Hopfological Algebra

You Qi

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences
(C)2013

You Qi
All rights reserved

Abstract

Hopfological Algebra

You QI

We develop some basic homological theory of hopfological algebra as defined by Khovanov [17]. A simplicial bar resolution for an arbitrary hopfological module is constructed, and some derived analogue of Morita theory is established. We also discuss about some special classes of examples that appear naturally in categorification.

Contents

1 Introduction 1
2 Module categories 6
2.1 The base categorv 6
2.2 Comodule algebras and stable module categories 12
3 Triangular structure 15
3.1 The shift functor 15
3.2 Distinguished triangles 16
3.3 Triangulated module category 17
3.4 Examples 18
4 Derived categories 21
4.1 Quasi-isomorphisms 21
4.2 Constructing distinguished triangles 22
4.3 Examples 27
5 Morphism spaces 30
5.1 The Hopf module Hom 30
5.2 The space of chain maps 31
5.3 The space of chain maps up to homotopy 34
5.4 Examples 41
6 Cofibrant modules 43
6.1 The bar resolution 49
6.2 Proof of Theorem 6.6 53
7 Compact modules 63
7.1 Generators 63
7.2 Compact modules 68
7.3 A useful criterion 72
8 Derived functors 74
8.1 The opposite algebra and tensor product 74
8.2 Derived tensor 76
8.3 Derived hom 82
8.4 A special case 85
9 Smooth algebras 89
9.1 Variants of derived categories 89
9.2 Smooth basic algebras 90
10 Positive algebras 96
10.1 Positive H-module algebras 97
10.2 Grothendieck groups of positive algebras 99
10.3 A Künneth formula 104
Bibliography 106

Acknowledgements

First and foremost, I would like to thank my advisor, Professor Mikhail Khovanov, for his uplifting guidance and tremendous generosity over the past five years. The magnificent mathematical scenery he has guided me through has completely reshaped my own point of view, and will remain a source of inspiration in the years to come.

I would also like to express my gratitude towards the other faculty members, from whom I learnt so much. Thank you Professors Johan de Jong, Robert Friedman, Robert Lipshitz, Melissa Liu, Davesh Maulik, Andrei Okounkov, Rachel Ollivier, Duong Hong Phong, Michael Thaddeus, Valerio Toledano-Laredo, Anton Zeitlin, Shouwu Zhang, and Wei Zhang, as well as Sabin Cautis and Aaron Lauda who are now on the west coast.

Thank you my friends from the math department, whose acts of kindness are unbounded. If I were to give each of you the space you deserve in this acknowledgement, there would be no room for proofs. Special thanks go to my current collaborators Ben Elias, Alex P. Ellis, Krzysztof Putyra and Josh Sussan, for sharing with me your passion and making our collaborations so enjoyable.

Last but not least, thank you Terrance Cope. Your effort has made this department a wonderful home!

To my parents
Zhang Li and Qi Danxu

Chapter 1

Introduction

Since its birth, homological algebra has commonly been regarded as being centered around the equation $d^{2}=0$. Such a view can be best seen through the famous quote of Henri Cartan:

If I could only understand the beautiful consequence following from the concise proposition $d^{2}=0$.
-Henri Cartan.]

Thus it is a natural question to ask whether and how one could deform this equation while maintaining an equally beautiful and useful theory. Indeed, in [23, 24], Mayer defined a "new simplicial homology" theory over a field of characteristic $p>0$ by forgetting the usual alternating signs in the definition of boundary maps. The boundary maps satisfy $\partial^{p}=0$, and associated with this kind of " p-chain complex" one obtains the " p-cohomology $\operatorname{groups} " \operatorname{Ker}\left(\partial^{q}\right) / \operatorname{Im}\left(\partial^{p-q}\right)$, for any $1 \leq q \leq p-1$. Furthermore, when applied to singular chains on topological spaces, this construction results in a "new homology theory" which is a topological invariant of the underlying space! Exciting as it might seem, however, Spanier [36] soon found out that these homology groups can be recovered from the usual singular homology groups, due to the restrictions placed on any topological homology theory by the

[^0]Eilenberg-Steenrod axioms. This immediately extinguished most of the interest in Mayer's invariant, and people paid little attention to these pioneering works on p-complexes; they remained buried among historical documents until several decades later. In 1996, Kapranov [11], and independently Sarkaria [32], studied a "quantum" analogue of the equation $d^{p}=0$, working over a field of characteristic zero with n-th roots of unity (e.g. the n-th cyclotomic field $\left.\mathbb{Q}\left[\zeta_{n}\right]\right)$. The analogous construction yields n-complexes whose boundary maps satisfy $d^{n}=0$ for some $n \in \mathbb{N}$. Similar homology groups of these complexes as in [23, 24] are defined. This construction, as a purely algebraic object, rekindled more interest this time and found applications in theoretic physics. Nowadays there is a vast collection of literature on the subject. See, for instance, Angel-Díaz [1], Bichon [2], Cibils-Solotar-Wisbauer [5], Dubois-Violette [7], Sitarz [35], Kassel-Wambst [13], and many of the references therein. It is worth mentioning that [13] put both $d^{p}=0$ and $d^{n}=0$ on equal footing, and developed some general homological theory for both cases.

Meanwhile, Pareigis [29] reinterpreted the usual homological algebra over a base ring K as (co)modules over a non-commutative, non-cocommutative Hopf algebra. In fact, using Majid's "bosonisation process" [25], one can understand this Hopf algebra as a graded Hopfalgebra object $K[d] /\left(d^{2}\right)$ in the category of graded super modules over the ground ring K. Similar reformulations for the deformations $d^{n}=0$ were given by Bichon [2]. One crucial feature of such Hopf algebras used by these authors is that their (co)module categories are Frobenius. Indeed, finite dimensional Hopf algebras or objects bearing enough similar properties are well-known to have a left (co)integral, which in turn can be used to define non-degenerate associative bilinear forms on the algebras. See for instance [20] for an arrowdiagrammatic proof of this result.

To this end, the work of Khovanov [17] can be regarded as a general framework to unify both points of view about the homological algebra of $d^{n}=0$. There he considers (co)module algebras over any finite dimensional Hopf algebra (or a finite dimensional Hopf-algebra object in some category). In this framework, Mayer's original p-complexes can be identified with
(co)modules over the \mathbb{Z}-graded finite dimensional Hopf algebra $\mathbb{k}[\partial] /\left(\partial^{p}\right)$, where \mathbb{k} is a field of characteristic $p>0$. Moreover the usual notion of a differential graded algebra (DGA) can be reinterpreted as a module-algebra over the graded Hopf super algebra $K[d] /\left(d^{2}\right)$, and therefore affords a generalization to arbitrary module-algebras over finite dimensional Hopf algebras, among which the Hopf algebra $\mathbb{k}\left[\partial^{p}\right] /\left(\partial^{p}\right)$ over a field of characteristic $p>0$ is the simplest example. Nonetheless, one question dating back to Mayer-Spanier should still be addressed: why should we care about this construction if its homology gives us nothing new?

One answer to this question was given by Khovanov in [17]. Instead of homology, the Grothendieck groups K_{0} of the triangulated (stable) categories H - gmod are isomorphic to the p-th (equivalently the $2 p$-th) cyclotomic integers $\mathbb{Z}[\zeta] /\left(1+\zeta+\cdots+\zeta^{p-1}\right) \cong \mathbb{Z}\left[\zeta_{p}\right]$. Furthermore, the (triangulated) module category over such a Hopf module-algebra inherits a (triangulated) module category structure. Therefore the Grothendieck group of such a module category will be a module over the ring of cyclotomic integers. Finding interesting such module-algebras could potentially realize the dreams dating back to Crane-Frenkel on categorification of quantum three-manifold invariants at certain roots of unity and extend them into 4d topological quantum field theories [6]. With this motivation, Khovanov coined the terminology "hopfological algebra" since this new framework is a mixture of homological algebra and the theory of Hopf algebras. We follow his suggestion and use this term vaguely to refer to the general homological theory of Hopf module-algebras and their module categories.

In the present work, we develop some general homological properties of hopfological algebra (or following [17], we should say "hopfological properties") in analogy with the usual homological theory of DG algebras. The strategy is rather straightforward since there are now beautiful structural expositions on DG algebras to mimic, such as the book by Bernstein and Lunts [4, Section 10], the less formal and very readable online lecture notes by Kaledin [12], or the papers of Keller [14, 15]. We will mainly follow Keller's approach in [14].

Now we give a rough summary of the content of this paper. We start by briefly reviewing Khovanov's original constructions in the first three sections and giving ways to construct distinguished triangles in the "homotopy" and "derived" categories of hopfological modules, in analogy with DG algebras. Then we analyze more closely the morphism spaces in the homotopy category, which is needed to define the notion of cofibrant hopfological modules. As in the DG case, we show that any hopfological module has a cofibrant replacement (Theorem 6.6), and the morphism spaces between cofibrant objects in the derived category coincide with their morphism spaces in the homotopy category. Such cofibrant replacements are also needed to define derived functors and to construct derived equivalences of different hopfological module categories. Next, we show that the derived categories of hopfological modules are compactly generated, and this allows us to use the formidable machinery of Ravenel-Neeman [31, 27, 28] to give a characterization of compact objects in the derived category (Corollary (7.15), as well as to make precise the definition of Grothendieck groups of hopfological module categories. Finally, a restrictive version of Morita equivalence between derived categories is given (Corollary 8.18). Throughout, the general theory is illustrated by three specific examples in parallel comparison, namely the usual DG algebra, KapranovSarkaria's n-DG algebra, and Mayer's p-DG algebra.

As this thesis will mainly serve as a tool kit for our work on categorification at roots of unity [19, 8, 30], there are some important caveats we have to make clear. The first remark to make is that we do not attempt to develop hopfological theory for Kapranov's characteristic zero " n-differential graded algebra" in full generality. In Chapter 8, we need to assume that the underlying Hopf algebra be (co)commutative. One reason is that, given a left H-module algebra A, we could not find a natural way to define a left H-module algebra structure on $A^{o p}$ for arbitrary H. Another problem is that, given two module-algebras equipped with n-differentials (i.e. $d(a b)=d(a) b+\zeta^{\operatorname{deg}(a)} a d(b)$, and $d^{n}=0$ for any elements $a, b \in A$), there does not seem to be a natural way to define a module-algebra structure on the tensor product algebra. This problem was already pointed out in [35]. Such a monoidal structure
plays a very important role in many existing examples of categorification, for instance [18]. Secondly, we will not develop in this paper the full analogue of DG Morita theory (as in Keller [14]), as we wish to control the length of the paper. Such a theory might be better treated in a more categorical setting than the one we use here. In subsequent works we will investigate this question in parallel with Toën's framework [38] on DG categories, as well as more related K-theoretical questions.

Chapter 2

Module categories

In this and the next two chapters we review the basic constructions of hopfological algebra, following [17, Sections 2.1-2.3]. Then we will develop some basic properties of hopfological algebra, adapting the framework for DG-categories (algebras) in [14]. Our goal is to show that, as predicted in [17], a fair amount of the general theory of DG-algebra generalizes to hopfological algebra.

2.1 The base category

Let H be a finite dimensional Hopf algebra over a field \mathbb{k}. We denote by Δ the comultiplication, by ϵ the counit, and by S the antipode of H. It is well-known that S is an invertible algebra anti-automorphism. We will fix a non-zero left integral Λ of H once and for all, which is uniquely determined (see, for instance, Corollary 3.5 of [20, Section 3]), up to a non-zero constant in the ground field \mathbb{k} by the property that, for any $h \in H$,

$$
\begin{equation*}
h \Lambda=\epsilon(h) \Lambda . \tag{2.1}
\end{equation*}
$$

The category $H-\bmod$ of left H-modules is monoidal, with H acting on the tensor product $M \otimes N$ of two H-modules M and N via the comultiplication Δ. In what follows, we will
constantly use the Sweedler notation: for any $h \in H, \Delta(h)=\sum_{(h)} h_{(1)} \otimes h_{(2)} \in H \otimes H$, and we will omit the summation symbol if no confusion can arise. Moreover, we will freely use the fact that, for any $h \in H, h_{(2)} S^{-1}\left(h_{(1)}\right)=\epsilon(h)=S^{-1}\left(h_{(2)}\right) h_{(1)}$, which follows by applying the anti-automorphism S^{-1} to the axiom $h_{(1)} S\left(h_{(2)}\right)=\epsilon(h)=S\left(h_{(1)}\right) h_{(2)}$.

By convention, when a tensor product sign \otimes is undecorated, we always mean that it is over the base field \mathbb{k}. Moreover, when tensor products " \otimes " and direct sums " \oplus " appear together without brackets, tensor products always take precedence over direct sums. By modules over an algebra we will always mean left modules over the algebra unless otherwise stated.

Proposition 2.1. 1. For any H-module M, we have a canonical isomorphism of H modules $M \otimes H \cong M_{0} \otimes H$, where M_{0} denotes M as a \mathbb{k}-vector space equipped with the trivial H-module structure.
2. H is a Frobenius algebra, so that it is self-injective. The associated stable module category H - $\underline{\bmod }$ is triangulated monoidal.
3. The shift functor T on $H-\underline{\bmod }$ is given as follows: for any H-module M, let $M \subset I$ be the inclusion of M into the injective H-module $I=M \otimes H$, given by $\operatorname{Id}_{M} \otimes \Lambda$: $M \longrightarrow M \otimes H$. Then $T(M)$ is defined to be the cokernel of this inclusion:

$$
T: H-\underline{\bmod } \longrightarrow H-\underline{\bmod }, \quad M \mapsto M \otimes(H / \mathbb{k} \Lambda) .
$$

4. The tensor product of H-modules descends to an exact bifunctor on $H-\underline{\bmod }$

$$
\otimes: H-\underline{\bmod } \times H-\underline{\bmod } \longrightarrow H-\underline{\bmod },
$$

which is compatible with the shift functor above. H - $\underline{\bmod }$ is symmetric monoidal if H
is cocommutative. Here compatibility means that, for any $M, N \in H-\bmod$,

$$
T(M) \otimes N \cong T(M \otimes N) \cong M \otimes T(N)
$$

Proof. We give the proof of part 1 here. The rest of the statements are proved in [17, Section 1]. We define a map of H-modules: $f_{M}: M \otimes H \longrightarrow M_{0} \otimes H$ by sending $m \otimes l \mapsto$ $S^{-1}\left(l_{(1)}\right) m \otimes l_{(2)}$, for any $l \in H, m \in M$. Then we check that it is an H-module map: for any $h \in H$,

$$
\begin{aligned}
f_{M}(h(m \otimes l)) & =f_{M}\left(h_{(1)} m \otimes h_{(2)} l\right)=S^{-1}\left(\left(h_{(2)} l\right)_{(1)}\right) h_{(1)} m \otimes\left(h_{(2)} l\right)_{(2)} \\
& =S^{-1}\left(l_{(1)}\right) S^{-1}\left(h_{(2)}\right) h_{(1)} m \otimes h_{(3)} l_{(2)}=S^{-1}\left(l_{(1)}\right) \epsilon\left(h_{(1)}\right) m \otimes h_{(2)} l_{(2)} \\
& =S^{-1}\left(l_{(1)}\right) m \otimes h l_{(2)}=h f_{M}(m \otimes l),
\end{aligned}
$$

where we used that $S^{-1}\left(h_{(2)}\right) h_{(1)}=\epsilon(h)$ and $h_{(1)} \epsilon\left(h_{(2)}\right)=h$. Notice that in the second to the last equality, h only acts on the second factor. Finally, f_{M} is invertible whose two sided inverse is given by $f_{M}^{-1}: M_{0} \otimes H \longrightarrow M \otimes H, m \otimes h \mapsto h_{(1)} m \otimes h_{(2)}$. We leave this verification to the reader.

We briefly remind the reader of the notion of a stable category associated with a Frobenius category (e.g. modules over a Frobenius algebra), and this will explain some of the notations we used in the above proposition. For more details, see [10, Section 2, Chapter 1]. An abelian category \mathcal{C} (e.g. $H-\bmod)$ is called Frobenius if it has enough injectives and enough projectives, and moreover the class of injectives coincides with that of the projectives. If \mathcal{C} is such a category, we denote by $\underline{\mathcal{C}}$ the stable category associated with it, whose objects are the same as that of \mathcal{C}, and the morphism space between any two objects $X, Y \in \operatorname{Ob}(\mathcal{C})$ are constructed as the quotient

$$
\begin{equation*}
\operatorname{Hom}_{\underline{\mathcal{C}}}(X, Y):=\operatorname{Hom}_{\mathcal{C}}(X, Y) / I(X, Y), \tag{2.2}
\end{equation*}
$$

where $I(X, Y)$ stands for the space of morphisms between X and Y in \mathcal{C} that factor through an injective($=$ projective) object in \mathcal{C}. Theorem 2.6 of [10, Section 1.2] shows that $\underline{\mathcal{C}}$ is triangulated. The translation endo-functor of $T: \underline{\mathcal{C}} \longrightarrow \underline{\mathcal{C}}$ is given as follows. For any $X \in \operatorname{Ob}(\mathcal{C})$, choose a monomorphism $\lambda_{X}: X \longrightarrow I(X)$ of X into an injective object $I(X)$. We define $T(X):=I(X) / \operatorname{Im}\left(\lambda_{X}\right)$, considered as an object of $\underline{\mathcal{C}}$. It can be checked that the isomorphism class of $T(X)$ in $\underline{\mathcal{C}}$ is independent of choices of $I(X)$, and this leads to a well-defined functor on $\underline{\mathcal{C}}$. Happel also shows that T is an automorphism of $\underline{\mathcal{C}}$ (Proposition 2.2 of [10, Section 1.2]), and it is readily checked that its inverse is given as follows: for any $X \in \operatorname{Ob}(\mathcal{C})$, take an epimorphism from a projective object $\mu_{X}: P(X) \longrightarrow X$, then $T^{-1}(X):=\operatorname{ker}\left(\mu_{X}\right)$, regarded as an object in $\underline{\mathcal{C}}$. Finally, every short exact sequence of objects in \mathcal{C} descends to a distinguished triangle in $\underline{\mathcal{C}}$, and conversely any distinguished triangle in $\underline{\mathcal{C}}$ is isomorphic to one that arises in this way (Lemma 2.7 [10, Section 1.2]).

Example 2.2. We give some simple examples of finite dimensional (graded, super) Hopf algebras and their left integrals.

- Let G be a finite group and $H=\mathbb{k} G$ be its group ring over a field \mathbb{k}. Then H is a Hopf algebra with $\Delta(g)=g \otimes g, S(g)=g^{-1}$ and $\epsilon(g)=1$, for any $g \in G$. The element $\sum_{g \in G} g$ spans the space of (left and right) integrals.
- Let V be an $(n+1)$-dimensional vector space over a field \mathbb{k}, and let $H=\Lambda^{*} V$ be the exterior algebra over V. Then H becomes a graded super Hopf algebra if we define any non-zero element $v \in V$ to be of degree one; $\Delta(v)=v \otimes 1+1 \otimes v ; S(v)=-v$; $\epsilon(v)=0$. The space spanned by a non-zero (left and right) integral can be canonically identified with $\Lambda^{n+1}(V) \cong \mathbb{k} v_{0} \wedge \cdots \wedge v_{n}$, where $\left\{v_{0}, \cdots, v_{n}\right\}$ forms a basis of V.
- Let \mathbb{k} be a field of positive characteristic p. Let $H=\mathbb{k}[\partial] /\left(\partial^{p}\right)$, with $\Delta(\partial)=\partial \otimes 1+1 \otimes \partial$, $S(\partial)=-\partial$, and $\epsilon(\partial)=0$. H will be graded if we fix a degree for ∂. The space of (left and right) integrals in H is spanned by ∂^{p-1}.
- Let H_{n} be the Taft algebra (see [2] or [17, Section 4]) over the n-th cyclotomic field $\mathbb{k}=\mathbb{Q}[\zeta]$, where ζ is a primitive n -th root of unity. As a \mathbb{k}-algebra, H_{n} is generated by K, K^{-1} and d, subject to the relations $K^{-1} K=K K^{-1}=1, K^{n}=1, K d=\zeta d K$, and $d^{n}=0 . H_{n}$ is an n^{2}-dimensional Hopf algebra with $\Delta(K)=K \otimes K, \Delta(d)=d \otimes 1+$ $K \otimes d, S(K)=K^{-1}, S(d)=-K^{-1} d, \epsilon(K)=1, \epsilon(d)=0$. It is easily checked using the commutator relations that a non-zero left integral is given by $\Lambda_{l}=\frac{1}{n}\left(\sum_{i=0}^{n-1} K^{i}\right) d^{n-1}$, while a non-zero right integral is given by $\Lambda_{r}=\frac{1}{n} d^{n-1}\left(\sum_{i=0}^{n-1} K^{i}\right)$.

The following lemma is a slight generalization of Proposition 2 of [17, Section 1], which will be needed for technical reasons later.

Lemma 2.3. Let M be an arbitrary H-module and N be a projective H-module. Then $M \otimes_{\mathfrak{k}}$ N, $\operatorname{Hom}_{\mathfrak{k}}(M, N)$ and $\operatorname{Hom}_{\mathfrak{k}}(N, M)$ are projective as H-modules. The H-module structures are defined in the usual way: for any $h \in H, m \in M, n \in N, f \in \operatorname{Hom}_{k}(M, N)$,

$$
\begin{gathered}
h \cdot(m \otimes n):=\sum h_{(1)} \cdot m \otimes h_{(2)} \cdot n \\
(h \cdot f)(m):=\sum h_{(2)} \cdot f\left(S^{-1}\left(h_{(1)}\right) \cdot m\right) .
\end{gathered}
$$

Proof. The case when either one of M or N is finite dimensional follows from Proposition 2 of [17]. When both M and N are infinite dimensional, we can write M as a union of its finite dimensional submodules $M=\cup_{i \in I} M_{i}$ where I is some filtered partially ordered set, with $i \leq j$ in I if and only if $M_{i} \subset M_{j}$. In other words, we regard I as a small filtered category in which there is an arrow $i \longrightarrow j$ if and only if $M_{i} \subset M_{j}$, and then M is the colimit of I. We also write N as a direct sum of finite dimensional injective ($=$ projective) modules $N=\oplus_{j \in J} P_{j}$. Now the tensor product is injective since we can write it as

$$
M \otimes N \cong M \otimes\left(\bigoplus_{j \in J} P_{j}\right) \cong \bigoplus_{j \in J} M \otimes P_{j}
$$

which is a direct sum of injectives ${ }^{1}$, where each term $M \otimes P_{j}$ is injective by Proposition 2 of [17.

Next, $\operatorname{Hom}_{\mathfrak{k}}(N, M)$ can be rewritten as

$$
\operatorname{Hom}_{\mathbb{k}}\left(\bigoplus_{j \in J} P_{j}, M\right) \cong \prod_{j \in J} \operatorname{Hom}_{\mathbb{k}}\left(P_{j}, M\right) \cong \prod_{j \in J} P_{j}^{*} \otimes M
$$

Each P_{j}^{*} is injective since P_{j} is also finite dimensional projective, and we are again reduced to the case of Proposition 2 of [17].

Finally, for $\operatorname{Hom}_{\mathbb{k}}(M, N)$, we use the short exact sequence of vector spaces

$$
\begin{equation*}
0 \longrightarrow \bigoplus_{(i \longrightarrow j) \in I} M_{i} \xrightarrow{\Psi} \bigoplus_{k \in I} M_{k} \longrightarrow M \longrightarrow 0 \tag{2.3}
\end{equation*}
$$

where the first direct sum is over all arrows in I, the second direct sum is over all objects of I, and Ψ restricted on each summand M_{i} labeled by $i \longrightarrow j$ is given by composing

$$
M_{i} \longrightarrow M_{i} \oplus M_{j} ; m_{i} \mapsto\left(m_{i},-m_{i}\right)
$$

with the natural inclusion map

$$
M_{i} \oplus M_{j} \hookrightarrow \bigoplus_{i \in I} M_{i}
$$

Applying $\operatorname{Hom}_{\mathfrak{k}}(-, N)$ to this exact sequence, we get a short exact sequence of H-modules:

$$
0 \longrightarrow \operatorname{Hom}_{\mathbb{k}}(M, N) \longrightarrow \prod_{k \in I} \operatorname{Hom}_{\mathbb{k}}\left(M_{k}, N\right) \xrightarrow{\Psi^{*}} \prod_{(i \longrightarrow j) \in I} \operatorname{Hom}_{\mathbb{k}}\left(M_{i}, N\right) \longrightarrow 0
$$

Notice that

$$
\prod_{k \in I} \operatorname{Hom}_{\mathbb{k}}\left(M_{k}, N\right) \cong \prod_{k \in I}\left(\bigoplus_{j \in J} \operatorname{Hom}_{\mathbb{k}}\left(M_{i}, P_{j}\right)\right) \cong \prod_{i \in I}\left(\bigoplus_{j \in J} P_{j} \otimes M_{i}^{*}\right)
$$

[^1]so that it is injective once again by the finite dimensional case [17, Proposition 2]. Likewise for the last term in the short exact sequence. It follows that the above sequence of H-modules splits, and $\operatorname{Hom}_{\mathfrak{k}}(M, N)$ is injective.

2.2 Comodule algebras and stable module categories

Now we recall the notion of a (right) comodule-algebra over H. We slightly modify the convention used in [17] to better suit the special case of DG-algebras over the base field \mathbb{k}. In particular we will be mainly using the notion of right H-comodule-algebras as opposed to left comodule-algebras. The proofs of [17] go through almost unchanged with appropriate "left" notions switched to the "right" ones.

Definition 2.4. A right H-comodule-algebra B is a unital, associative \mathbb{k}-algebra equipped with a map

$$
\Delta_{B}: B \longrightarrow B \otimes H
$$

making B into a right H-comodule and such that Δ_{B} is a map of algebras. Equivalently, we have the following identities:

$$
\begin{gathered}
\left(\operatorname{Id}_{B} \otimes \epsilon\right) \Delta_{B}=\operatorname{Id}_{B}, \quad\left(\operatorname{Id}_{B} \otimes \Delta\right) \Delta_{B}=\left(\Delta_{B} \otimes \operatorname{Id}_{H}\right) \Delta_{B} \\
\Delta_{B}(1)=1 \otimes 1, \quad \Delta_{B}(a b)=\Delta_{B}(a) \Delta_{B}(b)
\end{gathered}
$$

Here $B \otimes H$ is equipped with the product algebra structure.

Let V be an H-module, and M be a B-module. The tensor product $M \otimes V$ is naturally a B-module, via Δ_{B}. The tensor product gives rise to a bifunctor

$$
\begin{equation*}
B-\bmod \times H-\bmod \longrightarrow B-\bmod \tag{2.4}
\end{equation*}
$$

compatible with the monoidal structure of $H-\bmod$, and in turn this makes $B-\bmod$ into a
(right) module-category over $H-\bmod$.

Definition 2.5. Let $B_{H}-\underline{\bmod }$ be the quotient category of $B-\bmod$ by the ideal of morphisms that factor through a B-module of the form $N \otimes H$, where N is some B-module.

More precisely, we call a morphism of B-modules $f: M_{1} \longrightarrow M_{2}$ null-homotopic if there exists a B-module N such that f factors as

$$
\begin{equation*}
M_{1} \longrightarrow N \otimes H \longrightarrow M_{2} \tag{2.5}
\end{equation*}
$$

The space of null-homotopic morphisms forms an ideal in B-mod. The quotient category $B_{H}-\underline{\bmod }$ by this ideal by definition has the same objects as B-mod, while the \mathbb{k}-vector space of morphisms in $B_{H}-\underline{\bmod }$ between any two objects M_{1}, M_{2} is the quotient of $\operatorname{Hom}_{B}\left(M_{1}, M_{2}\right)$ by the subspace of null-homotopic morphisms.

We also recall the following useful lemma, which gives an alternative characterization of the ideal of null-homotopic homomorphism.

Lemma 2.6. A map $f: M \longrightarrow N$ of B-modules is null-homotopic if and only if it factors through the map $M \xrightarrow{\operatorname{Id}_{M} \otimes \Lambda} M \otimes H$.

Proof. This is Lemma 1 of [17, Section 1].

As a matter of notation, we will denote the canonical B-module map in the lemma by $\lambda_{M}: M \xrightarrow{\operatorname{Id}_{M} \otimes \Lambda} M \otimes H$ for any B-module M, as such maps will appear repeatedly in what follows.

Proposition 2.7. $B_{H}-\underline{\bmod }$ is a (right) module-category over $H-\underline{\bmod }$.

Proof. The tensor product $B-\bmod \times H-\bmod \longrightarrow B-\bmod$ descends to a bifunctor

$$
B_{H}-\underline{\bmod } \times H-\underline{\bmod } \longrightarrow B_{H}-\underline{\bmod },
$$

compatible with the monoidal structure of H - mod.

We will be mainly interested in the following class of examples. See example (g) of [17, Section 1], or [26, Chapter 4].

Example 2.8 (The main example). Let A be a left H-module algebra. This means that A is a left H-module, and the multiplication and unit maps of A are left H-module maps. An excellent treatise for these algebras is [26], which gives a detailed survey of recent research on such module-algebras and their ring theoretical properties.

Definition. The smash product algebra $B=A \# H$ is the \mathbb{k}-vector space $A \otimes H$ with the multiplication:

$$
(a \otimes h)(b \otimes l)=\sum_{(h)} a\left(h_{(1)} \cdot b\right) \otimes h_{(2)} l .
$$

Here "." denotes the left H action of $h_{(1)}$ on b.
B has the structure of a right H-module algebra by setting $\Delta_{B}: B \longrightarrow B \otimes H, \Delta_{B}(a \otimes$ $h):=a \otimes \Delta(h)$ for any $a \otimes h \in B$. We will loosely refer to the class of modules over this kind of smash product ring B as hopfological modules.

As special cases of this main example, we have:

1. If $A=\mathbb{k}$ with the trivial module structure over H, then $A=\mathbb{k} \# H=H$. We recover the usual stable category of $H: B_{H}-\underline{\bmod }=H-\underline{\text { mod }}$.
2. Slightly more generally, let A be any \mathbb{k}-algebra with the trivial H-module structure. Then $B=A \otimes H$. We will see later that the usual notion of chain complexes of modules over the algebra B, or their "n-complex" analogs [11, 7], are examples of this particular case. We will deal with a more specific class of examples of this kind in the last section.

Chapter 3

Triangular structure

Now let us recall the shift functor, the cone construction, and the triangles in $B_{H}-\underline{m o d}$. See [17, Section 1]. We refer the reader to [9, Chapter IV] and [10, Chapter I] for more information about triangulated categories.

3.1 The shift functor

The shift (or translation) functor T on $B_{H}-\underline{\bmod }$ is the functor that $B_{H}-\underline{\bmod }$ inherits from T of $H-\underline{\bmod }$, where we regard $B_{H}-\underline{\bmod }$ as a module category over $H-\underline{\bmod }$ (see Proposition 2.7 above). More precisely, we define:

Definition 3.1. For any left B-module M, let $T(M)$ be

$$
T(M):=M \otimes(H /(\mathbb{k} \Lambda)) .
$$

This defines a functor on $B-\bmod$ and it descends to be the shift endo-functor on $B_{H}-\underline{\bmod }$.
The above definition is justified thanks to the following.
Proposition 3.2. T is an invertible functor on $B_{H}-\underline{\bmod }$, whose inverse T^{-1} is given by

$$
T^{-1}(M):=M \otimes \operatorname{ker}(\epsilon)
$$

Proof. Omitted. This is Proposition 3 of [17, Section 1].

3.2 Distinguished triangles

For any B-module morphism $u: X \longrightarrow Y$ denote by \underline{u} its residue class in the stable category $B_{H}-\underline{\bmod }(t h i s ~ a n d ~ t h e ~ f o l l o w i n g ~ \bar{u}$ notation etc. are taken from [10]).

Definition 3.3. The cone C_{u} is defined as the pushout of u and λ_{X} in $B-\bmod$, so that it fits into the following Cartesian diagram

Now, let $u: X \longrightarrow Y$ be a morphism of B-modules. We denote by $\overline{\lambda_{X}}$ the quotient map from $X \otimes H$ to $T X$, so that there is the following diagram of short exact sequences in $B-\bmod$:

Definition 3.4. A standard distinguished triangle in $B_{H}-\underline{\bmod }$ is defined to be the sextuple

$$
X \xrightarrow{\underline{u}} Y \xrightarrow{\underline{v}} C_{u} \xrightarrow{\underline{w}} T X
$$

associated with some morphism u of B-modules. A sextuple $X \xrightarrow{\underline{u}} Y \xrightarrow{\underline{v}} Z \xrightarrow{\underline{w}} T X$ in $B_{H}-\underline{\bmod }$ of objects and morphisms in $B_{H}-\underline{\bmod }$ is called a distinguished triangle if it is isomorphic in $B_{H}-\underline{\bmod }$ to a standard distinguished triangle.

Theorem 3.5. The category $B_{H}-\underline{\bmod }$ is triangulated, with the shift functor T and the class of distinguished triangles defined as above.

Proof. Omitted. This is Theorem 1 of [17, Section 1].

3.3 Triangulated module category

Recall that an additive functor $F: \mathcal{C} \longrightarrow \mathcal{D}$ between triangulated categories is called exact if it commutes with the respective shift functors and takes distinguished triangles to distinguished triangles. The lemma below implies that, if V is an H-module, then tensoring a distinguished triangle $X \longrightarrow Y \longrightarrow Z \longrightarrow T X$ with V gives a distinguished triangle in $B_{H}-\underline{\text { mod: }}$

$$
\begin{equation*}
X \otimes V \longrightarrow Y \otimes V \longrightarrow Z \otimes V \longrightarrow T(X \otimes V) \tag{3.3}
\end{equation*}
$$

so that tensoring with any H-module V is an exact functor on B_{H}-mod. We say informally that $B_{H}-\underline{\bmod }$ is a "triangulated (right) module-category" over $H-\bmod$.

Lemma 3.6. There exists a functorial-in- V isomorphism of H-modules

$$
r: H \otimes V \longrightarrow V \otimes H
$$

intertwining the H-module inclusions $\Lambda \otimes \operatorname{Id}_{V}: V \longrightarrow H \otimes V$, and $\operatorname{Id}_{V} \otimes \Lambda: V \longrightarrow V \otimes H$. Proof. Omitted. See Lemma 2 of [17, Section 1]. We take r to be the inverse of the functorial intertwiner in the lemma there.

Remark 3.7 (Graded versions). Before proceeding to other hopfological constructions, we remark here that all of our constructions above apply without much change to finite dimensional graded Hopf algebras, finite dimensional graded Hopf super-algebras, or more generally, any finite dimensional Hopf-algebra object in a symmetric monoidal category which admits integrals (see [20, Section 3] where a diagrammatic construction of integrals in these cases are exhibited). A good example to keep in mind is when $H=\mathbb{k}[d] /\left(d^{2}\right)$ is the \mathbb{Z}-graded Hopf super algebra where $\operatorname{deg}(d)=1$. As we will see, a \mathbb{Z}-graded algebra A being an H module algebra means that A is a differential graded (DG) algebra over the field \mathbb{k}, as defined in [4, Section 10]. The categories $A \# H-\bmod , \mathcal{C}(A, H)$, and $\mathcal{D}(A, H)$ correspond respectively to the abelian category of DG modules over A, the homotopy category of DG modules over
A, and the derived category of DG modules over A, with the latter two being triangulated. The morphism spaces in these cases are slightly different: as we will see later, the morphism spaces are given by the usual RHom of complexes in $\mathcal{C}(A, H)$ and $\mathcal{D}(A, H)$, at least between "nice" complexes. See the first example of [17, Section 2] for more details.

3.4 Examples

We now describe the objects of $B_{H}-\underline{\bmod }$ more explicitly for some particular smash product algebras $B=A \# H$ (see the main example 2.8). By regarding the usual notion of DG modules over a DG algebra as a special example, we will see that examples of this kind are naturally generalizations of the DG case.

- Let $H=\mathbb{k}[d] /\left(d^{2}\right)$ be the graded Hopf super-algebra over \mathbb{k}, where $\operatorname{deg}(d)=1$. For a graded \mathbb{k}-algebra A to carry an H-module structure, it is equivalent to have a degree one differential $d: A \longrightarrow A$ satisfying the following conditions: for any $a, b \in A$,

$$
\begin{equation*}
d(a b)=d(a) b+(-1)^{|a|} a d(b), \quad d^{2}(a)=0 \tag{3.4}
\end{equation*}
$$

i.e. A is a DG algebra over \mathbb{k}. Notice that $d(1)=0$ follows automatically from the first equation. A (left) $A \# H$-module M is an A-module equipped with a compatible H-action. Since H is generated by d, it suffices to specify the d-action on M and require it to be compatible with the A-module structure on M and d-action on A. This amounts to saying that, for any $a \in A, m \in M$, we have

$$
\begin{equation*}
d(a m)=d(a) m+(-1)^{|a|} a d(m), \quad d^{2}(m)=0 \tag{3.5}
\end{equation*}
$$

i.e. M is a (left) DG module over the DG algebra A. We refer the reader to [4, Section 10] for details about the homological properties of DG modules.

- Let $H=H_{n}$ be the Taft algebra over $\mathbb{Q}[\zeta]$ (see 2.2), and let A be an H_{n}-module
algebra. Since K generate a subalgebra of H_{n} isomorphic to the group algebra of $\mathbb{Z} / n \mathbb{Z}, A$ must be $\mathbb{Z} / n \mathbb{Z}$-graded and the multiplication on A must respect this grading. For any homogeneous element $a \in A$ of degree $|a|, K$ acts on a by $K \cdot a=\zeta^{|a|} a$. Furthermore, the relation $K d=\zeta d K$ applied to a gives us $K d(a)=\zeta^{|a|+1} d(a)$, i.e. $d(a)$ is homogeneous of degree $|a|+1$. Equivalently, d has to increase the degree by one. Thirdly, $\Delta(d)=d \otimes 1+K \otimes d$, when applied to any product of homogeneous elements $a_{1}, a_{2} \in A$, imposes the differential condition that $d\left(a_{1} a_{2}\right)=d\left(a_{1}\right) a_{2}+\zeta^{\left|a_{1}\right|} a_{1} d\left(a_{2}\right)$. Finally $d^{n}=0$ just says that $d^{n}(a)=0$ for all $a \in A$. Thus we conclude that an $H_{n^{-}}$ module algebra is just a $\mathbb{Z} / n \mathbb{Z}$-graded algebra equipped with a degree one differential such that

$$
\begin{equation*}
d\left(a_{1} a_{2}\right)=d\left(a_{1}\right) a_{2}+\zeta^{\left|a_{1}\right|} a_{1} d\left(a_{2}\right), \quad d^{n}(a)=0 \tag{3.6}
\end{equation*}
$$

Following [2, 7, 11, 13], we say that A is an n-differential graded (n - $D G$) algebra over $\mathbb{Q}[\zeta]$. Notice that A could have a \mathbb{Z}-grading since any such grading collapses into a $\mathbb{Z} / n \mathbb{Z}$-grading. Similar as in the DG case, an $A \# H_{n}$-module is equivalent to a $\mathbb{Z} / n \mathbb{Z}$-graded A-module, equipped with a degree one differential d, such that for any homogeneous $a \in A, m \in M$,

$$
\begin{equation*}
d(a m)=d(a) m+\zeta^{|a|} a d(m), \quad d^{n}(m)=0 . \tag{3.7}
\end{equation*}
$$

Likewise, we will call such a module an $n-D G$ module.

- Let \mathbb{k} be a field of positive characteristic p, and $H=\mathbb{k}[\partial] /\left(\partial^{p}\right)$. This case is entirely analogous to the above n-DG algebra case, and we just state the results. An H-module algebra A comes with differential ∂ such that for all $a, a_{1}, a_{2} \in A$,

$$
\begin{equation*}
\partial\left(a_{1} a_{2}\right)=\partial\left(a_{1}\right) a_{2}+a_{1} \partial\left(a_{2}\right), \quad \partial^{p}(a)=0 . \tag{3.8}
\end{equation*}
$$

Notice the lack of coefficients before a_{1} on the right hand side of the first equation.

Similarly, an $A \# H$-module M is an A-module equipped with a differential ∂ on it compatible with the A-module differential, i.e. for all $a \in A, m \in M$,

$$
\begin{equation*}
\partial(a m)=\partial(a) m+a \partial(m) \quad \partial^{p}(m)=0 \tag{3.9}
\end{equation*}
$$

Algebras and modules of this kind will be refereed to as $p-D G$ algebras and $p-D G$ modules. We can also require some compatible grading on ∂, A and M, but the formulas remain unchanged. We leave the details to the reader.

Chapter 4

Derived categories

From now on, we will focus on the case of the main example 2.8 above, where derived categories can be defined.

4.1 Quasi-isomorphisms

Suppose $B=A \# H$ is the smash product of H and a left H-module algebra A. Since $H \cong \mathbb{k} \otimes H$ is a subalgebra of B, we have the restriction functor from $B-\bmod$ to $H-\bmod$:

$$
\begin{equation*}
\text { Res }: B-\bmod \longrightarrow H-\bmod . \tag{4.1}
\end{equation*}
$$

This descends to an exact functor on the quotient categories

$$
\begin{equation*}
\underline{\text { Res }}: B_{H}-\underline{\bmod } \longrightarrow H-\underline{\bmod } . \tag{4.2}
\end{equation*}
$$

In what follows, we will introduce a new notation for the triangulated category $B_{H}-\underline{\bmod }$ for the special case of the main example 2.8,

$$
\begin{equation*}
\mathcal{C}(A, H):=B_{H}-\underline{\text { mod. }} \tag{4.3}
\end{equation*}
$$

The notation stands informally for "the category of chain complexes of A-modules up to homotopy". The reason for using this term will be clear once we understand the Hom spaces better, and realize the category $\mathcal{C}(A, H)$ as an analogue of the homotopy category of DG-modules in the next section.

Definition 4.1. (i). We define the total cohomology functor to be the restriction functor:

$$
\underline{\text { Res }}: \mathcal{C}(A, H)-\underline{\bmod } \longrightarrow H-\underline{\bmod } .
$$

(ii). A morphism $f: M \longrightarrow N$ in $\mathcal{C}(A, H)$ is a called a quasi-isomorphism if its restriction $\underline{\operatorname{Res}}(f)$ is an isomorphism in H - mod.
(iii). A B-module M is called acyclic if $0 \longrightarrow M$ is a quasi-isomorphism.

Theorem 4.2. 1. Quasi-isomorphisms in $\mathcal{C}(A, H)$ constitute a localizing class.
2. The localization of $\mathcal{C}(A, H)$ with respect to the quasi-isomorphisms, denoted $\mathcal{D}(A, H)$, is triangulated. Tensoring with any H-module (on the right) is an exact functor in $\mathcal{D}(A, H)$.

We will call $\mathcal{D}(A, H)$ the derived category of $B-\bmod$.
Proof. Omitted. See Proposition 4 and Corollary 2 of [17, Section 1].

4.2 Constructing distinguished triangles

Now we describe how short exact sequences in the abelian category B-mod lead to distinguished triangles in $\mathcal{C}(A, H)$ and $\mathcal{D}(A, H)$. We start with the construction in $\mathcal{C}(A, H)$.

Lemma 4.3. Let

$$
0 \longrightarrow X \xrightarrow{u} Y \xrightarrow{v} Z \longrightarrow 0
$$

be a short exact sequence in $B-\bmod$, which is split exact as a sequence of A-modules. Then associated to it there is a distinguished triangle in $\mathcal{C}(A, H)$:

$$
X \xrightarrow{\underline{u}} Y \xrightarrow{\underline{v}} Z \longrightarrow T X
$$

(the connecting homomorphism on the third arrow is described in the proof below). Conversely, any distinguished triangle in $\mathcal{C}(A, H)$ is isomorphic to one that arises in this way.

Proof. The converse part holds by construction, since $\lambda_{X}: X \longrightarrow X \otimes H$ is always a split injection of A-modules.

Now, according to the definition (3.4), the map $u: X \longrightarrow Y$ gives rise to a commutative diagram in B-mod:

Therefore the cone C_{u} fits into a short exact sequence of B-modules:

$$
0 \longrightarrow X \otimes H \xrightarrow{\bar{u}} C_{u} \xrightarrow{\bar{v}} Z \longrightarrow 0
$$

which is split exact as a sequence of A-modules. Thus, we will be done with the first half of the lemma once we establish it in the following special case: in the short exact sequence as above, \bar{v} becomes an isomorphism in $\mathcal{C}(A, H)$. The connecting homomorphism is then taken to be the composition of the inverse of \bar{v} and $C_{u} \longrightarrow T X$.

To prove the last claim, consider the cone of \bar{v}, which fits into the commutative diagram:

By assumption, the top short exact sequence splits in $A-\bmod$, so does the bottom one since the third square in (4.5) is a push-out. We will show that $C_{\bar{v}} \cong 0$ in $\mathcal{C}(A, H)$, and the special case will follow since, by construction,

$$
C_{u} \xrightarrow{\bar{v}} Z \longrightarrow C_{\bar{v}} \longrightarrow T\left(C_{u}\right)
$$

is a distinguished triangle in $\mathcal{C}(A, H)$.
Now we examine the B-module structure of $C_{u} \otimes H$. By tensoring the top short exact sequence with H in the above diagram (4.5), we obtain the exact sequence

$$
0 \longrightarrow X \otimes H \otimes H \longrightarrow C_{u} \otimes H \longrightarrow Z \otimes H \longrightarrow 0
$$

which is A-split. By commutativity of the second square in (4.5), $u^{\prime}: X \otimes H \longrightarrow C_{u} \otimes H$ factors through

$$
u^{\prime}: X \otimes H \xrightarrow{\lambda_{X \otimes H}} X \otimes H \otimes H \longrightarrow C_{u} \otimes H .
$$

Now notice that the map $H \longrightarrow H \otimes H$ which sends $h \mapsto h \otimes \Lambda$ is an H-module injection, whose quotient $H \otimes(H / \mathbb{k} \Lambda) \cong H^{(\operatorname{dim}(H)-1)}$ is an injective and free summand in $H \otimes H$ which we write as H^{\prime}. This is true since H is self-injective (see Lemma 1 of [17] for an explicit splitting). Modding out the submodule $X \otimes H \otimes \Lambda$ in $C_{u} \otimes H$, which is no other than $C_{\bar{v}}$, we get a short exact sequence of B-modules.

$$
0 \longrightarrow X \otimes H^{\prime} \xrightarrow{\alpha} C_{\bar{v}} \xrightarrow{\beta} Z \otimes H \longrightarrow 0,
$$

which is also A-split. The next lemma then shows that

$$
C_{\bar{v}} \cong X \otimes H^{\prime} \oplus Z \otimes H
$$

and the result follows.

Lemma 4.4. Let $\beta: C \longrightarrow Z \otimes H$ be a surjective map of B-modules which admits a section in $A-\bmod$. Then $Z \otimes H$ is a direct summand of C in $B-\bmod$.

Proof. Let $\gamma^{\prime}: Z \otimes H \longrightarrow C$ be a section of β as a map of A-modules, so that $\beta \circ \gamma^{\prime}=\operatorname{Id}_{Z \otimes H}$. Define

$$
\gamma: Z \otimes H \longrightarrow C, \quad z \otimes h \mapsto h_{(2)} \gamma\left(S^{-1}\left(h_{(1)}\right) z \otimes 1\right) .
$$

Then we claim that γ is a section of β in $B-\bmod$.
To prove the claim, we first show that γ is A-linear. For any $a \in A$ and $z \otimes h \in Z \otimes H$, we have

$$
\begin{aligned}
\gamma(a z \otimes h) & =h_{(2)} \gamma^{\prime}\left(S^{-1}\left(h_{(1)}\right)(a z) \otimes 1\right)=h_{(3)} \gamma^{\prime}\left(\left(S^{-1}\left(h_{(2)}\right) a\right)\left(S^{-1}\left(h_{(1)}\right) z\right) \otimes 1\right) \\
& =h_{(3)}\left(\left(S^{-1}\left(h_{(2)}\right) a\right) \gamma^{\prime}\left(\left(S^{-1}\left(h_{(1)}\right) c\right) \otimes 1\right)\right) \\
& =h_{(3)}\left(S^{-1}\left(h_{(2)}\right) a\right) h_{(4)}\left(\gamma^{\prime}\left(S^{-1}\left(h_{(1)}\right) z \otimes 1\right)\right) \\
& =\left(\epsilon\left(h_{(2)}\right) a\right) h_{(3)}\left(\gamma^{\prime}\left(S^{-1}\left(h_{(1)}\right) z \otimes 1\right)\right)=a h_{(2)} \gamma^{\prime}\left(S^{-1}\left(h_{(1)}\right) z \otimes 1\right)=a \gamma(c \otimes h),
\end{aligned}
$$

with the third equality holding because γ^{\prime} is A-linear.
Then we show that it is H-linear as well. If $l \in H, z \otimes h \in Z \otimes H$, then

$$
\begin{aligned}
\gamma(l(z \otimes h)) & =\gamma\left(l_{(1)} z \otimes l_{(2)} h\right)=l_{(3)} h_{(2)} \gamma^{\prime}\left(S^{-1}\left(l_{(2)} h_{(1)}\right)\left(l_{(1)} z\right) \otimes 1\right) \\
& =l_{(3)} h_{(2)} \gamma^{\prime}\left(S^{-1}\left(h_{(1)}\right) S^{-1}\left(l_{(2)}\right) l_{(1)} z \otimes 1\right)=l_{(2)} h_{(2)} \gamma^{\prime}\left(S^{-1}\left(h_{(1)}\right) \epsilon\left(l_{(1)}\right) z \otimes 1\right) \\
& =l h_{(2)} \gamma^{\prime}\left(S^{-1}\left(h_{(1)}\right) z \otimes 1\right)=l \gamma(z \otimes h) .
\end{aligned}
$$

Finally, we show that γ is a B-module section of β. Take $z \otimes h \in Z \otimes H$, we have

$$
\begin{aligned}
\beta(\gamma(z \otimes h)) & \left.=\beta\left(h_{(2)} \gamma^{\prime}\left(S^{-1}\left(h_{(1)}\right) z \otimes 1\right)\right)=h_{(2)} \beta \gamma^{\prime}\left(S^{-1}\left(h_{(1)}\right) z \otimes 1\right)\right)=h_{(2)}\left(S^{-1}\left(h_{(1)} z \otimes 1\right)\right) \\
& =h_{(2)} S^{-1} h_{(1)} z \otimes h_{(3)}=\epsilon\left(h_{(1)}\right) z \otimes h_{(2)}=z \otimes h,
\end{aligned}
$$

where in the third equality, we used that β is H-linear. The claim follows.

Following Happel [10, Section 2.7], we describe the class of distinguished triangles in the derived category $\mathcal{D}(A, H)$.

After localization, any short exact sequence of B-modules, not necessarily A-split, will lead to a distinguished triangle in $\mathcal{D}(A, H)$, as below. Let

$$
\begin{equation*}
0 \longrightarrow X \xrightarrow{u} Y \xrightarrow{v} Z \longrightarrow 0 \tag{4.6}
\end{equation*}
$$

be a short exact sequence of B-modules. Then, similar as in the proof of Lemma 4.3, there is a distinguished triangle in $\mathcal{C}(A, H)$,

$$
\begin{equation*}
X \longrightarrow Y \longrightarrow C_{u} \longrightarrow T(X) \tag{4.7}
\end{equation*}
$$

coming from the diagram (4.4), and C_{u} fits into a short exact sequence of B-modules

$$
\begin{equation*}
0 \longrightarrow X \otimes H \longrightarrow C_{u} \longrightarrow Z \longrightarrow 0 \tag{4.8}
\end{equation*}
$$

By Proposition 2.1 shows that $X \otimes H$, as an H-module, is projective and injective. It follows that $\bar{v}: C_{u} \longrightarrow Z$ is a quasi-isomorphism which is invertible in the derived category. Therefore we obtain a distinguished triangle

$$
\begin{equation*}
X \xrightarrow{\underline{u}} Y \xrightarrow{\underline{v}} Z \xrightarrow{\underline{w}} T(X), \tag{4.9}
\end{equation*}
$$

where \underline{w} is taken to be the composition of $(\bar{v})^{-1}$ by $C_{u} \longrightarrow T X$.

Lemma 4.5. In the same notation as in the above discussion, given any short exact sequence of B-modules $0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$,

$$
X \xrightarrow{\underline{u}} Y \xrightarrow{\underline{v}} Z \xrightarrow{\underline{w}} T(X)
$$

is a distinguished triangle in $\mathcal{D}(A, H)$. Conversely, any distinguished triangle in $\mathcal{D}(A, H)$ is isomorphic to one that arises in this way.

Remark 4.6. An alternative proof of Lemma 4.5 can be obtained by combining Lemma 4.3 with the "bar-resolution" (6.6) of Chapter 6. In particular it will tell us that all distinguished triangles in $\mathcal{D}(A, H)$ are isomorphic to the ones arising as the image of a split short exact sequence of A-modules.

4.3 Examples

As an immediate application of the above construction, we calculate the Grothendieck groups $\left(K_{0}\right)$ of the stable categories $H-\underline{\bmod }(H-\underline{\operatorname{gmod}})$ where H is among the examples we gave in 2.2. Note that in our notation, $H-\underline{\bmod } \cong \mathcal{C}(\mathbb{k}, H) \cong \mathcal{D}(\mathbb{k}, H)$. Recall that $K_{0}(H-$ $\underline{\bmod })\left(K_{0}(H-\underline{\text { gmod }})\right)$ is the abelian group generated by the symbols $[X]$, where $[X]$'s are isomorphism classes of finite dimensional objects in $H-\underline{\bmod }(H-\operatorname{gmod})$, modulo the relations $[Y]=[X]+[Z]$ whenever $X \longrightarrow Y \longrightarrow Z \longrightarrow T(X)$ is a distinguished triangle in $H-\underline{\bmod }$ (H - gmod). More general discussion about the Grothendieck groups of $\mathcal{D}(A, H)$ will be given in Chapter 7.

As a matter of notation, for any graded module X over some graded ring, we will denote by $X\{r\}$ the same underlying module but with its grading shifted up by r.

- Let H be the exterior algebra $\Lambda^{*} V$ on an $(n+1)$-dimensional vector space V over \mathbb{k}, where we set non-zero elements of V to be of degree one. Then H is a graded Hopf super algebra and we will calculate $K_{0}(H-\underline{\text { gmod }})$. Since H is local with the
maximal ideal $\boldsymbol{\Lambda}^{>0} V$, there is only one simple H-module $\mathbb{k}_{0}:=\left(\boldsymbol{\Lambda}^{*} V\right) /\left(\boldsymbol{\Lambda}^{>0} V\right)$ up to a grading shift. Therefore $K_{0}(H-\underline{\text { gmod }})$ is generated as a $\mathbb{Z}\left[q, q^{-1}\right]$ module by $\left[\mathbb{k}_{0}\right]$, where $q\left[\mathbb{k}_{0}\right]:=\left[\mathbb{k}_{0}\{1\}\right]$. Again since H is local and thus indecomposable as a left module over itself, the only relation imposed on $\left[\mathbb{k}_{0}\right]$ comes from H being the iterated extension of the shifted simple module \mathbb{k}_{0} :

$$
\begin{equation*}
0 \subset \Lambda^{n+1} V \subset \cdots \subset \Lambda^{\geq k} V \subset \Lambda^{\geq k-1} V \subset \cdots \subset \Lambda^{\geq 0} V=H \tag{4.10}
\end{equation*}
$$

where $\boldsymbol{\Lambda}^{\geq k} V / \boldsymbol{\Lambda}^{\geq k+1} V \cong\left(\mathbb{k}_{0}\{k\}\right)^{\oplus\binom{n+1}{k}}$. Hence using Lemma 4.3 inductively, we get

$$
0=[H]=\sum_{k=0}^{n+1}\binom{n+1}{k} q^{k}\left[\mathbb{k}_{0}\right]=(1+q)^{n+1}\left[\mathbb{k}_{0}\right] .
$$

Therefore it follows that

$$
\begin{equation*}
K_{0}(H-\underline{\operatorname{gmod}}) \cong \mathbb{Z}[q] /\left((1+q)^{n+1}\right) \tag{4.11}
\end{equation*}
$$

This ring is isomorphic to the cohomology ring of the projective space $\mathbb{P}(V)$, and this is no coincidence. In fact there is an equivalence of triangulated categories $H-\operatorname{gmod} \cong$ $\mathcal{D}^{b}(\operatorname{Coh}(\mathbb{P}(V)))$, the bounded derived category of coherent sheaves on $\mathbb{P}(V)$ (see [9, Section IV.3] for the details).

- Consider the graded Hopf algebra $H=\mathbb{k}[\partial] /\left(\partial^{p}\right)$, where \mathbb{k} is of positive characteristic p. As shown in [17, Section 3], $K_{0}(H-\underline{\text { gmod }})$ is again generated by the graded simple one dimensional module $\mathbb{k}_{0}:=H /(\partial)$, subject to the only relation

$$
\begin{equation*}
0=[H]=\left[\mathbb{k}_{0}\right]+q\left[\mathbb{k}_{0}\right]+\cdots+q^{p-1}\left[\mathbb{k}_{0}\right] . \tag{4.12}
\end{equation*}
$$

Therefore the Grothendieck group $K_{0}(H-\underline{\text { gmod }}) \cong \mathbb{Z}\left[q, q^{-1}\right] /\left(1+q+\cdots+q^{p-1}\right) \cong$ $\mathbb{Z}[\zeta]$, the ring of p-th cyclotomic integers $(\zeta$, being the image of q, is a primitive p -
th root of unity). If we forget about the grading, the same reasoning above gives us $K_{0}(H-\underline{\bmod }) \cong \mathbb{Z} / p \mathbb{Z}$, the field of p elements. It was this observation that lead Khovanov to initiate the program of categorification at certain roots of unity. See [17] for more details about the motivation.

- Let $H=H_{n}$ be the Taft algebra as in Example 2.2. Inverting Majid's bosonization process [25], one can identify the category of H_{n}-modules with the category whose objects are $\mathbb{Z} / n \mathbb{Z}$-graded $\mathbb{Q}[\zeta]$-vector spaces $\oplus_{i=0}^{n-1} V_{i}$, together with a map $d: V_{i} \longrightarrow$ V_{i+1} of degree 1 such that $d^{n}=0$, and morphisms are homogenous degree zero maps of graded vector spaces commuting with d. Under this identification, it is readily seen that the indecomposable projective modules are precisely the shifts of the module

$$
\begin{equation*}
P_{0}:=(\mathbb{Q}[\zeta] \xrightarrow{\cdot 1} \mathbb{Q}[\zeta] \xrightarrow{\cdot 1} \cdots \xrightarrow{\cdot 1} \mathbb{Q}[\zeta]), \tag{4.13}
\end{equation*}
$$

where there are n terms of \mathbb{Q} and the starting term sits in degree zero. The simple modules are the grading shifts of the one dimensional module $\mathbb{Q}[\zeta]_{0}:=\mathbb{Q}[\zeta]$, with d acting as zero. Using the same argument as above, we see that $K_{0}\left(H_{n}-\underline{\bmod }\right)$ is generated as an $\mathbb{Z}\left[q, q^{-1}\right] /\left(q^{n}-1\right)$-module by $\left[\mathbb{Q}[\zeta]_{0}\right]$ subject to the only relation

$$
\begin{equation*}
0=\left[P_{0}\right]=\left[\mathbb{Q}[\zeta]_{0}\right]+q\left[\mathbb{Q}[\zeta]_{0}\right]+\cdots+q^{n-1}\left[\mathbb{Q}[\zeta]_{0}\right] \tag{4.14}
\end{equation*}
$$

and thus $K_{0}\left(H_{n}-\underline{\bmod }\right) \cong \mathbb{Z}[q] /\left(1+q+\cdots+q^{n-1}\right)$. In particular, when $n=p$, this gives rise to a characteristic zero categorification of the rings of the p-th cyclotomic integers.

Chapter 5

Morphism spaces

In this chapter we further analyze the Hom-spaces introduced previously for the categories $B-\bmod$ and $\mathcal{C}(A, H)$. We will see that they are in fact the spaces of H-invariants of some naturally enriched Hom-spaces that we will introduce in this chapter.

5.1 The Hopf module Hom

As before, we assume that H is a finite dimensional (graded) Hopf algebra over \mathbb{k}, or more generally, a finite dimensional Hopf-algebra object in some \mathbb{k}-linear symmetric monoidal category (for an example of such an object, take a graded super Hopf algebra in the category of graded super vector spaces). Throughout we will continue with the assumption that A is a left H-module algebra and the notation $B=A \# H$ (see the main example [2.8).

Definition 5.1. Let M, N be B-modules. The vector space $\operatorname{Hom}_{A}(M, N)$ becomes an H-module by defining for any $f \in \operatorname{Hom}_{A}(M, N), m \in M$, and $h \in H$

$$
(h \cdot f)(m):=\sum h_{(2)} f\left(S^{-1}\left(h_{(1)}\right) m\right) .
$$

When A and H are \mathbb{Z}-graded and M, N are graded modules, we define the enriched HOM_{A}
space to be

$$
\operatorname{HOM}_{A}(M, N)=\bigoplus_{r \in \mathbb{Z}} \operatorname{Hom}_{A}(M, N\{r\}),
$$

where $N\{r\}$ denotes the same underlying A-module N with grading shifted up by r, and the Hom space on the right hand side stands for the space of degree preserving maps of graded A-modules. The graded H-module structure on $\operatorname{HOM}_{A}(M, N)$ is given by the same formula for homogeneous elements in H as that in the ungraded case above.

It is readily seen that when $M=A$, we have $\operatorname{Hom}_{A}(A, N) \cong N$, and in the graded case, $\operatorname{HOM}_{A}(A, N) \cong N$, both as (graded) H-modules.

5.2 The space of chain maps

The newly defined H-module $\operatorname{Hom}_{A}(M, N)$ (resp. graded H-module $\operatorname{HOM}_{A}(M, N)$ in the graded case) for any hopfological modules M, N is closely related to the Hom spaces in the abelian category $B-\bmod$ and the homotopy category $\mathcal{C}(A, H)$. We clarify this relation in this section. We will mostly consider the ungraded case, as the graded case follows by similar arguments.

To avoid potential confusion, we will denote the abstract one dimensional trivial H module by \mathbb{k}_{0}, i.e. $\mathbb{k}_{0} \cong \mathbb{k} \cdot v_{0}$, where for any $h \in H$

$$
\begin{equation*}
h \cdot v_{0}=\epsilon(h) v_{0} . \tag{5.1}
\end{equation*}
$$

When H is graded, we let v_{0} be homogeneous of degree zero.

Lemma 5.2. Let M, N be hopfological modules over B. Any $f \in \operatorname{Hom}_{B}(M, N)$, regarded as an element in $\operatorname{Hom}_{A}(M, N)$, spans a trivial submodule of H, i.e. for all $h \in H$,

$$
h \cdot f=\epsilon(h) f .
$$

Conversely, any $f \in \operatorname{Hom}_{A}(M, N)$ on which H acts trivially extends to a B-module homomorphism. In other words, we have a canonical isomorphism of \mathbb{k}-vector spaces:

$$
\operatorname{Hom}_{B}(M, N)=\operatorname{Hom}_{H}\left(\mathbb{k}_{0}, \operatorname{Hom}_{A}(M, N)\right)
$$

Proof. Since B contains H as a subalgebra, f is H-linear. Therefore for any $h \in H, m \in M$, we have

$$
(h \cdot f)(m)=h_{(2)} f\left(S^{-1}\left(h_{(1)}\right) \cdot m\right)=h_{(2)} S^{-1}\left(h_{(1)}\right) f(m)=\epsilon(h) f(m)
$$

For the converse, it suffices to see that f is H-linear:

$$
\begin{aligned}
f(h \cdot m) & =\epsilon\left(h_{(2)}\right) f\left(h_{(1)} \cdot m\right)=\left(h_{(2)} \cdot f\right)\left(h_{(1)} \cdot m\right)=h_{(3)} \cdot f\left(S^{-1}\left(h_{(2)}\right) \cdot h_{(1)} \cdot m\right) \\
& =h_{(2)} \cdot f\left(\epsilon\left(h_{(1)}\right) m\right)=h \cdot f(m) .
\end{aligned}
$$

This finishes the proof of the first part of the lemma. The last claim is clear.
The right hand side of the canonical identification in the lemma involves taking H invariants, of which we now recall the definition.

Definition 5.3. For any H-module V, its space of H-invariants, denoted $\mathcal{Z}(V)$, is defined to be the \mathbb{k}-vector space (in fact an H-submodule):

$$
\mathcal{Z}(V):=\operatorname{Hom}_{H}\left(\mathbb{k}_{0}, V\right) \cong\{v \in V \mid h \cdot v=\epsilon(h) v, \forall h \in H\} \cong V^{H}
$$

Likewise, when H and V are graded, we define the total space of homogeneous H-invariants $\mathcal{Z}^{*}(V)$ to be the graded \mathbb{k}-vector space

$$
\mathcal{Z}^{*}(V):=\operatorname{HOM}_{H-\operatorname{gmod}}\left(\mathbb{k}_{0}, V\right) \cong V^{H}
$$

Moreover, in the graded case, the subspace of homogeneous degree n invariants is defined to
be the homogeneous degree n part of $\mathcal{Z}^{*}(V)$.

$$
\mathcal{Z}^{n}(V):=\{v \in V \mid \operatorname{deg}(v)=n, h \cdot v=\epsilon(h) v, \forall h \in H\}
$$

so that $\mathcal{Z}^{*}(V)=\oplus_{n \in \mathbb{Z}} \mathcal{Z}^{n}(V)$.

In this notation, we can interpret the subspace of H-invariants in $\operatorname{Hom}_{A}(M, N)$ as the analogous notion of "the space of chain maps" in the DG case between two hopfological modules M, N. Indeed, the above lemma says that

$$
\begin{equation*}
\operatorname{Hom}_{B}(M, N) \cong \mathcal{Z}\left(\operatorname{Hom}_{A}(M, N)\right)=\left\{f \in \operatorname{Hom}_{A}(M, N) \mid h \cdot f=\epsilon(h) f, \forall h \in H\right\} \tag{5.2}
\end{equation*}
$$

Moreover, it allows us to realize the bifunctor $\operatorname{Hom}_{B}(-,-)$ as the composition of functors

$$
\begin{aligned}
& B-\bmod \times B-\bmod \quad \longrightarrow \quad \mathbb{m}-\bmod \quad \longrightarrow \quad \mathbb{k} \\
& (M, N) \quad \mapsto \operatorname{Hom}_{A}(M, N) \quad \mapsto \quad \mathcal{Z}\left(\operatorname{Hom}_{A}(M, N)\right),
\end{aligned}
$$

where \mathbb{k} - vect stands for the category of \mathbb{k}-vector spaces. From now on, we will refer to $\mathcal{Z}\left(\operatorname{Hom}_{A}(M, N)\right)=\operatorname{Hom}_{B}(M, N)$ as the space of chain maps between the two hopfological modules M and N.

This immediately raises the related question: What is the analogue of the space of chain maps up to homotopy?

5.3 The space of chain maps up to homotopy

Our main goal in this chapter is to exhibit and explain the following commutative diagram:

Here Q is the natural localization (Verdier quotient) functor, the slanted arrow on the left is the composition of Q with $\operatorname{Hom}_{A}(-,-)$, and \mathcal{H} is the functor of taking "stable invariants" (see Definition(5.6). We put π on a double arrow to indicate that it is a natural transformation between two functors $\pi: \mathcal{Z} \Rightarrow \mathcal{H} \circ Q$. As in the usual DG case, π will play the role of passing from the space of cocycles to cohomology, and we will be more precise about its definition after the next lemma. The composition of \mathcal{Z} with $\operatorname{Hom}_{A}(-,-)$ gives the bifunctor $\operatorname{Hom}_{B}(-,-)$, while the functor $\mathcal{H} \circ Q \circ \operatorname{Hom}_{A}(-,-)$ (we will omit Q when no confusion can arise) is just the previously defined $\operatorname{Hom}_{\mathcal{C}(A, H)}(-,-)$ of the homotopy category, which is labeled as the dotted arrow. Therefore, we can roughly summarize the diagram as saying that, the functor \mathcal{Z} of taking H-invariants descends to a functor \mathcal{H} on the stable category $H-\underline{\bmod }$ (this explains the terminology we use for \mathcal{H}), and the space of stable invariants $\mathcal{H}\left(\operatorname{Hom}_{A}(M, N)\right)$ computes the "chain maps up to homotopy", which turns out to be the same as the hom space from M to N in the homotopy category $\mathcal{C}(A, H)$.

To do this, we first need to take a closer look at the ideal of null-homotopic morphisms in $B-\bmod$. By the definition of null-homotopy in $B-\bmod$ (see Definition 2.5 and Lemma (2.6), to construct $\operatorname{Hom}_{\mathcal{C}(A, H)}(M, N)$, we need to \bmod out $\operatorname{Hom}_{B}(M, N)$ by the subspace of morphisms that factor through the natural inclusion map $M \xrightarrow{\lambda_{M}} M \otimes H$. Denote this subspace by $I(M, N)$. Now let us look at its preimage in $\operatorname{Hom}_{A}(M, N)$ under the isomorphism
of Lemma 5.2,

Lemma 5.4. Under the canonical isomorphism of Lemma 5.2, for any two hopfological modules M and N, the space $I(M, N)$ of null-homotopic morphisms in $\operatorname{Hom}_{B}(M, N)$ is naturally identified with

$$
I(M, N) \cong \Lambda \cdot \operatorname{Hom}_{A}(M, N),
$$

where the right hand side is regarded as a \mathbb{k}-subspace of $\mathcal{Z}\left(\operatorname{Hom}_{A}(M, N)\right)$. A similar result holds in the graded case as well.

Proof. That $\Lambda \cdot \operatorname{Hom}_{A}(M, N)$ is contained in $\mathcal{Z}\left(\operatorname{Hom}_{A}(M, N)\right)$ follows easily from the left integral property $h \cdot \Lambda=\epsilon(h) \Lambda$. We need to show that, if $f \in \mathcal{Z}\left(\operatorname{Hom}_{A}(M, N)\right) \cong \operatorname{Hom}_{B}(M, N)$ satisfies $f=\Lambda \cdot g$ for some $g \in \operatorname{Hom}_{A}(M, N)$, then f is null-homotopic as a B-module map, i.e. it factors through as $f: M \xrightarrow{\lambda_{M}} M \otimes H \xrightarrow{\tilde{g}} N$ for some B-module map \tilde{g}, and vice versa. To do this, we extend g to be a B-module map $\tilde{g}: M \otimes H \longrightarrow N$, by setting $\tilde{g}(m \otimes h):=(h \cdot g)(m)$. This map \tilde{g} is H-linear since for any $h, l \in H$ and $m \in M$

$$
\begin{aligned}
\tilde{g}(h \cdot(m \otimes l)) & =\tilde{g}\left(h_{(1)} \cdot m \otimes h_{(2)} l\right)=\left(h_{(2)} l \cdot g\right)\left(h_{(1)} \cdot m\right) \\
& =h_{(3)} l_{(2)} g\left(S^{-1}\left(h_{(2)} l_{(1)}\right) \cdot h_{(1)} \cdot m\right)=h_{(3)} l_{(2)} g\left(S^{-1}\left(l_{(1)}\right) S^{-1}\left(h_{(2)}\right) h_{(1)} \cdot m\right) \\
& =h_{(2)} l_{(2)} g\left(\epsilon\left(h_{(1)}\right) S\left(l_{(1)}\right) \cdot m\right)=h\left(l_{(2)} g\left(S^{-1}\left(l_{(1)}\right) \cdot m\right)\right) \\
& =h((l \cdot g)(m))=h \tilde{g}(m \otimes l) .
\end{aligned}
$$

Conversely, given an $f \in \operatorname{Hom}_{B}(M, N)=\operatorname{Hom}_{A}(M, N)^{H}$ which is null-homotopic, we need to exhibit a $g \in \operatorname{Hom}_{A}(M, N)$ so that $f=\Lambda \cdot g$. The hint is to reverse the above equalities and define g to be the composition

$$
g: M \cong M \otimes 1 \hookrightarrow M \otimes H \xrightarrow{\tilde{g}} N .
$$

This is only an A-module map, since the first identification is only A-linear. Then, for any
$h \in H, m \in M$, we have

$$
\begin{aligned}
\tilde{g}(m \otimes h) & =\tilde{g}\left(\epsilon\left(h_{(1)}\right) m \otimes h_{(2)}\right)=\tilde{g}\left(h_{(2)} S^{-1}\left(h_{(1)}\right) \cdot m \otimes h_{(3)}\right) \\
& =\tilde{g}\left(h_{(2)} \cdot\left(S^{-1}\left(h_{(1)}\right) \cdot m \otimes 1\right)\right)=h_{(2)} \tilde{g}\left(S^{-1}\left(h_{(1)}\right) \cdot m \otimes 1\right) \\
& =h_{(2)} g\left(S^{-1}\left(h_{(1)}\right) \cdot m\right)=(h \cdot g)(m),
\end{aligned}
$$

where the fourth equality uses that \tilde{g} is H-linear by assumption, and the fifth equality holds by definition of g. Now the lemma follows since $f(m)=\tilde{g}\left(\lambda_{M}(m)\right)=\tilde{g}(m \otimes \Lambda)=$ $(\Lambda \cdot g)(m)$.

In particular, when $A=\mathbb{k}$, we obtain an explicit way of computing morphism spaces in the category $\mathcal{C}(\mathbb{k}, H)=H-\underline{\text { mod }}$.

Corollary 5.5. Let H be a finite dimensional Hopf algebra over \mathbb{k}. The morphism space of two H-modules M, N in the stable category $H-\underline{\bmod }$ is canonically isomorphic to the quotient space $\left(\operatorname{Hom}_{\mathfrak{k}}(M, N)\right)^{H} /\left(\Lambda \cdot \operatorname{Hom}_{\mathfrak{k}}(M, N)\right)$. In other words, we have a bifunctorial isomorphism:

$$
\operatorname{Hom}_{H-\underline{\bmod }}(M, N) \cong \mathcal{Z}\left(\operatorname{Hom}_{\mathbb{k}}(M, N)\right) /\left(\Lambda \cdot \operatorname{Hom}_{\mathbb{k}}(M, N)\right)
$$

Likewise, in the graded case,

$$
\operatorname{HOM}_{H-\underline{-g m o d}}(M, N) \cong \mathcal{Z}^{*}\left(\operatorname{HOM}_{\mathfrak{k}}(M, N)\right) /\left(\Lambda \cdot \operatorname{HOM}_{\mathbb{k}}(M, N)\right)
$$

The right hand side of the above isomorphism is defined for any H-module V in place of $\operatorname{Hom}_{A}(M, N)$, which we formalize in the following definition.

Definition 5.6. For any H-module V we define its space of stable invariants to be the \mathbb{k}-vector space

$$
\mathcal{H}(V):=\mathcal{Z}(V) /(\Lambda \cdot V) \cong V^{H} /(\Lambda \cdot V)
$$

It is easily seen that $\mathcal{H}: H-\bmod \longrightarrow \mathbb{k}-$ vect is a functor. Likewise, in the graded case, we define the total space of graded stable invariants to be

$$
\mathcal{H}^{*}(V):=\mathcal{Z}^{*}(V) /(\Lambda \cdot V) \cong V^{H} /(\Lambda \cdot V)
$$

while the space of degree n stable invariants, denoted $\mathcal{H}^{n}(V)$, is defined to be the homogeneous degree n part of $\mathcal{H}^{*}(V)$, for any $n \in \mathbb{Z}$.

Corollary 5.7. The functor $\mathcal{H}: H-\bmod \longrightarrow \mathbb{k}$-vect descends to a cohomological functor

$$
\mathcal{H}: H-\underline{\bmod } \longrightarrow \mathbb{k}-\text { vect. }
$$

Here, by cohomological we mean that \mathcal{H} takes distinguished triangles in $H-\underline{\bmod }$ into long exact sequences of \mathbb{k}-vector spaces. Likewise, in the graded case,

$$
\begin{gathered}
\mathcal{H}^{*}: H-\underline{\operatorname{gmod}} \longrightarrow \mathbb{k} \text {-gvect }, \\
\mathcal{H}^{n}: H-\underline{\operatorname{gmod}} \longrightarrow \mathbb{k}-\text { vect }
\end{gathered}
$$

are cohomological functors as well.

Proof. Taking M to be the trivial module \mathbb{k}_{0} in Corollary 5.5, we obtain

$$
\mathcal{H}(N) \cong \operatorname{Hom}_{H-\underline{\bmod }}\left(\mathbb{k}_{0}, N\right) .
$$

Thus \mathcal{H} descends to the stable category, and it takes distinguished triangles into long exact sequences. The graded case follows similarly.

Remark 5.8 (An alternative proof of Corollary 5.7). This corollary can be proven independent of Lemma 5.4, which we give here.

- Claim: Let V be any H-module and $v_{0} \in V$ a non-zero vector on which H acts trivially.

Then the inclusion map $\mathbb{k} v_{0} \hookrightarrow V$ becomes 0 in $H-\underline{\bmod }$ if and only if there exists an element $v \in V$ such that

$$
\Lambda \cdot v=v_{0}
$$

Thus we have a canonical isomorphism of \mathbb{k}-vector spaces

$$
\operatorname{Hom}_{H-\underline{\bmod }}\left(\mathbb{k}_{0}, V\right) \cong \mathcal{Z}(V) /(\Lambda \cdot V) \cong \operatorname{Hom}_{H-\bmod }\left(\mathbb{k}_{0}, V\right) /(\Lambda \cdot V),
$$

which is functorial in V.

Proof of claim. The inclusion of the trivial submodule

$$
\mathbb{k}_{0} \cong \mathbb{k} \Lambda \hookrightarrow H
$$

implies that the injective envelope of the trivial submodule $\mathbb{k} \Lambda$ is a direct summand of H, since H is self-injective (part 2 of Proposition 2.1). Denote the injective envelope by I. There is a direct sum decomposition $H=I \oplus I^{\prime}$ of H-modules. Let $e: H \longrightarrow I$ be the projection. Since $\Lambda e(1)=e(\Lambda)=\Lambda \in I, e(1) \in I$ is non-zero.

Now let V be as in the lemma and $\mathbb{k} v_{0} \hookrightarrow V$ be an inclusion of a trivial submodule which becomes stably zero. Then the inclusion map must factor through an injective module, which we may assume to be the injective envelope of $\mathbb{k} v_{0}$:

$$
\mathbb{k} v_{0} \cong \mathbb{k}_{0} \longrightarrow I \xrightarrow{f} V .
$$

The image of $e(1)$ under f is nonzero since $\Lambda f(e(1))=f(\Lambda e(1))=f(\Lambda)=v_{0}$. The "only if" part follows by taking $v=f(e(1))$.

Conversely if we have such a v that $\Lambda \cdot v=v_{0}$, we will show that V contains an injective summand isomorphic to I containing $\mathbb{k} v_{0}$, and this will finish the proof of the lemma. Since an injective submodule of V is always a direct summand, without loss of generality, we may
assume that $V=H \cdot v:=\{h \cdot v \mid h \in H\}$. Consider the following commutative diagram:

where f is the composition of the inclusion of I into H and the action map $H \longrightarrow H$. v, and g exists by injectivity of I and satisfies $g\left(v_{0}\right)=\Lambda$. Notice that $f \neq 0$ because $\Lambda f(e(1))=f(\Lambda e(1))=f(\Lambda)=\Lambda v=v_{0}$ by our assumption. Then the composition $g \circ f$ is an endomorphism of I satisfying $g \circ f(\Lambda)=g\left(v_{0}\right)=\Lambda$. Since I is indecomposable, $g \circ f$ is an automorphism. Therefore f is an injective homomorphism and maps I isomorphically onto its image. Again by the injectivity of I, the image is a direct summand of $H \cdot v$, as claimed. The last statement is easy.

Remark 5.9. One possible confusion about the definition of $\mathcal{H}\left(\operatorname{HOM}_{A}(M, N)\right)$ is that, although this space plays the role analogous to the total space of chain maps up to homotopy of all possible degrees in the DG case, the latter in turn being the total cohomology group of the usual RHom complex, it is in general different from the total cohomology we defined earlier using the ("stablized") restriction functor Res : $\mathcal{C}(A, H) \longrightarrow H$-gmod for an arbitrary H. In fact by Corollary 5.7, \mathcal{H} is cohomological, and we lose information if we forget about its derived terms. We will return to this point later when discussing derived functors.

We summarize the previous results of this subsection in the next proposition, which is just a reformulation of the commutative diagram we exhibited at the beginning of this subsection.

Proposition 5.10. Let H be a finite dimensional Hopf algebra over \mathbb{k} and A be a left H -
module-algebra. There are identifications of bifunctors:

$$
\begin{gathered}
\mathcal{Z}\left(\operatorname{Hom}_{A}(-,-)\right) \cong \operatorname{Hom}_{B}(-,-): B-\bmod \times B-\bmod \longrightarrow \mathbb{k}-\mathrm{vect}, \\
\mathcal{H}\left(\operatorname{Hom}_{A}(-,-)\right) \cong \operatorname{Hom}_{\mathcal{C}(A, H)}(-,-): B-\bmod \times B-\bmod \longrightarrow \mathbb{k}-\mathrm{vect},
\end{gathered}
$$

i.e. for any hopfological modules M, N over $B=A \# H$, there are isomorphism of \mathbb{k}-vector spaces

$$
\begin{gathered}
\mathcal{Z}\left(\operatorname{Hom}_{A}(M, N)\right) \cong \operatorname{Hom}_{B}(M, N), \\
\mathcal{H}\left(\operatorname{Hom}_{A}(M, N)\right) \cong \operatorname{Hom}_{\mathcal{C}(A, H)}(M, N),
\end{gathered}
$$

bifunctorial in M and N.

Proof. The first identification is Lemma 5.2, while the second follows from Lemma[2.6]Lemma 5.4, and the definition of \mathcal{H}.

The identifications in the proposition above also show that taking \mathcal{Z} or \mathcal{H} commutes with direct sums of Hom spaces. The following corollary will be needed later when dealing with compact objects.

Corollary 5.11. Let I be any index set and $M_{i}, N_{i}, i \in I$ be hopfological modules. Then

$$
\begin{aligned}
& \mathcal{Z}\left(\oplus_{i \in I} \operatorname{Hom}_{A}\left(M_{i}, N_{i}\right)\right) \cong \oplus_{i \in I} \mathcal{Z}\left(\operatorname{Hom}_{A}\left(M_{i}, N_{i}\right)\right) ; \\
& \mathcal{H}\left(\oplus_{i \in I} \operatorname{Hom}_{A}\left(M_{i}, N_{i}\right)\right) \cong \oplus_{i \in I} \mathcal{H}\left(\operatorname{Hom}_{A}\left(M_{i}, N_{i}\right)\right) .
\end{aligned}
$$

Proof. This follows readily from the proposition and the fact that $\operatorname{Hom}_{H}\left(\mathbb{k}_{0},-\right)$ commutes with arbitrary direct sums.

5.4 Examples

We will give three examples on what homotopic morphisms look like for some of the Hopf algebras we discussed in Chapter 3. By Lemma 5.4 these are precisely the morphisms of the form $f=\Lambda \cdot h$ for some $h \in \operatorname{Hom}_{A}(M, N)$. Recall that

$$
\begin{equation*}
(\Lambda \cdot h)(-)=\sum \Lambda_{(2)} h\left(S^{-1}\left(\Lambda_{(1)}\right)(-)\right) \tag{5.4}
\end{equation*}
$$

- When H is the super Hopf algebra $\mathbb{k}[d] /\left(d^{2}\right)$, (i.e. we are in the usual DG algebra case), $\Lambda=d$ and for any homogeneous $h \in \operatorname{Hom}_{A}(M, N)$ of degree $|h|$,

$$
\begin{equation*}
d \cdot h=d h+(-1)^{|h|+1} h d . \tag{5.5}
\end{equation*}
$$

The minus signs come from switching d and h in the category of super vector spaces and $S^{-1}(d)=-d$. We also recall the familiar diagram depicting a null-homotopic morphism in the DG case, for comparison with the next two examples.

- Let $H=H_{n}$ be the Taft algebra. In the examples of Chapter 2, we have seen that a left integral of H is given by $\Lambda=\frac{1}{n}\left(\sum_{i=0}^{n-1} K^{i}\right) d^{n-1}$. Notice that if $g=\sum_{i=0}^{n-1} g_{i} \in$ $\operatorname{Hom}_{A}(M, N)$ is a decomposition of g into its homogeneous components,

$$
\begin{equation*}
\Lambda \cdot g=1 / n\left(\sum_{i=0}^{n-1} K^{i}\right) g_{j}=1 / n\left(\sum_{i=0}^{n-1} \zeta^{i j}\right) g_{j} \tag{5.7}
\end{equation*}
$$

which can be non-zero only when $j=0$, in which case it equals g_{0}. i.e. $1 / n\left(\sum_{i=0}^{n-1} K^{i}\right)$ projects any vector onto its degree zero component. Thus the effect of applying Λ to
any $h \in \operatorname{Hom}_{A}(M, N)$ will only be seen in its homogeneous of degree $(1-n)$ part. Without loss of generality we will assume $\operatorname{deg}(h)=1-n$. Then using the commutator relations, we obtain that, on such an h,

$$
\begin{aligned}
d^{n-1} \cdot h & =\sum_{j=0}^{n-1}(-1)^{n-1-j} \zeta^{(1-n)(n-1-j)}\binom{n-1}{j}{ }_{\zeta} d^{j} \circ h \circ d^{n-1-j} \\
& =\sum_{j=0}(-1)^{n} \zeta^{-(j+1)(j+2) / 2} d^{j} \circ h \circ d^{n-1-j},
\end{aligned}
$$

where $\binom{n}{k}_{\zeta}=\frac{(n-1) \zeta!}{(k)!!(n-1-k) \zeta!}$ and for any $j \in \mathbb{N},(j)_{\zeta}:=1+\zeta+\cdots+\zeta^{j-1}$ is the unsymmetrized quantum integer j. In the last step, we used that $\binom{n-1}{j} \zeta$ equals

$$
\frac{\left(1+\cdots+\zeta^{n-1}\right) \cdots\left(1+\cdots+\zeta^{n-j-1}\right)}{\left(1+\cdots+\zeta^{j-1}\right) \cdots 1}=\left(-\zeta^{-1}\right) \cdots\left(-\zeta^{-j-1}\right)=(-1)^{j+1} \zeta^{(j+1)(j+2) / 2}
$$

Since each of the coefficient $(-1)^{n} \zeta^{-(j+1)(j+2) / 2}$ is non-zero, we may rescale h componentwise by this scalar to obtain the formula for a null-homotopic f (c.f. [11, 32]):

$$
\begin{equation*}
f=\sum_{j=0}^{n-1} d^{j} \circ h \circ d^{n-1-j} \tag{5.8}
\end{equation*}
$$

- Consider the (graded) Hopf algebra $H=\mathbb{k}[\partial] /\left(\partial^{p}\right)$, where \mathbb{k} is of positive characteristic p. Similar as above, if $h \in \operatorname{Hom}_{A}(M, N)$, we have

$$
\begin{equation*}
\partial^{p-1}(h)=\sum_{i=0}^{p-1}(-1)^{p-1-i}\binom{p-1}{i} \partial^{i} \circ h \circ \partial^{p-1-i}=\sum_{i=0}^{p-1} \partial^{i} \circ h \circ \partial^{p-1-i} . \tag{5.9}
\end{equation*}
$$

The last equality holds because $(-1)^{i}\binom{p-1}{i}=1$ in \mathbb{k}. We depict such a morphism in the following diagram, in comparison with the previous cases.

Chapter 6

Cofibrant modules

Adapting the corresponding definition from Keller [14, 15] on the DG case, we define the notion of cofibrant hopfological modules and give a functorial cofibrant resolution (i.e. quasiisomorphism) $\mathbf{p} M \longrightarrow M$ for any hopfological module M. This will be utilized later when discussing compact hopfological modules, derived functors and derived equivalences between hopfological module categories.

In this chapter H will be assumed as before to be a finite dimensional Hopf algebra over a base field \mathbb{k}, A be an H-module algebra, and we set $B=A \# H$.

6.0.1 Cofibrant modules

First we introduce the notion of "cofibrant hopfological modules" in analogy with the DG case.

Definition 6.1. A B-module P is called cofibrant if for any surjective quasi-isomorphism $M \rightarrow N$ of B-modules, the induced map of \mathbb{k}-vector spaces

$$
\mathcal{Z}\left(\operatorname{Hom}_{A}(P, M)\right) \longrightarrow \mathcal{Z}\left(\operatorname{Hom}_{A}(P, N)\right)
$$

is surjective. In the graded case, we require instead that the graded H-module map

$$
\mathcal{Z}^{*}\left(\operatorname{HOM}_{A}(P, M)\right) \longrightarrow \mathcal{Z}^{*}\left(\operatorname{HOM}_{A}(P, N)\right)
$$

be surjective in the category of graded \mathbb{k}-vector spaces. Notice that this is equivalent to requiring the same condition on \mathcal{Z}^{0}, as $M\{r\} \longrightarrow N\{r\}$ is a surjective quasi-isomorphism, for any $r \in \mathbb{Z}$, whenever $M \longrightarrow N$ is.

Recall from Lemma 5.2 that, $\mathcal{Z}\left(\operatorname{Hom}_{A}(P, M)\right)=\operatorname{Hom}_{B}(P, M)$ consists of "chain maps" between the hopfological modules P and M. Therefore the definition just says that any B-module map from P to N factors through a B-module map from P to M. It is rather straightforward to see that being a "cofibrant module" in the case of DG modules implies the usual sense of being "K-projective", as described, for instance, in Bernstein and Lunts [4]. It says that for any acyclic DG-module M, the complex $\operatorname{HOM}_{A}(P, M)$ is acyclic as a $\mathbb{k}[d] /\left(d^{2}\right)$-module, i.e. the homology of this complex is 0 . Indeed, it can be verified by applying the defining property to the surjective quasi-isomorphism

$$
\begin{equation*}
\text { Cone }\left(\operatorname{Id}_{M}\right) \longrightarrow M, \tag{6.1}
\end{equation*}
$$

and observing that $\operatorname{HOM}_{A}\left(P, \operatorname{Cone}\left(\operatorname{Id}_{M}\right)\right)=\operatorname{Cone}\left(\operatorname{Id}_{\operatorname{HOM}_{A}(P, M)}\right)$ is contractible. The following lemma is motivated by this discussion.

Lemma 6.2. Let P be a cofibrant hopfological module. Then, for any acyclic module $M \in B-\bmod ($ resp. $B-\mathrm{gmod})$, the $H-$ module $\operatorname{Hom}_{A}(P, M)\left(\right.$ resp. $\left.\operatorname{HOM}_{A}(P, M)\right)$ has trivial stable invariants:

$$
\mathcal{H}\left(\operatorname{Hom}_{A}(P, M)\right)=0\left(\operatorname{resp} . \mathcal{H}^{*}\left(\operatorname{HOM}_{A}(M, N)\right)=0\right)
$$

and thus in the homotopy category, we have

$$
\operatorname{Hom}_{\mathcal{C}(A, H)}(P, M)=0
$$

Proof. The proof follows from the discussion before the lemma by replacing the surjection Cone $\left(\operatorname{Id}_{M}\right) \longrightarrow M$ with the cone in the hopfological case $M \otimes H \xrightarrow{\operatorname{Id}_{M} \otimes \epsilon} M$. More precisely, let P be a cofibrant hopfological module. Apply $\operatorname{Hom}_{A}(P,-)$ to the B-module map $M \otimes$ $H \xrightarrow{\operatorname{Id}_{M} \otimes \epsilon} M$, we obtain the induced map

$$
\mathcal{Z}\left(\operatorname{Hom}_{A}(P, M \otimes H)\right) \rightarrow \mathcal{Z}\left(\operatorname{Hom}_{A}(P, M)\right)
$$

which is a surjection by the cofibrance assumption. Therefore, for any $\phi \in \mathcal{Z}\left(\operatorname{Hom}_{A}(P, M)\right)$, we can find $\Phi \in \mathcal{Z}\left(\operatorname{Hom}_{A}(P, M \otimes H)\right)$ which when composed with Id $\otimes \epsilon$ gives us ϕ. Since $\operatorname{Hom}_{A}(P, M \otimes H)=\operatorname{Hom}_{A}(P, M) \otimes H$ is contractible, $\Phi=\Lambda \cdot \Psi$ for some $\Psi \in \operatorname{Hom}_{A}(P, M \otimes$ $H)$ (Lemma 5.4). Then for any $x \in P$, we have

$$
\begin{aligned}
(\Lambda \cdot((\operatorname{Id} \otimes \epsilon) \circ \Psi))(x) & =\Lambda_{(2)} \cdot\left((\operatorname{Id} \otimes \epsilon) \circ \Psi\left(S^{-1}\left(\Lambda_{(1)}\right) \cdot x\right)\right. \\
& =(\operatorname{Id} \otimes \epsilon)\left(\Lambda_{(2)} \cdot \Psi\left(S^{-1}\left(\Lambda_{(1)}\right) \cdot x\right)=(\operatorname{Id} \otimes \epsilon)((\Lambda \cdot \Psi)(x))\right. \\
& =(\operatorname{Id} \otimes \epsilon)(\Phi(x))=\phi(x)
\end{aligned}
$$

where the second equality holds since $\operatorname{Id} \otimes \epsilon$ is H-linear. Therefore by Corollary [5.5, $\phi=0$ when passing to the stable category. The last claim follows from Proposition 5.10.

Notice that, when H is a finite dimensional local Hopf algebra, $\mathcal{H}\left(\operatorname{Hom}_{A}(P, M)\right)=0$ actually implies that the total cohomology $\operatorname{Hom}_{A}(P, M)$ is 0 in the stable category H-mod. This follows from the observation that any indecomposable module in the case contains a trivial submodule. Therefore for such H 's, we know that the H-module $\operatorname{Hom}_{A}(P, M)$ is projective and injective as an H-module (we will just call such H-modules acyclic when no confusion could arise). In fact, this will turn out to be true for any H and any cofibrant
module P. We will show this after introducing some necessary tools.
Our main goal in this section is to construct, for each A-module M, a functorial cofibrant replacement. We make the following definition.

Definition 6.3. We say that a B-module satisfies property (P) if it is isomorphic to a module P in the category $\mathcal{C}(A, H)$ for which the following three conditions hold (c.f. [14, Section 3]):
(P1) There is a filtration

$$
0 \subset F_{0} \subset F_{1} \subset \cdots F_{r} \subset F_{r+1} \subset \cdots \subset P
$$

and the filtration is exhaustive in the sense that

$$
P=\cup_{r \in \mathbb{N}} F_{r} ;
$$

(P2) The inclusion $F_{r} \subset F_{r+1}$ splits as left A-modules (resp. graded left A-modules when they are graded) for all $r \in \mathbb{N}$;
(P3) F_{0}, as well as the quotients F_{r+1} / F_{r} for all $r \in \mathbb{N}$, is isomorphic to direct sums of B modules of the form $A \otimes V$, where V is an indecomposable H-module (resp. $A \otimes V \in$ $B-\operatorname{gmod}$ and $V \in H-\operatorname{gmod}$ in the graded case).

Equivalently, in the last condition (P3), we may drop the direct sum requirement for indecomposable V 's but instead allow V to be any H-module.

We need to clarify the relation between modules with property (P) and cofibrant modules. First of all we will show that modules with property (P) are cofibrant.

Lemma 6.4. Let $P \in B-\bmod$ (resp. $B-$ gmod) be a module satisfying property (P), and K be an acyclic B-module. Then the H-module $\operatorname{Hom}_{A}(P, K)$ is projective and injective as an H-module.

Proof. The proof is divided into three steps. First off, we check that free modules of the form $A \otimes V$ have the claimed property of the lemma. As H-modules, we have a canonical isomorphism:

$$
\operatorname{Hom}_{A}(A \otimes V, K) \cong \operatorname{Hom}_{\mathbb{k}}(V, K)
$$

Thus the result for $A \otimes V$ follows from Lemma 2.3.
Secondly, we use induction to prove that $\operatorname{Hom}_{A}\left(F_{r}, K\right)$ is projective and injective (acyclic for short) for any $r \geq 0$. In fact, assuming so for F_{r}, applying $\operatorname{Hom}_{A}(-, K)$ to the short exact sequence of free A-modules:

$$
0 \longrightarrow F_{r} \longrightarrow F_{r+1} \longrightarrow \bigoplus_{j \in J} A \otimes V_{j} \longrightarrow 0
$$

we obtain a short exact sequence of H-modules:

$$
0 \longrightarrow \prod_{j \in J} \operatorname{Hom}_{A}\left(A \otimes V_{j}, K\right) \longrightarrow \operatorname{Hom}_{A}\left(F_{r+1}, K\right) \longrightarrow \operatorname{Hom}_{A}\left(F_{r}, K\right) \longrightarrow 0
$$

By inductive hypothesis and the previous step, $\operatorname{Hom}_{A}\left(F_{r}, K\right)$ and $\prod_{j \in J} \operatorname{Hom}_{A}\left(A \otimes V_{j}, K\right)$ are acyclic. Thus $\operatorname{Hom}_{A}\left(F_{r+1}, K\right)$ is acyclic, since in $H-\bmod$ it is isomorphic to the direct sum of these acyclic modules.

Finally, by definition, we have the following short exact sequence of free A-modules:

$$
0 \longrightarrow \bigoplus_{r \in \mathbb{N}} F_{r} \xrightarrow{\Psi} \bigoplus_{s \in \mathbb{N}} F_{s} \longrightarrow P \longrightarrow 0
$$

where the map Ψ is given by the block upper triangular matrix:

$$
\Psi=\left(\begin{array}{ccccc}
\operatorname{Id}_{F_{0}} & -\iota_{01} & 0 & 0 & \ldots \tag{6.2}\\
0 & \operatorname{Id}_{F_{1}} & -\iota_{12} & 0 & \ldots \\
0 & 0 & \operatorname{Id}_{F_{2}} & -\iota_{23} & \ldots \\
0 & 0 & 0 & \operatorname{Id}_{F_{3}} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

and $\iota_{r, r+1}$ is the inclusion of F_{r} into F_{r+1}. Applying $\operatorname{Hom}_{A}(-, K)$ to the short exact sequence of free A-modules, we obtain a short exact sequence of H-modules:

$$
0 \longrightarrow \operatorname{Hom}_{A}(P, K) \longrightarrow \prod \operatorname{Hom}_{A}\left(F_{s}, K\right) \longrightarrow \prod \operatorname{Hom}_{A}\left(F_{r}, K\right) \longrightarrow 0
$$

By the second step, the two terms on the right are acyclic. Hence $\operatorname{Hom}_{A}(P, K)$ is acyclic and the lemma follows.

Corollary 6.5. If P is a B-module with property (P), then it is cofibrant.

Proof. Let $M \longrightarrow N$ be a surjective quasi-isomorphism in B-mod. We have a short exact sequence of B-modules:

$$
0 \longrightarrow K \longrightarrow M \longrightarrow N \longrightarrow 0
$$

where K is acyclic by our assumption. Applying $\operatorname{Hom}_{A}(P,-)$ to this short exact sequence, we obtain a short exact sequence of H-modules:

$$
0 \longrightarrow \operatorname{Hom}_{A}(P, K) \longrightarrow \operatorname{Hom}_{A}(P, M) \longrightarrow \operatorname{Hom}_{A}(P, N) \longrightarrow 0
$$

since P is projective as an A-module. The above Lemma 6.4 says that $\operatorname{Hom}_{A}(P, K)$, considered as an H-module, is projective and injective. Thus the sequence splits and we have a
direct sum decomposition:

$$
\operatorname{Hom}_{A}(P, M) \cong \operatorname{Hom}_{A}(P, K) \oplus \operatorname{Hom}_{A}(P, N)
$$

Taking H-invariants on both sides (Proposition 5.10) gives us:

$$
\mathcal{Z}\left(\operatorname{Hom}_{A}(A \otimes V, M)\right) \cong \mathcal{Z}\left(\operatorname{Hom}_{A}(A \otimes V, K)\right) \oplus \mathcal{Z}\left(\operatorname{Hom}_{A}(A \otimes V, N)\right)
$$

whence the surjectivity $\mathcal{Z}\left(\operatorname{Hom}_{A}(P, M)\right) \rightarrow \mathcal{Z}\left(\operatorname{Hom}_{A}(P, N)\right)$ follows.

6.1 The bar resolution

Now we formulate the main result of this section and its immediate consequences.

Theorem 6.6. Let H be a finite dimensional (graded) Hopf algebra, A be a left H-module algebra, and set $B=A \# H$. For each module $M \in B-\bmod$ (resp. $B-$ gmod), there is a short exact sequence in $B-\bmod (r e s p . B-\bmod)$ which is split exact as a sequence of A-modules:

$$
0 \longrightarrow M \longrightarrow \mathbf{a} M \longrightarrow \tilde{\mathbf{p}} M \longrightarrow 0
$$

where $\tilde{\mathbf{p}} M$ satisfies property (P) and $\mathbf{a} M$ is an acyclic B-module. Moreover the construction of the short exact sequence is functorial in M.

We will refer to the construction of the theorem, as well as the cofibrant replacement in the next corollary, as the "bar resolution" of any hopfological module M, which is the functorial cofibrant replacement we claimed at the beginning of this section.

Corollary 6.7. Under the same conditions as in Theorem 6.6, let M be any hopfological module $M \in B-\bmod$.
(i). There is an associated distinguished triangle, functorial in M inside $\mathcal{C}(A, H)$:

$$
M \longrightarrow \mathbf{a} M \longrightarrow \tilde{\mathbf{p}} M \longrightarrow T M
$$

(ii). In the derived category $\mathcal{D}(A, H)$, there is a functorial isomorphism

$$
\mathbf{p} M \xrightarrow{\cong} M,
$$

where $\mathbf{p} M:=T^{-1}(\tilde{\mathbf{p}} M)$ is a module with property (P).
(iii). The isomorphism in (ii) arises as the image of a surjective quasi-isomorphism $\mathbf{p} M \rightarrow$ M in $B-\bmod$.

Proof. By applying Lemma 4.3 to the short exact sequence of the theorem, we obtain a distinguished triangle in $\mathcal{C}(A, H)$

$$
M \longrightarrow \mathbf{a} M \longrightarrow \tilde{\mathbf{p}} M \longrightarrow T(M),
$$

which is functorial in M by Theorem 6.6. Since $\mathbf{a} M$ is acyclic, it is isomorphic to 0 in the derived category. By passing to the derived category $\mathcal{D}(A, H)$ we obtain a functorial isomorphism

$$
\tilde{\mathbf{p}} M \xrightarrow{\cong} T(M) .
$$

Then apply T^{-1} to this isomorphism $\tilde{\mathbf{p}} M \longrightarrow T(M)$, and we define

$$
\mathbf{p} M:=T^{-1}(\tilde{\mathbf{p}} M)=\tilde{\mathbf{p}} M \otimes \operatorname{ker}(\epsilon),
$$

which satisfies property (P) since $\tilde{\mathbf{p}} M$ does. This proves (i) and (ii). We will postpone the proof of part (iii) until the end of this section, where the explicit surjective quasi-isomorphism is constructed.

We reap some other direct consequences of the bar construction, the first of which is the promised relationship between cofibrant modules and modules with property (P).

Corollary 6.8. Let M be a cofibrant hopfological module. Then M is a direct summand of a B-module with property (P). Conversely, any $B-\bmod$ direct summand of a module with property (P) is cofibrant. In other words, the class of cofibrant modules is the idempotent completion of the class of modules with property (P) in the abelian category $B-\bmod$.

Proof. By (iii) of Corollary 6.7, we have a surjective quasi-isomorphism $\mathbf{p} M \rightarrow M$. Applying the $\operatorname{Hom}_{B}(M,-)$ to this surjection and using the cofibrance condition, we see immediately that M is a direct summand of $\mathbf{p} M$, which is a module with property (P) by the same corollary.

Conversely, if M is a direct summand of a property (P) module N, say $N \cong M \oplus M^{\prime}$, then $\operatorname{Hom}_{A}(N,-) \cong \operatorname{Hom}_{A}(M,-) \oplus \operatorname{Hom}_{A}\left(M^{\prime},-\right)$ as functors from $B-\bmod$ to $H-\bmod$. Since a direct summand of a projective and injective H-module is still projective and injective, $\operatorname{Hom}_{A}(M, K)$ is acyclic for any acyclic module K, using Lemma 6.4. The same proof as in Corollary 6.5 shows that M is cofibrant. The rest of the corollary is clear.

The next result gives the promised characterization of cofibrant modules as an analogue of "K-projective modules" due to Bernstein and Lunts [4].

Corollary 6.9. A hopfological module M is cofibrant if and only if M is projective as an A-module, and for any acyclic module K, the H-module $\operatorname{Hom}_{A}(M, K)$ is projective and injective.

Proof. The "if" direction follows from the the same argument we used in Corollary 6.5. The "only if" part follows from the above Corollary 6.8, the corresponding result for property (P) modules 6.4, and the fact that an injective submodule of any H-module is an H-direct summand.

The last immediate consequence of the theorem we record here is the equivalence between $\mathcal{D}(A, H)$ and the homotopy category of property (P) (resp. cofibrant) objects.

Corollary 6.10. Let $\mathcal{P}(A, H)$ (resp. $\mathcal{C} \mathcal{F}(A, H)$) be the full triangulated subcategory of $\mathcal{C}(A, H)$ whose objects consist of hopfological modules satisfying property (P) (resp. cofibrant modules). Then:

1. The morphism space between any two objects P_{1}, P_{2} in $\mathcal{P}(A, H)$ (resp. $\mathcal{C F}(A, H)$) coincides with the morphism space of these objects in the derived category:

$$
\operatorname{Hom}_{\mathcal{P}(A, H)}\left(P_{1}, P_{2}\right) \cong \operatorname{Hom}_{\mathcal{D}(A, H)}\left(P_{1}, P_{2}\right)
$$

In fact, for any P with property (P) (resp. cofibrant), we have:

$$
\operatorname{Hom}_{\mathcal{C}(A, H)}(P,-) \cong \operatorname{Hom}_{\mathcal{D}(A, H)}(P,-)
$$

2. The composition of functors

$$
\mathcal{P}(A, H) \subset \mathcal{C}(A, H) \xrightarrow{Q} \mathcal{D}(A, H) \quad(\text { resp. } \mathcal{C F}(A, H) \subset \mathcal{C}(A, H) \xrightarrow{Q} \mathcal{D}(A, H)),
$$

where Q is the localization functor, is an equivalence of triangulated categories.
3. The bar resolution is a functor $\mathbf{p}: \mathcal{D}(A, H) \longrightarrow \mathcal{P}(A, H)$ which is the left adjoint to the composition functor $\mathcal{P}(A, H) \subset \mathcal{C}(A, H) \xrightarrow{Q} \mathcal{D}(A, H)$.

Proof. The first claim follows from standard homological algebra arguments, using Lemma 6.2. It goes as follows. By definition of morphisms in $\mathcal{D}(A, H)$, it suffices to show that, for any quasi-isomorphism $s: X \longrightarrow P$ in $\mathcal{C}(A, H)$, where P is either with property (P) or cofibrant, there exists a morphism

$$
t: P \longrightarrow X
$$

in $\mathcal{C}(A, H)$ such that $t s=\operatorname{Id}_{P}$. The cone of s is acyclic, giving a distinguished triangle in $\mathcal{C}(A, H): X \xrightarrow{s} P \longrightarrow \operatorname{Cone}(s) \longrightarrow T X$. Applying $\operatorname{Hom}_{\mathcal{C}(A, H)}(P,-)$ produces the desired
isomorphism:

$$
\operatorname{Hom}_{\mathcal{C}(A, H)}(P, X) \cong \operatorname{Hom}_{\mathcal{C}(A, H)}(P, P)
$$

The result follows. The second and third claims are easy, and we leave them as exercises to the reader.

Remark 6.11. To summarize the notions we introduced in this section, we have an inclusion of diagrams inside the abelian category B-mod:
$($ Modules with property $(\mathrm{P})) \subset($ Cofibrant modules $) \subset($ Hopfological modules $)$.

The previous corollary can be summarized as saying that these inclusions in turn give equivalences of the homotopy categories $\mathcal{P}(A, H)$ and $\mathcal{C} \mathcal{F}(A, H)$ with the derived category $\mathcal{D}(A, H)$.

6.2 Proof of Theorem 6.6

The simplicial bar resolution of an algebra. Recall that for an algebra A over \mathbb{k} (the construction works more generally over \mathbb{Z}), the simplicial bar resolution of A is a projective resolution of A as a module over the envelope algebra $A \otimes A^{o p}$, i.e. as an (A, A)-bimodule. We review its construction briefly here. Standard details about bar resolutions can be found in Loday's monograph [22, Chapter I].

Let $\left(C_{\bullet}, d_{i}, s_{i}\right)$ be a simplicial module over the base field \mathbb{k}, where d_{i} is the face map, and s_{i} is the degeneration map, satisfying the commutator relation:

$$
d_{i} d_{j}=d_{j-1} d_{i} \text { if } i<j, \quad d_{i} s_{j}= \begin{cases}s_{j-1} d_{i} & \text { if } i<j \tag{6.3}\\ \text { id } & \text { if } i=j, j+1, \\ s_{j} d_{i-1} & \text { if } i>j+1\end{cases}
$$

One can naturally associate with such a simplicial module a complex by defining the differential $\delta: C_{n} \longrightarrow C_{n+1}$ as the alternating sum of the face maps $\delta=\sum_{i=0}^{n-1}(-1)^{i} d_{i}$. One then checks readily using the commutator relations in the definition that $\left(C_{\bullet}, \delta\right)$ becomes a complex. Now we apply this construction to the Hochschild complex:

Definition 6.12. The Hochschild simplicial module of a \mathbb{k}-algebra A is the simplicial module $\left(C(A), d_{i}, s_{i}\right)$, where for each $n \geq 0, C_{-n}=A^{\otimes(n+1)}$, and $C_{n+1}=0$. The face and degeneration maps are defined by:

$$
d_{i}\left(a_{0} \otimes a_{1} \otimes \cdots \otimes a_{n}\right)= \begin{cases}a_{0} \otimes \cdots \otimes a_{i} a_{i+1} \otimes \cdots \otimes a_{n} & \text { if } 0 \leq i \leq n-1 \\ a_{n} a_{0} \otimes a_{1} \cdots \otimes a_{n-1} & \text { if } i=n\end{cases}
$$

and

$$
s_{i}\left(a_{0} \otimes a_{1} \otimes \cdots \otimes a_{n}\right)=a_{0} \otimes \cdots \otimes a_{i} \otimes 1 \otimes a_{i+1} \cdots \otimes a_{n} .
$$

We have the well-known:

Lemma 6.13. The associated simplicial bar complex $\left(C_{-n}=A^{\otimes(n+1)}, \delta_{n}\right)$ is a contractible complex, giving a resolution of A as an (A, A)-bimodule by free bimodules.

Proof. A homotopy is given by the "extra-degeneracy"

$$
s: A^{\otimes n} \longrightarrow A^{\otimes(n+1)}, \quad a_{0} \otimes \ldots \otimes a_{n-1} \mapsto 1 \otimes a_{0} \otimes \ldots \otimes a_{n-1}
$$

for any $n \in \mathbb{N}$.

Proof of Theorem 6.6; construction. Now we begin with the construction of the bar resolution. The first observation to make is that, in the recap above, when A is a left H -module-algebra, all the face and degeneration maps are H-module maps. For instance, the $\operatorname{map} \delta_{0}: A \otimes A \longrightarrow A, \delta_{0}\left(a_{0} \otimes a_{1}\right)=a_{0} a_{1}$ is the multiplication map, which is an H-module map by definition. Now we apply the cone construction (Definition 3.3) to this map and
obtain:

$$
\begin{equation*}
\operatorname{Cone}\left(\delta_{0}\right) \cong A \otimes A \otimes(H / \mathbb{k} \Lambda) \oplus A \tag{6.4}
\end{equation*}
$$

the isomorphism viewed as a (A, A)-bimodule map (A acts trivially on the $(H / \mathbb{k} \Lambda)$ factor). However, this isomorphism is not an H-module isomorphism. The H-module structure on the cone is defined in a slightly abstract way using the push-out property, which is not preserved under this identification. We can give a more explicit description as follows, but it's not necessary for the construction below.

We complete Λ to a basis $\left\{h_{i} \mid i=1, \ldots, r, h_{r}=\Lambda, r=\operatorname{dim}(H)\right\}$ of H. We describe the left action of H on itself explicitly in this basis by setting:

$$
h \cdot h_{i}=\sum_{j} c(h, i)_{j} h_{j} .
$$

Now take a basis $\left\{a_{k} \mid k \in I\right\}$ of A, where I is some index set so that the cone has as a basis of elements:

$$
\left\{a_{k} \otimes a_{l} \otimes h_{i} \mid i=1, \ldots, r-1, k, l \in I\right\} \cup\left\{a_{k} \mid k \in I\right\}
$$

The H-action is given as follows:

$$
\begin{aligned}
& h \cdot a_{k}=h a_{k} ; \\
& h \cdot\left(a_{k} \otimes a_{l} \otimes h_{i}\right)=\sum_{(h)}\left(h_{(1)} a_{k} \otimes a_{l} \otimes h_{i}+a_{k} \otimes h_{(2)} a_{l} \otimes h_{i}+a_{k} \otimes a_{l} \otimes h_{(3)} h_{i}\right) \\
& =\sum_{(h)}\left\{\sum_{j=1}^{r-1}\left(c\left(h_{(3)}, i\right)_{j} a_{k} \otimes a_{l} \otimes h_{j}\right)+c\left(h_{(1)}, i\right)_{r} a_{k} \otimes a_{l} \otimes h_{r}\right. \\
& \left.+h_{(1)} a_{k} \otimes a_{l} \otimes h_{i}+a_{k} \otimes h_{(2)} a_{l} \otimes h_{i}\right\} \\
& =\sum_{(h)}\left\{\sum_{j=1}^{r-1}\left(c\left(h_{(3)}, i\right)_{j} a_{k} \otimes a_{l} \otimes h_{j}\right)\right. \\
& +c\left(h_{(3)}, i\right)_{r} a_{k} \otimes a_{l} \otimes \Lambda+c\left(h_{(3)}, i\right)_{r} a_{k} a_{l}-c\left(h_{(3)}, i\right)_{r} a_{k} a_{l} \\
& \left.+h_{(1)} a_{k} \otimes a_{l} \otimes h_{i}+a_{k} \otimes h_{(2)} a_{l} \otimes h_{i}\right\} \\
& \equiv \sum_{(h)}\left\{\sum_{j=1}^{r-1}\left(c\left(h_{(3)}, i\right)_{j} a_{k} \otimes a_{l} \otimes h_{j}\right)-c\left(h_{(3)}, i\right)_{r} a_{k} a_{l}\right. \\
& \left.+h_{(1)} a_{k} \otimes a_{l} \otimes h_{i}+a_{k} \otimes h_{(2)} a_{l} \otimes h_{i}\right\},
\end{aligned}
$$

where in the last equality, we used that $a_{k} \otimes a_{l} \otimes \Lambda+a_{k} a_{l} \equiv 0$ in the cone. Notice that when
H is the Hopf super algebra $\mathbb{k}[d] /\left(d^{2}\right)$, and if we take the basis of H to be $\{1, d\}$, it is readily seen that the action of d recovers the usual "connection map" from the cone to $T(A)$ in the standard distinguished triangle associated with $\delta_{0}: A \otimes A \longrightarrow A$.

Next, we will lift the map $\delta_{1}: A \otimes A \otimes A \longrightarrow A \otimes A$ to a map $\tilde{\delta_{1}}: A \otimes A \otimes A \otimes(H / \mathbb{k} \Lambda) \longrightarrow$ Cone $\left(\delta_{0}\right)$, as follows. First off we define a map:

$$
\begin{array}{llc}
A \otimes A \otimes A \otimes H & \longrightarrow & A \otimes A \otimes H \oplus A \tag{6.5}\\
a \otimes a^{\prime} \otimes a^{\prime \prime} \otimes h & \mapsto & \left(\delta_{1}\left(a \otimes a^{\prime} \otimes a^{\prime \prime}\right) \otimes h, 0\right)
\end{array}
$$

The submodule $A \otimes A \otimes A \otimes \mathbb{k} \Lambda$ of $A \otimes A \otimes A \otimes H$ is mapped into the module

$$
\begin{equation*}
\operatorname{Im}\left(A \otimes A \xrightarrow{\lambda_{A \otimes A \oplus \delta_{0}}} A \otimes A \otimes H \oplus A\right), \tag{6.6}
\end{equation*}
$$

since $\left(\delta_{1}\left(a \otimes a^{\prime} \otimes a^{\prime \prime}\right) \otimes \Lambda, 0\right)=\left(\left(\delta_{1}\left(a \otimes a^{\prime} \otimes a^{\prime \prime}\right) \otimes \Lambda, \delta_{0} \delta_{1}\left(a \otimes a^{\prime} \otimes a^{\prime \prime}\right)\right)\right)$, where we used that $\delta_{0} \delta_{1}=0$. Therefore, this map descends to the quotient and gives rise to $\tilde{\delta_{1}}$:

$$
\begin{equation*}
\tilde{\delta_{1}}: A \otimes A \otimes A \otimes(H / \mathbb{k} \Lambda) \longrightarrow \operatorname{Cone}\left(\delta_{0}\right) \tag{6.7}
\end{equation*}
$$

Also observe that $\tilde{\delta}_{1}$ kills elements in the submodule $\operatorname{Im}\left(\delta_{2}\right) \otimes(H / \mathbb{k} \Lambda)$.
Then we can construct the cone of $\tilde{\delta_{1}}$. Recall from the definition of the cone construction that in Cone $\left(\delta_{0}\right), A$ is naturally an H-submodule, while the quotient Cone $\left(\delta_{0}\right) / A$ is isomorphic to the H-module $A \otimes A \otimes(H / \mathbb{k} \Lambda)$. Thus the cone of $\tilde{\delta_{1}}$ has a filtration by (A, A)-bimodules:

$$
\begin{equation*}
0 \subset A \subset \operatorname{Cone}\left(\delta_{0}\right) \subset \operatorname{Cone}\left(\tilde{\delta_{1}}\right) \tag{6.8}
\end{equation*}
$$

whose subquotients are respectively $A, A^{\otimes 2} \otimes(H / \mathbb{k} \Lambda)$, and $A^{\otimes 3} \otimes(H / \mathbb{k} \Lambda)^{\otimes 2}$. These observations will allow us to construct the bar resolution inductively.

Now assume we have inductively constructed:

1. $C_{n}=\operatorname{Cone}\left(\tilde{\delta_{n}}: A^{\otimes(n+2)} \otimes(H / \mathbb{k} \Lambda)^{\otimes n} \longrightarrow C_{n-1}\right) \in B-\bmod ;$
2. For any $x \in(H / \mathbb{k} \Lambda)^{n}, a \in A^{\otimes(n+3)}$ we have $\tilde{\delta_{n}}\left(\delta_{n+1}(a) \otimes x\right)=0$.

This assumption implies that C_{n-1} is a submodule of C_{n}. Then using another induction argument, we see that C_{n} has an exhaustive filtration

$$
\begin{equation*}
F^{\bullet}: 0=F^{-1} \subset F^{0} \subset \cdots \subset F^{p-1} \subset F^{p} \subset \cdots \subset F^{n+1}=C_{n} \tag{6.9}
\end{equation*}
$$

whose subquotients F^{n} / F^{n-1} are isomorphic to $A^{\otimes(n+1)} \otimes(H / \mathbb{k} \Lambda)^{\otimes n}$. In particular, this says that C_{n} satisfies "property (P)", and therefore is a cofibrant B-module as defined earlier.

Now we construct the B-module map $\widetilde{\delta_{n+1}}$. Tensoring with the identity map of $(H / \mathbb{k} \Lambda)^{\otimes n}$, we have a map $A^{\otimes(n+3)} \otimes(H / \mathbb{k} \Lambda)^{\otimes n} \longrightarrow A^{\otimes(n+2)} \otimes(H / \mathbb{k} \Lambda)^{\otimes n}$, which in turn gives rise to a map:

$$
\begin{array}{ccc}
A^{\otimes(n+3)} \otimes(H / \mathbb{k} \Lambda)^{\otimes n} \otimes H & \longrightarrow & A^{\otimes(n+2)} \otimes(H / \mathbb{k} \Lambda)^{\otimes n} \otimes H \oplus C_{n-1} \tag{6.10}\\
a \otimes x \otimes h & \mapsto & \left(\delta_{n+1}(a) \otimes x \otimes h, 0\right)
\end{array}
$$

where $h \in H, x \in(H / \mathbb{k} \Lambda)^{\otimes n}$, and $a \in A^{\otimes(n+3)}$. This map descends to the desired

$$
\begin{equation*}
\widetilde{\delta_{n+1}}: A^{\otimes(n+3)} \otimes(H / \mathbb{k} \Lambda)^{\otimes(n+1)} \longrightarrow C_{n} \tag{6.11}
\end{equation*}
$$

since elements of the form $a \otimes x \otimes \Lambda$ are sent to

$$
a \otimes x \otimes \Lambda \mapsto\left(\delta_{n+1}(a) \otimes x \otimes \Lambda, 0\right)=\left(\delta_{n+1}(a) \otimes x \otimes \Lambda, \tilde{\delta_{n}}\left(\delta_{n+1}(a) \otimes x\right)\right)
$$

and by our inductive hypothesis $\tilde{\delta_{n}}\left(\delta_{n+1}(a) \otimes x\right)=0$. Finally, we verify the inductive hypothesis 2 for $\widetilde{\delta_{n+1}}$, which requires that it kills elements in the image of δ_{n+2} :

$$
\widetilde{\delta_{n+1}}\left(\delta_{n+2}(a) \otimes x \otimes \bar{h}\right)=\delta_{n+1} \delta_{n+2}(a) \otimes x \otimes \bar{h}=0
$$

where $\bar{h} \in H / \mathbb{k} \Lambda, x \in(H / \mathbb{k} \Lambda)^{\otimes n}, a \in A^{\otimes(n+4)}$, and we have used that $\delta_{n+1} \delta_{n+2}=0$.

In conclusion, we have constructed inductively a chain of (A, A)-bimodules:

$$
A=C_{-1} \subset C_{0} \subset C_{1} \subset \cdots \subset C_{n-1} \subset C_{n} \subset \ldots
$$

whose subquotients are

$$
C_{n} / C_{n-1} \cong A^{\otimes(n+2)} \otimes(H / \mathbb{k} \Lambda)^{\otimes(n+1)} .
$$

We define

$$
\mathbf{a} A:=\bigcup_{n=-1}^{\infty} C_{n},
$$

which fits into a short exact sequence:

$$
0 \longrightarrow A \longrightarrow \mathbf{a} A \longrightarrow \tilde{\mathbf{p}} A \longrightarrow 0
$$

We may regard any left B-module M as an A-module by restriction. Tensoring the above sequence by M gives rise to the short exact sequence

$$
0 \longrightarrow M \longrightarrow \mathbf{a} M \longrightarrow \tilde{\mathbf{p}} M \longrightarrow 0
$$

claimed in the theorem. Our next goal would then be to show that $\mathbf{a} M$ in the above short exact sequence is contractible as an H-module, for any hopfological module M.

Proof of Theorem 6.6: contractibility. Now we show that a M is acyclic, for any A module M. To do this we may safely forget about the B-module structures involved and regard the modules as H-modules. We will show this for $\mathbf{a} A$; and the general case follows by the same argument.

Observe that in the Lemma 6.13, the homotopy $s: A^{\otimes n} \longrightarrow A^{\otimes(n+1)}$ is an H-module map since A is an H-module algebra. Thus the homotopy allows us to split the terms in the
original bar complex of A into H-module summands

$$
\begin{equation*}
A^{\otimes n} \cong A^{(n)} \oplus A^{(n-1)} \tag{6.12}
\end{equation*}
$$

so that the boundary map $\delta: A^{\otimes n} \longrightarrow A^{\otimes(n-1)}$ (an H-module map again) kills the $A^{(n)}$ factor and identifies the $A^{(n-1)}$ factor with that in $A^{\otimes(n-1)}$. Now if we go back to the definition of the cone C_{0} as in the previous part, we see that it was constructed as a pushout, and therefore, as H-modules, we can identify it with:

$$
\begin{aligned}
C_{0} & \cong\left(A^{\otimes 2} \otimes H \oplus A\right) /\left(\left\{a \otimes a^{\prime} \otimes \Lambda, a a^{\prime} \mid a, a^{\prime} \in A\right\}\right) \\
& \cong\left(\left(A^{(2)} \oplus A\right) \otimes H \oplus A\right) /\left(\left\{\left(\left(a^{(2)}, a\right) \otimes \Lambda, a\right) \mid a^{(2)} \in A^{(2)}, a \in A\right\}\right) \\
& \cong\left(A^{(2)} \otimes H \oplus A \otimes H \oplus A\right) /\left(\left\{\left(a^{(2)} \otimes \Lambda\right) \mid a^{(2)} \in A^{(2)}\right\} \oplus\{(a \otimes \Lambda, a) \mid a \in A\}\right) \\
& \cong A \otimes(H / \mathbb{k} \Lambda) \oplus A \otimes H
\end{aligned}
$$

Then at the second step, we constructed C_{1} as the cone of $\tilde{\delta}_{1}$, which was defined by first mapping $A^{\otimes 3} \otimes H$ onto $A^{\otimes 2} \otimes H \oplus A$ via $\left(\delta_{1} \otimes \operatorname{Id}_{H}, 0\right)$ and then taking a quotient. With respect to the decompositions $A^{\otimes 3} \cong A^{(3)} \oplus A^{(2)}$ and $A^{\otimes 2} \cong A^{(2)} \oplus A$, the map is identified with the map $A^{(3)} \otimes H \oplus A^{(2)} \otimes H \longrightarrow A^{(2)} \otimes H \oplus A \otimes H \oplus A$ which is the identity on the $A^{(2)} \otimes H$ factor and zero on $A^{(3)} \otimes H$. Therefore, $\tilde{\delta}_{1}$ written out in this componentwise form becomes:

$$
\begin{aligned}
\tilde{\delta}_{1}: A^{(3)} \otimes(H / \mathbb{k} \Lambda) \oplus A^{(2)} \otimes(H / \mathbb{k} \Lambda) & \longrightarrow A^{(2)} \otimes(H / \mathbb{k} \Lambda) \oplus A \otimes H, \\
\left(a^{(3)} \otimes \overline{h^{\prime}}, a^{(2)} \otimes \bar{h}\right) & \mapsto\left(a^{(2)} \otimes \bar{h}, 0\right),
\end{aligned}
$$

for any $a^{(3)} \in A^{(3)}, a^{(2)} \in A^{(2)}$, and $\bar{h}, \overline{h^{\prime}} \in H / \mathbb{k} \Lambda$. The cone of $\tilde{\delta}_{1}$ is then identified as an H-module with

$$
C_{1} \cong A^{(3)} \otimes(H / \mathbb{k} \Lambda)^{\otimes 2} \oplus A^{(2)} \otimes(H / \mathbb{k} \Lambda) \otimes H \oplus A \otimes H
$$

Inductively, assume that as H-modules,

$$
\begin{equation*}
C_{n-1} \cong A^{(n+1)} \otimes(H / \mathbb{k} \Lambda)^{\otimes n} \oplus \bigoplus_{i=1}^{n}\left(A^{(i)} \otimes(H / \mathbb{k} \Lambda)^{\otimes(i-1)} \otimes H\right) \tag{6.13}
\end{equation*}
$$

and the H-module map $\widetilde{\delta_{n}}$ in the construction procedure is given componentwise by

Then as H-modules, the cone of $\widetilde{\delta_{n}}$ is isomorphic to:

$$
\begin{aligned}
C_{n}=\operatorname{Cone}\left(\widetilde{\delta}_{n}\right) \cong & A^{(n+2)} \otimes(H / \mathbb{k} \Lambda)^{\otimes(n+1)} \oplus \operatorname{Cone}\left(\operatorname{Id}_{A^{(n+1)} \otimes(H / \mathbb{k} \Lambda)^{\otimes n}}\right) \\
& \oplus \bigoplus_{i=1}^{n}\left(A^{(i)} \otimes(H / \mathbb{k} \Lambda)^{\otimes(i-1)} \otimes H\right) \\
\cong & A^{(n+2)} \otimes(H / \mathbb{k} \Lambda)^{\otimes(n+1)} \oplus\left(A^{(n+1)} \otimes(H / \mathbb{k} \Lambda)^{\otimes n} \otimes H\right) \\
& \oplus \bigoplus_{i=1}^{n}\left(A^{(i)} \otimes(H / \mathbb{k} \Lambda)^{\otimes(i-1)} \otimes H\right) \\
\cong & A^{(n+2)} \otimes(H / \mathbb{k} \Lambda)^{\otimes(n+1)} \oplus \bigoplus_{i=1}^{n+1}\left(A^{(i)} \otimes(H / \mathbb{k} \Lambda)^{\otimes(i-1)} \otimes H\right)
\end{aligned}
$$

Furthermore, $\widetilde{\delta_{n+1}}: A^{\otimes(n+3)} \otimes(H / \mathbb{k} \Lambda)^{\otimes(n+1)} \longrightarrow C_{n}$, which is constructed as the quotient of $\left(\delta_{n+1} \otimes \operatorname{Id} \otimes \mathrm{Id}, 0\right): A^{\otimes(n+3)} \otimes(H / \mathbb{k} \Lambda)^{\otimes n} \otimes H \longrightarrow A^{\otimes(n+2)} \otimes(H / \mathbb{k} \Lambda)^{\otimes n} \otimes H \oplus C_{n-1}$ by the
submodule $A^{\otimes(n+3)} \otimes(H / \mathbb{k} \Lambda)^{\otimes n} \otimes \mathbb{k} \Lambda$, decomposes as the H-module map:

This finishes the induction step, and establishes the H-module isomorphism:

$$
C_{n}=\operatorname{Cone}\left(\widetilde{\delta_{n}}\right) \cong A^{(n+2)} \otimes(H / \mathbb{k} \Lambda)^{\otimes(n+1)} \oplus \bigoplus_{i=1}^{n+1} A^{(i)} \otimes(H / \mathbb{k} \Lambda)^{\otimes(i-1)} \otimes H
$$

Taking the union of all n gives us

$$
\begin{equation*}
\mathbf{a}(A) \cong \bigoplus_{i=1}^{\infty} A^{(i)} \otimes(H / \mathbb{k} \Lambda)^{\otimes(i-1)} \otimes H \cong\left(\bigoplus_{i=1}^{\infty} A^{(i)} \otimes(H / \mathbb{k} \Lambda)^{\otimes(i-1)}\right) \otimes H \tag{6.14}
\end{equation*}
$$

which is of the form $N \otimes H$ for some H-module N, and the acyclicity follows. This finishes the proof of Theorem 6.6.

Proof of part (iii) of Corollary 6.7. Now we finish the proof of the corollary. Notice that as (A, A) bimodules,

$$
\begin{aligned}
\mathbf{p}(A) & =\bigcup_{n=0}^{\infty} C_{n} \otimes \operatorname{ker}(\epsilon) \\
& \cong A \otimes A \otimes H /(\mathbb{k} \Lambda) \otimes \operatorname{ker}(\epsilon) \oplus \cdots \oplus A^{\otimes(n+2)} \otimes(H / \mathbb{k} \Lambda)^{\otimes(n+1)} \otimes \operatorname{ker}(\epsilon) \oplus \cdots \\
& \cong A \otimes A \otimes(\mathbb{k} \oplus Q) \oplus \cdots \oplus A^{\otimes(n+2)} \otimes(H / \mathbb{k} \Lambda)^{\otimes(n)} \otimes(\mathbb{k} \oplus Q) \oplus \cdots,
\end{aligned}
$$

where Q is a projective H-module (see Proposition 3 of [17]). It is then easily seen that the map $A \otimes A \otimes \mathbb{k} \cong A \otimes A \xrightarrow{\delta_{0}=m} A$ extends to $\mathbf{p} A \rightarrow A$. The cone of this map, when ignoring the contributions from factors containing tensor products with Q, is just $\mathbf{a} A$, which is contractible. The corollary follows by inducing $(\mathbf{p} A \rightarrow A)$ up to the resolution
$\mathbf{p} M \rightarrow M$.

Remark 6.14. The more general notion of H-module algebra would be " H-module category", which is a graded category (including the cyclic $\mathbb{Z} /(n)$-graded case as well) with a finite dimensional (graded super) Hopf algebra action on the Hom spaces between objects. A first example of such a category which is not an H-module algebra (i.e. there are infinitely many objects) is the category $H-\bmod$. More generally, the graded module category over $B=A \# H$ is another example of such a category. The algebra A itself is an H-module category with a single object whose endomorphism space is given by A, together with the defining H action. Our treatment follows Keller's treatment of DG categories [14] closely and the above story generalizes without much difficulty to the categorical case.

Chapter 7

Compact modules

In this chapter, we follow Neeman's original treatment in [27] to discuss compact hopfological modules. Thankfully, Neeman's original setup was general enough that it can be applied here without essential modification. See also Keller [14, Section 5] for another account of Neeman's treatment, where the notion of generators of a triangulated category appears to be slightly different. However, it turns out that the two notions are equivalent.

Throughout this chapter, we make the same assumption as in the previous chapter that H is a finite dimensional Hopf algebra over the base field \mathbb{k}, and A is an H-module algebra. We let \mathcal{D} denote a \mathbb{k}-linear triangulated category that admits infinite direct sums.

7.1 Generators

We begin with a discussion of the notion of compact generators for $\mathcal{D}(A, H)$.

Definition 7.1. An object $X \in \mathcal{D}$ is said to be compact if the functor

$$
\operatorname{Hom}_{\mathcal{D}}(X,-): \mathcal{D} \longrightarrow \mathbb{k}-\text { vect }
$$

commutes with arbitrary direct sums.

The following lemma is obvious from the definition and the axioms of triangulated categories.

Lemma 7.2. In any distinguished triangle in \mathcal{D}, if two out of the three objects in the distinguished triangle are compact, so is the third.

The next lemma gives us the easiest examples of compact objects in $\mathcal{D}(A, H)$.
Lemma 7.3. For any finite dimensional H-module V, the hopfological module $A \otimes V$ is compact in $\mathcal{D}(A, H)$.

Proof. Since $A \otimes V$ is cofibrant, using Lemma 6.10, we have:

$$
\begin{aligned}
\operatorname{Hom}_{\mathcal{D}(A, H)}\left(A \otimes V, \oplus_{i \in I} M_{i}\right) & \cong \operatorname{Hom}_{\mathcal{C}(A, H)}\left(A \otimes V, \oplus_{i \in I} M_{i}\right) \\
& \cong \mathcal{H}\left(\operatorname{Hom}_{A}\left(A \otimes V, \oplus_{i \in I} M_{i}\right)\right) \cong \mathcal{H}\left(\operatorname{Hom}_{\mathbb{k}}\left(V, \oplus_{i \in I} M_{i}\right)\right) \\
& \cong \oplus_{i \in I} \mathcal{H}\left(\operatorname{Hom}_{\mathbb{k}}\left(V, M_{i}\right)\right) \cong \oplus_{i \in I} \mathcal{H}\left(\operatorname{Hom}_{A}\left(A \otimes V, M_{i}\right)\right) \\
& \cong \oplus_{i \in I} \operatorname{Hom}_{\mathcal{D}(A, H)}\left(A \otimes V, M_{i}\right),
\end{aligned}
$$

where, in the fourth equality, we used that V is finite dimensional (thus compact) and taking \mathcal{H} commutes with direct sums (Corollary 5.11). The lemma follows.

Corollary 7.4. Let $A \otimes V$ be as in the previous lemma. Then $T^{n}(A \otimes V)$ is compact for any $n \in \mathbb{Z}$.

Proof. Of course, this can be seen without the previous lemma since the shift functors are automorphisms of $\mathcal{D}(A, H)$. Alternatively, recall that the shifts T, T^{-1} are given by right tensoring $A \otimes V$ with the finite dimensional H-modules $H / \mathbb{k} \Lambda, \operatorname{Ker}(\epsilon)$ respectively (Proposition 3.2). The compactness of $T(A \otimes V)=A \otimes V \otimes(H / \mathbb{k} \Lambda)$ etc. then follows directly from the previous lemma.

Definition 7.5 (Neeman). Let \mathcal{D} be as above. We say that \mathcal{D} is generated by a set of objects if there exists a set $\mathcal{G}=\left\{G_{i} \in \mathcal{D} \mid i \in I\right\}$ so that for any $X \in \mathcal{D}, X \cong 0$ if and only if

$$
\operatorname{Hom}_{\mathcal{D}}\left(T^{n}\left(G_{i}\right), X\right)=0
$$

for all $n \in \mathbb{Z}$ and $G_{i} \in \mathcal{G} . \mathcal{D}$ is said to be compactly generated if \mathcal{D} is generated by a set \mathcal{G} consisting of compact objects.

As an example of this definition, we show that $\mathcal{D}(A, H)$ admits a set of compact generators.

Proposition 7.6. The derived category $\mathcal{D}(A, H)$ is compactly generated by the finite set of objects $\mathcal{G}:=\{A \otimes V\}$, where V ranges over a finite set of representatives of isomorphism classes of simple H-modules.

Proof. It suffices to show that, if an object $X \in \mathcal{D}(A, H)$ satisfies $\operatorname{Hom}_{\mathcal{D}(A, H)}(A \otimes V, X)=0$ for all $A \otimes V \in \mathcal{G}$, then $X \cong 0$ in $\mathcal{D}(A, H)$.

Firstly, we show that the hypothesis implies that $\operatorname{Hom}_{\mathcal{D}(A, H)}(A \otimes W, X)=0$ for any finite dimensional H-module W. We prove this by induction on the length of W, the length 1 case following by the assumption. Inductively, take any finite dimensional irreducible submodule W^{\prime} of W and form the quotient $W^{\prime \prime}=W / W^{\prime} . W^{\prime \prime}$ has shorter length by construction, and we have a short exact sequence of cofibrant modules

$$
0 \longrightarrow A \otimes W^{\prime} \longrightarrow A \otimes W \longrightarrow A \otimes W^{\prime \prime} \longrightarrow 0
$$

This short exact sequence becomes a distinguished triangle of cofibrant modules in $\mathcal{D}(A, H)$ and applying $\operatorname{Hom}_{\mathcal{D}(A, H)}(-, X)$ to the triangle leads to a long exact sequence

$$
\begin{aligned}
\cdots \longrightarrow \operatorname{Hom}_{\mathcal{D}(A, H)}\left(T^{n}\left(A \otimes W^{\prime \prime}\right), X\right) & \longrightarrow \operatorname{Hom}_{\mathcal{D}(A, H)}\left(T^{n}(A \otimes W), X\right) \\
& \longrightarrow \operatorname{Hom}_{\mathcal{D}(A, H)}\left(T^{n}\left(A \otimes W^{\prime}\right), X\right) \longrightarrow \cdots
\end{aligned}
$$

The two end terms vanish by assumption and inductive hypothesis, therefore so does the middle term.

Next, we show that $\operatorname{Hom}_{\mathcal{D}(A, H)}\left(T^{n}(A \otimes W), X\right)$ vanishes for any indecomposable H module W (W could be infinite dimensional). The strategy is to filter W by finite dimensional
submodules, which we used in the proof of Lemma 2.3. Tensoring the short exact sequence there with A, we obtain a short exact sequence of B-modules

$$
0 \longrightarrow \bigoplus_{i \in I} A \otimes W_{i} \xrightarrow{\mathrm{Id}_{A} \otimes \Psi} \bigoplus_{i \in I} A \otimes W_{i} \longrightarrow A \otimes W \longrightarrow 0,
$$

where each W_{i} is finite dimensional. Applying $\operatorname{Hom}_{\mathcal{D}(A, H)}(-, X)$ to the corresponding distinguished triangle and using the previous step finishes this step.

Thirdly, we prove the vanishing of $\operatorname{Hom}_{\mathcal{D}(A, H)}\left(T^{n}(P), X\right)$ for all P with property (P). Consider the following short exact sequence of $B=A \# H$ modules used in Lemma 6.4:

$$
0 \longrightarrow \bigoplus_{r \in \mathbb{N}} F_{r} \xrightarrow{\Psi} \bigoplus_{s \in \mathbb{N}} F_{s} \longrightarrow P \longrightarrow 0
$$

An induction argument on q using the previous step shows that $\operatorname{Hom}_{\mathcal{D}(A, H)}\left(T^{n}\left(F_{r}\right), X\right)=0$ for all $r \in \mathbb{N}, n \in \mathbb{Z}$. Then applying $\operatorname{Hom}_{\mathcal{D}(A, H)}(-, X)$ to the distinguished triangle associated with the above short exact sequence gives us a long exact sequence

$$
\begin{aligned}
\cdots \longrightarrow \prod_{s \in \mathbb{N}} \operatorname{Hom}_{\mathcal{D}(A, H)}\left(T^{n}\left(F_{s}\right), X\right) & \longrightarrow \operatorname{Hom}_{\mathcal{D}(A, H)}\left(T^{n}(P), X\right) \\
& \longrightarrow \prod_{r \in \mathbb{N}} \operatorname{Hom}_{\mathcal{D}(A, H)}\left(T^{n+1}\left(F_{r}\right), X\right) \longrightarrow \cdots .
\end{aligned}
$$

Both ends vanish and the claim follows
Finally, for any object $X \in \mathcal{D}(A, H)$, take its bar resolution $\mathbf{p} X \cong X$ (6.7), where $\mathbf{p} X$ satisfies property (P). Then

$$
\operatorname{Hom}_{\mathcal{D}(A, H)}(X, X) \cong \operatorname{Hom}_{\mathcal{D}(A, H)}(\mathbf{p} X, X)
$$

and the right hand side vanishes by the previous step. It follows that $\operatorname{Id}_{X} \cong 0$ and $X \cong 0$, finishing the proof of the lemma.

Remark 7.7 (On the notion of generators). In the above proposition, we can equivalently take one compact generator $A \otimes W$ where W is a direct sum of simple H-modules, one from
each isomorphism classes. Notice that, when H is a local Hopf algebra of finite type, we can replace condition P 3 of property (P) (Definition 6.3) with the equivalent requirement that $F_{r} / F_{r+1} \cong A$ instead. Here by finite type we mean that the set of isomorphism classes of indecomposable modules over H is finite. Indeed, in this case, the dimensions of indecomposable modules are bounded, and thus any direct sum of indecomposable H-modules V admits a finite step filtration whose subquotients are isomorphic to the trivial H-module. Therefore by refining the original filtration of condition P3 by inducing this filtration of V 's, we obtain a new filtration whose subquotients are just isomorphic to the free module A (with appropriate grading shifts in the graded case). In particular, this allows us to see immediately that A generates $\mathcal{D}(A, H)$ in the stronger sense of Keller [14, Section 4.2]:

- " $\mathcal{D}(A, H)$ is the smallest strictly 1 full triangulated subcategory in itself which contains A and is closed under taking arbitrary direct sums and forming distinguished triangles."

It is readily seen that this seemingly stronger version of generators implies the notion we used in Definition 7.5.

By contrast, for almost all finite dimensional Hopf algebras H, the set of isomorphism classes of indecomposable H-modules may well be infinite, and there is in general no good parametrization of these isomorphism classes. Over such an H, it seems that the definition of property (P) using all indecomposable modules is more natural and fits the construction of the bar resolution we gave previously. Moreover, using the bar resolution, Proposition 7.6 shows that a natural set of compact generators is given by $\{A \otimes V\}$, where V ranges over the representatives of isomorphism classes of simple H-modules. Thus one might wonder whether in the generic case of H there would still be a similar relation between the two notions of generators. By a localization theorem of Thomason-Neeman, they are always equivalent.

[^2]Corollary 7.8. $\mathcal{D}(A, H)$ is the smallest strictly full triangulated subcategory in itself that contains $\mathcal{G}=\{A \otimes V\}$ and is closed under taking arbitrary direct sums and forming distinguished triangles.

Proof. The proof is just a corollary of the following theorem, where we take $R=T^{\mathbb{Z}}(\mathcal{G}):=$ $\left\{T^{n}(G) \mid G \in \mathcal{G}, n \in \mathbb{Z}\right\}$, and \mathcal{G} is the set of compact generators we exhibited in Proposition 7.6 .

Theorem 7.9 (Thomason-Neeman). Let \mathcal{D} be a compactly generated triangulated category. Let R be a set of compact objects of \mathcal{D} closed under the shift functor T of \mathcal{D}. Let \mathcal{R} be the smallest full subcategory of \mathcal{D} containing R and closed with respect to taking coproducts and forming triangles. Then:

1. The category \mathcal{R} is compactly generated by the set of generators R.
2. If R is also a set of generators for \mathcal{D}, then $\mathcal{R}=\mathcal{D}$.
3. The compact objects in \mathcal{R} equals $\mathcal{R}^{c}=\mathcal{D}^{c} \cap \mathcal{R}$. In particular, if R is closed under forming triangles and taking direct summands, it coincides with \mathcal{R}^{c}.

Proof. This is part of Theorem 2.1 in [27].

7.2 Compact modules

Brown representability theorem. We recall the notion of homotopy colimits in a triangulated category that admits infinite direct sums. Homotopy colimits are used in the construction of representable functors on the triangulated category (Brown's representability theorem).

Definition 7.10. Let \mathcal{D} be as before. Let $\left\{f_{n}: X_{n} \longrightarrow X_{n+1} \mid n \in \mathbb{N}\right\}$ be a sequence of morphisms in \mathcal{D}. A homotopy colimit of this sequence is an object $X \in \mathcal{D}$ that fits into a
distinguished triangle as follows:

$$
\bigoplus_{n \in \mathbb{N}} X_{n} \xrightarrow{\Psi} \bigoplus_{n \in \mathbb{N}} X_{n} \longrightarrow X \longrightarrow T\left(\bigoplus_{n \in \mathbb{N}} X_{n}\right)
$$

where Ψ is given by the infinite matrix

$$
\Psi=\left(\begin{array}{ccccc}
\operatorname{Id}_{X_{1}} & -f_{1} & 0 & 0 & \ldots \\
0 & \operatorname{Id}_{X_{2}} & -f_{2} & 0 & \ldots \\
0 & 0 & \operatorname{Id}_{X_{3}} & -f_{3} & \ldots \\
0 & 0 & 0 & \operatorname{Id}_{X_{4}} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Notice that such an X is unique up to isomorphisms in \mathcal{D}.

Theorem 7.11 (Brown representability). Let \mathcal{D} be a triangulated category that admits infinite direct sums. Suppose \mathcal{D} is compactly generated by a set of generators \mathcal{G}. A cohomological functor $F: \mathcal{D} \longrightarrow(\mathbb{k}-\mathrm{vect})^{o p}$ is representable if and only if it commutes with direct sums. When representable, such an F is represented by the homotopy colimit of a sequence $\left\{f_{r}: X_{r} \longrightarrow X_{r+1} \mid r \in \mathbb{N}\right\}$ where X_{1} as well as the cone of any f_{n} is represented by a possibly infinite direct sum of objects of the form $T^{n}(G)$, with $G \in \mathcal{G}$ and $n \in \mathbb{Z}$.

Proof. See [27, Theorem 3.1].

Characterizing compact modules. The fact that $\mathcal{D}(A, H)$ is compactly generated allows us to give an alternative characterization of compact hopfological modules as summands of iterated extensions of a finite number of free modules of the form $T^{n}(A \otimes V)$ where V belongs to the set of simple H-modules. The original idea of the proof is due to Ravenel [31] and Neeman [28, and a very readable account of the proof is given by Keller [14, Section 5.3], which we follow.

Definition 7.12. Let \mathcal{D} be a triangulated category as above and \mathcal{U}, \mathcal{V} be two classes of objects of \mathcal{D}. Let $\mathcal{U} * \mathcal{V}$ be the class of objects X in \mathcal{D} that fit into a distinguished triangle of the form

$$
G_{1} \longrightarrow X \longrightarrow G_{2} \longrightarrow T\left(G_{1}\right)
$$

where $G_{1} \in \mathcal{U}$ and $G_{2} \in \mathcal{V}$. The lemma below says that the operation $*$ is associative, and therefore we can define unambiguously the class of length n objects generated by \mathcal{W} to be the class of objects in

$$
\mathcal{W} * \mathcal{W} * \cdots * \mathcal{W}
$$

where there are n copies of \mathcal{W}. We will refer to objects belonging to $\mathcal{W} * \mathcal{W} * \cdots * \mathcal{W}$ for some $n \in \mathbb{N}$ as a finite extension of objects in \mathcal{W}.

Lemma 7.13. The above operation $*$ is associative in the sense that the two classes of objects $(\mathcal{U} * \mathcal{V}) * \mathcal{W}, \mathcal{U} *(\mathcal{V} * \mathcal{W})$ coincide.

Proof. The octahedral axiom for the morphisms u and v and their composition gives us a commutative diagram:

where we take $Y=C_{v o u}, V=C_{u}$ and $W=C_{v}$. The horizontal and vertical sequences are distinguished triangles. Read vertically, the diagram says that Z belongs to $(\mathcal{U} * \mathcal{V}) * \mathcal{W}$, while read horizontally, it gives another realization of Z as an object of $\mathcal{U} *(\mathcal{V} * \mathcal{W})$.

Theorem 7.14 (Ravenel-Neeman). Let \mathcal{D} be a triangulated category compactly generated by
a set of generators \mathcal{G}. Any compact object of \mathcal{D} is then a direct summand of a finite extension of objects of the form $T^{n}(G)$, where $G \in \mathcal{G}$ and $n \in \mathbb{Z}$.

Sketch of proof. See [31, 28, 14]. The formulation given here is the same as that of [14, Theorem 5.3]. The idea of proof is to apply Brown's representability theorem to the cohomological functor $\operatorname{Hom}_{\mathcal{D}}(-, M)$ for any compact object $M \in \mathcal{D}$. Then compactness of M allows us to factor the identity morphism of X through some X_{i}, a finite step of the homotopy-colimit-approximation of X (in the notation of 7.10). It can be seen from the second part of the Brown representability theorem that $X_{i} \in T^{\mathbb{Z}}(\mathcal{G}) * T^{\mathbb{Z}}(\mathcal{G}) * \cdots * T^{\mathbb{Z}}(\mathcal{G})$ for i copies of $T^{\mathbb{Z}}(\mathcal{G})$. Finally the theorem follows from a "dévissage" type of argument on the length of X_{i}, using the octahedral axiom.

Corollary 7.15. Let $\mathcal{D}^{c}(A, H)$ denote the strictly full subcategory of compact hopfological modules in $\mathcal{D}(A, H)$. It is triangulated and idempotent complete. Any $X \in \mathcal{D}^{c}(A, H)$ is a direct summand of an object which is a finite extension of modules in $T^{\mathbb{Z}}(\mathcal{G})=\left\{T^{n}(A \otimes V)\right\}$, where $n \in \mathbb{Z}$ and V ranges over the set of representatives of isomorphism classes of simple H-modules. Furthermore, $\mathcal{D}^{c}(A, H)$ is the smallest strictly full triangulated subcategory of $\mathcal{D}(A, H)$ that contains \mathcal{G} which is closed under taking direct summands.

Proof. Combine the previous theorem with Proposition 7.6. The last statement follows from Theorem 7.9,

Definition 7.16. Let A be an H-module algebra over a finite dimensional Hopf algebra H over the base field \mathbb{k}. We define the Grothendieck group $K_{0}\left(\mathcal{D}^{c}(A, H)\right.$) (or $K_{0}(A, H)$ for short) to be the abelian group generated by the symbols of isomorphism classes of objects in $\mathcal{D}^{c}(A, H)$, modulo the relations

$$
[Y]=[X]+[Z],
$$

whenever there is a distinguished triangle inside $\mathcal{D}^{c}(A, H)$ of the form

$$
X \longrightarrow Y \longrightarrow Z \longrightarrow T(X)
$$

Remark 7.17. Since $\mathcal{D}^{c}(A, H)$ is a (right) triangulated module-category over H - $\underline{\bmod }$, on the Grothendieck group level, $K_{0}\left(\mathcal{D}^{c}(A, H)\right)$ is a (right) module over $K_{0}(H-\underline{\bmod })$. When H is cocommutative, $K_{0}(H-\underline{\text { mod }})$ is a commutative ring and there is no need to distinguish right or left modules over it.

More generally, we can define higher K-groups of A by applying Waldhausen-ThomasonTrobaugh's construction to $\mathcal{D}^{c}(A, H)$. We expect a large chunk of the K-theoretic results of Thomason-Trobaugh [37] and Schlichting [33] to generalize to our case.

7.3 A useful criterion

As another application of Thomason-Neeman's Theorem 7.9 and the notion of compactly generated categories 7.5, we give a useful criterion concerning the fully-faithfulness of exact functors on a compactly generated triangulated category and natural transformations between these functors. Of course the main example of such categories we have in mind are the derived categories of H-module algebras. The criterion will be needed in the next section.

Lemma 7.18. Let $\mathcal{D}_{1}, \mathcal{D}_{2}$ be triangulated categories, $F, F^{\prime}: \mathcal{D}_{1} \longrightarrow \mathcal{D}_{2}$ be exact functors between them, and $\mu: F \Rightarrow F^{\prime}$ be a natural transformation of these functors. Suppose furthermore that \mathcal{D}_{1} admits arbitrary direct sums and is compactly generated by a set of generators $\mathcal{G}, F, F^{\prime}$ commute with direct sum蚿. Then:

1. F is fully-faithful if F, restricted to the full subcategory consisting of objects in $T^{\mathbb{Z}}(\mathcal{G}):=$ $\cup_{n \in \mathbb{Z}} T^{n}(\mathcal{G})$, is fully faithful, and $F(G)$ is compact for all $G \in \mathcal{G}$. The converse holds if F is essentially surjective on object ${ }^{3}$.

[^3]2. μ is invertible if and only if $\mu(G): F(G) \longrightarrow F^{\prime}(G)$ is invertible for all $G \in \mathcal{G}$.

Proof. To prove 1, notice that the full subcategory consisting of objects X on which the functor F induces an isomorphism of vector spaces

$$
\operatorname{Hom}_{\mathcal{D}_{1}}\left(T^{n}(G), X\right) \cong \operatorname{Hom}_{\mathcal{D}_{2}}\left(F\left(T^{n}(G)\right), F(X)\right)
$$

forms a strictly full triangulated subcategory of \mathcal{D}_{1}. By the compactness assumption on $F(G)$, this subcategory contains arbitrary direct sums. Now Theorem 7.9 applies since \mathcal{D}_{1} is compactly generated. The converse is true since if F is essentially surjective on objects, $F(G)$ is then automatically compact whenever G is.

The second claim follows by considering instead the full subcategory in which μX : $F(X) \longrightarrow F^{\prime}(X)$ is invertible. Similar arguments as above show that this subcategory is a strictly full triangulated subcategory, and it contains all the compact generators. Therefore it coincides with the whole category.

Corollary 7.19. Let $F: \mathcal{D}_{1} \longrightarrow \mathcal{D}_{2}$ be an exact functor between \mathbb{k}-linear triangulated categories which are compactly generated and admit arbitrary direct sums. Suppose F also commutes with direct sums. Let $\mathcal{G}=\{G\}$ be a set of compact generators for \mathcal{D}_{1}. Then F induces an equivalence of triangulated categories if and only if when restricted to the full subcategory consisting of objects $T^{\mathbb{Z}}(\mathcal{G}):=\cup_{n \in \mathbb{Z}} T^{n}(\mathcal{G})$ it is fully-faithful, and $F(\mathcal{G}):=$ $\{F(G) \mid G \in \mathcal{G}\}$ is a set of compact generators for \mathcal{D}_{2}.

Proof. F induces an equivalence of categories between \mathcal{D}_{1} and the image $F\left(\mathcal{D}_{1}\right)$. By Theorem 7.9, the image category coincides with \mathcal{D}_{2}.

Chapter 8

Derived functors

In this chapter, we define the derived functors associated with hopfological bimodules. Then we proceed to prove a sufficient condition for two H-module algebras to be derived Morita equivalent. As a corollary, we discuss when a morphism of H-module algebras induces an equivalence of derived categories. The arguments we use are modeled on the DG case, as in Keller [14, Section 6].

Throughout this chapter, we will assume that H is also a (co)commutative Hopf algebra. This condition is needed when we define a left module-algebra structure on the opposite algebra $A^{o p}$ of a left module-algebra A, and when dealing with derived functors and derived equivalences. We will make some further remarks on this assumption later.

8.1 The opposite algebra and tensor product

By the construction of $B=A \# H$, it is readily seen that the opposite algebra of B is isomorphic to the smash product ring $B^{o p}=H^{o p, c o p} \# A^{o p}$, where $H^{o p, c o p}$ denotes the Hopf algebra H with the opposite multiplication and opposite comultiplication. Therefore, $A^{o p}$ is naturally a right $H^{o p, c o p}$-module algebra, or equivalently, a left $H^{c o p}$-module algebra ($H^{c o p}$ becomes a Hopf algebra if we equip with it the antipode map S^{-1}). By our assumption H is (co)commutative, and we can naturally identify $H^{c o p} \cong H\left(S^{-1}=S\right.$ in this case). Therefore,
we have a left H-module algebra structure on $A^{o p}$.

Definition 8.1. Let H be a cocommutative Hopf algebra, and A be an H-module algebra as in the main example 2.8. We define the opposite H-module algebra $A^{o p}$ to be the same H-module as A but with the opposite multiplication. An analogous definition applies when A, H are compatibly \mathbb{Z}-graded.

Example 8.2. We give an example showing the necessity of assuming H to be cocommutative. Consider an n-DG algebra A equipped with a differential d of degree 1 (see the second example of Chapter 4). For any $a, b \in A$, we have:

$$
\begin{equation*}
d(a b)=(d a) b+\nu^{|a|} a(d b) \tag{8.1}
\end{equation*}
$$

where ν is an n-th root of unity and $|a| \in \mathbb{Z}$ denotes the degree of a. As such an algebra can be regarded as a graded module algebra over the Taft algebra H_{n} at the n-th root of unity ν (see [2] and the second example of Section 3.4), which is non-commutative and noncocommutative. Now in $A^{o p}$, whose multiplication will be denoted by \circ, we have $a \circ b=$ $\xi^{|b| a \mid} b a$, where we allow ξ to be some other n-th root of unity. Then

$$
\begin{aligned}
d(a \circ b) & =d\left(\xi^{|b| a \mid} b a\right)=\xi^{|b||a|}\left(d(b) a+\nu^{|b|} b d(a)\right) \\
& =\xi^{|b||a|}\left(\xi^{(|b|+1)|a|} a \circ d(b)+\nu^{|b|} \xi^{(|a|+1)|b|} d(a) \circ b\right) \\
& =\xi^{(2|b|+1)|a|} a \circ d(b)+\nu^{|b|} \xi^{|b|(2|a|+1)} d(a) \circ b,
\end{aligned}
$$

Compare with the relation we need to make $A^{o p}$ differential graded: $d(a \circ b)=d(a) \circ b+$ $\eta^{|a|} a \circ d(b)$. Now assume A has non-zero terms in each degree, it is easy to see that in order to make these expressions equal, we need $\xi= \pm 1$ and $\nu=\xi^{-1}$. Thus it appears that the opposite algebra does not carry a natural n-DG structure if $\nu \neq \pm 1$.

Definition 8.3. Let H be a cocommutative Hopf algebra. Let M be a left $A^{o p} \# H$-module and N be a left $A \# H$-module. The tensor product space $M \otimes_{A} N$ is naturally an H-module
by setting, for any $m \in M, n \in N$ and $h \in H$,

$$
h(m \otimes n):=\sum\left(h_{(1)} m\right) \otimes\left(h_{(2)} n\right) .
$$

The H-module $M \otimes_{A} N$ is graded if H, A, M, N are compatibly graded.
We have, as H-modules, $M \otimes_{A} A \cong M$, and $A \otimes_{A} N \cong N$.
One checks easily that, when H is cocommutative, we have an equivalence between the categories of right $A \# H$-modules and the category of left $A^{o p} \# H$-modules. Indeed, for any right $A \# H$-module M, we define the corresponding left $A^{o p} \# H$-module to be the same underlying H-module with the left $A^{o p}$ action given by $a \circ m:=m a$, for any element $a \in A$ and $m \in M$. The compatibility of this left $A^{o p}$-structure with the H-module structure is guaranteed by the cocommutativity of H.

Now, if M is a B-module which is finitely presented as an A-module (finitely generated if A is noetherian), we have a canonical isomorphism of H-modules

$$
\begin{equation*}
\operatorname{Hom}_{A}(M, N) \cong M^{\vee} \otimes_{A} N, \tag{8.2}
\end{equation*}
$$

where M^{\vee} denotes the H-module $\operatorname{Hom}_{A}(M, A)$, equipped with the right A-module structure from that of the target A. A similar identification holds in the graded case.

8.2 Derived tensor

Our first task is to define the derived tensor functor associated with a hopfological bimodule and determine when it induces an equivalence of derived categories. We will denote by A_{1}, A_{2} two H-module algebras over a finite dimensional (graded, super) cocommutative Hopf algebra H, and set $B_{1}=A_{1} \# H, B_{2}=A_{2} \# H$.

Definition 8.4. Let A_{1}, A_{2} be as above, and define their tensor product H-module algebra $A_{1} \otimes A_{2}$ to be the usual tensor product of A_{1}, A_{2} as a \mathbb{k}-vector space and the algebra structure
given by

$$
\left(a_{1} \otimes a_{2}\right) \cdot\left(b_{1} \otimes b_{2}\right):=\left(a_{1} b_{1}\right) \otimes\left(a_{2} b_{2}\right)
$$

for any $a_{1}, b_{1} \in A_{1}, a_{2} b_{2} \in A_{2}$. We equip it with the H-action that, for any $h \in H$, $a_{1} \otimes a_{2} \in A_{1} \otimes A_{2}$,

$$
h \cdot\left(a_{1} \otimes a_{2}\right):=\sum h_{(1)} a_{1} \otimes h_{(2)} a_{2} .
$$

It is readily checked that $A_{1} \otimes A_{2}$ indeed satisfies the axioms of an H-module algebra under the assumption that H is cocommutative.

Now let A_{1}, A_{2} be as above and ${ }_{A_{1}} X_{A_{2}}$ be an $\left(A_{1}, A_{2}\right)$ hopfological bimodule, i.e. a module over the ring $\left(A_{1} \otimes A_{2}^{o p}\right) \# H$. We define the associated tensor and hom functors to be:

$$
\begin{gather*}
A_{1} X_{A_{2}} \otimes_{A_{2}}(-): A_{2}-\bmod \longrightarrow A_{1}-\bmod , A_{2} N \mapsto A_{1} X \otimes_{A_{2}} N \tag{8.3}\\
\operatorname{Hom}_{A_{1}}\left(A_{1} X_{A_{2}},-\right): A_{1}-\bmod \longrightarrow A_{2}-\bmod ,{ }_{A_{1}} M \mapsto \operatorname{Hom}_{A_{1}}\left(X_{A_{2}}, M\right) . \tag{8.4}
\end{gather*}
$$

In the above definition and what follows, we omit some of the subscripts whenever no confusion can arise. For instance, $\operatorname{Hom}_{A_{1}}\left(X_{A_{2}}, M\right):=\operatorname{Hom}_{A_{1}}\left({ }_{A_{1}} X_{A_{2}},{ }_{A_{1}} M\right)$. The natural left A_{2}-module structure on the right hand side is compatible with the H-action under the assumption that H is cocommutative. Therefore $\operatorname{Hom}_{A_{1}}\left(X_{A_{2}}, M\right) \in B_{2}-\bmod$, and more generally one easily checks that both maps above are compatible with the H-actions on the algebras and modules, inducing functors on the corresponding B-module categories. We leave the analogous statements and their verification in the graded case to the reader; their proofs are similar to the argument we use in the next lemma.

Lemma 8.5. The canonical adjunction between the tensor and hom functors in the above definition associated with the bimodule ${ }_{A_{1}} X_{A_{2}}$,

$$
\operatorname{Hom}_{A_{1}}\left(X \otimes_{A_{2}} N, M\right) \cong \operatorname{Hom}_{A_{2}}\left(N, \operatorname{Hom}_{A_{1}}\left(X_{A_{2}}, M\right)\right)
$$

is an isomorphism of H-modules, functorial in M and N for any $M \in B_{1}-\bmod , N \in$ $B_{2}-\bmod$. A similar statement holds in the graded case.

Proof. Recall that under the tensor-hom adjunction, we associate with any element $f \in$ $\operatorname{Hom}_{A_{2}}\left(N, \operatorname{Hom}_{A_{1}}\left(X_{A_{2}}, M\right)\right)$ the element of $\operatorname{Hom}_{A_{1}}\left(X \otimes_{A_{2}} N, M\right)$, still denoted f, which sends $x \otimes n$ to $f(n)(x)$. On one hand, for any $h \in H, h \cdot f \in \operatorname{Hom}_{A_{2}}\left(N, \operatorname{Hom}_{A_{1}}\left(X_{A_{2}}, M\right)\right)$ is given by

$$
(h \cdot f)(-)=h_{(2)} f\left(S^{-1}\left(h_{(1)}\right) \cdot-\right): N \longrightarrow \operatorname{Hom}_{A_{1}}\left(X_{A_{2}}, M\right) .
$$

Thus for any $n \in N, x \in X$, we have from the above assignment

$$
(h \cdot f)(x \otimes n)=\left(h_{(2)} \cdot f\left(S^{-1}\left(h_{(1)}\right) \cdot n\right)\right)(x)=h_{(3)} f\left(S^{-1}\left(h_{(1)}\right) \cdot n\right)\left(S^{-1}\left(h_{(2)}\right) \cdot x\right) .
$$

On the other hand, when regarding f as an element of $\operatorname{Hom}_{A_{1}}\left(X \otimes_{A_{2}} N, M\right)$ using the adjunction, the H-action has the effect

$$
\begin{aligned}
(h \cdot f)(x \otimes n) & =h_{(2)} f\left(S^{-1}\left(h_{(1)}\right) \cdot(x \otimes n)\right)=h_{(3)}\left(f\left(S^{-1}\left(h_{(2)}\right) \cdot x \otimes S^{-1}\left(h_{(1)}\right) \cdot n\right)\right) \\
& =h_{(3)}\left(f\left(S^{-1}\left(h_{(1)}\right) \cdot n\right)\left(S^{-1}\left(h_{(2)}\right) \cdot x\right)\right) .
\end{aligned}
$$

This shows that the two expressions are equal and the lemma follows.

Taking stable invariants \mathcal{H} (Proposition 5.10) of the above canonical isomorphism gives us the corresponding adjunction in the homotopy categories.

Corollary 8.6. The functors $A_{1} X \otimes_{A_{2}}(-), \operatorname{Hom}_{A_{1}}\left(X_{A_{2}},-\right)$ descend to adjoint functors in the homotopy category:

$$
\operatorname{Hom}_{\mathcal{C}\left(A_{1}, H\right)}\left(X \otimes_{A_{2}} N, M\right) \cong \operatorname{Hom}_{\mathcal{C}\left(A_{2}, H\right)}\left(N, \operatorname{Hom}_{A_{1}}\left(X_{A_{2}}, M\right)\right)
$$

functorially in $M \in B_{1}-\bmod , N \in B_{2}-\bmod$.

Definition 8.7. Let ${ }_{A_{1}} X_{A_{2}}$ be as above. We define the (left) derived tensor functor ${ }_{A_{1}} X \otimes_{A_{2}}^{\mathbf{L}}$ $(-)$ to be the composition:

$$
\begin{gathered}
A_{1} X \otimes_{A_{2}}^{\mathbf{L}}(-): \mathcal{D}\left(A_{2}, H\right) \xrightarrow{\mathbf{p}} \mathcal{P}\left(A_{2}, H\right) \xrightarrow{X \otimes_{A_{2}}(-)} \mathcal{C}\left(A_{1}, H\right) \xrightarrow{Q} \mathcal{D}\left(A_{1}, H\right) \\
A_{2} M \mapsto{ }_{A_{1}} X \otimes_{A_{2}} \mathbf{p} M
\end{gathered}
$$

where \mathbf{p} is the functorial bar resolution of Corollary 6.7 and Q is the canonical localization functor.

Proposition 8.8. Let ${ }_{A_{1}} X_{A_{2}}, A_{1} Y_{A_{2}}$ be $\left(A_{1}, A_{2}\right)$ hopfological bimodules, and let

$$
\mu:{ }_{A_{1}} X_{A_{2}} \longrightarrow{ }_{A_{1}} Y_{A_{2}}
$$

be a map of hopfological bimodules. Then:

1. Suppose ${ }_{A_{1}} X_{A_{2}}$ is cofibrant when regarded as a B_{1}-module. The functor

$$
{ }_{A_{1}} X \otimes_{A_{2}}^{\mathbf{L}}(-): \mathcal{D}\left(A_{2}, H\right) \longrightarrow \mathcal{D}\left(A_{1}, H\right)
$$

is an equivalence of categories if and only if $A_{2} \longrightarrow \operatorname{Hom}_{A_{1}}\left(X_{A_{2}}, X_{A_{2}}\right)$ is a quasiisomorphism, and $\left\{A_{1} X \otimes V\right\}$, when regarded as left B_{1}-modules, is a set of compact cofibrant generators $\mathcal{D}\left(A_{1}, H\right)$. Here V ranges over a finite set of representatives of isomorphism classes of simple H-modules.
2. The map of bimodules μ induces an invertible natural transformation of functors

$$
\mu^{\mathbf{L}}:{ }_{A_{1}} X \otimes_{A_{2}}^{\mathbf{L}}(-) \Rightarrow_{A_{1}} Y \otimes_{A_{2}}^{\mathbf{L}}(-)
$$

if and only if μ is a quasi-isomorphism in $\left(A_{1} \otimes A_{2}^{o p}\right) \# H-\bmod$.

Proof. The first statement of the proposition is a consequence of Corollary 7.19, provided we
know that $\mathcal{D}\left(A_{i}, H\right)$ is compactly generated by the set of generators $\mathcal{G}=\left\{A_{i} \otimes V\right\}, i=1,2$ (Proposition 7.6). We check that under our assumption, the conditions of the corollary are satisfied. Since $T^{n}(M) \cong M \otimes W$ for some finite dimensional H-module W (see 3.1 and 3.2), we have for any $A_{2} \otimes V, A_{2} \otimes V^{\prime} \in \mathcal{G}$, which are property (P) modules:

$$
\begin{gathered}
\operatorname{Hom}_{A_{2}}\left(T^{n}\left(A_{2} \otimes V\right), T^{m}\left(A_{2} \otimes V^{\prime}\right)\right) \cong \operatorname{Hom}_{A_{2}}\left(A_{2} \otimes V \otimes W, A_{2} \otimes V^{\prime} \otimes W^{\prime}\right) \\
\cong A_{2} \otimes \operatorname{Hom}_{\mathfrak{k}}\left(V \otimes W, V^{\prime} \otimes W^{\prime}\right) \xrightarrow{\alpha} \operatorname{Hom}_{A_{1}}(X, X) \otimes \operatorname{Hom}_{\mathfrak{k}}\left(V \otimes W, V^{\prime} \otimes W^{\prime}\right) \\
\cong \operatorname{Hom}_{A_{1}}\left(X \otimes V \otimes W, X \otimes V^{\prime} \otimes W^{\prime}\right) \cong \operatorname{Hom}_{A_{1}}\left(X \otimes_{A_{2}}\left(A_{2} \otimes V \otimes W\right), X \otimes A_{A_{2}}\left(A_{2} \otimes V^{\prime} \otimes W^{\prime}\right)\right),
\end{gathered}
$$

where α is a quasi-isomorphism by assumption. Since V, V^{\prime}, W and W^{\prime} are finite dimensional, we can pull $\operatorname{Hom}\left(V \otimes W, V^{\prime} \otimes W^{\prime}\right)$ in and out of the A_{1}-hom spaces. Taking stable invariants of the first and last hom-spaces shows that the morphism spaces in the derived categories are isomorphic as well (here we use that ${ }_{A_{1}} X$ is cofibrant), thereby establishing the fully-faithfulness of the tensor functor when restricted to $T^{\mathbb{Z}}(\mathcal{G})$. Furthermore, the hypothesis says that the modules ${ }_{A_{1}} X \otimes_{A_{2}}^{\mathbf{L}}\left(A_{2} \otimes V\right) \cong{ }_{A_{1}} X \otimes_{A_{2}}\left(A_{2} \otimes V\right) \cong{ }_{A_{1}} X \otimes V$ for the V as in the assumption constitute a set of compact cofibrant generators of $\mathcal{D}\left(A_{1}, H\right)$. Finally, the functor commutes with direct sums since tensor product does so.

For the second part, note that $X \otimes_{A_{2}}\left(A_{2} \otimes V\right) \cong X \otimes V$ is quasi-isomorphic to $Y \otimes_{A_{2}}$ $\left(A_{2} \otimes V\right) \cong Y \otimes V$ for all simple H-modules V if and only if X is quasi-isomorphic to Y. Now use part 2 of Lemma 7.18,

Corollary 8.9. Let $A_{A_{1}} X_{A_{2}}$ be a hopfological bimodule and $A_{A_{1}}(\mathbf{p} X)_{A_{2}}$ be its bar resolution in $\left(A_{1} \otimes A_{2}^{o p}\right) \# H-\bmod$. Then $\mathbf{p} X \longrightarrow X$ induces a canonical isomorphism of functors

$$
A_{1} X \otimes_{A_{2}}^{\mathbf{L}}(-) \cong{ }_{A_{1}}(\mathbf{p} X) \otimes_{A_{2}}(-): \mathcal{D}\left(A_{2}, H\right) \longrightarrow \mathcal{D}\left(A_{1}, H\right)
$$

Proof. By the previous result, we have an isomorphism of functors

$$
A_{1} X \otimes_{A_{2}}^{\mathbf{L}}(-) \cong{ }_{A_{1}}(\mathbf{p} X) \otimes_{A_{2}}^{\mathbf{L}}(-): \mathcal{D}\left(A_{2}, H\right) \longrightarrow \mathcal{D}\left(A_{1}, H\right)
$$

To this end, it suffices to show that, if a bimodule ${ }_{A_{1}} P_{A_{2}}$ has property (P), then $P_{A_{2}} \otimes_{A_{2}} M$ is quasi-isomorphic to $P_{A_{2}} \otimes_{A_{2}} \mathbf{p} M$ for any $M \in B_{2}-\bmod$.

Tensoring the short exact sequence of free $A_{1} \otimes A_{2}^{o p}$-modules

$$
0 \longrightarrow \bigoplus_{r \in \mathbb{N}} F_{r} \longrightarrow \bigoplus_{s \in \mathbb{N}} F_{s} \longrightarrow P \longrightarrow 0
$$

we used in Lemma 6.4 with the bar resolution $\mathbf{p} M \longrightarrow M$ and passing to the homotopy category $\mathcal{C}\left(A_{1}, H\right)$ (Lemma 4.3), we have a morphism of distinguished triangles

Taking cohomology (passing to H - $\underline{\bmod }$ via Res) and using the "two-out-of-three" property of triangulated categories (see, for instance, [9, Corollary 4, Section IV.1]), we are reduced to exhibiting the claimed property for each $F_{r}, r \in \mathbb{N}$. An induction argument on r further reduces us to the special case when $P=A_{1} \otimes A_{2} \otimes V$, which is easily seen to be true:

$$
\left(A_{1} \otimes A_{2} \otimes V\right) \otimes_{A_{2}} \mathbf{p} M \cong A_{1} \otimes V \otimes \mathbf{p} M \cong A_{1} \otimes V \otimes M \cong\left(A_{1} \otimes A_{2} \otimes V\right) \otimes_{A_{2}} M,
$$

where the first and last isomorphisms are that of modules, while the middle one is only a quasi-isomorphism.

Corollary 8.10. Let A_{1}, A_{2}, A_{3} be H-module algebras, and ${ }_{A_{1}} X_{A_{2}}, A_{2} Y_{A_{3}}$ be hopfological
bimodules. Then there is an isomorphism of functors

$$
A_{1} X_{A_{2}} \otimes_{A_{2}}^{\mathbf{L}}\left(A_{2} Y_{A_{3}} \otimes_{A_{3}}^{\mathbf{L}}(-)\right) \cong\left({ }_{A_{1}} Z_{A_{3}} \otimes_{A_{3}}^{\mathbf{L}}(-)\right): \mathcal{D}\left(A_{3}, H\right) \longrightarrow \mathcal{D}\left(A_{1}, H\right),
$$

where ${ }_{A_{1}} Z_{A_{3}}={ }_{A_{1}}(\mathbf{p} X) \otimes_{A_{2}} Y_{A_{3}}$ and ${ }_{A_{1}}(\mathbf{p} X)_{A_{2}}$ stands for the bar resolution of X as an $\left(A_{1}, A_{2}\right)$-bimodule.

Proof. Easy by Corollary 8.9,

8.3 Derived hom

We next focus on the derived hom functor and exhibit a derived version of the adjunctions 8.5, 8.6.

Definition 8.11. Let ${ }_{A_{1}} X_{A_{2}}$ be a hopfological bimodule are before. Let $\mathbf{p} X$ be the bar resolution of X as a left B_{1}-module. By our construction, $\mathbf{p} X=\mathbf{p} A_{1} \otimes_{A_{1}} X$ is also a right B_{2}-module. We define the derived hom functor $\mathbf{R H o m} A_{A_{1}}\left(X_{A_{2}},-\right)$ to be the composition:

$$
\begin{gathered}
\mathbf{R H o m}_{A_{1}}\left(X_{A_{2}},-\right): \mathcal{D}\left(A_{1}, H\right) \xrightarrow{\operatorname{Hom}_{A_{1}}(\mathbf{p} X,-)} \mathcal{C}\left(A_{2}, H\right) \xrightarrow{Q} \mathcal{D}\left(A_{2}, H\right) \\
A_{1} M \mapsto \operatorname{Hom}_{A_{1}}\left((\mathbf{p} X)_{A_{2}}, M\right) .
\end{gathered}
$$

The next lemma guarantees that $\operatorname{Hom}_{A_{1}}(\mathbf{p} X,-)$ is well defined on the derived category $\mathcal{D}\left(A_{1}, H\right)$.

Lemma 8.12. If ${ }_{A_{1}} \tilde{X}_{A_{2}}$ has property (P) as a left B_{1}-module, then $\operatorname{Hom}_{A_{1}}\left(\tilde{X}_{A_{2}}, K\right)$ is an acyclic B_{2}-module whenever $K \in B_{1}-\bmod$ is acyclic. Consequently, $\mathbf{R H o m}_{A_{1}}\left(\tilde{X}_{A_{2}},-\right)$ descends to a functor:

$$
\operatorname{RHom}_{A_{1}}\left(\tilde{X}_{A_{2}},-\right): \mathcal{D}\left(A_{1}, H\right) \longrightarrow \mathcal{D}\left(A_{2}, H\right) .
$$

Likewise, the result holds when "property (P) " is replaced by "cofibrant" in the statement.

Proof. The proof is similar to that of Corollary 8.9, Consider the short exact sequence of B1-modules $0 \longrightarrow \bigoplus_{r \in \mathbb{N}} F_{r} \longrightarrow \bigoplus_{s \in \mathbb{N}} F_{s} \longrightarrow \tilde{X} \longrightarrow 0$ associated with \tilde{X}. Since each $F_{r}, r \in \mathbb{N}$, and \tilde{X} are free as A_{1}-modules, applying $\operatorname{Hom}_{A_{1}}(-, K)$ yields a short exact sequence of B_{2}-modules:

$$
0 \longrightarrow \operatorname{Hom}_{A_{1}}(\tilde{X}, K) \longrightarrow \prod_{s \in \mathbb{N}} \operatorname{Hom}_{A_{1}}\left(F_{s}, K\right) \longrightarrow \prod_{r \in \mathbb{N}} \operatorname{Hom}_{A_{1}}\left(F_{r}, K\right) \longrightarrow 0
$$

Thus it suffices to show that $\operatorname{Hom}_{A_{1}}\left(F_{r}, K\right)$ is acyclic for each $r \in \mathbb{N}$. An induction on r further reduces us to the case of free modules of the form $A_{1} \otimes N$ where N is some indecomposable H-module. This case now follows from Lemma 2.3 since $\operatorname{Hom}_{A_{1}}\left(A_{1} \otimes N, K\right) \cong$ $\operatorname{Hom}_{\mathbb{k}}(N, K)$.

The last claim follows readily from the first part of the lemma and Corollary 6.8,

Remark 8.13. More generally, it is easy to see that $\mathbf{R H o m}_{A_{1}}(-,-)$ is a bifunctor

$$
\operatorname{RHom}_{A_{1}}(-,-): \mathcal{D}\left(A_{1} \otimes A_{2}^{o p}, H\right)^{o p} \times \mathcal{D}\left(A_{1}, H\right) \longrightarrow \mathcal{D}\left(A_{2}, H\right)
$$

In particular, when $A_{2} \cong \mathbb{k}$, we have a bifunctor

$$
\operatorname{RHom}_{A_{1}}(-,-): \mathcal{D}\left(A_{1}, H\right)^{o p} \times \mathcal{D}\left(A_{1}, H\right) \longrightarrow H-\underline{\bmod }
$$

There is another derived Hom-space one can associate with any two hopfological modules M and N, namely the space of chain maps up to homotopy

$$
\mathcal{H}\left(\operatorname{Hom}_{A}(\mathbf{p} M, N)\right)=\operatorname{Hom}_{\mathcal{C}(A, H)}(\mathbf{p} M, N) .
$$

By Proposition 5.10 and the remark that follows it, this is the space of (stable) invariants in $\operatorname{Hom}_{A}(\mathbf{p} M, N)$, and thus it usually contains less information than the $\mathbf{R H o m}$ above. Another
reason that we use the definition above is that it satisfies the right adjunction property with the derived tensor product functor as shown in the next lemma. Notice that in the DG case, i.e. $H=\mathbb{k}[d] /\left(d^{2}\right)$, the natural map of HOM-spaces

$$
\operatorname{RHOM}_{A}(M, N) \xrightarrow{\mathcal{H}} \operatorname{HOM}_{\mathcal{C}(A, H)}(\mathbf{p} M, N) \cong \operatorname{HOM}_{\mathcal{D}(A, H)}(M, N)
$$

is an isomorphism since the only stably non-zero modules are the graded shifts of the trivial module \mathbb{k}_{0}.

Lemma 8.14. The functor $\mathbf{R} \operatorname{Hom}(X,-)$ is right adjoint to $X \otimes_{A_{1}}^{\mathbf{L}}(-)$ as functors between $\mathcal{D}\left(A_{i}, H\right), i=1,2$.

Proof. Notice that $\mathbf{p} X \otimes_{A_{2}} N$ has property (P) as a B_{1}-module whenever $N \in B_{2}-\bmod$ does (check for $\left.N=A_{2} \otimes V\right)$. Therefore if $M \in B_{1}-\bmod$ and $N \in B_{2}-\bmod$, we have:

$$
\begin{aligned}
\operatorname{Hom}_{\mathcal{D}\left(A_{1}, H\right)}\left(X \otimes_{A_{2}}^{\mathbf{L}} N, M\right) & \cong \operatorname{Hom}_{\mathcal{D}\left(A_{1}, H\right)}\left(\mathbf{p} X \otimes_{A_{2}} \mathbf{p} N, M\right) \\
& \cong \operatorname{Hom}_{\mathcal{C}\left(A_{1}, H\right)}\left(\mathbf{p} X \otimes_{A_{2}} \mathbf{p} N, M\right) \\
& \cong \operatorname{Hom}_{\mathcal{C}\left(A_{2}, H\right)}\left(\mathbf{p} N, \operatorname{Hom}_{A_{1}}(\mathbf{p} X, M)\right) \\
& \cong \operatorname{Hom}_{\mathcal{D}\left(A_{2}, H\right)}\left(N, \operatorname{RHom}_{A_{1}}(X, M)\right)
\end{aligned}
$$

Here the first isomorphism holds by Corollary 8.9; the second holds since $\mathbf{p} X \otimes_{A_{1}} \mathbf{p} N$ has property (P) so that we can use Corollary 6.10; the third holds by adjunction 8.6 in the homotopy category, while the fourth holds by Corollary 6.10 and the definition of RHom.

Definition 8.15. Let ${ }_{A_{1}} X_{A_{2}}$ be a hopfological bimodule as before. We define its A_{1}-dual to be

$$
A_{2} \check{X}_{A_{1}}:=\operatorname{Hom}_{A_{1}}\left(\mathbf{p} X_{A_{2}}, A_{1}\right)
$$

where its left A_{2} structure is inherited from the right A_{2}-module structure of $\mathbf{p} X$, while the right A_{1} structure comes from that of A_{1}.

Notice that there is a canonical map

$$
\begin{equation*}
A_{2} \check{X} \otimes_{A_{1}}^{\mathbf{L}} M \cong \operatorname{Hom}_{A_{1}}\left(\mathbf{p} X, A_{1}\right) \otimes_{A_{1}} M \longrightarrow \operatorname{Hom}_{A_{1}}(\mathbf{p} X, M) \cong \operatorname{RHom}_{A_{1}}(X, M) \tag{8.5}
\end{equation*}
$$

which is an isomorphism whenever M is of the form $A_{1} \otimes V$ for any finite dimensional H-module V.

Proposition 8.16. If $X \otimes_{A_{1}}^{\mathbf{L}}(-): \mathcal{D}\left(A_{1}, H\right) \longrightarrow \mathcal{D}\left(A_{2}, H\right)$ is an equivalence, its quasiinverse is given by ${A_{2}} \check{X}_{A_{1}} \otimes^{\mathbf{L}}(-): \mathcal{D}\left(A_{2}, H\right) \longrightarrow \mathcal{D}\left(A_{1}, H\right)$.

Proof. By the adjunction 8.14, if $X \otimes_{A_{1}}^{\mathbf{L}}(-)$ is an equivalence, its quasi-inverse is given by $\mathbf{R H o m} A_{A_{1}}\left(X_{A_{2}},-\right)$. Therefore $\mathbf{R H o m}_{A_{1}}\left(X_{A_{2}},-\right)$ commutes with direct sums, and the corollary now follows from part two of Lemma 7.18 and the observation we made before this proposition.

8.4 A special case

We specialize the previous results to the case of H-module algebras $\phi: A_{2} \longrightarrow A_{1}$, and the bimodule ${ }_{A_{1}} X_{A_{2}}:={ }_{A_{1}} A_{1 A_{2}}$. Here the right A_{2}-module structure on A_{1} is realized via the morphism ϕ, i.e. $a_{1} \cdot a_{2}:=a_{1} \phi\left(a_{2}\right)$ where $a_{i} \in A_{i}, i=1,2$.

Definition 8.17. We define the induction functor

$$
\phi^{*}: \mathcal{D}\left(A_{2}, H\right) \longrightarrow \mathcal{D}\left(A_{1}, H\right), \phi^{*}(M):=A_{1} \otimes_{A_{2}}^{\mathbf{L}} M
$$

and the restriction functor

$$
\phi_{*}: \mathcal{D}\left(A_{1}, H\right) \longrightarrow \mathcal{D}\left(A_{2}, H\right), \phi_{*}(N):=\operatorname{RHom}_{A_{1}}\left(A_{2}, N\right) \cong{ }_{A_{2}} N
$$

Note that $\operatorname{RHom}_{A_{1}}\left(A_{1 A_{2}}, N\right) \cong \operatorname{Hom}_{A_{1}}\left(A_{1 A_{2}}, N\right) \cong{ }_{A_{2}} N$ where A_{2} acts on N via the morphism ϕ. The first isomorphism holds since A_{1} has property (P) as a left B_{1}-module.

The derived adjunction (Lemma 8.14) gives us:

$$
\begin{equation*}
\operatorname{Hom}_{\mathcal{D}\left(A_{2}, H\right)}\left(\phi^{*}(N), M\right) \cong \operatorname{Hom}_{\mathcal{D}\left(A_{1}, H\right)}\left(N, \phi_{*}(M)\right), \tag{8.6}
\end{equation*}
$$

We have the following immediate corollary, concerning when a morphism of H-module algebras induces a derived equivalence of their module categories. The result in the DG case is already proven in [4, Theorem 10.12.5.1].

Corollary 8.18. Let $\phi: A_{2} \longrightarrow A_{1}$ be a quasi-isomorphism of H-module algebras. Then the induction and restriction functors

$$
\begin{aligned}
& \phi^{*}: \mathcal{D}\left(A_{2}, H\right) \longrightarrow \mathcal{D}\left(A_{1}, H\right), \\
& \phi_{*}: \mathcal{D}\left(A_{1}, H\right) \longrightarrow \mathcal{D}\left(A_{2}, H\right),
\end{aligned}
$$

are mutually-inverse equivalences of triangulated categories.

Proof. This is a direct consequence of part 1 of Proposition 8.8. We give a second direct proof of this important special case following [4, Theorem 10.12.5.1].

We will show directly that under our assumption, there are quasi- isomorphisms of functors:

$$
\begin{aligned}
& \alpha: \operatorname{Id}_{\mathcal{D}\left(A_{2}, H\right)} \Rightarrow \phi_{*} \circ \phi^{*}, \\
& \beta: \phi^{*} \circ \phi_{*} \Rightarrow \operatorname{Id}_{\mathcal{D}\left(A_{1}, H\right)} .
\end{aligned}
$$

For this purpose, let N be an object of $\mathcal{D}\left(A_{2}, H\right)$, and let $\mathbf{p} N \xrightarrow{\mathbf{p}} N$ be its bar resolution in $\mathcal{D}\left(A_{2}, H\right)$. Then set $\alpha:=\mathbf{p}^{-1} \circ \gamma$, where γ is the morphism:

$$
\begin{gathered}
\gamma: \mathbf{p} N \longrightarrow A_{1} \otimes_{A_{2}} \mathbf{p} N \\
n \mapsto 1 \otimes n .
\end{gathered}
$$

Now, γ is a quasi-isomorphism since it can be rewritten as

$$
\gamma=\phi \otimes \operatorname{Id}_{\mathbf{p} N}: A_{2} \otimes_{A_{2}} \mathbf{p} N \longrightarrow A_{1} \otimes_{A_{2}} \mathbf{p} N
$$

and since A_{1} and A_{2} are isomorphic in $H-\underline{\text { mod }}$.
To define β, let M be in $\mathcal{D}\left(A_{1}, H\right) . M$ can be regarded as an object in $\mathcal{D}\left(A_{2}, H\right)$ via restriction, and we let $\mathbf{p} M \xrightarrow{\mathbf{p}} M$ be its bar resolution in $\mathcal{D}\left(A_{2}, H\right)$. Then $\phi^{*} \phi_{*}(M) \cong$ $A_{1} \otimes_{A_{2}} \mathbf{p} M$. Define β to be

$$
\begin{aligned}
\beta: A_{1} \otimes_{A_{2}} \mathbf{p} M & \longrightarrow M \\
a_{1} \otimes m & \mapsto a_{1} \cdot \mathbf{p}(m) .
\end{aligned}
$$

To check that it is an isomorphism, consider the commutative diagram below:

Both $\phi \otimes \operatorname{Id}_{\mathbf{p} M}$ and \mathbf{p} become isomorphisms under restriction to $H-\underline{\bmod }$. Therefore β is a quasi-isomorphism of B_{1}-modules, hence an isomorphism in the derived category, as claimed. The corollary follows.

Corollary 8.19. Let A be a left H-module algebra. Then $\mathcal{D}(A, H) \cong 0$ if and only if there exists an element $x \in A$ such that

$$
\Lambda \cdot x=1
$$

Furthermore, if x is central in $A, \mathcal{C}(A, H) \cong 0$.
Proof. We will show that, under the assumption, the H-module map $A \xrightarrow{\lambda_{A}} A \otimes H$ admits
an H-module retract, defined as

$$
A \otimes H \longrightarrow A, a \otimes h \mapsto\left(h \cdot r_{x}\right)(a),
$$

where the $r_{x}: A \longrightarrow A$ is the right multiplication on A by x. Then as shown in the proof of Lemma 5.4, this is an H-module map and we have

$$
\begin{aligned}
a \otimes \Lambda & \mapsto \Lambda_{(2)} \cdot\left(r_{x}\left(S^{-1}\left(\Lambda_{(1)}\right) \cdot a\right)\right) \\
& =\Lambda_{(2)} \cdot\left(S^{-1}\left(\Lambda_{(1)}\right) \cdot a \cdot x\right) \\
& =\left(\Lambda_{(2)} \cdot\left(S^{-1}\left(\Lambda_{(1)}\right) \cdot a\right)\right)\left(\Lambda_{(3)} \cdot x\right) \\
& =\left(\epsilon\left(\Lambda_{(1)}\right) a\right)\left(\Lambda_{(2)} \cdot x\right) \\
& =a(\Lambda \cdot x) \\
& =a .
\end{aligned}
$$

Therefore, A is contractible as an H-module and Corollary 8.18 implies that $\mathcal{D}(A, H)$ is trivial.

The converse follows by applying Lemma 5.4, since A itself considered as a hopfological module is acyclic in this case. The last claim follows by observing that, if x is central, left multiplication by x on any B-module M is an A-module homotopy from Id_{M} to zero.

Chapter 9

Smooth algebras

In this chapter, we apply the previous results to a very special class of H-module algebras on which H acts trivially. As a consequence we deduce that the Grothendieck group for the ground field $K_{0}\left(\mathcal{D}^{c}(\mathbb{k}, H)\right)$ coincides with $K_{0}(H-\underline{\bmod })$.

9.1 Variants of derived categories

First off, we introduce the analogue of the usual notion of the bounded derived category in the hopfological case. For simplicity, we will only do this when the H-module algebra A is noetherian. Since H is finite dimensional, $B=A \otimes H$ is a finite A-module, and therefore the noetherian condition on A is equivalent to that on B.

Definition 9.1. Let A be a noetherian H-module algebra. The bounded derived category $\mathcal{D}^{b}(A, H)$ is the strictly full subcategory of $\mathcal{D}(A, H)$ consisting of objects which are isomorphic to some finitely generated A-module.

Likewise, define the finite derived category $\mathcal{D}^{f}(A, H)$ to be the strictly full subcategory of $\mathcal{D}(A, H)$ consisting of objects which are isomorphic to some finite length A-module.

Notice that if A is finite dimensional, the two notions $\mathcal{D}^{b}(A, H)$ and $\mathcal{D}^{f}(A, H)$ coincide with each other. In any case, it is readily seen that there is an embedding $\mathcal{D}^{f}(A, H) \subset$
$\mathcal{D}^{b}(A, H)$, and there is always a bifunctorial pairing

$$
\begin{equation*}
\mathcal{D}^{c}(A, H) \times \mathcal{D}^{f}(A, H) \longrightarrow \mathcal{D}^{f}(\mathbb{k}, H), \quad(P, M) \mapsto \mathbf{R H o m}_{A}(P, M) \tag{9.1}
\end{equation*}
$$

where the category $\mathcal{D}^{f}(\mathbb{k}, H) \subset H-\underline{\bmod }$ is just the bounded (also finite) derived category of \mathbb{k}.

Definition 9.2. Let A be a noetherian H-module algebra. We define the bounded Grothendieck group of A, denoted $G_{0}\left(\mathcal{D}^{b}(A, H)\right.$) (or $G_{0}(A, H)$ for short) to be the abelian group generated by the symbols of isomorphism classes of objects in $\mathcal{D}^{b}(A, H)$, modulo the relations

$$
[Y]=[X]+[Z]
$$

whenever there is a distinguished triangle inside $\mathcal{D}^{b}(A, H)$ of the form

$$
X \longrightarrow Y \longrightarrow Z \longrightarrow T(X)
$$

Likewise, we define the finite Grothendieck group $G_{0}^{f}(A, H):=G_{0}\left(\mathcal{D}^{f}(A, H)\right)$ in an analogous fashion.

9.2 Smooth basic algebras

Now we exhibit a class of examples where the Grothendieck groups $K_{0}(A, H)$ can be recovered from the usual Grothendieck group $K_{0}^{\prime}(A)$.

Definition 9.3. Let A be an (graded) artinian algebra over a ground field \mathbb{k}. We say that A is basic in its Morita equivalence class if all simple modules over A are one-dimensional over \mathfrak{k}.

Equivalently, A is basic in its Morita equivalence class if and only if $A / J(A) \cong \mathbb{k} \times \cdots \times \mathbb{k}$, where $J(A)$ is the (graded) Jacobson radical. Here the number of copies of \mathbb{k} equals the
number of isomorphism classes of simple A-modules, or equivalently, that of indecomposable projective A-modules.

Definition 9.4. A \mathbb{k}-algebra A is called smooth if it has a finite projective resolution as an (A, A)-bimodule,

In this chapter we mainly focus on the class of (graded finite dimensional) smooth, basic artinian algebras. Some examples of such algebras are provided by the path algebras over oriented quivers without oriented cycles. In fact, such path algebras are hereditary and have length one (i.e. two-term) projective resolutions as bimodules over themselves. In what follows, we will abbreviate the above hypothesis on our algebra A by simply saying that
A is a smooth basic algebra,
meaning that it is artinian (or graded finite dimensional), smooth, and basic in its Morita equivalence class. We will regard such an A as an H-module algebra by letting H act trivially on it. Notice that a B-module may carry some non-trivial H-action.

Lemma 9.5. Let A be an H-module algebra with H acting trivially on it, and let P be a finitely generated projective A-module with trivial H action. Then given any finite dimensional H-module $V, P \otimes V$ is cofibrant in $B-\bmod$.

Proof. It suffices to show that $A \otimes V$ is cofibrant since in this situation P is a direct summand of A^{n} (with trivial H-module structure) for some $n \in \mathbb{N}$. The cofibrance of $A \otimes V$ is clear.

By the characterization of compact modules in $\mathcal{D}(A, H)$ (Corollary 7.15), compact cofibrant modules are direct summands of free modules in the derived category. When A is artinian, the direct summand can be taken in the abelian category B-mod, as shown in the next result. Note that here we do not assume the H-action on A is trivial.

Lemma 9.6. Let A be an artinian H-module algebra and $M \in \mathcal{D}^{c}(A, H)$ be a compact object. Then M is isomorphic to a finite projective A-module in the derived category.

Proof. A direct summand of a finitely generated free A-module P in the derived category is given by an endomorphism $e: P \longrightarrow P$ such that $e^{2}=e$ in $\operatorname{Hom}_{\mathcal{D}(A, H)}(P, P)=$ $\operatorname{Hom}_{\mathcal{C}(A, H)}(P, P)$. Therefore, by Lemma [5.4, $e^{2}-e=\Lambda \cdot f$ for some $f \in \operatorname{Hom}_{A}(P, P)$. By the artinian assumption, the endomorphism algebra of a free module is finite dimensional. Using the classical Fitting's lemma ${ }^{1}$, we can decompose P into a direct sum of B-modules (since $\Lambda \cdot f$ is a map of B-modules),

$$
P \cong \operatorname{Im}(\Lambda \cdot f)^{N} \oplus \operatorname{Ker}(\Lambda \cdot f)^{N}
$$

for N sufficiently large. Here $\Lambda \cdot f$ acts as an automorphism on $\operatorname{Im}(\Lambda \cdot f)^{N}$, and it acts on $\operatorname{Ker}(\Lambda \cdot f)^{N}$ nilpotently. We may remove the summand $\operatorname{Im}(\Lambda \cdot f)^{N}$ since it is contractible by Corollary 8.19, $\operatorname{Ker}(\Lambda \cdot f)^{N}$ is still a projective A-module. Now $\Lambda \cdot f$ is nilpotent on $\operatorname{Ker}(\Lambda \cdot f)^{N}$ and we may lift the idempotent e easily using Newton's method, which we leave to the reader as an exercise (see [3, Theorem 1.7.3]).

Therefore, $\mathcal{D}^{c}(A, H)$ consists of modules which are images of finitely generated, projective A-modules under the localization map. We now look at these modules more closely.

Lemma 9.7. Let A be a smooth basic algebra, and M be a finitely dimensional B-module. Then M is quasi-isomorphic to some finite dimensional projective A-module.

Before giving the proof, we recall that the simplicial bar resolution of A as an (A, A) bimodule results in an infinite cofibrant hopfological replacement (6.6), even for finitely generated modules over a finite dimensional algebra A. However, the lemma says that if A is smooth, there is instead a much smaller cofibrant replacement, i.e. a finite dimensional projective A-module. This is made possible since the finite dimension and smoothness of A provides us with a finite dimensional projective (A, A)-bimodule resolution of A as opposed to the infinite simplicial bar complex we used before. Moreover, the proof also shows that this cofibrant replacement is functorial, in the same way as the bar resolution.

[^4]Proof. Since A is smooth, it has a finite projective (A, A)-bimodule resolution $P_{\bullet} \longrightarrow A \longrightarrow$ 0. Now as in the bar construction 6.6, we can lift this resolution to a hopfological resolution $\widetilde{P}_{\bullet} \longrightarrow A$, since the differentials in the chain complex are (trivially) H-module maps. Now for each finite dimensional B-module M, we tensor this complex with M to obtain $\widetilde{P}_{\bullet} \otimes_{A} M \longrightarrow$ $M \longrightarrow 0 . \widetilde{P_{\bullet}} \otimes_{A} M$ is finite dimensional since P_{\bullet}, A and M are. It is also cofibrant by Lemma 9.5. The claim follows.

Proposition 9.8. If A is smooth basic, then there is an equivalence of triangulated categories

$$
\mathcal{D}^{c}(A, H) \cong \mathcal{D}^{f}(A, H)
$$

Proof. Lemma 9.6 shows that any compact module is isomorphic to a finite dimensional projective A-module. Since $\mathcal{D}^{f}(A, H)$ is by definition strictly full, there is an inclusion functor $\mathcal{D}^{c}(A, H) \subset \mathcal{D}^{f}(A, H)$. On the other hand, any object in $\mathcal{D}^{f}(A, H)$, being isomorphic to some finite dimensional module, has a finite cofibrant replacement by the previous Lemma 9.7. Hence the inclusion functor is essentially surjective. The proposition follows.

The following corollary is immediate by taking $A=\mathbb{k}$ in the above proposition.

Corollary 9.9. Under the canonical isomorphism $\mathcal{D}(\mathbb{k}) \cong H-\underline{\bmod }, \mathcal{D}^{c}(\mathbb{k})$ is isomorphic to the strictly full subcategory of H - $\underline{\bmod }$ which consists of objects that are quasi-isomorphic to finite dimensional H-modules.

When A is artinian, the RHom-pairing

$$
\begin{equation*}
\mathbf{R H o m}(-,-): \mathcal{D}^{c}(A, H) \times \mathcal{D}^{f}(A, H) \longrightarrow H-\underline{\bmod } \tag{9.2}
\end{equation*}
$$

descends to the Grothendieck groups

$$
\begin{equation*}
\left[\operatorname{RHom}_{A}(-,-)\right]: K_{0}(A, H) \times G_{0}(A, H) \longrightarrow K_{0}(H-\underline{\bmod }) . \tag{9.3}
\end{equation*}
$$

Denote $R:=K_{0}(H-\underline{\bmod })$ for the moment. Notice that if V is a finite dimensional H-module algebra, and P, M are B-modules, there is a canonical isomorphism of H-modules

$$
\operatorname{Hom}_{A}(P \otimes V, M) \cong \operatorname{Hom}_{A}\left(P, M \otimes V^{*}\right) \cong \operatorname{Hom}_{A}(P, M) \otimes V^{*}
$$

On the Grothendieck group level, this says that the pairing above is sesquilinear in the sense that it is linear in the second argument, and *-linear in the first argument, where

$$
: R \longrightarrow R, \quad[V] \mapsto\left[V^{}\right]
$$

is an involution of the ring R.

Proposition 9.10. Let A be a smooth basic algebra. Then there is an isomorphism of Grothendieck groups:

$$
K_{0}\left(\mathcal{D}^{c}(A, H)\right) \cong K_{0}^{\prime}(A) \otimes_{\mathbb{Z}} K_{0}(H-\underline{\bmod })
$$

where $K_{0}^{\prime}(A)$ denotes the usual Grothendieck group of the algebra A. Likewise, when A is graded finite dimensional,

$$
K_{0}\left(\mathcal{D}^{c}(A, H)\right) \cong K_{0}^{\prime}(A) \otimes_{\mathbb{Z}\left[q, q^{-1}\right]} K_{0}(H-\underline{\bmod })
$$

Proof. Let $\left\{P_{i}, i=1, \cdots, n\right\}$ and $\left\{S_{j}, j=1, \cdots, n\right\}$ be a complete list of isomorphism classes of indecomposable projective and simple A-modules respectively, and $R=K_{0}(H-\underline{\bmod })$. Lemma 0.6 says that $K_{0}(A, H)$ as an R-module is generated by the symbols [P_{i}], $i=1, \cdots, n$. In the usual $K_{0}^{\prime}(A),\left\{\left[P_{i}\right] \mid i=0, \cdots, n\right\}$ forms a basis. Thus it suffices to show that the symbols $\left[P_{i}\right]$ are linearly independent over R in $K_{0}(A, H)$. To do this, we use the above
sesquilinear pairing

$$
\left[\operatorname{RHom}_{A}(-,-)\right]: K_{0}(A, H) \times K_{0}(A, H) \longrightarrow R .
$$

Here we identify K_{0} with G_{0} using the previous Proposition 9.8. Since A is basic, we have

$$
\operatorname{Hom}_{A}\left(P_{i}, S_{j}\right)= \begin{cases}\mathbb{k} & i=j \\ 0 & \text { otherwise }\end{cases}
$$

Since P_{i} is cofibrant (Lemma 9.5), $\operatorname{Hom}_{A}\left(P_{i}, S_{j}\right) \cong \operatorname{RHom}_{A}\left(P_{i}, S_{j}\right)$ (Lemma 8.12). Hence the sesquilinear pairing is perfect and $\left\{\left[P_{i}\right] \mid i=1, \cdots, n\right\}$ forms an R-basis of $K_{0}(A, H)$. The graded analogue is proved in a similar way using the pairing RHOM_{A}, and the proposition follows.

In the special case when $A=\mathbb{k}$, the proposition says that $K_{0}(H-\underline{\bmod })$ is the Grothendieck ring of the ground field.

Corollary 9.11. We have an isomorphism of abelian groups:

$$
K_{0}(\mathbb{k}, H) \cong K_{0}(H-\underline{\bmod }) \cong G_{0}(H-\underline{\bmod }) .
$$

Remark 9.12. When the ring A is a commutative algebra, the usual tensor product of A-modules descends to an internal tensor product on $\mathcal{D}^{c}(A, H)$. On the Grothendieck group level, it turns $K_{0}(A, H)$ into a ring (not necessarily commutative). The above corollary can then be strengthened into an isomorphism of rings. We leave the details to the reader.

Chapter 10

Positive algebras

This chapter, similar as the previous one, will also be an application of the general theory developed earlier. Throughout this chapter we will make the following assumption:

- H is a non-negatively graded finite dimensional local Hopf (super-)algebra over \mathbb{k}.

Here by "non-negatively graded" we mean that $H \cong \oplus_{k \in \mathbb{N}} H^{k}$, and the Hopf algebra structure on H is compatible with the grading; while by "local" we mean that H has the augmentation ideal $\operatorname{ker}(\epsilon)$ as the only maximal two-sided ideal, and $\operatorname{ker}(\epsilon)$ consists of positively graded elements. The examples we considered in 2.2 can all be adapted to satisfy this hypothesis. Some other important examples are provided by the restricted universal enveloping algebra of a unipotent Lie algebra over a field of positive characteristic, or their quantum analogues.

Throughout, we set

$$
\begin{equation*}
R:=K_{0}(H-\underline{\operatorname{gmod}}) . \tag{10.1}
\end{equation*}
$$

By Corollary 9.11, it is also isomorphic to $G_{0}(H-$ gmod $)$. The localness of H shows that R is a quotient of the ring of quantum integers:

$$
\begin{equation*}
R \cong \mathbb{Z}\left[q, q^{-1}\right] /([H]) . \tag{10.2}
\end{equation*}
$$

Notice that, by the uniqueness of integrals (see the discussion before Proposition 2.1), the socle of H is 1 -dimensional and spanned by Λ, while the head of H is given by $\epsilon: H \longrightarrow \mathbb{k}$. It follows from Lemma 4.3 that, in the Grothendieck group,

$$
\begin{equation*}
[H]=q^{\operatorname{deg}(\Lambda)}+\cdots+1 \tag{10.3}
\end{equation*}
$$

so that R is a free \mathbb{Z}-module of $\operatorname{rank} \operatorname{deg}(\Lambda)$.

10.1 Positive H-module algebras

We first introduce the main objects of study in this chapter. Let H be a Hopf algebra as discussed above.

Definition 10.1. Let $A \cong \oplus_{k \in \mathbb{Z}} A^{k}$ be a \mathbb{Z}-graded algebra over the ground field \mathbb{k}.
(i) An H-module algebra A is called positive if the following three conditions hold:
(ii.1) A is supported on non-negative degrees: $A \cong \oplus_{k \in \mathbb{N}} A^{k}$, and it is finite dimensional in each degree.
(ii.2) The homogeneous degree zero part A^{0} is semisimple.
(ii.3) The Hopf algebra action of H on A is compatible with the gradings, i.e.

$$
H^{k} \otimes A^{l} \longrightarrow A^{k+l}
$$

for any $k, l \in \mathbb{N}$, and the action is trivial on A^{0}.
(ii) A positive H-module algebra A is called strongly positive over \mathbb{k} if A^{0} is isomorphic to a product of matrix algebras over \mathbb{k}.

Let A be a positive H-module algebra, and $\left\{\epsilon_{i} \mid i \in I\right\}$ be a complete list of pairwise nonisomorphic, indecomposable idempotents in A^{0}. Let $A^{\prime}:=\oplus_{k>0} A^{k}$ be the augmentation ideal
with respect to the natural projection $A \rightarrow A^{0}$. Define for each $i \in I$ the indecomposable projective A-module $P_{i}:=A \cdot \epsilon_{i}$, and the simple A-module $S_{i}:=P_{i} /\left(A^{\prime} \cdot P_{i}\right) \cong A^{0} \cdot \epsilon_{i}$. When A is strongly positive, the endomorphism algebra of each S_{i} is isomorphic to \mathbb{k}.

Example 10.2. We give two examples of positive H-module algebras. Let $H:=\mathbb{k}[\partial] /\left(\partial^{p}\right)$ over a field of characteristic $p>0$, and $\operatorname{deg}(\partial):=1$.

- The ground field \mathbb{F}_{p} equipped with the zero differential is strongly positive, while the extension filed $\mathbb{F}_{p^{r}}(r>1)$ with the trivial differential is positive but not strongly positive over \mathbb{F}_{p}.
- Let $A:=\mathbb{k}[Q] /(R)$ be the path algebra associated with some oriented quiver Q modulo a set R of homogeneous relations, and let c be a homogenous degree two element such that $c^{p} \in(R)$. Define a differential action ∂ on A by taking the commutator with c. Then A is a strongly positive H-module algebra.

The collection of all graded hopfological modules over an H-module algebra A forms an abelian category, which we denote by B-gmod, where $B=A \# H$. This category is equipped with a grading shift endo-functor $\{1\}$, where $M\{1\}^{k}=M^{k+1}$. Given two hopfological modules M, N, we write $\operatorname{Hom}_{A}^{i}(M, N)=\operatorname{Hom}_{A}^{0}(M, N\{i\})$ for the space of A-module maps from M to N of degree i. Then we set

$$
\begin{equation*}
\operatorname{HOM}_{A}(M, N)=\oplus_{i \in \mathbb{Z}} \operatorname{Hom}_{A}^{i}(M, N), \tag{10.4}
\end{equation*}
$$

which is a graded vector space. Similarly, we write $\operatorname{Hom}_{B}^{i}(M, N)$ for those homogeneous degree- i maps which commute with the H-action, while letting $\operatorname{HOM}_{B}(M, N)$ be the total graded space. The graded space $\operatorname{HOM}_{A}(M, N)$ is equipped with a graded H-module structure via

$$
\begin{equation*}
h(f)(m)=h_{(2)} f\left(S^{-1}\left(h_{(1)} m\right)\right) \tag{10.5}
\end{equation*}
$$

for any $f \in \operatorname{HOM}_{A}(M, N)$ (see Definition 5.1). Also recall from Lemma 2.6 that two mor-
phisms $f_{1}, f_{2}: M \longrightarrow N$ of hopfological modules are called homotopic if there exists an A-module map $h: M \longrightarrow N$ such that

$$
\begin{equation*}
f_{1}-f_{2}=\Lambda(h)=\sum \Lambda_{(2)} \circ h \circ S^{-1}\left(\Lambda_{(1)}\right) \tag{10.6}
\end{equation*}
$$

We define the notion of finite cell modules for positive H-module algebras.
Definition 10.3. Let A be a positive H-module algebra. A hopfological module M is said to be a finite cell module if there is a finite-step increasing filtration F^{\bullet} on M such that each subquotient $F^{\bullet}(M) / F^{\bullet-1}(M)$ is either zero or isomorphic to $P_{i}\left\{l_{i}\right\}$ for some $i \in I$ and $l_{i} \in \mathbb{Z}$. The collection of all finite cell modules is denoted by $\mathcal{F}(A)$.

Remark 10.4. By definition, if M is a finite cell module, it fits into a convolution diagram in the homotopy category $\mathcal{C}(A, H)$ and derived category $\mathcal{D}(A, H)$

where n is the smallest integer that $F_{n} \neq 0, m$ is the smallest integer that $F_{m}=M$, and $G r_{k}:=F^{k}(M) / F^{k-1}(M)$ is either 0 or $P_{i}\left\{l_{i}\right\}$ for some $i \in I$ and $l_{i} \in \mathbb{Z}$.

Theorem 7.14 gives us the following.
Corollary 10.5. Let A be a positive H-module algebra. Then $\mathcal{D}^{c}(A, H)$ is the smallest strictly full idempotent complete triangulated subcategory in $\mathcal{D}(A, H)$ containing $P_{i}\{r\}$ for all $i \in I$ and $r \in \mathbb{Z}$.

10.2 Grothendieck groups of positive algebras

Our main goal of this chapter is a numerical understanding of the Grothendieck groups of positive H-module algebras in terms of the classical Grothendieck groups of A. If A
is a graded ring, let $K_{0}^{\prime}(A)$ be the usual Grothendieck group of finitely generated graded projective A-modules, and $G_{0}^{\prime}(A)$ be the Grothendieck group of graded finite length A modules. Both of these are $\mathbb{Z}\left[q, q^{-1}\right]$ modules under the grading shift. We will see in Corollary 10.12 that, for a positive p-DG algebra A, there are isomorphisms

$$
\begin{equation*}
K_{0}(A, H) \cong K_{0}^{\prime}(A) \otimes_{\mathbb{Z}\left[q, q^{-1}\right]} R, \quad G_{0}(A, H) \cong G_{0}^{\prime}(A) \otimes_{\mathbb{Z}\left[q, q^{-1}\right]} R \tag{10.8}
\end{equation*}
$$

The main idea is that, for positive H-module algebras, any compact module in $\mathcal{D}(A, H)$ is quasi-isomorphic to a finite cell module. The symbol of a finite cell module in $K_{0}(A, H)$ is clearly in the span of the symbols of the projective modules P_{i}. It is straightforward to show that $\left\{\left[P_{i}\right]\right\}_{i \in I}$ forms an R-basis of $K_{0}(A, H)$, just as it forms a $\mathbb{Z}\left[q, q^{-1}\right]$ basis of $K_{0}^{\prime}(A)$.

Lemma 10.6. Let A be a positive H-module algebra. The following statements hold.
(i) If $0 \longrightarrow M_{1} \longrightarrow M \longrightarrow M_{2} \longrightarrow 0$ is a short exact sequence of hopfological modules and $M_{1}, M_{2} \in \mathcal{F}(A)$, then $M \in \mathcal{F}(A)$. In particular the category $\mathcal{F}(A)$ is closed under taking finite direct sums.
(ii) The category $\mathcal{F}(A)$ is preserved under tensor multiplication by finite dimensional H modules.

Proof. The first part of the lemma is immediate from the definition. Using (i) to prove (ii) it suffices to see that $P_{i} \otimes V \in \mathcal{F}(A)$, where V is an indecomposable H-module. Any such V has a filtration whose associated graded modules are one-dimensional, and the result follows from (i) again.

Corollary 10.7. The image of $\mathcal{F}(A)$ in the homotopy category $\mathcal{C}(A, H)$ is closed under grading shifts, finite direct sums, cohomological shifts, and taking cones.

Proof. This follows from the previous lemma.

Lemma 10.8. Let A be a positive H-module algebra and $M \in \mathcal{F}(A)$ be a finite cell module. Suppose $M \cong M_{1} \oplus M_{2}$ is a decomposition of M in B-gmod. Then M_{1}, M_{2} are finite cell modules.

Proof. For a positive H-module algebra A, the smash product ring B is semi-local. Now, realize $M_{1} \cong M / M_{2}$, and equip with it the quotient filtration. It satisfies the subquotient requirement since each $P_{i}(i \in I)$ is indecomposable in B-gmod.

Remark 10.9 (Warning). The direct sum of the quotient filtrations on M_{1} and M_{2} is in general different from the original filtration on M. For instance, this can happen when $M_{1} \cong M_{2}$ so that the splitting $M \cong M_{1} \oplus M_{2}$ is not canonical. One can then filter M with subquotients isomorphic to M_{1} in a way which does not agree with the chosen splitting.

Proposition 10.10. Let A be a positive H-module algebra, and denote by $\overline{\mathcal{F}}(A)$ the smallest strictly full subcategory in $\mathcal{C}(A, H)$ containing all finite cell modules. Then $\overline{\mathcal{F}}(A)$ is idempotent complete.

Proof. The proof is analogous to that of Lemma 9.6. Suppose M is a finite cell module, and $\xi \in \operatorname{End}_{B}(M)$ descends to an idempotent in $\operatorname{End}_{\mathcal{C}(A, H)}(M)$. We will find a genuine idempotent which is homotopic to ξ; its image in B-gmod will then serve as the image of ξ in $\mathcal{C}(A, H)$. Then the result follows from Lemma 10.8

Let $\eta=\xi^{2}-\xi$, which must be in the image of Λ inside $\operatorname{End}_{A}(M)$. From condition (ii.1) of Definition 10.1 it follows that $\operatorname{End}_{B}^{0}(M)$ is finite dimensional over \mathbb{k}. The image of Λ inside it is an ideal. By Fitting's lemma[3, Lemma 1.4.4], there exists $k \gg 0$ such that

$$
M \cong \operatorname{Im}\left(\eta^{k}\right) \oplus \operatorname{Ker}\left(\eta^{k}\right)
$$

inside B-gmod. The map ξ respects this decomposition since it commutes with η.
On $\operatorname{Ker}\left(\eta^{k}\right)$ the map η is nilpotent. Therefore we may use Newton's method ${ }^{11}$ to find an

[^5]$\operatorname{map} \tilde{\xi} \in \operatorname{End}_{A_{\partial}}(M)$ whose restriction to $\operatorname{Ker}\left(\eta^{k}\right)$ is an idempotent, and where $\tilde{\xi}-\xi$ is a polynomial in η without constant term. Thus ξ and $\tilde{\xi}$ are homotopic.

On the other hand, η acts invertibly on $\operatorname{Im}\left(\eta^{k}\right)$. In particular, the identity of $\operatorname{Im}\left(\eta^{k}\right)$ is also in the image of Λ, and thus $\operatorname{Im}\left(\eta^{k}\right)$ is contractible. Thus ξ (resp. $\tilde{\xi}$) is homotopic to its composition with the projection to $\operatorname{Ker}\left(\eta^{k}\right)$. In particular, the projection of $\tilde{\xi}$ to $\operatorname{Ker}\left(\eta^{k}\right)$ is a genuine idempotent homotopic to ξ.

Since the localization functor $\mathcal{C}(A, H) \longrightarrow \mathcal{D}(A, H)$ does not affect morphism spaces between finite cell modules, we may also use $\overline{\mathcal{F}}(A)$ to denote the smallest strictly full subcategory of $\mathcal{D}(A, H)$ containing all finite cell modules.

Theorem 10.11. Let A be a positive H-module algebra. Then $\overline{\mathcal{F}}(A) \subset \mathcal{D}^{c}(A, H)$ and the inclusion is an equivalence of triangulated categories.

Proof. Corollary 10.7 shows that $\overline{\mathcal{F}}(A)$ is triangulated, while the above proposition shows that it is idempotent complete. The claim follows readily from Corollary 10.5.

Now we can give an upper bound of the Grothendieck group $K_{0}(A, H)$ for a positive H module algebra. By Theorem 10.11, any compact module in $\mathcal{D}(A, H)$ is isomorphic to a finite cell module $M \in \mathcal{F}(A)$. Using the diagram (10.7), the symbol of M in the Grothendieck group can be written as an alternating sum of the symbols of the subquotients of the filtration on M, which by Definition 10.3 are $\left[P_{i}\left\{l_{i}\right\}\right]=q^{l_{i}}\left[P_{i}\right] \in K_{0}(A, H)$ for $i \in I$ and $l_{i} \in \mathbb{Z}$. Since the usual Grothendieck group $K_{0}^{\prime}(A)$ of graded projective A-modules is freely generated over $\mathbb{Z}\left[q, q^{-1}\right]$ by $\left\{\left[P_{i}\right] \mid i \in I\right\}$, we have a surjective map of R-modules:

$$
K_{0}^{\prime}(A) \otimes_{\mathbb{Z}\left[q, q^{-1}\right]} R \longrightarrow K_{0}(A)
$$

Our next goal will be to show that this map is also injective.
Recall from the previous chapter that the RHOM-pairing between derived categories

$$
\operatorname{RHOM}_{A}(-,-): \mathcal{D}^{c}(A, H) \times \mathcal{D}^{f}(A, H) \longrightarrow \mathcal{D}(\mathbb{k}, H)
$$

descends to a map on Grothendieck groups

$$
\left[\mathbf{R H O M}_{A}(-,-)\right]: K_{0}(A, H) \times G_{0}(A, H) \longrightarrow R
$$

We will apply this to positive H-module algebras. Since the smash product algebra B is a semi-local graded ring whose degree zero part is isomorphic to A^{0}, the Jacobson radical $J(B)$ of this algebra consists of everything in positive degrees, and $B / J(B) \cong A^{0}$. It follows that any finite dimensional module over B admits a finite filtration whose subquotients are graded shifts of $S_{i},(i \in I)$, so that $G_{0}(A, H)$ is R-generated by the symbols of the simples $\left[S_{i}\right]$. Applying the RHOM-pairing between the systems of modules $\left\{P_{i} \mid i \in I\right\},\left\{S_{j} \mid j \in I\right\}$, we have

$$
\operatorname{RHOM}\left(P_{i}, S_{j}\right) \cong \begin{cases}D_{i} & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

where $D_{i} \cong \operatorname{End}_{A}\left(S_{i}\right)$ is a finite dimensional division algebra over \mathbb{k} concentrated in degree zero. Necessarily H acts trivially on D_{i}. Set $d_{i}=\operatorname{dim}_{\mathbb{k}} D_{i}$. Now if $\sum_{i \in I} r_{i}\left[P_{i}\right]=0$ is a linear relation, with $r_{i} \in R$, we apply $\left[\operatorname{RHOM}_{A}\left(-, S_{j}\right)\right]$ to get

$$
0=\sum_{i \in I} r_{i}^{*}\left[\operatorname{RHOM}_{A}\left(P_{i}, S_{j}\right)\right]=r_{j}^{*}\left[D_{j}\right]=r_{j}^{*} d_{j}[\mathbb{k}] \in K_{0}(\mathbb{k}, H)
$$

Since $K_{0}(\mathbb{k}, H) \cong R$ has no \mathbb{Z}-torsion, it follows that $r_{j}=0$ for each j. Thus there could not have been any R-linear relation between the symbols $\left[P_{i}\right] \in K_{0}(A, H)$ from the start. Likewise one shows that there can be no linear relation among the symbols [S_{i}] in $G_{0}(A, H)$. This discussion gives us the following.

Corollary 10.12. Let A be a positive H-module algebra. Then there are isomorphisms of Grothendieck groups

$$
K_{0}(A, H) \cong K_{0}^{\prime}(A) \otimes_{\mathbb{Z}\left[q, q^{-1}\right]} R, \quad G_{0}(A, H) \cong G_{0}^{\prime}(A) \otimes_{\mathbb{Z}\left[q, q^{-1}\right]} R,
$$

where K_{0}^{\prime} (resp. G_{0}^{\prime}) stands for the usual Grothendieck group of graded projective (resp. graded finite dimensional) A-modules.

10.3 A Künneth formula

We specialize to the case when A is strongly positive, as in Definition 10.1. Recall that in this case $A^{0} \cong \prod_{i \in I} \mathrm{M}\left(n_{i}, \mathbb{k}\right)$ is a product of matrix algebras with coefficients in the ground field. If A_{1}, A_{2} are two such H-module algebras, then so is their tensor product $A_{1} \otimes A_{2}$. This follows because for any $n, m \in \mathbb{N}, \mathrm{M}(n, \mathbb{k}) \otimes \mathrm{M}(m, \mathbb{k}) \cong \mathrm{M}(n m, \mathbb{k})$. By applying Corollary 10.12 to A_{1}, A_{2} and $A_{1} \otimes A_{2}$, we obtain the following Künneth-type property for their Grothendieck groups.

Corollary 10.13. Let A_{1}, A_{2} be two strongly positive H-module algebras relative to the ground field \mathfrak{k}. Then their tensor product is also strongly positive relative to \mathbb{k}, and there are isomorphisms of Grothendieck groups
$K_{0}\left(A_{1} \otimes A_{2}, H\right) \cong K_{0}\left(A_{1}, H\right) \otimes_{R} K_{0}\left(A_{2}, H\right), \quad G_{0}\left(A_{1} \otimes A_{2}, H\right) \cong G_{0}\left(A_{1}, H\right) \otimes_{R} G_{0}\left(A_{2}, H\right)$,
which are identifications of R-modules.

Example 10.14 (A non-example). The above result fails when we remove the "strongly positive" hypothesis, because it fails for the ordinary Grothendieck groups K_{0}^{\prime} and G_{0}^{\prime}. Consider $H=\mathbb{F}_{p}[\partial] /\left(\partial^{p}\right)$ and $\mathbb{F}_{p^{r}}$ as an H-module algebra over \mathbb{F}_{p} with the trivial H-action. It is easy to see that

$$
\begin{equation*}
K_{0}\left(\mathbb{F}_{p^{r}}, H\right) \cong G_{0}\left(\mathbb{F}_{p^{r}}, H\right) \cong \mathbb{Z}[q] /\left(1+q+\cdots+q^{p-1}\right) \cong \mathbb{Z}[\zeta] \tag{10.9}
\end{equation*}
$$

which is spanned by the symbol of $\left[\mathbb{F}_{p^{r}}\right]$. However $\mathbb{F}_{p^{r}} \otimes_{\mathbb{F}_{p}} \mathbb{F}_{p^{r}} \cong \mathbb{F}_{p^{r}}^{\oplus r}$, so that

$$
\begin{equation*}
K_{0}\left(\mathbb{F}_{p^{r}} \otimes_{\mathbb{F}_{p}} \mathbb{F}_{p^{r}}\right) \cong G_{0}\left(\mathbb{F}_{p^{r}} \otimes_{\mathbb{F}_{p}} \mathbb{F}_{p^{r}}\right) \cong \mathbb{Z}[\zeta]^{\oplus r} \tag{10.10}
\end{equation*}
$$

and the Künneth property fails.

Remark 10.15. The Künneth property for ordinary DG algebras that are strongly positive is a direct consequence of the results in Keller-Nicolas [16] and Schnürer [34]. The discussion in this chapter is partly motivated by their work.

Unfortunately, the proof here is essentially "numerical," only giving an isomorphism of Grothendieck groups rather than a comparison on the level of spectra.

We would like to pose the following general question to the reader: Under what restrictions on a p-DG algebra, or more generally, an H-module algebra, does the Künneth formula hold?

The above result also applies to H-module algebras that are not necessarily strongly positive, but are Morita equivalent to strongly positive H-module algebras in the sense of Proposition 8.8.

Corollary 10.16. Let A_{1}, A_{2} be two $p-D G$ algebras which are Morita equivalent to strongly positive $p-D G$ algebras. Then their tensor product is also Morita equivalent to a strongly positive $p-D G$ algebra, and the Künneth formula holds.

This version of the Künneth property for the usual Grothendieck groups of certain (DG) algebras has played a significant role in many known examples of categorification, see for instance [18.

Bibliography

[1] M. Angel and R. Díaz, On N-differential graded algebras, arXiv:math/0504398.
[2] J. Bichon, N-complexes et algébres de Hopf, C. R. Acad. Sci. Paris., Ser. I, 337, 441444, 2003.
[3] D. J. Benson, Representations and cohomology I, Cambridge studies in advanced mathematics 30, 1991.
[4] J. Bernstein and V. Lunts, Equivariant sheaves and functors, LNM 1578, 1994, Springer-Verlag.
[5] C. Cibils, A. Solotar, and R. Wisbauer, N-complexes as functors, amplitude cohomology and fusion rules, Comm. Math. Phys. 272, 837-849, 2007, arXiv: math/0605569.
[6] L. Crane, I. Frenkel, Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases, J. Math. Phys. 35, 5136-5154, 1994, arXiv: hep-th/9405183.
[7] M. Dubois-Violette, Generalized differential spaces with $d^{N}=0$ and the q-differential calculus, Czech. J. of Phy., 46, 1227-1233, 1996, arXiv: q-alg/9609012.
[8] B. Elias and Y. Qi, An approach to categorification of some small quantum groups II, 2013, arXiv:1302.5478.
[9] S. I. Gelfand and Y. I. Manin, Methods of homological algebra (second edition), Springer-Verlag, 2003.
[10] D. Happel, Triangulated categories in the representation theory of finite dimensioal algebras, London Math. Soc. Lect. Note Ser. 119, 1988, Cambridge University Press.
[11] M. Kapranov, On the q-analog of homological algebra, arXiv: q-alg/9611005v1.
[12] D. Kaledin, Lecture notes for the mini-course "Non-commutative geometry from the homological point of views", KIAS, Seoul, Oct. 2009. available at http://imperium.lenin.ru/~kaledin/seoul/.
[13] C. Kassel and M. Wambst, Algèbre homologique des N-complexes et homologie de Hochschild aux racine de l'unité, Publ. Res. Inst. Math. Sci. 34, 91-114, 1998, arXiv: q-alg/9705001.
[14] B. Keller, Deriving DG categories, Ann. Scient Éc. Norm. Sup., 4e série, t. 27, 63-102, 1994.
[15] B. Keller, On differential graded categories, International Congress of Mathematicians. Vol. II, 2006, arXiv:math/0601185.
[16] B. Keller and P. Nicolas, Weight structures and simple dg modules for positive dg algebras. Int. Math. Res. Not., (doi: 10.1093/imrn/rns009), 2012, arXiv:1009.5904.
[17] M. Khovanov, Hopfological algebra and categorification at a root of unity: the first steps, arXiv: math/0509083.
[18] M. Khovanov and A. Lauda, A diagrammatic approach to categorification of quantum groups I, Represent. Theory 13, 309-347, 2009, arXiv:0803.4121.
[19] M. Khovanov and Y. Qi, An approach to categorification of some small quantum groups, 2012, arXiv:1208.0616.
[20] G. Kuperberg, Non-involutory Hopf algebras and 3-manifold invariants, Duke Math. J., 84, 83-129, 1996, arXiv:q-alg/9712047.
[21] T. Y. Lam, Lectures on modules and rings, GTM 189, 1999, Springer-Verlag.
[22] J. L. Loday, Cyclic homology, 2nd edition, Springer Grundlehren der mathematischen Wissenschaften, 1998.
[23] W. Mayer, A new homology theory I, Ann. Math. 43, 370-380, 1942.
[24] W. Mayer, A new homology theory II, Ann. Math. 43, 594-605, 1942.
[25] S. Majid, Some comments on bosonisation and biproducts, Czech. J. of Phy. 47, 151171, 1997, arXiv: q-alg/9512028.
[26] S. Montgomery, Hopf algebras and their actions on rings, CBMS Regional conference series in mathematics 82, Amer. Math. Soc., 1993.
[27] A. Neeman, The Grothendieck duality theorem via Bousfield's techniques and Brown representability, J. Amer. Math. Soc. 9, 205-236, 1996, arXiv: alg-geom/9412022.
[28] A. Neeman, The connection between the K-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel, Ann. Sci. École Norm. Sup. 4 e série, t. 25, 547-566, 1992.
[29] B. Pareigis, A non-commutative non-cocommutative Hopf algebra in "nature", J. of Algebra 70, 356-374, 1981.
[30] Y. Qi and J. Sussan, A categorification of the Burau representation at a prime root of unity, in preparation.
[31] D. C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. of Math. 106, 351-414, 1984.
[32] S. Sarkaria, Some simplicial (co)homologies, IHES preprint 1995, available on http://kssarkaria.org/ .
[33] M. Schlichting, Negative K-theory of derived categories, Math. Z. 253, 97-134, 2006.
[34] O. M. Schnürer, Perfect derived categories of positively graded DG algebras, Applied Categorical Structures, 19, 757-782, 2011, arXiv:0809.4782.
[35] A. Sitarz, On the tensor product construction for q-differential algebras, Lett. Math. Phy., 44, 17-21, 1998, arXiv:q-alg/9705014.
[36] E. H. Spanier, The Mayer homology theory, Bull. AMS 55, 102-112, 1949.
[37] R. W. Thomason, T. Trobaugh, Higher algebraic K-theory of schemes and of derived categories, The Grothendieck Festschrift: a collection of articles written in honor of the 60th birthday of Alexander Grothendieck, edited by P. Cartier etc. Springer, 2006.
[38] B. Toën, The homotopy theory of dg-categories and derived Morita theory, Invent. Math. 167, 615-667, 2007, arXiv:math/0408337v7.

You Qi, Department of Mathematics, Columbia University, New York, NY 10027
email: yq2121@math.columbia.edu

[^0]: ${ }^{1}$ See the foreword of 9 .

[^1]: ${ }^{1}$ Any product of injectives over a ring is injective; an infinite direct sum of injectives is injective if and only if the ring is noetherian [21, Theorem 3.46].

[^2]: ${ }^{1}$ A subcategory \mathcal{D}^{\prime} of \mathcal{D} is called strictly full if any object of \mathcal{D} that is isomorphic to some object in \mathcal{D}^{\prime} must itself be in \mathcal{D}^{\prime}.

[^3]: ${ }^{2}$ This amounts to saying that $F\left(\oplus_{i \in I} X_{i}\right)$ is a direct sum object for $F\left(X_{i}\right), i \in I$ inside \mathcal{D}_{2} although \mathcal{D}_{2} may not admit arbitrary direct sums.
 ${ }^{3}$ By "essentially surjective" we mean that any object of \mathcal{D}_{2} is isomorphic to an object in the image of F.

[^4]: ${ }^{1}$ See, for instance Benson [3, Lemma 1.4.4] for the form of the lemma that is used here.

[^5]: ${ }^{1}$ See [3, Theorem 1.7.3].

