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Abstract

Precision Lattice Calculation of Kaon Decays

with Möbius Domain Wall Fermions

Hantao Yin

We report our recent development in algorithms and progress in measurements in lattice

QCD. The algorithmic development includes the forecasted force gradient integrator, and

further theoretical development and implementation of the Möbius domain wall fermions.

These new technologies make it practical to simulate large 483 × 96 and 643 × 128 lattice

ensembles with (5.5fm)3 boxes and 140MeV pion. The calculation was performed using the

Möbius domain wall fermions and the Iwasaki gauge action. Simulated directly at phys-

ical quark masses, these ensembles are of great value for our ongoing and future lattice

measurement projects.

With the help of measurement techniques such as the eigCG algorithm and the all mode

averaging method, we perform a direct, precise lattice calculation of the semileptonic kaon

decay K −→ πlν using these newly generated high quality lattice ensembles. Our main

result is the form factor f±
Kπ(q

2) evaluated directly at zero momentum transfer q2 = 0. Free

of various systematic errors, this new result can be used to determine the CKM matrix

element Vus to a very high precision when combined with experimental input.

The calculation also provides results for various low energy strong interaction constants

such as the pseudoscalar decay constants fK and fπ, and the neutral kaon mixing matrix

element BK . These calculations are naturally performed by reusing the propagators calcu-

lated for the kaon semileptonic decay mentioned above. So they come with no or very low

additional cost. The results allow us to also determine these important low energy constants

on the lattice to unprecedented accuracy.
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Chapter 1

Introduction

Since its inception in the 1920s, quantum field theory has become the standard approach

to describe subatomic particles. Following the quantization of the electromagnetic field,

quantum electrodynamics (QED) has withstood a few most stringent experimental tests in

the history of physics. The excellent agreement between the experimental and theoretical

values of the anomalous magnetic dipole moment has usually been quoted to show the glory

of theoretical development of quantum physics during the 20th century.

The discovery of the quark model 40 years later led to the construction of quantum chro-

modynamics (QCD), the branch of quantum field theory that describes strong interactions.

It took a few decades to fully establish the theory, partly because of the complexity of the

theory, and also because higher energy is required to generate the heavier quarks. Never-

theless, there are few parameters in QCD other than the quark masses (in fact, there are

no free parameters. The parameter ΛQCD occurs only because we need to set its scale when

combine QCD with other parts of the standard model). It is widely believed that QCD has

been understood well.

Although quantum chromodynamics is believed to be well understood, its analytic or

perturbative treatment in the low energy regime is very difficult if not entirely impossible.

The strong interaction has a very large coupling constant in the low energy limit, effectively

1
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making the perturbative approach untenable. In addition, the underlying gauge group of

QCD is the non-Abelian SU(3) group. This introduces complicated interactions between

gluons, rendering analytic treatment very difficult. Many analytic works on QCD are based

on various symmetry analysis, low energy effective theories such as the chiral perturbation

theory and various other approximations.

On the other hand, lattice discretization is the only known method to perform non-

perturbative QCD calculations from first principles. The development in lattice algorithms

and supercomputers has progressed greatly during the last few decades. The results are a

series of significant successes on various aspects of QCD. The advancement has reached a

point where direct calculation using physical light and strange quark masses has just become

tenable. This is a very important breakthrough in the field. Since most previous calculations

are performed using unphysical parameters, they rely on various extrapolations to obtain

physical results. This usually requires more theoretical input such as chiral perturbation

theory. As such they are not pure first principle calculations. More importantly, various

extrapolations can increase errors significantly. Performing lattice calculations directly at

the physical point eliminates the need of extrapolations, greatly reduces the errors of the

predictions. The results from such direct calculations will be reported in this work.

Combining QCD with electroweak theory produces the standard model of particle physics.

The weak interaction bosons W± and Z were not discovered until 1983. The standard

model also features many parameters. Out of 19 parameters, 16 are closely related to weak

interactions. Even more parameters are required considering the recent discovery of neutrino

masses. The weak interaction also includes many new processes that can not happen in

other sectors in the standard model. For example, processes that violate CP symmetry must

involve weak interactions. For these reasons, weak interaction is usually considered the least

understood part in the standard model.

Although an enormous success experimentally, weak interaction is considered by many
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to be the place where new physics may be discovered. It has many fundamental parameters.

Some of these parameters are related because of constraints within the theory. One research

direction is to test these constraints, and any discrepancy would call for explanations from

new theories. For example, the standard model Cabibbo-Kobayashi-Maskawa (CKM) matrix

can be parametrized by 4 constants, assuming that it is a unitary matrix. The unitarity test

of this matrix has become a highly sought research project. A negative answer (i.e., the

CKM matrix is not unitary) would be extremely interesting. It can potentially become the

playground for many new physical models. New sources of CP violations many be found

or confirmed and this may lead to new research directions that can answer many open

questions in the standard model. A positive answer would also be very interesting, since

a stringent agreement of the unitarity condition constrains the ways new physics may be

built. Especially, it sets up the scale where new physics may contribute to the elements of

the CKM matrix [2].

Weak interactions can be computed using perturbation theory, due to their “weak”

nature1. However, many interesting weak interaction processes also involve mesons and

baryons. QCD interactions can thus mix the weak interaction vertices in nontrivial ways.

A full calculation thus requires QCD input. Consequently, lattice QCD calculations are

required to give precise predictions for these processes. The standard approach in lattice

calculation is to integrate out the weak interaction off the lattice, obtaining an effective

Hamiltonian that includes only the strong interaction operators. Lattice QCD is then used

to obtain any remaining strong interaction matrix elements.

This work is a combined lattice calculation that produces predictions for many strong

and weak interaction parameters. One primary objective is the precise calculation of the

K −→ π QCD matrix element via a vector current vertex. This matrix element appears

1Interestingly, there is no known lattice theory for weak interactions. In addition, even if such a theory
exists, it will still be difficult to carry out any calculation for low energy physics. Since the high energy
scale of the weak interaction bosons requires a fine lattice, whereas describing low energy processes requires
a large box. The combination of these 2 factors leads to an prohibitively large number of lattice points.
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in the semileptonic kaon decays K −→ πlν. This decay mode is very interesting in that

it can be used to precisely determine the CKM matrix element |Vus|. Vus enters the decay

amplitude through the weak interaction current Jµ+W ∝ VusuLγµsL. Since Vus enters the

decay amplitude as an overall constant, it is necessary to integrate over the entire phase

space to obtain the full decay width and extract Vus. This involves both experimental data

and theoretical input. It requires us to compute the QCD matrix element
⟨
π+
∣∣∣uγµs ∣∣∣K0

⟩
.

Chiral perturbation theory can be used to estimate this matrix element with a few percent

errors. However, lattice input is necessary to determine this quantity to subpercent accuracy.

Precise determination of Vus is a major goal of this project.

The calculation also generates other important QCD constants. Among all the results

there are pseudoscalar decay constants fπ and fK , and the neutral kaon mixing matrix

element BK . As mentioned above, calculations presented in this work can improve the

accuracy of these parameters to unprecedented levels.

To study low energy QCD, a lattice theory with good chiral symmetry is desired. A chiral

theory not only simplifies the extrapolation to the continuum limit2, but also eases parameter

tuning. However, implementing chiral fermions on the lattice is surprisingly difficult. A naive

approach induces the “fermion species doubling” problem. A treatment proposed by Wilson

solves the doubling problem but breaks chiral symmetry in a nontrivial way that can not

be easily cured. Exact chiral fermions on the lattice such as the Ginsperg-Wilson fermion

or overlap fermion are usually much more difficult to simulate, and they also pose other

practical problems. In fact, the Nielsen-Ninomiya no-go theorem states that there is no

lattice fermion that is Hermitian, unitary and also free of fermion doubling problem[3]. So

a compromise has to be made when constructing lattice fermions.

In this work we use the domain wall fermion (DWF) and also its generalization, the

Möbius fermion actions. Both still break chiral symmetry, but in a well controlled manner.

2such extrapolations are always necessary in lattice calculations, for the simple reason that computers
can not simulate continuous field.
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The residual chiral symmetry breaking effect only introduces a small additive mass renor-

malization constant. And its effect in the continuum extrapolation is also well under control.

The price we pay for good chiral symmetry is that these actions introduce a fictitious fifth

dimension in addition to the four dimensional spacetime into the action. The extent of this

extra dimension has a direct impact on the quality of the chiral symmetry the action has.

We achieve better chiral symmetry with larger sizes in the fifth dimension but the simula-

tion also becomes increasingly difficult. In general, such actions are much more expensive to

simulate comparing to simpler actions such as the Wilson action.

Simulating QCD with physical parameters turns out to be a very difficult task. In real

QCD the u and d quarks are nearly degenerate with very small masses. Lattice simulations

tend to become more expensive when approaching this physical limit. This is due to a few

reasons,

1. As the masses of the two light quarks become smaller, the associated lattice Dirac

operator becomes aggressively more singular. This effect makes the associated Dirac

equation more difficult to solve since the effectiveness of Krylov space solvers is highly

dependent on the condition number of the matrix. Sophisticated algorithms such as

all mode averaging and eigCG have been developed to mitigate the problem.

2. As the u and d masses become smaller, pion mass also becomes smaller. Larger boxes

are needed to control the finite volume effect. Such lattices contain more spacetime

points and consequently require more computational resources.

Nevertheless, with the help of new algorithms such as the force gradient integrator, low

modes deflation in Krylov space solvers and the all mode averaging technique we are able to

perform a direct calculation using large lattices such as 483 × 96 × 24 and 643 × 128 × 12.

These lattices have (5.5fm)3 boxes, large enough for us to simulate at physical pion and kaon

masses3. This is made possible also because of the introduction of the new IBM BlueGene/Q

3On the lattice we usually require MπL ≥ 4 to have finite volume effects well under control.
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supercomputers.

The primary physical results in this work are computed on the 483× 96 (5.5fm, 140MeV)

and 643 × 128 (5.5fm, 140MeV) lattices4. Due to the expensive nature of these lattices, we

performed an exploratory calculation on a smaller 323 × 64 (4.6fm, 170MeV) lattice. The

small lattice serves as a playground to test various algorithms and parameter settings for

the larger lattices. Thus, the results on the 323× 64 (4.6fm, 170MeV) lattice are shown here

primarily to compare the effectiveness of various algorithms, and the results on the larger

lattices are used to predict physical values.

We used the Möbius fermion formalism to generate ensembles for the large 483 × 96 and

643×128 lattices. This can gain a factor of around 2 over Shamir domain wall actions, which

we previously used. The ensembles are generated using the newly invented force gradient

integrator, which is more effective on larger lattices. Two additional error/cost reduction

techniques are used in the measurements of the QCD matrix elements. First, we use the

all mode averaging method to reduce the cost when solving the fermion propagators. This

allows us to solve more propagators using the same amount of resources and improve the

signal to noise ratio. In addition, we use the eigCG algorithm to improve the condition

number of the discretized Dirac operator. This greatly helps to improve the efficiency of the

Krylov space solvers we are using.

This work is organized as follows. In chapter 2 we discuss how to establish the lattice

framework and setup the gauge and fermion fields on the lattice. In chapter 3 we review

the ensemble generation process on the lattice, which is the first important step of any

lattice measurements. Chapter 4 discusses our development on Möbius fermions. Chapter 5

then proceeds and discusses various techniques that can be applied to lattice measurements.

Chapter 6 addresses various details in the Kl3 matrix element calculation. We present our

main result in chapter 7.

4The two numbers in the parenthesis are the spatial extent and dynamic pion mass. Appendix B has
more details about the parameters on these lattice ensembles.



Chapter 2

The Lattice Actions

We discuss in the following briefly how continuum actions are discretized on a 4 dimensional

spacetime grid. We start our discussion by assuming the Euclidean metric instead of the

Minkowski metric. The details about how a Minkowski action can be transformed into an

Euclidean action can be found in e.g. [4].

2.1 Gauge Actions on the Lattice

Unlike the continuum theory where the gauge fields are represented by elements of the Lie

algebra of the corresponding gauge group, lattice gauge fields are commonly represented by

elements of the gauge group itself. For example, on the lattice the gluon fields are elements

of the SU(3) gauge group. Commonly denoted by symbol U , these lattice gauge fields link

2 neighboring spacetime sites. This fact reflects the original motivation of introducing gauge

fields as building blocks for parallel transports and covariant derivatives. In other words,

gauge links are primitive Wilson lines that connect 2 end points on the lattice. In the

continuum limit such links connect 2 infinitesimally separated spacetime sites, and there is

no difference between a gauge group description and a corresponding Lie algebra description.

The simplest quantum chromodynamics gauge action on the lattice is the Wilson gauge

7
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action

SWG (U) = β
∑
x,µ<ν

(
1− 1

3
ReTr (UP (x, µ, ν))

)
, (2.1)

where UP represents a general 1× 1 plaquette

UP (x, µ, ν) = Uµ(x)Uν(x+ µ)U †
µ(x+ ν)U †

ν(x). (2.2)

The action is a sum over traces of all possible plaquettes with proper normalization. By

expanding UP with respect to a the leading O(a2) term represents the usual Lagrangian

density in the continuum limit

L = −1

4
Tr (FµνF

µν) . (2.3)

µ
ν

x x+ µ

x+ µ+ νx+ ν

A square plaquette

µ
ν

x x+ 2µ

x+ 2µ+ ν

x+ µ

A rectangle plaquette

Figure 2.1: Square (1 × 1) and rectangular (1 × 2) plaquettes in the Wilson and Iwasaki
gauge actions.

We use the Iwasaki gauge action [5, 6] in this work. This gauge action includes both

1× 1 and 1× 2 plaquettes

SRG(U) = β
∑
x,µ<ν

(
1− c0

3
ReTr(UP (x, µ, ν))

)
+ β

∑
x,µ ̸=ν

(
1− c1

3
ReTr(UR(x, µ, ν))

)
, (2.4)

where UR(x, µ, ν) is the rectangle plaquette

UR(x, µ, ν) = Uµ(x)Uµ(x+ µ)Uν(x+ 2µ)U †
µ(x+ µ+ ν)U †

µ(x+ ν)U †
ν(x), (2.5)

c0 and c1 are 2 constants. The Iwasaki gauge action uses c1 = −0.331 and c0 = 1−8c1. This
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action has better chiral behavior when used together with domain wall fermions. Both the

square and the rectangular plaquettes are shown in figure 2.1.

2.2 The Naive Lattice Fermions

It turns out that representing fermions on the lattice raises certain subtle issues. Simple

discretization of the continuum fermion action incurs the “fermion species doubling” problem.

To discretize the continuum Euclidean action

SF
(
ψ, ψ

)
=

∫
d4x ψ(x) (γµ∂µ +m)ψ(x) (2.6)

we need to replace the derivatives by finite differences. The simplest choice is the following

symmetric finite difference

∂µ ←−
1

2a
(δx+µ,x′ − δx−µ,x′) . (2.7)

We choose symmetric discretization since asymmetric discretization produces non-Hermitian

Hamiltonians. The resulting action on the lattice takes the following form

SF =
∑
x,y

ψ(x)

(
mδx,y +

1

2

∑
µ

(γµδx+µ,y − γµδx−µ,y)

)
ψ(y). (2.8)

Computing the fermion propagator

⟨
ψ(x)ψ(y)

⟩
=

1

Z

∫ (∏
x

dψ(x)dψ(x)

)
ψ(x)ψ(y)e−SF (2.9)

in Fourier space yields the following result

⟨
ψ(x)ψ(y)

⟩
=

1

N4

∑
p

1

m+ i
∑

µ γµ sin
(
2π
N
pµ
)ei2πp(x−y)/N . (2.10)
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For simplicity we assume that the lattice extent is N in all spacetime directions. In the

continuum limit the lattice spacing a approaches 0 while the total size in each direction

remains fixed, and we obtain the following limit

⟨
ψ(x)ψ(y)

⟩
=

∫
B

d4p

(2π)4
1

m
a
+ i

a

∑
µ γµ sin (pµa)

eip(x−y), (2.11)

where the integration is performed in the first Brillouin zone. This solution poses the famous

“fermion doubling” problem. For values of pµ close to the origin, sin pµa ≈ pµa and the above

propagator behaves like the continuum propagator. However, near the boundary of the first

Brillouin zone where pµ ≈ ±π/a the behavior is also similar to the region near the origin.

Thus the propagator receives contributions when all pµ ≈ 0,±π/a. There are a total of

24 = 16 such regions. So instead of representing a single fermion, the naive fermion action

represents 24 = 16 degenerate fermion species. The situation can be seen in figure 2.2.

-1

-0.5

0

0.5

1

−π/a −π/2a 0 π/2a π/a

si
n
p µ
a

pµ

Figure 2.2: Sketch showing the fermion doubling problem near the boundary of the first
Brillouin zone. The behavior of sin pµa in the first Brillouin zone is plotted. The dashed line
corresponds to the continuum behavior.
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2.3 The Wilson Fermions

Since the continuum limit is obtained via the limit a −→ 0, adding terms that vanish in

this limit will not have any continuum remnant. Wilson [7] proposed adding a cutoff to the

fermion action that vanishes in the continuum limit, obtaining the following free field Wilson

fermion action

SWF (ψ, ψ) =
∑
xy

ψ(x)DW (x, y)ψ(y). (2.12)

Where DW (x, y) is the Wilson Dirac operator

DW (x, y) = (4 +m)δx,y −
1

2

∑
µ

((1− γµ)δx+µ,y + (1 + γµ)δx−µ,y) . (2.13)

The Wilson propagator is then equal to

⟨
ψ(x)ψ(y)

⟩
=

∫ π/a

−π/a

d4p

(2π)4
1

m(p) + i
a

∑
µ γµ sin(pµa)

eip(x−y), (2.14)

where

m(p) = m+
2

a

∑
µ

sin2 pµa

2
. (2.15)

For any fixed pµ, m(p) approaches m when a −→ 0. Thus the action behaves correctly near

the origin. However, near the boundary of the first Brillouin zone it behaves differently from

the naive approach. One has pµ ≈ ±π/a and m(p) diverges

1

a

∑
µ

sin2 pµa

2
∝ 1

a
. (2.16)

This added divergence eliminates any contribution to the continuum propagator from regions

other than the center of the first Brillouin zone, removing all doublers from the theory.

Adding gauge links to the action is straightforward and we obtain the following dynamic
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Wilson Dirac operator

DW (x, y;U) = (4+m)δx,y−
1

2

∑
µ

(
(1− γµ)Uµ(x)δx+µ,y + (1 + γµ)U

†
µ(x− µ)δx−µ,y

)
. (2.17)

Though free of fermion doublers, the additional terms added to the Wilson fermion for-

malism break chiral symmetry since these terms commute with γ5. The symmetry breaking

terms are in general O(1) quantities. Consequently quantities such as the bare quark mass

m receives O(1) additive renormalization, meaning that it must be finely tuned to represent

physical values correctly.

We can derive the representation of the axial current using the Wilson fermion action to

see the chiral effect of the added terms. By varying the fermion path integral

Z =

∫
DψDψ e−ψDWψ (2.18)

using the following local transformation

 ψ(x) ←− eiγ5θ
a(x)taψ(x)

ψ(x) ←− ψ(x)eiγ5θ
a(x)ta

, (2.19)

we obtain the following conserved quantity

∑
y

⟨
δψ(x)DW (x, y)ψ(y)

⟩
+
∑
y

⟨
ψ(y)DW (y, x)δψ(x)

⟩
= 0. (2.20)

The resulting axial current and its divergence take the following form

Aµ(x) =
1

2
ψ(x)γµγ5t

aUµ(x)ψ(x+ µ) +
1

2
ψ(x+ µ)γµγ5t

aU †
µ(x)ψ(x). (2.21)
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∑
µ

∆µAµ(x) =2(4 +m)ψ(x)γ5t
aψ(x)

−1

2

∑
µ

ψ(x)γ5t
aUµ(x)ψ(x+ µ)

−1

2

∑
µ

ψ(x)γ5t
aU †

µ(x− µ)ψ(x− µ)

−1

2

∑
µ

ψ(x− µ)γ5taUµ(x− µ)ψ(x)

−1

2

∑
µ

ψ(x+ µ)γ5t
aU †

µ(x)ψ(x).

(2.22)

Clearly in addition to the continuum term 2mψγ5t
aψ, there are O(1) terms that must be

absorbed. This yields O(1) additive renormalizations to the fermion mass.

2.4 The Domain Wall Fermions

Kaplan proposed the domain wall fermion formulation [8] to solve the fermion doubling

problem while still maintaining good chiral symmetry. This is achieved by introducing an

extra dimension into the action. This extra dimension is usually labeled by s in addition

to the 4 dimensional spacetime labeled by x, y, z and t. Suppose the size of this extra

dimension is Ls. Written explicitly, the domain wall action looks like Ls copies of the Wilson

fermion action with extra hopping terms in the s direction

SDWF
F =

∑
x,s;x′s′

ψ(x, s)DDWF(x, s;x′, s′)ψ(x′, s′), (2.23)

where the domain wall Dirac operator is defined as follows

DDWF(x, s;x′, s′) = (δx,x′ +DW (x, x′))δs,s′ −m(s)P+δs,s′+1 −m(s+ 1)P−δs,s′−1. (2.24)
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DW (x, x′) is the regular Wilson action with a special massM5, the domain wall height. m(s)

is defined as follows

ms =

 1 s = 1, 2, · · · , Ls − 1

−m s = 0
. (2.25)

The additional hopping terms in s direction can also be thought of as a complicated mass

matrix that mixes Ls otherwise degenerate Wilson fermions.

The property of the domain wall fermion action and its generalizations will be discussed

in chapter 4. Where we will see that this action shows very good chiral symmetry.

2.5 Pseudofermion Field

An additional problem associated with all fermion actions is that any Grassmann integrals

must be evaluated analytically, before we apply any numerical techniques. This is simply

because computers can only deal with real numbers. Integrating the fermion part of the

action produces fermionic determinants in the path integral,

∫
DψDψ e−

∑
xy ψ(x)D(x,y)ψ(y) ∝ det (D(x, y)) . (2.26)

On the lattice the u and d quarks are usually treated as degenerate species. So a full quantum

chromodynamics path integral with 2 degenerate light quarks and 1 strange quark takes the

following form

Z =

∫
DU det

(
D(U ;ml)

D(U ; 1)

)2

det

(
D(U ;ms)

D(U ; 1)

)
exp (−SG(U)) . (2.27)

Where D(U ;m) is the fermion Dirac operator with bare quark mass m. We put a Pauli-

Villars factor D(U ; 1) for each fermion determinant. This heavy bosonic factor is necessary

for domain wall like fermions. Since we would have a divergent number of massive fermions
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in the Ls −→ ∞ limit and the Pauli-Villars factors cancel out this divergence [9]. We will

transform these determinants into suitable forms of actions, i.e., into the following form

e−SF (U). (2.28)

SF (U) is a fermion action suitable for use in the ensemble generation. The reason for doing

this is that such exponential factors are the only form that the hybrid Monte Carlo algorithm

can work on directly.

2.5.1 Even-odd Preconditioning

Since fermion Dirac operators enter the path integral only through their determinants, we

are free to replace the fermion Dirac operator D with any equivalent form as long as its

determinant remains the same as the original operator. Even-odd preconditioning is one

such method to rewrite the fermion Dirac operator which can later accelerate the calculation.

The 4D even-odd preconditioning rewrites the Dirac operator as

D =

 Mee Meo

Moe Moo

 =

 1 0

MoeM
−1
ee 1

 Mee Meo

0 Moo −MoeM
−1
ee Meo

 . (2.29)

Where the subscripts e and o represent even and odd sites, respectively. Whether a lattice

site is even or odd is determined by the parity of the sum of its spacetime coordinates

x + y + z + t. Mee is the part in D that connects 2 even sites, Meo is the part that starts

from an odd site and ends at an even site. The gauge field always connects 2 neighboring

spacetime sites, so it can only appear in Meo and Moe, Mee and Moo are both constant

matrices. We define the preconditioned fermion Dirac operator to be

M =Moo −MoeM
−1
ee Meo. (2.30)
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Using this new operator, the determinant of the fermion ratio is equal to

det

(
D(U ;m)

D(U ; 1)

)
= det

(
M(U ;m)

M(U ; 1)

)
(2.31)

2.5.2 The Quotient and Rational Quotient Actions

We still need to transform the fermion determinant into the form e−SF (U) to incorporate it

into the hybrid Monte Carlo algorithm. The canonical method of doing this is through the

Gaussian integral ∫
dz†dz e−z

†Az ∝ 1

detA
, (2.32)

where A must be a positive definite matrix. However, only the determinant in equation

(2.31) is guaranteed to be positive. So we can not apply (2.32) directly to the fermionic

determinant. Nevertheless, this can be promptly applied to the case of 2 degenerate light

quarks. Since det(M) = det(M†),

det

(
M(m)

M(1)

)2

=det

(
M(m)†M(m)

M(1)†M(1)

)
(2.33)

=

∫
Dϕ†Dϕ exp

(
−ϕ†M(1)

1

M(m)†M(m)
M(1)†ϕ

)
. (2.34)

Where ϕ is the pseudofermion field, a complex valued auxiliary field that does not have any

direct physical meaning. The only purpose of such fields is to cast the fermion determinants

into exponential factors.

We can then define the quotient fermion action as

SQ(ma,mb) = ϕ†M(mb)
1

M†(ma)M(ma)
M†(mb)ϕ. (2.35)

The fermion action in (2.34) is then SQ(m, 1).

For the single strange quark determinant the above trick can not be applied. However,
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we can square it and take the square root via rational approximations

det

(
M(m)

M(1)

)
= det

(
M†(m)M(m)

M†(1)M(1)

) 1
2

(2.36)

=

∫
Dϕ†Dϕ exp

(
−ϕ† (M†(1)M(1)

) 1
4

1

(M†(m)M(m))
1
2

(
M†(1)M(1)

) 1
4 ϕ

)
. (2.37)

Where rational approximations of x1/4 and x−1/2 are used to evaluate the fractional powers

of matrices. A general rational function for use in lattice calculation has the following form

r(x) =
∑
k

αk
x+ βk

, (2.38)

where αk and βk are real numbers. There are stock algorithms such as the Remez algorithm

[10] that calculate rational approximations to functions such as xλ. In what follows we will

use the symbol SR(m1,m2) to represent this rational action

SR(m1,m2) = ϕ†r1
(
M†(m2)M(m2)

)
r2
(
M†(m1)M(m1)

)
r1
(
M†(m2)M(m2)

)
ϕ, (2.39)

where r1(x) and r2(x) are rational approximations to functions x1/4 and x−1/2, respectively.



Chapter 3

The Hybrid Monte Carlo Algorithm

In this chapter we describe the hybrid Monte Carlo algorithm and related algorithmic de-

velopment. The hybrid Monte Carlo algorithm is our algorithm of choice for generating

ensembles in lattice calculations. It has been widely used since its initial development [11].

3.1 Path Integrals and the Monte Carlo Method

The path integral

Z =

∫
DUDψDψ e−S(U,ψ,ψ) (3.1)

plays a central role in quantum field theory. Any observable O(U) can in principle be

measured using the path integral

⟨
O(U,ψ, ψ)

⟩
=

1

Z

∫
DUDψDψ O(U, ψ, ψ)e−S(U,ψ,ψ). (3.2)

The lattice approach of quantum chromodynamics directly makes use of the path integral

to compute observables from first principles. The integration domain of Z is a very high

dimensional object after discretization. Due to its very high dimensionality many conven-

tional numerical integration methods do not work for such integrals (the so called “curse of

18
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dimensionality” problem). Such problems are usually tackled using randomized algorithms

such as Monte Carlo integration.

The Monte Carlo method estimates an integral by generating a series of random samples

in the integration domain. Taking the following 1 dimensional integral as an example

I =

∫
D

dx f(x)ω(x). (3.3)

Where we assume that ω(x) can be used as a distribution,

ω(x) ≥ 0, ∀x ∈ D, (3.4)∫
D

dx ω(x) = 1. (3.5)

The Monte Carlo integration method finds N random samples of x according to the distri-

bution ω(x). I can then be approximated by

I ≈ 1

N

∑
i

f(xi). (3.6)

The best case scenario for the above Monte Carlo method is such that f(x) is a slowly

varying function of x. This is the idea of importance sampling.

The integration domain of a QCD partition function is the configuration space of the

gauge field. On the lattice, one generates a set of random samples Ui within the integration

domain according to the following distribution

ω(U) =
1

Z
e−S(U). (3.7)
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So an observable O(U) is approximated by

⟨O(U)⟩ = 1

N

∑
i

O(Ui). (3.8)

A typical lattice calculation thus consists of the following 2 stages,

1. (Ensemble generation) Generate a set of gauge field configurations Ui according to the

distribution (3.7).

2. (Measurement) Calculate the observable on the generated configurations using (3.8).

There are challenging problems associated with both ensemble generations and measure-

ments. This chapter discusses problems related to ensemble generations. Methods related

to measurements will be discussed in chapter 5.

The problem of generating appropriate gauge field samples is challenging due to the

following reasons

1. The QCD path integral (2.27) is a very high dimensional integral. For example, there

are a total of 483× 96 = 10616832 sites for our 483× 96 lattice. On each site there are

4 link variables, each is integrated over the 8 dimensional SU(3) gauge group space.

So the total dimensionality of the integration domain is 483× 96× 4× 8 = 339738624.

At such high dimensions, most methods based on grid discretization of the integration

domain can not produce any reasonable result since the efficiency of these algorithms

degrades as the dimensionality of the sampling space increases.

2. The density distribution ω(Ui) = e−SG(U)−SF (U) becomes non-local once fermions are

included. So local updating methods such as the heat bath method do not work well.

Global updating methods (i.e., methods that refresh all gauge links simultaneously)

are usually required.



21

The hybrid Monte Carlo algorithm is a global updating method built on top of the

Metropolis-Hastings algorithm.

3.2 The Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm is a Markov chain method. It solves the ensemble gen-

eration problem in the Monte Carlo integration. We describe its continuum version here.

Suppose we want to generate a random sample within domain D and distribution ω(x),

x ∈ D. Starting from an arbitrary point x0 ∈ D, the Metropolis algorithm returns a new

sample xi+1 from a previous sample xi by performing the following procedure [12]

1. Pick up a new point yi ∈ D based on the distribution P (y|xi). P (y|x) is called the

“jumping distribution” which specifies how to obtain a new sample from a given old

sample. This transition function must be reversible

P (y|x)dx = P (x|y)dy, (3.9)

where dx or dy is the volume element at point x or y, respectively.

2. Compute the acceptance ratio

λ =
ω(yi)

ω(xi)
, (3.10)

3. Accept the new point yi with probability λ. If λ ≥ 1 then the new point is always

accepted. Return yi as the next sample xi+1 if it is accepted, otherwise duplicate the

old sample xi as the next sample xi+1.

The Metropolis algorithm is an extremely adaptive method because of a variety of choices

can be made to construct the jumping distribution P (y|x). On the lattice, the molecular

dynamics evolution is the predominant choice when constructing P (y|x). This is the hybrid

Monte Carlo algorithm.
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3.3 The Hybrid Monte Carlo Algorithm

As stated above, the hybrid Monte Carlo algorithm is an adaption of the Metropolis algo-

rithm in which a new sample is obtained by molecular dynamics evolution of the old sample.

Its basic idea can be succinctly described by the following example.

Consider the problem of generating a random variable q with normal distribution

ω(q) ∝ e−q
2/2. (3.11)

The partition function is

Z =

∫ ∞

−∞
dq ω(q). (3.12)

Using the hybrid Monte Carlo algorithm, q is treated as a generalized coordinate of a Hamil-

tonian system and S(q) = q2/2 can be thought as the action. We add a fictitious kinetic

term T (p) to the action so we have a complete Hamiltonian. Usually we choose the following

quadratic form for T (p)

T (p) =
1

2
p2. (3.13)

The new partition function is

Z ′ =

∫
dqdp e−H(q,p), (3.14)

where H(q, p) = T (p) + S(q). The new problem now consists of generating random samples

of (q, p) pairs following distribution e−H(q,p). By integrating p out we get the desired sample

q. Operationally this simply means dropping p from each of the pairs.

The hybrid Monte Carlo algorithm generates p by using a direct method. In this example,

we generate a new p each time following the distribution without any considerations of the

previous sample in the sequence

ω(p) ∝ e−T (p) = e−p
2/2. (3.15)
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This is simple to do and there are many stock algorithms to perform the task.

The next step in the hybrid Monte Carlo algorithm moves both q and p by evolving the

state (q, p) according to the Hamilton equations

dq

dt
= {H, q} = −p, (3.16)

dp

dt
= {H, p} = q. (3.17)

The above Hamiltonian system is integrated for a certain duration and the resulting end

point in the phase space is regarded as the new proposed sample. The duration that we

integrate equations (3.16, 3.17) is the molecular dynamics time, usually denoted by τ .

In this example we can integrate the Hamiltonian system (3.16,3.17) exactly. Conse-

quently the acceptance ratio will always be 1 and the proposed new point will always be

accepted. This is simply because Hamiltonian is conserved when evolving the system. For

practical Hamiltonian systems it is usually infeasible or not economical to perform exact

integration. The accept/reject step is then necessary to eliminate any bias for such cases.
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Figure 3.1: Left: 5 sample steps in the hybrid Monte Carlo algorithm. Blue solid curves:
trajectories of (q, p) following the Hamilton equation, the corresponding molecular dynamics
time duration is 2. Red dashed lines: “jumps” in p due to refreshment of the generalized
momentum. Right: Distribution of (q, p) after 2000 steps.

Putting these steps together, the full hybrid Monte Carlo algorithm generates a new
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point qi+1 from the previous sample qi using the following steps.

1. Generate a new pi according to the normal distribution

ω(p) ∝ e−T (p) = e−p
2/2 (3.18)

using any direct method.

2. Evolve the point (qi, pi) for a certain amount of molecular dynamics time according to

some proposed Hamilton equations to obtain a new point in the phase space (qi+1, pi+1).

3. Compute the acceptance ratio

λ =
e−H(qi+1,pi+1)

e−H(qi,pi)
. (3.19)

4. Perform the accept/reject test as described above and either use the new point qi+1 or

return the old point qi as the next sample in the generated sequence.

Figure 3.1 shows how the hybrid Monte Carlo works for this example. Note that the

accept/reject step is not shown in the figure since it is not necessary for this simple example.

It may seem circular that we generate p using a direct method and use it to generate a

sample of q with the same distribution. This is simply because the distribution we want for

q happens to be the normal distribution. The hybrid Monte Carlo method works equally

well for essentially any distribution of the following form

ω(q) ∝ e−S(q). (3.20)

In addition, since the choice for T (p) is always T (p) = p2/2, the direct method used to

generate pi is not related to the actual form of S(q).
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3.4 Hamiltonian Mechanics on the Lattice

The key ingredient of the hybrid Monte Carlo algorithm is the molecular dynamics evolution

of the gauge links. In this section, we discuss how it is implemented using the language of

differential geometry.

To form a Hamiltonian system we need to construct a symplectic manifold (the mathe-

matical synonym for phase space). A symplectic manifold is an even dimensional manifold

M endowed with a closed 2-form ω (i.e., dω = 0) [13]. The states of the system are described

by points on the manifold, which in turn are described by their local coordinates (q, p). The

time development of a state following the Hamilton equations is interpreted as the move-

ment of the corresponding point on the manifold following the integration curve of a certain

vector field. This vector field (the Hamiltonian field) is derived from the Hamiltonian via

the 2-form ω. It can be thought as the “gradient” of the Hamiltonian, though the analogy

is not exact. ω is also used in the construction of the Poisson bracket. The Poisson bracket

describes the structure of the phase space and defines the volume form in the phase space.

The latter plays an essential role in the detailed balance condition. The triplet (M,ω,H)

fully defines the dynamics of the system.

3.4.1 The Symplectic Manifold (M,ω)

A symplectic manifold or phase space is an even dimensional manifold M . As such a point

on this manifold is described by 2N local coordinates. In Hamiltonian mechanics N local

coordinates are interpreted as generalized coordinates and the remaining N local coordinates

are interpreted as generalized momenta.

The configuration space of the link variables is the starting point to construct the phase

space. A single link variable is an element of the SU(3) gauge group. So the configuration

space for the entire lattice is the direct product of many copies of SU(3) gauge groups, one
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for each link

G =
⊗
µx

SU(3)µx, (3.21)

where µ = 0, 1, 2, 3 labels the spacetime directions. x labels an arbitrary site on the lattice.

A common choice to construct a phase space from a configuration space M is to use

its cotangent bundle T ∗M . In this approach all link variables are treated as generalized

coordinates, and the generalized momenta are objects in the cotangent space. In this setup

the 2-form ω has a natural construction. First of all we need to generalize the Poisson bracket

{f(q, p), g(q, p)} = ∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
(3.22)

so it is well defined on the cotangent bundle T ∗G. The partial differential operator ∂/∂p

does not need special treatment since the space for p is the flat cotangent space. However, we

need to find a definition for ∂/∂q since SU(3) is not flat and unlike the Euclidean space Rn,

there is no predefined coordinate system for us to introduce the partial differential operator

∂/∂q.

Since vector fields can be naturally regarded as differential operators on a manifold, we

define ∂/∂q as a suitable set of vector fields on the group manifold G. Most frequently, the

left invariant vector field ei is used for this purpose. ei is defined as the push-forward of

the corresponding basis vectors in the underlying Lie algebra. In other words, we pick up

a basis Ei in the tangent space at the origin (the unit element of G) and translate it to all

other points to form the left invariant vector field. The specific translation here is the left

translation defined by the multiplication rule of the group

Lg : G −→ G h 7−→ Lgh := gh. (3.23)



27

And the field ei is defined as the push-forward of the vector Ei

ei(g) = Lg∗Ei. (3.24)

The details can be found in [13].

The field ei has the following nice property

[ei, ej] = ckijek, (3.25)

where the coefficients ckij are the structure constants of the corresponding Lie group. From

this relation we obtain the following very useful formula (the Maurer-Cartan formula)

dei +
1

2
cijke

j ∧ ek = 0. (3.26)

By using the covector of the left invariant vector field ei, we can readily introduce ω as

ω = d(pie
i). (3.27)

ω as defined above is guaranteed to be closed since the exterior derivative operator d is

nilpotent: dd = 0. Using the Maurer-Cartan formula, we have

ω = d(pie
i) = dpi ∧ ei + pide

i = dpi ∧ ei −
1

2
pic

i
jke

j ∧ ek. (3.28)

When deriving the equations of motion, it is easier to use the Poisson antisymmetric tensor

P instead of ω. P can be thought as the “inverse” of ω

P ◦ ω = −1, P ijωjk = −δik. (3.29)
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By this definition

P =
∂

∂pi
⊗ ei − ei ⊗

∂

∂pi
+ pic

i
jk

∂

∂pj
⊗ ∂

∂pk
=

∂

∂pi
∧ ei +

1

2
pic

i
jk

∂

∂pj
∧ ∂

∂pk
. (3.30)

For example, the Poisson bracket of 2 scalar functions F (U, p) and G(U, p) is the following

{F,G} = P(dF, dG) = ∂F

∂pi
ei(G)−

∂G

∂pi
ei(F ) + pic

i
jk

∂F

∂pj

∂G

∂pk
. (3.31)

This concludes the definition of the Poisson bracket.

We still need a kinetic term T (p) to fully construct the Hamiltonian. In effect any function

T (p) can be used if it is bounded from below.1 The most common choice2 is a quadratic

form,

H = T (pi) + S(U) =
1

2
pip

i + S(U). (3.32)

To be exact, the number of different momenta pi is equal to the dimension of the group G

in equation (3.21). We use the convention that indices such as i, j, k represent coordinates

for the entire group G, while indices such as a, b, c represent coordinates on a single link.

Equivalently i can be thought as the combination of 3 indices i = (a, µ, x).

Now that we have a complete Hamiltonian system, we can build the equations of motion

for the system. By definition the Hamiltonian H gives rise to the following vector field called

the Hamiltonian field ζH ,

ζH = P(dH, · ) = piei − ei(S)
∂

∂pi
. (3.33)

The Hamilton equations describe the evolution of the state in the phase space along the

integration curve of the Hamiltonian field. So the time evolution of an observable F (U, p) is

1One restriction apply: the choice of T (p) has to make sure that the algorithm is ergodic. For example,
setting T (p) = 0 will not produce a usable algorithm.

2Other choices do exist. For example see [14].
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given by

dF

dt
= ζHF = {H,F} . (3.34)

Treating the coordinates (Uµ(x), pi) themselves as observables, we obtain the standard Hamil-

ton equations

dUµ(x)

dt
= {H,Uµ(x)} =

∑
a

paµxTaUµ(x), (3.35)

dpi
dt

=− ei(S). (3.36)

Where Ti is the generator associated with ei in its fundamental representation.

Treating T , S or {S, {S, T}} as Hamiltonians, their corresponding Hamiltonian fields are

ζT =P(dT, · ) = piei (3.37)

ζS =P(dS, · ) = −ei(S)
∂

∂pi
(3.38)

ζ{S{S,T}} =P(d{S{S, T}}, · ) = −2ej(S)eiej(S)
∂

∂pi
(3.39)

As can be seen below, ζT and ζS are natural building blocks for symmetric symplectic

integrators. ζ{S{S,T}} plays an essential role in the force gradient integrator.

3.5 Symmetric Symplectic Integrators

The integration curve of the vector field (3.33) is obtained by solving the Hamilton equations

dUµ(x)

dt
=paµ(x)TaUµ(x),

dpaµ(x)

dt
=− eaµx(S).

(3.40)
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Exact numeric integration of the above equations is generally very difficult. Since the corre-

sponding time evolution operator

eτζH = eτ(ζT+ζS) (3.41)

involves non-commuting operators ζT and ζS,

ζT =P(dT, · ) = piei (3.42)

ζS =P(dS, · ) = −ei(S)
∂

∂pi
. (3.43)

Various numerical methods (integrators) can be applied to the above equations. In principle

all numerical methods that solve partial differential equations can be used.

For use with the hybrid Monte Carlo algorithm, the integrator has to satisfy the de-

tailed balance condition. This ensures that the subsequent accept/reject step corrects any

numerical errors introduced by integrating equations (3.40). This is usually fulfilled by two

additional properties of the integrator, namely symplecticity and reversibility3.

1. A symplectic integrator preserves the volume of a domain while evolving the domain

on the symplectic manifold. In other words, the time evolution according to a symplec-

tic integrator can be interpreted as an incompressible flow. In particular, Liouville’s

theorem guarantees that the time evolution operator of any Hamiltonian preserves the

phase volume [13].

2. A reversible integrator can move precisely from the final point to the initial point

when integrated backwards. As an simple example, the linear multistep method is not

reversible because it refers to its history when moving forward.

Integrators that are both symplectic and reversible are called symmetric symplectic integra-

tors. such integrators can be conveniently constructed using the Baker-Campbell-Hausdorff

3Being symplectic and reversible is sufficient but not required for the detailed balance condition. However,
this is usually the easiest way to enforce the detailed balance condition.
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(BCH) formula. The BCH formula is an expansion of

log
(
eAeB

)
(3.44)

while A and B are elements of some Lie algebra. The initial few terms of the formula are as

follows

log
(
eAeB

)
= A+B +

1

2
[A,B] +

1

12
[A, [A,B]]− 1

12
[B, [A,B]] + · · · . (3.45)

Using this formula, it is immediately clear that

U(τ) = eτζT eτζS (3.46)

is an approximation to the full time evolution operator (3.41) with local error equal to O(τ 2).

Since

log
(
eτζT eτζS

)
= τζH + τ 2 [ζT , ζS] /2 +O(τ 3). (3.47)

In addition, U(τ) is symplectic since eτζT and eτζS are time evolution operators corresponding

to Hamiltonians T and S.

The above integrator is the simplest symplectic integrator one can construct. Unfortu-

nately, it is not reversible

U(τ)U(−τ) = eτζT eτζSe−τζT e−τζS ̸= 1. (3.48)

This problem can be cured by making the integrator symmetric in 2 ways

UQPQ(τ) =e
τζT /2eτζSeτζT /2, (3.49)

UPQP(τ) =e
τζS/2eτζT eτζS/2. (3.50)
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Both integrators are reversible,

UQPQ(τ)UQPQ(−τ) =1, (3.51)

UPQP(τ)UPQP(−τ) =1. (3.52)

An additional benefit is that any O(τ 2n) local errors are eliminated. For example, by using

the BCH formula it can be shown that

UQPQ(τ) = exp
(
τ (ζT + ζS) +O(τ 3)

)
. (3.53)

So the leading term in the local error is O(τ 3). These are the leapfrog integrators.

By adding more alternating steps one can construct progressively more sophisticated

integrators. The popular Omelyan integrator has 5 integration steps

UQPQPQ(τ) = eατζT e
1
2
τζSe(1−2α)τζT e

1
2
τζSeατζT , (3.54)

where α is a free parameter. We can obtain its error terms by using the BCH formula

log (UQPQPQ(τ))

=τ (ζS + ζT ) + τ 3
(
6α− 1

24
ζ{S,{S,T}} +

−6α2 + 6α− 1

12
ζ{T,{S,T}}

)
+O

(
τ 5
)
.

(3.55)

If α = 0 or 1 then this integrator becomes the above mentioned leapfrog integrators. The

Omelyan integrator has O (τ 3) local errors that are formally the same size as the leapfrog

integrator. However, the presence of the free parameter α allows one to tune the integrator

for a specific problem to minimize the O (τ 3) errors.

By adding more alternating time evolution operators we can introduce more free param-

eters into the integrators, thus eliminating more error terms. For example, it is possible to

eliminate bothO (τ 3) terms in (3.55) by integrating over the vector field ζT and ζS alternately
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in 7 steps. We thus obtain the Campostrini integrator [15]

UQPQPQPQ(τ) = eC1τζT eC2τζSeC3τζT eC4τζSeC3τζT eC2τζSeC1τζT , (3.56)

where

C1 =
3
√
4 + 2 3

√
2 + 4

12
, C2 =

3
√
4 + 2 3

√
2 + 4

6
,

C3 =
− 3
√
4− 2 3

√
2 + 2

12
, C4 = −

3
√
4 + 2 3

√
2 + 1

3
.

(3.57)

This integrator has the following error terms (cf. [16])

log (UQPQPQPQ(τ)) = τ (ζS + ζT ) +
τ 5

34560

(
−
(
48 + 40

3
√
2 + 40

3
√
4
)
ζ{S,{S,{S,{S,T}}}}

+
(
8− 20

3
√
4
)
ζ{S,{S,{T,{S,T}}}}

+
(
32 + 20

3
√
2
)
ζ{S,{T,{T,{S,T}}}}

+
(
8 + 5

3
√
2
)
ζ{T,{T,{T,{S,T}}}}

+
(
304 + 240

3
√
2 + 200

3
√
4
)
ζ{{S,T},{S,{S,T}}}

+
(
72 + 60

3
√
2 + 60

3
√
4
)
ζ{{S,T},{T,{S,T}}}

)
.

(3.58)

Theoretically one can construct integrators of arbitrarily high orders using this approach.

The following section illustrates a simple constructive way to do this.

3.5.1 Triplet Concatenations

Triplet concatenation [17] is an interesting method to generate an O(τn+2) integrator from

an arbitrary O(τn) symmetric symplectic integrator. Integrators of arbitrarily high orders

can be constructed by applying this method recursively.
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These integrators would be very useful if the goal of the calculation was to keep the error

of the overall energy (on the lattice, the Hamiltonian) very small. However, unlike many

other numerical applications, in a typical lattice calculation the goal is not to keep the error

as small as possible but rather to keep it as an O(1) quantity4. In such cases, this class of

integrators is less stable compared to previously mentioned integrators due to their use of

large negative time steps. Nevertheless, we shall describe the method here since it is simple

and a few notable integrators such as the fourth order Campostrini integrator (3.56) can be

easily constructed in this way.

Starting from an nth order integrator

Un(τ) = eτζH+τn+1ζF+O(τn+3), (3.59)

where τn+1ζF is the local error term, we try to construct a higher order integrator by the

following ansatz

Un(τ)Un(−λτ)Un(τ). (3.60)

By using the BCH formula, it is easy to prove that 5

Un(τ)Un(−λτ)Un(τ) = eτ(2−λ)ζH+(2−λn+1)τn+1ζF+O(τn+3). (3.61)

So choosing 2 − λn+1 = 0 yields a higher order integrator. In case of symmetric symplectic

4If the error is much larger than 1, then the acceptance ratio (3.19) will be very small and we move
the state in the phase space very slowly. On the other hand, there is not much difference in the computed
ensemble if the acceptance ratio is close to 1. The HMC method with 90% acceptance ratio has just slightly
larger autocorrelation time than that with 99% (or any higher value) acceptance ratio. So it is usually
preferable to use a cheaper integrator as long as it maintains reasonable acceptance ratio.

5One may raise the question that why Un(τ)Un(−λτ)Un(τ) ̸= Un ((2− λ)τ). This is because Un(τ) does
not commute with Un(−λτ). For a “normal” time evolution operator eτζH , ζH does not depend on τ and
eτζH commutes with e−λτζH for any λ. This is not the case for Un(τ).



35

integrators, we get an integrator of order n+ 2 from an integrator of order n.

Un(τ)Un(−21/(n+1)τ)Un(τ) = eτ(2−21/(n+1))ζH+O(τn+3). (3.62)

After normalizing the step size, the higher order integrator can be written as

V (τ) = Un

(
1

2− λ
τ

)
Un

(
− λ

2− λ
τ

)
Un

(
1

2− λ
τ

)
(3.63)

with λ = 21/(n+1).

As a simple example, the 4th order Campostrini integrator (3.56) can be constructed

from the leapfrog integrator (3.53) in this way. By setting λ = 3
√
2, we have

UQPQ

(
1

2− 3
√
2
τ

)
UQPQ

(
−

3
√
2

2− 3
√
2
τ

)
UQPQ

(
1

2− 3
√
2
τ

)
= UQPQPQPQ(τ). (3.64)

Integrators obtained in this way relies heavily on cancellations between forward steps of

size τ/(2−λ) and a backward step of size −λτ/(2−λ) to eliminate the O(τn+1) error. In the

large n limit, both forward and backward steps have their step sizes approaching 1. When

applying this class of integrators to lattice Hamiltonian systems we frequently find that the

use of backward steps render the integrator less stable in the region where the error ∆H is

an order 1 quantity. So they do not necessarily outperform their underlying integrators.

3.6 The Force Gradient Integrator

Both the leapfrog integrator and the Omelyan integrator are second order integrators. For

both integrators, the global error scales according to O(τ 2). The Campostrini integrator is

an O (τ 4) integrator. However, practice shows that the large coefficients in the error terms

of the Campostrini integrator (3.58) and the extra integration costs usually offset the benefit

of this O (τ 4) behavior in the errors, for reasons described in the previous section.
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It is also possible to eliminate the O (τ 3) terms using an alternative approach. This

approach exploits the specific form (3.32) we chose for the kinetic term T (p). To see the

trick, we substitute T (p) = pip
i/2 into the 2 error terms of the Omelyan integrator (3.55)

{S, {S, T}} =ei(S)ei(S) (3.65)

{T, {S, T}} =− pipjeiej(S). (3.66)

An important observation is that {S, {S, T}} does not depend on the canonical momentum

pi. Since it is a function of Uµ(x), it can be treated as a potential. Consequently its time

evolution operator evolves only the canonical momentum and can thus be evaluated exactly

for any given finite time step.

So it is possible to eliminate both O (τ 3) error terms (3.55) in the Omelyan integrator

without introducing additional alternating steps,

1. The term ζ{T,{S,T}} can be eliminated by tuning α in the Omelyan integrator. For

example, setting α = (3 −
√
3)/6 in (3.55) eliminates this error term in the Omelyan

QPQPQ integrator.

2. The term ζ{S,{S,T}} can be eliminated by incorporating an appropriate time evolution

operator into the integrator. This extra time evolution operator uses the Hamiltonian

field of {S, {S, T}}.

The resulting integrator takes the following 2 forms [16],

UFGI-QPQPQ(τ) = exp

(
3−
√
3

6
τζT

)
exp

(
1

2
τζS −

2−
√
3

48
τ 3ζ{S,{S,T}}

)
·

exp

(√
3

3
τζT

)
exp

(
1

2
τζS −

2−
√
3

48
τ 3ζ{S,{S,T}}

)
exp

(
3−
√
3

6
τζT

)
,

(3.67)
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UFGI-PQPQP(τ) = exp

(
1

6
τζS

)
exp

(
1

2
τζT

)
·

exp

(
2

3
τζS −

1

72
τ 3ζ{S,{S,T}}

)
exp

(
1

2
τζT

)
exp

(
1

6
τζS

)
.

(3.68)

For both integrators, the global errors scale as O (τ 4). As will be seen below, evaluating

the force gradient term ζ{S,{S,T}} for fermions requires solving one extra Dirac equation.

Consequently we need to solve 1 additional Dirac equation if we apply the PQPQP force

gradient integrator to fermions and 2 additional Dirac equations if the QPQPQ form is used

instead.

As an explicit example, the force gradient QPQPQ integrator thus involves the following

5 steps

Uµ(x)←− exp

(
3−
√
3

6
τpaµ(x)Ta

)
Uµ(x), (3.69)

paµ(x)Ta ←− paµ(x)Ta −
1

2
τeaµx(S)Ta +

2−
√
3

24
τ 3ej(S)eaµxej(S)Ta, (3.70)

Uµ(x)←− exp

(√
3

3
τpaµ(x)Ta

)
Uµ(x), (3.71)

paµ(x)Ta ←− paµ(x)Ta −
1

2
τeaµx(S)Ta +

2−
√
3

24
τ 3ej(S)eaµxej(S)Ta, (3.72)

Uµ(x)←− exp

(
3−
√
3

6
τpaµ(x)Ta

)
Uµ(x). (3.73)

3.6.1 Implementing the Force Gradient Integrator

We use the PQPQP form of the force gradient integrator (3.68) as an example when dis-

cussing its implementations. Most of the discussion extends trivially to the force gradient

QPQPQ integrator (3.67).

The key step when implementing the FGI-PQPQP integrator involves the following up-
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date procedure for the momentum field

pi ←− pi −
2

3
τei(S) +

1

36
τ 3ej(S)eiej(S). (3.74)

For reference purpose we will refer such a step as the force gradient step.

The naive implementation of the force gradient step is quite complicated, since it re-

quires evaluating the force twice and the second order differential ejei(S) generates many

individual force terms. This is especially the case when the force gradient integrator is used

inside a nested integration scheme. In addition, the fermion force gradient step generally

requires solving more Dirac equations than a usual fermion force term, increasing the cost

substantially. Fortunately there is a simpler approach.

This approach has a close relation to the well known Horner scheme for evaluating poly-

nomials. Take a quadratic function

f(x) = a+ bx+ cx2 (3.75)

with known coefficients a,b and c as an example. Horner scheme replaces evaluation of each

power of x by applying a linear function of x in a nested manner:

f(x) = a+ x(b+ cx). (3.76)

So evaluating the linear function of x twice is equivalent to evaluating a quadratic function.

Exactly the same idea can be used to implement the second order derivative term

ej(S)ejei(S). As the first step we notice that

eiej − ejei = [ei, ej] = ckijek, (3.77)
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so

ej(S)eiej(S)− ej(S)ejei(S) = ej(S)ckijek(S) = cijke
j(S)ek(S) = 0. (3.78)

The last equality holds since cijk is antisymmetric with respect to interchanging any 2 indices.

This implies we are free to exchange the order of the 2 derivatives ei, ej in e
j(S)ejei(S).

Since ei and ej are interchangeable, the following approximation holds

2

3
τei(S)−

1

36
τ 3ej(S)eiej(S) =

2

3
τ

(
1− 1

24
τ 2F jej

)
ei(S) =

2

3
τe−

1
24
τ2F jejei(S) +O(τ 5).

(3.79)

Where F j = ej(S) and it must be treated as a field independent of link variables in the

above equation. In other words, we define ei(Fj) = 0 despite the fact that F j depends on

the gauge field. This sequence of transformation preserve the important feature that the

local error of the force gradient integrator is of the order O(τ 5).

Effectively we obtain from the last expression

e−
τ2

24
F jejei(S) = ei(S[U

′]) (3.80)

with

U ′ = e−
τ2

24
F jejU = e−

τ2

24
F jTjU (3.81)

So the force gradient step can be integrated using the following method

1. (the preparation step) Calculate F j = ej(S[U ]) and compute a set of auxiliary link

variables U ′ = e−
τ2

24
F jTjU .

2. (the update step) Calculate again 2τei(S[U
′])/3 using the auxiliary gauge field. The

latter calculation is to be added to the momentum field.

The above implementation of the force gradient integrator differs from the original force

gradient integrator (3.68) [16], since the approximation in (3.79), though being O(τ 5) locally,
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changes the error term. This approximation still preserves the symmetricity and symplec-

ticity of the original force gradient integrator.

1. It is symmetric since the force gradient step depends only on the current gauge field.

The preparation step does not update the state of the system, but rather computes

an auxiliary field. If we reverse the molecular dynamics time τ , then preparation step

computes the same U ′ and the update step then computes a force term that is reversed.

2. Since the update step can be thought as using the time evolution operator exp (2τζS/3)

computed on the field U ′, Liouville’s theorem guarantees that it is symplectic.

Here we present the scaling test of the integrator on the 163×32 (1.8fm, 420MeV) lattice

with 2+1 flavor dynamical DWF fermions. With the PQPQP force gradient integrator, we

were able to raise the top level step size from 1/4 as in the Omelyan to 1/36. However, due

to the extra cost in the extra force gradient solve, the use of the force gradient integrator by

itself is not enough for a significant speed up.

3.6.2 The Forecasted Force Gradient Integrator

For fermion actions each time ei(S) is evaluated we need to solve a Dirac equation with the

preconditioned Dirac operator, as can be seen in appendix A. This part of calculation can

easily consume a large portion of the computation time in the hybrid Monte Carlo algorithm.

The situation for the force gradient step is even worse since we need to solve more (typically,

twice as many) Dirac equations to evaluate the second order force gradient.

However, for the above implementation of the force gradient integrator it is possible to

use the solution from the preparation step as an initial guess when solving the Dirac equation

in the update step. Consider a simple fermion action S(U) = ϕ†M(U)−1ϕ, its force term

6Without further notice, the full trajectory length is always 1 in all the tests performed.
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Figure 3.2: The absolute value of the error dH as a function of the step size τ , plotted for
both the force gradient integrator and the Omelyan integrator. We integrate for a total of
1 molecular dynamics time unit so we are effectively comparing the global behavior of both
integrators. Data are obtained on the 163× 32 (1.8fm, 420MeV) ensemble. We fit both data
sets using the ansatz f(x) = Axβ, where data points with dt ≤ 0.2 are used. The result
shows that β = 4.16(21) for the force gradient integrator and 2.44(21) for the Omelyan
integrator.
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takes the following form

ei(S(U)) = −ϕ†M(U)−1ei(M(U))M(U)−1ϕ. (3.82)

We need to solve the linear systemM(U)ψ = ϕ to evaluate this force term. Two such solves

are needed to implement the force gradient step (3.74) due the presence of the second order

derivative. However, the above implementation of the force gradient integrator features 2

almost identical steps. The only difference in the 2 steps is in the gauge field, the first step

uses the original field U while the second step uses U ′ computed from the first step. Notice

that U ′ is only slightly different from U , we can simply use the solution obtained in the first

step as an initial guess when solving the Dirac equation in the second step. The difference

between U ′ and U is proportional to τ 2/24. In practice this factor is usually small despite a

relative large step size, making the forecasting very effective.

The force gradient integrator with forecasting is still a symmetric symplectic integrator.

As mentioned in the previous text, the molecular dynamics time does not evolve within the

two steps. Unlike the chronological inverter, the forecasting always produces exactly the

same solution in the update step regardless of the direction of the molecular dynamics time.

Figure (3.3) shows the difference in the Hamiltonian when we perform a forward inte-

gration followed by a backward integration with the MD time equal to 1 in both steps. In

other words, we are applying the following operator to the system,

U(−1)U(1). (3.83)

If there is no numerical error and the integrator is symmetric then we should reach exactly

the same state as where we started, thus any deviation from zero provides a measure for how

far we are from being perfectly reversible. The figure shows the behavior of the Omelyan

integrator and the force gradient integrator with/without the forecasting. Clearly there is
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Figure 3.3: Reversibility of different integration strategies plotted as a function of different
stopping conditions used in molecular dynamics evolution. The data were obtained on en-
semble 163×32 (1.8fm, 420MeV). “Change in H” is the change in the Hamiltonian when we
perform a forward integration followed immediately by a backward integration, both for 1
molecular dynamics time unit. The graph shows the absolute value of this difference, plotted
as average value/standard deviation pairs.
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no appreciable difference between the Omelyan integrator and the force gradient integrator,

either with or without forecasting. For reference purposes we also show the behavior of these

integrators combined with the chronological solver7. Clearly integrators which make use of

its history are more susceptible to changes in stopping condition.
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Figure 3.4: The iteration count of the Krylov space solver in the update step as a function
of the iteration count of the solver in the preparation step.

Practically the effectiveness of the force gradient forecasting is restricted by the difference

between U and U ′, and also the accuracy of the force gradient step itself. Figure (3.4) shows

the iteration count of the Krylov space solver (in this case, the conjugate gradient method)

in the update step as a function of the iteration count of the same solver in the preparation

step. The graph suggests that as we solve the Dirac equation in the preparation step more

accurately, force gradient forecasting becomes more effective. There is also a turning point

associated with each curve. If we solve the Dirac equation in the preparation step more

7The idea of chronological solver is to use linear combinations of the past solutions of fermion Dirac
equations as an initial guess when solving new fermion Dirac equations in HMC. Further details can be
found in [18].
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accurately than indicated by the turning point, the cost of the second Krylov space solver

remains to be a constant.

With the help of the force gradient forecasting, the force gradient integrator starts to

outperform the Omelyan integrator on large ensembles. In table (3.1) we compare the

forecasted force gradient integrator with the Omelyan integrator on a production 483 × 96,

β = 2.25 ensemble8. Using our settings the 2 integrators finish a trajectory within roughly

the same amount of computer time. However, the errors in the forecasted force gradient

integrator are a factor of 3 smaller than the corresponding Omelyan integrator, allowing a

better acceptance ratio.

integrator ⟨|∆H|⟩ acceptance ratio
time per trajectory

(seconds)
total number

of configurations

forecasted FGI 0.30(2) 0.85(18) 5.1e3 105
Omelyan(α = 0.22) 0.99(13) 0.58(6) 5.3e3 30

Table 3.1: Comparison between the forecasted force gradient integrator and the Omelyan
integrator on the 483× 96, β = 2.25 ensemble. The full trajectory length is 2 for both cases.

3.7 Sexton-Weingarten Integration

In practice the Hamiltonian (3.32) involves both the gauge action and the fermion action(s)

H = T (p) + SG(U) + SF(U). (3.84)

A practical problem arises when both actions are involved. The gauge force is usually larger

than the fermion force by an order of magnitude, while much easier to evaluate. Furthermore,

the fermion action SF(U) itself can usually be divided into separate parts with different costs

and magnitude of forces. If both the gauge action and various parts of the fermion action are

integrated in the same step then the step size τ has to be chosen to accommodate the largest

8This is not the ensemble 483 × 96 (5.5fm, 140MeV) listed in appendix B.
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force among them. This usually means small yet difficult to calculate force terms have to be

computed more frequently than necessary, introducing unnecessary overhead. Consequently

it is desirable to have a method to integrate different actions using different step sizes.

The Sexton-Weingarten integration scheme can be used to mitigate this problem [19].

Define

H =T ′ + SF(U), (3.85)

T ′ =T (p) + SG(U). (3.86)

T ′ and SF(U) can be fit into one integrator. When integrating T ′, its 2 parts T (p) and SG(U)

can be fit into a separate integrator. For example, when using the leapfrog QPQ integrator

for both levels one has the following integration scheme

exp (τζH) ≈ exp

(
1

2
τζT ′

)
exp (τζSF

) exp

(
1

2
τζT ′

)
(3.87)

exp

(
1

2
τζT ′

)
≈
(
exp

(
1

4n
τζT

)
exp

(
1

2n
τζSG

)
exp

(
1

4n
τζT

))n
, (3.88)

where n can be chosen as any positive integer. In this way different time steps can be

assigned to SG(U) and SF(U). n can be tuned to balance the size of the force and the cost,

maximizing the effectiveness of the composite integrator.

3.8 Hasenbusch Mass Splitting

The Hasenbusch mass splitting [20] is yet another method that offers fine grained control to

distribute the fermion forces to different parts in the action. Urbach et al. [21] proposed

that by assigning a smaller force to the more expensive part and putting it on a coarser time

scale using a multilevel integrator, an acceleration of the molecular dynamics evolution can

be achieved.
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The fermion action is derived from the following fermion determinant

det

(
M†(m)M(m)

M†(1)M(1)

)
=

∫
Dϕ†Dϕ exp

(
−ϕ†M(1)

1

M†(m)M(m)
M†(1)ϕ

)
. (3.89)

Using the Hasenbusch factorization [20], we rewrite the above quotient action as a product

of quotient actions by introducing a series of intermediate masses

det

(
M†(m)M(m)

M†(1)M(1)

)
=

k+1∏
i=1

det

(
M†(mi−1)M(mi−1)

M†(mi)M(mi)

)
(3.90)

=
k+1∏
i=1

∫
Dϕ†

iDϕi exp
(
−ϕ†

iM(mi)
1

M†(mi−1)M(mi−1)
M†(mi)ϕi

)
, (3.91)

where m = m0 < m1 < · · · < mk+1 = 1.

The size of the fermion force generated by the action

SQ(mi−1,mi) = −ϕ†
iM(mi)

1

M†(mi−1)M(mi−1)
M†(mi)ϕi (3.92)

is controlled by the mass parameters mi−1 and mi. In general closer masses produce smaller

forces. Thus by tuning these masses we can tune the size of the fermion forces in each part

continuously.

3.8.1 Tuning the Intermediate Masses

Tuning the intermediate masses proves to be challenging in this strategy. Empirically, we

found that the L∞ norm of the force (the largest force across the lattice) tends to be strongly

correlated with the acceptance ratio. In practice, this means comparing the L∞ norm of each

quotient action while doing the tuning work. Fig. 3.5 shows the L∞ norm distribution of

each part of the action from both the original Omelyan integration scheme and the tuned

scheme, the data was collected from a few hundred trajectories for each scheme.
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Figure 3.5: Force distribution

We found that by making all the quotient actions at the same level with roughly the same

average value of the L∞, the whole integrator has a generally better acceptance ratio. We

believe this shows L∞ norm can be used as an indicator when tuning intermediate masses.

In addition, keeping a smaller L∞ norm for the force in the light quotient sector seems to

be better than keeping them all equal. One possible explanation is that the L∞ distribution

of the light quotient force tends to be more spread out compared to the heavy ones, as seen

from figure 3.5.
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3.9 Practical Integration Schemes

By combining previously mentioned methods, we can rewrite the Hamiltonian used for 2+1

flavor lattice QCD simulation in the following manner

H = T + SG +
k∑
a=1

SQ(ma−1,ma) + SR(ms, 1), (3.93)

where m0 = ml, mk = 1, ml and ms are the light quark and strange quark masses, respec-

tively.

We use multiple levels of nested integrators to separate different parts of the action. A

general multilevel Sexton-Weingarten integration scheme can be written as follows

H = T ′
0 =T

′
1 + S1 (3.94)

T ′
i =T

′
i+1 + Si+1 i = 1, 2, · · · , k − 1, (3.95)

where T ′
k = T (p). The above equations separate the entire action into k levels.

Practically how various parts in (3.93) are assigned to different levels is mainly determined

by their relative costs and the sizes of corresponding forces. In its simplest form, we can

separate the fermion action and the gauge action and construct a 2 level Sexton-Weingarten

Integration scheme

level(i) Si

1
∑

a SQ(ma−1,ma) + SR(ms, 1)
2 SG

Table 3.2: The simplest Sexton-Weingarten multilevel integration scheme. Gauge action is
separated from the fermion actions.

More sophisticated schemes may further separate fermion actions into multiple levels, as

shown in table 3.3. This is the integration scheme used to evolve the 483×96 (5.5fm, 140MeV)

and 643 × 128 (5.5fm, 140MeV) ensemble.
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level(i) Si

1
∑

a SQ(ma−1,ma)
2 SR(ms, 1)
3 SG

Table 3.3: Multilevel integrator used to evolve the 483 × 96 (5.5fm, 140MeV) and 643 ×
128 (5.5fm, 140MeV) DWF+I ensembles. These ensembles are simulated with (5.5fm)3

boxes. The details can be found in table B.1 in appendix B.

Additional pieces may be added to the action for specific purposes. For example, one

may add the Dislocation Suppressing Determinant Ratio (DSDR) to the path integral [22]

when generating ensembles for use in QCD thermodynamics. In such situations, even more

sophisticated integrators may be built to maximize the efficiency [23].



Chapter 4

The Möbius Fermions

4.1 General Möbius Action - Motivation

The domain wall fermion action in its original form [8] maintains good chiral symmetry at

the cost of introducing an extra fictitious dimension into the action. The size of this extra

dimension (usually labeled as the s direction) is a direct multiplicative factor when counting

the cost of a lattice simulation. The situation becomes worse when we approach the physical

limit, in which the size of the s direction becomes so large that cost of the entire simulation

can be prohibitively expensive.

There are ongoing efforts to alleviate this problem. Among them are the optimal domain

wall fermions introduced by Ting-Wai Chiu [24], and the Möbius domain wall fermions

introduced by Richard C. Brower et al.[25, 26] as a generalization. In this work we mainly use

the Möbius domain wall fermion action. The Möbius fermions achieve good chiral symmetry

usually at a much smaller size in the 5th dimension, essentially by exploiting the inefficiencies

in the way the plain domain wall action uses this dimension.

To see why the plain domain wall action uses the s dimension inefficiently, we can examine

51
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the overlap equivalent of the domain wall action

DOV (HT ) =
1

2
(1 +m+ (1−m)γ5ϵ(HT )) , (4.1)

ϵ(x) =
(x+ 1)Ls − (x− 1)Ls

(x+ 1)Ls + (x− 1)Ls
, (4.2)

where Ls is an even number that denotes the size of the 5th dimension and HT is the Shamir

kernel: HT = γ5DW (2 +DW )−1.

ϵ(x) would be the sign function in an ideal overlap action. In domain wall actions ϵ(x)

are instead approximations to the sign function. The difference between ϵ(x) and a true sign

function is a measure of the residual chiral symmetry breaking effect.

The domain wall ϵ(x) in (4.2) approximates the sign function only within a certain

range. For very small x, ϵ(x) approaches 0 linearly. For very large x, ϵ(x) also falls to 0,

since ϵ(x) = ϵ(x−1) for any even Ls. We can analyze how fast/slow ϵ(x) deviates from the

sign function by plotting 1− ϵ(x) on (0,+∞). The result is shown in figure (4.1).
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Figure 4.1: Left: plot of ϵ(x) for the domain wall fermion actions with Ls = 4, 8, 16. Right:
plot of log (1− ϵ(x)) with different Ls values. The shaded region denotes the approximate
range of the eigenvalues of the HT kernel.

Figure (4.1) shows that there are 2 separate branches for which ϵ(x) deviates from 1.

One has x < 1 and the other has x > 1. 1− ϵ(x) is always exactly 0 for x = 1. The deviation

on both branches approaches 1 when x approaches 0 or ±∞. However, the distribution of
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the eigenvalues of HT does not extend to ∞. In fact, the eigenvalues of HT can be close to

0 but not ∞. There is usually a sharp upper bound in the spectrum of HT at some finite x.

Due to this upper bound, the right branch introduces less deviation from the ideal overlap

action compared to the left branch. The situation is more prominent when larger sizes are

used in the s direction.

Since deviations on both branches contribute to the residual chiral symmetry breaking

effect, the right branch in the domain wall action is unnecessarily accurate compared to the

left branch. In the large Ls limit, the residual chiral symmetry breaking effect receives its

main contribution from the nonzero values of 1− ϵ(x) near the origin.

The Möbius fermion action improves the situation by introducing a scaling factor λ into

ϵ(x). The Möbius approximation to the sign function is the following

ϵλ(x) =
(λx+ 1)Ls − (λx− 1)Ls

(λx+ 1)Ls + (λx− 1)Ls
. (4.3)

The effect of any λ > 1 is to “squeeze” the curves in in figure (4.1). The location for

1− ϵ(x) = 0 is no longer 1 but 1/λ. Figure (4.2) shows the situation for different λ values.

Larger λ values effectively make the left branch smaller and right branch larger, thus

increasing the “usefulness” of the right branch since this branch now has more overlap with

the spectrum of theHT kernel. The smaller left branch also implies a better approximation to

the sign function. Apparently λ can not be too large, otherwise some of the large eigenvalues

of the HT kernel falls on the region of the right branch where the approximation to the sign

function is no longer good.

Once we know the maximum eigenvalue of the HT kernel, we can determine how large λ

can be made. For example, the largest eigenvalue of HT for the 163 × 32 (1.8fm, 420MeV)

ensemble is known to be fluctuate around 1.37. We can plot 1 − ϵ(x) at this specific point

to see how ϵ(x) deviates from 1. The result can be seen in (4.2). This can help us gaining

knowledge about how large we can set λ for a particular choice of Ls.
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branches for each curve, the left branch shows the deviation of ϵ(x) from 1 near the origin,
the right branch shows the deviation of ϵ(x) from 1 in the large x limit. Note that the largest
eigenvalue of the HT kernel is roughly 1.4. Right: Plot of 1 − ϵ(x) at x = 1.37. The x axis
is the c parameter in the Möbius fermion.

It is also possible to introduce more free parameters into ϵ(x)

ϵ{λi}(x) =

∏
i(λix+ 1)−

∏
i(λix− 1)∏

i(λix+ 1) +
∏

i(λix− 1)
(4.4)

and optimize λi such that ϵ{λi}(x) is the best approximation to the sign function for a given

size in s direction. This is the general Möbius fermion which we will not discuss in this

document.

Now we present the full definition of the Möbius domain wall fermion action. Written as

a 5 dimensional action, it takes the following form

SF (ψ, ψ, U) =
∑
xs;ys′

ψxsDxs;ys′ψys′ , (4.5)

where Dxs;ys′ is the Möbius Dirac operator

Dxs;ys′ = Ds
+(x, y)δs,s′ +Ds

−(x, y)msP+δs,s′+1 +Ds
−(x, y)ms+1P−δs,s′−1. (4.6)
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The symbols Ds
+, D

s
− and ms in the above expression are defined as follows,

Ds
+(x, y) = bsD(x, y) + 1 (4.7)

Ds
−(x, y) = csD(x, y)− 1, (4.8)

ms =

 1 s = 1, 2, · · · , Ls − 1

−m s = 0
, (4.9)

and D(x, y) is the Wilson Dirac operator,

D(x, y) = (4 +M5)δxy −
1

2

∑
µ

(
(1− γµ)Uµ(x)δx+µ̂,y + (1 + γµ)U

†
µ(x− µ̂)δx−µ̂,y

)
. (4.10)

The Möbius Dirac operator as defined above is the most general form, with 2Ls free param-

eters bs and cs in addition to the original domain wall fermion parameters. This operator

can be transformed into its 4 dimensional equivalent overlap form using the domain wall -

overlap transformation [25]

LD(m)R = FD5
OV (m), (4.11)

where the definition of L, R and F can be found in [25]. D5
OV (m) takes the following form

D5
OV (m) = diag {DOV (m), 1, · · · , 1} , (4.12)

where DOV (m) has a definition similar to (4.1)

DOV (m) =
1

2

(
1 +m+ (1−m)γ5

S − 1

S + 1

)
, (4.13)

S =
∏
s

Hs
T + 1

Hs
T − 1

, (4.14)

Hs
T =(bs + cs)γ5DW (2 + (bs − cs)DW )−1 . (4.15)
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One important result from the domain wall - overlap transformation is

R−1D(1)−1D(m)R = D5
OV (m), (4.16)

and hence

det
(
D(1)−1D(m)

)
= det

(
D5
OV (m)

)
= det (DOV (m)) . (4.17)

4.2 Möbius Conserved Current

In this section we discuss how the vector and axial conserved currents are implemented in

Möbius fermions and we will define the physical quark fields based on the discussion. The

method here is analogous to [27].

4.2.1 The Conserved Möbius Fermion Current

We start by varying the partition function

Z =

∫
DUDψDψ e−SF , (4.18)

where SF is the Möbius fermion action (4.5). Consider a slightly generalized case where

the fermion field ψ can have multiple flavors (the flavor index is not shown in the above

formula). The fermion Dirac operator D is diagonal in this flavor space since QCD does not

mix fermions of different flavors. Such a theory will have a flavor SU(N) symmetry. Z is

unchanged under the following local fermion field transformation

 ψxs ←− exp (εaxsλ
a)ψxs

ψxs ←− ψxs exp (−εaxsλa)
. (4.19)
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The conserved current can be obtained from the following identity

0 = δZ = −⟨δSF ⟩ . (4.20)

Expanding the above equation yields the following current conservation equation

−
∑
ys′

⟨
ψxsλ

aDxs;ys′ψys′
⟩
+
∑
ys′

⟨
ψys′Dys′;xsλ

aψxs
⟩
= 0. (4.21)

or

−
∑
y

⟨
ψxsλ

aDs
+(x, y)ψys

⟩
+
∑
y

⟨
ψysD

s
+(y, x)λ

aψxs
⟩

−
∑
y

⟨
ψxsλ

aDs
−(x, y)msP+ψy,s−1

⟩
+
∑
y

⟨
ψy,s+1D

s+1
− (y, x)ms+1P+λ

aψxs
⟩

−
∑
y

⟨
ψxsλ

aDs
−(x, y)ms+1P−ψy,s+1

⟩
+
∑
y

⟨
ψy,s−1D

s−1
− (y, x)msP−λ

aψxs
⟩
= 0

(4.22)

The formula becomes quite lengthy if we substitute the explicit form of D(x, y) and expand

this equation. So instead we use the following shorthand notations to keep equations simple,

F (x, µ, s; +) =
1

2

⟨
ψxsλ

a(1− γµ)Uµ(x)ψx+µ,s
⟩

(4.23)

F (x, µ, s;−) = 1

2

⟨
ψxsλ

a(1 + γµ)U
†
µ(x− µ)ψx−µ,s

⟩
(4.24)

S(x, s; +) =
⟨
ψxsλ

aP+ψx,s−1

⟩
(4.25)

S(x, s;−) =
⟨
ψxsλ

aP−ψx,s+1

⟩
(4.26)

P (x, µ, s; ++) =
1

2

⟨
ψxsλ

a(1− γµ)Uµ(x)P+ψx+µ,s−1

⟩
(4.27)

P (x, µ, s;−+) =
1

2

⟨
ψxsλ

a(1 + γµ)U
†
µ(x− µ)P+ψx−µ,s−1

⟩
(4.28)

P (x, µ, s; +−) = 1

2

⟨
ψxsλ

a(1− γµ)Uµ(x)P−ψx+µ,s+1

⟩
(4.29)

P (x, µ, s;−−) = 1

2

⟨
ψxsλ

a(1 + γµ)U
†
µ(x− µ)P−ψx−µ,s+1

⟩
. (4.30)
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The equality (4.22) can then be written explicitly as

bs
∑
µ

[F (x, µ, s; +) + F (x, µ, s;−)− F (x− µ, µ, s; +)− F (x+ µ, µ, s;−)]

+csms

∑
µ

[P (x, µ, s; ++) + P (x, µ, s;−+)]

+csms+1

∑
µ

[P (x, µ, s; +−) + P (x, µ, s;−−)]

−cs+1ms+1

∑
µ

[P (x− µ, µ, s+ 1;++) + P (x+ µ, µ, s+ 1;−+)]

−cs−1ms

∑
µ

[P (x− µ, µ, s− 1;+−) + P (x+ µ, µ, s− 1;−−)]

= −ms (1− cs(4 +M5))S(x, s; +)−ms+1 (1− cs(4 +M5))S(x, s;−)

+ms+1 (1− cs+1(4 +M5))S(x, s+ 1;+) +ms (1− cs−1(4 +M5))S(x, s− 1;−)

(4.31)

4.2.2 5 Dimensional Vector and Axial Current

If we sum the equation (4.31) over all s slices on both sides, the right hand side sums up to

zero after a shift of dummy s variables.

∑
sµ

bs [F (x, µ, s; +) + F (x, µ, s;−)− F (x− µ, µ, s; +)− F (x+ µ, µ, s;−)]

+
∑
sµ

csms [P (x, µ, s; ++) + P (x, µ, s;−+)]

+
∑
sµ

csms+1 [P (x, µ, s; +−) + P (x, µ, s;−−)]

−
∑
sµ

cs+1ms+1 [P (x− µ, µ, s+ 1;++) + P (x+ µ, µ, s+ 1;−+)]

−
∑
sµ

cs−1ms [P (x− µ, µ, s− 1;+−) + P (x+ µ, µ, s− 1;−−)] = 0

(4.32)
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Since we are summing over all s slices, we are free to shift any dummy variables in in the

last 2 sums such that they contain cs only

∑
sµ

bs [F (x, µ, s; +) + F (x, µ, s;−)− F (x− µ, µ, s; +)− F (x+ µ, µ, s;−)]

+
∑
sµ

csms [P (x, µ, s; ++) + P (x, µ, s;−+)− P (x− µ, µ, s; ++)− P (x+ µ, µ, s;−+)]

+
∑
sµ

csms+1 [P (x, µ, s; +−) + P (x, µ, s;−−)− P (x− µ, µ, s; +−)− P (x+ µ, µ, s;−−)] = 0

(4.33)

At this point we can define the conserved vector current. First define

⟨
jabµ(x, s)

⟩
=bs [F (x, µ, s; +)− F (x+ µ, µ, s;−)] (4.34)⟨

jac1µ(x, s)
⟩
=csms [P (x, µ, s; ++)− P (x+ µ, µ, s;−+)] (4.35)⟨

jac2µ(x, s)
⟩
=csms+1 [P (x, µ, s; +−)− P (x+ µ, µ, s;−−)] . (4.36)

Then the vector current is defined as

V a
µ (x) =

∑
s

[
jabµ(x, s) + jac1µ(x, s) + jac2µ(x, s)

]
. (4.37)

V a
µ (x) follows the following conservation identity,

⟨∑
µ

∆µVµ(x)

⟩
=

⟨∑
µ

(
V a
µ (x)− V a

µ (x− µ̂)
)⟩

= 0. (4.38)

Similar to the plain domain wall case [27] we define the axial current by introducing a -1

factor for half of the 5th dimensional slices (where we require that Ls to be even: Ls = 2N),

A a
µ (x) = −

2N−1∑
s=0

sign

(
N − s− 1

2

)(
jabµ(x, s) + jac1µ(x, s) + jac2µ(x, s)

)
. (4.39)
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After some computation we get the following approximate conservation identity for the

divergence of the axial current

⟨∑
µ

∆µA
a
µ (x)

⟩
=
⟨
2mJa5 (x) + 2Ja5q(x)

⟩
, (4.40)

where Ja5 and Ja5q take the following form

Ja5 (x) =
∑
y

ψ0(y)λ
aD0

−(y, x)P+ψ2N−1(x)−
∑
y

ψ2N−1(y)λ
aD2N−1

− (y, x)P−ψ0(x), (4.41)

Ja5q(x) =
∑
y

ψN(y)λ
aDN

− (y, x)P+ψN−1(x)−
∑
y

ψN−1(y)λ
aDN−1

− (y, x)P−ψN(x). (4.42)

It is interesting to observe that Ja5 only depends on the field on the 2 walls, while Ja5q

only depends on the field on the 2 middle planes, just like their counterparts in the plain

domain wall formalism. This is the case even though the Möbius fermions have an extra type

of hopping term. For the domain wall fermions there are hopping terms that connect sites

differing by 1 in one of the 5 directions. While for the Möbius fermions there are additional

hopping terms that connect sites differing by 1 in both the s direction and one of the 4

spacetime directions.

The above Ja5 (x) and J
a
5q(x) formulas suggest the following definition for physical fermions

q(x) =P−ψ0(x) + P+ψ2N−1(x) (4.43)

q(x) =−
∑
y

ψ2N−1(y)D
2N−1
− (y, x)P− −

∑
y

ψ0(y)D
0
−(y, x)P+. (4.44)
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4.3 Möbius Residual Mass

We can define the residual mass for Möbius fermions by simply computing the ensemble

average of Ja5q and J
a
5 and then fitting the plateau of the following ratio

R(t) =

⟨∑
x

Ja5q(x, t)J
a
5 (x

′, 0)

⟩
⟨∑

x

Ja5 (x, t)J
a
5 (x

′, 0)

⟩ . (4.45)

This requires us to calculate

⟨∑
x

Ja5q(x, t)J
a
5 (x

′, 0)

⟩
=
∑
yz

⟨{
ψN(y)D

N
− (y; x, t)P+ψN−1(x, t)− ψN−1(y)D

N−1
− (y; x, t)P−ψN(x, t)

}
·
{
ψ0(z)D

0
−(z;x

′, 0)P+ψ2N−1(x
′, 0)− ψ2N−1(z)D

2N−1
− (z;x′, 0)P−ψ0(x

′, 0)
}⟩

(4.46)

and a similar contraction ⟨Ja5 (x, t)Ja5 (x′, 0)⟩ for Möbius fermions.

After expanding the above equation and performing all contractions for the Grassmann

variables, we get the following formula

⟨J5q(x, t)J5(x′, 0)⟩

=
∑
xx′

⟨
Tr
{
(D−1D−)(x

′, 0, 0;x, t, N − 1)P−(D
−1D−)(x, t, N ; x′, 0, 2N − 1)P−

}⟩
−
∑
xx′

⟨
Tr
{
(D−1D−)(x

′, 0, 2N − 1;x, t, N − 1)P−(D
−1D−)(x, t, N ;x′, 0, 0)P+

}⟩
−
∑
xx′

⟨
Tr
{
(D−1D−)(x

′, 0, 0;x, t, N)P+(D
−1D−)(x, t, N − 1;x′, 0, 2N − 1)P−

}⟩
+
∑
xx′

⟨
Tr
{
(D−1D−)(x

′, 0, 2N − 1;x, t, N)P+(D
−1D−)(x, t,N − 1;x′, 0, 0)P+

}⟩
(4.47)
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Where D− = diag
{
D0

−, D
1
−, · · · , D2N−1

−
}
.

A remarkable property of the above equation is that the correlator looks exactly like the

counterpart in the plain domain wall fermion case if we treat D−1D− as the equivalent of the

D−1 in the plain domain wall fermion. The formula reduces naturally to the plain domain

wall fermion case in which D− = −1.

Another noteworthy issue is the definition of the Hermitian Dirac operator DH . Unlike

the plain domain wall fermion, (γ5R5D)† ̸= γ5R5D for general Möbius fermions with non-

zero off-diagonal cs. So the simple definition of the Hermitian Dirac operator in plain domain

wall fermion does not apply. However, if all Ds
− are invertible and cs = c2N−1−s for all s,

then

(D−)
−1D =



(D0
−)

−1D0
+ P− 0 · · · −mP+

P+ (D1
−)

−1D1
+ P− · · · 0

0 P+ (D2
−)

−1D2
+ · · · 0

...
...

...
. . .

...

−mP− 0 P+ · · · (D2N−1
− )−1D2N−1

+


(4.48)

is Hermitian: (γ5R5(D−)
−1D)

†
= γ5R5(D−)

−1D. The inverse of of this Hermitian operator

is the following

D−1
H =

(
γ5R5D

−1D−
)†

= γ5R5D
−1D−. (4.49)

If one or more Ds
− are not invertible, then (D−)

−1D is not well defined. However, D−1
H as

shown in (4.49) is still Hermitian and well defined.

By combining (4.43, 4.44), (4.48) and (4.49) we conclude that D−1D− is the Möbius

counterpart of D−1 in the plain domain wall action. For many physical quantities, we

can use exactly the same formula in the Möbius formalism by making the substitution

D−1 ←− D−1D− in the corresponding domain wall formula. For example, the Möbius quark
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propagator takes the following form,

q(x)q(y) =
∑
z

D−1(x, z)D−(z, y) =
(
D−1D−

)
(x, y). (4.50)

Since the substitution rule D−1 ←− D−1D− is valid for a single fermion propagator, it is

immediately clear that it can be applied to all quark contractions with vertices made of the

physical fields defined in (4.43, 4.44). Exceptions include vertices made of the 5 dimensional

vector and axial currents (4.37, 4.40). This is because the q field involved in the definitions

of V (x) and A (x) does not follow (4.44). As a consequence, there is no D− associated with

the outgoing quark line starting from the vector or axial current vertex.
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Figure 4.3: The residual mass for the Möbius fermions, measured on the 163 ×
32 (1.8fm, 420MeV) lattice. For the Möbius fermions we use Ls = 10.

Figure 4.3 shows the residual mass of a Ls = 10 Möbius action. This action sets all cs

equal and bs = cs + 1. The figure shows the residual mass as a function of cs, measured

with input quark mass m = 0.01. The blue line is the residual mass of the Ls = 16 domain
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wall action. Using the Möbius formalism this action is equivalent to an Ls = 16, cs = 0 and

bs = 1 Möbius action. Notice that the blue line crosses the black curve at cs = 0.3, this will

be explained later.

The graph shows that the residual mass exhibits a local minimum as a function of c. This

is typical for Möbius actions in general. The existence of a local minimum can be explained

using exactly the same reasoning in section 4.1. For small and large c, either the left branch

or the right branch significantly breaks the chiral symmetry. The residual chiral symmetry

breaking effect of the 2 branches is minimized and balanced by a suitably chosen c neither

too large nor too small. mres thus reaches a local minimum at this point.

4.4 The Axial Current Renormalization Factor ZA

The vector and axial currents as defined in (4.37, 4.40) both have conservation laws associ-

ated with them. So they receive either no extra multiplicative renormalization factor or a

renormalization factor very close to 1, since the axial current is not strictly conserved. It is

possible to use it directly in lattice calculations such as the measurement of the kaon and

pion decay constants. However both are 5 dimensional objects and are not particularly easy

to use. An additional problem in the Möbius formalism is that these vertices do not have a

built in D− in their q part, so care must be taken for any propagators starting from these

vertices.

In practice it is more convenient to define physical quantities using the definition of 4

dimensional physical field operators (4.43, 4.44). Following the definition of the axial current

in continuum, a fine choice for the local vector and axial currents on the lattice is

Vµ(x) =q(x)γµq(x) (4.51)

Aµ(x) =q(x)γµγ5q(x). (4.52)
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These objects are easier to use because they are 4 dimensional and are constructed directly

from the interpolating operators (4.43, 4.44). They give identical results for low energy

Green’s functions when properly normalized. However, since they do not directly follow

the conservation laws (in other words, they are only approximately conserved), both of the

above operators have renormalization factors associated with them. These factors need to

be accounted for when computing physical quantities.

The usual method to compute these factors involves measuring the ratio of the ensemble

averages of each operator in otherwise identical low energy Green’s functions. For example,

the axial current renormalization factor can be calculated in the following way

⟨∑
x

A3(x, t− 1/2)P (0)

⟩
=N5

(
e−mπt − e−mπ(T−t)

)
, (4.53)⟨∑

x

A3(x, t)P (0)

⟩
=N4

(
e−mπt − e−mπ(T−t)

)
, (4.54)

ZA =N5/N4. (4.55)

Where P (0) is an interpolating operator that couples with the axial current operator evalu-

ated at source time slice 0. For simplicity we can choose P (0) to be the pion interpolating

operator. We only use the temporal component since spatial components do not contribute

when summed over the spatial volume.

As mentioned above, computing the conserved 5 dimensional axial current for Möbius

fermions in this way requires inverting the 5 dimensional D− matrix. This is quite inconve-

nient and may be ill defined since D− can be near singular. To bypass this apparent difficulty
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we can compute the divergences of the 2 forms of axial currents instead,

⟨∑
x

∆µAµ(x, t)P (0)

⟩
=N ′

5

(
e−mπt + e−mπ(T−t)

)
, (4.56)⟨∑

x

∆µAµ(x, t)P (0)

⟩
=N ′

4

(
e−mπ(t−1/2) + e−mπ(T−t+1/2)

)
, (4.57)

ZA =N ′
5/N

′
4. (4.58)

∆µAµ can be computed directly. To compute ∆µAµ we can exploit the conservation law

(4.40),

⟨∑
x

∆µAµ(x)P (0)

⟩
= 2m

⟨∑
x

Ja5 (x)P (0)

⟩
+ 2

⟨∑
x

Ja5q(x)P (0)

⟩
. (4.59)

There are extra terms in these formulas that generate nonzero values on time slice 0. In

general these terms need not be considered since we never start fitting the data from t = 0.

Notice that the finite difference shifts the center of the curve in (4.57) by 1/2.

4.5 Eigenvalues of the Shamir Kernel γ5DW (2 +DW )−1

The spectrum of the Shamir kernel HT = γ5DW (2 + DW )−1 plays an essential role in the

Möbius fermion formalism, as discussed in section 4.1. This section discusses some properties

of the spectrum of HT .

By definition Hs
T depends on bs and cs,

Hs
T = (bs + cs)γ5DW (2 + (bs − cs)DW )−1 . (4.60)

In the following discussion we only consider the special case bs − cs = 1,∀s. We also drop

the constant factor bs + cs from the above definition. We thus obtain a simplified version
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that is free of parameters

HT = γ5DW (2 +DW )−1 . (4.61)

We can use either the Ritz method or the Rayleigh quotient method [28] to compute the

largest/smallest eigenvalues of the above matrix.
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Figure 4.4: Eigenvalue of γ5D(2 +D)−1 with maximum absolute value, shown as a function
of MD time.

Figure 4.4 shows the maximum eigenvalue measured on the 163 × 32 (1.8fm, 420MeV)

ensemble. A total of 50 configurations were measured. Clearly the largest eigenvalue remains

stable around 1.37. The maximum eigenvalue of the HT kernel increases at finer lattice

spacing. Table 4.1 shows a few measurements of the largest eigenvalue of the Shamir kernel

with different β values.

We can also compute the analytic upper bound of the spectrum as a reference. The

analytic formula for the eigenvalues of HT = γ5DW (2 + DW )−1 in the free field case is as
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β lattice size approximated largest eigenvalue
1.633 323 × 8 1.050(3)
1.671 323 × 8 1.085(4)
1.707 323 × 8 1.116(4)
1.740 323 × 8 1.146(2)
1.801 323 × 8 1.200(7)
1.829 323 × 8 1.221(7)
2.13 163 × 32 1.367(14)
2.25 323 × 64 1.500(1)

free field 323 × 8 3.742

Table 4.1: Measurement of the maximum eigenvalue of HT for ensembles with different β.
The 323 × 8 ensembles with various β are listed in appendix B. All ensembles involved
use periodic boundary condition for spatial directions and antiperiodic boundary condition
for the t direction. The values/errors shown are the averages/standard deviations of the
corresponding eigenvalues.

follows

λ(q) = ±

√(
4 +M5 −

∑
µ cos qµ

)2
+
∑

µ sin
2 qµ√(

4 +M5 −
∑

µ cos qµ + 2
)2

+
∑

µ sin
2 qµ

(4.62)

each λ(q) has a degeneracy of 2× # of colors (further degeneracy may happen if different

q values yield the same eigenvalue)

q =

(
2π

N0

j0,
2π

N1

j1,
2π

N2

j2,
2π

N3

(
j3 +

1

2

))
. (4.63)

Ni is the lattice size in i direction. We assume that we are using antiperiodic bound-

ary condition in t direction and spatial directions have periodic boundary condition. ji =

0, 1, · · · , Ni − 1.



Chapter 5

Computation Strategies

5.1 Krylov Space Solvers

Solving large linear sparse systems is frequently required in lattice calculations. For example,

in the hybrid Monte Carlo algorithm, to evaluate the fermion force term we are required to

solve a linear equation for the corresponding preconditioned Dirac operatorM. In measure-

ment tasks where fermion propagators are needed, the lattice fermion propagator is D−1s,

where s is the source for the propagator. The fermion Dirac operator D is a very high

dimensional sparse matrix even for a moderately sized lattice. So iterative solvers are the

only choices in most lattice applications.

5.1.1 the Conjugate Gradient Method

Consider the following linear system

Ax = b. (5.1)

Without loss of generality we assume that we start from a zero initial guess x0 = 0. Starting

the conjugate gradient algorithm with a nonzero initial guess x0 is equivalent to solving

Ay = b − Ax0 with initial guess y = 0. A Krylov space solver approximates the solution x

69
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using the form P (A)b, where P (A) is a polynomial of A. A specific Krylov space method

may require A to be Hermitian, Hermitian positive definite, or to have no restriction at all.

Denote the true solution as x∗ = A−1b. A Krylov space method generates a series of

approximate solutions xi, i = 0, 1, 2, · · · , where x0 is usually the initial guess. To facilitate

the discussion, we define two auxiliary sequences ei, ri as follows

ei =xi − x∗ (5.2)

ri =b− Axi = −Aei. (5.3)

(5.4)

We also introduce a sequence pi whose definition is yet to be added. The purpose of pi is to

set the new search direction in step i,

xi+1 = xi + αipi. (5.5)

By convention we place a number αi as a coefficient in front of pi so we can minimize some

norm along the search direction pi.

We define Kn(A, b) as the nth Krylov space generated by matrix A and vector b

Kn(A, b) = span {b, Ab, · · · , Anb} . (5.6)

In other words, any vector in Kn(A, b) can be written as Pn(A)b where Pn(y) is a polynomial

of y up to order n. A Krylov space method finds an approximation to x∗ in this space via

some criteria, usually minimizing a norm.
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5.1.2 Minimizing a Norm

In the conjugate gradient algorithm we search for a vector xi in Kn(A, b) that minimizes the

following norm at each step

∥ei∥2A = e†iAei. (5.7)

Since we use A in the above norm, the conjugate gradient method can only be applied to

problems where A is a Hermitian positive definite matrix. The above condition determines

αi,

∥ei+1∥2A =∥ei + αipi∥2A (5.8)

=∥ei∥2A + αie
†
iApi + α†

ip
†
iAei + α†

iαip
†
iApi (5.9)

=⇒αi = −
p†iAei

p†iApi
. (5.10)

Up to this point we have the following partially constructed algorithm,

xi+1 =xi + αipi (5.11)

ri+1 =ri − αiApi (5.12)

αi =−
p†iAei

p†iApi
=

p†iri

p†iApi
. (5.13)

The definition for the sequence pi is yet to be added.

5.1.3 Finding New Search Directions

A natural way to generate new search directions is to look at the residue

pi = ri +
i−1∑
k=0

βikpk (5.14)
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since ri is the only vector independent of all previous search directions in the partially

constructed algorithm (5.11, 5.12, 5.13). In infinite precision arithmetic, ri = b − Axi.

Adding ri into the Krylov space also increases the dimension of the Krylov space. We

perform some projection via parameters βik to enforce certain orthogonalization conditions.

The reason that we don’t search directly in the direction defined by ri, but rather a projected

direction pi is because it avoids moving again in any previous directions. This becomes clear

when we enforce orthogonalization conditions on pi.

The conjugate gradient method further requires all search directions to be A-orthogonal,

p†jApi = 0, ∀j ̸= i. (5.15)

One important consequence of (5.15) is that αi defined in (5.10) has just the correct size

for the final solution. There is no need to move in direction pi again after step i. To see

why this is the case, suppose all A-orthogonal search directions are known in advance and

we construct the final solution by minimizing (5.7)

∥e∥2A= ∥e0 +
∑
i

α′
ipi∥2A. (5.16)

We deliberately call the coefficient α′
i to show any possible differences. Minimizing the above

norm defines all α′
i

∥e∥2A =∥e0∥2A +
∑
i

α′
i
†α′

i∥pi∥2A +
∑
i

(
α′
ie

†
0Api + α′

i
†p†iAe0

)
(5.17)

=⇒ α′
i =−

p†iAe0
∥pi∥2A

. (5.18)

So α′
i is equal to αi if and only if (5.15) is met. If the pi are not A-orthogonal, then moving

in new search directions introduces unwanted moves in old directions, spoiling this feature.

It is also clear that the matrix used to define the orthogonal search directions (in this case,
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A) has to be the same as the matrix that defines the norm. This fact will be used when we

generalize the method in section 5.1.5.

Equations (5.11, 5.12, 5.13, 5.14, 5.15) fully define the conjugate gradient algorithm.

5.1.4 Truncated Recurrence Relations

Another important fact in the conjugate gradient algorithm is that its orthogonalization

equation (5.14) appears to be truncated. This fact means that βik is nonzero only when

i − k ≤ ϵ where ϵ is a number independent of i. The practical implication is that we only

need to store ϵ previous search directions for equation (5.14). So the conjugate gradient

algorithm operates in a fixed amount of computer memory, independent of the iteration

count i.

In fact, we only need to store 1 previous search directions for the conjugate gradient

algorithm as ϵ = 1. To see this,

1. By expressing rj as a linear combination of pj from equation (5.14) and using the

A−orthogonal condition imposed on pj (5.15), it is easy to prove that

r†jApi =

(
p†j −

j−1∑
k=0

β∗
jkp

†
k

)
Api = 0, ∀j < i. (5.19)

In addition we obtain from equation (5.12)

p†jri+1 = p†jri − αip
†
jApi. (5.20)

So

p†jri = 0, ∀j < i. (5.21)
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2. By applying rj to equation (5.12) we obtain in a similar way

r†jri = 0, ∀j < i. (5.22)

3. We get the following truncated recurrence relation

βij = −
p†jAri

p†jApj
=

1

αj

r†j+1ri − r
†
jri

p†jApj
=

 r†i ri/r
†
i−1ri−1 j = i− 1

0 j < i− 1.
(5.23)

Putting the various pieces together gives the conjugate gradient algorithm for any Her-

mitian positive definite matrix A

r0 =p0 = b (5.24)

αi =
r†i ri

p†iApi
(5.25)

xi+1 =xi + αipi (5.26)

ri+1 =ri − αiApi (5.27)

βi =
r†i+1ri+1

r†i ri
(5.28)

pi+1 =ri+1 + βipi. (5.29)

One additional ingredient missing in the above is the stopping criteria. Although the

norm (5.7) decreases at each iteration, it is not possible to calculate this norm unless we

already know the solution x∗. Instead we usually evaluate the following norm,

∥b− Axi∥2 = ∥ri∥2. (5.30)
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Numerically we can evaluate either ∥b−Axi∥2 literally or evaluate ∥ri∥2. The former (“true

residue”) is more accurate but requires more work. The latter (“accumulated residue”) is

more commonly used but in some cases can deviates significantly from the true residue due

to the accumulation of round-off errors.

5.1.5 the General Case

We can generalize the above discussion by introducing some free parameters. We restrict

our discussion to Krylov space solvers such that they

1. preserve the basic structure of the conjugate gradient method,

2. minimize a norm,

3. have orthogonal search directions (so the method will not move in a direction again),

and

4. have truncated recurrence relations.

We first choose αi to minimize the error according to the following general norm, defined

using some Hermitian positive definite matrix B

∥ei+1∥2B = ∥ei∥2B + αie
†
iBpi + α†

ip
†
iBei + α†

iαip
†
iBpi. (5.31)

Note that B is not necessarily equal to A. We also require search directions pi be orthogonal

w.r.t. matrix B

p†jBpi = 0, ∀j ̸= i. (5.32)

The same matrix B has to be used for both the norm and the orthogonal relations of pi for

the reason discussed previously.
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The above equations define the following iterative procedure

αi =−
p†iBei

p†iBpi
=
p†iBA

−1ri

p†iBpi
(5.33)

xi+1 =xi + αipi (5.34)

ri+1 =ri − αiApi (5.35)

pi =Dri +
i−1∑
k=0

βikpk (5.36)

βij =−
p†jBDri

p†jBpj
, ∀j < i. (5.37)

One extra addition is that we generate a new search direction pi by applying a matrix D to

the residue and then combine the result with previous search directions. Whether equation

(5.37) is truncated or not depends on our choice of B and D.

In the simplest case βij is nonzero only for j = i − 1. So in addition to the above, we

require

p†jBDri = 0, ∀j < i− 1. (5.38)

By rewriting equation (5.35) we have

0 = p†jBDri =
1

α†
j

(
r†j − r

†
j+1

)
A−†BDri, ∀j < i− 1. (5.39)

This equation implies r†j−1A
−†BDri = r†jA

−†BDri for all j < i. So the condition we imposed

is equivalent to

r†jA
−†BDri = λi, ∀j < i. (5.40)

In other words, we require r†jA
−†BDri be a constant independent of j.

On the other hand, we can easily check

r†jD
†Bpi = 0, ∀j < i. (5.41)
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This is because Drj is a linear combination of pk, k = 0, 1, · · · , j. Similarly we can prove

p†jBA
−1ri = 0, ∀j < i (5.42)

by using (5.35) and the orthogonal condition for pi.

Using the above equations we can in addition prove the following orthogonality relations

r†jD
†BA−1ri = 0, ∀j < i. (5.43)

So it is sufficient to impose the following relation between the free parameters B and D to

ensure a truncated recurrence relation for βij,

D†BA−1 = A−†BD. (5.44)

If the above condition is met, then we can simplify αi and βi,i−1 as

αi =
r†iD

†BA−1ri

p†iBpi
, (5.45)

βi,i−1 =
r†iD

†BA−1ri

r†i−1D
†BA−1ri−1

. (5.46)

Apparently the choice of B and D is also subject to practical issues. It is obvious that

all A−1 must be eliminated for any quantity that is actually maintained during computing.

The following table lists a few examples

method B D restrictions on A

Conjugate Gradient (CG) A 1 Hermitian positive definite
GCGE 1 A† no restriction

Conjugate Residue (CR) [29] A†A 1 Hermitian

Table 5.1: A few Krylov space methods and their specifications.
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5.2 Krylov Space Solvers on Lattice Dirac Equations

A typical lattice measurement task spends most of the computing time solving the following

Dirac equation

Mx = b, (5.47)

whereM is typically the preconditioned Dirac matrix. In generalM is neither Hermitian nor

positive definite. Applying the above methods to equation (5.47), we obtain the following

variants for each method

1. CG can only solve equations with Hermitian positive definite matrices. The common

practice is to multiply M † to equation (5.47)

M †Mx =M †b (5.48)

and set A =M †M .

2. GCGE does not have any restriction on the matrix it solves. So we can simply use

A =M .

3. CR requires A to be Hermitian. To achieve this we notice that if 4D even-odd precon-

ditioning is used then the plain domain wall operator γ5R5M is Hermitian. So we set

A =MH = γ5R5M and solve the following equation

MHx = γ5R5b. (5.49)

For general Möbius domain wall fermion actions this can be tricky to do since the

Möbius Hermitian Dirac operator involves the inverse of D−.
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5.2.1 Performance Comparison

CR makes use of the Krylov space Kn(MH , r0) while CG/GCGE use Kn(M2
H = M †M, r0).

CR and CG minimize the same norm since B = M †M = M2
H . GCGE on the other hand,

minimizes ∥ei∥2. Since Kn(M2
H , r0) is a subspace of K2n(MH , r0), CR obtains a solution

strictly no worse than CG after performing the same number of MH multiplications in both

methods.

Unfortunately for certain Hermitian matrices CR may not perform much better than

CG. This usually happens when the spectrum of MH has certain symmetries [30]. For

example, suppose the eigenvalues of MH appear in positive/negative pairs: (+λi,−λi). The

corresponding eigenvectors are ϕ+
i and ϕ−

i , respectively. Consider the expansion of the initial

residual vector b with respect to the eigenvectors of MH

b =
∑
i

(
b+i ϕ

+
i + b−i ϕ

−
i

)
. (5.50)

It is not difficult to prove that if ∥b+i ∥ = ∥b−i ∥, ∀i then CR produces exactly the same

solution as CG after the same number of MH multiplications. Roughly speaking, this is

because CR builds its solution using polynomials of MH

xk = pk(MH)b, (5.51)

pk(y) is an approximation to y−1. However, y−1 is an odd function so half of the dimensions

of the Krylov space are useless.

To see the problem more clearly, we can compute the kth residue in CR

ϵk =
∑
i

∥MHpk(MH)b− b∥2 (5.52)

=
∑
i

∥b+i ∥2 (1− λipk(λi))
2 +

∑
i

∥b−i ∥2 (1 + λipk(−λi))2 . (5.53)
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Decompose pk(y) into odd and even parts

pk(y) = ypo(y
2) + pe(y

2). (5.54)

Then

ϵk =
∑
i

2∥b±i ∥2
((

1− λ2i po(λ2i )
)2

+ λ2i pe(λ
2
i )

2
)
. (5.55)

Apparently the optimal choice (as CR does) is to have pe(y) = 0. So all even powers of MH

does not appear in the polynomials that CR builds. In such cases, CR generates the same

sequence of approximate solutions as CG does1.
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Figure 5.1: Comparison between CG and CR. Left: test on the 163 × 32 (1.8fm, 420MeV)
ensemble. Right: test on the 323 × 64 (4.6fm, 170MeV) ensemble. For both methods we
calculate the true residue, which is the same for these 2 methods. The difference between
CR and CG becomes smaller on larger lattices. “Iterations” in this context means the
number of multiplications by M .

Figure 5.1 shows the application of CG and CR on the 163 × 32 (1.8fm, 420MeV) and

323 × 64 (4.6fm, 170MeV) ensembles. The iterations in the figure should be interpreted as

the number of MH multiplications. Apparently CR is barely better than CG. Moreover,

on larger lattices the difference between the 2 methods becomes even smaller. So although

1If we use CG we need to multiply the original equation by MH . For each iteration in CG we multiply
an extra M2

H to the residue so CG effectively picks up all terms with odd powers of MH : M2k+1
H b, k ∈ N.
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CR deals with the matrix M which has a smaller condition number than M †M , it relies on

distributions of eigenvalues of M to manifest this advantage.

5.2.2 The Method of Generalized Minimal Residual

Although truncated recurrence relations are very useful for practical calculations, it puts a

very strong restriction on potential methods one can build. Relaxing this requirement results

in a very general class of methods, the generalized minimal residual method (GMRES).

Roughly speaking, GMRES(m) computes an orthonormal basis in the Krylov space

Kn(A, r) using the Arnoldi algorithm (a simple Gram-Schmidt orthogonalization on the

vectors Air). Then it finds a vector x in this space that minimizes some norm, e.g.,

∥ei∥2A = ∥xi − x∗∥2A. (5.56)

We use the Arnoldi algorithm because the naive basis Air, i = 0, 1, · · · ,m− 1 can be highly

linearly dependent due to numerical instabilities2. The algorithm restarts after m steps,

where m is a free parameter. The choice of m is entirely due to practical considerations,

such as the size of the available computer memory.

GMRES finds the best vector that minimizes a given norm, all truncated methods in

previous sections are in fact special cases of this method. For example, if one uses the norm

(5.56) in GMRES and A is Hermitian positive definite, then GMRES and CG find exactly the

same sequence of approximate solutions3. So it is a very useful tool to asses the effectiveness

of a given Krylov space.

Tests performed on the 163 × 32 (1.8fm, 420MeV) lattice show that for the domain wall

fermions, Kn(M, b) is less efficient than Kn(MH , b). This can be seen from figure 5.2. All

2Another problem associated with the naive basis is that if we decompose these vectors using eigenvectors
of A, then the modes with small eigenvalues vanish after a few applications of A. This is because each
component is scaled by λi in Air, where λ is the corresponding eigenvalue.

3Of course this is only true if we do not restart GMRES.
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Figure 5.2: Comparison of Krylov space K2n(M, b) (GMRES), K2n(MH , b) (CR), and
Kn(M †M, b) (CG). All methods minimize the same norm ∥b −Mx∥2. “Iterations” in this
context means the number of applications of M and M †. The number m in GMRES(m) is
the restart frequency as defined above.
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GMRES tests in this graph use Krylov space Kn(M, b). CG uses Krylov space Kn(M †M, b)

while CR uses Kn(MH , b). If we use MH instead of M in GMRES then it produces a

convergence curve the same as the one from CR (not shown in figure 5.2).

A few conclusions can be drawn from figure 5.2 for this particular ensemble,

1. MH is a better operator to use on the lattice when generating Krylov spaces.

2. The asymptotic convergence rates for CG and GCGE are the same since they use the

same Krylov space. From this one may hypothesize that different norms in the solver

only effect the initial convergence behavior.

3. The Krylov space K2n(MH , r) (as in CR) is just slightly better than Kn(M †M, r) (as

in CG).

And we can further conclude that among all methods tested, CR on the Hermitian operator

MH behaves the best. The family of CG-like methods performs more or less then same,

however. Using GMRES on the Krylov space K2n(M, b) shows that the solution obtained in

this Krylov space is not as good as the Krylov space Kn(M †M, b) with respect to the norm

∥M(xi − x∗)∥2. (5.57)

5.3 The Defect Correction Solver

Computers can not perform infinite precision arithmetic, instead one has to express all real

numbers truncated to some predefined accuracy in the computer memory. Two common

such choices are single precision and double precision representations4. Calculations in single

precision format require less memory bandwidth and can potentially be faster (since less bits

are involved), at the expense of reduced precision.

4On graphics processing units one also encounters a half-precision format, we will not discuss it here.
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Defect correction solvers combine single and double precision calculations to maximize

the efficiency without loss of precision. It involves 2 distinct steps,

1. Solve the Dirac equation using a single precision method up to some precision. Restarts

are usually necessary since single precision has only roughly 7 decimal digits.

2. (Restart) Compute from the single precision solution and the source vector the new

residue using double precision arithmetic. The algorithm either goes back to step 1

using the new residue as the right hand side vector, or stops if the residue is small

enough.

Defect correction solvers show some interesting numerical behavior that is not obvious

theoretically. Figure 5.3 presents a few examples showing the convergence curves of the

defect correction solver on the 163 × 32 (1.8fm, 420MeV) ensemble.

One conclusion can be readily drawn from figure 5.3 is how restarts effect the solver.

Restarting more frequently such as every 1000 single precision iterations clearly slows down

the convergence rate. A simple explanation is that restarts discard information related to

previously explored search directions, so the solver can search in previously visited directions

again after a restart. Of course, we are forced to restart at some point because of limited

precision of the single precision solver.

Another interesting aspect of the mixed precision solver is that the true residue diverges

from the accumulated residue very quickly in the single precision solver. The accumulated

residue has more or less a downward slope. While the true residue is actually increasing

after some number of iterations. However, this does not necessarily indicate the breakdown

of the solver. As shown by the figure, restarting the solver can usually make up for the

loss in the true residue. In figure 5.3 this is manifested by the rapid drop of both the

true residue and the accumulated residue soon after each restart. Restarts eliminate the

differences between the true/accumulated residues and the convergence curve more or less
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Figure 5.3: Convergence curve of the defect correction solver. Note that each curve is shifted
vertically by some amount so multiple restart conditions can be displayed in this graph. The
number to the right of each curve is the iteration bound for the single precision solver. The
converge curve of a pure double precision solver (labeled as “double”) is shown here as a
reference. A restart occurs every time the bound is reached. There are 2 curves for each
restart condition. The solid line is the history of the accumulated residue and the dashed
line is the true residue.
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follows the accumulated residue (not the true residue) after each restart. This effect is more

dramatic on larger lattices, as shown in figure 5.4.
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Figure 5.4: Convergence curve of the defect correction solver on the 483×96 (5.5fm, 140MeV)
lattice. The single precision part restarts every 15000 steps. As in figure 5.3 the convergence
curve of a pure double precision solver (labeled as “double”) is shown here as a reference.
In both defect correction solver and the double precision solver, the solid line shows the
convergence of the accumulated residue and the dashed line shows the convergence of the
true residue.

We can proceed even further and use the single precision solver as a preconditioner for

the double precision solver. In principle this nested solver converges faster than simple

defect-correction solver since it retains information of previous steps just like the conjugate

gradient method. The result is shown in figure 5.5.
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Figure 5.5: Nested CG solver tested on the 163 × 32 (1.8fm, 420MeV) lattice with input
mass 0.001 in the solver. A single precision solver serves as a preconditioner for the double
precision solver in the nested solver. In both nested CG and the defect correction solver
single precision CG maximum iteration count is set to 1000.
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5.4 Möbius Accelerated Domain Wall Fermion

The Möbius accelerated domain wall fermion approach is a method to produce approximate

solutions for the domain wall fermion Dirac equations using the Möbius formalism. It exploits

the similarities between Möbius fermions and the Shamir domain wall fermions.

As a transitional technique, Möbius accelerated domain wall fermion solvers were used ex-

tensively to find propagators for the Shamir domain wall fermions on the 323×64 (4.6fm, 170MeV)

Shamir domain wall fermions ensemble and gained a factor of 2 speed up. Although we are us-

ing Möbius actions directly for the 483×96 (5.5fm, 140MeV) and 643×128 (5.5fm, 140MeV)

ensembles, it is interesting in its own right. The development of the Möbius accelerated

domain wall fermion solvers helps to understand the Möbius formalism itself and we shall

describe the method here.

5.4.1 Method Description

The method eventually tries to solve the Dirac equation for domain wall fermions. We start

by considering the general Dirac equation,

DDW (m)x = b. (5.58)

Where DDW is the standard domain wall fermion Dirac operator. The goal is to use Möbius

fermions to construct an alternative equation that approximates the one above. By solving

the alternative equation we obtain an approximation to x, which can cost less than solving

equation (5.58) directly to the same accuracy.

The primary tool we use to relate the standard domain wall fermion and the Möbius

fermion is the domain wall - overlap transformation[31, 32, 33]. It relates the Möbius Dirac

operator to an equivalent 4-dimensional overlap operator. Using this transformation, we first

apply P−1D−1
DW (1) to both sides of equation (5.58) to transform it into a lower triangular
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form in the s direction5



DOV

S1S2 · · ·SL−1(DOV − 1)d 1

S2 · · ·SL−1(DOV − 1)d 1

· · · · · ·

SL−1(DOV − 1)d 1


y =



c0

c1

c2

· · ·

cL−1


, (5.59)

with y = (y0, y1, y2, · · · , yL−1)
T = P−1x. L is the size of s direction and

c = (c0, c1, c2, · · · , cL−1)
T = P−1DDW (1)−1b (5.60)

is the right hand side vector of the new equation. The details, including the definition of

symbols S0, · · · , SL−1 and d, can be found in [31].

After this transformation solving the following 4-dimensional equation requires the most

computational work,

DOV (m)y0 = c0. (5.61)

This is the subproblem located on s = 0 slice in equation (5.59). The rest of the work

involves deriving the entire 5-dimensional solution from y0. This part can be computed

relatively easily, as will be shown below.

We first address the problem of solving the 4-dimensional equation (5.61). We notice that

DOV (m) is an approximation to the ideal overlap operator. In parallel we can also obtain

a different approximation D′
OV (m) from any 5-dimensional Möbius operator D′

DW (m). For

our purpose we replace DOV (m) by D′
OV (m). The solution y′0 to the following equation

D′
OV (m)y′0 = c0 (5.62)

5P is a simple matrix that shifts half of the spin components in the fermion vector by one in s direction.
Its detailed form can be found in [31].
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can be directly used to approximate y0, and thus reconstruct a 5-dimensional approximated

solution to (5.58).

To solve the 4-dimensional Möbius Dirac equation (5.62) we reverse the above process

and transform it back into the 5-dimensional form. The detailed procedure can be found

in [31]. By using the domain wall - overlap transformation on the 4-dimensional equation

(5.62) we get the following 5-dimensional equivalent form

D′
DW (m)Py′ = D′

DW (1)Pc′ (5.63)

with c′ = (c0, 0, 0, · · · , 0) and y′0 being the 4-dimensional component of y′ on the s = 0

hyperplane. By solving equation (5.63) we obtain y′0 as an approximation to y0.

To derive the entire 5-dimensional solution y from y′0, we notice that for a true solution

y = (y0, y1, y2, · · · , yL−1)
T the following relation holds,

yk = ck − SkSk+1 · · ·SL−1(DOV − 1)dy0, k = 1, 2, · · · , L− 1. (5.64)

This relation can also be used to construct the guessed solution once y′0 is obtained,

y′k = ck − SkSk+1 · · ·SL−1(DOV − 1)dy′0, k = 1, 2, · · · , L− 1, (5.65)

where y′k represents the approximation to yk. This can be written in matrix form



−DOV y
′
0

y′1

y′2

· · ·

y′L−1


= P−1DDW (1)−1DDW (m)P ·



−y′0
c1

c2

· · ·

cL−1


(5.66)
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Reconstructing the entire 5-dimensional guess in this way requires solving a domain wall

fermion equation with the mass equals 1.

The full algorithm involves the following 4 steps,

1. Construct c0 from the original 5-dimensional source b, using equation (5.60).

2. Replace the 4-dimensional operator in equation (5.61) by a 4-dimensional operator

from a Möbius fermion operator with appropriately chosen parameters.

3. Transform the 4-dimensional Möbius Dirac equation back to its 5-dimensional form

(5.63) and solve the 5-dimensional equation, thus obtaining the 4-dimensional solution

y′0 to equation (5.62).

4. Use y′0 as an approximation to the 4-dimensional domain wall Dirac equation (5.61),

and reconstruct the 5-dimensional approximated solution using (5.66).

The above process requires solving two domain wall fermion equations (5.60) and (5.66)

with quark mass equal to 1 (the Pauli-Villars equations) and also the Möbius equation (5.63).

The gain over the direct method comes from the fact that the Möbius equation has a smaller

size in the s direction. Once an approximate solution y′0 is produced in this way, we apply the

standard conjugate gradient algorithm to the original problem (5.58), using y′0 as the initial

guess. This step converges quickly and guarantees that the final solution has the desired

accuracy.

It is clear that the approximated solution y′0 must be sufficiently close to the true solution

y0 to be beneficial. This leads to the problem of choosing the best parameters.

5.4.2 Choosing the Optimal Möbius Parameters

We found that the choice of bi and ci values strongly effects the quality of the Möbius

approximation y′0 in (5.62). In what follows we will consider only the polar decomposition
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for the Möbius Dirac operator, such that bi and ci are constants throughout the 5th dimension

and we will simply refer to them as b and c instead.
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Figure 5.6: Iteration count of the conjugate gradient method started from a Möbius approx-
imated solution, plotted as a function of c. The residual is set to 1e-8. L′ = 8, 10, 12, 14
Möbius lattice are used to approximate L = 16 DWF. In all cases b = c+1. Optimal c values
are obtained from a separate nonlinear search. The optimal values are: L′ = 8, c = 0.4996.
L′ = 10, c = 0.2949. L′ = 12, c = 0.1647. L′ = 14, c = 0.0708.

Let L be the lattice size in s direction for DWF, L′ be the corresponding value for the

Möbius Dirac operator. For standard DWF the corresponding overlap operator is

DOV,DWF(m) =
1

2

(
1 +m+ (1−m)γ5

(x+ 1)L − (x− 1)L

(x+ 1)L + (x− 1)L

)
. (5.67)

with the kernel x equal to

x = γ5Dw
1

2 +Dw

. (5.68)
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the same approximation in Möbius is

DOV,Möbius(m) =
1

2

(
1 +m+ (1−m)γ5

(λx′ + 1)L
′ − (λx′ − 1)L

′

(λx′ + 1)L′ + (λx′ + 1)L′

)
. (5.69)

with λ = b+ c. The kernel x′ is equal to

x′ = γ5Dw
1

2 + (b− c)Dw

. (5.70)

It is thus desirable to keep b − c equal to 1 so that x = x′. Also, matching up to the first

order term in the Taylor expansions of the two functions (5.67, 5.69) results the requirement

λ = L/L′.

Figure 5.6 presents a scan of c values and the quality of the approximated solution y′. The

quality of the approximated solution is measured by the number of the conjugate gradient

iterations required to achieve a fixed stopping condition, starting from the Möbius initial

guess. It is clear that b + c = L/L′ proves to be a good approximation. However, the

iteration count depends sharply on c near the optimal point. As a consequence fine tuning

of b and c is almost always required.

5.4.3 Defect Correction and Performance in Production

The Möbius approximation to the DWF equation has an intrinsic accuracy. Figure 5.6 shows

that a direct method such as a Krylov space solver is required to solve the equation to the

designated accuracy after adopting the Möbius initial guess. As a consequence the Möbius

equation (5.63) need not be solved very accurately.

Figure 5.7 shows the quality of the Möbius approximation as a function of the accuracy

used when solving equation (5.63). We use the conjugate gradient method to solve the

equation (5.58) to an accuracy of 10−10. The quality of the approximation is measured by

the number of the conjugate gradient iterations to solve equation (5.58), starting from the
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Figure 5.7: Iteration count from solving the DWF equation shown as a function of the
iteration count from solving the Möbius equation. Both equations use the conjugate gradient
method. The domain wall fermion action has L = 32 and the Möbius action has L′ = 16,
The parameters for the Möbius action are b = 1.5 and c = 0.5.



95

Möbius initial guess. The accuracy used when solving equation (5.63) is measured by the

number of iterations when applying the conjugate gradient method to the Möbius equation.

A turning point can be clearly seen on the graph. Before the turning point the number

of the conjugate gradient iterations when solving equation (5.58) decreases linearly as the

accuracy used to solve equation (5.63) improves. After the tuning point, the quality of the

Möbius approximation does not improve further. So in practice the Möbius problem needs

only to be solved up to or less than this accuracy. Higher accuracy can be achieved by using

a simple defect-correction procedure, just like the mixed precision solver described earlier.

We present a production use of this method with the defect correction procedure on

the 323 × 64 (4.6fm, 170MeV) ensemble. This lattice uses the Iwasaki+DSDR gauge action.

We compare it with the direct conjugate gradient method in table 5.2. The corresponding

Möbius approximation uses L′ = 12. To make the comparison clear we count the number

of 4-dimensional Wilson Dirac operator applications (denoted by “Op. count” in the table),

since standard DWF and Möbius fermion use different 5th dimension sizes. The table shows

that the Möbius accelerated DWF (MADWF) reduces the number of 4-dimensional Wilson

Dirac operator applications from 3.6e5 to 2.0e5, by a factor of 1.8. The MADWF solver uses

42% of wall clock time, when compared with the direct method. Note that while some gain

is from code optimization issues, most is due to the fact that MADWF requires many fewer

4-dimensional Wilson Dirac operations.

Direct method Möbius Accelerated DWF
Operation - Möbius equation(*3) Pauli-Villars(*6) others total
Op. Count 11290*32=3.6e5 4.6e3*12 1.0e2*32 - 2.0e5
time(s) 2672 285 25 125 1138

Table 5.2: Cost comparison of the MADWF solver with the direct conjugate gradient method.
L = 32, L′ = 12, with b = 1.841556, c = 0.841556. The stopping condition is set to
10−10. Note that there are 3 Defect-correction steps, each includes 2 Pauli-Villars unit mass
inversions. The factor 32 and 12 in the “Op. Count” row are due to different 5th dimension
sizes.
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5.4.4 Parameter Usability
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Figure 5.8: Parameter usability test: The black and blue triangles show the comparison of
the wall clock time of the solvers. Both solve to 1e-10 for all configurations. A wall source
is used.

It is of course impracticable to tune the Möbius parameters L′, b and c for each configu-

ration used. However, we found in practice that a set of well tuned parameters can be used

for any configuration from the same ensemble.

We present in figure 5.8 the plot of wall clock time of the direct method and the MADWF

solver for 100 configurations from the same calculation as used in table 5.2. The Möbius

parameters are kept the same throughout the calculation. This includes using the same L′, b,

c, restart count and stopping condition settings. It is clear that both the total wall clock time

of the Möbius accelerated solver show little variation across the 100 configurations tested.
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5.5 The EigCG Algorithm

The eigCG algorithm is a method to accelerate Krylov space solvers when the same large

sparse matrix needs to be solved for multiple right hand side vectors (in the language of

lattice calculations, sources). In lattice applications it is a very common practice to solve

multiple source vectors using the same Dirac operator. For example, we must solve 12 Dirac

equations to obtain a quark propagator, since quarks have 4 spins and 3 colors. In addition,

we may need/want to solve more than one quark propagator on a single lattice configuration,

yielding even more right hand side vectors.

Obviously if we want to accelerate this process, some information must be shared when

solving different right hand side vectors. Different views on what is to be shared lead to

different algorithms. In lattice applications we have found that sharing the eigenvectors

with near zero eigenvalues is a very good strategy. The eigCG algorithm [34] does exactly

this.

The eigCG algorithm builds an explicitly restarted Lanczos algorithm on top of the con-

jugate gradient method. It does not interfere with the original conjugate gradient algorithm,

nor does it require additional matrix-vector multiplications. The idea is to reuse the search

directions generated by the conjugate gradient algorithm to compute the necessary Lanczos

vectors. Since the Lanczos algorithm is numerically unstable, it also restarts itself when a

certain number of eigenvector/eigenvalue pairs are obtained. Once we obtain the near zero

part of the spectrum of the sparse matrix, we can use them to deflate the search space of

the Krylov space solver, thus accelerating the solver.

The details of the algorithm can be found in [34]. Here we present figures showing its

applications on our current lattices. Figure 5.9 shows the convergence history of the conjugate

gradient algorithm on our 643 × 128 (5.5fm, 140MeV) ensemble with physical quark masses.

This calculation is very expensive in its original form because the preconditioned Dirac

operatorM has a very large condition number due to a very small quark mass. To speed up
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Figure 5.9: Convergence history of eigCG on ensemble 643×128 (5.5fm, 140MeV). Each curve
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latter. The eigCG algorithm accumulates low mode information while we continue to solve
Dirac equations, thus reducing the iteration count of latter conjugate gradient applications.
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the calculation we build an eigCG algorithm on top of the conjugate gradient solver. The

figure plots the residue of the conjugate gradient solver (5.30) as a function of the iteration

count. Each line tracks a conjugate gradient application. We use different colors to label

different solves. Among them blue curves are earlier solves while latter solves are gradually

tinted towards red. The eigCG algorithm accumulates the low mode information of the Dirac

operator and passes this information from earlier applications of CG to latter applications

of CG, thus reducing the cost as we solve more Dirac equations.

The solver in figure 5.9 is in fact a mixed precision conjugate gradient solver. 2 horizontal

magenta lines are added to the figure showing the approximate location where we restart

the solver. Most of the computation, including the entire eigCG algorithm operates in single

precision arithmetic. We only use double precision arithmetic to compute the defect (a.k.a.

the new right hand side) at each restart. For this reason and also the nature of eigCG, the

low modes accumulated are inexact. Consequently, starting from each restart the conjugate

gradient method initially converges rapidly since the condition number is improved by low

modes deflation. After a certain point the conjugate gradient method “feels” the effect of

the inexact low modes and the convergence rate is reduced.

It can also be seen in the figure that restarts cure this problem. Initially and at each

restart, we deflate the CG using the low mode information available at that point. The con-

vergence rate immediately following each restart is always better than the slow convergence

rate of the original CG.

5.6 All to All Propagators

Due to the difficulty of inverting the entire Dirac operator D, conventionally we compute

the fermion propagators by placing a source b on the lattice and compute D−1b. Clearly this

approach is asymmetric in its handling of source and sink - there is only one source but any

sink r can be easily obtained by forming the inner product r†D−1b.
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Unlike the conventional source-sink approach, the all to all propagator intends to approx-

imate the exact Dirac propagator

S(x, y) = D−1(x, y) (5.71)

for all possible combinations of x and y, hence the name “all to all” propagators. If we

arrange S(x, y) such that x and y are the row and column indices then we get the matrix

D−1. The all to all propagator tries to construct an approximation to the entire matrix D−1.

Suppose we have Nh 4 dimensional random vectors wi (i = 0, 1, · · · , Nh − 1) such that

1

Nh

Nh−1∑
i=0

wiw
†
i ≈ I, (5.72)

i.e., they form a stochastic approximation of the identity matrix I. This can be done in a

variety of ways. For example, each element of wi can be drawn independently from random

distributions such as Z2, Z4 or U(1). Using the above approximation, we have

D−1 ≈ 1

Nh

Nh−1∑
i=0

(
D−1wi

)
w†
i . (5.73)

Define vi = D−1wi/Nh, (i = 0, 1, · · · , Nh−1). We can then approximate D−1 in the following

way

D−1 ≈
Nh−1∑
i=0

viw
†
i . (5.74)

The vectors vi and wi can be used whenever a fermion propagator is needed. For example,
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a pion propagator can be approximated as

Cπ(x, y) =Tr
(
D−1(x, y)γ5D

−1(y, x)γ5
)

(5.75)

≈
Nh−1∑
i,j=0

Tr
(
vi(x)w

†
i (y)γ5vj(y)w

†
j(x)γ5

)
(5.76)

=

Nh−1∑
i,j=0

w†
i (y)γ5vj(y) · w

†
j(x)γ5vi(x). (5.77)

Now it is easy to sum over x and y spatially,

∑
x,y

C(x, t; y, t′) =
∑
ij

(∑
y

w†
i (y, t

′)γ5vj(y, t
′)

)(∑
x

w†
j(x, t)γ5vi(x, t)

)
. (5.78)

For convenience we define the meson field matrix at time slice t to be Πt

Πt
ij =

∑
x

w†
i (x, t)γ5vj(x, t), (5.79)

so the pion correlator takes the following form

∑
x,y

C(x, t; y, t′) =
∑
ij

Πt′

ijΠ
t
ji = Tr

(
Πt′Πt

)
. (5.80)

To improve the approximation (5.73) we usually separate Nl low modes of D and only

approximate the rest using random matrices. Suppose hi and λi are the ith normalized low

mode of D and the corresponding eigenvalue, i = 0, 1, · · · , Nl − 1. These eigenvectors and

eigenvalues can be solved using methods such as the Lanczos algorithm. Once solved, we

can construct the low modes part of D−1 exactly and use the random vectors to approximate

only the rest part. In such a case, vi is computed using the following formula

vi =

(
D−1 −

Nl−1∑
i=0

hih
†
i

λi

)
wi, (5.81)
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and D−1 is approximated in the following way

D−1 ≈
Nl−1∑
i=0

hih
†
i

λi
+

Nh−1∑
i=0

viw
†
i . (5.82)

Further complications can occur with the above formalism. For example, computing the

low end spectrum of D can be slow and usually its even odd preconditioned form (2.29)

is preferred. In such cases, there are additional matrices that must be taken care of when

constructing vectors in the all to all formalism.

5.6.1 Example: ππ scattering

x2

x1

y2

y1

Figure 5.10: One of the two “D” diagrams in the two pion scattering process. Each dot has
a γ5 matrix associated with it.

There is an additional subtlety related to the arrangement of the random vector wi when

forming contractions. Take the calculation of the D diagram in ππ scattering as an example.

Suppose we calculate the correlation function of the D diagram that has 2 pions going from

x1, x2 to y1, y2 (all are 4D coordinates)

D(x1, x2; y1, y2) = Tr
[
γ5D

−1(y1, x1)γ5D
−1(x1, y1)

]
Tr
[
γ5D

−1(y2, x2)γ5D
−1(x2, y2)

]
(5.83)

(here we omit an alternative diagram that has y1 and y2 exchanged). Using the all to all

propagator, we insert a set of random vectors at each point, each set is meant to approximate
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the identity matrix as in (5.72),

∑
ijkl

Tr
[
γ5D

−1(y1, x
′
1)wi(x

′
1)w

†
i (x1)γ5D

−1(x1, y
′
1)wj(y

′
1)w

†
j(y1)

]
Tr
[
γ5D

−1(y2, x
′
2)wk(x

′
2)w

†
k(x2)γ5D

−1(x2, y
′
2)wl(y

′
2)w

†
l (y2)

]
.

(5.84)

If

∑
ijkl

wi(x
′
1)w

†
i (x1)wj(y

′
1)w

†
j(y1)wk(x

′
2)w

†
k(x2)wl(y

′
2)w

†
l (y2)

≈δ(x′1 − x1)δ(y′1 − y1)δ(x′2 − x2)δ(y′2 − y2),
(5.85)

then equation (5.84) would be a correct stochastic approximation of D(x1, x2; y1, y2). Unfor-

tunately equation (5.85) does not hold. In fact

∑
ijkl

wi(x
′
1)w

†
i (x1)wj(y

′
1)w

†
j(y1)wk(x

′
2)w

†
k(x2)wl(y

′
2)w

†
l (y2)

≈δ(x′1 − x1)δ(y′1 − y1)δ(x′2 − x2)δ(y′2 − y2)

+δijδklδ(x
′
1 − y1)δ(y′1 − x1)δ(x′2 − y2)δ(y′2 − x2)

+δikδjlδ(x
′
1 − x2)δ(x′2 − x1)δ(y′1 − y2)δ(y′2 − y1)

+δilδjkδ(x
′
1 − y2)δ(y′2 − x1)δ(y′1 − x2)δ(x′2 − y1).

(5.86)

Although the additional terms in (5.86) are in general suppressed because of the extra factor

like δijδkl, they can not be simply neglected for practical calculations. To cure the problem,

we either guarantee that it is never possible to have i, j, k and l equal each other, or that

it is impossible to have x′1 = y1(among other similar equations). This implies that in the

summation we avoid using the same random source for 2 points that are possibly at the same

spacetime location.
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5.6.2 Using Extended Sources

The major advantage of the all to all propagators is that we can use a variety of extended

sources. Suppose we use the following very general operator to create a pion with total

momentum p− p′

O†(t; p, p′) =
∑
xy

l(x, t)f(x− y)γ5l(y, t)eipx−ip
′y, (5.87)

O(t; p, p′) =
∑
xy

l(y, t)f(x− y)γ5l(x, t)eip
′y−ipx, (5.88)

where the source f(x− y) is symmetric

f(x− y) = f(y − x). (5.89)

A pion correlator using the above interpolating operator looks like the following

⟨
O(t2; p2, p′2)O†(t1; p1, p

′
1)
⟩

=
∑
xyx′y′

Tr
(
f(x′ − y′)γ5e−ip2x

′
D−1(x′, t2;x, t1)e

ip1x · f(x− y)γ5e−ip
′
1yD−1(y, t1; y

′, t2)e
ip′2y

′
)
.

(5.90)

Using all to all propagators, the central problem is to calculate the meson field

Πtpp′

ij =
∑
xy

w†
i (x, t)f(x− y)γ5eipx−ip

′yvj(y, t). (5.91)

Πtpp′

ij can be easily computed using Fourier transform. This is because the source f(x−y)

depends only on x− y, not the individual coordinates x or y. Suppose the Fourier transform



105

of f(x) is f̃(p), then

Πtpp′

ij =
1

V

∑
xyq

w†
i (x, t)f̃(q)e

iq(x−y)γ5vj(y, t)e
ipx−ip′y (5.92)

=
1

V

∑
q

w̃†
i (q + p, t)f̃(q)γ5ṽj(q + p′, t). (5.93)

The formula for the final pion correlator remains unchanged,

⟨
O(t2; p2, p′2)O†(t1; p1, p

′
1)
⟩
=
∑
ij

Π
t1p1p′1
ij Π

t2p′2p2
ji . (5.94)

5.7 All Mode Averaging

All mode averaging is an error reduction technique for lattice calculations [35]. Similar to

the Hasenbusch mass splitting, the use of the all mode averaging method is characterized by

dividing the calculation into the following two parts:

• a part that is easy to calculate but has significant impact on the size of the overall

error, and

• a part that is difficult to calculate but has relatively small contribution to the overall

errors.

By calculating the easy to calculate part more frequently we achieve higher accuracy without

incurring excessive overhead.

Suppose the desired lattice observable is O. Without loss of generality we assume it to

be a function of the gauge field Uµ(x)

O = O [Uµ(x)] . (5.95)
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The idea of all mode averaging involves finding an approximation of O and rewrite it as the

sum of the following two parts

O = O′ +∆O. (5.96)

The intention is that O′ is easy to calculate and will be improved by multiple measurements.

∆O is more computationally demanding but does not contribute significantly to the overall

error. So it will be computed less frequently.

Since O′ will be calculated more frequently one must ensure that the computed ∆O is

an unbiased estimation for a ∆O associated with any O′, should this ∆O be calculated. To

achieve this we can find a transformation group G such that both the lattice action and the

ensemble average of O and O′ are invariant,

⟨O [Uµ(x)]⟩ =
⟨
O
[
U g
µ(x)

]⟩
,

⟨O′ [Uµ(x)]⟩ =
⟨
O′ [U g

µ(x)
]⟩
.

(5.97)

Instead of measuring (5.96), we measures the following quantity to have a better estimation

of O

OAMA =
1

N

∑
g∈G

O′ ◦ g +∆O, (5.98)

where N is the total number of group elements used. The sum can be performed either

on the entire transformation group or its subset. We discuss two examples of the all mode

averaging method in the following.

5.7.1 Low Mode Averaging

Low mode averaging constructs O′ by replacing all (or some) instances of D−1 with its low

modes counterpart

D−1 ≈
∑
i

1

λi
eie

†
i . (5.99)
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Where (λi, ei), i = 1, 2, · · · are the low eigenvalue/eigenvector pairs of the Dirac operator D.

The low mode reconstructed parts O′ is then shifted to various time slices.

For example, suppose we want to calculate the pion correlator

O = Tr
(
D−1(x, 0)D−†(x, 0)

)
. (5.100)

The 2 corresponding parts using low mode averaging would be

O′ =Tr

(∑
i

1

λi
ei(x)e

†
i (0) ·

∑
j

1

λj
ej(0)e

†
j(x)

)
(5.101)

∆O =O −O′. (5.102)

The low modes part is then translated and measured multiple times on the lattice.

5.7.2 Inexact Propagator Approximation

The other common cases of all mode averaging involves using inexact (less accurate) prop-

agators to construct O′ and the inexact approximations are translated into various lattice

locations. In this case the transformation group G is the translation group on the lattice.

Suppose the exact propagators are SF [Uµ(x)] and the inexact propagators are S ′
F [Uµ(x)],

then

O =O [SF [Uµ(x)]] (5.103)

O′ =O [S ′
F [Uµ(x)]] (5.104)

∆O =O [SF [Uµ(x)]]−O [S ′
F [Uµ(x)]] . (5.105)

∆O is expensive to calculate since it involves exact propagators. O′ is simpler to compute

since it can be calculated via the conjugate gradient algorithm with a larger stopping condi-
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tion. O′ is then measured multiple times to improve the statistics. The overall scheme thus

involves the following,

• ∆O is expensive to calculate and it is computed once (or a few times) by placing the

source of the exact/inexact propagators on some specific time slice,

• O′ is less computationally demanding. We can reduce the error by measuring it multiple

times. This is done via translating the source of the inexact propagators to multiple

time slices and using the average of the measured O′ as an estimation of this part.

A subtle problem with such a scheme is how the inexact propagators are obtained. We

usually solve light quarks as inexact propagators since this is the expensive part of most

calculations. Practically one always uses low modes projection when solving these inexact

propagators. Low modes serve two purposes in the calculation

1. The Krylov space solvers are much faster when the low spectrum of the Dirac operator

are projected out.

2. Practically we find that O′ approximates O better when low mode deflation is in-

cluded in the calculation, if other conditions are kept the same (mainly the stopping

condition)6.

For this reason, all mode averaging using inexact propagators is always combined with some

low modes projection technique. The low modes of the Dirac operator can be obtained using

methods such as the Lanczos algorithm or its variants such as the eigCG algorithm.

Another subtle problem arises because of the even odd preconditioning. Even odd pre-

conditioning distinguishes between even sites and odd sites, this may violate equation (5.97).

For example wall sources on even t slices and odd t slices are multiplied by very different

6This is probably because CG has higher tolerance on errors associated with low modes, since errors are
weighted according to the eigenvalues. By supplying the sloppy CG with low modes we explicitly remove
this part of error. Thus the overall error in the solution is reduced even with the same residual.
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matrices when the lattice Dirac equation is transformed into the even odd preconditioned

form.7 In such cases an estimation of ∆O made with the wall source on an even time slice

can be a biased estimation of the same quantity with the wall source on an odd time slice.

A simple method to fix this problem is to shift the location of where ∆O is calculated

by a random number in t direction. The problem is solved if t takes even or odd values with

equal probabilities. The ensemble average of the all mode averaging observable OAMA in

this scenario is an unbiased estimation of the original observable, though bias can exist for

each configuration.

7In fact they are multiplied by the same 4 dimensional matrix. But the result will be very different since
the two sources have their nonzero parts on even/odd time slices respectively.



Chapter 6

Kl3 Calculation on the Lattice

The interest of computing the process K −→ πlν stems from the interest in determining

the CKM matrix element Vus. Combined with experimental data, lattice calculations of this

process can be used to determine the CKM matrix element Vus to very high accuracy. The

decay width of this process can be expressed in terms of a few physical parameters, including

the Fermi coupling constant GF , the CKM matrix element Vus, and so on [2]. There are two

unknown factors among all these parameters,

ΓKl3 ∝ |Vus|2|f+
Kπ(0)|

2, (6.1)

where f+
Kπ(q

2) is the form factor of the QCD process K −→ π via a vector current vertex,

⟨π(pπ) | sγµu |K(pK)⟩ = (pπ + pK)µf
+
Kπ(q

2) + (pK − pπ)µf−
Kπ(q

2), (6.2)

where

q = pK − pπ. (6.3)

Vus is the target that can be calculated once the total decay width ΓKl3 and f+
Kπ(0) are

known. The decay width ΓKl3 is determined from experimental data. On the other hand,

110
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the form factor at zero momentum transfer f+
Kπ(0) is a suitable target for lattice calculations.

There are numerous previous attempts on the lattice to calculate the form factor f+
Kπ(0),

using various lattice sizes and parameter settings. The combined fit has lead to a good result

for f+
Kπ(0) and thus Vus [1]. Although a significant success, there are two shortcomings in

these calculations.

1. The previous calculations are performed using unphysical parameters. Due to the

enormous cost of simulating pions at physical mass, past calculations are done by first

computing the form factor with heavier, unphysical quarks and then extrapolating to

the physical point via chiral perturbation theory. An obvious disadvantage of this

approach is that the size of the error grows rapidly when approaching the physical

point due to the behavior of the “chiral log”.

2. Most past calculations are performed not directly at the kinematic point q2 = 0, but

rather with q2 > 0 or q2 < 0. The value of f+
Kπ(q

2) with q2 = 0 is calculated via

interpolation. This is mainly due to the difficulty of injecting arbitrary momenta to

the quarks on the lattice. In fact, this is a difficulty for many lattice calculations that

requires particles carrying momenta. In our calculation on the 483×96 (5.5fm, 140MeV)

and 643 × 128 (5.5fm, 140MeV) ensembles, we use the twisted boundary condition to

add arbitrary momenta to the quarks.

With the introduction of the Möbius fermions, the forecasted force gradient integrator,

the eigCG algorithm and the all mode averaging method, we are now able to perform the

calculation directly using physical parameters. This is possible also because of the size of the

lattice. The 483 × 96 (5.5fm, 140MeV) and 643 × 128 (5.5fm, 140MeV) ensembles both have

boxes large enough to accommodate this calculation with negligible finite volume effect.

In addition, with the help of twisted boundary conditions we also eliminate the need to

interpolate to the zero momentum transfer point q2 = 0.
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6.1 Kinematics of the Kl3 calculation

The Kl3 weak decay width at tree level can be computed in a straightforward manner.

Taking the process

K0(pK) −→ π−(pπ)e
+(pe)νe(pν) (6.4)

as an example. We start from the following effective Lagrangian [36]

Leff = −GF√
2
V ∗
ussγµ(1− γ5)u · νeγµ(1− γ5)e. (6.5)

By using the strong interaction matrix element (6.2) we can write down the decay amplitude

iM = −GF√
2
V ∗
usu(pν)γ

µ(1− γ5)v(pe) ·
(
(pπ + pK)µf

+
Kπ(q

2) + (pK − pπ)µf−
Kπ(q

2)
)
. (6.6)

The tree level decay width is thus eqaul to

ΓKe3 =
G2
F |Vus|2m5

K

128π3

∣∣f+
Kπ(0)

∣∣2 IKl. (6.7)

Where IKl is the phase space integral that counts the contribution from all final kinematic

configurations. When performing this phase space integral we express f+
Kπ(q

2) in terms of

f+
Kπ(0) and kinematic parameters [37]. So there is an overall dependence of f+

Kπ(0) in the

formula.

At the current level of accuracy, various other effects must be included. Accordingly, the

above formula must be changed to

ΓK0−→π−e+νe =
G2
F |Vus|2m5

K

128π3

∣∣f+
Kπ(0)

∣∣2 IKlSEW (1 + 2∆SU(2) + 2∆EM

)
, (6.8)

where ∆EM , ∆SU(2) and SEW are QED, isospin breaking and short distance electroweak

interaction effects. The details of these corrections can be found in [2]. These quantities
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are also computed to reasonable accuracy so they do not pose significant problems to the

problem of determining Vus.

It is therefore the form factor f+
Kπ(q

2) at zero momentum transfer that we are interested

in. Computing f+
Kπ(0) requires setting up kaon/pion momenta such that

q2 = (pK − pπ)µ(pK − pπ)µ = 0. (6.9)

Suppose pµK = (EK ,pK) and p
µ
π = (Eπ,pπ), we then have

√
m2
K + p2

K −
√
m2
π + p2

π = ± |pK − pπ| . (6.10)

q2 = 0 can be achieved by setting either pK or pπ or both to non zero values.

If we allow pπ ̸= 0, then q2 = 0 requires the size of pπ to be

|pπ| =
m2
K −m2

π

2mK

. (6.11)

Alternatively, if we use non zero pK , then q
2 = 0 yields the following condition

|pK | =
m2
K −m2

π

2mπ

. (6.12)

Using twisted boundary conditions, both of the above settings can be achieved. So we are

free to choose the best combination. In addition, it is also possible to have nonzero momenta

on both particles. But this setting requires inverting an extra set of quark propagators, so

we are not using it.

Testing data on the 323 × 64 (4.6fm, 170MeV) ensemble show that the signal to noise

ratio is usually better with smaller momenta, so we choose to set pπ ̸= 0 and use (6.11).

This will be seen explicitly in the actual data in chapter 7.



114

6.1.1 Twisted Boundary Conditions

A prominent problem with many lattice calculations is how to add momenta of suitable sizes

to the particles on the lattice. Typically the lattice formalism allows direct use of a very

restrictive set of momenta.

The allowed momenta are quantized on the lattice as the lattice is a box with periodic

or antiperiodic boundary conditions. Suppose periodic boundary conditions are applied to

the 3 spatial directions. If the numbers of spatial points of the lattice are Lx, Ly and Lz for

the 3 directions, then the allowed lattice momenta will be

p =
2π

Lx
kxêx +

2π

Ly
kyêy +

2π

Lz
kz êz, 0 ≤ kx,y,z < Lx,y,z, kx,y,z ∈ Z. (6.13)

Even the smallest of the above momenta is typically large using the standard of the pion or

kaon masses. For example, on the 483 × 96 (5.5fm, 140MeV) lattice both the pion and kaon

have physical masses. This lattice has the inverse lattice spacing a−1 = 1.741(23)GeV. So

the smallest lattice momentum is

pmin =
2π

48a
≈ 228MeV. (6.14)

This momentum is larger than the mass of a pion (mπ ≈ 140MeV).

Consequently, the momenta imposed by (6.11, 6.12) are in general not integer multiples

of 2π/L. So some techniques are required to generate quarks on the lattice with the desired

momentum. 1 We use the twisted boundary conditions to inject arbitrary momentum to the

quarks [38].

1Interestingly, on both 483 × 96 (5.5fm, 140MeV) and 643 × 128 (5.5fm, 140MeV) ensembles one unit of
lattice momentum is very close to the momentum required by equation (6.11). With mK = 498MeV and
mπ = 140MeV we have

m2
K −m2

π

2mK
= 229MeV, (6.15)

very close to the value shown in equation (6.14). Similarly the 643 × 128 lattice has inverse lattice spacing
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Twisted boundary conditions exploit symmetries possessed by the lattice action. In the

usual lattice formulation we apply periodic boundary conditions so the lattice fermion fields

are single valued. This ensures that the corresponding actions and also all observables are

single valued. However, even with multivalued field we can still have single valued action.

Consider the following boundary condition

ψ(x+ Liêi) = Viψ(x), i = x, y, z. (6.17)

If Vi is a symmetry of the action then any observable will be single valued,

S(Viψ(x)) = S(ψ(x)). (6.18)

Though Vi can potentially change the field. This is because

⟨O(ψ)⟩ = 1

Z

∫
Dψ e−S(ψ)O(ψ) (6.19)

=
1

Z

∫
Dψ e−S(V ψ)O(V ψ) (6.20)

=
1

Z

∫
Dψ e−S(ψ)O(V ψ) (6.21)

= ⟨O(V ψ)⟩ . (6.22)

equal to 2.302(35)GeV, so the smallest lattice momentum on 643 × 128 lattice is

pmin =
2π

64a
≈ 226MeV. (6.16)

This is also very close to the momentum required by the pion.
One may thus argue that there is no need to use twisted boundary conditions. There is an advantage with

this approach. Twisted boundary condition changes the underlying fermion Dirac operator, thus we need to
collect a new set of eigenvalues/eigenvectors for use with eigCG. This is not a problem if lattice momentum
is used instead. This fact was not well appreciated at the beginning of the calculation, and can be a potential
oversight of the calculation.
However, there is also an advantage with twisted boundary conditions. Using twisted boundary condition

we can (and we do) distribute the momentum uniformly to all 3 spatial dimensions. Potentially this can
reduce the noise associated with the excited pions.
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Twisted boundary condition sets Vi to a phase factor

ψ(x+ Liêi) = eiθiψ(x), (6.23)

θi is the twisting angle associated with direction i. The twist can be applied in 3 spatial

directions. Consequently there are 3 twisting angles.

To see why the twisted boundary conditions produce quarks with momentum, we redefine

the fermion field by

ψ(x) = R(x)ψ′(x), (6.24)

where

R(x) = exp

(
i
∑
i=x,y,z

θi
Li
xi

)
. (6.25)

In other words, we uniformly distribute the twists across the entire lattice so the phase is

gradually changed from 0 to the required twist imposed in the boundary condition. The new

field ψ′(x) satisfies periodic boundary conditions

ψ′(x+ Liêi) = ψ′(x), (6.26)

Since the required transformation factor Vi is carried by R(x). The fermion Lagrangian can

be written using ψ′(x) as

L =ψ′(x)
(
��D +m+

(
R(x)†��∂R(x)

))
ψ′(x) (6.27)

=ψ′(x)
(
��D +m+ i��P

)
ψ′(x), (6.28)

where

Pi =
θi
Li
, i = x, y, z. (6.29)

The net effect of the twisted boundary conditions is thus to add momentum Pi to the
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associated quark.

6.1.2 Periodic + Antiperiodic Propagators

Using P ±A propagators can double the effective size of the lattice in one or more directions,

thus suppressing any “around the world” effect. The following discussion uses the temporal

direction as an example.

Let the original size in t direction be T . Suppose we have a source vector s and the

corresponding solution is ψbc

Dbcψbc = s (6.30)

where bc denotes the boundary condition in t direction, either periodic (P ) or antiperiodic

(A).

We extend the lattice in t direction by simply duplicating the gauge field. It is clear that

the solutions ψP and ψA satisfy the following equations on the extended lattice with overall

periodic boundary condition,

D′

 ψP

ψP

 =

 s

s

 , D′

 ψA

ψA

 =

 s

−s

 . (6.31)

The difference in the way s is extended manifests the difference between ψP and ψA. We can

average the 2 equations in (6.31) to eliminate one of the 2 sources, thus double the lattice

extent in t direction,

D′

 (ψP + ψA) /2

(ψP − ψA) /2

 =

 s

0


D′

 (ψP − ψA) /2

(ψP + ψA) /2

 =

 0

s

 .

(6.32)

In this way, we form a full propagator on a lattice with t direction size 2T , the source is

also allowed to locate anywhere in [0, 2T ].
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The method to form a propagator on the doubled lattice is thus as follows

• For any source location t0 ∈ [0, 2T ), we compute 2 propagators on the original lattice

with source located at t0 mod T . One has periodic boundary condition in t direction

and the other has antiperiodic boundary condition. Let the 2 propagators be D−1
P (t, t0)

and D−1
A (t, t0).

• The full propagator evaluated at source location t0 ∈ [0, 2T ) and sink location t ∈

[0, 2T ) is equal to

1

2

(
D−1
P (t′, t′0) + ϵ

(
T − 1

2
− t
)
ϵ

(
T − 1

2
− t0

)
D−1
A (t′, t′0)

)
, (6.33)

where t′ = t mod T and t′0 = t0 mod T , ϵ(x) is the sign function.

It is easy to see that this method can in principle be used to extend the lattice size by

any integer factor k. Simply solve the Dirac equation using k different boundary conditions.

For each boundary condition we associate a phase factor ωi, i = 0, 1, · · · , k−1 to the fermion

fields on the boundary, where ω is a primitive kth root of unity. The propagators on the

extended lattice can be obtained by linear combinations (essentially a DFT) of these solutions

in a way similar to (6.32).

6.2 The Vector Current Renormalization Factor ZV

The point operator that appears in the QCD K −→ π matrix element (6.2) has the form of

a vector current. This operator receives a multiplicative renormalization factor as discussed

in section 4.4.

Like the axial current, in principle the vector current renormalization constant can be

computed using meson like contractions. In the case of axial current a pion interpolating

operator is usually used to couple to the current operator since pion is the lightest physical
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particle on the lattice and this setup has very good statistics. However one must use a

different particle for vector currents since the pion is a pseudoscalar particle and does not

produce a signal when couples to the vector current. The choice for the vector current is

usually the vector ρ meson,

ZV =
⟨Vµ(x) · q(0)γµq(0)⟩
⟨Vµ(x) · q(0)γµq(0)⟩

. (6.34)

The signal to noise ratio of this quantity decays rapidly as the vector current moves away

from the ρ source, since ρ is heavy on the lattice.

A better but more expensive method to compute the vector current renormalization

factor involves using the zero momentum π −→ π matrix element

∑
x

⟨π(tπ)Vµ(x, t)π(0)⟩ =
|Zπ|2

2mπ

1

ZV
, 0 < t < tπ. (6.35)

Where both the initial and final pions are static on the lattice. We use wall source propagators

to generate both the initial and final pions. The setup is shown in the right panel of figure

6.1. The apparent advantage is that this matrix element maintains good signal to noise ratio

even when the 2 pions are separated far away. This is because a zero momentum pion is

the lightest particle on the lattice, consequently the signal to noise ratio does not degrade

when the separation between the 2 pions becomes larger. This correlation function is more

expensive to calculate, requiring light quark propagators computed at both t = 0 and t = tπ.

However, due to the vastly better signal to noise ratio, it is the preferred method we use

in the Kl3 calculation on the 483 × 96 (5.5fm, 140MeV) and 643 × 128 (5.5fm, 140MeV)

ensembles.
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K π

pπ(twisted)s
γµ

π π

γµ

Figure 6.1: Left: Kl3 matrix element with twisted pion. Right: Computing the vector
current renormalization factor ZV using the π to π matrix element.

6.3 Detailed Setup of the Contractions

6.3.1 Meson Correlators

Meson correlators take the following form

C(t, t0) = ⟨0 | q′(t)Γsnkq(t) · q(t0)Γsrcq
′(t0) | 0⟩ . (6.36)

Where we place the source of both quarks q and q′ at t0. The sink can be a wall sink or

point sink at varying time slices t. Γsnk and Γsrc are 2 gamma matrices.

6.3.2 Kl3 Correlators

Kl3 contractions take the following form

C(tπ, t, tK) = ⟨0 | q3(tπ)γ5q2(tπ) q1(t)Γq3(t) q2(tK)γ5q1(tK) | 0⟩ . (6.37)

We place the sources of both quark lines q2 and q3 at the same time slice tπ so they can be

combined with strange quark propagator q1 at an arbitrary time slice tK to produce a Kl3

correlator. Γ is one of the 4 gamma matrices γµ (µ = 0, 1, 2, 3). We twist the quark q3 so

we have the desired kinematic condition (6.9). We distribute the momentum (twist) in q3

evenly into all spatial directions to fully make use of the contraction data.
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6.3.3 BK Contractions

BK contraction takes the following form,

C(ta, t, tb) =
⟨
0
∣∣ l(ta)γ5s(ta) OV V+AA(t) l(tb)γ5s(tb)

∣∣ 0⟩ , (6.38)

where OV V+AA(t) is equal to

OV V+AA(t) = s(t)γµ(1− γ5)d(t) · s(t)γµ(1− γ5)d(t). (6.39)

The 2 possible contractions can be seen in figure 6.2.

K0 K
0

s

s K0 K
0s

s

Figure 6.2: BK diagrams. Each black dot represents an sγµ(1− γ5)d operator. The dashed
lines represent the interpolating operator for kaons, where we put wall sources for the cor-
responding d and s quarks. There is an extra sign difference between the 2 diagrams since
they have different number of fermion loops.

6.4 Fitting the Data

The physical amplitudes as well as meson mass parameters are extracted via fitting the

computed correlators. To be specific, fitting is done on the ensemble averaged correlators

⟨C(t)⟩ via

χ2(λ) =
∑
ts

(f(t;λ)− ⟨C(t)⟩)V −1(t, s) (f(s;λ)− ⟨C(s)⟩) . (6.40)

Where λ represents all free parameters in the fitting function f(t;λ). V (t, s) is the covariance

matrix. By minimizing the above function we obtain an estimation of λ.
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In practice equation (6.40) poses a difficulty when the data sample is not large enough,

which is frequently the case in lattice calculations. The covariance matrix V can be highly

singular, causing difficulties when trying to compute its inverse V −1. Phenomenologically

this is because giving reliable estimation for every element of V is difficult to do. V has

O(N2) elements if we take samples fromN time slices, this can easily outnumber the available

measurements - too much information is required to fully describe V and there is simply not

enough data.

We may cure the problem by simply setting all non-diagonal elements of V to zero, thus

turning the procedure to uncorrelated least square minimization. There are two problems

associated with this approach

1. Since all correlation information is lost, the resultant “χ2 value” is no longer a good

estimation of the true χ2. Thus we have to resort to heuristics to ensure that the fitting

model is appropriate.

2. Also because there is no correlation information, highly correlated data points are not

properly weighted. Thus they can have more influence on the final value of λ than

they should, yielding degraded results.

However, due to its robustness this is the method of choice in our work. We use the

jackknife resampling method to estimate the error of any fit quantity λ.

6.4.1 Fitting Functions for Kl3 Data

The final result f+
Kπ(0) is obtained by combined fitting of the 2 point meson correlators

π −→ π, K −→ K, 3 point Kl3 and π −→ π correlators. For the meson correlators, we

combine both the wall source point sink (WP) results and the wall source wall sink (WW)

results to get an improved estimation of the meson masses.

The following functions are used to fit all the correlators,
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1. For wall source point sink meson correlators,

f(t) = Ci
(
e−mit ± e−mi(T−t)

)
. (6.41)

Where Ci is not used elsewhere.

2. For wall source wall sink meson correlators,

f(t) =
Z2
i

2Ei

(
e−mit ± e−mi(T−t)

)
. (6.42)

Where Zi is also used as the normalization factor in certain 3 pointKl3 or ⟨π |Vµ(x) |π⟩

correlators. In both cases the sign between the 2 exponential terms is determined by

the underlying quantity computed.

3. For the 3 point Kl3 or ⟨π |Vµ(x) |π⟩ correlators,

f(t) =
ZiZf

4ZVmimf

(
f+
if (q

2)(pi + pf )µ + f−
if (q

2)(pi − pf )µ
)
e−mit−mf (T−t). (6.43)

Where i and f are the initial and final states of the process. This fitting function does

not count any effect due to around the world meson propagators.

For the π −→ π process we simply have f+
ππ(0) = 1. For the Kl3 matrix element there

is a nonzero signal in t direction or any direction with nonzero spatial momentum. We

combine all possible directions with nonzero signals to improve the overall statistics.

We choose to start fitting 10 time slices away from the kaon or pion sources, as suggested

by the effective mass plots 7.6 and 7.7. For the choice of the K −→ π separations, we

combine all the data with separations in [20, 32] to increase the statistics. The combined fit

of the above gives results for mK , mπ, ZV , f
+
Kπ(q

2) and f−
Kπ(q

2).



Chapter 7

Simulation Results

We discussed various techniques used in the generation of the 483 × 96 (5.5fm, 140MeV)

and 643 × 128 (5.5fm, 140MeV) ensembles and the measurement of the Kl3 decay am-

plitudes in previous chapters. In this chapter, we present the results calculated on the

323 × 64 (4.6fm, 170MeV) and 483 × 96 (5.5fm, 140MeV) ensembles. We also made substan-

tial effort to apply the techniques to the 643 × 128 (5.5fm, 140MeV) ensemble. Since the

483 × 96 and 643 × 128 lattices are so large we performed an exploratory calculation on the

323× 64 ensemble which has a physical kaon mass and 170MeV pions. It served as a tool to

develop suitable computation strategies for the larger ensembles. The 483×96 and 643×128

calculations have all parameters set to physical values, including important quantities such

as the pion and kaon masses. Evolution parameters for these ensembles can be found in table

B.1 in appendix B. Parameters related to our measurement can be found in table 7.1. We

discuss results on the 323 × 64 ensemble in section 7.1. The results led to some important

decisions when the strategy was applied to the 483 × 96 and 643 × 128 ensembles. Results

on the 483 × 96 are presented in section 7.2. We also discuss some ongoing work on the

643 × 128 in section 7.3.
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Ensemble 323 × 64 DWF+ID 483 × 96 DWF+I 643 × 128 DWF+I

β 1.75 2.13 2.25
a−1(GeV) 1.370(8) 1.741(23) 2.302(35)

mπ 0.1250(2) 0.08054(46) 0.0584
mK 0.3594(5) 0.28855(60) 0.214

mπ(MeV) 171 140 134
mK(MeV) 492 502 493

pπ 0.1580 0.1336 0.0993
pK 0.4542 0.4766 0.365

Table 7.1: Parameters for the Kl3 measurements on the 323 × 64, 483 × 96 and 643 × 128
ensembles. pπ and pK are twisted momenta needed in the Kl3 calculation computed from
equations (6.11, 6.12).

7.1 The 323 × 64 (4.6fm, 170MeV) Ensemble

The 323 × 64 (4.6fm, 170MeV) ensemble was generated using the β = 1.75 Iwasaki gauge

action and 2+1 flavor Shamir domain wall action with Ls = 32, together with the Dislocation

Suppressing Determinant Ratio (DSDR) [22, 39]. This combination of actions leads to a

coarse lattice with inverse lattice spacing equal to a−1 = 1.370(8)GeV. The dynamic pion

mass is set at 170MeV, close to the physical value. Detailed parameters can be found in table

B.1. Since calculations on this ensemble were intended to be a test for larger ensembles, we

used the less expensive Möbius fermions for valence quarks in the measurement. The Möbius

domain wall action has Ls = 16, c5 = 0.5, b5 = 1.5 and otherwise identical to the domain

wall action. As shown in section 5.4.2, such Möbius action is a very good approximation to

the Ls = 32 domain wall action used in the ensemble generation. We used 31 configurations

each separated by 40 molecular dynamics time units, assuming that 40 time units is a large

enough separation so there was no apparent correlation between configurations. Since this is

an exploratory calculation aimed at determining the effectiveness of various techniques, we

focus our discussion on comparing the results/timings rather than the physical consequences.

We computed Coulomb gauge fixed wall source propagators for both the light quarks and

the strange quarks. In addition, we also calculated twisted light quark and strange quark
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propagators according to the twist settings (6.11, 6.12). We computed all these propagators

using periodic + antiperiodic boundary conditions in t direction to suppress any around the

world effect.

We computed all the above propagators on all possible 64 time slices to improve the signal

to noise ratio, a decision that was justified by the results. A total number of 64 ∗ 12 = 768

Dirac equations were solved for each specific quark/twist/boundary condition combination.

This was an excellent target to apply the eigCG algorithm. To this end we applied the eigCG

algorithm to the single precision part of the solver for Dirac equations associated with light

quarks. We generate a total of 600 low modes using eigCG. As can be seen below, this

yielded a substantial speed up in the calculation.

To explore the effectiveness of the all mode averaging, we also computed inexact propa-

gators on 7 configurations to compare its results from the regular correlators.

7.1.1 The Effect of Temporal Translation Averaging

A major goal of this project is to determine the Kl3 form factor f+
Kπ(0) on the physical

483 × 96 and 643 × 128 lattices. Since eigCG can reduce the cost of the Krylov space

solver, we have strong motivation to reuse the eigCG low modes as much as possible. So we

computed propagators on all time slices to determine if this is worth the effort.

We computed the Kl3 contraction (6.37) for all possible combinations of (tπ, t, tK) since

propagators on all time slices were available. The ensemble average of this matrix element is

the same if we translate all operators in (6.37) by the same amount in t direction. So we can

average the data with different temporal translations to improve the signal to noise ratio.

Computing propagators on all time slices is a good strategy only when the signal to noise

ratio is indeed improved.

We can thus analyze the effect of temporal translation averaging by averaging different

number of temporal translations. The result is shown in figure 7.1. The graph shows the
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fitting results of f+
Kπ(0) and f−

Kπ(0) with different kaon-pion separations (i.e., with data

having different tK − tπ values). Three curves are shown in each figure, each with time

translational averaging on 64, 32 and 16 time slices. Apparently smaller errors can be

achieved by adding more time translations to the data set, showing that for quantities such

as f+
Kπ(0) and f

−
Kπ(0) computing on all time slices is a good strategy.
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Figure 7.1: Top: plot of f±
Kπ(0) results by fitting the data with different K − π separations.

Bottom: Standard deviation of f±
Kπ(0) plotted separately. The results averaged with 16, 32

and 64 temporal translations are shown as blue/green/red points.

7.1.2 The Effect of Twisted Kaon and Twisted Pion

The condition that f+
Kπ(q

2) must be calculated at q2 = 0 imposes equation (6.10) on possible

momenta we can add to the kaon and the pion. In this calculation we compare the results

from twisting only the pion (6.11) and results from twisting only the kaon (6.12).

The pion/kaon correlator and effective mass plot are shown in figure 7.2 and 7.3. We
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computed both wall source wall sink (WW) and wall source point sink (WP) correlators.

One important observation is that results with a twisted kaon appears to be much noisier

than results with a twisted pion. This is because the zero momentum transfer condition

demands a much larger momentum if the kaon is made to carry the required momentum.

Equation (6.11, 6.11) suggest that the momentum carried by the twisted kaon is mK/mπ

times larger than the momentum carried by the twisted pion, should a single twist be used.

The K −→ π data also agree with this observation. Figure 7.4 shows various K −→ π

correlators with twisted pion or twisted kaon, where we can obtain a reasonable signal with

K − π separation as large as 60 if we twist only the pion. If we twist the kaon there is

virtually no signal if the operator is more than 22 time slices away from the kaon source.
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Figure 7.2: Left: pion correlation function. From top to bottom: zero momentum pion
(WW), twisted pion (WW) and twisted pion (WP). Right: pion effective mass plot. From
top to bottom: twisted pion (WP) and zero momentum pion (WP).

Table 7.2 shows the fitting results from correlators with only twisted pion or twisted

kaon, or from the combination of both. Clearly data with only twisted kaon have much

larger errors. The error in f±
Kπ(0) when fitting the combined data set is almost equal to

the case where only twisted pion is used. Since the 483 × 96 and 643 × 128 have similar

mK/mπ ratios, we decided to not calculate Kl3 correlators with twisted kaons on these large

ensembles to save some time.
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sγ0u with twisted kaon.
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data used mπ mK f+
Kπ(0) f−

Kπ(0)
twisted pion 0.1241(4) 0.3588(5) 1.424(7) -0.151(16)
twisted kaon 0.1241(4) 0.3588(5) 1.329(50) 0.069(53)

both 0.1240(4) 0.3587(5) 1.428(7) -0.122(11)

Table 7.2: Fitting Results from 31 configurations. Showing the effect of kaon twist and pion
twist. K − π separations between 20 and 30 (inclusive) are used. The values shown here for
f+
Kπ(0) and f

−
Kπ(0) are not normalized by the ZV factor.

7.2 The 483 × 96 (5.5fm, 140MeV) Ensemble

In this section we present the results on the 483×96 (5.5fm, 140MeV) DWF+I ensemble. The

ensemble was generated using β = 2.13 Iwasaki gauge action and Ls = 24, c5 = 0.5, b5 = 1.5

Möbius domain wall fermion action. We used the forecasted force gradient integrator and the

rational action for the strange quark. The detailed setup of the nested integration scheme

is shown in table 3.3. The inverse lattice spacing was estimated to be a−1 = 1.741(23)GeV.

Other parameters can be found in table B.1 and 7.1.

We use gauge fixed wall sources for all quark propagators. We also employ the all mode

averaging technique by calculating inexact light quark propagators to reduce the cost. To

be specific, the following propagators are computed:

1. Inexact light quark propagators are computed on all 96 time slices, including both zero

momentum quark and light quark with properly twisted momentum. These propa-

gators are obtained using mixed precision conjugate gradient method. The stopping

criteria for these propagators is set to 10−4, based on equation (5.30). We use the eigCG

algorithm to obtain 600 single precision low eigenvalues to both speed up the conjugate

gradient algorithm and improve the quality of the inexact light quark propagators1.

2. Exact light quark propagators are computed on time slices 0, 76, 72, 68, 64, 60 and

56, subject to a random shift as discussed before. For the same reason we calculate

1The choice of the number 600 is entirely due to the limitation on the amount of available memory. Later
experiment on larger machines shows that an additional factor of 2 speed up in terms of rack hours may be
obtained if we use more low modes.
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propagators for both the zero momentum light quark and the twisted light quark.

These accurate propagators serve to compute the correction term “∆O” for the all

mode averaging technique.

3. Exact strange quark propagators on all 96 time slices. The cost to compute strange

quark is low so there is no need to apply the all mode averaging technique to it.

Once we compute the above propagators, we can then compute the following correlators

1. Inexact correlators using inexact light quark propagators and exact strange quark

propagators, and

2. Exact correlators using exact light quark propagators and exact strange quark propa-

gators.

The inexact correlators are the easy to calculate part (“O′”) in the all mode averaging method

and the differences between the exact/inexact correlators are the expensive part (“∆O”).

The above procedure produces 7 estimations for ∆O and 96 estimations for O′. These 2 parts

are averaged separately and then combined together to produce the final results, according

to (5.98). Each configuration that we measure on is separated by 20 molecular dynamics

time units.

Table 7.3 shows the running time of various parts of the calculation on a 1024 node BG/Q

rack using only antiperiodic propagators.
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item total time (hours)
Coulomb gauge fixing 4

contractions 3
light quark propagator EigCG setupa 29.5
exact light quark propagator (1e-8)b 18.7
inexact light quark propagator (1e-4)c 64
exact strange quark propagator (1e-8)d 8

total 127

aThere are 3 EigCG instances, 1 for untwisted light quark and 2 additional setups for the twisted quark
in Kl3 and K −→ ππ. Within each setup we solve a 4D volume source twice to get 600 low modes.

b7 locations for each light quark. A total of 21 propagators are solved using EigCG low modes.
c1 untwisted + 2 twisted quarks, each set solves 96 propagators. Iteration count after deflation fluctuates

within the range 1100 ∼ 1600.
dUntwisted, 96 propagators. There was a set of twisted s quark propagators for the Kl3 calculation but

it was dropped due to large noise.

Table 7.3: Running time of the measurements on ensemble 483 × 96 (5.5fm, 140MeV) on a
1K BG/Q partition.

7.2.1 The Pseudoscalar Decay Constants fπ and fK

Quantities related to two point correlators such as mπ, mK , fπ and fK can all be described

by the general meson correlator (6.36). To be more specific we use the following notation to

describe a general 2 point correlator

C(t; q, q′; Γsnk,Γsrc; type) = ⟨0 | q′(t)Γsnkq(t) · q(t0)Γsrcq
′(t0) | 0⟩ . (7.1)

Where type can be either WP (wall source point sink) or WW (wall source wall sink). For

point sink we also sum over all spatial sink locations on a given time slice t. q and q′ can be

either l (up/down quark) or s (strange quark).

We combine a few of the above correlators to determine the meson masses mπ, mK and

pseudoscalar decay constants fπ and fK . For example, the pion mass can be extracted from

C(t; l, l; γ5, γ5,WP/WW ) =
|ZWP/WW

π |2

2mπ

(
e−mπt + e−mπ(T−t)

)
. (7.2)
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fπ can be obtained from

C(t; l, l; γ3γ5, γ5,WP ) =
ZWW
π fπ

√
V

2ZA

(
e−mπt − e−mπ(T−t)

)
, (7.3)

where V is the size of the source (483). mK and fK can be obtained in a similar manner.

The axial current renormalization constant ZA is obtained through procedure described in

section 4.4. In figure 7.6 and 7.7 we provide effective mass plots of the pion, kaon and omega

baryon correlators. Based on these effective mass plots, we leave out 10 time slices for the

pion and kaon and 13 time slices for the omega baryon to eliminate effects from any excited

states.

The fitting results for mπ, mK , fπ, fK and ZA can be found in table 7.4. We also provide

fitting results for the mass of the omega baryon to extract information about the lattice

spacing. The method to measure the omega baryon mass is described in [40]. Using our

estimation of a−1 = 1.741(23)GeV, we have the following preliminary results

fπ =132.2(3)stat(17)a−1MeV (7.4)

fK =157.5(2)stat(21)a−1MeV (7.5)

fK/fπ =1.1914(21)stat. (7.6)

Figure 7.5 compares the value fK/fπ from this work with a few previous calculations [41,

42, 43, 44, 45, 46, 47, 48]. As a reference, the figure also highlights the 2011 lattice aver-

aging result from the FLAG working group 2. The 2011 FLAG average of various lattice

calculations for fK/fπ is [41]

fK/fπ = 1.193(5). (7.7)

As shown in figure 7.5, the statistical error for our fK/fπ value is already very small from

2FLAG stands for Flavianet (or Flavor) Lattice Averaging Group [49]. They provide estimates of a few
important low energy constants such as fK , fπ by averaging results from various lattice groups.
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AMA Exact

mπ 0.08056(17) 0.08064(21)
mK 0.28845(25) 0.28889(38)
fπ 0.07594(16) 0.07622(28)
fK 0.09047(12) 0.09052(42)

fK/fπ 1.1914(21) 1.1876(57)
ZA 0.71184(13) 0.71278(63)
mΩ - 0.9649(50)
mres 0.000620(5) 0.000619(5)

Table 7.4: Lattice values for mπ, mK , fπ, fK , ZA, mΩ and mres. All quantities other than
mΩ are measured from 26 configurations, the value mΩ is obtained from 18 configurations.
For the “AMA” column full

∑
O′ + ∆O data are used, so there are 96 estimations of O′

and 7 estimations of ∆O. In the “exact” column only contractions computed from exact
propagators are used, so in this case there are 7 estimations per configuration.

1.16 1.18 1.2 1.22 1.24 1.26 1.28 1.3
fK/fπ

MILC 2010

RBC/UKQCD 2010

BMW 2010

JLQCD/TWQCD 2009

Aubin 2008

PACS-CS 2008

NPLQCD 2006

FLAG 2011 average

This work (preliminary)

Figure 7.5: Comparison of lattice fK/fπ results. The black point is the latest average from
the FLAG group. The green point is from this work.
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26 configurations. We further notice that the error due to the chiral extrapolation is largely

absent here, since both the 483 × 96 ensemble and the measurement are performed at very

close to physical pion and kaon masses. We expect a few percent correction to the pion/kaon

mass, the errors introduced by such percent level chiral corrections will be very small.
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Figure 7.6: Pion effective mass plot. Left: static pion with no twist. Right: twisted pion
with p = 0.1336. We use the points that are at least 10 time slices away from the source
when fitting the masses.
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Figure 7.7: Kaon and omega baryon effective mass plot. For kaons we start fitting from time
slice 10. For omega baryons we start fitting from time slice 13.

7.2.2 The Kl3 Form Factors f±Kπ(0)

We extend the notation in (6.37) to indicate the type of quarks involved in the contraction

C(tπ, t, tK ; Γ, q1, q2, q3) = ⟨0 | q3(tπ)γ5q2(tπ) · q1(t)Γq3(t) · q2(tK)γ5q1(tK) | 0⟩ . (7.8)
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Where qi can be l (light quark), l′ (twisted light quark) and s (strange quark). We combine

the following 3 point correlators to produce the fitting results for f±
Kπ(0)

..1 =C(tπ, t, tK ; γi, s, l, l
′), i = x, y, z. (7.9)

..2 =C(tπ, t, tK ; γt, s, l, l
′), (7.10)

..3 =C(tπ, t, tK ; γt, l, l, l). (7.11)

Where ..1 and ..2 are spatial/temporal components of the K −→ π matrix element (cf.

equation 6.2), ..3 is the temporal component of the π −→ π process. The purpose of ..3 is

mainly to determine ZV . We use all 3 spatial directions for the K −→ π matrix element since

the momentum is distributed uniformly in all spatial directions. We setup the kinematics at

zero momentum transfer in ..1 and ..2 by twisting the light quark q3. As discussed above,

contractions with twisted strange quark q1 have poor signal to noise ratio so we are not

calculating them.

Using the fitting functions (6.41, 6.42, 6.43) we get the fitting results shown in table 7.5.

The relevant graphs are shown in figure 7.11.

K − π sep AMA? f+
Kπ(0) f−

Kπ(0) ZV

20:24 AMA 0.9672(45) -0.1327(123) 0.7123(13)
20:28 AMA 0.9602(52) -0.1254(97) 0.7089(17)
20:32 AMA 0.9639(49) -0.1318(96) 0.7093(16)
24:28 AMA 0.9598(59) -0.1230(112) 0.7087(18)
24:32 AMA 0.9646(52) -0.1322(106) 0.7092(17)
20:24 exact 1.0018(253) -0.1206(320) 0.7315(150)
20:28 exact 0.9552(227) -0.0850(205) 0.7016(157)
20:32 exact 0.9537(246) -0.1004(215) 0.6971(162)

Table 7.5: Fitting Results from 26 configurations. Data points that are at least 10 slices
away from the sources are used. The meson sector also includes the wall source point sink
(WP) contractions. The column “K−π sep” shows what data are used when fitting f±

Kπ(0).
As an example, 20:32 means that all data with the kaon and pion separation in the range
[20, 32] are used. The column “AMA?” indicates whether we are using the full all mode
averaged data (“AMA”) or just the exact contractions (“exact”).
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One important fact that can be seen in table 7.5 is that AMA results are much more

accurate than results from just the exact contractions. This is because AMA has 96 estima-

tions of the inexact part O′ and 7 estimations of the correction part ∆O, while the results

from exact contractions have much less averaging effects from temporal translations. This

fact also proves that measuring on all 96 time slices as well as all mode averaging are very

useful strategies.

The data in table 7.5 show that we are able to measure f+
Kπ at zero momentum transfer

to high accuracy using this combined scheme. The relative error for f+
Kπ(0) is estimated to

be at 0.5% with 26 configurations. Figure 7.8 compares this calculation with a few previous

works. The red points are estimated using chiral perturbation theory [50, 51, 52, 53]. And

the blue points are from various lattice calculations [54, 55, 56, 57, 58]. As more statistics

are accumulated the data point from this work will become better.

V. Cirigliano et al. [2] report that |Vus|f+
Kπ(0) = 0.2163(5) using experimental data

from [59]. Using our current best estimation f+
Kπ(0) = 0.9639(49) we obtain the following

preliminary value for Vus

|Vus| = 0.2244(5)exp(11)lat. (7.12)

The lattice error shown here is purely statistical. As discussed before, we expect a small

correction due to the small difference between the simulated pion mass and the physical pion

mass. Such percent level chiral corrections will introduce a very small systematic error. The

discretization error can be eliminated once the results on the 643×128 ensemble are obtained.

For now the error is still dominated by f+
Kπ(0), but we believe that as more statistics are

obtained the lattice error will be of comparable size compared with experimental error on

the combined quantity |Vus|f+
Kπ(0).

Figure 7.9 compares f+
Kπ(0) obtained by this work and previous paper [1, 57]. As a

comparison, chiral extrapolation on the 4 unphysical UKQCD data points is also presented
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Figure 7.8: Comparison of f+
Kπ(0) with other works. Red points are from chiral perturbation

theory, blue points are from 2+1 flavor lattice calculations. The black data point comes
from 2011 lattice average performed by the FLAG group. This data point averages “direct”
lattice calculations (i.e., calculations that do not use CKM unitarity). The green point is
the preliminary result in this work.
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in the figure. The chiral extrapolation makes use of the following fitting functions [37, 56, 57]

f+
Kπ(0) =1 + f2 +∆f, (7.13)

f2 =
3

2
(HKπ +HKη) , (7.14)

HPQ =− 1

128π2F 2
0

(
m2
P +m2

Q

)(
1 +

2m2
Pm

2
Q

m4
Q −m4

P

log
m2
P

m2
Q

)
, (7.15)

∆f =
(
m2
K −m2

π

)2 (
A0 + A1

(
m2
K +m2

π

))
, (7.16)

m2
η =

1

3

(
4m2

K −m2
π

)
. (7.17)

To use chiral extrapolation to obtain the physical form factor from unphysical values, we fit

the above formula and determine A0 and A1 from lattice data, using unphysical mπ and mK

values. Then we evaluate physical f+
Kπ(0) by substituting physical pion and kaon masses

into the fitting function.

There are clear advantages to perform the computation directly at physical point. First

of all, the above chiral perturbation theory formulas do not include contributions from all

orders. Equation (7.16) should be treated as an ansatz and can not model all higher order

contributions accurately. So we introduce systematic errors in this extrapolation. In ad-

dition, the extrapolation itself also introduces extra errors because of the behavior of the

fitting function. ∆f grows when approaching physical mπ and mK , so the size of the error

in the physical form factor is larger than those in the unphysical ones.

Figure 7.10 shows various constraints on the values of |Vud| and |Vus|. The unitary

constraint is the line

|Vud|2 + |Vus|2 + |Vub|2 = 1, (7.18)

where the contribution from |Vub|2 is very small (|Vub| = 0.00411(+27
−28) from [60]). The

constraint on |Vud| comes from nuclear β transitions [61]. The constraint on the |Vus|/|Vud|

ratio comes from [62]. For |Vus| we use the preliminary value shown in equation (7.12). By
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collecting more data we believe the error on |Vus| will be greatly reduced.
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Figure 7.10: Various constraints on |Vud| and |Vus|.
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Figure 7.11: Inexact and AMA Kl3 correlators on the 483 × 96 lattice. Top left: γx, top
right: γt, bottom: π − π 3 point function for ZV measurement.
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7.2.3 The Neutral Kaon Mixing Matrix Element BK

On the lattice we use the following ratio to define the raw lattice value for BK , similar to

[63]

Blat
K =

3
⟨
K0(ta)

∣∣∣OV V+AA(t)
∣∣∣K0

(tb)
⟩

8
⟨
K0(ta)

∣∣∣A3(t)
⟩⟨

A3(t)
∣∣∣K0

(tb)
⟩ . (7.19)

Where
⟨
A3(t)

∣∣∣K0
(tb)
⟩
in the denominator are the following wall source point sink correla-

tors using our general notation in equation (7.1)

⟨
A3(t)

∣∣∣K0
(tb)
⟩
= C(t; d, s; γ5, γ3γ5;WP ). (7.20)

Due to the sum over all possible sink locations only the temporal component of the axial

current contributes to a nonzero signal. We use wall source for all quarks in the above

formulas, the walls are placed at ta and tb. The fitting results of Blat
K is presented in table

7.6.

K0 −K0
sep AMA? Blat

K

20:4:24 AMA 0.5836(11)
20:4:28 AMA 0.5844(12)
20:4:32 AMA 0.5839(12)
20:4:24 exact 0.5712(109)
20:4:28 exact 0.5870(110)
20:4:32 exact 0.5845(116)

Table 7.6: BK fitting results from 25 (AMA)/26 (exact) configurations. Data points that

are at least 10 slices away from the sources are used. The column “K0−K0
sep” shows the

separation of the 2 kaons used in the fit. Due to the arrangement of the exact light quark

propagators, results are only available for some K0 −K0
separations. In the above table, 4

different separations are used: 20, 24, 28 and 32. As an example, the symbol 20:4:28 means
that the separations 20, 24 and 28 are used.

To transform the lattice result Blat
K into the conventional result in the MS scheme, we

need to compute the renormalization factors for the lattice operators. Since dimensional
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regularization can not be implemented on the lattice, the continuum results are obtained

using the following two steps,

1. The lattice results are transformed to some intermediate renormalization scheme such

as momentum subtraction schemes used by [63]. Since this intermediate renormaliza-

tion scheme serves as a bridge to transform the lattice results to the MS scheme, we

must be able to implement it on the lattice.

2. Perform a perturbative calculation to transform from the intermediate renormalization

scheme to the MS scheme. This step is independent of lattice calculations.

Previous analysis on the 323 × 64 × 16, β = 2.25, a−1 = 2.28(3)GeV lattice and the

243× 64× 16, β = 2.13, a−1 = 1.73(3)GeV lattice showed that the continuum BK under the

MS scheme at 2GeV and 3GeV are [63]

BMS
K (2GeV) =0.549(5)stat(15)χ(2)FV(21)NPR, (7.21)

BMS
K (3GeV) =0.529(5)stat(15)χ(2)FV(11)NPR. (7.22)

Where the 4 errors are

• “stat” are statistical errors from lattice calculations. These errors have the same nature

as the errors shown in table 7.6.

• “χ” are errors from the chiral extrapolation.

• “FV” are errors due to finite volume effects on the lattice.

• “NPR” are errors associated with the calculation of the non-perturbative renormaliza-

tion factors.

With the results computed on the 483×96 shown in table 7.6, the errors associated with the

chiral extrapolation and the finite volume effects are largely eliminated. The “NPR” errors
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remain unchanged. Using the combined renormalization factor from [63] which transforms

the above bare lattice value to the MS scheme, we have the following preliminary results

BMS
K (2GeV) =0.5473(11)stat(209)NPR, (7.23)

BMS
K (3GeV) =0.5371(11)stat(111)NPR. (7.24)

Where the “NPR” errors are scaled directly from the previous analysis in [63]. We should

emphasize that almost all errors in the above results are from factors associated with non-

perturbative renormalization. The statistical errors are reduced to a very low level. In

addition, the large errors from chiral extrapolations are also absent since our 483×96 ensemble

is simulated with physical pion and kaon masses. To improve these results further, we

need to improve our estimations on the renormalization factors. Figure 7.12 compares this

preliminary result at 2GeV with a few recent other calculations [41, 64, 63, 65, 66].

0.5 0.6 0.7 0.8 0.9 1
BK

SWME 2011

RBC/UKQCD 2010

Aubin 2009

HPQCD/UKQCD 2006

FLAG 2011 average

This work (preliminary)

Figure 7.12: Comparison of BMS
K at 2GeV. The black point is the latest average from the

FLAG group. The green point is from this work.
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7.2.4 The I = 2 K −→ ππ Decay Amplitude

We briefly mention the I = 2K −→ ππ calculation performed on the 483×96 (5.5fm, 140MeV)

ensemble in this section. Previous work on this subject was performed on the 323× 64× 16,

β = 2.25 and 243 × 64× 16, β = 2.13 ensembles [67], reporting the following results

ℜA2 =1.436(63)stat(258)syst × 10−8GeV, (7.25)

ℑA2 =− 6.83(51)stat(130)syst × 10−13GeV. (7.26)

The calculation on the 483 × 96 ensemble aims at reducing lattice related uncertainties. We

expect that with the all mode averaging technique the statistical error will be greatly reduced.

In addition, various lattice artifacts will also be reduced due to the physical kinematics and

the large size of the lattice.

A major advantage of combining this calculation with previous calculations is that we

can reuse the intermediate results such as the expensive quark propagators, thus reducing

the cost greatly. The I = 2 K −→ ππ calculation requires computing two sets of light quark

propagators and one set of strange quark propagators. One set of light quark propagators

has a built-in twist which must be calculated separately. However, the other set of light

quark propagators and the strange quark propagators are the same as the ones used by the

Kl3 calculation. By sharing these propagators across these calculations we can reduce the

cost of the I = 2 K −→ ππ calculation by more than 50%.

The details of this calculation are not discussed here as the focus of this work is the Kl3

calculation. Nevertheless we shall report our preliminary analysis on the quantity A2 based

on 19 configurations,

ℜA2 =1.431(33)stat × 10−8GeV, (7.27)

ℑA2 =− 6.53(15)stat × 10−13GeV. (7.28)
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The systematic errors of these results are not analyzed yet so they are not provided in the

above results. At the current stage, we expect the systematic errors to be much smaller than

that reported in [67] but they will be at least 7% for ℜA2 and 8% for ℑA2. This is because

the systematic errors in ℜA2 and ℑA2 will be at least equal to the systematic errors in the

Wilson coefficients used to compute them, and the errors in these Wilson coefficients are

estimated to be 7% for ℜA2 and 8% for ℑA2 in [67].

7.3 The 643 × 128 (5.5fm, 140MeV) DWF+I Ensemble

The 643×128 (5.5fm, 140MeV) ensemble was generated using β = 2.25 Iwasaki gauge action

and 2+1 flavor Möbius fermions. This yields a lattice spacing of 2.302(35)GeV. Its physical

volume is thus equal to (5.49fm)3. Like the 483 × 96 ensemble, we simulate with physical

pion and kaon masses so there are no large chiral extrapolations for quantities measured

on it. We use the forecasted force gradient integrator in the hybrid Monte Carlo algorithm

to generate this ensemble. This lattice has similar physical volume but has a finer lattice

spacing compared to the 483×96 ensemble. By combining the results from the two ensembles

we can extrapolate to the continuum point a = 0, thus eliminating any discretization error.

As of this writing, the 643 × 128 measurement strategy is yet to be finalized. Early

experiment performed on the Mira supercomputer proved that the strategy we used on the

483 × 96 ensemble can also be applied to this ensemble with minor modifications. The

measurement is to be performed on a 32K node BG/Q partition, which has a much larger

memory pool compared to the 1K BG/Q rack for the 483×96 measurements. So we increase

the number of low modes to be collected in eigCG from 600 to 1000 ∼ 1500, which reduces

the running time substantially. Further results on this ensemble will be reported by our

future work.



Chapter 8

Conclusions and Discussions

In this work, we developed new integrators for use with the hybrid Monte Carlo algorithm.

We also explored the Möbius domain wall fermion action, which is an improvement over

the original Shamir domain wall fermion action. The development allows us to simulate

large lattices such as the 483 × 96 (5.5fm, 140MeV), a−1 = 1.741(23)GeV lattice and the

643× 128 (5.5fm, 140MeV), a−1 = 2.302(35)GeV lattice. We are able to simulate directly at

physical quark masses on these large lattices. This helps to eliminate the extrapolation to

the physical point, which is a great advantage over many previous works since the need of a

chiral extrapolation is almost eliminated.

By combining various measurement techniques such as the eigCG algorithm and the all

mode averaging technique, we performed a precision lattice measurement of the semileptonic

kaon decay K −→ πlν directly at zero momentum transfer. Once finished, the resulting form

factors f±
Kπ(0) permit precise determination of the CKM matrix element Vus. This projects

also provide precise determination of a few other low energy QCD constants such as the

pseudoscalar decay constants fK and fπ, and the neutral kaon mixing constant BK to very

high statistical precision at no extra cost.

This project also includes the I = 2 K −→ ππ calculation. By reusing intermediate

results we are able to perform the I = 2 K −→ ππ calculation with less than 50% of

148
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computing resources compared to a separate calculation.

As of this writing, the project is still not finished. Most notably, the results on the 643×

128 ensemble are missing. These results are important to perform a continuum extrapolation.

However, we shall mention that the 643 × 128 measurement is almost ready to start, using

the same techniques mentioned in this work and minor improvements.
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Appendix A

Force Implementation

A.1 Fermion forces

Let’s take a quotient fermion action as an example,

S(mf ,mb) = ϕ†Mb
1

M†
fMf

M†
bϕ, (A.1)

whereMb andMf are shorthands forM(mb) andM(mf ). The force is proportional to

ei(S) = ϕ†ei (Mb)
1

M†
fMf

M†
bϕ− ϕ

†Mb
1

M†
fMf

M†
fei (Mf )

1

M†
fMf

M†
bϕ+ h.c.. (A.2)

Only the following Dirac equation needs to be solved to evaluate the above force

M†
fMfx =M†

bϕ. (A.3)

Further more, we can implement the following general fermion force to calculate all individual

force terms in (A.2)

Fi = cϕ†
1ei(M)ϕ2 + h.c., (A.4)

157



158

where ϕ1 and ϕ2 are 2 different vectors and c is a real scaling factor for convenience. This

form can also be used to calculate all force terms generated by the rational action (2.39).

SinceM =Moo −MoeM
−1
ee Meo and ei(Moo) = ei(Mee) = 0,

Fi = −cϕ†
1ei (Moe)M

−1
ee Meoϕ2 − cϕ†

1MoeM
−1
ee ei (Meo)ϕ2 + h.c.. (A.5)

Meo takes the following form for a general Möbius action

Meo(x, y) = −
1

2
Deo(x, y)Boo, (A.6)

where Boo is another constant matrix that depends only on the Möbius parameters. Deo is

the only gauge dependent quantity,

Deo(x, y) =
∑
µ

(
(1− γµ)Uµ(x)δx+µ,y + (1 + γµ)U

†
µ(x− µ)δx−µ,y

)
. (A.7)

So the force Fi can be written as

Fi =
1

2
cϕ†

1ei (Doe)BeeM
−1
ee Meoϕ2 +

1

2
cϕ†

1MoeM
−1
ee ei (Deo)Booϕ2 + h.c.. (A.8)

For simplicity we define two vectors v1 and v2 which have both even and odd parts

v1 =(v1o, v1e) =
(
ϕ1,M

−†
ee M

†
eoϕ1

)
(A.9)

v2 =(v2o, v2e) =
(
Booϕ2, BeeM

−1
ee Meoϕ2

)
. (A.10)

Using v1 and v2 we have

Fi =
1

2
cv†1ei(D)v2 + h.c.. (A.11)
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And ei(D) is straightforward to evaluate

ei(D) =
∑
µ

(
(1− γµ)TiUµ(x)δx+µ,y − (1 + γµ)U

†
µTi(x− µ)δx−µ,y

)
. (A.12)

A.2 Gauge forces

Taking the Wilson gauge action (2.1) as an example,

ei
(
SWG (U)

)
= −1

3
β
∑
x,µ<ν

ReTr (eiUP (x, µ, ν)) . (A.13)

For a specific derivative ei = eaµx only plaquettes with the corresponding link Uµ(x) have

nonzero derivatives. So

eaµx
(
SWG (U)

)
= −1

3
β
∑
ν

ReTr
(
ei (Uµ(x)) · Uν(x+ µ)U †

µ(x+ ν)U †
ν(x)

)
. (A.14)



Appendix B

Lattice Ensembles Used in This Work

In this appendix we summarize various ensembles discussed in the text. References are also

given so the reader can find additional details.

All of the following ensembles are generated using 2+1 flavor dynamic fermions. The u

and d quarks are treated as degenerated flavors and s quark is added as the third flavor. All

heavy quarks are ignored since with the current lattice spacing it is not possible to count

the effect accurately.

We use the Iwasaki gauge action in all of these ensembles, which was discussed in chapter

2. Some ensembles also include the Dislocation Suppressing Determinant Ratio (DSDR) [22]

to suppress the tunneling of topological charge.

B.1 Zero Temperature Ensembles

The main ensembles related to this work are the 483×96 and 643×128 ensembles. Two smaller

ensembles 163 × 32 and 323 × 64 [68, 69] are also used throughout this work, mainly for the

purpose of determining the effectiveness of the algorithms. Their basic properties are listed

in table B.1. We label these ensembles using the notation lattice size(physical size,

pion mass) throughout the text. Where lattice size is the number of lattice points in
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spatial and temporal directions, physical size is the physical size of the spatial dimensions

in femtometer (fm) and pion mass is the dynamic pion mass in MeV. For example, the 4 en-

sembles listed in table B.1 are referred as 163×32 (1.8fm, 420MeV), 323×64 (4.6fm, 170MeV),

483 × 96 (5.5fm, 140MeV) and 643 × 128 (5.5fm, 140MeV), respectively.

size 163 × 32a 323 × 64b 483 × 96c 643 × 128 c

a−1(GeV) 1.741(23) 1.370(8) 1.741(23) 2.302(35)
physical volume (1.81fm)3 (4.61fm)3 (5.44fm)3 (5.49fm)3

Gauge action Iwasaki Iwasaki + DSDR Iwasaki Iwasaki
β 2.13 1.75 2.13 2.25

Fermion action DWF DWF Möbius Möbius
Möbius b 1 1 1.5 1.5
Möbius c 0 0 0.5 0.5

Ls 16 32 24 12
mπ 0.24373(47) 0.1250(2) 0.08054(46) 0.0584
mK 0.3594(5) 0.28855(60) 0.214

mπ(MeV) 424 171 140 134
mK(MeV) 492 502 493
ml(input) 0.01 0.001 7.8e-4 6.78e-4
ms(input) 0.032 0.045 0.0362 0.02661
mres(×10−4) 30.8(4) 18.510(43) 6.19(6) 2.93(8)

aData for this ensemble mainly come from [68].
bData for this ensemble mainly come from [69].
cThese ensembles are described by this work.

Table B.1: Zero temperature ensembles used in this work.

B.2 Finite Temperature Ensembles

The 323× 8 finite temperature ensembles are generated using the Iwasaki gauge action with

the Dislocation Suppressing Determinant Ratio (DSDR) [22]. The input light and strange

quark masses are set to values such that all ensembles have pion and kaon masses at physical

values. All ensembles listed here are simulated with 2+1 flavor Möbius domain wall fermions.
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T (MeV) β Ls c ml ms m
(esti.)
res

139 1.633 24 1.5 0.00022 0.05960 0.00211
149 1.671 16 1.5 0.00034 0.05538 0.00164
154 1.689 16 1.5 0.00075 0.05376 0.00124
159 1.707 16 1.5 0.00112 0.05230 0.00088
164 1.725 16 1.5 0.00120 0.05045 0.00061
168 1.740 16 1.2 0.00126 0.04907 0.00058
177 1.771 16 1.0 0.00132 0.04614 0.00043
186 1.801 16 1.0 0.00133 0.04345 0.00031
195 1.829 16 0.9 0.00131 0.04122 0.00014

Table B.2: Finite temperature ensembles related to this work. The size of the lattice is
323 × 8 for all listed ensembles. All ensembles use 2+1 flavor Möbius domain wall fermions
with uniform bi and ci (so they are the same on different s slices). The c values are listed in
the table, while b is always equal to c+ 1.


