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AGGREGATE LAND RENTS AND AGGREGATE
TRANSPORT COSTS*

This paper explores the relationship between aggregate land rents and aggregate
transport costs for land markets in which locations differ solely in terms of
accessibility.^

That there exists a relationship betv/een land rents and transport costs has
been recognised at least since the time of von Thunen.^ The precise relationship
between the two is, however, not generally well-understood. For instance, until
quite recently it was considered correct to estimate the benefits from a transport
improvement by the induced change in aggregate land rents at those locations
where travel costs are reduced. This procedure can be shown to be correct only in
very special circumstances.^ This paper presents a very general characterisation
of the relationship between aggregate land rents and aggregate transport costs. In
.some special cases, the relationship turns out to be remarkably simple: for a
circular city with linear transport costs, aggregate transport costs are precisely
twice aggregate land rents, independent of the distribution of tastes or income;*
for a linear city with linear transport costs, aggregate transport costs are equal
to aggregate land rents. One corollary of our general analysis is that aggregate

* This paper draws on Arnott's Ph.D. thesis (Arnott, 1975). He would like to thank the Canada
Council for financial support during the period the thesis was being written. Stiglitz would like to thank
the National Science Foundation for financial support. The commcnis of Ronald Grieson and two
anonymous referees were helpful. The research reporled here is part of the NBER's research programme
in taxation. Any opinions expressed are those of the authors and not those of the National Bureau of
Economic Research.

1 Thus we abstract from differences in ihe site-intrinsic or Ricardian characteristics of land.
* In the von Thunen model differences in agricultural land rents are related to the costs of transporting

goods to the central market.
' The argument underlying this procedure is based on partial equilibrium analysis. If transport costs

to all locations but one small location were to remain unchanged, then the benefits from the transport
improvement would be correctly measured by the induced change in land rents at that location. But
as in most instances in spatial economics, partial equilibrium analysis is inappropriate, and general
equilibrium analysis should be applied. The incorrectness of this procedure was persuasively argued in
an important paper by Mohring (1961) twenty years ago; one still, however, comes across analyses that
use some variant of it (Fishlow (1965), Fogel (1964) for instance). The conditions under which the above
partial equilibrium argument is appropriate can be seen by considering a resident's indirect utility
function. In a spatial economy, a resident's utility is a function of the land rent where he locates, R, his
income n«( of transport costs, /, and other prices,/^, so that V = V{R, I, p), where F is the indirect utility
function. Where other prices are unaffected by the transport improvement, dV = l\dR+ V^dl. From
i!»e properties of the indirect utility function K, = — TV^, where T is the resident's lot size. Thus,

dV= Vi{-TdR+dI),
from which it follows that the benefits to this resident from the transport improvement, dl, equal the
(hange in his land rents, TdR, only when dV = o. Thus, only when the transport improvement leaves
unchanged the utility of residents at locations to which travel costs have been reduced (which will occur
when the city is completely open, for instance) is the partial equilibrium analysis appropriate. This line
of argument is developed further in PoUnsky and Shavell (1976).

* Mohring (1961) calculated the relationship between aggregate transport costs and aggregate land
rents in a circular city with linear transport costs for the rather special case where all individuals have
identical and fixed lot sizes. His method of analysis, summarised below in footnote i,p. 333, does not,
iiQwever, generalise to other cases.
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land rents may stay the same or actually fall in response to a transport improve-
ment which makes everyone better off.̂

In the first section we consider a simple example. The second derives the
basic theorems of the paper, while the third examines their implications for the
relationship between the benefits from a transport improvement and the change
in aggregate land rents induced by the improvement. And in the fourth section,
we examine the extent to which the theorems of section II generalise.

L A SIMPLE EXAMPLE

We employ the standard residential location model but, as we shall note later,
many of our results extend to more general models. In this model there is a single
city centre, a point in space, at which all non-residential activity takes place.
Land is used only for the housing of identical city residents who live at different
distances from the city centre. If cities do not border on one another, if transport
costs are simply a function of the crow-line distance from the city centre, and if
land is homogeneous, then the city is circular. If, however, the whole plain is
occupied by cities, then, under the above conditions, every city is hexagonal.^
Later we consider cities with other geographical configurations and cities in
which transport costs are not simply a function of crow-line distance from the city
centre.

The identical individuals derive utility from lot size and private goods, and
have no preference for location per se. Trip frequency is fixed, and all transport
costs are money costs.^ In this particular example, we assume that everyone lives
on a lot of unit size.* Since land is homogeneous, differences in land rents reflect
only differences in transport costs. Specifically, if ̂ (/) is the rent per unit area of
land at distance t from the city centre, and/(/) are transport costs to the location,
then

•«'W = - / ' ( 0 . (I)

where the prime indicates the derivative with respect to t. For the circular city,
with the boundary /* from the centre, aggregate land rents [ALR) equal

ALR = f R{t) 2ntdt. (2)
Jo

Aggregate land rents are calculated as the rent per unit area of land at a distance
/ from the centre times the number of units of land between t and t + dt{2ntdt),
integrated over all t.

* The same result, for a somewhat different type of urban model, has been derived by Getz (1975).
* This result can be obtained easily for identical individuals in identical cities by application of

theorems presented in BoUobas and Stern (1972).
' In Section IV, the analysis is extended to situations in which there are time as well as money costs

involved in travel. In this case aggregate transport costs include the monetised value of the time spent
in travel. Variable trip frequency is treated in footnote 2, p. 339.

* This would occur under competition if the utility function were of the form U = i
\cifr^ 1'

where T is lot size and C other goods.
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Similarly, aggregate transport costs {A TC) equal

ATC= rf{t)2ntdt. (3)
Jo

Integrating (2) by parts, and substituting ( i ) , we obtain

ALR = f* -R'nt^dt-\-R{t*)7Tt*^ = f f'7Ttyt-\-R{t*)7Tt*K (4)
jo Jo

The second term on the right-hand side is just the area ofthe city times the rent
on marginal land; hence, the first term is differential land rents. Denoting
differential land rents by DLR, we observe that

DLRmATC when ij^i foi alU. (5)

f't/f IS the elasticity ofthe transport cost function. In the special case of linear
transport costs, differential land rents are precisely one-half aggregate transport
costs.*̂

II. BASIC THEOREMS

This section generalises the example ofthe previous section in two ways. First,
we allow for arbitrary tastes, and second we treat cities with arbitrary geo-
graphical configurations. Residents are still identical.

Let T{t) be the amount of land the individual at I resides on, R{t) be the rental
price per unit area of land at /, and I{t) be income net of transport costs at t. The
indirect utility function of the individual at tis V{R{t),I{t)). Note that since land
is homogeneous and individuals have no preference for location ^^r ĵ p, / does not
enter V{) asa separate argument. Maximisation of utility with respect to t gives

) (6)

and since -1^2(0 7'(0 = l{{t), then

^ (7)

We characterise the shape ofthe city by the function ^(/), which gives the
residential area within a travelling distance t from the centre ofthe city. Thus,
<!>'{/) dt gives the residential land area between distances t and t + dt from the city
centre. There are many geographical configurations for cities that have the same

^ Mohring (1961) analysed this case of a circular city with linear transport costs and uniform lot
size. He provided an ingenious geometric explanation of this result. From (i) each person's expenditure
on land renl plus transport costs is the same. Since each person resides on a lot of unit size, land rent
plus transport costs are constant per unit area, k", over the settled area of tbe city, Consider plotting
land rent plus transport costs per unit area on (he z-axis, where the x-y plane is the hoinogeneous plain
on wliitli tbe city is located. The graphed figure is a cylinder with radius (* and height k". The volume
ofthe cylinder is aggregate transport costs plus aggregate land rents. Aggregate land rents arc given by
the volume ol'a cone with tbe same base and height. Since tbe volume of a cone is one-third that of a
cylinder with the same base and height, aggregate land rents are one-half aggregate transport costs.
Unfortunately, this neat geometric interpretation docs not extend easily to situations in wbich lot size
varies with location.
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shape according to our definition. This is illustrated in Fig. i. The amount of
residential land area within a travelling distance t ofthe city centre is the same in
both cities for all t, even though their geographical configurations are quite
different.

Fig. I. Two cities with different geographical configurations but the same shape.

Proceeding as in the example, we have

ALR= V R{t)O'{t)dt
Jo

= -R'{t)'^{t)dt + R(t*)<J>(t*), (8)
Jo

where t* is the furthest distance of settlement from the city centre. Combining
(7) and (8) gives

f- (9)

Aggregate transport costs are

Thus, from (9) and (lo).

ATC
DLR

which is the central result ofthe paper. Equation (11) indicates that the ratio of
transport costs to differential land rents depends critically on

-Since {f^')/{f'<^) = [f/{f't)] [{^'t)/^], this term equals the elas-
ticity of the shape of the city with respect to distance from the city centre
divided by the elasticity of transport costs with respect to distance from the city
centre. Some implications of (11) are given in the following Theorem and
Corollaries.
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Theorem 1: If-^^ ^ ^ (a constant) for a l l / , then ATC^SDLR.

Corollary 1: If - p = /?(a constant) for all /, then

/

f'i
(•orollary 2: If ' ^ = 7 (a constant) for all /, tlicn

ATC^&DLR a.s -^-^Zy for all/.
/

^ as ^ ' . . " A for alW.

We now apply the Theorem and its Corollaries to a number of.spccial cases.
(a) If there arc no natural obstacles and if cities do not border on one another,

llie city is circular^ in which case <(> ^ nt^ and 0'//<P = 2. Thus, from Corollary i.

-DLR as "Cgy for all/.

If, for instance, there arc fixed costs and constant marginal costs associated with
travel, then ATC > 2DLR s ince / ' / / /< i. And in a circular eity with linear
transport costs, aggregate transport costs arc precisely twice differential land
rents.

{b) In a linear city of width w,<i> = wt and <1>7/<I> = r, and

ATCm-DLR as i^^y for alW.
y /

With linear transport costs, differential land rents equal aggregate transport costs.
[c] In a hexagonal city^

for t ^ (V3/2}/

for

where /* is the outer radius of the hexagon. For such a city, O'Z/O ^ 2 for all
/ with strict inequality for some t, so that

ATC < -DLR if 4f > r for all t.
y f

We define a city to be C-concave if 0'7 < O' for all t. Such cities have the
property that, if the city centre is a point, there is a city of the same shape for
which a straight line joining any location in the city to the centre lies entirely
inside the city. Similarly, a C-convex city is one for which 0"f > O' for all /.
Fig. 2 shows three city shapes, one C-concave, another C-convex, and another
which is neither.
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[d] In a C-concave ci ty/

[JUNE

ATC<-DLR if "C^r for all/.

{e) In a C~convex city,

ATC>-DLR \i t^^y for all/.

(i) A C-concave city (ii) AC-convex city

(iii) A city that is neither C-convex nor C-concave

Fig. 2. Alternative city shapes.

Tn Our analysis, what is relevant is the area which can be reached with a given
expenditure in transport costs. We may thus use the cost of transport,/, as our
measure of distance, and may define the transport cost shape of the city, denoted by
i2(/), to be the residential land area for which travel costs are less than or equal
to/ . Now, a [ / ( / ) ] = 0( / ) . Letting il' denote da/df then i i / ' - O'. Combining
these two results gives

a
(12)

< <^' for all ( implies that

Jo ~ 0 Jo ~

r '*_i_ r*' I 2/(o<i»(o
_Jo 7'(0 Jo 770 't£7£_Jo T{t)

DLR
From (11),

The rightmost term is less than or equal to (a/y) when {f'l/f) ^ y for all /.
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which states that the elasticity of the transport cost shape of the city with respect
to transport cost distance equals the elasticity of tlie shape of the city with respect
to travelling distance divided by the elasticity of transport costs with respect to
travelling distance. Using (12), one may rewrite Theorem i as

Theorem ; ' : I f -^ g * (a constant) for all/ , then ATC%dDLR.

This reparameterisation is useful in many applications. Consider, for instance,
a more realistic city with a Loschian hierarchy of subcentres in which all
individuals shop for tlie same bundle of goods and purchase a particular good at
the most accessible subcentre where it is available. One may then calculate, for
each location, annual travel costs, and hence the residential land area for which
annual travel costs are less than or equal t o / Since one can calculate O.{f), this
city with many subcentres has the same transport cost shape as a city with a single
subcentre, unit transport costs per unit distance, and shape Q.{t). Thus, our
analysis can be applied to cities with many subcentres and a complex pattern of
congestion.^

III. BENEFITS AND AGGREGATE LAND RENTS

It is important not to confuse the relationship between aggregate transport costs
and aggregate land rents, and the relationship between transport costs per unit
distance and aggregate land rents. A costless transport improvement will decrease
I ransport costs per unit distance, but, depending on the magnitude of the induced
increase in lot sizes, may cause aggregate transport costs to increase, remain the
same, or fall. Since the ratio of aggregate transport costs to differential land rents
may be unaffected by the transport improvement, then it is quite possible for a
transport improvement to result in no change or a fall in aggregate land rents.
The eflect of a transport improvement on aggregate land rents will depend
critically on tastes, in particular the elasticity of substitution between land and
other goods in consumption. Let us consider the case of a circular city with radial
transport costs linearly proportional to distance and costless circumferential
transportation, in which city residents have identical Cobb-Douglas utility

^ In this footnote we present another application of the transport cost shape of the city. Consider a
circular city in which travel to any location from the centre of the city requires travelling first along the
single radial road, and then along a circumferential road (which is a constant crow-line distance from
the city centre). Travel along the radial road is costless, and transport costs are equal to circumferential
distance from the radial road. The transport cost shape of this city is shown below to be

/ ^ ^ ^ (i)

where r is the radius of the city. Since/il' < fl for all/, then from Theorem i', DLR > ATC.
(i) h derived as follows. Divide the city into four symmetric quadrants, each with the radial road as

its base. Consider one of these. Travel costs to all locations subtended by an angle 0 of less than or equal
tof/r radians should be included in Cl{f). This area equals/r/2. For n/a ^ 6 "? f/r, transport costs
exceed/for r > f/0. Thus, we should integrate r only from o tof/O for TT/Q ^ 0 '^ f/r. The value of
this area is/r/2-/^/n. Hence, U(/) = ^{rf-f^/TT).
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functions and in which the opportunity rent on land is zero.^ We assume too that
the transport improvement results in an cqui-proportional reduction in travel
costs at all loeations.

It is charaeteristic of" the Cobb-Douglas utility function that the ratio of each
individual's expenditure on land to his expenditure on the private good is con-
stant. It follows, since individuals have identical tastes, that aggregate expendi-
ture on the private good is a constant proportion of aggregate land rents. We also
know from Theorem i that for such a city, when the opportunity rent on land in
non-urban use is zero, aggregate transport costs equal twice aggregate land rents.
Thus, aggregate expenditure on the private good is a constant proportion of
aggregate land rents. Aggregate income from production, we assume, is un-
affected by the transport improvement. Putting these results together, we have
that aggregate land rents, aggregate transport costs, and aggregate expenditure
on other goods are unaffected by the transport improvement. Thus, reduction in
unit transport costs leads to more land consumption and the same aggregate
expenditure on transport costs and land rents.^

Since aggregate land rents may, in general, rise, remain the same, or fall in response to a

transport improvement, tke induced change in aggregate land rents by itself is, except under

conditions very unlikely to be satisfied, an incorrect measure of benefits from the transport

improvement. The ehange in aggregate land rents from a transport improvement is,
however, relevant in evaluating the improvement if one is concerned with the
welfare of renters vis-a-vis landowners.

IV. EXTENSIONS •

IV. 1. Differences between individuals

The analysis of section II extends straightforwardly to economies with hetero-
geneous residents. Lety^(^'; t) be the travel costs of the individual who lives at/of
travelling from the eity eentre to t', and T{t'; t) be the lot size that would be
demanded by the individual who lives at t in equilibrium if he were forced to live
at /'. Utility maximisation requires that

^^ / ^ . (8) still holds. Substitution of {13) into (8) gives

DLR = J ~.^ [/,(/; 0 a>(0] dl, (9'}

* To circumvent the conceptual problems associated with the boundary resident consuming an
infinite amount of land because of its zero rent, we may assume instead thai the opportunity rent on
land is positive but arbitrarily small.

° A transport tax has ihe same effects as a negative transport improvement, when the disposition of
revenue is ignored. Thus, in this economy, the incidence ofa transport cost tax is entirely on consumers.
Aggregate land rents remain the same; some landowners near the city centre benefit, but their gains are
precisely offset by losses to landowners further out.
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and

DLR

Equation (i i') indicates that Theorem i and its Corollaries carry through with
the modifications that/(/) is replaced by/{/ ; t) and/'(/} hyfi{t; t).

LetJ{t) be the equilibrium transport cost function, which gives for each t the
transport expenditures of the individual who locates at t in equilibrium.
Equation {11') shows that what is relevant to the deternnination of-4 TC/DLR is
the elasticity of each individual's transport cost function at his equilibrium
location [fi{t; t) t]/[f{t; t]~\ and not the elasticity of the equilibrium transport
cost function [/'(/) t]/[f{t)].

To clarify the point, imagine the following scenario. The city is circular and
each individual's transport cost function is linear in distance, with costs per mile
depending on income. Tastes are such that, in equilibrium, the rich live closer
to downtown. And the distribution of income is such that the transport expendi-
tures incurred by the equilibrium resident at each location are equal.^ Thus,
[/i{'; 0 0 / [ / ( ^ 0 ] = I while [/ '(/)/]/[7{0] = o.Applicationof{ii') indicates
that in this city A TC = 2DLR since each individual's transport costs are linear in
distance even though equilibrium transport costs are invariant with location.
More generally, in a circular city, as long as all individuals have linear transport
costs, even though they may differ in tastes, incomes, and transport costs, it is
still true that aggregate transport costs are precisely twice differential land rents.

IV. 2. Time and money costs of travel, etc.

It is easy to show that the results of section II generalise to the case where trip
frequency is variable, where / ( / ) is interpreted as costs per trip.^ They also
generalise straightforwardly to the situation where there are both time and money
costs of travel. Suppose that to travel to t requires not only an expenditure of
money,/(/), but also an expenditure of time, ̂ (i). Timenot spent travelling goes
towards leisure L or work W, which yields income Y{IV). The resident's maxi-
misation problem is therefore

max u(C, r ,L , W)$.x.\
iCT.L.W.I) [(ii) i=L+g{t) + W.

' For this to be possible, residential settlement must start at some distance from the city centre.
* Let/(() be the cost per trip at (, and n{t) be the trip frequency chosen by the person at ( (who

maximises U{C, T, n) s.t. Y = C+R{t)T+nf(t}). The first-order condition ofthe resident's maximisa-
tion problem with respect to f is —«/"' = R'T, and the counterpart to (i i) is

ATC

DLR f f n{t)_
T{t)Jo r [/'('}

Thus, the results of Section II still hold with variable trip frequency if/(O is interpreted as costs per
[rip rather than overall transport costs.
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If A and 0 are the shadow prices on the two constraints respectively, then the
equation corresponding to (7} is

is the shadow value of time at t, whieh varies over loeations. Proceeding
as before, one obtains that the equation corresponding to (11) is

ATC Jo
7^
Jo

It follows immediately from (15) that Theorem i and its Corollaries go through
with only minor modifications. For instance, one obtains that:

Where tf is a constant, if both '—^ § d and 7̂-3- g d for all t,

then ATC^SDLR.

Hence, if travel time and money expenditure on transport are both linear in
distance and if the city is circular, then it is still the case that 2DLR = ATC.
This is true even if total monetised transport co%t%, f{t)-\-[6{t)/X{t)]g{t), are
not linear in distance.

A possible objection to our analysis thus far is that we have ignored housing
and its durability. The analysis does in fact generalise to cities with housing. In
the long run, land and structure rent may be separated and the presence of
structures on the land does not affect our propositions. In the short run, land and
structure rent are not separable; we refer to their sum as housing rent. In this
case, the analysis must be reformulated in terms of the relationship between
differential housing rents and aggregate transport costs, and our earlier theorems
are applicable.^

• We first consider the relationship between differential housing rents {DHR) (which are defined
analogously to differential land rents) and aggregate transport costs. We then show that when housing
rent is separable into structure rent and land rent, the presence of housing on the land does not effect the
propositions developed relating ,4 TC and DLR.

We assume that vertical transport costs are zero, and that individuals care only about the floor space
of their housing, so that housing is naturally measured in units of floor space. The results generalise to
more sophisticated treatments of housing.

Let r(() be the amount of housing within a distance ( of the city centre which we shall refer to as the
housing shape of the city, p{t) be rent per unit of housing, and H{t) be the number of units of housing
occupied by the resident at /. Since the individual now derives utility from housing rather than land,
the individual's maximisation problem is:

max U{C, H) s.t. Y = p{t)H-\-f{t)-\'C.
t,C,H

Proceeding as before, one obtains that the equation corresponding to f 11) Is

ATC \ wTTit-^f'^^'f"!'''
A iLf Jo ti V)

DHR^

The results of Section II generalise. The elasticity of the shape of the city is replaced by the elasticity

of the housing shape of the city, -r—r> a"d DLR is replaced by DHR.
•• (0 conUnuea on next page
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IV.3. Generalisation to higher dimensions

Thus far we have assumed that urban residents are unanimous in their ranking
of locations in terms of accessibility, so that location may be parameterised by
a single variable, some index of accessibility. However, individuals may judge
dijfTerently the relative accessibility of two locations. For instance, one may be
indifferent between two commuting trips, one of which costs Si and takes
15 minutes, while the other costs So.50 and takes 20 minutes. Another individual
who values his time less may be indifferent between the trip which costs $1 and
takes 15 minutes, and another which costs $0.50 and takes 30 minutes. In such
cases, one needs two variables to characterise a location.

Equal-accessibility contour
-individual (class) 1

Equal-accessibility contour
-individual (class) 2

Fig. 3. Location must be Indexed by two variables when individuab' equal
accessibility contours do not coincide.

This can be seen from Fig. 3, whieh shows an equal accessibility contour for
two different individuals. If one were to index locations according to individual
I's travel costs,/^ one could not write down individual 2's transport cost function,
since for different locations with the same value of/' his transport costs would be
different. Similarly, if one were to index locations according to individual 2's
travel eosts, one could not characterise individual I's transport costs. One can
however characterise both individuals' transport cost functions using two co-
ordinates to describe location.

In section II the analysis was considerably simplified by employing the concept
of the shape of the city. This allowed us to transform any city with a complex
geographical configuration into another city, equivalent for the purpose of
analysis but with a simple shape. Furthermore, the shape of the city was defined in
such a way that rent was the same everywhere along the boundary, as a result

cont. from page lo

When housing rent is separable Into land and structure rent, the individual's maximisation problem
may be written alternatively as

max U{C, H) s.t. Y = R{t) T+pi/i) H+f{t) + C,
I, a, r. c

where H is structures, and p{/j.) is structure rent as a function of structural density (/t = HJT). From
ihis formulation, it follows that the results of Section II cany through when housing is on the land, as
long as housing rent is decomposable; otherwise, differential land rents are not well-defined.

12 ECS 91
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of which there was no ambiguity in defining differential land rents. Unfortu-
nately, this technique of simplification is not possible when residents rank loca-
tions differently in tenns of accessibility. One must work instead with the actual
geographical configuration ofthe city. In this case, land rents may not be the
same everywhere along the (physical) boundaries ofthe city, and differential
land rents may in consequence be hard to define.

We shall treat two cases in turn, first that where land rents are everywhere the
same along the boundaries ofthe city, and then that where they are not.

IV.3.1. Land rent the same everywhere along the boundaries ofthe city

We shall parameterise locations using Cartesian co-ordinates, x and y, with (o, o)
being the city centre (or the central business district in the case of a multi-
nucleated city). Let/(x',y'; x,y) denote the transport costs of the individual who
lives at [x,y) in equilibrium of travelling to {x',y'), and let

with/j,(j:,y; x,y) defined accordingly. It is shown in the Appendix

if fAx,y;.x,y)x+f,{x,y;x,y)yMf{x,y;x,y), for all

Defining t - [jf y] (a column vector) and ^f = [Lix>y; x,y) fj,{x,y; x,y)]
(a row vector), one may write the above result more compactly as

if m't^f for all /. (16)

Vf't/f is the two-dimensional analog to {[f{t\ i)']/[/('; 0]}-
It may at first glance appear puzzling that (16) contains no terms reflecting

the geographical configuration of the city. The reason is that ivhen rents are the
same everywhere along the physical boundaries of the city, the geographical configuration
ofthe city is determined by the transport cost function. In illustration, we consider cities
with two classes of residents, i and 2, where the transport cost function ofthe
class i is

f[x,y) =flfX«-|-i^y^ for / - 1,2,

with h^ + b^, «! + 02. and [ajb-y) + [ajb^)} Furthermore, we assume that, in
equilibrium, residents of both classes live at some locations along the boundary
ofthe city. Fig. 4.i illustrates a possible geographical configuration when a = i.
Fig. 4.ii one when a < i, and Fig. 4.iii one when a > i. To see how these are
derived, we treat the case a ^ i. When a = i each class's equal-accessibility
contours are diamond-shaped, as shown in Fig. 3. Since rents are the same
everywhere along the boundary, then in equilibrium all class i residents living
on the boundary must be located on the same class i equal-accessibility contour,

' The mathematics employed in the Appendix is somewhat more complex than that employed in the
rest ofthe paper. The Appendix can be skipped without loss of continuity.

^ With this transport cost function, Vf't ^ / a s a % i which implies from (16) that DLR § \ATC
as a = I.
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O; similarly, all class 2 residents living on the boundary must be located on the
same class 2 equal-accessibility contour, C^ Since land goes to the class which
bids more for it, the boundary of the city is the outer envelope of Ĉ  and C^}

The factor of ^ in {r6) indicates that in any city where rents are the same everywhere
along its physical boundaries, the elasticity of the shape of the city [or its two-dimensional
generalisation) is two. Two examples may help to clarify this remarkable result:

(a) For a city in which travel distance is crow-line distance and in which travel
to all locations an equal travel distance from the city centre is equally costly,
residents' equal-accessibility contours coincide and are circular. If rents are
everywhere the same along the boundary of the city, the boundary coincides with
an equal-accessibility contour. Thus the city is circular and O'//O = 2.

(i) Linear transport costs (a = I) (ii) Decreasing cost to travel
in both directions (a < I)

(iii) Increasing cost to travel in both directions (a > i)

Fig. 4. Possible geographical configurations for cities when individuals
rank the accessibility of lo<ations difTercntly: grid road systems.

(b) For a city like that in (a) except that there is a grid-road system, equal-
accessibility contours and ihc boundary of the city arc diamond-shaped. In such
a city the area within travel distance 2/of the city centre is four times that within

1 Suppose tlic cqual-a(<x-ssibilily lontours in Fig. 3 arc C .ind C^. From the dcfinilion of C , an
individLi.Tl in group i is willing lo bid R (liic opporlunily rciil on land in non-urban use) per unit area
dir any location on 6 ' . Furlhcrmorr, lliis individual is willing lo bit! kss tlian Ji jicr unit area for any
location outside C since ii is less accessible ihaii any location on (,''. Now tonsider the hxaiioii Z in
l ig . 3. An individual from chuss 2 is willing to bid It per unit area for land (here, since Z is on C*.
An iiiciividual irom class 1 i.s nol willing lo bid as niiicli as f{ per unil area for land there since Z is
Hillside ("'. Thus, ihe land al Z goes loan irHlividiiat ii> class 2 and is on llic boundary nltlic cily since
I lie maxiiiiuin residenlial bitl-rciit lliere is ti.
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travel distance t and O'i/<& = 2. The theorem is also evidently true for those cities
shown in Fig. 4.

To recapitulate, we now consider a city with the following characteristics.
It has a grid road system and an opportunity rent on land which is everywhere
the same along the periphery of the city. There are n groups of residents, where n
may be any integer number. Group I's transport costs per unit distance in the
x-direction are a^ and in the ^-direction b^. The a^s differ by group, as do the b^s
and the a^/iiS. Thus, each group ranks locations in terms of accessibility
differently from every other group. This could occur if, for instance, travel in
one direction were slower than in the other, and if the shadow value of time
varied by group while money expenditures did not. For each group at each
location Vf ^'t = / ' . From the definition of/, it follows that Vf't = / , and from (16)
that DLR = ^A TC. Thus, even in this rather complex and quite realistic city,
there is a simple relation between DLR and A TC.

IV.3.2. Land rent not the same everywhere along the boundaries of the city

When land rent is not the same everywhere along the boundary, the question
arises as to what is the appropriate opportunity rent on land in non-urban use to
employ in computing differential land rents. Weshall pose thequestion somewhat
differently. Is there a reasonable definition of differential land rents that results
in the theorems of the paper holding where (i) land rent is not the same every-
where along the physical boundary of the city, and (ii) residents do not rank
locations equally in terms of accessibility? Rather strikingly, the answer is in the
affirmative. If we define the opportunity rent on land at a location (r, 0), measured in polar
co-ordinates, to be land rent at the boundary of the city in the direction 0, then [16) remains
valid} The proof is in the Appendix.

V. CONCLUDING REMARKS

This paper had two central objectives;
The first was negative, to show that the commonly employed practice of

inferring the benefits from a transport improvement from the changes in land
rents induced by that improvement is generally not correct and may be seriously
misleading. In one special case we examined, for instance, aggregate land rents
are unaffected by a proportional change in transport costs to all locations.

The second was positive, to show that there are nevertheless some remarkably
simple relationships between differential land rents and aggregate transport
costs. For instance, in a circular city with linear transport costs, the former is
exactly one-half the latter. Moreover, these relationships hold with remarkable
generality; individuals can differ in tastes, incomes and transport cost functions,
and the results are still valid.

Aggregate land rents and aggregate transport costs are only two of the

* The definition can be modified to treat cities with holes in them.
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important urban economic aggregates. In a companion to this paper (1979) we
show that there is also a simple relationship between aggregate land rents and
expenditure on public goods.^

Queen's University, Canada RICHARD J. ARNOTT

Princeton Universitjiy U.S.A. JOSEPH E. STIGLITZ

f)ate of receipt of final typescript: November ig8o

APPENDIX^

To prove: that DLR g ^A TC ifV£'t ^ / .
The proof is facilitated by using polar co-ordinates, in which r denotes the

crow-line distance from the city centre and 0 the angle from the city centre in
radians. To simplify the analysis we assume that there are no'holes' in the city,
namely at all locations in the city, a straight line joining the location to the city
centre passes across only residential land. The proof can be extended to cities
with holes.

Aggregate land rents are

ALR= R{r,O)rdr\dO, (Ai)

where R{r, 6) is land rent at (r, 6), and f{d) is the distance to the boundary in the
direction 6.

Integration of the term in square brackets in (Ai) by parts gives

ALR

where

=\ \Wr,O)~\ - R^{r,e)'-
Jo IL 2 Jo Jo ^

= R[f{d),0V-^d0-\ R.ir.eY-drdO, (Aii)
Jo 2 Jo Jo 2

When land rent is the same everywhere along the boundary, R, the first term
on the right-hand side of (Aii) is this rent times the area of the city. When land
rent is not the same everywhere along the boundary, and if we define the
opportunity rent of land at (r, 6) to be the land rent at the boundary of the city
in the direction 6, then the first term on the right-hand side of (Aii) is the

• There are a number of interesting extensions to the analysis. First, the theorems should extend to
(ities with industrial, commercial, etc. as well as residential urban land. Second, it would be useful to
investigate how the relationship between aggregate transport costs and differential land rents is affected
when locations differ not only in their accessibility, but also in iheir Ricardian characteristics such as
soil fertility and quality of the microclimate. Third, one would like to know whether the actual ratio of
differential land rents to aggregate transport costs is close to tiiat indicated by the theorems presented
ill the paper.

' We would like to thank Jim Mirrlees for assistance in deriving this generalisation.
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aggregate opportunity rent on land in the city. In both cases, the second term on
the right-hand side of (Aii) is, by definition, differential land rents; i.e.

DLR = ~\ R,{r, 6) - drdd. (Aiii)
Jo Jo 2

Define T[r', B'\ r, 0) to be the lot size that the individual located at (r, Q) would
choose if he were forced to live at (r', 0'), and/(r', 6'; r, 6) to be the analogously
defined transport cost function for the individual located at (r, 0) in equilibrium.
From residents' utility-maximisation problems, with location characterised in
polar co-ordinates, one obtains

l{r,e; r,d) +R,{r,d) T{r,d; r.d) = o, (Aiv)
where

Hr.fl)

Substitution of (Aiv) into (Aiii) gives

(Av)

r2n rno) fir Q- r 6

Jo Jo T{r,O; r,

Comparison of (Av) and (Avi) gives
iP frrmf for all (r,^). (Avii)

o Jo T{r,e;r,d) 2

Aggregate transport costs in polar co-ordinates are
2n rno) fir Q- r

One transforms from polar to Cartesian co-ordinates by using the relationships
X = rcos^ and y = rsind. Thus, where f{x',y'; x,y) is an individual's transport
cost function in Cartesian co-ordinates,

/(x',y'; x,y) = f{r'cos6',r'sin6'; rcos6,rsin6).
Also,

fr{x,y',x,y) = [8f {r'cos 6',r'sin d';r cos 9, r sin

= f^{x,y; x,y) cosO+fy{x,y; x,y) sin^, (Aviii)

^(x,y; x,y) = [8f{x',y'; AT,y)/5A:'](_J.,y) and/^, is defined accordingly. Using
X = r cos 0 and y = r sin ^ again, one may rewrite (A viii) as

fr = -[fx{x,y; x,y)x+fy{x,y; x,y)y],

or frr=fxX+fyy- ^ ' (Aix)

Now,f{x,y;x,y) =f{r,d;r,d), andf{x,y;x,y) =/,(r,5; r,^). Thus,/,r =/,r.
Too, fj^x-^fyy = Vf't where Vf = [/̂  fy] and t = [J; y]. Combining these
results, (Aix), and (Avii) gives

DLR^IATC if V f ' t l / foralU, (Ax)

which is the result presented in the text.



I981] RENTS AND TRANSPORT COSTS 347

Where land rent is not the same everywhere along the boundary ofthe city
with other reasonable definitions of differential land rents, (i6) does not obtain.
For instance, if the opportunity rent on land in non-urban use is defined as the
minimum rent on land at the boundary ofthe city, R, then, where DLR denotes
differential land rents according to this alternative definition,

DLR = {R[f{e),e]-R} - ^ de- R,{r,O)~drdd

(A vi) still applies. Thus, the relationship between A TC and DLR is not as simple
as that between ATC and DLR.

The central results derived in this Appendix and in the main body ofthe paper
are essentially geometric. There are analogous results for higher dimensions.
We do not present them since their economic importance is not apparent.
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