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EC ON OMETRICA 

VOLUME 46 March, 1978 NUMBER 2 

EFFICIENCY IN THE OPTIMUM SUPPLY OF PUBLIC GOODS' 

BY LAWRENCE J. LAU, EYTAN SHESHINSKI, AND JOSEPH E. STIGLITZ 

In this paper we are concerned with the following question: in any economy with 
several public goods, what are the conditions under which the conventional optimality 
rule of equality between the sum of marginal rates of substitution and the marginal rate 
of transformation still holds even in the presence of distortionary taxation? Two cases are 
considered. In the first case, the taxes may be arbitrary. In the second case, the taxes are 
optimally chosen. 

1. INTRODUCTION 

WHEN THE GOVERNMENT'S production of public goods is financed by dis- 
tortionary taxes, the conventional optimality rule of equality between the sum of 
marginal rates of substitution and the marginal rate of transformation (Samuel- 
son [13]) has to be modified so as to take account of the excess-burden created 
by the means of finance. The importance of this modification has already been 
recognized by Pigou [10], and has recently been treated formally by Atkinson 
and Stern [1]. These authors have examined the question of whether the opti- 
mum output levels of public goods financed by distortionary taxation are larger 
or smaller than their levels in the full optimum with lump-sum taxation. One 
expects intuitively that with distortionary taxation the conventional rule will 
overestimate the net benefits of public goods, but it has been shown that 
dependence of private consumption, and hence of tax revenue, on the supply of 
public goods, may reverse the intuitive conclusion. 

In general, varying the supply of a public good will vary the demand for 
private goods (or the supply of factors), thereby varying government revenues. 
There is thus a fundamental interdependence between decisions about the 
relative quantities supplied of various public goods and the structure of taxation 
used to finance these goods. As a consequence, in general the marginal rate of 
substitution between two public goods is not equal at the optimum to their 
marginal rate of transformation (the ratio of producer prices). 

In this paper we are concerned with the following question: in an economy 
with several public goods, under what circumstances does the conventional 
optimality rule of equality between marginal rates of transformation and substi- 
tution still hold, even in the presence of distortionary taxation? This question is 
important because if the conventional optimality rule holds, it is possible to 
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Kenneth Arrow for pointing out an error in an earlier draft and to Avinash Dixit, Franklin Fisher, 
Frank Hahn, and Nicholas Stern for helpful comments. 
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270 L. J. LAU, E. SHESHINSKI, AND J. E. STIGLITZ 

achieve a degree of decentralization in the optimum allocation of expenditures 
among various public goods. Specifically, given the total public goods budget, it 
is possible to determine the optimum allocation of expenditures among the 
various public goods independently of the magnitudes of the particular taxes (or 
subsidies) on the private goods that are used to finance them. 

This independence is of importance for a number of reasons. In principle, 
decisions concerning taxation, distribution, and expenditure should be made 
simultaneously. In practice, however, different agencies within the government 
are concerned with the different governmental functions. Thus, Musgrave's [9] 
conventional division of the branches of the government may be thought of as 
more than just an analytical distinction. On the other hand, the sense in which 
the different branches can carry on their business separately from one another is 
not made clear in Musgrave (or in most of the subsequent literature), and the 
conditions under which various schemes of decentralization will lead to a full 
optimum are not known. 

We shall show that under certain circumstances optimality is preserved by 
decentralization. In that case, the task of the "office of public goods allocation" 
is greatly simplified: it takes its budget, and "all" it has to do is to ascertain the 
individuals' marginal rates of substitution between any pair of public goods. 
Progress towards solving the problem of the revelation of preferences for public 
goods has recently been made (see, e.g., Groves and Ledyard [7] and Green and 
Laffont [6]). In this paper we shall assume that individual preferences are known 
to the government. 

In some cases which admit decentralization in the above sense, the marginal 
rates of substitution will vary as the taxes vary, in others they will not. This 
distinction should affect the iterative procedures adopted to reach an optimum, 
but not the optimum conditions themselves. 

The basic question of this paper is examined against two alternative assump- 
tions. First we inquire about the conditions under which the allocative indepen- 
dence of production of public goods and taxation holds for any arbitrary set of 
taxes. It is shown that for this to hold, it is necessary and sufficient that the partial 
derivative of the demand of each private taxable good with respect to the vector 
of quantities of public goods be proportional to the marginal utility of the vector 
of quantities of public goods. Second, we analyze how the previous answer 
changes when tax levels are chosen optimally (so as to minimize the dead-weight 
loss). We are able to characterize the set of indirect utility functions for which 
this is the case. As expected, the assumption of optimum taxation widens 
considerably the possibilities for independent optimum expenditure and tax 
decisions. Thus with regard to the class of utility functions which admits 
efficiency, we provide a number of sufficient conditions, none of which requires 
the proportionality conditions as in the arbitrary excise tax case. Obviously, the 
stronger condition suffices also when taxes are at their optimum level. As a 
special case of practical importance, we prove that among all direct additive 
utility functions, the only utility functions which "work" are those with constant 
and identical elasticities of substitution among the taxable commodities. 
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OPTIMUM SUPPLY 271 

Although the analysis of this paper is couched in terms of a representative 
individual, as usual, the validity of the results extends to the case of many 

2 individuals provided there are optimum lump-sum redistributions. When such 
redistributions are not available, our results provide simple conditions under 
which the allocative branch still maintains Pareto optimality, subject to a taxa- 
tion constraint in the supply of public goods, thus providing a separation not only 
between the taxation and expenditure branches of the government, but also 
between the expenditure and redistribution branches. 

The plan of the paper is as follows. Section 2 sets up the consumer maximiza- 
tion conditions. Sections 3 and 4 treat the cases of arbitrary and optimum taxes, 
respectively. Section 5 presents a proof that the constant-elasticity-of-substitu- 
tion utility function is the only additive utility function which satisfies the 
conditions for efficiency when taxes are chosen optimally but not when taxes are 
arbitrary. 

2. CONSUMER UTILITY MAXIMIZATION 

We distinguish between three groups of goods: nontaxable private goods, 
taxable private goods, and public goods. Let L = (L1, L2, .. , LS), X = 
(X1, X2, ... , X,), and Z = (Zl, Z2 ... 9 Zm) be the vectors of total quantities of 
these goods, respectively. The dimensions s and n are arbitrary but not less than 
one and the dimension m is arbitrary but not less than two.3 There is one 
consumer whose preferences are represented by the utility function U= 
U(L, X, Z).4 

The consumer is assumed to maximize utility with respect to the quantities of 
the private goods, taxable and nontaxable, subject to a given vector of public 
goods, given consumer prices (which include the excise taxes if any), and total 
income. Thus, his problem is 

(2.1) max U(L,X,Z) 
L,X 

(2.2) subject to w*'L +q *'X = I 

where w* is the vector of nominal consumer prices of the nontaxable private 
goods, q* is the vector of nominal consumer prices of the taxable private goods, 
and I is nominal total income, which may depend on w*. For example, I may be 
equal to w*L, where we is the wage rate and L is the endowment of leisure. We 
define normalized price vectors w = w*/I and q=q*/IL Then the budget 

2 This has been shown in the classic paper by Boiteux [3]. Evidently, the possibility of lump-sum 
redistributions may appear to be incompatible with the assumption that the production of public 
goods is financed by distortive taxes. 

3When s = 0, the solution to (4.1)-(4.3) below can be shown to have the form q = ,(p, where , a 
scalar, and the supply of public goods satisfies the efficiency condition (3.8). Obviously, this is the case 
of lump-sum taxation, which entails efficiency in the supply of public goods. 

4In the case of N identical individuals, utility depends on per-capita consumption 
U[(L/N), (X/N), Z]. Since N is fixed throughout, we set N = 1. 
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constraint becomes 

(2.3) w'L + q'X = 1. 

Under suitable regularity conditions, there exists an indirect utility function 
V(w, q, Z) which is the maximized value of utility for given values of w, q, and Z. 
In particular, the optimum quantities of L and X are given by Roy's Identity 
[12]: a v 

(2.4) L= aVw 
(w -+q' 

aw aq 

av 

(2.5) X= aq av aV\ 
(w'-+q' 

aw aq 

3. THE CASE WITH ARBITRARY EXCISE TAXES 

The government is assumed to maximize the consumer's utility with respect to 
the quantities of public goods Z, taking the private utility-maximizing behavior 
of the consumer, the producer prices of the taxable goods, p, the excise taxes, 
(q -p), the prices of nontaxable goods, w, and the producer prices of the public 
goods, r, as given, and subject to a balanced budget constraint.5 That is: 

(3.1) max V(w, q,Z) z 

subject to 

(3.2) (q-p)'X--r'Z = O. 

As before, both p and r are prices normalized by total income. Correspondingly, 
q -p is the vector of normalized excise taxes. 

To solve the maximization problem, we may form the Lagrangian, 

(3.3) L(w, q, Z, A)= V(w, q, Z)-A[(q -p)'X-r'Z] 

where A is a scalar. The first-order necessary conditions for a maximum with 
respect to Z and A are: 

aL &V_ a 
(3.4) = A[ -(q-p)'X-r =0; 

(3.5) =(q-p )'X-r'Z = 0. 
aA 

5 Note that by treating producer prices as given, we assume implicitly that the unit production 
costs are independent of the level of production which implies zero profits in the private sector. The 
latter is a basic condition in the decentralization results of Diamond and Mirrlees [4]. 
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Condition (3.4), due to Boiteux[3] and Diamond and Mirrlees [4], has a 
natural interpretation. It states that, for each public good, marginal benefits 
should be proportional to marginal production costs less the additional tax 
revenue generated by an increase in the quantity of that good. 

We now state our basic question: what are the conditions on V(w, q, Z) such 
that whenever equations (3.4) and (3.5) hold, a V/aZ is proportional to r for 
arbitrary w, q, p, and r? Equivalently, in terms of the marginal rates of substitu- 
tion, when do equations (3.4) and (3.5) imply that: 

av au 

(3.6) az| aZi 1 ri (i = 2, 39 ... m), 

az1 azi/ 

for all public goods? 
If a V/aZ were to be proportional to r at the optimum, then we have: 

(3.7) av = r az 
where A is a scalar function of w, q, p, and r. Substituting equation (3.7) into 
equation (3.4), we obtain: 

(3.8) av-[a av(q-p)X-ai ? 

or 

(3.9) avz A a (q -rp)a aZ 1 +AAiaZ 

If, in addition, we assume that given w, q, and p, every value of Z is potentially a 
solution of equations (3.4) and (3.5) which satisfies equation (3.6) for some 
choice of r, then equation (3.9) must hold for every value of Z. Thus, our 
objective is to characterize the class of indirect utility functions V(w, q, Z) for 
which equation (3.9) holds identically for some A. In order for this to happen, it 
is necessary and sufficient that 

(3. 10) a---a-(q-p)'X aZ az 

(3.11) ax(q az 
where - denotes proportionality. But since q and p are both arbitrary, this 
implies that one must have, separately for each i, 

(312) aV av (i = 1a 2, ... , n), 
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or, equivalently, 

(3.13) dV -aqiX (i= 1, 2, . .., n). dZ aZ 

This condition may be interpreted as follows: the vector of marginal changes in 
the demand (or equivalently the budget share) of the ith taxable commodity with 
respect to Z must be proportional to the vector of marginal utilities of Z. 
Interestingly, by a Lemma in Goldman and Uzawa [5], this condition is 
equivalent to the condition that the demand functions can be written in the form: 

(3.14) Xi (w, q, Z) =fi (w, q, V (w, q, Z)) (i = 1, 2, . . ., n). 

In terms of the indirect utility function, the condition implied by equation 
(3.12) is equivalent, through Roy's Identity, to 

aV 

(3.15) av zl a avi (i = 1, 2,. . . ., n), 
az 

a ___w' +q__ ay 
dw dq 

(3.16) -az 
a 

(i = 1, 2,..., n). 

The corresponding condition on the direct utility function may be derived as 
follows. We know that at the optimum dV/dZ = aU/aZ by the envelope 
theorem. Also, at the optimum, 

qi av Xi au 

W,dV+q,av dV au+ = Ui (i = 1, 2,. . ., n). wa -+q'-a L'-a+X' 
aw dq dL dX 

Thus equations (3.15) and (3.16) imply that 

au a xdUx 
(3.17) aU Z I (i 1 2 n), 

aZ a L'-a +X- au 
dL aX 

au\ 

(3.18) 
a 

U dU (i=1,2, ...,n). 

aL ax/ 
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We shall now prove the following: 

THEOREM 1: Condition (3.6) holds at the optimum (3.4)-(3.5) for any arbitrary 
vector (q - p) if and only if the indirect utility function satisfies equation (3.15) or, 
equivalently, if and only if the direct utility function satisfies equation (3.17). 

REMARK: A well-known example of a utility function which satisfies equation 
(3.17) is U(L, X, Z)= U(L, X, f(Z)) where f(Z) is a real-valued function. It is 
immediately apparent that Xi(aU/aXi)/(X'(aU/aX)+L'(aU/aL)) depends on Z 
only through f(Z), i = 1, 2,. . . , n, and thus its derivative with respect to Z must 
be proportional to aU/aZ = (aU/af)(af/aZ). The indirect utility function which 
corresponds to this direct utility function is V(w, q, f(Z)) which, by the same 
argument, can be shown to satisfy equation (3.15). 

PROOF: Necessity has already been shown in the text. We need only show 
sufficiency. But if equation (3.15) holds for all Z, w, and q, it implies equation 
(3.12), which in turn implies equation (3.10). Substituting equation (3.10) into 
equation (3.4), we find that a V/aZ - r. Q.E.D. 

An indirect utility function which satisfies equation (3.15) but is not 
completely separable in Z is 

(3.19) V= V(w, q, H(Z, w)) 

where H( ) is homogeneous of any degree (including zero) in w. Similarly, the 
direct utility function 

(3.20) U = U(L, X, H(Z, L)), 

where H( ) is homogeneous of any degree (including zero) in L, satisfies 
equation (3.17). 

Finally, we give two examples of indirect utility functions which satisfy equa- 
tion (3.15) but are not separable in Z. First, 

(3.21) =V 
qa 

where q is a scalar variable (n = 1) and w and Z are vectors. It is easy to verify 
that 

av 

(3.22) aZ_ aqaa -aq )= a av +'a V aZ1a 
aw aq 

Second, 

(3.23) V = H(F(w, q), w, Z), 
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where H and F are real-valued functions and H is homogeneous of degree zero 
in w for given F and Z. Then 

a v aF 

(3.24) a a a a az aqi aF 
azw'a + q' 

a a 
w' 

a 
+ q' 

aF 
aw aq aw aq1 

Proportionality is thus trivially satisfied in both cases. 
Examples of direct utility functions may be similarly constructed. 

4. THE CASE WITH OPTIMUM EXCISE TAXES 

Suppose now that taxes are not predetermined, but chosen optimally; that is, 
the government maximizes utility with respect to both qand Z. The first-order 
necessary conditions for a maximum are: 

(4.1) aL av a(q 
aq Aq aq 

aL _ v [ 
(4.2) =aaz - A [ (q-p)'X- r=0; 

aL 
(4.3) = (q - p)'X - r'Z = 0. aA 

Equation (4.1) may be rewritten as: 

(4.4) a v-A [X+ax(q-p)] =0, aq aq 
or, by Roy's Identity (2.5), 

(4.5) -(q -p)- OX = 0 
aq 

where 0 is a scalar. This is the familiar "Ramsey formula" for optimal taxation 
(Ramsey [11]). 

As before, we seek conditions on V(w, q, Z) such that, at the optimum, 

(4.6) av = r, /azr 

which implies that equation (4.2) may be rewritten as: 

(7) aZ= 1+Au [aZ(qP] 

Obviously, if aXe/aZ-aV/aZ, i= 1, 2,.. ., n, equation (4.7) is satisfied. 
However, we do not require equation (4.7) to hold for all possible (q-p). 

This content downloaded from 128.59.62.83 on Wed, 1 May 2013 15:21:26 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


OPTIMUM SUPPLY 277 

Instead, we require it to hold only for the (q - p)'s which are optimum, given 
w, p, and r. If, in addition, we assume that given w and Z, every value of q is 
potentially a solution of equations (4.3) and (4.4) for some choice of p, then one 
can solve from equation (4.4) for p or equivalently for (q -p) as that value for 
which a given q is optimum 

iF aXi 1i_a_ 
(4.8) (q-p)=- - -AX 

AL aq J\aq 

Substituting equation (4.8) into equation (4.7), we obtain: 

(4.9) aV 1 [X[X]l(aV Ax)]. aZ 1+AA aZ-aq aq 
By Roy's Identity, 

av 
aq 

,fav +Wav, q' +w'- aq aw 

Thus, equation (4.9) becomes: 

(410) 
a ax [aX] -1X. 

By direct computation, 

av 

(4.11) ax a aq 

q' 
a 

v+wf I 
aq awl 

a2v 1 a4 2v a2v ] avt 

,av+wf aV aZaq q,a +wf a aZaq 5 aZaw 1a 
aq aw aq aw 

ax 1 aV 1 [av a2v a2v av] 
(4.12) -= F -] + ~q2q + w 

aq ,aV+,faV aq 
i 
av+w al/a aq aqaw JaqI q aq aw aq aw 

Thus, 

(4.13) [ ]=q'- + w' 2 aq J \aq aw) aq 
2 2 

1 [av a v a v ]av'1 
,av a ,av[iaq aq aqaw aq 
aq aw 
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The condition for efficiency then becomes: 

av a32v a2v 1 rv a 2 v a2 v av' -]1av 
(4.1) -- 

q2 
- 

-+ ~2q+ ~wj- aZ aZaqa L ,aV+ aVL aq aq aqaw aq aq 
aq aw 

1 da2v a2v ] va 
q'v+wfa aZa q azw aq 

aq aw 
F2 2 271 av 1 rav a)v a2v avf -1av 
I .2 ~~+ ~q2q+ ~wI 
aq2 - av ,aVLaq aq aqaw aq aq 

aq aw 
2 2 2 a 2v 1 a 2v a v lav 

aZaq Z aV+ aaV[aZaq azaw waq 
aq aw 

2 + ~-2q 
2 
awwv aq_ l_v_ _a aq q aq q aqa 

q_aq aw]j 

Equation (4.14) constitutes the necessary and sufficient conditions on the utility 
function for efficiency in the optimum supply of public goods under the specified 
institutional arrangements. This is a set of non-linear partial differential 
functional equations in V which we have not been able to solve explicitly. 
However, equation (4.14) is useful in proving sufficient conditions. That is, it can 
be used to verify whether a given class Qf utility functions admits of efficient 
supply of public goods when taxes are assumed to be chosen optimally. In 
addition, it can be used as the basis for testing empirically whether the observed 
consumption behavior is consistent with this type of utility function. 

One set of sufficient conditions consists of the following two equations: 

a1) 
av a 2v 2 v 1 [av a2v a2v 

1 -avlav 
(4.15) a av aayqaq+ ~q2q+ ~wJ ]~ * aZ aZaq aq2 , aV a V aq aq aqaw aq aq 

L aq aw _ 

and 

av a2v a2v ] 

Obviously, equations (4.15) and (4.16) together imply equation (4.14). Again, 
we have not been able to solve equations (4.15) and (4.16) explicitly. However, 
using these equations, we can generate indirect utility functions which fail to 
satisfy the conditions in Theorem 1 but nevertheless satisfy equation (4.14) when 
the excise taxes are chosen optimally. In Theorem 2 we give a set of sufficient 
conditions for efficiency on the indirect utility function for this case. 
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OPTIMUM SUPPLY 279 

THEOREM 2: Condition (3.6) holds at the optimum (4.1)-(4.3) with optimum 
taxation if the indirect utility function has the form V = V(w, H(w, q, Z)), where 
H is homogeneous of degree one in q and in addition satisfies the conditions: 

(i) (aH/aqj)/(aH/aqj), i = 2, 3, ... , n, is homogeneous of degree zero in w; and 
(ii) (aH/aZj)/(aH/aZ1), i = 2, 3, ... , m, is homogeneous of degree zero in w. 

Before proving Theorem 2, we present the following Lemma 1 which we shall 
need in the proof of the Theorem: 

LEMMA 1: Let A be a real, symmetric nonsingular n x n matrix and a be a real 
n x 1 vector; then 

(4.17) [A -aa' ] =A A( 'A-' 1)A aaA- 

provided a'A a -1 ? 0. 

PROOF: 

[A- aa'][A- (a'A'a - 1) aa A] 

=1- 1 1 aa'A' aa'A'1 
= 

( aAa - 1) 
aa'A - 

aa'A 
+ 

(a'AA1a -1) 

= L Q.E.D. 

PROOF OF THEOREM 2: To see that this utility function satisfies equations 
(4.15) and (4.16), we first compute: 

aV aV aH 
(4.18) aq aH aq' 

av 

a2 ___ __ aHa 2 VaH' aV a 2H aH 2Hav 

(4.19) qq q aq a aH aq aHaq aV aq' aH 

aV V aH a2 v aHa 2V aH' av a2H 
(4.20) w =- I w+ w.2 a W 

aqaw aq aHoaw aq 3H aw aH aqaw 

Homogeneity of degree zero of (aH/aqj)/(aH/aq1) in w implies that 

a2H w a H w 
(4.21) -=0 (i = 29 39 ... (i=2n3,. 

(4.21) aqiaw Hi aqlaw H, 

or equivalently, 

a2H aH 
(4.22) aiH w ai (i = 19 29 ... , n), 

aqiaw aqi 
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where f is a scalar. Taking equations (4.19), (4.20), and (4.22) together, equa- 
tion (4.15) becomes: 

(4.23) av a v [a2 v avav -lav 
aZ aZaq daq aq aq aq 

where q is a scalar. By Lemma 1, equation (4.23) may be rewritten as: 

(4.24) av- a V [[-_Vl-1 *[a2V]j1VaV [a2V]j1] aV 
( Z aZaq aq J [aq J aq aq -dq2J aq 

where 7 * is another scalar. Since a V'/aq[a2 V/aq2]-l a V/aq is a scalar, (4.24) 
implies 

dV a 2V ad2Vl_jdV (4.25) 2_.a2v [aq J aq aZ aZaq -a q 
By inverting equation (4.19), we have: 

(4.26) q - 
aq2_ aq' 

so that equation (4.25) becomes 

av a2 v 
(4.27) -- q. 

But 
a2v aH' 

(4.28) q kaH-.~~ aZaq aZ aq 

= av b H) by omogeneity of degree one of H 

a 2v avd aH 
aH2 aH aZ 

-av 

so that equation (4.15) and the first part of equation (4.16) are satisfied. Homo- 
geneity of degree zero of (aH/aZj)/(aH/aZ1) in w implies that 

(4.29) a__ w=aH 1,2, ... ,n), 

where -y is a scalar. Thus: 

d2 V d 2 V 2H a2v aH a2v av a2H 
aZaw aZ aHaw aH aZaw 

_aH a2v aVaH dH dV IVdH 
aZ azHaw aH aZ 

which is proportional to a V/aZ. Hence equation (4.16) is also satisfied. Q.E.D. 
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Note that the conditions of Theorem 2 do not imply the conditions of 
Theorem 1. We may also add that in Theorem 2, if H were "groupwise 
inclusively homothetic"6 in w, that is, 

aH' 
(4.31) a w=f(H), 

aw 
then it satisfies conditions (i) and (ii). We now present two special cases satisfying 
the conditions of Theorem 2, which may be of practical interest. 

CASE 1: V = V(w, q, Z) is homogeneous of degree -k1 in w and -k2 in q. To 
prove that this case satisfies the conditions of Theorem 2, note that by homo- 
geneity of degree -k2 in q, one can write 

(4.32) V(w, q, Z) = H(w, q, Z)-k2 

where H is homogeneous of degree one in q. Moreover, homogeneity of degree 
-k1 of V in w implies that H(w, q, Z) is homogeneous of degree k1/k2 in w, 
which in turn implies that aH/aq and aH/aZ are both homogeneous of degree 
k1/k2 in w and therefore the ratios, (aH/aqi)/(aH/aq1) and (aH/aZj)/(aH/aZ1), 
are all homogeneous of degree zero. 

CASE 2: V = V(w, H(q, Z)) where H is homogeneous of degree one in q. It is 
easy to verify that the conditions of Theorem 2 are satisfied. The direct utility 
function corresponding to this indirect utility function is U(L, H(X, Z)) where 
H is a homogeneous function in X. 

Finally, we consider the widely used case of a utility function linear in a single 
nontaxable good L. This case, which implies zero income effects in the demands 
for private goods, X, has been widely discussed in the taxation literature (see, for 
example, Atkinson and Stiglitz [2]). We shall prove the following: 

THEOREM 3: Suppose that the direct utility function is linear in a single 
nontaxable commodity L. Then condition (3.6) holds at the optimum (4.1)-(4.3) 
with optimum taxation if and only if (aU/aZj)/(aU/aZ1), i = 2, 3, ... , m, is 
homogeneous of degree zero in X. 

PROOF: It is well known that in this case the marginal utility of income for the 
consumer is 1/w, independent of q and Z. The indirect utility function has the 
form: 

(4.33) X , Z , ... . Xn ( , + 
w w iw w w 

From Roy's Identity, 

ax a2 v 
(4.34) - -W 2' aq aq 
(4.35) ax a2 v 

aZ aZaq 
6See Jorgenson and Lau [8]. 
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In order for a V/aZ to be proportional to r at the optimum, whatever the value 
of r, equation (4.10) must hold, which implies that 

(4.36) av X[ax-x 

aZ2 aZ aql-/ 

az azaq i aq aq 

82 a2 v a 21av 
2 

aZaq l aq aq 

We note that 

a V a2U ax' a2U aLt 
aZaq azaX aq aZaL aq 

a2u ax' a2u 
since ~ = 0. 

aZaX aq aZaL 

Thus 

2 2 (4.38) aZq [aqJV] aq azax 

Equation (4.10) therefore implies and is implied by 

(439) ___ 

U GaU (43)azax aZ' 

where f is a scalar. By (4.39), (aU/aZj)/(aU/aZ1) is homogeneous of degree 
zero in X. Q.E.D. 

5. THE CASE OF DIRECT ADDITIVITY 

Let the direct utility function be given by 

n 

(5.1) U(L, X,Z)= fI fi(Xi0j(Z))+ L 
i=1 

where L is the quantity of a single nontaxable commodity and Pi's are real- 
valued functions of Z. We seek conditions on the fi(- )'s, if any, such that 
equation (4.14) holds for the indirect utility function corresponding to 
U(L, X, Z). Since U(L, X, Z) is linear in a single nontaxable commodity L, 
Theorem 3 applies. Thus, we seek conditions under which equation (4.39) holds. 
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By direct computation, 

aUJ n a'Pi(Z) 
(5.2) az= I f(E(Xi0i(Z))Xi 

(5.3) a 2Xu = 
n 

Zi(Z) 

+ i f( 7(Xi iZ(Z ))X>i(Z) a 
i=1 a 

In order for 

(5.4) a 2uX au 

it is necessary to have: 

) f (Xi ?i (Z ))X2 i zi zi (Z ) 
=al>* i f'( (Z ))d i (Z ) 

i=1a = a 

where f* is a scalar function. But equation (5.5) must hold for arbitrary values 
of X, hence each term in the sum on the left-hand side must be separately 
proportional to the corresponding term in the sum on the right-hand side, 
resulting in: 

(5.6) f (Xti i(Z))Xi Oi(Z) =/1* (i = 1, 2, .. ., n). 
f (XiorP (Z)) 

Since the left-hand side of each of the equations (5.6) depends only on Xi, f* 
cannot be a function of X. But Xi Pj(Z) appears as a single variable in each of 
these equations, and thus 0* cannot be a function of Z either. So it must be a 
constant, say k. By a change of variables y =Xi di(Z), equation (5.6) may be 
rewritten as: 

(5.7) ( k (i = 1k 2, ... , n), 
f; (y) 

which may be successively integrated to: 

(5.8) ln f(y)=k lny+C1li = 1, 2, ... , n), 

(5.9) f'(y)= eCliyk = 1, 2, ... , n), 

and 

(5. 1 0) fi(y) k 1 + C2j, k-1 (i= 1, 2,. ., n), 

(5.11) fi(y)= eci In y + C2i, k= = -11, 2, ... , n), 
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where C1,i and C2j are constants of integration. Hence each fi(. ) must have a 
power function form with a common power across all i, i = 1, 2,. . ., n, or the 
logarithmic form. 

We conclude that the direct utility function must have the form: 

(5.12) U(L, X, Z)= C= XiC(Z)]k+lL+C* k?-i, 

or 

n 

(5.13) U(L, X, Z)= E C* In [XiOi (Z)] +L+ C*, 
i=l 

where C:* = eCli and C* =i C2j are constants. One may verify directly that 
the utility function in equation (5.12) does not satisfy equation (3.17) for an 
arbitrary choice of Oi(Z)'s. Hence efficiency does not obtain in general when 
taxes are not optimally chosen. 

Stanford University 
and 

Hebrew University 

Manuscript received April, 1976; final revision received February, 1977. 
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