboratory data at steady state

represented recent values during routine care or averaged three

values from well visits over the preceding 6–12 months, if

available. Percentage of HbF (HbF%) was used as a quantitative

trait. Baseline HbF had not been recorded prior to treatment for

nine of the 47 subjects on hydroxyurea, thus is not available.

Hydroxyurea-associated increased mean red cell volume and

decreased white blood cell count were used to confirm data

quality. For children on hydroxyurea therapy, where available,

clinical response to hydroxyurea was assessed by retrospective

chart review of the number of sickle-related hospitalizations over

the two-year periods preceding and while on hydroxyurea

treatment.

Description of Procedures
Twenty SNPs previously reported as associated with HbF% in

sickle cell disease [6,7,8,9,11,14,17,19] were genotyped (Table 1):

nine in the BCL11A locus; two in HBS1L-MYB intergenic region

on chromosome 6q23; three in the globin locus on chromosome

11: two 59 sites in HBB (including the previously identified XmnI

site [23] and one in HBE [19]; one in OR51 that is upstream of

HBB [14]; one in the glucagon-like peptide-2 receptor, GLP2R,

found by genome-wide analysis [10]; two SNPs from the

hydroxyurea-induced SAR1A locus [21]; one SNP each in ARG1

and ARG2 [19] (SNP sequences available by request).

SNP marker genotyping of minor allele frequencies ranging

from 0.07 to 0.45 was performed using Sequenom MassArray

iPLEX platform with matrix-assisted laser desorption/ionization

time of flight mass spectrometry (Sequenom, San Diego, CA).

PCR assays and mass extension reactions were designed using

mass array assay design software (Sequenom). PCR assays used

Applied Biosystems Geneamp PCR thermocyclers (Foster City,

CA) and analyzed by mass array compact mass spectrometer

(Bruker Daltonik, Billerica, MA) and Spectro TYPER software

(Sequenom). (SNP sequences, PCR and analytic conditions are

available upon request.) Genotyping was performed in duplicate

with separate assays, with genotype frequency distribution at each

SNP tested for deviations from Hardy-Weinberg equilibrium.

Accurate genotyping of SAR1A SNP rs4282891 required sequenc-

ing. The sickle genotype, rs334, was assayed to confirm the

diagnosis for each sample.

Statistical Methods
Relationships between each of the three quantitative HbF

values were assessed by Pearson correlation analysis. Genetic

associations were assessed for candidate SNPs with %HbF at

baseline, on hydroxyurea treatment (‘‘maximum HbF’’), and the

hydroxyurea-induced increment over baseline (‘‘delta HbF’’)

(Table 1). For each HbF value, quantitative associations with

a dose effect model of the minor allele were tested using a linear

regression analysis, adjusted for sex and age. Baseline HbF levels

were log10 transformed to fit a normal distribution; maximum and

delta HbF were normally distributed. Significance is reported for

nominal p-values of 0.05 or less, and with Bonferroni adjustment

of p-values for multiple testing (adjusted p-value of 361023 for the

19 SNPs tested – see below). Given the fixed sample size, power

was estimated based on the smallest detectable differences in the

average levels of baseline and hydroxyurea-induced fetal hemo-

globin HbF. Power was computed using QUANTO software

(http://hydra.usc.edu/gxe/) assuming an additive allele effects

model, an alpha threshold of 0.05, a range of different values for

effect sizes (b) and SNP allele frequency (Figure S2) [24].

Limited number of subjects of each genotype precluded analysis

of potential dose effect of homozygotes. Trend analysis was

performed by analysis of variance tested for individual and

additive effects for each allele. Percentage of variance attributable

to SNPs in BCL11A, HBB and HBE was estimated using linear

regression analysis comparing models consisting of age, sex,

individual SNPs and multiple SNPs with a reduced model

consisting of sex and age (SPSS Inc., Chicago, IL). To evaluate

whether BCL11A haplotypes was in closer linkage disequilibrium

with causal variants than single SNPs, haplotype association

Sequence Variants with Fetal Hb in Sickle Disease
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analysis was performed with PLINK software [25] using a haplo-

type block of four BCL11A SNPs in strong linkage disequilibrium

(r2.0.70) [6].

Results

Clinical
117 children from the six sites met study criteria (Data from

each site are shown in Table S1). The mean age and standard

deviation was 12.5 (SD=4.9), with 52% male. Six subjects (5.1%)

had HbS-B0 thalassemia (Table S1A). A subset of children (N= 47)

was on hydroxyurea, 38 of whom had recorded baseline and

maximum HbF values. Hydroxyurea dosing ranged from 20–

30.7 mg/kg/day, averaging 25.3 (SD=3.0) mg/kg/day. During

the two years prior to hydroxyurea therapy, children (N= 22 with

available data) had 0–13 hospital admissions (mean= 3.7,

SD=2.8); only one child had no hospitalizations. During a two

year period while on hydroxyurea therapy, these same children

had 0–6 hospitalizations (mean=1.4,SD=1.5). While on hy-

droxyurea, nearly all had fewer hospitalizations over a two year

period (p = 0.001), and 32% had none.

Mean HbF% values were: baseline HbF 8.0 (SD=4.9,

N= 108), maximum HbF 18.2 (SD=7.1, N=47), and delta

HbF 11.6 (SD=6.3, N= 38). Among those subjects with complete

data for baseline and hydroxyurea-induced HbF (N= 38),

distributions of baseline and induced HbF were comparable to

those previously reported for children on hydroxyurea (Figure 1,

Figure S1) [18] thereby validating our observational data. No

significant effect of gender was detected for any of the three

quantitative traits; age appeared to have some influence on

baseline HbF. Mean baseline HbF at each site ranged from 6.8

(SD=5.0) to 9.8 (SD=5.6), with no significant difference in mean

values (F = 0.808, p= 0.523), excluding the average value of 12.9%

from Rochester (N= 8). At the three sites with at least four subjects

on hydroxyurea (Columbia, Yale and Oakland), no differences

were found in induced maximum or delta HbF (F= 0.668,

p = 0.418 and F= 0.404, p= 0.530, respectively).

Pearson correlation for the 38 children with complete baseline

and hydroxyurea-induced HbF demonstrated high levels of

relatedness for: baseline and induced maximum HbF levels

(r2 = 0.59, p,0.001), similar to previously reported [18]; maxi-

mum and delta HbF (r2 = 0.86, p,0.001); but not between

baseline and delta HbF (r2 = 0.08, p = 0.632). Those in the lowest

quartile for baseline levels were highly likely to remain in the

lowest quartile (Q1) for induced HbF (r2 = 0.565, p,0.001)

(Figure 1). Only two children (5.3%) were induced from the lowest

to highest quartiles (Q3+Q4), and did not appear to differ by age,

sex, sickle type, hydroxyurea dose, genotype, or other discernible

variable, although the small number precluded statistical analysis.

By linear regression analysis adjusted for age and sex, overall

percentage of variance in hydroxyurea-induced HbF attributable

to baseline levels was 33%.

Genetic
Call rates uniformly exceeded 97% for each SNP. One SAR1A

gene SNP, rs428289, [21] was monomorphic in subjects treated

with hydroxyurea, precluding analysis of variants. Genotyping of

the other 19 SNPs revealed minor allele frequencies that were

comparable across the six sites (Table S1B) and to allele

frequencies among sickle cell populations in the U.S and elsewhere

Table 1. 19 SNPs associations with baseline, maximum and delta HbF%.

Baseline HbF
(N=108)

Maximum HbF
(N=47)

Delta HbF
(N=38)

Chr Gene SNP A1 b SE p b SE p b SE p Reference

2 BCL11A rs7581162 T 0.08 0.70 0.908 0.40 1.55 0.796 21.43 1.72 0.412 HapMap

2 BCL11A rs10189857 G 0.10 0.77 0.898 0.27 1.96 0.891 3.57 2.12 0.101 6

2 BCL11A rs1427407 T 2.55 0.69 *461024 2.14 1.64 0.200 0.19 1.64 0.909 19

2 BCL11A rs7599488 T 20.20 0.78 0.803 0.87 1.96 0.659 4.67 2.13 0.035 6

2 BCL11A rs766432 C 2.88 0.68 *561025 3.38 1.59 0.039 1.20 1.60 0.459 10,11,19

2 BCL11A rs11886868 C 2.58 0.64 *161024 3.37 1.38 0.019 1.25 1.42 0.386 7,19

2 BCL11A rs4671393 A 2.88 0.68 *561025 3.38 1.59 0.039 1.20 1.60 0.459 7,19

2 BCL11A rs7557939 G 2.51 0.64 *261024 3.09 1.39 0.031 1.10 1.42 0.446 7,19

2 BCL11A rs10184550 G 2.24 0.66 0.001 2.44 1.36 0.080 20.56 1.45 0.701 11

6 ARG1 rs17599586 T 20.64 1.07 0.549 24.71 2.56 0.073 24.43 2.42 0.076 19

6 HBS1L-MYB rs28384513 C 0.24 0.90 0.792 22.60 1.86 0.170 21.65 1.83 0.373 7

6 HBS1L-MYB rs4895441 G 20.24 1.23 0.846 24.91 3.06 0.116 21.71 3.20 0.595 7

10 SAR1A rs2310991 A 0.05 0.62 0.942 20.60 1.61 0.711 0.03 1.62 0.984 21

11 HBB rs10128556 T 2.63 1.34 0.057 5.25 2.86 0.074 2.53 2.62 0.342 6

11 HBB rs7482144 A 3.88 0.99 *261024 7.61 3.97 0.062 2.69 3.67 0.468 7

11 HBE rs7130110 C 2.86 0.68 *661025 7.82 2.07 *561024 6.04 1.97 0.004 19

11 OR51B6 rs5024042 A 1.70 0.78 0.031 3.04 1.93 0.122 1.68 1.85 0.371 13

14 ARG2 rs2295644 A 1.13 0.76 0.142 20.04 1.79 0.983 20.01 1.91 0.995 19

17 GLP2R rs12103880 A 0.68 0.69 0.324 23.66 1.30 0.008 22.74 1.46 0.068 10

Bold indicates SNPs reaching nominally significance (p#0.05).
*Indicates significant SNP after Bonferroni correction for multiple testing.
doi:10.1371/journal.pone.0055709.t001
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[7], confirming validity of our pooling strategy. Log10 trans-

formation of baseline HbF had no effect on SNP associations; non-

transformed results are shown for comparison with induced values

(Table 1).

Baseline HbF. Given the fixed sample size and SNP allele

frequencies, the study had 90% power to detect differences in

average levels of baseline HbF% between 2.0 and 2.5 (Figure

S2A). Single marker SNP analysis revealed several significant

associations to baseline HbF (Table 1). One of two SNPs tested

within the HBB locus, rs7482144 [7], and the HBE SNP [19] were

significantly associated with baseline HbF after Bonferroni

correction. Six BCL11A SNPs were significantly associated with

baseline HbF, of which five withstood correction for multiple

comparisons, including the intronic variant, rs4671393 [6,7]. To

test for closer linkage disequilibrium with causal variants within

the BCL11A haplotype block than single SNPs [6], analysis

revealed several common haplotypes (frequency= 0.05), with

statistical association and effect size comparable to those seen

with single marker analysis (data not shown). Power was

insufficient to detect effects sizes of ,3, such as for markers in

the HBS1L-MYB intergenic region (Table 1).

Trend analysis using the SNP allele associated with higher

baseline HbF values (‘‘favorable allele’’) in one or both of the

BCL11A (rs4671393) and HBE (rs7130110) loci demonstrated

a statistically significant additive effect of each SNP and a two-fold

difference for both (ptrend,0.004) (Table 2). The HBB marker

(rs7482144) had effects identical to those of HBE (not shown). By

linear regression analysis of individual markers accounting for age

and sex, the percentage of baseline HbF variance attributable each

to the BCL11A or HBE SNP was 13%, and 10% for HBB (Table

S2A). In the multiple marker model, the BCL11A SNP combined

with either globin marker had an additive effect to 21–23%.

Contributions from HBE and HBB appeared to be redundant.

These two markers are in strong linkage disequilibrium within the

globin locus (r2 = 0.86, p,0.001), with different prevalence of the

minor allele: 18% for HBE and 12% for HBB.

Hydroxyurea-induced HbF. The study had $80% power

to detect SNPs with effect sizes larger than 2.5 with allele

frequencies of 0.25 or higher; estimated power decreased with

lower SNP allele frequencies (Figure S2B). Among all single

markers tested, only the HBE SNP [19] was significantly associated

with maximum HbF after correction for multiple testing, and

remained nominally associated even after adjusting for baseline

Figure 1. Baseline and hydroxyurea-induced maximum HbF for each subject (comparable to References 18, 19, 26).
doi:10.1371/journal.pone.0055709.g001
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HbF (p= 0.001) (Table 1). This same SNP was also unique in

being associated with the hydroxyurea-induced increment, delta

HbF (p = 0.004). Nominal associations were also found between

maximum HbF and four of the same six BCL11A SNPs associated

with baseline HbF (Table 1). However, no association of BCL11A

single marker with maximum HbF withstood adjustment for

baseline HbF (Table 1). Haplotype analysis of BCL11A indicated

nominal association with hydroxyurea-induced HbF, remaining at

borderline significant even after adjustment for baseline HbF (data

not shown).

By trend analysis, subjects with a favorable allele in at least one

of the BCL11A or HBE loci had higher average values, 20.8

(SD=7.5, N=23), compared to 15.5 (SD=5.6, N= 24) for those

without either allele (ptrend = 0.009) (Table 2). As with single SNP

analysis, statistical significance of this trend analysis did not

withstand adjustment for baseline fetal hemoglobin (p= 0.0.086).

As seen for baseline HbF, the HBB marker (rs7482144) had effects

identical to those of HBE (ptrend = 0.018, not shown). By linear

regression analysis of the three markers, alone or in combination,

only the HBE SNP independently and significantly added to the

phenotypic variance contributed by the baseline levels. In

combination, baseline level (33%) and the HBE (13%, p,0.001)

contributed an estimated 46% of the variance (Table S2B).

The GLP2R allele, not associated with baseline HbF, was

nominally associated with maximum HbF; the SAR1A SNP,

rs2310991, [21] was not.

Discussion

Children with sickle cell disease generally have higher baseline

HbF levels than adults and more pronounced HbF response to

hydroxyurea [5,6,7,8,9,11,13,16,18,19,20,26]. Findings from this

multi-site, observational analysis corroborate in children the

correlation between baseline and hydroxyurea-induced HbF levels

[18,19], and demonstrate that one third of the variance in induced

HbF is attributable to baseline levels. In contrast to the induced

HbF, the treatment-associated increment appears to be a less

relevant marker, as baseline and delta levels did not correlate and

those with high baseline more likely have highly inducible HbF%.

For baseline HbF, we confirm in children the associations

between single candidate markers in the BCL11A and HBB or

HBE loci [19]. Comparable marker contributions to baseline HbF

were reported for BCL11A and HBB in adult sickle cell disease

[6,7]. In our analysis, statistical effects on HbF from BCL11A and

either globin marker were additive, and were associated with two-

fold higher levels for patients with favorable alleles in both loci. An

apparent redundant influence exists between HBB and HBE

markers, suggesting a statistical effect stemming from tight linkage

and/or overlapping biologic effects.

For hydroxyurea-induced HbF, the HBE marker was the most

robustly associated with drug-induced HbF levels, an effect that

was independent of and additive to baseline levels. Despite

a sample size limiting statistical power for individual SNPs, trend

analysis with BCL11A and HBE or HBB markers suggests

substantially higher induced levels associated with one or both

favorable alleles. In combination with baseline levels, the HBE

accounted for almost half of the variance of induced levels. Taken

together, these data support a model of overlapping genetic

regulation of HbF in pediatric SCD for both steady states [17].

Roles of other SNP markers are less clear. Nominal association

with GLP2R for hydroxyurea-induced HbF, but not baseline, will

need confirmation and biologic rationale. No associations were

detected with SNPs in other candidate loci such as HBS1L-MYB,

presumably from insufficient power and its lesser impact on

baseline HbF in sickle cell disease [6]. Another hematologic

parameter, alpha-thalassemia status, is not independently associ-

ated with hydroxyurea-induced HbF in children [19]. Effects of

the drug’s pharmaco-kinetics on HbF response are unclear [19].

Limitations: Study limitations include sample size and observa-

tional assessment, where therapeutic approaches to hydroxyurea

and drug adherence may vary among sites despite inclusion

criteria. Nonetheless, hydroxyurea dose and distribution of drug-

induced HbF were comparable to those from prospective pediatric

hydroxyurea studies [18]. Moreover, a threshold hydroxyurea

dose of 20 mg/kg/day was employed to reduce HbF variability

from low drug dosing.

Clinically, HbF level is arguably the strongest predictor of

disease severity [2,3]. Baseline HbF in children remains the best

forecaster of hydroxyurea-induced HbF but accounts for only

a portion of drug response [19]. Despite a modest sample size,

clinically relevant differences in HbF [2,3] in our study population

appeared to be associated with specific alleles in three genetic loci.

These findings suggest that induced levels in pediatric disease

share some of the major regulatory loci associated with baseline

levels. Our HBE marker data also suggest that induced levels may

reflect effects that are additive to those of baseline. In summary,

our findings suggest that baseline and hydroxyurea-induced HbF

likely are influenced by these genetic loci, while distinct genetic,

pharmacologic, and clinical determinants also exist [18,19].

Genetic studies examining larger pediatric populations on

hydroxyurea and unusual responders are needed to assess the

specific sequence variants in these and other genetic loci

responsible for HbF response.

Supporting Information

Figure S1 Histograms for Baseline, Maximum and
Delta HbF%.

(JPG)

Figure S2 Power analyses based on minor allele fre-
quencies. S2A. Baseline HbF. S2B. Maximum HbF

(DOC)

Table 2. Incremental effect of allelotypes in BCL11A and HBE
on Baseline and Maximum HbF%.

Allelotype

BCL11A HBE N (108)

Avg
Baseline N (47)

Avg
Maximum

rs4671393 rs7130110 HbF% (SD) HbF% (SD)

+ + 16 11.8 (5.2)

2 + 29 7.9 (5.3) 23# 20.8 (7.5)**

+ 2 18 8.8 (4.7)

2 2 45 6.4 (3.7)* 24 15.5 (5.6)

Baseline HbF%: Trend analysis across allelotypes: F(df,3) = 8.48, ptrend = 0.004.
Maximum HbF%: Trend analysis across 0 or $1 A alleles: F(df,2) = 7.43,
ptrend = 0.009.
The + denotes minor allele (A) associated with higher HbF%; the - denotes the
other allele (G),
with the BCL11A A or HBE allele in 1 or 2 copies.
*Reference allelotype.
**Not significant when adjusted for baseline HbF.
#Includes subjects with either or both minor A alleles.
doi:10.1371/journal.pone.0055709.t002
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Table S1 Clinical and Genetic Data by Study Site. S1A.
Clinical data by study site. S1B. Minor allele frequencies by study

site.

(DOC)

Table S2 HbF linear regression analysis to compare full
model consisting of age, sex, individual and multiple
SNPs. S2A. Baseline HbF%. S2B. Maximum HbF%

(DOC)
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