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ABSTRACT

Statistical Inference for Diagnostic Classification

Models

Gongjun Xu

Diagnostic classification models (DCM) are an important recent development in ed-

ucational and psychological testing. Instead of an overall test score, a diagnostic test

provides each subject with a profile detailing the concepts and skills (often called

attributes) that he/she has mastered. Central to many DCMs is the so-called Q-

matrix, an incidence matrix specifying the item-attribute relationship. It is common

practice for the Q-matrix to be specified by experts when items are written, rather

than through data-driven calibration. Such a non-empirical approach may lead to

misspecification of the Q-matrix and substantial lack of model fit, resulting in erro-

neous interpretation of testing results. This motivates our study and we consider the

identifiability, estimation, and hypothesis testing of the Q-matrix. In addition, we

study the identifiability of diagnostic model parameters under a known Q-matrix.

The first part of this thesis is concerned with estimation of the Q-matrix. In

particular, we present definitive answers to the learnability of the Q-matrix for one



of the most commonly used models, the DINA model, by specifying a set of suffi-

cient conditions under which the Q-matrix is identifiable up to an explicitly defined

equivalence class. We also present the corresponding data-driven construction of the

Q-matrix. The results and analysis strategies are general in the sense that they can

be further extended to other diagnostic models.

The second part of the thesis focuses on statistical validation of the Q-matrix.

The purpose of this study is to provide a statistical procedure to help decide whether

to accept the Q-matrix provided by the experts. Statistically, this problem can be

formulated as a pure significance testing problem with null hypothesis H0 : Q = Q0,

where Q0 is the candidate Q-matrix. We propose a test statistic that measures the

consistency of observed data with the proposed Q-matrix. Theoretical properties of

the test statistic are studied. In addition, we conduct simulation studies to show the

performance of the proposed procedure.

The third part of this thesis is concerned with the identifiability of the diagnostic

model parameters when the Q-matrix is correctly specified. Identifiability is a prereq-

uisite for statistical inferences, such as parameter estimation and hypothesis testing.

We present sufficient and necessary conditions under which the model parameters are

identifiable from the response data.
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Chapter 1

Introduction

1.1 Background

Measurement theory deals with assigning numbers to subjects in a systematic way

to represent their properties (Allen and Yen 1979). Our daily experience is to use

certain physical device to assign such numbers. For instance, we use thermometers to

measure temperature and directly obtain measurement values from them. Educational

and psychological measurement focuses on people’s latent traits, for instance, a high

school student’s mathematical ability or a person’s intelligence level, and its primary

goal is to numerically assess these unobservable latent traits. Unlike measurement

based on physical devices, such as thermometers and speedometers, from which we

can obtain direct measurement values, educational and psychological measurement

uses tests as the main measurement tool and uses people’s responses to infer their

latent traits indirectly.

Just as in any type of measurement, a key issue in educational and psychological

measurement is to control and adjust measurement error and make valid inference of
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the latent traits from the response data. To adjust the measurement error, different

statistical procedures have been developed in the literature. Below we give a brief

introduction to two widely used test theories: classical test theory (Spearman 1904;

Novick 1966) and item response theory (Lord and Novick 1968; Lord 1980).

1.1.1 Classical test theory

Classical test theory (CTT) is one of the earliest formalizations of measurement the-

ory for educational and psychological tests. It was put forward in the pioneering work

of Spearman (1904); see also Novick (1966); Lord and Novick (1968); Allen and Yen

(1979) for more details. CTT borrows concepts, such as measurement error, from

measurement in the physical sciences (Mislevy 1996). CTT decomposes the observed

test score into a true score term and an error term, and assumes that response varia-

tions are due to variation in subjects’ ability (the true score), which is of our interest,

and variation from other external sources (the measurement error), such as rater or

instrument error. Specifically, let X be a subject’s observed score for a test. The

classical test model assumes that

X = T + e,

where T is the subject’s true score defined as the expected value of X and e is the

measurement error term, which is assumed to be independent of T . The true score T

is the latent variable that we are interested in.

Note that CTT combines all sources of error into one term e and that the model

equation X = T + e is essentially the linear equation of the one-way analysis of

variance (ANOVA) model with a random factor. In this line of research, people

further decompose the variance of the error term into variances from different sources

(factors); this decomposition corresponds to the multi-way ANOVA. This approach
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is known as generalizability theory in the literature (Cronbach, Nageswari and Gleser

1963); see also Shavelson (1991); Brennan (2001) for more details.

1.1.2 Item response theory

Item response theory (IRT) models were developed in the 1950s and 1960s for the

purpose of analyzing test items that were dichotomously scored. Unlike the classical

test theory, which focuses on subjects’ total scores calculated using the whole test

form, IRT deals with subjects’ responses to each test item. Consider a binary response

test. Let Ri,j be the jth subject response to the ith item, where Ri,j = 1 if the answer

is correct and 0 otherwise. IRT uses a latent parameter θ ∈ (−∞,+∞) to denote a

subject’s ability, and represents the correct response probability to the ith item by

a mathematical function pi(θ) := P (Ri,j = 1|θ). This function is known as the item

response function, or item characteristic curve (Tucker 1946). The item response

function pi(θ), θ ∈ (−∞,+∞), is a non-linear function in θ due to the restriction

that 0 ≤ pi(θ) ≤ 1. In addition, it is usually a monotonically increasing function in

θ, meaning that subjects with higher ability have larger probabilities of obtaining

correct responses to item i.

Different item response functions (models) have been proposed in the literature

to model subjects’ response data (Rasch 1960; Lord and Novick 1968; Lord 1980).

Below we give a brief introduction to several of the commonly used models. More

details about the corresponding statistical issues, such as item and ability parameters

estimation and goodness of fit, can be found in van der Linden and Hambleton (1996);

Embretson and Reise (2000); Baker (2001); Baker and Kim (2004); Reckase (2009);

Fox (2010).

Rasch Model. The Rasch model (see Rasch 1960; 1961) assumes that the item
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response function takes the following form:

pi(θ) =
1

1 + exp{−(θ − bi)}
,

where bi is the difficulty parameter for item i. Since the Rasch model uses the logistic

link function and has only a single item parameter for each item, it is also known as

the one-parameter logistic (1-PL) model. The parameter bi is also called the location

parameter and shows where the item response function achieves its central value

between its lower and upper asymptotes. Figure 1.1 gives three item characteristic

curves for the Rasch model with different item difficulties bi = −1, 0, 1. We can see

that when θ = bi, the correct response probability takes value 1/2. In addition, larger

values of bi indicate more difficult items, with smaller success probabilities given the

same ability level θ, while smaller values of bi indicate the reverse.
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Figure 1.1: Item characteristic curves for the Rasch model.

For the Rasch model, we need to estimate both item parameters b and the ability
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parameters θ. Consider the likelihood function of N subjects’ response data for n

items. It takes the form of

L(θ, b; R) =
N∏
j=1

n∏
i=1

pi(θj)
Ri,j(1− pi(θj))1−Ri,j

=
N∏
j=1

n∏
i=1

(
1

1 + exp{−(θj − bi)}

)Ri,j
(

exp{−(θj − bi)}
1 + exp{−(θj − bi)}

)1−Ri,j

=

∏N
j=1 exp{

∑n
i=1 Ri,jθj}

∏n
i=1 exp{−

∑N
j=1Ri,jbi}∏N

j=1

∏n
i=1(1 + exp{(θj − bi)})

.

We can see that under the Rasch model, the subject’s total score
∑n

i=1 Ri,j is a suffi-

cient statistic for the ability parameter θj and the item score
∑N

j=1Ri,j is a sufficient

statistic for the difficulty parameter bi. Therefore, when estimating item parameters,

ability parameters can be eliminated through conditioning on the subjects’ raw sum

scores. This estimation procedure is called conditional maximum likelihood (CML)

estimation (see e.g. Liou 1994). As an alternative to the CML approach, estimates of

the item parameters can be found through maximization of the marginal likelihood

function (MML) (see e.g. Thissen 1982) by integrating the likelihood function over a

density function for θ, i.e.,

L(b) =

∫ ∞
−∞

L(θ, b; R)f(θ;µ, σ)dθ, (1.1)

where f(θ;µ, σ) is usually taken as a normal density function with mean µ = 0 and

standard deviation σ. See Baker and Kim (2004) for more details about parameter

estimation.

Two Parameter Logistic Model. A limitation of the Rasch model is that all items

only differ in item difficulty, which indicates that all items discriminate subjects in a

similar way, i.e., all item characteristic curves have the same shape (see Figure 1.1).
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From a practical point of view, it is desirable to parameterize both item difficulty

and item discrimination. Birnbaum proposed the two parameter logistic model (2-PL

model) in the chapters he contributed to Lord and Novick (1968). The item response

function for the 2-PL model is given by

pi(θ) =
1

1 + exp{−ai(θ − bi)}
,

where ai is the discrimination parameter and bi is the difficulty parameter. The

parameter ai is related to the maximum slope of the item characteristic curve and in-

dicates how well an item discriminates among subjects. When ai = 0, the 2-PL model

is equivalent to the Rasch model. See Figure 1.2 for an example of two item char-

acteristic curves following 2-PL model corresponding to two different discrimination

levels (ai = 1 and 2) and the same difficulty level (bi = 0).
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Figure 1.2: Item characteristic curves for the two parameter logistic model.

The likelihood function of the two parameter logistic model takes the following
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form:

L(θ, b) =
N∏
j=1

n∏
i=1

pi(θj)
Ri,j(1− pi(θj))1−Ri,j

=
exp{

∑N
j=1

∑n
i=1Ri,jai(θj − bi)}∏N

j=1

∏n
i=1(1 + exp{ai(θj − bi)})

.

Unlike in the Rasch model, the total scores here are no longer sufficient statistics for

the ability parameters. As a result, the conditional maximum likelihood estimation

approach is no longer possible. Bock and Lieberman (1970) and Bock and Aitken

(1981) developed an estimation procedure based on the marginal likelihood function

for the two-parameter model. The item parameters are estimated from the marginal

distribution by integrating the likelihood function over the ability distribution as in

equation (1.1).

Three Parameter Logistic Model. The three parameter logistic model (3-PL)

introduces an additional item parameter c to capture the “guessing” probability in

the multiple-choice items; see Lord and Novick (1968); Lord (1980). This model has

the following item response function:

pi(θ) = ci + (1− ci)
1

1 + exp{−ai(θ − bi)}
,

where ai is the discrimination parameter, bi is the difficulty parameter, and ci is the

guessing parameter. When ci = 0, the 3-PL model is equivalent to the 2-PL model.

Figure 1.3 gives an example of two item response functions following the 3-PL model

with (ai, bi, ci) = (1, 0, 0.2) and (ai, bi, ci) = (1, 0, 0). We can see that the parameter ci

equals the smallest probability of correctly answering the ith item, and when θ = bi,

the item response function takes its central value between its lower asymptote (ci)
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and upper asymptote (1), i.e., pi(bi) = (1− ci)/2. For the 3-PL model, maximization

of the marginal likelihood function approach is usually used to estimate the model

parameters a, b and c. See Baker and Kim (2004) for more details.
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Figure 1.3: Item characteristic curves for a three parameter logistic model.

Besides the logistic models introduced above, other item response functions have

also been proposed in the literature. A widely used alternative is normal-ogive models

(Lord 1952; Lord and Novick 1968). A two parameter normal-ogive model takes the

following form:

pi(θ) =

∫ ai(θ−bi)

−∞

1√
2π

exp(−x2/2)dx,

where ai is the slope parameter and bi is the difficulty parameter as in the logis-

tic IRT models. Moreover, researchers have also proposed nonparametric modeling

approaches (Guttman 1947; van der Linden and Hambleton 1996).
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In addition to the above models which focus on a unidimensional latent variable

and dichotomous response data, other developments in item response theory include

polytomous response models (Samejima 1969; Bock 1972; van der Linden and Ham-

bleton 1996; Embretson and Reise 2000; Ostini and Nering 2006), multidimensional

IRT models (Lord and Novick 1968; McDonald 1967; Samejima 1974; van der Linden

and Hambleton 1996; Reckase 2009), and so on.

1.2 Diagnostic classification models

Cognitive diagnosis has recently gained prominence in educational assessment, psy-

chiatric evaluation, and many other disciplines (Rupp and Templin 2008b; Rupp,

Templin and Henson 2010). Instead of an overall test score, a cognitive diagnos-

tic test provides each subject with a profile detailing the concepts and skills (often

called attributes) that he/she has mastered. Take the PSAT/NMSQTTM (Prelimi-

nary SAT/National Merit Scholarship Qualifying Test) as an example. The College

Board currently provides a Score Report P lusTM to each student, which not only

tells his/her total scores for the test subjects including math, writing, and reading,

but also provides more detailed information about various skills in each subject such

as probability, statistics, algebra, etc. This is the first nationally standardized test

to give diagnostic skills-based feedback (Roussos, Templin and Henson 2007b). Such

feedback could have a significant impact on learning process by providing students

and teachers detailed information on students’ strengths and weaknesses.

Traditional test theory, such as the classical test theory and the unidimensional

item response theory models introduced in Section 1.1, mainly focuses on scaling and

ranking students on a latent proficiency continuum. However, the overall information

(such as test scores or proficiency estimators) obtained based on such models is one
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dimensional and it does not contain enough information for the multiple targeted

skills or attributes in terms of designing effective instruction and providing interven-

tion. As an alternative, diagnostic classification models, which are also known as

cognitive diagnostic models (Rupp et al. 2010), have been developed for the purpose

of identifying the presence or absence of multiple fine-grained skills or attributes.

Statistically speaking, diagnostic classification models belong to the family of la-

tent structure models. In particular, they are restricted latent class models within

the broader family of generalized linear and nonlinear mixed models (von Davier,

2009). Such restrictions are usually based on the so-called Q-matrix (Tatsuoka 1983),

which specifies the relationship between test items and latent attributes. A short list

of diagnostic classification models based on the Q-matrix includes the conjunctive

(noncompensatory) DINA and NIDA models (Junker and Sijtsma 2001; Tatsuoka

2002; de la Torre and Douglas 2004; Templin 2006; de la Torre 2008b; DeCarlo 2011),

the reparameterized unified/fusion model (RUM) (DiBello, Stout and Roussos 1995;

Hartz 2002; Templin, He, Roussos and Stout 2003), the compensatory DINO and

NIDO models (Templin and Henson 2006; Templin 2006), the rule space method

(Tatsuoka 1985; 2009), the attribute hierarchy method (Leighton, Gierl and Hunka

2004), and nonparametric clustering method (Chiu, Douglas and Li 2009); see also

(Junker 1999; von Davier 2005; Rupp et al. 2010) for more developments and ap-

proaches to cognitive diagnosis.

In the following, we give a detailed description of the diagnostic classification

models. See also Rupp et al. (2010) for a recent review.
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1.2.1 Notation

This thesis is concerned with N subjects taking a test consisting of J items. The

responses are binary, so that the data will be an N × J matrix with entries being

0 or 1. The diagnostic classification model to be considered for such data envisions

K attributes that are related to both the subjects and the items. Throughout this

thesis, we assume that the number of attributes K is known and that the number of

items J is fixed.

The following notation and specifications are needed to describe the diagnostic

classification models.

Q-matrix The Q-matrix is the key component of diagnostic models. It specifies the

link between the test items and the latent attributes. In particular, Q = (qjk)J×K is

a J ×K matrix with binary entries. For each j and k, qjk = 1 indicates that item j

requires attribute k and qjk = 0 otherwise.

We take the following 3× 2 Q-matrix as an example.

Q =

addition multiplication

2 + 3 1 0

5× 2 0 1

(2 + 3)× 2 1 1

(1.2)

There are two attributes and three items. The first item requires addition, the second

item requires multiplication, and the third one requires both addition and multipli-

cation skills.

Responses to items We use

R = (R1, ..., RJ)>
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to denote the vector of responses to the J test items. In this thesis, we focus on

binary responses. For each j, Rj is a binary variable taking 0 or 1, and superscript

“>” denotes transpose. For the example in (1.2), J = 2 and there are 23 = 8 possible

response vectors.

Attribute profile There are K attributes and we use

α = (α1, ..., αK)>

to denote the vector of attributes, where αk = 1 or 0, indicating the presence or

absence of the kth attribute, k = 1, . . . , K. For the example in (1.2), K = 2 and

all the possible attributes profiles are (0, 0), (0, 1), (1, 0), and (1, 1), where the first

element represents addition and the second one represents multiplication.

Note that both α and R are subject-specific. We use subscripts to indicate dif-

ferent subjects. For instance, Ri = (R1
i , ..., R

J
i )> is the response vector for subject i.

Similarly, αi = (α1
i , ..., α

K
i )> is the attribute vector for subject i.

With N subjects, we observe R1, ...,RN but not α1, ...,αN . The primary purpose

of cognitive diagnosis is to accurately estimate attribute profile α1, · · · ,αN from the

response data R1, ...,RN . Sometimes, we are also interested in the proportion of

subjects with certain attribute profiles, which is specified as follows.

Population proportion We assume that the attribute profiles are i.i.d. and denote

the proportion of subjects with attribute profile α by

pα = P (αi = α).

We write p = (pα : α ∈ {0, 1}K)>. For statement simplicity, we let the first element

of p be

p0 = P (αi = (0, · · · , 0)>K×1),
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and define the other part of p as p∗, i.e.,

p =

 p0

p∗

 . (1.3)

We use vector 0K and 1K to denote the K dimensional zero and one column vectors

respectively. When there is no ambiguity, we omit the index of length and only write

0 and 1.

Ideal response Let ξj(α, Q) denote the ideal response, which indicates whether a

subject possessing attribute profile α is capable of providing a positive response to

item j if the item-attribute relationship is specified by matrix Q.

Different ideal response structures give rise to different diagnostic classification

models. In general, there are two categories: conjunctive models and compensatory

models. In the following, we give a detailed description and introduce several popular

diagnostic models in the literature. A more thorough review of those models can be

found in Rupp et al. (2010).

1.2.2 Conjunctive diagnostic models

For conjunctive models, the ideal response is specified by

ξj(α, Q) = I
(
αk ≥ qjk for all k = 1, ..., K

)
, (1.4)

where I(·) is the usual indicator function. Equation (1.4) shows that all the specified

skills by the Q-matrix are required for successful performance on the corresponding

item (ξ = 1) and lack of competency on any one required attribute leads to a negative

ideal response (ξ = 0). In other words, having additional unnecessary attributes does

not compensate for the lack of the necessary attributes.
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A basic but popular conjunctive diagnostic model is the DINA (Deterministic In-

put, Noisy output “AND” gate) model (Junker and Sijtsma 2001). The ideal response

under the DINA model take the form of (1.4). In addition, to count for the random-

ness of the responses, the DINA model introduces the so-called slipping and guessing

parameters (Junker and Sijtsma 2001). The concept is due to Macready and Dayton

(1977) for mastery testing; see also van der Linden (1978). The slipping parameter

is the probability that a subject (with attribute profile α) responds negatively to an

item if the ideal response to that item ξ(α, Q) = 1; similarly, the guessing parameter

refers to the probability that a subject responds positively if his or her ideal response

ξ(α, Q) = 0.

We use s = (s1, · · · , sJ)> to denote the slipping probability and g = (g1, · · · , gJ)>

to denote the guessing probability (with corresponding subscript indicating different

J items). In the discussion, it is more convenient to work with the complement of the

slipping parameter. Therefore, we define c = 1− s to be the probability of answering

correctly, with cj being the corresponding item-specific notation. Given a specific

subject’s profile α, the response to item j under the DINA model follows a Bernoulli

distribution

P (Rj = 1|Q,α, cj, gj) = c
ξj(α,Q)
j g

1−ξj(α,Q)
j . (1.5)

In addition, conditional on α, (R1, ..., RJ) are jointly independent.

Note that under the DINA model, if K = 1, the item characteristic curve can be

taken as a discretized version of the item characteristic function of a IRT model. See

Figure 1.4 for an illustration, where subjects with low ability are taken as nonmaster-

ing the necessary ability and have correct response probability equal to g while those

with high ability are considered as mastering the ability and have correct response

probability 1 − s. In the literature, this is also known as the mastery testing, see
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Macready and Dayton (1977); van der Linden (1978) for more details.
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Figure 1.4: Item characteristic curves for the DINA model with K = 1.

A generalization of the DINA model is the reduced version of the Reparameterized

Unified Model (RUM); see Hartz (2002). Under the reduced-RUM model, we have

that for the jth item,

P (Rj = 1|α, πj, rjk) = πj

K∏
k=1

rjk
qjk(1−αk), (1.6)

where πj is the correct response probability for subjects who possess all required

attributes and rj,k, 0 < rj,k < 1, is the penalty parameter for not possessing the kth

attribute. The reduced RUM model is also a conjunctive model, and it generalizes

the DINA model by allowing slipping and guessing parameters to vary across different

attribute profiles.
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1.2.3 Compensatory diagnostic models

Compensatory models only need one of the specified attributes for a successful per-

formance. The presence of one required attribute can compensate for the lack of

others. For example, consider the case in which different attributes represent differ-

ent strategies for solving an item. Then a positive response to the item only requires

the successfully performance of one strategy (attribute). The ideal response for a

compensatory model is then

ξj(α, Q) = I
(
αk ≥ qjk for some k = 1, ..., K

)
= 1−

K∏
k=1

(1− αk)qjk . (1.7)

The DINO (Deterministic Input, Noisy output “OR” gate) model is a compen-

satory model (Templin and Henson 2006; Templin 2006). The ideal response ξjDINO(α, Q)

takes the above form. Therefore, it only needs to possess one of the attributes re-

quired by the Q-matrix to be capable of providing a positive response to an item.

With the same definition of cj and gj as in the DINA model, the response under the

DINO model follows

P (Rj = 1|α, cj, gj) = c
ξjDINO(α,Q)
j g

1−ξjDINO(α,Q)
j . (1.8)

1.3 Main results of the thesis

This thesis focuses on statistical inference for diagnostic classification models. Cen-

tral to many diagnostic models is the Q-matrix, which specifies the item-attribute

relationship. It is common practice for the Q-matrix to be specified by experts when

items are written, rather than through data-driven calibration. Such a non-empirical

approach may lead to misspecification of the Q-matrix and substantial lack of model

fit, resulting in erroneous interpretation of testing results. This motivates our study
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and we consider the identifiability, estimation, and hypothesis testing of the Q-matrix.

In addition, we study the identifiably issue of the model parameters under a known

Q-matrix.

In Chapter 21, we develop identifiability conditions for the Q-matrix to be learn-

able from the response data. Despite the importance of the Q-matrix in cognitive

diagnosis, its estimation problem is largely an unexplored area. Unlike typical infer-

ence problems, inference for the Q-matrix is particularly challenging for the following

reasons. First, in many cases, the Q-matrix is simply nonidentifiable, i.e., multiple

Q-matrices lead to an identical response distribution. Therefore, we only expect to

identify the Q-matrix up to some equivalence relation. In other words, two Q-matrices

in the same equivalence class are not distinguishable based on data. Our first task is

to define a meaningful and identifiable equivalence class. Second, the Q-matrix lives

on a discrete space – the set of J ×K matrices with binary entries. This discrete na-

ture makes analysis particularly difficult because calculus tools are not applicable. In

fact, most theoretical analyses in this thesis are combinatorics based. In this chapter,

we present definitive answers to the learnability of the Q-matrix for one of the most

commonly used models, the DINA model, by specifying a set of sufficient conditions

under which the Q-matrix is identifiable up to an explicitly defined equivalence class.

Chapter 3 focuses on hypothesis testing of the Q-matrix. The purpose of this study

is to provide a statistical procedure to help decide whether to accept the Q-matrix

provided by the experts. Let Q0 be the prespecified Q-matrix. Then this problem

is equivalent to testing the null hypothesis H0 : Q = Q0. Based on the theoretical

developments in Chapter 2, we propose a test statistic that measures the consistency

of observed data with the proposed Q-matrix Q0. Asymptotic distributions of the

1Part of Chapter 2 has been published/accepted in Bernoulli (Liu, Xu and Ying 2012b) and
Applied Psychological Measurement (Liu, Xu and Ying 2012a)
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test statistic are derived and the corresponding test procedures are established. In

addition, we conduct simulation studies to assess the performance of the proposed

method.

Chapter 4 is concerned with the identifiability of the diagnostic model parameters

with a specified Q-matrix. Identifiability is a prerequisite for statistical inferences,

such as parameter estimation and hypothesis testing. In this chapter, we focus on the

DINA model and present sufficient and necessary conditions under which the model

parameters are identifiable. The analysis method developed in this chapter is generic

in the sense that it can be employed for the analysis of other diagnostic classification

or latent class models.
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Chapter 2

Estimation of Q-matrix

2.1 Introduction

Diagnostic classification models are important statistical tools in cognitive diagnosis

and can be employed in a number of disciplines, including educational assessment and

clinical psychology (Rupp and Templin 2008b). A key issue of cognitive diagnosis is to

correctly specify the item-attribute relationships, which is specified by the Q-matrix

Tatsuoka (1983). Different diagnostic classification models have been proposed in

literature based on the Q-matrix. One simple and widely studied model among them

is the DINA model (Deterministic Input, Noisy output “AND” gate; see Junker and

Sijtsma 2001). Other important models and developments can be found in Tatsuoka

(1985); DiBello, Stout and Roussos (1995); Hartz (2002); Tatsuoka (2002); Leighton,

Gierl and Hunka (2004); von Davier (2005); Templin and Henson (2006); Chiu, Dou-

glas and Li (2009). A more thorough review of cognitive diagnostic models can be

found in Rupp, Templin and Henson (2010).

Statistical analysis with diagnostic models typically assumes a known Q-matrix
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provided by experts such as those who developed the questions (Rupp 2002; Henson

and Templin 2005; Roussos, Templin and Henson 2007b; Stout 2007). Such a priori

knowledge when correct is certainly very helpful for both model estimation and even-

tually identification of subjects’ latent attributes. On the other hand, model fitting

is usually sensitive to the choice of Q-matrix and its misspecification could seriously

affect the goodness of fit. This is one of the main sources for lack of fit. Various diag-

nostic tools and testing procedures have been developed (Rupp and Templin 2008a;

de la Torre 2008a; Henson and Douglas 2005; Liu, Douglas and Henson 2007; Henson,

Roussos, Douglas and He 2008; DeCarlo 2012). A comprehensive review of diagnostic

classification models can be found in Rupp and Templin (2008b).

Despite the importance of the Q-matrix in cognitive diagnosis, its estimation prob-

lem is largely an unexplored area. Unlike typical inference problems, the inference

for the Q-matrix is particularly challenging for the following reasons. First, in many

cases, the Q-matrix is simply nonidentifiable. One typical situation is that multiple

Q-matrices lead to an identical response distribution. Therefore, we only expect to

identify the Q-matrix up to some equivalence relation (Definition 2). In other words,

two Q-matrices in the same equivalence class are not distinguishable based on data.

Our first task is to define a meaningful and identifiable equivalence class. Second, the

Q-matrix lives on a discrete space – the set of J × K matrices with binary entries.

This discrete nature makes analysis particularly difficult because calculus tools are not

applicable. In fact, most analyses are combinatorics based. Third, the model makes

explicit distributional assumptions on the (unobserved) attributes, dictating the law

of observed responses. The dependence of responses on attributes via Q-matrix is a

highly nonlinear discrete function. The nonlinearity also adds to the difficulty of the

analysis.

The primary purpose of this chapter is to provide theoretical analyses on the learn-
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ability of the underlying Q-matrix. In particular, we obtain definitive answers to the

identifiability of Q-matrix for one of the most commonly used models – the DINA

model – by specifying a set of sufficient conditions under which the Q-matrix is identi-

fiable up to an explicitly defined equivalence class. We also present the corresponding

consistent estimators. We believe that the results (especially the intermediate re-

sults) and analysis strategies can be extended to other conjunctive models (Maris

1999; Junker and Sijtsma 2001; Templin 2006; Templin and Henson 2006; Roussos,

DiBello, Stout, Hartz, Henson and Templin 2007a).

The rest of this chapter is organized as follows. In Section 2.2, we present the basic

inference result for Q-matrices in a conjunctive model with no slipping or guessing.

In addition, we introduce all the necessary terminologies and technical conditions.

In Section 2.3, we extend the results in Section 2.2 to the DINA model with known

slipping and guessing parameters. In Section 2.4, we further generalize the results to

the DINA model with unknown slipping parameters. In Section 2.5, we discuss the

estimation of Q-matrix when both slipping and guessing parameters are unknown.

Simulation results are given in Section 2.6 and further discussion is provided in Section

2.7. Proofs are given in Section 2.8. Lastly, the proofs of two key propositions are

given in Section 2.9.

2.2 Estimation of Q-matrix

In this section, we focus on the conjunctive model and consider the simplest situation

that there is no uncertainty in the response, that is, for a subject with attribute

profile α, the response to item j is

Rj = ξj =
K∏
k=1

(αk)qjk , (2.1)
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where {ξj, j = 1, · · · , J} are the ideal responses defined in Chapter 1. Therefore, the

responses are completely determined by the Q-matrix and the attributes.

We assume that all items require at least one attribute. Equivalently, the Q-matrix

does not have zero row vectors. Subjects who do not possess any attribute are not

capable of responding positively to any item.

In order to provide an estimator of the Q-matrix, we first introduce one central

quantity, the T -matrix, which connects the Q-matrix with the response and attribute

distributions.

T -matrix. The T -matrix T (Q) has 2K columns each of which corresponds to one

attribute vector, α ∈ {0, 1}K , with the same order of α in the population propor-

tion vector p = (pα,α ∈ {0, 1}K)>. So the columns of T (Q) can be labeled by α

instead of ordinal numbers. For instance, the α-th column of T (Q) is the column

that corresponds to attribute α.

Let Ii be a generic notation for positive responses to item i. Let “∧” stand for

“and” combination. For instance, Ii1 ∧ Ii2 denotes positive responses to both items

i1 and i2. Each row of T (Q) corresponds to one item or one “and” combination of

items, for instance, Ii1 , Ii1 ∧ Ii2 , or Ii1 ∧ Ii2 ∧ Ii3 , ... If T (Q) contains all the single

items and all “and” combinations, T (Q) contains 2J − 1 rows. We will later say that

such a T (Q) is saturated (Definition 1 in Section 2.2.2).

We now describe each row vector of T (Q). We define that BQ(j) is a 2K dimen-

sional row vector. Using the same labeling system as that of the columns of T (Q),

the α-th element of BQ(j) is defined as
∏K

k=1(αk)qjk , which indicates if a subject with

attribute α is able to solve item j.

Using a similar notation, we define that

BQ(i1, ..., il) = Υl
h=1BQ(ih), (2.2)



23

where the operator “ Υl
h=1” is element-by-element multiplication from BQ(i1) to

BQ(il). For instance, for vectors W = (W 1, ...,W 2k) and Vh = (V 1
h , ..., V

2k

h ),

W = Υl
h=1Vh

means that W j =
∏l

h=1 V
j
h . Therefore, BQ(i1, ..., il) is the vector indicating the

attributes that are capable of responding positively to items i1, ..., il. The row in

T (Q) corresponding to Ii1 ∧ ... ∧ Iil is BQ(i1, ..., il).

γ-vector. Let γ be a column vector the length of which equals to the number of rows

of T (Q). Each element of γ corresponds to one row vector of T (Q). The element in

γ corresponding to Ii1 ∧ ... ∧ Iil is defined as NIi1∧...∧Iil/N , where NIi1∧...∧Iil denotes

the number of people who have positive responses to items i1, ..., il, that is

NIi1∧...∧Iil =
N∑
r=1

I(Rij
r = 1 : for all j = 1, ..., l).

For each α ∈ {0, 1}k, let

p̃α =
1

N

N∑
r=1

I(αr = α). (2.3)

If (2.1) is strictly respected and Q matrix is true, then

T (Q)p̃ = γ, (2.4)

where p̃ = (p̃α : α ∈ {0, 1}K) is arranged in the same order as the columns of T (Q).

This is because each row of T (Q) indicates the attribute profiles corresponding to

subjects capable of responding positively to that set of item(s). Vector p̃ contains

the proportions of subjects with each attribute profile. For each set of items, matrix

multiplication sums up the proportions corresponding to each attribute profile capable
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of responding positively to that set of items, giving us the total proportion of subjects

who respond positively to the corresponding items.

Estimator of the Q-matrix. For each J ×K binary matrix Q, we define

S(Q) = inf
p∈[0,1]2K

|T (Q)p− γ|, (2.5)

where p = (pα : α ∈ {0, 1}K). The above minimization is subject to the constraint

that ∑
α∈{0,1}K

pα = 1,

where | · | is the usual Euclidean norm.

An estimator of Q is then obtained by minimizing S(Q), that is,

Q̂ = arg inf
Q
S(Q), (2.6)

where “arg inf” is the minimizer of the minimization problem over all J ×K binary

matrices. Note that the minimizers are not unique. We will later prove that the

minimizers are in the same meaningful equivalence class. Because of (2.4), we can

see that the true Q-matrix is always among the minimizers.

2.2.1 An illustration example

We illustrate the above construction by one simple example. We emphasize that this

example is discussed to explain the estimation procedure for a concrete and simple

example. The proposed estimator is certainly able to handle much larger Q-matrices.

We consider the following 3× 2 Q-matrix,
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Q0 =

addition multiplication

2 + 3 1 0

5× 2 0 1

(2 + 3)× 2 1 1

(2.7)

Assume Q0 is true. We consider the contingency table of attributes (addition and

multiplication),

multiplication

addition
p̃00 p̃01

p̃10 p̃11

In the above table, p̃00 is the proportional of people who do not master either addition

or multiplication. Similarly, we define p̃01, p̃10, and p̃11. Note that {p̃ij; i, j = 0, 1} is

not observed.

Just for illustration, we construct a simple non-saturated T -matrix. Suppose the

relationship in (2.1) is strictly respected. Then, we should be able to establish the

following identities:

N(p̃10 + p̃11) = NI1 , N(p̃01 + p̃11) = NI2 , Np̃11 = NI3 . (2.8)

Therefore, if we let p̃ = (p̃00, p̃10, p̃01, p̃11)>, the above display imposes three linear

constraints on the vector p̃. Together with the natural constraint that
∑

ij p̃ij = 1,

p̃ solves the linear equation

T (Q0)p̃ = γ, (2.9)

subject to the constraints that p̃ ∈ [0, 1]4 and p̃00 + p̃10 + p̃01 + p̃11 ∈ [0, 1], where
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T (Q0) =


0 1 0 1

0 0 1 1

0 0 0 1

 , γ =


NI1/N

NI2/N

NI3/N

 . (2.10)

Each column of T (Q0) corresponds to one attribute profile. The first column corre-

sponds to α = (0, 0), the second column to α = (1, 0), the third column to α = (0, 1),

and the last column to α = (1, 1). The first row corresponds to item 2+3, the second

row to 5× 2, and the last row to (2 + 3)× 2. For this particular situation, T (Q) has

rank equal to 3 and there exists one unique solution to (2.9) subject to the constrains

of p̃. In fact, we would not expect the constrained solution to the linear equation

in (2.9) to always exist unless (2.1) is strictly followed. This is the topic of the next

section.

The identities in (2.8) only consider the marginal rate of each question. There are

additional constraints if one considers “combinations” among items. For instance,

Np̃11 = NI1∧I2 .

People who are able to solve problem 3 must have both attributes and therefore are

able to solve both problems 1 and 2. Again, if (2.1) is not strictly followed, this is not

necessarily respected in the real data, though it is a logical conclusion. The DINA

in the next section handles such a case. Upon considering I1, I2, I3, and I1 ∧ I2, the

new T -matrix is

T (Q0) =


0 1 0 1

0 0 1 1

0 0 0 1

0 0 0 1

 , γ =


NI1/N

NI2/N

NI3/N

NI1∧I2/N

 . (2.11)
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The last row is added corresponding to I1 ∧ I2. With (2.1) in force, we have

S(Q0) = inf
p∈[0,1]4

|T (Q0)p− γ| = |T (Q)p̃− γ| = 0. (2.12)

This shows that the true Q-matrix Q0 is always among the minimizers of the objective

function S(Q).

2.2.2 Main results for ideal responses

Before stating the main result, we provide a list of notations, which will be used in

the discussions. We use Q0 and p0 = (p0,α,α ∈ {0, 1}K) to denote the true Q-matrix

and the true population parameter. We use ei to denote a row vector such that the

ith element is one and the rest are zeros. When there is no ambiguity, we omit the

length index of ei. In addition, we write the k × k identity matrix as Ik.

The following definitions will be used in subsequent discussions.

Definition 1. We say that a T -matrix is saturated if all combinations of form Ii1 ∧

... ∧ Iil, for l = 1, · · · , J , are included in T (·).

For the example in the last section, the saturated T -matrix and the corresponding

γ-vector are

T (Q0) =



0 1 0 1

0 0 1 1

0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1


, γ =



NI1/N

NI2/N

NI3/N

NI1∧I2/N

NI1∧I3/N

NI2∧I3/N

NI1∧I2∧I3/N


. (2.13)
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It is not hard to see that not all the Q-matrices can be identified based on the

response data R. Since each column of Q represents an attribute, permuting the

columns of Q is equivalent to relabeling the attributes, and therefore we can not

distinguish the difference between Q and Q′ if they have the same column vectors.

We need to specify an equivalent class up to which our data can distinguish the

Q-matrices. Such an equivalence relation is defined as follows.

Definition 2. We write Q ∼ Q′ if and only if Q and Q′ have identical column vectors,

which could be arranged in different orders; otherwise, we write Q � Q′.

The primary objective of cognitive diagnosis is to identify the subjects’ attributes

(Rupp and Templin 2008b). It has been established (see more details in Chapter 4

and Chiu et al. (2009)) that in the ideal responses case, the sufficient and necessary

condition for a set of items to consistently identify attributes is the Q-matrix is

complete. Thus, it is usually recommended to use a complete Q-matrix.

Definition 3. A Q-matrix is said to be complete if {ei : i = 1, ..., K} ⊂ RQ (RQ is

the set of row vectors of Q); otherwise, we say that Q is incomplete.

From the above definition, a Q-matrix is complete if and only if for any attribute

there exists at least one item only requiring that attribute. Completeness implies

that J ≥ K. We will show that completeness is among the sufficient conditions to

identify Q.

Listed below are assumptions which will be used in subsequent development.

C1 The true Q-matrix Q0 is complete.

C2 T -matrix is saturated.
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C3 The true population proportion vector p0 � 0, i.e., p0,α > 0 for all α ∈ {0, 1}K .

C4 Each attribute has been required by at least two items.

With these preparations, we are ready to introduce the first theorem, the proof of

which is given in Section 2.8.

Theorem 1. Assume that conditions C1-C4 hold. Suppose that for the ith subject

with attribute profile αi, the response to item j follows equation (2.1). Let Q̂, defined

in (2.6), be a minimizer of S(Q) among all J × K binary matrices, where S(Q) is

defined in (2.5). Then,

lim
N→∞

P (Q̂ ∼ Q0) = 1. (2.14)

Further, let

p̂ = arg inf
p
|T (Q̂)p− γ|2. (2.15)

With an appropriate rearrangement of the columns of Q̂, for any ε > 0

lim
N→∞

P (|p̂− p0| ≤ ε) = 1.

Remark 1. Conditions C1 and C2 are imposed to guarantee consistency. They may

not be always necessary. Furthermore, constructing a saturated T -matrix is sometimes

computationally not feasible, especially when the number of items is large. In practice,

one may include combinations of one item, two items,..., h items. The choice of h

depends on the sample size and the computational resources. Condition C3 makes sure

that p0 is not living on some sub-manifold. To see a counter example, suppose that

P (αi = (1, ..., 1)>) = p0,(1,...,1) = 1. Then, for all Q-matrices, P (Ri = (1, ..., 1)>) = 1,

that is, all subjects are able to solve all problems. Therefore, the distribution of R is

independent of Q. In other words, the Q-matrix is not identifiable. More generally, if

there exit αki and αhi such that P (αki = αhi ) = 1, then the Q-matrix is not identifiable
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based on the data. This is because one cannot tell if an item requires attribute k

alone, attribute h alone, or both; see Reckase (1990; 2009) for similar cases for the

multidimensional IRT models. The condition C4 is required for technical purposes.

Nonetheless, one can in fact construct counterexamples, i.e., the Q-matrix is not

identifiable up to the relationship “∼”, if C4 is violated.

Remark 2. If Q1 ∼ Q2, the two matrices only differ by a column permutation and

will be considered to be the “same”. Therefore, we expect to identify the equivalence

class that Q belongs to. Also, note that S(Q1) = S(Q2) if Q1 ∼ Q2.

Remark 3. Note that the estimator of the attribute distribution, p̂, in (2.15) depends

on the order of columns of Q̂. In order to achieve consistency, we will need to arrange

the columns of Q̂ such that Q̂ = Q0 whenever Q̂ ∼ Q0.

One practical issue associated with the proposed procedure is the computation.

For a specific Q, the computation of S(Q) only involves a constraint minimization of a

quadratic function. However, if J or K is large, the computation overhead of searching

the minimizer of S(Q) over the space of J ×K matrices could be substantial. One

practical solution is to break the Q-matrix into smaller sub-matrices. For instance,

one may divide the J items into m groups (possibly with nonempty overlap across

different groups) and then apply the proposed estimator to each of the m group of

items. This is equivalent to breaking a big J by K Q-matrix into several smaller

matrices and estimating each of them separately. Lastly, combine the m estimated

sub-matrices together to form a single estimate. The consistency results can be

applied to each of the m sub-matrices and therefore the combined matrix is also

a consistent estimator. A similar technique has been discussed in Chapter 8.6 of

Tatsuoka (2009). See also Section 2.5 and 2.7 for more details.
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2.3 DINA model with known slipping and guess-

ing parameters

In this section, we extend the inference results in the previous section to the situation

under which the responses do not deterministically depend on the attributes. In

particular, we consider the DINA model.

Recall that for the DINA model, the jth item has two parameters: the slipping

parameter (sj) and the guessing parameter (gj). And cj = 1− sj is the probability of

a subject’s responding positively to item j given that s/he is capable of solving that

problem. Under the DINA model assumption, the response probabilities are specified

as

P (Rj = 1|ξj) = cξ
j

j g
1−ξj
j , (2.16)

where ξj is the capability indicator defined in (1.4). In addition, conditional on

{ξ1, ..., ξJ}, {R1, ..., RJ} are jointly independent.

We write c � g if cj > gj for all 1 ≤ j ≤ J , and write c � g if cj 6= gj for all

j = 1, · · · , J . In the following, we use c0 = (c0,1, · · · , c0,J)> and g0 = (g0,1, · · · , g0,J)>

to denote the true slipping and guessing parameters. In this section we assume c0

and g0 are known. We discuss the more general cases in the next sections.

2.3.1 A general T -matrix

Consider a general Q-matrix Q and a general set of parameters (c, g,p). We modify

the T -matrix defined in last section accordingly in this context. We first consider the

case that gj = 0 for all j = 1, · · · , J . We introduce a diagonal matrix Dc. If the hth

row of matrix Tc(Q) corresponds to Ii1 ∧ ...∧ Iil , then the hth diagonal element of Dc
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is ci1 × . . .× cil . Then, we let

Tc(Q) = DcT (Q), (2.17)

where T (Q) is the binary matrix defined previously. In other words, we multiply each

row of T (Q) by a common factor and obtain Tc(Q). Note that in absence of slipping

(cj = 1 for each j) we have that Tc(Q) = T (Q).

There is another equivalent way of constructing Tc(Q). We define

Bc,Q(j) = cjBQ(j),

and

Bc,Q(i1, ..., il) = Υl
h=1Bc,Q(ih), (2.18)

where “Υ” refers to element by element multiplication. Let the row vector in Tc(Q)

corresponding to Ii1 ∧ ... ∧ Iil be Bc,Q(i1, ..., il).

For instance, for c0 = (c0,1, c0,2, c0,3), Tc0(Q0) corresponding to the T -matrix in

(2.11) would be

Tc(Q0) =


0 c0,1 0 c0,1

0 0 c0,2 c0,2

0 0 0 c0,3

0 0 0 c0,1c0,2

 . (2.19)

Lastly, we consider the situation that both the probability of making a mistake

and the probability of guessing correctly could be strictly positive. By this, we mean

that the probability that a subject responds positively to item j is cj if s/he is capable

of doing so; otherwise the probability is gj. We create a corresponding Tc,g(Q) by

slightly modifying Tc(Q). We define the row vector

E = (1, ..., 1).
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When there is no ambiguity, we omit the length index of E. Now, let

Bc,g,Q(j) = gjE+ (cj − gj)BQ(j)

and

Bc,g,Q(i1, ..., il) = Υl
h=1Bc,g,Q(ih). (2.20)

Let the row vector in Tc,g(Q) corresponding to Ii1 ∧ ... ∧ Iil be Bc,g,Q(i1, ..., il). For

instance, the matrix Tc0,g0(Q0) corresponding to the Tc0(Q0) in (2.19) is

Tc0,g0(Q0) =


g0,1 c0,1 g0,1 c0,1

g0,2 g0,2 c0,2 c0,2

g0,3 g0,3 g0,3 c0,3

g0,1g0,2 c0,1g0,2 g1c0,2 c0,1c0,2

 . (2.21)

Note that the first column of T -matrix contains the probabilities of providing positive

responses to items simply by guessing.

By the law of large number, we know that

γ − Tc0,g0(Q0) p0 → 0 (2.22)

almost surely as N →∞.

2.3.2 Estimation of the Q-matrix and consistency results

Having concluded our preparations, we are now ready to introduce our estimators for

Q. We introduce the objective function

Sc,g,p(Q) = |Tc,g(Q)p− γ|. (2.23)
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If we know the true parameters (c0, g0,p0), then a natural estimator of the Q-matrix

is

Q̂ = arg inf
Q
Sc0,g0,p0

(Q).

Since we don’t know p0, we will use the profiled objective function instead. Given c0

and g0, we define our objective function for Q as

Sc0,g0(Q) = inf
p∈[0,1]2K

|Tc0,g0(Q)p− γ|, (2.24)

where p = (pα : α ∈ {0, 1}K). The minimization in (2.24) is subject to constraints

that

pα ∈ [0, 1], and
∑
α

pα = 1.

We propose an estimator of the Q-matrix through a minimization problem, that is,

Q̂(c0, g0) = arg inf
Q
Sc0,g0(Q). (2.25)

We write c0 and g0 in the argument to emphasize that the estimator depends on

c0 and g0. The computation of the minimization in (2.24) consists of minimizing a

quadratic function subject to finitely many linear constraints. Therefore, it can be

done efficiently.

Theorem 2. Suppose that c0 and g0 are known and that conditions C1-C4 are in

force. For subject i, the responses are generated independently such that

P (Rj
i = 1|ξji ) = c

ξji
0,jg

1−ξji
0,j , (2.26)

where ξji is defined as in Theorem 1. Let Q̂(c0, g0) be defined as in (2.25). If c0,j 6= g0,j

for all j, then

lim
N→∞

P (Q̂(c0, g0) ∼ Q0) = 1.
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Furthermore, let

p̂(c0, g0) = arg inf
p

∣∣∣Tc0,g0(Q̂(c0, g0)
)
p− γ

∣∣∣2 ,
subject to constraint that

∑
α pα = 1. Then, with an appropriate rearrangement of

the columns of Q̂, for any ε > 0,

lim
N→∞

P (|p̂(c0, g0)− p0| ≤ ε) = 1.

Remark 4. There are various metrics one can employ to measure the distance be-

tween the vectors Tc,g(Q̂(c0, g0))p and γ. In fact, any metric that generates the same

topology as the Euclidian metric is sufficient to obtain the consistency results in the

theorem. For instance, a principled choice of objective function would be the like-

lihood with p profiled out. The reason we prefer the Euclidian metric (versus, for

instance, the full likelihood) is that the evaluation of S(Q) is easier than the eval-

uation based on other metrics. More specifically, the computation of current S(Q)

consists of quadratic programming types of well oiled optimization techniques.

2.4 DINA with unknown slipping probabilities

In this section, we further extend our results to the situation where the slipping

probabilities are unknown and the guessing probabilities are known. In the context

of standard exams, the guessing probabilities can typically be set to zero for open

problems. For instance, the chance of guessing the correct answer to “(3 + 2)× 2 =?”

is very small if the student does not know addition. On the other hand, for multiple

choice problems, the guessing probabilities cannot be ignored. In that case, gj can be

considered as 1/n when there are n choices.

We first provide several estimators of c0 given a Q-matrix Q and g0. The first

method is applicable to all Q-matrices, but computationally intensive. The second
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one is computationally easy, but requires certain structures of Q. The third one is the

usual maximum likelihood estimator and is easy to compute using the EM algorithm.

We introduce the first two methods here due to theoretical interest.

A estimator based on S function We first provide an estimator of c0 that is

applicable to all Q-matrices. For a given Q-matrix Q and true guessing parameters

g0, we propose the following estimator of c:

ĉ(Q, g0) = arg inf
c∈[0,1]J

Sc,g0(Q). (2.27)

A moment estimator When the Q-matrix has a certain structure, we are able to

estimate c consistently based on estimating equations.

We need a result which will be given in the proof of Proposition 6 (Section 2.8.2).

For general c and g, let c− g = (c1 − g1, ..., cJ − gJ)> and

T̃c,g(Q) =

 Tc,g(Q)

E

 .

Then there exists a matrix Dg, which only depending on g, such that

DgT̃c,g(Q) = Tc−g(Q).

Under the specification of Q0, for a particular item i, suppose that there exist

items i1, ..., il (different from i) such that

BQ0(i, i1, ..., il) = BQ0(i1, ..., il), (2.28)

that is, the attributes required by item i are a subset of the attributes required by

i1, ..., il.
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Let ag0 and a∗g0 be the row vectors in Dg0 corresponding to Ii1 ∧ ... ∧ Iii and

Ii ∧ Ii1 ∧ ... ∧ Iii in matrix Tc0−g0(Q0). Then, for the true Q-matrix Q0 and true

parameters (p0, c0, g0), the law of large number implies that

a>∗g0

 γ

1


a>g0

 γ

1

 =
a>∗g0T̃c0,g0(Q0)p0

a>g0T̃c0,g0(Q0)p0

+ op(1)

=
Bc0−g0,Q0(i, i1, ..., il)p0

Bc0−g0,Q0(i1, ..., il)p0

+ op(1)

p→ (c0,i − g0,i), (2.29)

where the vectors ag0 and a∗g0 only depend on guessing parameters g0.

Therefore, the corresponding estimator of c0,i given Q0 and g0 would be

ĉi(Q0, g0) = g0,i +

a>∗g0

 γ

1


a>g0

 γ

1

 . (2.30)

Note that the computation of c̄i(Q, g) only consists of affine transformations and

therefore is very fast.

Proposition 1. Suppose (2.26) and (2.28) are true. Then ĉi(Q0, g0) → c0,i, for

i = 1, · · · , J , in probability as N →∞.
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Proof of Proposition 1. By the law of large numbers,

a>∗g0

 γ

1

− a>∗gT̃c,g(Q0)p0 → 0,

a>g0

 γ

1

− a>g0T̃c0,g0(Q0)p0 → 0,

in probability as N →∞. By the construction of a∗g0 and ag0 , we have

a>∗g0T̃c0,g0(Q0)p0 = Bc0−g0,Q0(i, i1, ..., il)p0,

a>g0T̃c0,g0(Q0)p0 = Bc0−g0,Q0(i1, ..., il)p0.

Thanks to (2.28), we have

a>∗g0

 γ

1


a>g0

 γ

1

 → c0,i − g0,i.

Maximum likelihood estimator A natural estimator of c0 is the maximum likeli-

hood estimator (MLE). For a given Q-matrix Q and true guessing parameters g0, the

MLE of c0 is defined as:

ĉ(Q, g0) = arg sup
c∈[0,1]J

Lc,g0(Q), (2.31)

where Lc,g(Q) is the likelihood function taking the form of

Lc,g(Q) =
N∏
i=1

 ∑
α∈{0,1}K

(
pα

J∏
j=1

P (Rj
i = 1|c, g,α, Q)R

j
i (1− P (Rj

i = 1|c, g,α, Q))1−Rj
i

) .
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The computation of the MLE can be done efficiently by the EM algorithm (Dempster,

Laird and Rubin (1977); de la Torre (2009)).

Under certain regular conditions, (p0, c0) is identifiable based on the response data

with a correctly specified Q-matrix (see Chapter 4). Nonetheless, non-identifiability

issue does exist and we can easily construct counter examples. For instance, consider

a complete matrix Q = IK . There are in total 2K constraints based on the T -matrix

and restriction on p. On the other hand, the parameter dimension of (p0, c0) is

2K +K. Therefore, without additional information p0 and c0 cannot be consistently

identified. A typically approach to tackle this problem is to introduce addition para-

metric assumptions such as p0 satisfying certain restrictions or in the Bayesian setting

(weakly) informative prior distributions (Gelman, Jakulin, Pittau and Su 2008). This

example shows that it is not always possible to consistently estimate c0 and p0 given

the guessing parameter g and Q-matrix. The identifiability of (p0, c0) will be fur-

ther pursued in Chapter 4, where sufficient and necessary conditions for parameter

identifiability are proposed.

To estimate the Q-matrix, we replace the unknown slipping parameter in S func-

tion with the estimator ĉ described in the above methods, and have the following

objective function

Sĉ(Q,g0),g0(Q) = inf
p
Sĉ(Q,g0),g0,p(Q) = inf

p
|Tĉ(Q,g0),g0(Q)p− γ|, (2.32)

where the minimization is subject to the natural constraints that pα ∈ [0, 1] and∑
α pα = 1. Then, the corresponding estimator is

Q̂ĉ(g0) = arg inf
Q
Sĉ(Q,g0),g0(Q). (2.33)

The consistency of the Q-matrix estimator is given in the following theorem.
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Theorem 3. Suppose that g0 is known and the conditions in Theorem 2 hold. Let

Q̂ĉ(g0) is as defined in (2.33). Then,

lim
N→∞

P
(
Q̂ĉ(g0) ∼ Q0

)
= 1.

Note that under the conditions of Theorem 3, the moment estimator is consistent.

In addition, we have the consistency of ĉ when it is the likelihood estimator or the

estimator minimizing S function; see Proposition 11 and Theorem 6 in Chapter 4 for

more details.

2.5 DINA with unknown slipping and guessing

In this subsection, we consider the computation of the estimator of the Q-matrix

when neither the slipping nor the guessing parameters are known.

Based on the construction and the discussions in the previous sections, we consider

the objective function for any c, g, p, and Q,

Sc,g,p(Q) = |Tc,g(Q)p− γ|. (2.34)

If we know the true parameters (c0, g0,p0), then a natural estimator of the Q-matrix

is

Q̂ = arg inf
Q
Sc0,g0,p0

(Q).

Most of the time, the parameters (c0, g0,p0) are unknown. Under these situations,

we consider the profiled objective functions

S(Q) = inf
c,g,p

Sc,g,p(Q), (2.35)

where the minimization is subject to the natural constraints that ci, gi, pα ∈ [0, 1] and∑
α pα = 1. Then, the corresponding estimator is

Q̂ = arg inf
Q
S(Q). (2.36)
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The minimization of p in (2.35) consists of a quadratic optimization with linear

constraints, and therefore can be done efficiently. The minimization with respect to c

and g is usually not straightforward. One may alternatively replace the minimization

by other estimators (such as the maximum likelihood estimator) (ĉ(Q), ĝ(Q), p̂(Q)).

Thus, the objective function becomes

Ŝ(Q) = Sĉ(Q),ĝ(Q),p̂(Q)(Q). (2.37)

The corresponding estimator is

Q̂ = arg inf
Q
Ŝ(Q). (2.38)

This alternative allows certain flexibility in the estimation procedure. The S-function

in (2.37) is usually easier to compute. Therefore, we often work with the estimator

(2.38) and a hill-climbing algorithm to compute Q̂ is given in the next subsection.

We consider the estimator in (2.38) and the objective function (2.37). Let (ĉ, ĝ, p̂)

be the maximum likelihood estimator (MLE). The computation of the MLE can be

done efficiently by the EM algorithm (Dempster, Laird and Rubin (1977); de la Torre

(2009)). Furthermore, we consider the optimization of (2.36) and (2.38).

The optimization of a general nonlinear discrete function is a very challenging

problem. A simple-minded search of the entire space consists of evaluating the func-

tion S up to 2J×K times. In our current setting, an a priori Q-matrix, denoted by

Q∗, is usually available. We expect that Q∗ is reasonably close to the true matrix Q.

For each Q, let Uj(Q) be the set of J ×K matrices that are identical to Q except

for the jth row (item). Then our algorithm is described as follows.

Algorithm 1. Choose a starting point Q(0) = Q∗. For each iteration m, given the

matrix from the previous iteration Q(m− 1), we perform the following steps.
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1. Let

Qj = arg inf
Q∈Uj(Q(m−1))

S(Q). (2.39)

2. Let j∗ = arg infj S(Qj).

3. Let Q(m) = Qj∗.

Repeat steps 1-3 until Q(m) = Q(m− 1).

At each step m, the algorithm considers updating one of the J items. In particular,

if the jth item is updated, the Q-matrix for the next iteration would be Qj. Then,

Q(m) is set to be the Qj∗ that admits the smallest objective function among all the

Qj’s. The optimization (2.39) consists of evaluating the function S 2K times. Thus,

the total computation complexity of each iteration is J × 2K evaluations of S.

Remark 5. The simulation study in Section 2.6 shows that if Q∗ is different from

Q by 3 items (out of 20 items) Algorithm 1 has a very high chance of recovering the

true matrix with reasonably large samples.

2.6 Simulation

In this section, we conduct simulation studies to illustrate the performance of the

proposed method. We generate the data from the DINA model under different settings

and compare the estimated Q-matrix and the true Q-matrix.

2.6.1 Estimation of the Q-matrix with no special structure

The simulation setting. We start with a test of J = 20 items that requires K = 3

attributes. The true Q-matrix Q0 is given by
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Q1 =



1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

1 1 0

1 0 1

1 0 1

0 1 1

1 0 1

0 1 1

1 1 0

0 1 1

1 0 1

0 1 1

1 1 1



. (2.40)

We further generate the attributes from a uniform distribution, i.e.,

p0,α = 2−K , ∀α ∈ {0, 1}K .

The slipping parameters and the guessing parameters are set to be s0,j = g0,j = 0.2

for j = 1, · · · , 20. In addition, for each sample size N = 500, 1000, 2000, and 4000,
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N=500 N=1000 N=2000 N=4000

Q̂ = Q0 Q̂ 6= Q0 Q̂ = Q0 Q̂ 6= Q0 Q̂ = Q0 Q̂ 6= Q0 Q̂ = Q0 Q̂ 6= Q0

Q0 = Q1 94 6 100 0 100 0 100 0
Q0 = Q2 82 18 100 0 100 0 100 0
Q0 = Q3 38 62 98 2 100 0 100 0

Table 2.1: Numbers of correctly estimated Q-matrices out of 100 simulations with
N = 500, 1000, 2000, and 4000 for Q1, Q2, and Q3.

100 data sets were generated under the DINA model assumption.

To reduce computational complexity, we choose the T -matrix containing combina-

tions of up to four items. More generally, the simulation study shows that a T -matrix

containing all the (K + 1) (and lower) combinations delivers good estimates. We

implement Algorithm 1 with a starting Q-matrix Q∗ specified as follows. The Q∗ is

constructed based on the true Q-matrix by misspecifying three items. In particular,

we randomly selected 3 items out of the total 20 items without replacement. For each

of the selected items, the corresponding row of Q∗ is sampled uniformly from all the

possible K dimensional binary vectors excluding the true vector (of Q1) and the zero

vector. That is, each of these rows is a uniform sample of 2K − 2 vectors. Thus, it is

guaranteed that Q∗ does not have zero-vectors and is different form the true Q-matrix

Q0 = Q1 by precisely three items. The simulation results are given by the first row

of Table 2.1. The columns “Q̂ = Q0” and “Q̂ 6= Q0” contains the frequencies of the

events “Q̂ = Q0” and “Q̂ 6= Q0” respectively. Based on 100 independent simulations,

Q̂ recovers the true Q-matrix 98 times when the sample size is 500. For larger samples

N = 1000, 2000, and 4000, the estimate Q̂ never misses the true Q-matrix.

We further simulate the data from Q-matrices with 4 and 5 attributes
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Q2 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1

1 1 1 1

1 1 1 1



, Q3 =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

1 0 0 0 1

0 1 1 0 0

0 1 0 1 0

0 1 0 0 1

0 0 1 1 0

0 0 1 0 1

0 0 0 1 1



. (2.41)

With exactly the same settings, the results are given by the corresponding rows in

the Table 2.1. The estimator performs well except for the cases where N = 500. This

is mainly because the sample size is small relative to the dimension K.

An improved estimation procedure for small samples. We further investigate
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the data sets generated according to Q2 and Q3 with N = 500 when the estimator

Q̂ did not perform as well as other situations. In particular, we look into the cases

when Q̂ 6= Q0, with Q0 = Q1, Q2, or Q3. We observe that Q-matrices with more

misspecified entries do not necessarily admit larger S values. In some cases, the

true Q-matrix Q0 does not minimize the objective function S; nonetheless, S(Q0)

is not much larger than the global minimum infQ S(Q). Figures 2.1 and 2.2 show

two typical cases. For each of the two figures, two plots are provided. The x-axis

shows the number of iterations of the optimization algorithm. The y-axis of the left

plot shows the number of misspecified entries of Q(m) at iteration m; the plot on

the right shows the objective function S(Q(m)). For the case shown in Figure 2.1,

the algorithm just misses the true Q-matrix by one entry; for the case in Figure 2.2,

the algorithm in fact passes the true Q-matrix and move to another one. Both cases

show that the true Q-matrix does not minimize the objective function S. In fact,

the values of the S function have basically dropped to a very low level after three

iterations. The algorithm tends to correct one misspecified item at each of the first 2

iterations. After iteration 3, the reduction of the S function is marginal, and there are

several Q-matrices that fits the data approximately equally well. For such situations

where there are several matrices whose S values are close to the global minimum,

we recommend careful investigation of all those matrices and selection of the most

sensible one from a practical point of view.

Motivated by this, we consider a modified algorithm with an early stopping rule,

i.e., we stop the algorithm when the reduction of the S-function value is below some

threshold. In particular, we choose a threshold value of 4.5% of S(Qm−1) at the m-th

iteration. With this early stopping rule, the estimator for Q2 and Q3 can be improved

substantially. The results based on the same samples as in Table 2.1 are shown in

Table 2.2 which is show much high frequency of recovering the true Q-matrix.
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Figure 2.1: Results of a simulated data set with N = 500 and K = 5, for which the
estimated Q-matrix does not pass the true one.
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Figure 2.2: Results of a simulated data set with N = 500 and K = 5, for which the
estimated Q-matrix passes the true one but does not converge to it.
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N=500

Q̂ = Q0 Q̂ 6= Q0

Q0 = Q2 94 6
Q0 = Q3 70 30

Table 2.2: The results of algorithm with an early stopping rule for Q2 and Q3 based
on the same samples as in Table 2.1.

When attribute profile α follows a non-uniform distribution. We consider the

situation where the attribute profile α follows a non-uniform distribution. We adopt

a similar setting as in Chiu et al. (2009), where attributes are correlated and unequal

prevalence. We assume a multivariate probit model. In particular, for each subject, let

θ = (θ1, · · · , θk) be the underlying ability following a multivariate normal distribution

MVN(0,Σ), where the covariance matrix Σ has unit variance and common correlation

ρ taking values of 0.05, 0.15 and 0.25. Then the attribute profile α = (α1, ..., αK) is

determined by

αk =

 1 if θk ≥ Φ−1
(

k
K+1

)
0 otherwise.

The other settings are similar as the previous simulations. We consider the true Q-

matrix given as in (2.40) and K = 3. The slipping and guessing parameters are set to

be 0.2. 100 independent datasets are generated. Table 2.3 shows the frequency of Q1

being recovered by the estimator (after applying the early stopping method introduced

in the above subsection). We can find that the more correlated the attributes are, the

more difficult it is to estimate a Q-matrix. This is mostly because the samples are

unevenly distributed over the 2K possible attribute profiles and thus the “effective

sample size” becomes smaller.
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N=1000 N=2000 N=4000

Q̂ = Q1 Q̂ 6= Q1 Q̂ = Q1 Q̂ 6= Q1 Q̂ = Q1 Q̂ 6= Q1

ρ = 0.05 78 22 98 2 100 0
ρ = 0.15 71 29 94 6 99 1
ρ = 0.25 41 59 76 24 95 5

Table 2.3: Numbers of correctly estimated Q1 out of 100 simulations with N = 500,
1000, 2000, and 4000 for different ρ values.

2.6.2 Estimation of the Q-matrix with partial information

In this subsection, we consider the situation where partial knowledge of the true

Q-matrix is available. We consider one of the situations discussed in Section 2.7.

Consider a J × K Q-matrix where the attribute requirements of J − 1 items are

known among the total J items. We are interested in learning the unknown Jth

item’s Q-matrix structure. In this simulation we let J = 2K + 1. The first 2K rows

of Q are known to form two complete matrices, i.e.,

Q0 =


IK
IK
VJ

 ,

where IK is the identity matrix of dimension K and VJ is the row corresponding to

the Jth item to be learnt. The the corresponding estimator becomes

Q̂ = arg inf
Q∈UJ (Q)

S(Q),

where UJ(Q) is defined in Algorithm 1, as the set of Q-matrices identical to Q0 for

the first J − 1 rows.

With a similar setting to the previous simulations, the slipping and guessing pa-

rameters are set to be 0.2 and the population is set to be uniform, i.e., pα = 2−K .
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For each combination of K = 3, 4, and 5, we consider different VJ ’s. 100 independent

datasets are generated. Table 2.4 shows the frequency of VJ being recovered by the

estimator. One empirical finding is that the more “1”’s VJ contains, the more difficult

it is to estimate VJ .

N=250 N=500 N=1000 N=2000

VJ Q̂ = Q0 Q̂ 6= Q0 Q̂ = Q0 Q̂ 6= Q0 Q̂ = Q0 Q̂ 6= Q0 Q̂ = Q0 Q̂ 6= Q0

(1 0 0) 91 9 98 2 100 0 100 0
(1 1 0) 82 18 97 3 99 1 100 0
(1 1 1) 70 30 83 17 100 0 100 0

N=500 N=1000 N=2000 N=4000

VJ Q̂ = Q0 Q̂ 6= Q0 Q̂ = Q0 Q̂ 6= Q0 Q̂ = Q0 Q̂ 6= Q0 Q̂ = Q0 Q̂ 6= Q0

(1 0 0 0) 91 9 98 2 100 0 100 0
(1 1 0 0) 84 16 94 6 100 0 100 0
(1 1 1 0) 71 29 87 13 99 1 100 0
(1 1 1 1) 39 61 62 38 94 6 100 0

N=1000 N=2000 N=4000 N=8000

VJ Q̂ = Q0 Q̂ 6= Q0 Q̂ = Q0 Q̂ 6= Q0 Q̂ = Q0 Q̂ 6= Q0 Q̂ = Q0 Q̂ 6= Q0

(1 0 0 0 0) 95 5 100 0 100 0 100 0
(1 1 0 0 0) 88 12 99 1 100 0 100 0
(1 1 1 0 0) 77 23 98 2 100 0 100 0
(1 1 1 1 0) 47 53 76 24 92 8 100 0
(1 1 1 1 1)∗ 29 71 37 63 56 44 88 12

Table 2.4: Numbers of correctly estimated Q-matrices out of 100 simulations with
K = 3, 4, 5. ∗ In the case of (1 1 1 1 1), Q̂ recovers Q0 100 times when N = 12000.

2.7 Discussion

Estimation of the Q-matrix for other DCMs. The differences among DCMs
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lie mostly in their ideal response structures and the distribution of the response

vectors implied by the Q-matrices. The distribution of response vector R takes an

additive form if responses to different items are conditionally independent given the

attribute profile α, which is usually assumed for DCMs. With such a structure, one

can construct the corresponding B-vectors that contain the corresponding conditional

probabilities of the response vectors given each attribute profile α. Furthermore, a

T -matrix is constructed by stacking all the B-vectors and an S-function is defined as

the L2 distance between the observed frequencies and those implied by the Q matrix.

An estimator is then obtained by minimizing the S-function. Thus, this estimation

procedure can be applied to other DCM’s. For instance, one immediate extension of

the current estimation procedure is to the DINO model.

Incorporating available information in the estimation procedure. Sometimes

partial information is available for the parameters (Q, c, g,p). For instance, it is often

reasonable to assume that some entries of the Q-matrix are known. Suppose we can

separate the attributes into “hard” and “soft” ones. By “hard”, we mean those that

are concrete and easily recognizable in a given problem and, by “soft”, we mean those

that are subtle and not obvious. We can then assume that entries in columns which

correspond to “hard” attributes are known. Alternatively, there may be a subset of

items whose attribute requirements are known, while the item-attribute relationships

of all other items need to be learnt, for example, when new items need to be calibrated

according to the existing ones. Furthermore, even if an estimated Q-matrix may not

be an appropriate replacement of the a priori Q-matrix provided by the “expert”

(such as exam makers), it can serve as validation as well as a method of calibration

using existing knowledge about the Q-matrix. When such information is available and

correct, computation can be substantially reduced. This is because the optimization,
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for instance that in (2.38), can be performed subject to existing knowledge of the Q-

matrix. In particular, once the attribute requirements of a subset of J − 1 items are

known, one can calibrate other items, one at a time, using those known items. More

specifically, consider a J×K matrix Q∗, the first J−1 items of which are known. We

estimate the last item by Q̂ = arg supQ∈UJ (Q∗) S(Q), i.e., we minimize the S-function

subject to our knowledge about the first J − 1 items. Note that this optimization

requires 2K evaluations of the S-function and is therefore efficient. Thus, to calibrate

M items, the total computation complexity is O(M × 2K), which is typically of a

manageable order.

Information about other parameters such as c, g, and p can also be included in

the estimation procedure. For instance, the attribute population is typically modeled

to admit certain parametric form such as a log-linear model with certain interactions

(von Davier and Yamamoto 2004; Henson and Templin 2005; Xu and von Davier

2008). This type of information can be incorporated in to the definition of (2.35) and

(2.37), where the minimization and estimation of (c, g,p) can be subject to additional

parametric form or constraints. Such addition information is helpful enhancing the

identifiability of the Q-matrix.

Theoretical properties of the estimator. Under weaker conditions, such as ab-

sence of completeness in the Q-matrix or the presence of unknown guessing parame-

ter, the identifiability of the Q-matrix may be weaker, which corresponds to a coarser

quotient set. One empirical finding is that Q-matrices with more diversified items

tend to be easier to identify. For instance, one simple yet surprising example of a
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non-identifiable Q-matrix is that

Q =


1 0

0 1

1 0


with slipping and guessing probabilities being 0.2 for all items and pα = 1/4 for all

α. This Q-matrix cannot be distinguished from

Q′ =


1 0

0 1

1 1

 ,

that is, one can find another set of slipping, guessing probabilities and p′α that implies

the same distribution of the response vector. See Chapter 4 for more details about

the identifiability of the model parameters.

Model Validation The proposed framework is applicable to not only the estimation

of the Q-matrix but also the validation of an existing Q-matrix. If the Q-matrix is

correctly specified and the assumptions of the DINA model are in place, then one

may expect

|γ − Tĉ,ĝ(Q)p̂| → 0

in probability as N → ∞. The above convergence requires no additional conditions

to establish the consistency of Q̂ (such as completeness or diversified attribute distri-

bution). In fact, it suffices that the responses are conditionally independent given the

attributes and (ĉ, ĝ) are consistent estimators of (c, g). Then, one may expect that

when Q is true,

Ŝ(Q)→ 0.
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If the convergence rate of the estimators (ĉ, ĝ) is known, for instance, (ĉ − c, ĝ −

g) = Op(N
−1/2), then a necessary condition for a correctly specified Q-matrix is

that Sĉ,ĝ(Q) = Op(N
−1/2). The asymptotic distribution of S depends on the specific

form of (ĉ, ĝ). Consequently, checking the closeness of S to zero forms a procedure for

validation of the existing knowledge of the Q-matrix and the DINA model assumption.

See Chapter 3 for more details about the Q-matrix validation.

Sample size. As the simulation results show that the estimator misses the true Q-

matrix with non-ignorable probability (over 50%). This probability is substantially

reduced (to 2%) when the sample size is increased to N = 1000. This suggests that

a practically large sample N should be at least 30 × 2K . Note that the K binary

attributes partition the population into 2K groups. In order to have the estimator

yield reasonably accurate estimate there should be on average at least 30 samples in

each group. In addition, performance of the estimator maybe further affected by the

underlying attribute distribution. For instance, if the attributes are very correlated,

the probabilities of certain attributes will be substantially smaller than others. For

such cases, estimation for some rows in the Q-matrix (those corresponding to the

small probability attributes) will be less accurate. For such situations, the “effective

sample size” is even smaller.

Computation. The optimization of S(Q) over the space of J ×K binary matrices

is a nontrivial problem. This is a substantial computational load if J and K are

reasonably large. This computation might be reduced by splitting the Q-matrix into

small sub-matrices. For typical statistical models, dividing the parameter space is

usually not possible. The Q-matrix adopts a particular structure with which there

is certain independence among items so that splitting the Q-matrix is valid. Similar

techniques have been employed in the literature, such as Chapter 8.6 in the Tatsuoka
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(2009) with large scale empirical studies in that chapter. In particular, for instance

if there are 100 items, one can handle such a situation as follows. First, split the 100

items into 10 groups (possibly with overlapping items between groups if necessary);

then apply the estimator to each of the 20 groups of items respectively. This is

equivalent to breaking a big 100×K Q-matrix into 20 smaller matrices and estimating

each of them separately. Lastly, combine the 20 estimated sub-matrices together to

form a single estimate. Given that the computation for smaller scale matrices is much

easier than those big ones, the splitting approach reduces the computation overhead.

Nonetheless, developing a fast computation algorithm is an important line of future

research.

Summary. As a concluding remark, we emphasize that learning the Q-matrix based

on the data is an important problem even if a priori knowledge is sometimes available.

In this chapter, we propose an estimation procedure of the Q-matrix under the setting

of the DINA model. This method can also be adapted to the DINO model that is

considered as the dual model of the DINA model. Simulation study shows that the

estimator performs well when the sample size is reasonably large.

2.8 Proofs of theorems

2.8.1 Proof of theorems

To prove the main theorems, we need several propositions and lemmas, which are

postponed to the next subsection. We now proceed to prove our theorems.

Proof of Theorem 1. Consider a general Q-matrix Q such that Q � Q0. Suppose
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T (Q) and T (Q0) are saturated. Let p̃0 to be the vector containing p̃0,α’s with

p̃0,α =
1

N

N∑
i=1

I(αi = α).

For p0 � 0, since p̃0 → p0 almost surely by the law of large number, then Corollary 1

and the fact that γ = T (Q0)p̃0 by (2.4) imply that T (Q0)p0 /∈ C(T (Q)), where C(T )

is the linear space generated by the column vectors of T , and there exists δ > 0 such

that,

lim
N→∞

P

(
inf

p∈[0,1]2K
|T (Q)p− γ| > δ

)
= 1

and

P

(
inf

p∈[0,1]2K
|T (Q0)p− γ| = 0

)
= 1.

Given the fact that there are finitely many candidate J×K binary matrices, we have

P (Q̂ ∼ Q0)→ 1

as N → ∞. In fact, we can arrange the columns of Q̂ such that P (Q̂ = Q0) → 1 as

N →∞.

Note that p̃0 satisfies the identity

T (Q0)p̃0 = γ.

In addition, since T (Q0) is of full rank (Proposition 2), the solution to the above linear

equation is unique. Therefore, the solution to the optimization problem infp |T (Q0)p−

γ| is unique and is p̃. Notice that when Q̂ = Q0, p̂ = arg infp |T (Q̂)p − γ| = p̃.

Therefore,

lim
N→∞

P (p̃ = p̂) = 1.

Together with the consistency of p̃, the conclusion of the theorem follows immediately.
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Proof of Theorem 2. By the law of large number,

|Tc0,g0(Q0)p0 − γ| → 0

almost surely as N →∞. Therefore,

Sc0,g0(Q0)→ 0

almost surely as N →∞.

As previously defined, let

T̃c,g(Q) =

 Tc,g(Q)

E

 . (2.42)

Note that the last row of T̃c,g(Q) consists entirely of ones. Then we have that γ

1

→ T̃c0,g0(Q0)p0.

For any Q � Q0, according to Proposition 6 and the fact that p0 � 0, there exists

δ(c) > 0 such that δ(c) is continuous in c and

inf
p

∣∣∣T̃c,g0(Q)p− T̃c0,g0(Q0)p0

∣∣∣ > δ(c).

By elementary calculus,

δ , inf
c∈[0,1]J

δ(c) > 0

and

inf
c,p

∣∣∣T̃c,g0(Q)p− T̃c0,g0(Q0)p0

∣∣∣ > δ.

Therefore,

P

inf
c,p

∣∣∣∣∣∣T̃c,g0(Q)p−

 γ

1

∣∣∣∣∣∣ > δ/2

→ 1,
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as N →∞. For the same δ, we have

P

(
inf
c,p
|Tc,g0(Q))p− γ| > δ/2

)
= P (inf

c
Sc,g0(Q) > δ/2)→ 1.

The above minimization on the left of the equation is subject to the constraint that∑
α∈{0,1}K

pα = 1.

Together with the fact that there are only finitely many J ×K binary matrices, we

have

P (Q̂(c0, g0) ∼ Q0) = 1.

We arrange the columns of Q̂(c0, g0) so that P (Q̂(c0, g0) = Q0)→ 1 as N →∞.

Now we proceed to the proof of consistency for p̂(c0, g0). Note that∣∣∣∣∣∣T̃c0,g0(Q̂(c0, g0))p̂(c0, g0)−

 γ

1

∣∣∣∣∣∣ p→ 0,

∣∣∣∣∣∣T̃c0,g0(Q0)p0 −

 γ

1

∣∣∣∣∣∣ p→ 0.

Since T̃c0,g0(Q0) is a full column rank matrix and P (Q̂(c0, g0) = Q0)→ 1, p̂(c0, g0)→

p0 in probability.

Proof of Theorem 3. Assuming g0 is known, note that for a given Q-matrix Q

inf
p

∣∣∣∣∣∣T̃c,g0(Q)p−

 γ

1

∣∣∣∣∣∣
is a continuous function of c. According to the results of Proposition 1, the definition

in (2.27), and the definition of ĉ in Section 2.4, we obtain that
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inf
p

∣∣∣∣∣∣T̃ĉ(Q0,g0),g0(Q0)p−

 γ

1

∣∣∣∣∣∣→ 0,

in probability as N → ∞ (Note that under the conditions C1-C4, we have the con-

sistency of ĉ when it is the likelihood estimator; see Theorem 6 in Chapter 4). In

addition, thanks to Proposition 6 and with a similar argument as in the proof of

Theorem 2, Q̂ĉ(g0) is a consistent estimator.

2.8.2 Several propositions and lemmas

To make the discussion smooth, we postpone several long proofs to Appendix 2.9.

For statement convenience, we introduce the following notations.

• Linear space spanned by vectors V1, ..., Vl:

L(V1, ..., Vl) =

{
l∑

j=1

ajVj : aj ∈ R

}
.

• For a matrix M , M1:l denotes the submatrix containing the first l rows and all

columns of M .

• For a matrix M , C(M) is the linear space generated by the column vectors of

M . It is usually called the column space of M .

• CM denotes the set of column vectors of M .

• RM denotes the set of row vectors of M .

• T ∗(Q) denotes the matrix that contains the second to the last columns of T (Q).

Note that the first column of T (Q) is zero vector.
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Proposition 2. Suppose that Q is complete and matrix T (Q) is saturated. Then, we

are able to arrange the columns and rows of Q and T ∗(Q) such that T ∗(Q)1:(2K−1) has

full rank and T ∗(Q) has full column rank.

Proof of Proposition 2. Provided that Q is complete, without loss of generality we

assume that the ith row vector of Q is e>i for i = 1, ..., K, that is, item i only requires

attribute i for each i = 1, ..., K. Let the first 2K − 1 rows of T ∗(Q) be associated

with {I1, ..., IK}. In particular, we let the first K rows correspond to I1, ..., IK and

the first K columns of T ∗(Q) correspond to α’s that only have one attribute. We

further arrange the next CK
2 rows of T ∗(Q) to correspond to combinations of two

items, Ii ∧ Ij, i 6= j. The next CK
2 columns of T ∗(Q) correspond to α’s that only

have two positive attributes. Similarly, we arrange T ∗(Q) for combinations of three,

four, and up to K items. Therefore, the first 2K − 1 rows of T ∗(Q) admit a block

upper triangle form. In addition, we are able to further arrange the columns within

each block such that the diagonal matrices are identities, so that T ∗(Q) has form

I1, I2, ...

I1 ∧ I2, I1 ∧ I3, ...

I1 ∧ I2 ∧ I3, ...
...


IK ∗ ∗ ∗ . . .

0 ICK
2

∗ ∗

0 0 ICK
3
∗

...
...

...

 . (2.43)

Note that T ∗(Q) has 2K−1 columns and T ∗(Q)1:(2K−1) obviously has full rank, there-

fore T ∗(Q) has full column rank.

When the guessing parameter is zero, we have the following result.

Proposition 3. Suppose that Q is complete, T (Q) is saturated, and c � 0. Then,

T ∗c (Q) and T ∗c (Q)1:(2K−1) have full column rank.
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Proof of Proposition 3. By Proposition 2, (2.17) and the fact that Dc is a diagonal

matrix of full rank as long as c � 0, we have that

T ∗c (Q) = DcT
∗(Q),

is of full column rank.

Consider two Q-matrices Q and Q′, the following two propositions compare the

column spaces of Tc(Q) and Tc(Q
′), which are central to the proof of all the theorems.

Their proofs are delayed to the appendix.

We assume that Q is a complete matrix and T (Q) is saturated. We further assume

that Q1:K = IK and the first 2K − 1 rows of T (Q) are arranged in the order as in

(2.43).

The first proposition discusses the case where Q′1:K is complete. We can always

rearrange the columns of Q′ so that Q1:K = Q′1:K . In addition, according to the

proof of Proposition 2, the last column vector of Tc(Q) corresponds to attribute

α = (1, ..., 1)>. Therefore, this column vector is all of nonzero entries.

Proposition 4. Assume that Q satisfies conditions C1, C2, and C4. For Q′ 6= Q,

suppose Q1:K = Q′1:K = IK. Then Tc(Q)p is not in the column space C(Tc′(Q
′)) for

all c′ ∈ RJ if c � 0 and p � 0.

The next proposition discusses the case where Q′1:K is incomplete.

Proposition 5. Assume that Q is a complete matrix, T (Q) is saturated, and p � 0.

Without loss of generality, let Q1:K = IK. If c � 0 and Q′1:K is incomplete, Tc(Q)p

is not in the column space C(Tc′(Q
′)) for all c′ ∈ RJ .

Consider the Q-matrix Q0 in Theorem 3. We have the next result, which is a

direct corollary of the above two propositions.



62

Corollary 1. Under the conditions of Theorem 3, Tc0(Q0)p0 is not in the column

space C(Tc(Q)) for all c ∈ [0, 1]J and all Q � Q0,.

To obtain a similar proposition for the cases where the gi’s are non-zero, we will

need to expand the Tc,g(Q) as follows. As previously defined, let

T̃c,g(Q) =

 Tc,g(Q)

E

 . (2.44)

Note that the last row of T̃c,g(Q) consists entirely of ones.

Proposition 6. Suppose that Q satisfies conditions C1, C2, and C4, Q′ � Q, p � 0,

and c � g. Then T̃c,g(Q)p is not in the column space C(T̃c′,g(Q
′)) for all c′ ∈ [0, 1]J .

In addition, T̃c,g(Q) is of full column rank.

To prove Proposition 6, we will need the following lemma.

Lemma 1. Consider two matrices T1 and T2 of the same dimension. If T1p ∈ C(T2),

then for any matrix D of appropriate dimension for multiplication, we have

DT1p ∈ C(DT2).

Conversely, if for some D, DT1p does not belong to C(DT2), then T1p does not

belong to C(T2).

Proof of Lemma 1. Note that DTi is just a linear row transform of Ti for i = 1, 2.

The conclusion is immediate by basic linear algebra.

Proof of Proposition 6. Thanks to Lemma 1, we only need to find a matrix D such

that DT̃c,g(Q)p does not belong to the column space of DT̃c′,g(Q
′) for all c′ ∈ [0, 1]m.

For c, g, c′, g′, write

c− g = (c1 − g1, ..., cm − gm), c′ − g = (c′1 − g1, ..., c
′
m − gm).
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We claim that there exists a matrix D such that

DT̃c,g(Q) = Tc−g(Q) =
(

0, T ∗c−g(Q)
)

and

DT̃c′,g(Q
′) = Tc′−g(Q

′) =
(

0, T ∗c′−g(Q
′)
)
,

where the choice of D does not depends on c or c′.

In the rest of the proof, we will construct such a D-matrix for T̃c,g(Q) satisfying

the above conditions. The verification for T̃c′,g(Q
′) is completely analogous. Note

that each row in DT̃c,g(Q) is just a linear combination of rows of T̃c,g(Q). Therefore,

it suffices to show that every row vector of the form

Bc−g,Q(i1, ..., il)

can be written as a linear combination of the row vectors of T̃c,g(Q). We prove this

by induction. First note that for each 1 ≤ i ≤ J ,

Bc−g,Q(i) = (ci − gi)BQ(i) = Bc,g,Q(i)− giE. (2.45)

Suppose that all rows of the form

Bc−g,Q(i1, ..., il)

for all 1 ≤ l ≤ j can be written as linear combinations of the row vectors of T̃c,g(Q)

with coefficients only depending on g1, ..., gJ . Thanks to (2.45), the case of j = 1

holds. Suppose the statement holds for some general j. We consider the case of j+1.

By definition,

Bc,g,Q(i1, ..., ij+1) = Υj+1
h=1Bc,g,Q(ih) (2.46)

= Υj+1
h=1 (gihE+Bc−g,Q(ih)) .
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Let “∗” denote element-by-element multiplication. For every generic vector V ′ of

appropriate length,

E ∗ V ′ = V ′.

We expand the right hand side of (2.46). The last term would be

Bc−g,Q(i1, ..., ij+1) = Υj+1
h=1Bc−g,Q(ih),

From the induction assumption and definition (2.18), the other terms on both sides

of (2.46) belong to the row space of T̃c,g(Q). Therefore, (0, Bc−g,Q(i1, ..., ij+1)) is also

in the row space of T̃c,g(Q). In addition, all the corresponding coefficients only consist

of gi. Therefore, one can construct a (2J − 1)× 2J matrix D such that

DT̃c,g(Q) = Tc−g(Q) =
(

0, T ∗c−g(Q)
)
.

Because D is free of c and Q, we have

DT̃c′,g(Q
′) = Tc′−g(Q

′) =
(

0, T ∗c′−g(Q
′)
)
.

In addition, thanks to Propositions 4 and 5, DT̃c,g(Q)p = Tc−g(Q)p is not in the

column space C(Tc′−g(Q
′)) = C(DT̃c′,g(Q

′)) for all c′ ∈ [0, 1]J . Therefore, by Lemma

1, T̃c,g(Q)p is not in the column space C(T̃c′,g(Q
′)) for all c′ ∈ [0, 1]J .

In addition,  D

e>2m

 T̃c,g(Q)

is of full column rank, where e>2J is a 2J dimension row vector with last element being

one and rest being zero. Therefore, T̃c,g(Q) is also of full column rank.
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2.9 Technical proofs

Proof of Proposition 4. Note that Q1:k = Q′1:k = Ik. Let T (·) be arranged as in (2.43).

Then, T (Q)1:(2k−1) = T (Q′)1:(2k−1). Given that Q 6= Q′, we have T (Q) 6= T (Q′). We

assume that T (Q)li 6= T (Q′)li, where T (Q)li is the entry in the lth row and ith column.

Since T (Q)1:(2k−1) = T (Q′)1:(2k−1), it is necessary that l ≥ 2k.

Suppose that the lth row of the T (Q′) corresponds to an item that requires at-

tributes i1, ..., il′ . Then, we consider 1 ≤ h ≤ 2k−1, such that the hth row of T (Q′) is

BQ′(i1, ..., il′). Then, the h-th row vector and the lth row vector of T (Q′) are identical.

Since T (Q)1:(2k−1) = T (Q′)1:(2k−1), we have T (Q)hj = T (Q′)hj = T (Q′)lj for j =

1, ..., 2k − 1. If T (Q)li = 0 and T (Q′)li = 1, the matrices T (Q) and T (Q′) look like

column i

↓

T (Q′) =

row h→

row l→



0 I ∗ . . . ∗ . . .

0
...

... . . . . . .

0
...

... I . . . . . .

0
...

...
...

0 ∗ 1 ∗

0 ∗ ∗ ∗


,
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and

column i

↓

T (Q) =

row h→

row l→



0 I ∗ . . . ∗ . . .

0
...

... . . . . . .

0
...

... I . . . . . .

0
...

...
...

0 ∗ 0 ∗

0 ∗ ∗ ∗


.

Case 1 Either the hth or lth row vector of Tc′(Q
′) is a zero vector. The conclusion is

immediate because all the entries of Tc(Q)p are non-zero.

Case 2 The hth and lth row vectors of Tc′(Q
′) are nonzero vectors. Suppose that the

lth row corresponds to an item. There are three different situations: according

to the true Q-matrix (a) the item in row l requires strictly more attributes than

row h, (b) the item in row l requires strictly fewer attributes than row h, (c)

otherwise. We consider these three situations respectively.

(a) Under the true Q-matrix, there are two types of sub-populations in con-

sideration: people who are able to answer item(s) in row h (p1) only and

people who are able to answer items in both row h and row l (p2). Then,

the sub-matrix of Tc(Q) and Tc′(Q) are like

Tc(Q)

p1 p2

row h ch ch

row l 0 cl

Tc′(Q
′)

p1 p2

row h c′h c′h

row l c′l c′l
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We now claim that cl and c′l must be equal (otherwise the conclusion hold)

for the following reason.

Consider the following two rows of T (Q): row A corresponding to the

combination that contains all the items; row B corresponding to the row

that contains all the items except for the one in row l.

Rows A and B are in fact identical in T (Q). This is because all the at-

tributes are used at least twice (condition C4). Then, the attributes in

row l are also required by some other item(s) and rows A and B require

the same combination of items. Thus, the corresponding entries of all the

column vectors of Tc(Q) are different by a factor of cl.

For T (Q′), rows A and B are also identical. This is because row h and row

l have identical attribute requirements. Then, Thus, the corresponding

entries of all the column vectors of Tc′(Q) are different by a factor of c′l.

Thus, c′l and cl must be identical otherwise Tc(Q)p is not in the column

space of Tc′(Q).

Similarly, we obtain that ch = c′h. Given that ch = c′h and cl = c′l, we now

consider row h and row l. Notice that all the column vectors in Tc′(Q
′)

have their entries in row h and row l different by a factor of ch/cl. On the

other hand, the h and lth entries of Tc(Q)p are NOT different by a factor

of ch/cl as long as the proportion of p1 is positive. Thereby, we conclude

this case.

(b) Consider the following two types of sub-populations: people who are able

to answer item(s) in row l (p1) only and people who are able to answer

items in both row h and row l (p2). Similar to the analysis of (a), the

sub-matrices look like:
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Tc(Q)

p1 p2

row h 0 ch

row l cl cl

Tc′(Q
′)

p1 p2

row h 0 c′h

row l 0 c′l

With exactly the same argument as in (a), we conclude that cj = c′j,

ch = c′h, and further Tc(Q)p is not in the column space of Tc′(Q
′).

(c) Consider the following three types of sub-populations: people who are able

to answer item(s) in row l only (p1), people who are able to answer item(s)

in row h only (p2), and people who are able to answer items in both row

h and row l (p3). The sub-matrices look like:

Tc(Q)

p1 p2 p3

row h 0 ch ch

row l cl 0 cl

row l ∧ h 0 0 chcl

Tc′(Q
′)

p1 p2 p3

row h 0 c′h c′h

row l 0 c′l c′l

row l ∧ h 0 c′hc
′
l c′hc

′
l

With the same argument, we have that cl = c′l and ch = c′h. On considering

row h and row l ∧ h, we conclude that Tc(Q)p is not in the column space

of Tc′(Q
′).

Proof of Proposition 5. T (·) is arranged as in (2.43). Consider Q′ such that Q′1:k is

incomplete. We discuss the following situations.

1. There are two row vectors, say the hth and lth row vectors (1 ≤ i, j ≤ k),

in Q′1:k that are identical. Equivalently, two items require exactly the same
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attributes according to Q′. With exactly the same argument as in the previous

proof, under condition C4, we have that ch = c′h and cl = c′l. We now consider

the rows corresponding to l and l ∧ h. Note that the elements corresponding

to row l and row l ∧ h for all the vectors in the column space of Tc′(Q
′) are

different by a factor of ch. However, the corresponding elements in the vector

Tc(Q)p are NOT different by a factor of ch as long as the population is fully

diversified.

2. No two row vectors in Q′1:k are identical. Then, among the first k rows of Q′

there is at least one row vector containing two or more non-zero entries. That

is, there exists 1 ≤ i ≤ k such that

k∑
j=1

q′ij > 1.

This is because if each of the first k items requires only one attribute and Q′1:k

is not complete, there are at least two items that require the same attribute.

Then, there are two identical row vectors in Q′1:k and it belongs to the first

situation. We define

ai =
k∑
j=1

q′ij,

the number of attributes required by item i according to Q′.

Without loss of generality, assume ai > 1 for i = 1, ..., n and ai = 1 for i =

n+ 1, ..., k. Equivalently, among the first k items, only the first n items require

more than one attribute while the (n + 1)-th through the kth items require

only one attribute each, all of which are distinct. Without loss of generality, we

assume q′ii = 1 for i = n+ 1, ..., k and qij = 0 for i = n+ 1, ..., k and i 6= j.
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(a) n = 1. Since a1 > 1, there exists an l > 1 such that q′1l = 1. We now

consider rows 1 and l. With the same argument as before (i.e., the attribute

required by row l is also required by item 1 in Q′), we have that cl = c′l

(be careful that we cannot claim that c1 = c′1). We now consider the rows

1 and 1 ∧ l. Note that in Tc′(Q
′) these two rows are different by a factor

of cl; while the corresponding entries in Tc(Q)p are NOT different by a

factor of cl. Thereby, we conclude the result in this situation.

(b) n > 1 and there exists j > n and i ≤ n such that q′ij = 1. The argument

is identical to that in (2a).

(c) n > 1 and for each j > n and i ≤ n, q′ij = 0. Let the i∗-th row in

T (Q′) correspond to I1∧, ...,∧In. Let the i∗h-th row in T (Q′) correspond to

I1∧, ...,∧Ih−1 ∧ Ih+1∧, ...,∧In for h = 1, ..., n.

We claim that there exists an h such that the i∗-th row and the i∗h-th row

are identical in T (Q′), that is

BQ′(1, ..., h− 1, h+ 1, ..., n) = BQ′(1, ..., n). (2.47)

If the above claim is true, then the attributes required by item h have been

required by some other items. Then, we conclude that ch and c′h must be

identical. In addition, rows in Tc′(Q
′) corresponding to I1∧, ...,∧Ih−1 ∧

Ih+1∧, ...,∧In and I1∧, ...,∧In are different by a factor of ch. On the other

hand, the corresponding entries in Tc(Q)p are NOT different by a factor

of ch. Then, we are able to conclude the results for all the cases.

In what follows, we prove the claim in (2.47) by contradiction. Suppose

that there does not exist such an h. This is equivalent to saying that for

each j ≤ n there exists an αj such that q′jαj
= 1 and q′iαj

= 0 for all
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1 ≤ i ≤ n and i 6= j. Equivalently, for each j ≤ n, item j requires at least

one attribute that is not required by other first n items. Consider

Ci = {j : there exists i ≤ i′ ≤ n such that q′i′j = 1}.

Let #(·) denote the cardinality of a set. Since for each i ≤ n and j > n,

q′ij = 0, we have that #(C1) ≤ n. Note that q′1α1
= 1 and q′iα1

= 0 for all

2 ≤ i ≤ n. Therefore, α1 ∈ C1 and α1 /∈ C2. Therefore, #(C2) ≤ n − 1.

By a similar argument and induction, we have that an = #(Cn) ≤ 1. This

contradicts the fact that an > 1. Therefore, there exists an h such that

(2.47) is true. As for T (Q), we have that

BQ(1, ..., h− 1, h+ 1, ..., n) 6= BQ(1, ..., n).

Summarizing the cases in 1, 2(a), 2(b), and 2(c), we conclude the proof.
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Chapter 3

Hypothesis Testing of Q-matrix

3.1 Introduction

There is a growing interest in statistical inference of Q-matrix-based diagnostic classi-

fication models (Rupp 2002; Henson and Templin 2005; Roussos, Templin and Henson

2007b; Stout 2007). One simple and widely studied model among them is the DINA

model (Deterministic Input, Noisy output “AND” gate; see Junker and Sijtsma 2001),

under which it is required to master all attributes specified in Q for an item to get a

correct answer. Other important models and developments can be found in Tatsuoka

(1985); Hartz (2002); Leighton, Gierl and Hunka (2004); von Davier (2005); Templin

and Henson (2006); DeCarlo (2011). See Rupp, Templin and Henson (2010) for a

more thorough review of diagnostic models.

A correctly specifiedQ-matrix is crucial both for parameter estimation (such as the

slipping and the guessing parameters in the DINA model) and for the specification

of subjects’ latent attributes (Rupp and Templin 2008a; de la Torre and Douglas

2004). A misspecified Q-matrix may lead to substantial lack of fit and, consequently,
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erroneous classification of subjects. In the literature, however, the Q-matrix is usually

assumed as correct after its construction. Thus, it is desirable to be able to detect

misspecification of the Q-matrix.

Chapter 2 gives definitive answers to the learnability of the Q-matrix from the

response data and provides consistent estimators of the Q-matrix (see also Liu, Xu

and Ying 2012b;a). In application, however, the estimated Q-matrix may not be the

true one, especially when the sample size (the number of examinees) is limited. In

this case, it is of more interest is to check whether a Q-matrix provided by experts fits

the response data. This imposes the need of efficient Q-matrix validation procedures.

While empirically based methods of validating the Q-matrix in the DINA model

analysis have been proposed in the literature (de la Torre 2008a; DeCarlo 2012), the

corresponding theoretical justification is still lacking.

This chapter focuses on the problem of validating a prespecified Q-matrix, either

from experts or estimated based upon the response data, under a general cognitive

diagnosis model. Statistically, this problem can be formulated as a pure significance

testing problem with null hypothesis H0 : Q = Q0, where Q0 is the candidate Q-

matrix. In this chapter we construct a test statistic that measures the consistency

of observed data with the proposed Q-matrix Q0. Asymptotic distributions of the

test statistic are derived under different diagnostic models. In addition, we provide

computational algorithms, and conduct simulation studies to assess the performance

of the proposed testing procedure.

It is worth pointing out that our testing procedure is generic in the sense that

it covers a large class of diagnostic models, including the DINA, DINO (Determinis-

tic Input, Noisy output “OR” gate) model, the NIDA (Noisy Inputs, Deterministic

“And” Gate) model, the NIDO (Noisy Inputs, Deterministic “Or” Gate) model, and

the RUM (Reparameterized Unified Model) among others.
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The remainder of this chapter is organized as follows. We introduce in Section 3.2

the validation (testing) procedure. Section 3.3 derives the asymptotic distributions

of the testing statistic under different assumptions. Section 3.4 includes simulation

results to help assess the performance of the proposed testing procedure. Finally,

technical proofs are provided in the appendix section.

3.2 Q-matrix validation procedure

As in Chapter 2, we are concerned with the situation where N subjects take a test

consisting of J items. We assume that the responses are binary, so that the data will

be an N × J matrix with entries being 0 or 1. The diagnostic classification model

to be considered for such data envisions K attributes that are related to both the

subjects and the items. We assume that the number of attributes K is known and

that the number of items J is observed.

3.2.1 Notation

We first recall some notation introduced in Chapter 1. The Q-matrix provides a link

between the items and the attributes. In particular, Q = (qjk)J×K is a J ×K matrix

with binary entries. For each j and k, qjk = 1 indicates that item j requires attribute

k and qjk = 0 otherwise. Moreover, we use qj to denote the jth row of Q.

We say a Q-matrix is complete if for any attribute, there exists an item only

requiring that attribute, i.e., for any integer k (1 ≤ k ≤ K), we have ek lying in the

vector set {qj, j = 1, · · · , J}, where ek is a K dimensional row vector such that the

kth element is one and the rest are zeroes; see Definition 3 in Chapter 2 for more

details. An example of a complete Q-matrix is the K by K identity matrix.
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We use α = (α1, ..., αK)> to denote the vector of attributes, where αk = 1 or 0,

indicating the presence or absence of the kth attribute, k = 1, . . . , K, and superscript

> denotes transpose. In addition, let R = (R1, ..., RJ)> denote the vector of responses

to the J test items. Note that both α and R are subject-specific.

Consider a general diagnostic model. For notational convenience, we use θ to

denote the vector of unknown item parameters. Given a specific subject’s profile

α, the response Rj to item j under the corresponding model follows a Bernoulli

distribution

P (Rj|Q,α,θ) = (cj,α)R
j

(1− cj,α)1−Rj

, (3.1)

where cj,α is the probability of providing correct response to item j for subjects with

α, i.e.,

cj,α = P (Rj = 1|Q,α,θ).

In addition, conditional on α, we assume (R1, ..., RJ) are jointly independent.

Note that the specific form of cj,α depends on the Q-matrix, the item parameter

vector θ, and diagnostic model assumptions. We use the following examples for an

illustration.

Example 1 (DINA model). Under the DINA model, the item parameters are specified

by

θ = {sj, gj; j = 1, · · · , J},

where sj and gj represent the slipping and guessing parameters for the jth item

(Macready and Dayton 1977; Junker and Sijtsma 2001). For a Q-matrix Q, cj,α

takes the form

cj,α = (1− sj)ξ
j
DINA(α,Q)g

1−ξjDINA(α,Q)
j , (3.2)
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where

ξjDINA(α, Q) =
K∏
k=1

(αk)
qjk . (3.3)

The DINA model assumes conjunctive relationship among attributes, that is, it is nec-

essary to possess all the attributes indicated by the Q-matrix to be capable of providing

a positive response to an item. In addition, having additional unnecessary attributes

does not compensate for a lack of the necessary attributes.

Example 2 (DINO model). Under the DINO model, the item parameters are specified

by

θ = {sj, gj; j = 1, · · · , J}

with sj and gj the slipping and guessing parameters for the jth item. Then cj,α takes

the form

cj,α = (1− sj)ξ
j
DINO(α,Q)g

1−ξjDINO(α,Q)
j , (3.4)

where

ξjDINO(α, Q) = 1−
K∏
k=1

(1− αk)qjk . (3.5)

In contrast to the DINA model, the DINO model assumes non-conjunctive relationship

among attributes, that is, it only needs to possess one of the attributes required by the

Q-matrix to be capable of providing a positive response to an item.

Example 3 (Reduced RUM model). Under the reduced version of the Reparameter-

ized Unified Model (RUM), we have

cj,α = πj

K∏
k=1

rjk
qjk(1−αk), (3.6)

where πj is the correct response probability for subjects who possess all required at-

tributes and rj,k, 0 < rj,k < 1, is the penalty parameter for not possessing the kth
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attribute. Then the corresponding item parameters are

θ = {πj, rj,k; j = 1, · · · , J, k = 1, · · · , K}.

The reduced RUM model is also a conjunctive model, and it generalizes the DINA

model by allowing the slipping and guessing parameters to vary across different at-

tribute profiles.

Lastly, we use subscripts to indicate different subjects. For instance, Ri =

(R1
i , ..., R

J
i )> is the response vector of subject i. Similarly, αi = (α1

i , · · · , αKi ) is

the attribute vector of subject i. With N subjects, we observe R1, ...,RN but not

α1, ...,αN . We further assume that the attribute profiles are i.i.d. and let

pα = P (αi = α) and p = (pα : α ∈ {0, 1}K)>.

For statement simplicity, we let the first element of p be

p0 = P (αi = (0, · · · , 0)>),

and define the other part of p as p∗, i.e.,

p =

 p0

p∗

 . (3.7)

In this section, we assume that p � 0, i.e., pα > 0 for all α ∈ {0, 1}K . We use

vector 0 and 1 to denote the zero vector and one vector, i.e., (0, ..., 0) and (1, ..., 1)

respectively.

3.2.2 Validation procedure

In application, the Q-matrix is usually assumed to be correct (denoted by Q0) after it

has been constructed, without further validation. Consequently, one raising issue is



78

whether such Q0 is appropriate for the cognitive diagnosis analysis. This problem can

be formulated as a pure significance testing problem with null hypothesis H0 : Q = Q0

(see Chapter 3 of Cox and Hinkley 1974), with the goal of checking whether the

observed data is consistent with the current model formulation while there is not

an alternative model particularly specified. In the following, we propose a general

statistical procedure to carry out this pure significance test under a general diagnostic

model.

Following the hypothesis framework, our first step is to construct a test statistic

that measures how well a given matrix Q fits the data. This is based on the develop-

ment of Chapter 2, where a Q-matrix estimation method was proposed. To formalize,

we need the following notation. First we define a T -matrix for a general diagnostic

classification model.

T -matrix. Recall that the T -matrix serves as a connection between the observed

response distribution and the model structure. We first specify each row vector of

the T -matrix for a general diagnostic model. For each item j, we have

P (Rj = 1|Q,p,θ) =
∑
α

pαP (Rj = 1|Q,α,θ) =
∑
α

pα cj,α, (3.8)

If we create a row vector Bθ,Q(j) of length 2K containing the probabilities cj,α for all

α’s and arrange those elements in an appropriate order, then for all j we can write

(3.8) in the form of a matrix product∑
α

pα cj,α = Bθ,Q(j) p,

where p is the column vector containing the probabilities pα. Similarly, for each pair

of items, we may establish that the probability of responding positively to both items
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j1 and j2 is

P (Rj1 = 1, Rj2 = 1|Q,p,θ) =
∑
α

pα cj1,α cj2,α = Bθ,Q(j1, j2) p,

where Bθ,Q(j1, j2) is a row vector containing the probabilities cj1,α · cj2,α for each α.

Note that each element of Bθ,Q(j1, j2) is the product of the corresponding elements

of Bθ,Q(j1) and Bθ,Q(j2). With a completely analogous construction, we have that

P (Rj1 = 1, ..., Rjl = 1|Q,p,θ) = Bθ,Q(j1, ..., jl)p,

for each combination of distinct (j1, ..., jl). Similarly, Bθ,Q(j1, ..., jl) is the element-by-

element product of Bθ,Q(j1),...,Bθ,Q(jl). From a computational point of view, one only

needs to construct the Bθ,Q(j)’s for each individual item j and then take products to

obtain the corresponding combinations.

The T -matrix has 2K columns. Each row vector of the T -matrix is one of the

vectors Bθ,Q(j1, ..., jl), i.e., the T -matrix is a stack of B-vectors

Tθ(Q) =



Bθ,Q(1)
...

Bθ,Q(J)

Bθ,Q(1, 2)
...


. (3.9)

By the definition of the B-vectors, we have that
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Tθ(Q)p =



P (R1
i = 1|Q,θ,p)

...

P (RJ
i = 1|Q,θ,p)

P (R1
i = 1, R2

i = 1|Q,θ,p)
...


=



∑
α pα c1,α

...∑
α pα cJ,α∑

α pα c1,α c2,α

...


(3.10)

is a vector containing the corresponding probabilities associated with a particular set

of parameters (Q,θ,p).

In the following, we use n to denote the number of rows of T . We say a T -matrix

is saturated if it contains all the possible combinations of items, i.e., n = 2J − 1. For

each Q and the corresponding parameters θ, we denote the saturated T -matrix by

T allθ (Q).

γ-vector. We further define γ to be the n× 1 vector containing the probabilities

(corresponding to those in (3.10)) of the empirical distribution, e.g., the first element

of γ is 1
N

∑N
i=1 I(R1

i = 1) and the (J + 1)-th element is 1
N

∑N
i=1 I(R1

i = 1, R2
i = 1),

i.e.,

γ =



1
N

∑N
i=1 I(R1

i = 1)
...

1
N

∑N
i=1 I(RJ

i = 1)

1
N

∑N
i=1 I(R1

i = 1, R2
i = 1)

...


. (3.11)

For the saturated matrix T allθ (Q), we denote the corresponding γ vector by γall.

We use an example to illustrate the T -matrix and γ-vector under different diag-

nostic models.
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Example 4. Suppose that we are interested in testing two attributes. The popula-

tion is naturally divided into four strata with the corresponding distribution vector

p = (p00, p10, p01, p11)>. Consider a test containing three problems and admitting the

following Q-matrix,

Q0 =


1 0

0 1

1 1

 . (3.12)

Choose n = 4, that is, T is a 4× 4 matrix. Let the first to fourth columns of Tθ(Q0)

be indexed by attribute profiles (0, 0), (1, 0), (0, 1), and (1, 1) respectively. In addition,

the first three rows of T (Q0) correspond to items one, two and three, and the fourth

row corresponds to the combination of items one and two. Then under the above Q0,

the T -matrix and the corresponding γ are

Tθ(Q0) =


c1,(0,0) c1,(1,0) c1,(0,1) c1,(1,1)

c2,(0,0) c2,(1,0) c2,(0,1) c2,(1,1)

c3,(0,0) c3,(1,0) c3,(0,1) c3,(1,1)

c1,(0,0)c2,(0,0) c1,(1,0)c2,(1,0) c1,(0,1)c2,(0,1) c1,(1,1)c2,(1,1)

 , (3.13)

and

γ =


N1/N

N2/N

N3/N

N1∧2/N

 , (3.14)

where Nj is the total number correct responses to item j and N1∧2 is the number of

correct responses to both item 1 and 2.
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Under the DINA model in Example 1, the T -matrix in (3.13) becomes

TDINA,θ(Q0) =


g1 1− s1 g1 1− s1

g2 g2 1− s2 1− s2

g3 g3 g3 1− s3

g1g2 (1− s1)g2 g1(1− s2) (1− s1)(1− s2)

 ,

where s and g are the slipping and guessing parameters in the DINA model. Similarly

under the DINO model in Example 2 and the reduced RUM in Example 3, we have

TDINO,θ(Q0) =


g1 1− s1 g1 1− s1

g2 g2 1− s2 1− s2

g3 1− s3 1− s3 1− s3

g1g2 (1− s1)g2 g1(1− s2) (1− s1)(1− s2)


and

TRUM,θ(Q0) =


π1r1,1 π1 π1r1,1 π1

π2r2,2 π2r2,2 π2 π2

π3r3,1r3,2 π3r3,2 π3r3,1 π3

π1r1,1π2r2,2 π1π2r2,2 π1r1,1π2 π1π2

 .

Testing Statistic. Under the null hypothesis that Q0 is true, let (θ0,p0) be the

corresponding true model parameters.

By the the law of large number, we have that under the null hypothesis,

γ =



1
N

∑N
i=1 I(R1

i = 1)
...

1
N

∑N
i=1 I(RJ

i = 1)

1
N

∑N
i=1 I(R1

i = 1, R2
i = 1)

...


→



P (R1
i = 1|Q0,θ0,p0)

...

P (RJ
i = 1|Q0,θ0,p0)

P (R1
i = 1, R2

i = 1|Q0,θ0,p0)
...


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almost surely as N → ∞. Then by the relationship in (3.10), the above result is

equivalent to

γ − Tθ0(Q0) p0 → 0 (3.15)

almost surely as N →∞.

Our test statistic S(Q0) is constructed based on the above observation. In partic-

ular, if θ0 and p0 are known, S(Q0) is defined as

S(Q0) = |Tθ0(Q0)p0 − γ|2 (3.16)

where | · | is the Euclidean norm. If all the parameters are correctly specified, we

expect that S(Q0)→ 0 as N →∞.

Most of the time, the true parameters (θ0,p0) are unknown. Under these situa-

tions, we consider the profiled objective function and define

S(Q0) = inf
θ,p
|Tθ(Q0)p− γ|2, (3.17)

where the minimization is subject to the natural constraints that θ, pα ∈ (0, 1) and∑
α pα = 1.

The minimization of p in (3.17) consists of a quadratic optimization with linear

constraints, and therefore can be done efficiently. The minimization with respect to

θ is usually not straightforward. One may alternatively replace the minimization by

other estimators (such as the maximum likelihood estimators (θ̂, p̂) derived under

Q0). Thus, the test statistic S(Q0) becomes

Ŝ(Q0) = |Tθ̂(Q0)p̂− γ|2 . (3.18)

This alternative allows certain flexibility in the estimation procedure. The S-function

in (3.18) is usually easier to compute.
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Validation Procedure

The statistic Ŝ(Q0) constructed above is similar to the deviance statistics. It

shows the L2 distance between the observed data frequencies of the responses and

those suggested by the matrix Q0. Therefore, under the null hypothesis H0 : Q = Q0,

one may expect that the testing statistic

Ŝ(Q0)→ 0

almost surely as N →∞.

Then we construct the test procedure based on Ŝ(Q0) and reject the null hypoth-

esis H0 if s(Q0), the realization of Ŝ(Q0) calculated based on response data, is above

some threshold number close to zero. Specifically, we reject H0 : Q = Q0 if s(Q0) > v

for v > 0 satisfying

P
(
Ŝ(Q0) > vα | Q0

)
= α,

where α ∈ (0, 1) is a prespecified test significance level. The value of vα can be

calculated according the asymptotic distribution of Ŝ(Q0) under the null hypothesis,

which is shown in Section 3.3.

3.2.3 Computations

In this subsection, we consider the computation of testing procedure when (θ0,p0)

are all unknown. We focus on the case that estimators (θ̂, p̂) in (2.37) are maximum

likelihood estimators (MLE). The computation of (θ̂, p̂) can be done efficiently by the

EM algorithm (Dempster, Laird and Rubin 1977) for most diagnostic classification

models, including the DINA model (de la Torre 2009). Then for each candidate Q0,

the test procedure proposed in the last subsection can be summarized in the following

algorithm:
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Algorithm 2. We perform the following steps.

1. Evaluate MLE (θ̂, p̂) under the null hypothesis H0 : Q = Q0.

2. Calculate test statistic

s(Q0) = |Tθ̂(Q0)p̂− γ|2

3. Following the asymptotic distribution derived in Section 3.3.2, find value vα

such that

P
(
Ŝ(Q0) > vα | Q0

)
= α,

where α ∈ (0, 1) is the prespecified testing significance level.

4. Reject the null hypothesis H0 : Q = Q0 if s(Q0) > vα, otherwise accept it.

One potential computational concern of the above algorithm is with the case where

the item number J is large. The evaluation of the asymptotic distribution of Ŝ(Q0)

needs to specify a (2J−1)×(2J−1) covariance matrix Σ of γall (details will be provided

in Section 3.3). This is a substantial computational load if J are reasonably large,

for instance J > 20. The computation may be reduced by splitting the Q-matrix

into small sub-matrices. In particular, if there are 100 items, one can handle such a

situation as follows. First, split the 100 items into 10 groups (without overlapping

items between groups); then apply the procedure to each of the 10 groups of items

respectively. This is equivalent to breaking a big 100 ×K Q-matrix into 10 smaller

matrices and estimating each of them separately. Lastly, combine the 10 calculated

U values together to form a single test statistic.

The idea is described in the following algorithm:

Algorithm 3. We perform the following steps.
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1. Split the Q0 into M smaller Q-matrices, {Q0,1, · · · , Q0,M}, by row (without

overlapping items among sub-matrices) such that for each sub-matrix Q0,m, there

are no more than 15 items.

2. For each sub-matrix Q0,m, evaluate MLE (θ̂m, p̂m) and response vector γm only

using the response data related to Q0,m.

3. Calculate test statistic for each Q0,m,

sm(Q0) =
∣∣Tθ̂m

(Q0,m)p̂m − γm
∣∣2 , m = 1, · · · ,M.

4. Following the derivation in Section 3.3.2, find value vα such that

P

(
M∑
m=1

Ŝm(Q0) > vα | Q0

)
= α,

where α ∈ (0, 1) is the prespecified test significance level.

5. Reject the null hypothesis H0 : Q = Q0 if
∑M

m=1 sm(Q0) > vα, otherwise accept

it.

Remark 6. For typical statistical models, dividing the parameter space is usually

impossible. The Q-matrix adopts a particular structure with which there is certain

independence among items so that splitting the Q-matrix is valid. Similar techniques

have been employed in the literature, such as Chapter 8.6 in the Tatsuoka (2009) with

large scale empirical studies in that chapter.

3.3 Distribution of test statistic S(Q0)

In this section, we derive the asymptotic distribution of the testing statistic S(Q0)

under the null hypothesis H0 : Q = Q0. We start with the ideal case where the item

parameters θ0 are known, and then move on to the more general case.
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3.3.1 Case of known item parameters

When p0 is known. To illustrate the idea, we start with the simplest case where

p0 is also known. In this case,

S(Q0) = |Tθ0(Q0)p0 − γ|2

and we only need to derive the distribution of Tθ0(Q0)p0−γ. A direct application of

the central limit theorem gives the following result:

√
N (γ − Tθ0(Q0)p0)

d−→ N (0,Σ), as N →∞, (3.19)

where Σ is an n× n covariance matrix specified as follows.

Suppose the ith row of Σ corresponds to the combination of items (i1, · · · , ik),

same as the ith row of Tθ0(Q0), and suppose that the jth column corresponds to items

(j1, · · · , jl). Denote the set {i1, · · · , ik} and {j1, · · · , jl} by Si and Sj respectively.

Then Σi,j is given by

Σi,j = P0(Rh = 1, h ∈ Si ∪ Sj)− P0(Rh = 1, h ∈ Si)P0(Rh = 1, h ∈ Sj)

= BQ0,θ0(Si ∪ Sj)p0 − (BQ0,θ0(Si)p0) · (BQ0,θ0(Sj)p0) , (3.20)

where

P0(Rh = 1, h ∈ Si) = P (Rh = 1, for all h ∈ Si|Q0,θ0,p0)

is the probability of providing correct answer to all the items in the set Si = {i1, · · · , ik}

under the null hypothesis and the corresponding parameters.

Therefore, we have the asymptotic distribution

N S(Q0) = N |γ − Tθ0(Q0)p0|2
d−→

n∑
l=1

λlZ
2
l ,

where {λl, l = 1, · · · , n} are eigenvalues of Σ, and (Z1, · · · , Zn)> ∼d N (0, In).
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When p0 is unknown. In this case, we have the test statistic as given in (3.17):

S(Q0) = inf
p
|Tθ0(Q0)p− γ|2. (3.21)

The minimization of p in (3.21) consists of a quadratic optimization with linear

constraints, and therefore can be done efficiently. Let p̂ be the estimator obtained in

the above minimization equation, i.e.,

p̂ = arg inf
p
|Tθ0(Q0)p− γ|2

subject to the constraint that
∑

α pα = 1. Then the objective function becomes

S(Q0) = |Tθ0(Q0)p̂− γ|2.

Note that we have the following transformation:

|γ − Tθ0(Q0)p|2 =
∣∣γ − t1 − (T ∗θ0

(Q0)− t11)p∗
∣∣2 ,

where t1 is the first column of matrix Tθ0(Q0) and T ∗θ0
(Q0) is the other part, i.e.,

Tθ0(Q0) =
(
t1, T

∗
θ0

(Q0)
)
,

and p∗ is defined as in Section 3.2.1 such that p =
(
p0, (p∗)>

)>
. Let

T̃ = T ∗θ0
(Q0)− t11.

Then, to find p̂, it is equivalent to obtain p̂∗ minimizing the equation

|γ − t1 − T̃p∗|2.

This can be taken as a linear regression problem, and we have the solution that

(suppose matrix T̃>T̃ is invertible)

p̂∗ =
(
T̃>T̃

)−1

T̃>(γ − t1).
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Thanks to the law of large numbers,

p̂∗ =
(
T̃>T̃

)−1

T̃> (γ − t1) →
(
T̃>T̃

)−1

T̃> (Tθ0(Q0)p0 − t1)

=
(
T̃>T̃

)−1

T̃>T̃p∗0 = p∗0,

which gives the consistency property of the estimator p̂∗. Therefore under our as-

sumption that p0 � 0, the constraint that p̂ � 0 is satisfied when the sample size is

large enough.

Plug p̂ into S(Q0), and we have that

S(Q0) =

∣∣∣∣γ − t1 − T̃
(
T̃>T̃

)−1

T̃>(γ − t1)

∣∣∣∣2
= (γ − t1)> ·

(
In − T̃

(
T̃>T̃

)−1

T̃>
)
· (γ − t1)

=
(
γ − t1 − T̃p∗0

)>
·
(
In − T̃

(
T̃>T̃

)−1

T̃>
)
·
(
γ − t1 − T̃p∗0

)
= (γ − Tθ0(Q0)p0)> ·

(
In − T̃

(
T̃>T̃

)−1

T̃>
)
· (γ − Tθ0(Q0)p0)

= (γ − Tθ0(Q0)p0)>Σ−1/2 · Γ · Σ−1/2 (γ − Tθ0(Q0)p0) , (3.22)

where

Γ = Σ1/2

(
In − T̃

(
T̃>T̃

)−1

T̃>
)

Σ1/2. (3.23)

By (3.19),

Σ−1/2 (γ − Tθ0(Q0)p0)
d−→ N (0, In),

which implies the following result:

Proposition 7. If matrix T̃>T̃ is invertible and the item parameters are known, then

under the null hypothesis H0 : Q = Q0,

N S(Q0)
d−→

n∑
l=1

λlZ
2
l ,
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where λl’s are the eigenvalues of the Γ matrix in (3.23) and Z’s are independent

standard Gaussian random variables.

Remark 7. Under the DINA model, matrix T̃>T̃ is invertible if Q0 is complete and

T is saturated. This follows from the result in Chapter 2 (see also Liu, Xu and Ying

2012b) that if Q0 is complete then T̃ has full column rank.

To simulate the asymptotic distribution in Proposition 7, the difficulty lies in the

construction of the Γ matrix. This can be done following the definition formula (3.23),

where Σ and T can be computed by (3.20) and (3.9) respectively .

3.3.2 Case of unknown item parameters

When the true parameters θ0 are unknown, we use the plug-in method and replace

θ0 with the corresponding estimators. In this subsection, we focus on the MLE θ̂.

Following (3.18), the test statistic S(Q0) takes the form of

Ŝ(Q0) = |Tθ̂(Q0)p̂− γ|2 .

Then, if (θ̂, p̂) are consistent and
√
N(θ̂−θ0, p̂−p0) is normally distributed, we have

the following approximation

Ŝ(Q0) = |γ − Tθ̂(Q0)p̂|2

=

∣∣∣∣γ − Tθ0(Q0)p0 + (Tθ0(Q0)− Tθ̂(Q0)) p0 − Tθ0(Q0)(p̂− p0)

− (Tθ̂(Q0)− Tθ0(Q0)) (p̂− p0)

∣∣∣∣2
= (1 + o(1)) |γ − Tθ0(Q0)p0 + (Tθ0(Q0)− Tθ̂(Q0)) p0 − Tθ0(Q0)(p̂− p0)|2 .

(3.24)

From the above equation, we can see that the distribution of Ŝ(Q0) depends on the

joint distribution of (γ, Tθ̂(Q0), p̂), which relies on the joint distribution of (γ, θ̂, p̂).
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In the following, we derive the joint distribution of (γ, θ̂, p̂) for a general diagnostic

model. Our first result (Lemma 2) connects the MLE (θ̂, p̂) with the saturated

response vector γall, which is defined in Section 3.2.2. Before stating the lemma, we

introduce some notation.

Let γ∗ be a (2J − 1)× 1 vector defined as

γ∗ =
1

N

(
N∑
i=1

I(Ri = R),R ∈ {0, 1}J\0

)>
.

There is a one-to-one mapping between vectors γall and γ∗. Then without loss of

generality, let

γ∗ = L∗γall. (3.25)

Note that L∗ is a (2J − 1) × (2J − 1) invertible matrix. Further, let γ be a vector

defined by

γ =

(
1

N

N∑
i=1

I(Ri = 0) , (γ∗)>

)>
.

Let the true attribute profile probabilities be

p0 = (p0,α,α ∈ {0, 1}K)>

with the first element defined as p0,0 and the other part as p∗0 (see the definition of p

in Section 3.2.1).

Under Q0, we have the likelihood function taking the form of

LN(θ,p∗) =
N∏
i=1

 ∑
α∈{0,1}K

(
pα

J∏
j=1

c
Rj

i
j,α(1− cj,α)1−Rj

i

) . (3.26)

Here recall that cj,α = P (Rj
i = 1 | Q0,α,θ) is a function of θ and Q0 as described in

Section 3.2.1. In addition, we write LN as a function of p∗ instead of p due to the

constraint that
∑

α pα = 1.
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The following result shows that the MLE derived from (3.26) can be expressed as

a linear function of the saturated response vector γall:

Lemma 2. Under the null hypothesis that Q = Q0, suppose MLE (θ̂, p̂∗) are consis-

tent. Then we have that as N →∞,

√
N

 θ̂ − θ0

p̂∗ − p∗0

 = (1 + o(1)) · I−1
0 η>L ·

√
N
(
γall − T allθ0

(Q0)p0

)
and further

√
N

 θ̂ − θ0

p̂∗ − p∗0

 d−→ N (0, I−1
0 ),

where I0 is the Fisher information of the likelihood function (3.26) evaluated at

(θ0,p
∗
0), L is a 2J × (2J − 1) matrix defined by

L =

 −1L∗

L∗

 (3.27)

with L∗ as in (3.25), and η is a 2J × dim(θ) matrix.

With the help of Lemma 2, we can replace the last two terms in equation (3.24)

with a linear transformation of γall. We consider them one by one. Note that

generally, for parameters (θ1, · · · , θh) and their estimators (θ̂1, · · · , θ̂h) such that
√
N((θ̂1, · · · , θ̂h) − (θ1, · · · , θh)) follows a multivariate normal distribution, we have

that

θ̂1 · · · θ̂h − θ1 · · · θh = (1 + o(1))
h∑
l=1

θ1 · · · θl−1θl+1 · · · θh(θ̂l − θl).

This implies that there exists an n× 2J matrix Wθ0,p0
such that

(Tθ̂(Q0)− Tθ0(Q0)) p0 = (1 + o(1)) Wθ0,p0

(
θ̂ − θ0

)
. (3.28)
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In addition, we have that

Tθ0(Q0)(p̂− p0) = Tθ0(Q0)

 −1

I2K−1

 (p̂∗ − p̂∗0) .

The above results imply that for the main quantity in (3.24)

√
N {γ − Tθ0(Q0)p0 + (Tθ0(Q0)− Tθ̂(Q0)) p0 − Tθ0(Q0)(p̂− p0)}

=
√
N

γ − Tθ0(Q0)p0 −

Wθ0,p0
, Tθ0(Q0)

 −1

I2K−1

 θ̂ − θ0

p̂∗ − p̂∗0


=
√
N
{
A
(
γall − T allθ0

(Q0)p0

)}
d−→ N (0,Σu),

where

Σu = A Σall A
> (3.29)

with Σall the covariance matrix of γall as defined in (3.20) and

A =
(
In 0

)
n×(2J−1)

−

Wθ0,p0
, Tθ0(Q0)

 −1

I2K−1

 I−1
0 η>L. (3.30)

Then the distribution of equation (3.24) is given as follows:

Theorem 4. Under the conditions of Lemma 2, we have that as N →∞,

NŜ(Q0)
d−→

2J−1∑
l=1

λ∗lZ
2
l ,

where λ∗1 ≥ · · · ≥ λ∗2J−1 are Σu’s eigenvalues, and

(Z1, · · · , Z2J−1)> ∼d N (0, I2J−1).
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Further, in the case of Algorithm 3, for each sub-matrix Q0,m, Theorem 4 implies

that there exist eigenvalues λm,1, · · · , λm,2Jm−1 such that

NŜm(Q0)
d−→

2Jm−1∑
l=1

λ∗m,lZ
2
m,l,

where Jm is the number of rows in Q0,m and (Zm,1, · · · , Zm,2Jm−1)> ∼d N (0, I2Jm−1).

Therefore, due to the independence structure of the data, we have the following result.

Corollary 2. Under the conditions of Lemma 2 and the setup of Algorithm 3,

N
M∑
m=1

Ŝm(Q0)
d−→

M∑
m=1

2Jm−1∑
l=1

λ∗m,lZ
2
m,l,

with {Zm,l} independent and following standard normal distribution.

Another issue concerns with the computation of the covariance matrix Σu in appli-

cation, which depends on the unknown true parameters (θ0,p0). A natural approach

is to replace (θ0,p0) in Σu with their MLE constructed under Q0. Simulation studies

in the next section show that this approach works reasonably well.

The covariance matrix Σu follows from the definition equation (3.29). The covari-

ance matrix Σall takes the form as in (3.20). The A matrix is given in (2.43), where W

matrix can be computed from (3.28), and I0 can be calculated by taking the second

derivatives of logLN , or equivalently, thanks to Lemma 2,

I0 = N · Cov
(
η>L · (γall − T allθ0

(Q0)p0)
)

= N · η>LΣL>η.

Then the only unspecified quantity is the matrix η.

The form of matrix η depends on the model setup of the diagnostic model. It can

be derived from the corresponding likelihood function. To illustrate the idea, we use

the DINA model as an example.
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3.3.3 An example: DINA Model

Under the DINA model, the item parameters are

θDINA = (s1, · · · , sJ , g1, · · · , gJ)>,

where sj and gj are the slipping and guessing parameters.

Under the null hypothesis H0 : Q = Q0, let (θDINA,0,p0) be the true model

parameters. For a response vector R, denote the corresponding probability mass

function by

P0(R) = P (R|Q0,p0,θDINA,0).

Moreover, let R−j = (R1, · · · , Rj−1, Rj, · · · , RJ)> and write

P0(R−j) = P (R−j|Q0,p0,θDINA,0).

Lemma 3. Under the DINA model and the null hypothesis H0 : Q = Q0, suppose

MLE (θ̂DINA, p̂
∗) are consistent. Then as N →∞,

√
N

 θ̂DINA − θDINA,0

p̂∗ − p∗0


= (1 + o(1)) I−1

DINA,0 η
>
DINA L ·

√
N
(
γall − T allθDINA,0

(Q0)p0

)
and

√
N

 θ̂DINA − θDINA,0

p̂∗ − p∗0

 d−→ N (0, I−1
DINA,0),

where IDINA,0 is the Fisher information of the likelihood function (3.26) evaluated at

(θDINA,0,p
∗
0) under the DINA model, L is a 2J × (2J − 1) matrix defined in (3.27),

and ηDINA is a 2J × (2J + 2K − 1) matrix defined as

ηDINA =
(
ηs1 · · · ηsJ , ηg1 , · · · , ηgJ , ηpα1

, · · · ηpα
2K−1

)
. (3.31)
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Here with R arranged in the same order as in the response vector γ and ξjDINA(α, Q0)

as defined in (3.3), we have

ηsj =

((
I(Rj = 0)− I(Rj = 1)

)
·
∑

ξjDINA(α,Q0)=1 p0,αP0(R−j|α)

P0(R)
, R ∈ {0, 1}J

)>
,

(3.32)

ηgj =

((
I(Rj = 1)− I(Rj = 0)

)
·
∑

ξjDINA(α,Q0)=0 p0,αP0(R−j|α)

P0(R)
, R ∈ {0, 1}J

)>
,

(3.33)

and

ηpαh
=

(
P0(R|αh)− P0(R|α = 0)

P0(R)
, R ∈ {0, 1}J

)>
. (3.34)

Remark 8. Consistency of MLE is assumed in Lemma 3 to make the corresponding

local expansion of the log likelihood function in driving the final result. Note that

not all the MLE are consistent under the model assumption. For instance, in the

ideal case that θDINA,0 = 0, completeness of the Q-matrix is sufficient and necessary

to identify the p vector; see Chapter 4 for more details about the identifiability of

(s, g,p).

3.4 Simulation study

We conduct simulation studies to illustrate the theoretical results developed in the

last section. We focus on the DINA model and study the performance of the Q-

matrix validation procedure under different settings. We start with the ideal case

where both the slipping and the guessing parameters are known and then move on to

more general cases with unknown item parameters.



97

3.4.1 DINA model with known item parameters

In this subsection we study through simulation the performance of the testing proce-

dure under the ideal assumption that both s and g are known.

Q1 =



1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

1 1 0

1 0 1

0 1 1

1 1 1

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

1 1 0

0 1 1

1 0 1

1 1 1



, Q2 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1

1 1 1 1

1 1 1 1



, Q3 =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 1 0 0 0

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

0 0 0 1 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 1 1 0 0

1 0 0 1 0

1 0 0 0 1

0 1 0 0 1

0 0 1 1 0



. (3.35)

We consider J ×K Q-matrices, J = 20 items and K = 3, 4, 5 attributes, given by
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(3.35). We further generate the attributes from a uniform distribution, i.e.,

pα = 2−K , ∀α ∈ {0, 1}K .

The slipping parameters and the guessing parameters are set to be si = gi = 0.2 for

j = 1, · · · , 20.

Q1 Q2 Q3

D = 2 D = 3 D = 2 D = 3 D = 2 D = 3
N = 250 45 62 57 68 70 75
N = 500 52 57 48 65 60 53
N = 1000 62 58 56 57 52 59
N = 2000 52 49 56 47 51 52

Table 3.1: Numbers of rejections out of 1000 simulations with N = 250, 500, 1000
and 2000 for Q1, Q2, and Q3.

We consider various sample sizes N =250, 500, 1000, and 2000 in the simulation.

To reduce the computational complexity, the T -matrix contains combinations of up

to D items, with D = 2 and 3. The testing significance level α is taken as 0.05. We

simulate the data 1000 times independently under the above settings. The numbers

of rejections of the true Q-matrices are given in Table 3.1. Table 3.1 shows that the

proposed testing procedure performs quite well for all the considered situations.

3.4.2 DINA model with unknown model parameters

When J is small. We consider J × K Q-matrices, J = 10 items and K = 3, 4, 5
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attributes, given by

Q11 =



1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

1 1 0

1 0 1

0 1 1

1 1 1



, Q21 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1



, Q31 =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 1 0 0 0

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

0 0 0 1 1



,

(3.36)

where Q11, Q21 and Q31 correspond to the first 10 items of Q1, Q2 and Q3 re-

spectively. With a similar setting to the previous simulations, the slipping and

guessing parameters are set to be 0.2 and the population is set to be uniform, i.e.,

pα = 2−K ,∀α ∈ {0, 1}K .

For each sample size N = 250, 500, 1000, and 2000, the T -matrix contains combi-

nations of up to D items, with D = 2, 3, 4. Table 3.2 shows the numbers of rejections

of the true Q-matrices out of 1000 independent simulations with respect to the sig-

nificance level α = 0.05.

When J is large. Consider matrices Q1, Q2 and Q3, we split each of them into two

parts, i.e.,

Q1 =

 Q11

Q12

 , Q2 =

 Q21

Q22

 , Q3 =

 Q31

Q32

 .

Here Q12, Q22 and Q32 correspond to the last 10 items of Q1, Q2 and Q3 respectively.
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Q11 Q21 Q31

D = 2 D = 3 D = 4 D = 2 D = 3 D = 4 D = 2 D = 3 D = 4
N = 250 46 44 55 45 46 55 63 55 62
N = 500 47 54 48 56 55 54 56 53 50
N = 1000 50 44 56 42 40 47 53 47 42
N = 2000 55 37 53 44 45 54 44 37 56

Table 3.2: Numbers of rejections out of 1000 simulations with N = 250, 500, 1000
and 2000 for Q11, Q21, and Q31.

With a similar setting to the previous simulations, the slipping and guessing pa-

rameters are set to be 0.2 and the population is set to be uniform. We apply Algorithm

3 and obtain the results in Table 3.3. Under each simulation setting, the rejections

rate (rejection number/1000) is close to the prespecified significance level α = 0.05.

Q1 Q2 Q3

D = 2 D = 3 D = 4 D = 2 D = 3 D = 4 D = 2 D = 3 D = 4
N = 250 40 51 50 47 55 58 60 56 59
N = 500 45 56 46 54 46 56 56 58 48
N = 1000 56 48 46 48 51 47 38 52 43
N = 2000 51 43 43 46 46 50 48 44 55

Table 3.3: Numbers of rejections out of 1000 simulations with N = 250, 500, 1000
and 2000 for Q1, Q2, and Q3 with unknown parameters.

Testing power. We check the power of the testing procedure through simulation

study. We construct misspecified Q-matrices Q10, Q20, Q30 based on the true ones

Q1, Q2, Q3, as defined in (3.35), by misspecifying one item respectively.

For Q10, we set the fourth item as (1 1 0) and all the other 19 items having the

same row vectors as those in Q1; for Q20, we set the fifth item as (1 0 0 0) and all the

others having the same vectors as in Q2; for Q30, we set the sixth item as (1 0 0 0 0)
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and all the others the same as in Q3. Specifically,

Q10 =



1 0 0

0 1 0

0 0 1

1 1 0
...

...
...


, Q20 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0
...

...
...

...


, Q30 =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0
...

...
...

...
...


.

(3.37)

Data sets are generated under the matricesQ10, Q20, Q30 and under the same model

settings as in the previous simulations. We apply Algorithm 3 to the simulated data

under the Q-matrices Q1, Q2, and Q3. 1000 independent simulations are conducted,

and numbers of rejections are given in Table 3.4 with respect to different sample sizes.

We can see that the test power decreases as the attributes numbers K increases.

For all situations considered in the simulation, Algorithm 3 works reasonably well,

especially when the sample size is larger than 500.

Q10 Q20 Q30

D = 2 D = 3 D = 4 D = 2 D = 3 D = 4 D = 2 D = 3 D = 4
N = 250 683 475 301 305 411 267 183 191 194
N = 500 983 892 661 718 797 776 549 519 427
N = 1000 1000 1000 979 988 994 996 908 899 842
N = 2000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Table 3.4: Numbers of rejections out of 1000 simulations with N = 250, 500, 1000
and 2000 for Q10, Q20, and Q30.
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3.5 Appendix

In the Appendix, we provide the proof of Lemma 3. Similar derivation leads to

Lemma 2 and we omit the details here.

Proof of Lemma 3. Under the DINA model and null hypothesis H0, the likelihood

takes the form of

LN(θDINA,p
∗) =

N∏
i=1

{∑
α

(
pα

J∏
j=1

P (Rj
i | Q0,α,θDINA)

)}
.

The log-likelihood function is

lN(θDINA,p
∗) =

N∑
i=1

log

{∑
α

(
pα

J∏
j=1

P (Rj
i | Q0,α,θDINA)

)}
.

We start with the derivative of lN with respect to s1.

∂lN(θDINA,p
∗)

∂s1

∣∣∣∣
θDINA,0,p∗0

=
N∑
i=1

∑
α

(
pα · ∂P (R1

i |Q0,α,θDINA)

∂s1
·
∏J

j=2 P (Rj
i |Q0,α,θDINA)

)
∑

α

(
pα
∏J

j=1 P (Rj
i |Q0,α,θDINA)

)
∣∣∣∣∣∣
θDINA,0,p∗0

=
N∑
i=1

(I(R1
i = 0)− I(R1

i = 1)) ·
∑

ξ1DINA(α,Q0)=1

(
p0,α ·

∏J
j=2 P0(Rj

i |α)
)

∑
α

(
p0,α

∏J
j=1 P0(Rj

i |α)
)


=

∑
R∈{0,1}J

(
N∑
i=1

I(Ri = R)

)

×

{
(I(R1 = 0)− I(R1 = 1)) ·

∑
ξ1DINA(α,Q0)=1

(
p0,αP0(R−1|α)

)
P0(R)

}
,

where ξ1
DINA(α, Q0) is defined as in equation (3.3) and R−1 := (R2, · · · , RJ)>.
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Since

γ∗ = L∗γall, (3.38)

we have that

γ =

 1 −1

0 I2J−1

 1

γ∗


=

 1 −1

0 I2J−1

 1 0

0 L∗

 1

γall


=

 1 −1L∗

0 L∗

 1

γall

 .

Then by the definition of ηs1 that

ηs1 =

((
I(R1 = 0)− I(R1 = 1)

)
·
∑

ξ1DINA(α,Q0)=1 p0,αP0(R2:J |α)

P0(R)
,R ∈ {0, 1}J

)>
,

(3.39)

we have

1√
N

∂lN(θDINA,p
∗)

∂s1

∣∣∣∣
θDINA,0,p∗0

=
√
Nη>s1γ =

√
Nη>s1

 1 −1L∗

0 L∗

 1

γall

 .

Recall that T allθDINA,0
(Q0) denotes the saturated T -matrix with respect to parameters

(θDINA,0, Q0) and γall is the (2J − 1)× 1 saturated response vector. Some calculation

implies that

√
Nη>s1

 1 −1L∗

0 L∗

 1

T allθDINA,0
(Q0)p0

 = 0.

Therefore, we have that

1√
N

∂lN(θDINA,p
∗)

∂s1

∣∣∣∣
θDINA,0,p∗0

=
√
Nη>s1L ·

(
γall − T allθDINA,0

(Q0)p0

)
.



104

Similarly, we have that for general derivatives of lN with respect to {si, gi, i =

1, · · · , J}, and {pαh
, αh ∈ {0, 1}K\0},

1√
N

∂lN(θDINA,p
∗)

∂si

∣∣∣∣
θDINA,0,p∗0

=
√
Nη>siL ·

(
γall − T allθDINA,0

(Q0)p0

)
,

1√
N

∂lN(θDINA,p
∗)

∂gi

∣∣∣∣
θDINA,0,p∗0

=
√
Nη>giL ·

(
γall − T allθDINA,0

(Q0)p0

)
,

1√
N

∂lN(θDINA,p
∗)

∂pαh

∣∣∣∣
θDINA,0,p∗0

=
√
Nη>pαh

L ·
(
γall − T allθDINA,0

(Q0)p0

)
,

where ηsi , ηgi and ηpαh
are defined as in the statement of Lemma 2.

Since IDINA,0 is the Hessian matrix of lN with resect to (θDINA,p
∗) evaluated at

(θDINA,0,p
∗
0). Then by Taylor’s expansion, we have that

√
N

 θ̂DINA − θDINA,0

p̂∗ − p∗


= (1 + o(1)) I−1

DINA,0

1√
N

∂lN(θDINA,p)

∂(θ>DINA,p
>)>

∣∣∣∣
θDINA,0,p∗0

= (1 + o(1)) I−1
DINA,0 η

>
DINA L ·

√
N
(
γall − T allθDINA,0

(Q0)p0

)
,

where ηDINA is a 2J × (2J + 2K − 1) matrix defined as

ηDINA =
(
ηs1 · · · ηsJ , ηg1 , · · · , ηgJ , ηpα1

, · · · ηpα
2K−1

)
.

Further, by the central limit theorem, we have the second result in Lemma 2.
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Chapter 4

Identifiability of DCM model

parameters

4.1 Introduction

The main purpose of cognitive diagnosis is to accurately evaluate subjects’ strengths

and weaknesses. Diagnostic classification models are important statistical tools in

cognitive diagnosis and have gained increasing interest in recent years. These models

provide specific attribute profiles for each subject, which allows for effective interven-

tion for personal improvement. One simple and widely studied model among them

is the DINA model (Junker and Sijtsma 2001). Other important models and devel-

opments can be found in Tatsuoka (1985); Hartz (2002); Leighton, Gierl and Hunka

(2004); von Davier (2005); Templin and Henson (2006); DeCarlo (2011). A more

thorough review of diagnostic models can be found in Rupp et al. (2010).

In order to specify attribute profiles, we need correct estimation of the diagnostic

model parameters. Estimation of the diagnostic model parameters has been studied in
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the literature and different estimation procedures have been proposed. For instance,

de la Torre (2009) uses the EM algorithm and the MCMC method to estimate the

slipping and guessing parameters in the DINA model. However, the fundamental

question of the identifiability of the diagnostic model parameters (such as the slipping

and guessing parameters in the DINA model) can be difficult to address. Under the

DINA model, when both the slipping and the guessing parameters are zero, Chiu,

Douglas and Li (2009) proposes the completeness assumption of the Q-matrix, which

turns out to be sufficient and necessary for the model to be identifiable in this ideal

case. See DeCarlo (2011) for more discussion. In the case that neither the slipping

nor the guessing parameters are known, the corresponding theoretical justification of

their consistency is still lacking.

The study of identifiably dates back to Koopmans (1950); Koopmans and Reiersl

(1950). The key issue is to know whether the model parameters can be recovered

based on the observed data. Identifiability is a prerequisite for statistical inferences,

such as parameter estimation and hypothesis testing. In Chapter 2 we addressed the

identifiability of the Q-matrix and proposed sufficient identifiability conditions. This

chapter focuses on the identifiability of the diagnostic model parameters. In partic-

ular, we propose sufficient and necessary conditions under which the slipping and

guessing parameters are estimable from the data under the DINA model assumption.

The analysis method developed in this chapter is based on the theoretical framework

of Chapter 2. This method is generic in the sense that it can be employed for the

analysis of other diagnostic classification or latent class models, which is an interesting

future research topic.

The remainder of this chapter is organized as follows. We introduce in Section 4.2

sufficient and necessary conditions for the DINA model parameters to be identifiable.

The corresponding proofs are given in Section 4.3.
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4.2 Main results

This chapter is concerned with the general statistical concept of identifiability, as

applied to cognitive diagnosis, and the DINA model in particular. This is the is-

sue of primary concern when examining the consistency of estimates in diagnostic

classification models.

We say that a set of parameters θ for a family of distributions {f(x|θ) : θ ∈ Θ}

is identifiable if distinct values of θ correspond to distinct probability density(mass)

functions, i.e., for any θ there is no θ̃ ∈ Θ\{θ} such that f(x|θ) ≡ f(x|θ̃); see

Definition 11.2.2 in Casella and Berger (2001). In addition, we say that a set of

parameters θ is locally identifiable if there exists a neighborhood of θ, Nθ ∈ Θ, such

that there is no θ̃ ∈ Nθ\{θ} such that f(x|θ) ≡ f(x|θ̃).

Both identifiability and local identifiability of latent class models are well-established

concepts in latent class analysis (e.g. McHugh 1956; Goodman 1974). Identifiability

is an important prerequisite for many types of statistical inference, such as parameter

estimation and hypothesis testing. Local identifiability is a weaker form of identifia-

bility, which ensures that the model parameters are identifiable in a neighborhood of

the true parameter values. This is necessary for the model parameters to be estimable.

4.2.1 Notation

We first recall some notation introduced in Chapter 1. We consider a test of J items

which requires K latent attributes. The Q-matrix Q = (qjk)J×K is a J ×K matrix

with binary entries. For each j and k, qjk = 1 indicates that item j requires attribute

k and qjk = 0 otherwise. Moreover, we use qj to denote the jth row of Q.

We say a Q-matrix is complete if for any attribute, there exists an item only

requiring that attribute. In other words, Q is complete if there exist K rows of Q
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such that they consist an identity matrix; see Definition 3 in Chapter 2 for more

details. An simple example of a complete Q-matrix is the K ×K identity matrix.

We use α = (α1, ..., αK)> to denote the vector of attributes, where αk = 1 or 0,

indicating the presence or absence of the kth attribute, k = 1, . . . , K, and superscript

> denotes transpose. In addition, let R = (R1, ..., RJ)> be the vector of responses to

the J test items. Note that both α and R are subject-specific.

We assume that attribute profiles αi, i = 1, ..., N , are i.i.d. random variables,

with the following distribution

P (αi = α) = pα, (4.1)

where, for each α ∈ {0, 1}K , pα ∈ [0, 1] and
∑

α pα = 1. We use p = (pα : α ∈

{0, 1}K) to denote the distribution of the attribute profiles.

In this chapter we focus on the DINA model. We use s = (s1, · · · , sJ)> and g =

(g1, · · · , gJ)> to denote slipping and guessing parameters. For notational convenience,

let c = 1 − s. Given a subject’s profile α, the response to item j under the DINA

model follows a Bernoulli distribution

P (Rj = 1|Q,α, cj, gj) = c
ξj(α,Q)
j g

1−ξj(α,Q)
j , (4.2)

where

ξj(α, Q) = I
(
αk ≥ qjk for all k = 1, ..., K

)
(4.3)

is as defined in (1.4). In addition, conditional on α, (R1, ..., RJ) are assumed to be

jointly independent.

We write c � g if cj > gj for all 1 ≤ j ≤ J . Through out this chapter, we assume

c � g, p � 0 and the Q-matrix is prespecified and correct.
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4.2.2 Identifiability conditions

We list below conditions that will be used in the upcoming identifiability theorems.

It will be shown under various model assumptions that certain specific combinations

of these conditions are either necessary and/or sufficient for the identifiability of the

unknown parameters.

C1 Q is complete. Without loss of generality, we assume that the Q-matrix takes

the following form:

Q =

 IK
Q1

 , (4.4)

where matrix IK denotes the K ×K identity matrix.

C2 Each attribute has been required by at least two items.

C3 Each attribute has been required by at least three items.

C4 There are at least 2K + K − 1 different rows in Tc̃,g̃(Q), where Tc̃,g̃(Q) is the

T -matrix of Q as defined in Chapter 2.3 with c̃ = (0, ..., 0︸ ︷︷ ︸
K

, 1, ..., 1︸ ︷︷ ︸
J−K

)> and g̃ =

(g1, ..., gK , 0, ..., 0︸ ︷︷ ︸
J−K

)>.

C5 For any k ∈ {1, · · · , K}, there exists an item or item combination in Q1 requir-

ing all attributes except the kth one.

Note that condition C5 is equivalent to T (1− ek) ∈ R(T (Q1)) for k = 1, · · · , K,

where ek is a K dimensional row vector such that the jth element is one and the rest

are zeroes, T (1− ek) is the T -matrix of item 1− ek only, and R(T (Q1)) is the set of

row vectors of T (Q1).
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We start with the ideal case, in which both the slipping and guessing parameters

are known.

Theorem 5. Population proportion parameters p are identifiable only if condition C1

is satisfied. Moreover, C1 is also the sufficient condition if both slipping and guessing

parameters are known.

Theorem 5 shows that when s and g are known, the completeness of the Q-matrix

is a sufficient and necessary condition for p to be identifiable. Completeness ensures

that we have enough information in the response data for each attribute profile to have

its own distinct ideal response vector. When a Q-matrix is incomplete, we can easily

construct a non-identifiable example. For instance, consider incomplete Q-matrix

Q =

 1 1

0 1

 .

Under the condition that s = g = 0, parameters p(1,0) and p(0,0) are nonidentifiable

based on the response data since subjects with attribute profiles (1, 0) and (0, 0) have

the same response vector R = (0, 0).

When the guessing parameters are known but the slipping parameters are un-

known, we need stronger conditions for the DINA model to be identifiable. The

corresponding results are given in the following theorem.

Theorem 6. Under the DINA model with known guessing parameters g, the slipping

parameters s and the population proportion parameters p are identifiable if and only

if conditions C1 and C2 hold. In addition, if C1 and C2 do not hold, then for any

(s,p), there exist infinitely many (ŝ, p̂) having the same likelihood value.
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From the above theorem, we can see that when the guessing parameters g are

known and Q-matrix takes the form of

Q =


1 0

0 1

1 0

 ,

the DINA model is non-identifiable. On the other hand,

Q =


1 0

0 1

1 1


satisfies the conditions of Theorem 6 and ensures the identifiability of the model

parameters s and p.

Note that C1 and C2 are also sufficient conditions for a Q-matrix to be identifiable;

see Theorem 3 in Chapter 2. These two conditions ensure that we have enough

information to estimate the unknown slipping and population proportion parameters,

which helps separate the response vector space generated by the true Q-matrix with

those generated by wrong Q-matrices; see Section 2.6 for more details.

In the most difficult setting, neither the slipping nor the guessing parameters are

known. Then we have the following result.

Theorem 7. Under the DINA model, s, g and p are locally identifiable if and only

if conditions C1, C3, and C4 hold.

Theorem 7 follows from the next two propositions.

Proposition 8. (Necessary Conditions) Under the DINA model, s, g and p are

locally identifiable only if conditions C1, C3, and C4 hold. Otherwise, there exist two

parameter sets (ĉ, ĝ, p̂) 6= (c̄, ḡ, p̄) such that they have the same likelihood value.
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Proposition 9. (Sufficient Conditions) Suppose conditions C1 and C3 hold. Then

s = (s1, · · · , sJ), g∗ = (gK+1, · · · , gJ) are identifiable.

In addition, if condition C4 is true, then s and g are locally identifiable.

Moreover, if condition C5 is true, then s and g are identifiable.

Proposition 9 implies the following corollary. This is because the completeness of

Q1 implies condition C5.

Corollary 3. If C1 and C3 hold and Q1 is complete, s and g are identifiable.

Based on Propositions 8 and 9, we have the following identifiability result, whose

proof is similar to that of Theorem 7 and therefore is omitted. Let

T̃c,g(Q) =

 Tc,g(Q)

E

 ,

where E is the row vector with all elements being 1.

Theorem 8. Under the DINA model, s, g and p are identifiable if and only if C1,

C3, and the following condition hold:

For parameter sets (g1, · · · , gK ,p) and (ĝ1, · · · , ĝK , p̂), equation T̃c̃,g̃(Q)p = T̃c̃,ˆ̃g(Q)p̂

holds if and only if (g1, · · · , gK ,p) = (ĝ1, · · · , ĝK , p̂), where c̃ = (0, ..., 0︸ ︷︷ ︸
K

, 1, ..., 1︸ ︷︷ ︸
J−K

)>,

g̃ = (g1, ..., gK , 0, ..., 0)>, and ˆ̃g = (ĝ1, ..., ĝK , 0, ..., 0)>.

Based on the above results, we can see that when the Q-matrix takes the form of

Q =



1 0

0 1

1 1

1 1

1 1


,
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the DINA model is non-identifiable, i.e., there exist two sets (ĉ, ĝ, p̂) 6= (c̄, ḡ, p̄) such

that they have the same likelihood value. This is because for the above Q-matrix

the Q1 part (the last three rows of Q) only have one kind of row vector, i.e., (1, 1);

this results in the unsatisfactory of condition C4. Therefore Proposition 8 gives the

non-identifiability result. In particular, Proposition 9 indicates that the guessing

parameters for the first two items (g1, g2) are non-identifiable. On the other hand,

the following Q-matrix

Q =



1 0

0 1

1 0

0 1

1 1


.

satisfies conditions C1, C3, and C5 and therefore ensures the identifiability of the

model parameters.

4.3 Proof of theorems

We begin with two important propositions necessary to prove the main results; their

own proofs are postponed to the end of this section.

Recall that identifiability and local identifiability depend on the probability den-

sity function f(x; θ), which, when written as a function of the parameters θ becomes

the likelihood L(θ). For N subjects’ response data, the likelihood function under the

DINA model is

L(c, g,p) =
N∏
i=1

 ∑
α∈{0,1}K

(
pα

J∏
j=1

P (Rj
i = 1|c, g,α, Q)R

j
i (1− P (Rj

i = 1|c, g,α, Q))1−Rj
i

) .
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Note that the likelihood function L depends on the Q-matrix. Since in this chapter

we assume that the Q-matrix is given and correctly specified, we omit the Q-matrix

argument in L and write L(c, g,p).

Proposition 10. For two sets of parameters (ŝ, ĝ, p̂) and (s̄, ḡ, p̄),

L(ŝ, ĝ, p̂) = L(s̄, ḡ, p̄)

if and only if the following equation holds:

T̃c̄,ḡ(Q)p̄ = T̃ĉ,ĝ(Q)p̂. (4.5)

Proposition 11. There exists an invertible matrix D depending only on g∗ = (g∗1, ..., g
∗
J),

such that

DT̃c,g(Q) = T̃c−g∗,g−g∗(Q).

We now prove our main theorems and propositions.

Proof of Theorem 5. Under the DINA model, if s and g are both equal to zero, the

completeness of the Q-matrix is a sufficient and necessary condition for p to be

identifiable (Chiu et al. 2009; Liu et al. 2012b).

Consider the case where s and g are not zeroes and the Q-matrix is incomplete.

Without loss of generality, we assume e1 = (1, 0, · · · , 0) is not in the set of row vectors

of Q. Then in the T -matrix Tc,g(Q), the columns corresponding to attribute profiles
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0 and e1 are the same. In particular, these two columns take the following form:

g1 g1

...
...

gJ gJ

g1g2 g1g2

...
...

g1g2 · · · gJ g1g2 · · · gJ


. (4.6)

Therefore, by Proposition 10, p0 and pe1 are nonidentifiable.

When Q is complete, condition C1 assumes that first K rows of Q are Q1:K = IK .

The matrix T̃c,g(Q) has full column rank if T̃c−g,0(Q) has full column rank, since,

by Proposition 11, T̃c−g,0(Q) = DT̃c,g(Q) and D is invertible. Consider the rows

of T̃c−g,0(Q) corresponding to combinations of the first K items and row vector E.

This constitutes an upper-triangular submatrix of size 2K×2K with nonzero diagonal

entries. Thus, T̃c,g(Q) is of full column rank, and p is identifiable.

Proof of Theorem 6. When g is known, Propositions 10 and 11 indicate that two sets

of parameters (ĉ, g, p̂) and (c̄, g, p̄) produce equal likelihoods if and only if

Tĉ−g,0(Q)p̂ = DTĉ−g,0(Q)p̂

= Tc̄−g,0(Q)p̄ = DTc̄−g,0(Q)p̄

Then under the assumption that c � g, we only need to consider the situation in

which g = 0.

(a) Sufficient Condition.
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For each item i ∈ 1, · · · , J , condition C2 implies that there exist items i1, ..., il

(different from i) such that

BQ(i, i1, ..., il) = BQ(i1, ..., il), (4.7)

that is, the attributes required by item i are a subset of the attributes required by

items i1, ..., il. Recall that BQ’s are the row vectors of the T -matrix; see Chapter 2.2

for more details.

Let a and a∗ be the row vectors in the T -matrix corresponding to item combina-

tions Ii1∧...∧Iii and Ii∧Ii1∧...∧Iii . Let (ĉ, p̂) and (c̄, p̄) be two sets of parameters such

that L(ĉ, 0, p̂) = L(c̄, 0, p̄). Then by Proposition 10, they must satisfy the following

equation:
a∗
>Tĉ,0(Q)p̂

a>Tĉ,0(Q)p̂
=
a∗
>Tc̄,0(Q)p̄

a>Tc̄,0(Q)p̄
.

On the other hand, we have that

a∗
>Tĉ,0(Q)p̂

a>Tĉ,0(Q)p̂
=
Bĉ,0;Q(i, i1, ..., il)p̂

Bĉ,0;Q(i1, ..., il)p̂
= ĉi,

a∗
>Tc̄,0(Q)p̄

a>Tc̄,0(Q)p̄
=
Bc̄,0;Q(i, i1, ..., il)p̄

Bc̄,0;Q(i1, ..., il)p̄
= c̄i. (4.8)

Therefore, ĉi = c̄i for all i = 1, · · · , J , which gives the identifiability of the slipping

parameters.

In addition, the completeness of the Q-matrix ensures that we have enough equa-

tions to estimate p uniquely, therefore s and p are identifiable under conditions C1

and C2.

(b) Necessary Condition.

Thanks to Theorem 5, we only need to show that condition C2 is necessary for the

identifiability of s and p. Without loss of generality, suppose that the first attribute
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only appears once in the first column of the Q-matrix, i.e., the Q-matrix takes the

following form:

Q =


1 0>

0 IK−1

0 Q′

 . (4.9)

In the following we show that s and p are non-identifiable. We only need to show

that there are two different parameter sets (ĉ, p̂) and (c̄, p̄) such that equation (4.5)

holds.

Consider items {2, · · · , J} and the corresponding Q-matrix

Q2:J =

 0 IK−1

0 Q′

 . (4.10)

Based on the responses to items {2, · · · , J}, let (ĉ2, · · · , ĉJ) and {p̂a, a ∈ {0, 1}K−1}

be the corresponding parameter estimators. Note that in this case we only have K−1

attributes and {a : a ∈ {0, 1}K−1} include all possible attribute profiles for attributes

{2, · · · , K}.

Now consider all J items. Following the above notation, let the population pro-

portion estimators take the form of {p̂(b,a), b ∈ {0, 1}, a ∈ {0, 1}K−1}. Note that

p̂a = p̂(1,a) + p̂(0,a) for all a ∈ {0, 1}K−1. Let 1− ĉ1 be the estimator for the first item’s

slipping parameter. Then

(c̄1, c̄2, · · · , c̄J) := (xĉ1, ĉ2, · · · , ĉJ),

with x close to 1, satisfies equation (4.5) with the corresponding population proportion

estimators p̄ defined as follows:

p̄(1,a) = p̂(1,a)/x and p̄(0,a) = p̂a − p̂(1,a)/x, for all a ∈ {0, 1}K−1.
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The reason is given as follows. Consider the row in the T -matrix related to the first

item. The corresponding row in equation (4.5) is

ĉ1

∑
a∈{0,1}K−1

p̂(1,a) + ĝ1

∑
a∈{0,1}K−1

p̂(0,a) = c̄1

∑
a∈{0,1}K−1

p̄(1,a) + ḡ1

∑
a∈{0,1}K−1

p̄(0,a), (4.11)

which is satisfied under the above construction of c̄ and p̄. For other items and items

combinations, the corresponding equations in equation (4.5) also hold. Therefore

equation (4.5) is satisfied and we complete the proof.

Proof of Proposition 8. Thanks to Theorem 5, condition C1 is necessary for the model

parameters to be identifiable. In the following we first show the necessity of condition

C3. We consider the next two cases where C3 does not hold:

Case 1 There exists an attribute such that it only appears in one item.

Case 2 All attributes are required by at least two items and there exists an attribute

such that it only appears in two items.

Case 1 We use a similar argument as in the proof of Theorem 6. Without loss of

generality, suppose that the first attribute only appear once in the first column

of the Q-matrix and the Q-matrix takes the following form:

Q =


1 0>

0 IK−1

0 Q′

 (4.12)

Consider items {2, · · · , J}, and let (ĉ2, ĝ2, · · · , ĉJ , ĝJ) and {p̂a, a ∈ {0, 1}K−1}

be the corresponding model parameter estimators. Here {a : a ∈ {0, 1}K−1} are

all possible attribute profiles for attributes {2, · · · , K}.
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Now consider all J items. Following the above notation, let p̂ take the form

of {p̂(b,a), b ∈ {0, 1}, a ∈ {0, 1}K−1}. Note that p̂a = p̂(1,a) + p̂(0,a) for all a ∈

{0, 1}K−1. Let 1− ĉ1 and ĝ1 be the slipping and guessing estimators for the first

item. Then

(c̄1, c̄2, · · · , c̄J) := (xĉ1, ĉ2, · · · , ĉJ),

(ḡ1, ḡ2, · · · , ḡJ) := (
p̂(0,a)

p̂a − p̂(0,a)/x
ĝ1, ĝ2, · · · , ĝJ),

with x close to 1, satisfy equation (4.5) with the corresponding attribute profiles

estimators p̄ defined as follows:

p̄(1,a) = p̂(1,a)/x and p̄(1,a) = p̂a − p̂(0,a)/x, for all a ∈ {0, 1}K−1.

Therefore, in Case 1, (s, g,p) are not identifiable.

Case 2 We consider the case that all attributes are required by at least two items and

there exists an attribute such that it only appears in two items. In the following

two cases, we show that there exist two different parameter sets (ŝ, ĝ, p̂) and

(c̄, ḡ, p̄) satisfying equation (4.5).

Under the Q-matrices considered below in Case 2.1 and 2.2, we assume that

(ŝ3, · · · , ŝJ) = (s̄3, · · · , s̄J), (ĝ3, · · · , ĝJ) = (ḡ3, · · · , ḡJ), and (p̂a, a ∈ {0, 1}K−1) =

(p̄a, a ∈ {0, 1}K−1), where a corresponds to attribute profiles of the last K − 1

attributes.

Case 2.1 Without loss of generality, we write the Q-matrix as

Q =


1 0>

1 0>

0 IK−1

0 Q′

 . (4.13)
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In this case, equation (4.5) holds if we have the following equations:

ĉ1p̂(1,a) + ĝ1p̂(0,a) = c̄1p̄(1,a) + ḡ1p̄(0,a)

ĉ2p̂(1,a) + ĝ2p̂(0,a) = c̄2p̄(1,a) + ḡ2p̄(0,a)

ĉ1ĉ2p̂(1,a) + ĝ1ĝ2p̂(0,a) = c̄1c̄2p̄(1,a) + ḡ1ḡ2p̄(0,a)

p̂(0,a) + p̂(1,a) = p̄(0,a) + p̄(1,a) ∀a ∈ {0, 1}K−1

. (4.14)

Choose p̂(1,a)/p̂(0,a) to be certain constant for all a ∈ {0, 1}K−1. Then for the

pre-chosen (ĉ, ĝ, p̂), we have infinity many (c̄, ḡ, p̄) satisfying (4.14) under re-

strictions that c � g and p � 0, which leads to the non-identifiability of (c, g,p).

Case 2.2 Without loss of generality, we write the Q-matrix as

Q =


1 0>

1 v>

0 IK−1

0 Q′

 , (4.15)

where v is a K − 1 dimensional nonzero vector. We borrow a result in Case 2

of the Proof of Proposition 9. It implies that for the sub-matrix related to the

first three items

Q1:3 =


1 0>

1 v>

0 e1

 , (4.16)

we have ĉ1 = c̄1 and ĝ2 = ḡ2. Then equation (4.5) holds if we have the following

equations: 
ĉ1p̂(1,a) + ĝ1p̂(0,a) = ĉ1p̄(1,a) + ḡ1p̄(0,a)

(ĉ2 − ĝ2)p̂(1,a) = (c̄2 − ĝ2)p̄(1,a),v ⊆ a

p̂(0,a) + p̂(1,a) = p̄(0,a) + p̄(1,a) ∀a ∈ {0, 1}K−1

. (4.17)
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Then for certain pre-chosen (ĉ, ĝ, p̂), we can have infinity many estimators

(c̄, ḡ, p̄) satisfying equation (4.5) under the restrictions that c � g and p � 0.

Therefore, we obtain the necessity of condition C3.

To show the necessity of C4, without loss of generality we assume C1 and C3 hold.

Then Proposition 9 gives that for (ĉ, ĝ) and (c̄, ḡ) satisfying L(ĉ, ĝ, p̂) = L(c̄, ḡ, p̄),

the following holds:  ĉj = c̄j j = 1, · · · , J

ĝj = ḡj j = (K + 1), · · · , J
. (4.18)

Therefore equation (4.5) holds if the following is true:

T̃c̄−g∗,ḡ−g∗(Q)p̄ = T̃ĉ−g∗,ĝ−g∗(Q)p̂, (4.19)

where

g∗ = (ĉ1, · · · , ĉK , ĝK+1, · · · , ĝJ).

Then if C4 is not satisfied, there are less than 2K +K equations but 2K +K unknown

parameters. Therefore for fixed (ĉ, ĝ, p̂), we have infinity many (c̄, ḡ, p̄) satisfying

equation (4.5) under the restrictions that c � g and p � 0.

Proof of Proposition 9. Under the completeness assumption, we only need to show

the identifiability of s and g. We focus on the identifiability of s1 and g1 below. We

consider the following three cases:

Case 1 There exit at least three items with Q-matrix row vector e1. Without loss of

generality, we write the Q-matrix as
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Q =



1 0>

1 0>

1 0>

0 IK−1

0 Q′


. (4.20)

Suppose there are two sets of parameters (ĉ, ĝ) and (c̄, ḡ) such that L(ĉ, ĝ, p̂) =

L(c̄, ḡ, p̄). In the following, we show that ĉj = c̄j j = 1, 2, 3

ĝj = ḡj j = 1, 2, 3
. (4.21)

Let c− g = (c1 − g1, ..., cJ − gJ). By Proposition 11 there exists a matrix Dg∗

(only depending on g) such that

Dg∗T̃c,g(Q) = T̃c−g∗,g−g∗(Q).

Recall that

T̃c,g(Q) =

 Tc,g(Q)

E

 .

Let ag(i1, · · · , ih) be the row vectors in Dg corresponding to Ii1 ∧ ... ∧ Iih (in

Tc−g(Q)). For Tĉ,ĝ we have

aĝ(1, 3)>Tĉ,ĝ(Q)p̂

aĝ(1)>Tĉ,ĝ(Q)p̂
=

Bĉ−ĝ,0;Q(1, 3)p̂

Bĉ−ĝ,0;Q(1)p̂
= ĉ3 − ĝ3, (4.22)

aĝ(1, 2, 3)>Tĉ,ĝ(Q)p̂

aĝ(1, 2)>Tĉ,ĝ(Q)p̂
=

Bĉ−ĝ,0;Q(1, 2, 3)p̂

Bĉ−ĝ,0;Q(1, 2)p̂
= ĉ3 − ĝ3. (4.23)

Therefore, by Proposition 10, we have

Bc̄−ĝ,ḡ−ĝ;Q(1 ∧ 3)p̄

Bc̄−ĝ,ḡ−ĝ;Q(1)p̄
=
Bc̄−ĝ,ḡ−ĝ;Q(1, 2, 3)p̄

Bc̄−ĝ,ḡ−ĝ;Q(1, 2)p̄
, (4.24)
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which implies{
(ḡ1 − ĝ1)(ḡ3 − ĝ3)

∑
a∈{0,1}K−1

p̄(0,a) + (c̄1 − ĝ1)(c̄3 − ĝ3)
∑

a∈{0,1}K−1

p̄(1,a)

}
/{

(ḡ1 − ĝ1)
∑

a∈{0,1}K−1

p̄(0,a) + (c̄1 − ĝ1)
∑

a∈{0,1}K−1

p̄(1,a)

}

=

{
(ḡ1 − ĝ1)(ḡ2 − ĝ2)(ḡ3 − ĝ3)

∑
a∈{0,1}K−1

p̄(0,a)

+ (c̄1 − ĝ1)(c̄2 − ĝ2)(c̄3 − ĝ3)
∑

a∈{0,1}K−1

p̄(1,a)

}
/{

(ḡ1 − ĝ1)(ḡ2 − ĝ2)
∑

a∈{0,1}K−1

p̄(0,a) + (c̄1 − ĝ1)(c̄2 − ĝ2)
∑

a∈{0,1}K−1

p̄(1,a)

}
.

(4.25)

From equation (4.25), we have

(ḡ1 − ĝ1)(c̄1 − ĝ1)(c̄2 − ḡ2)(c̄3 − ḡ3) = 0.

Then under the constraint that c̄ � ḡ, we have

ḡ1 = ĝ1 or c̄1 = ĝ1.

Similarly consider different item combinations and we obtain that ḡ2 = ĝ2 or c̄2 = ĝ2

ḡ3 = ĝ3 or c̄3 = ĝ3

. (4.26)

Moreover, 
ĝ1 = ḡ1 or ĉ1 = ḡ1

ĝ2 = ḡ2 or ĉ2 = ḡ2

ĝ3 = ḡ3 or ĉ3 = ḡ3

. (4.27)
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Therefore, for j = 1, 2, and 3, if ĝj 6= ḡj we have ĉj = ḡj and c̄j = ĝj, which

is impossible under the assumption that c � g. Thus we have ĝj = ḡj for

j = 1, 2, 3. Thanks to the proof of Theorem 6, we also have ĉj = c̄j for i = 1, 2, 3.

Case 2 There exit two items with row vector e1. Without loss of generality, we write

the Q-matrix as

Q =



1 0>

1 0>

1 v>

0 IK−1

0 Q′


, (4.28)

where v is a non-zero vector. Without loss of generality we assume v> =

(1,v∗
>). Consider the sub-matrix containing the first four items:

Q1:4 =


1 0 0>

1 0 0>

1 1 v∗
>

0 1 0>

 , (4.29)

Similarly as in the proof of Case 1, suppose that there are two sets of parameters

(ĉ, ĝ) and (c̄, ḡ) such that L(ŝ, ĝ, p̂) = L(c̄, ḡ, p̄). We show that for the first four

items, the following holds: ĉj = c̄j j = 1, 2, 4

ĝj = ḡj j = 1, 2, 3
(4.30)

Proposition 11 implies that there exists a matrix Dg (only depending on g) such

that

DgT̃c,g(Q) = T̃c−g,0(Q).
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Let ag(i1, · · · , ih) be the row vectors in Dg corresponding to Ii1 ∧ ... ∧ Iih (in

Tc−g(Q)). For Tĉ,ĝ we have

aĝ(1, 3)>Tĉ,ĝ(Q)p̂

aĝ(3)>Tĉ,ĝ(Q)p̂
=
Bĉ−ĝ,0;Q(1, 3)p̂

Bĉ−ĝ,0;Q(3)p̂
= ĉ1 − ĝ1,

aĝ(1, 4, 3)>Tĉ,ĝ(Q)p̂

aĝ(4, 3)>Tĉ,ĝ(Q)p̂
=
Bĉ−ĝ,0;Q(1, 4, 3)p̂

Bĉ−ĝ,0;Q(4, 3)p̂
= ĉ1 − ĝ1.

Therefore, by Proposition 10, we have

Bc̄−ĝ,ḡ−ĝ;Q(1, 3)p̄

Bc̄−ĝ,ḡ−ĝ;Q(3)p̄
=
Bc̄−ĝ,ḡ−ĝ;Q(1, 4, 3)p̄

Bc̄−ĝ,ḡ−ĝ;Q(4, 3)p̄
,

which implies

g̃1g̃4g̃3p̄0,0 + c̃1g̃4g̃3p̄1,0 + g̃1c̃4g̃3p̄0,1 + c̃1c̃4c̃3p̄1,1

g̃4g̃3p̄0,0 + g̃4g̃3p̄1,0 + c̃4g̃3p̄0,1 + c̃4c̃3p̄1,1

=
g̃1g̃3p̄0,0 + c̃1g̃3p̄1,0 + g̃1g̃3p̄0,1 + c̃1c̃3p̄1,1

g̃3p̄0,0 + g̃3p̄1,0 + g̃3p̄0,1 + c̃3p̄1,1

, (4.31)

where g̃j = ḡj − ĝj for j = 1, 3, 4, c̃j = c̄j − ĉj for j = 1, 4,

c̃3 =
(c̄3 − ĉ3)

∑
v∗⊆a p̄(1,1,a) + (ḡ3 − ĝ3)

∑
v∗*a p̄(1,1,a)∑

a∈{0,1}K−2 p̄(1,1,a)

,

and p̄i,j =
∑

a∈{0,1}K−2 p̄(i,j,a) for i, j ∈ {0, 1}.

From equation (4.31), we obtain

p̄0,0p̄1,1g̃3c̃3(g̃1 − c̃1) = p̄1,0p̄0,1g̃3g̃3(g̃1 − c̃1). (4.32)

Since g̃1 − c̃1 6= 0, we have

g̃3 = 0 or p̄0,0p̄1,1c̃3 = p̄1,0p̄0,1g̃3. (4.33)

We show the second equation in (4.33) can not be true. Otherwise, we have

p̄0,0p̄1,1(c̄3 − ĝ3) = p̄1,0p̄0,1(ḡ3 − ĝ3). (4.34)
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Similarly we have

p̂0,0p̂1,1(ĉ3 − ḡ3) = p̂1,0p̂0,1(ĝ3 − ḡ3). (4.35)

Equations (4.34) and (4.35) imply that

ĉ3 > ĝ3 > c̄3 > ḡ3 or c̄3 > ḡ3 > ĉ3 > ĝ3,

which conflicts the equation that

ĝ3(p̂0,0 + p̂1,0 + p̂0,1) + ĉ3p1,1 = ḡ3(p̄0,0 + p̄1,0 + p̄0,1) + c̄3p1,1.

Therefore, we have g̃3 = ḡ3 − ĝ3 = 0. Let g
¯

= (0, 0, ĝ3, 0, · · · , 0). Proposition

10 indicates the following equations:

c̄1 =
Bc̄−g

¯
,ḡ−g

¯
;Q(1, 4, 3)p̄

Bc̄−g
¯
,ḡ−g

¯
;Q(4, 3)p̄

=
Bĉ−g

¯
,ĝ−g

¯
;Q(1, 4, 3)p̂

Bĉ−g
¯
,ĝ−g

¯
;Q(4, 3)p̂

= ĉ1,

c̄2 =
Bc̄−g

¯
,ḡ−g

¯
;Q(2, 4, 3)p̄

Bc̄−g
¯
,ḡ−g

¯
;Q(4, 3)p̄

=
Bĉ−g

¯
,ĝ−g

¯
;Q(2, 4, 3)p̂

Bĉ−g
¯
,ĝ−g

¯
;Q(4, 3)p̂

= ĉ2,

c̄4 =
Bc̄−g

¯
,ḡ−g

¯
;Q(1, 4, 3)p̄

Bc̄−g
¯
,ḡ−g

¯
;Q(1, 3)p̄

=
Bĉ−g

¯
,ĝ−g

¯
;Q(1, 4, 3)p̂

Bĉ−g
¯
,ĝ−g

¯
;Q(1, 3)p̂

= ĉ4.

Consider items 1 and 2. Let c
¯

= (ĉ1, ĉ2, 0, · · · , 0). Proposition 10 indicates

that

ḡ1 =
Bc̄−c

¯
,ḡ−c

¯
;Q(1, 2)p̄

Bc̄−c
¯
,ḡ−c

¯
;Q(2)p̄

=
Bĉ−c

¯
,ĝ−c

¯
;Q(1, 2)p̂

Bĉ−c
¯
,ĝ−c

¯
;Q(2)p̂

= ĝ1,

ḡ2 =
Bc̄−c

¯
,ḡ−c

¯
;Q(1, 2)p̄

Bc̄−c
¯
,ḡ−c

¯
;Q(1)p̄

=
Bĉ−c

¯
,ĝ−c

¯
;Q(1, 2)p̂

Bĉ−c
¯
,ĝ−c

¯
;Q(1)p̂

= ĝ2.

Therefore, we complete the proof in Case 2.
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Case 3 There exits only one item with row vector e1, i.e., the Q-matrix can be written

as

Q =



1 0>

1 v2
>

1 v3
>

0 IK−1

0 Q′


. (4.36)

Consider the sub-matrices:

Qa =


1 0>

1 v2
>

0 eh2

 and Qb =


1 0>

1 v3
>

0 eh3

 , (4.37)

where eh2 ⊆ v2 and eh3 ⊆ v3. By the proof in Case 2, we have
ĉ1 = c̄1

ĝ2 = ḡ2

ĝ3 = ḡ3

. (4.38)

Now combining the results in Cases 1-3, we have that for the Q-matrix

Q =

 IK
Q1

 , (4.39)

the following holds:  ĉj = c̄j j = 1, · · · , K

ĝj = ḡj j = (K + 1), · · · , J
. (4.40)

By the proof of Theorem 6, we have that for the sub-matrix Q1,

ĉj = c̄j, j = (K + 1), · · · , J. (4.41)
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Equations (4.40) and (4.41) implies that equation (4.5) is equivalent to

T̃c̄−g∗,ḡ−g∗(Q)p̄ = T̃ĉ−g∗,ĝ−g∗(Q)p̂, (4.42)

where

g∗ = (ĉ1, · · · , ĉK , ĝK+1, · · · , ĝJ).

Then if condition C4 is true, by a similar argument in the proof of Proposition 8,

we have the local identifiability.

In addition, if T (1−ek) ∈ R(T (Q1)) for k = 1, · · · , K, we have T (1) ∈ R(T (Q1)).

Then we obtain p̂1−ek
= p̄1−ek

from equation

T̃c̄−g∗,ḡ−g∗(Q1)p̄ = T̃ĉ−g∗,ĝ−g∗(Q1)p̂.

Given p̂1−ek
= p̄1−ek

, equation T̃c̄−g∗,ḡ−g∗(Q)p̄ = T̃ĉ−g∗,ĝ−g∗(Q)p̂ implies ĝj = ḡj,

j = 1, · · · , K, and p̂ = p̄. Therefore, (s, g,p) are identifiable.

Therefore, we conclude the proof of Proposition 9.

Proof of Proposition 10. A subject’s responses follow a multinomial distribution and

the likelihood function has the form of

L(c, g,p) =
2J∏
h=1

π̃
I(R=R̃h)
h ,

where R is the observed response vector, {R̃h = (R̃1
h, · · · , R̃J

h) : h = 1, · · · , 2J} are all

the 2J possible response vectors for J items indexed by h, and π̃h is the probability

in the multinomial distribution of observing a response vector Rh, i.e.,

π̃h =
∑

α∈{0,1}K
pα

J∏
j=1

π
R̃j

h
j,h,α(1− πj,h,α)1−R̃j

h .
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In the above equation, πj,h,α is the probability of subjects with ability profile α having

the response R̃j
h, i.e.,

πj,h,α = P (Rj = R̃j
h|Q,α, c, g)

= I(R̃j
h = 1) · cξ

j(α,Q)
j g

1−ξj(α,Q)
j + I(R̃j

h = 0) · (1− cj)ξ
j(α,Q)(1− gj)1−ξj(α,Q).

Therefore for two sets of parameters (ĉ, ĝ, p̂) and (c̄, ḡ, p̄),

L(ŝ, ĝ, p̂) = L(s̄, ḡ, p̄)

holds if and only if

¯̃πh = ˆ̃πh for h = 1, · · · , 2J , (4.43)

where

¯̃πh =
∑

α∈{0,1}K
p̄α

J∏
j=1

π̄
R̃j

h
j,h,α(1− π̄j,h,α)1−R̃j

h ,

ˆ̃πh =
∑

α∈{0,1}K
p̂α

J∏
j=1

π̂
R̃j

h
j,h,α(1− π̂j,h,α)1−R̃j

h ,

π̂j,h,α = P (Rj = R̃j
h|Q,α, ĉ, ĝ), and π̄j,h,α = P (Rj = R̃j

h|Q,α, c̄, ḡ).

Next we show that equation (4.5) is equivalent to equation (4.43). For any row in

Tc,g, we have

Bc,g;Q(j1, ..., jl)p =
∑

R̃
j1
h =1,··· ,R̃jl

h =1

∑
α∈{0,1}K

pα

J∏
j=1

π
R̃j

h
j,h,α(1− πj,h,α)1−R̃j

h .

This gives a one to one linear transformation between T̃c,gp and {π̃h : h = 1, · · · , 2J}.

Therefore, we finish the proof.
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Proof of the Proposition 11. In what follows, we construct a D matrix satisfying the

condition in the proposition. We show that there exists a matrix Dg∗ only depending

on g∗ so that Dg∗T̃c,g(Q) = T̃c−g∗,g−g∗(Q). Note that each row of Dg∗T̃c,g(Q) is just a

row linear transform of T̃c,g(Q). Then, it is sufficient to show that each row vector of

Tc−g∗,g−g∗(Q) is a linear transform of rows of T̃c,g(Q) with coefficients only depending

on g∗. We prove this by induction.

First, note that

Bc−g∗,g−g∗;Q(j) = Bc,g;Q(j)− g∗jE.

Then all row vectors of Tc−g∗,g−g∗(Q) of the form Bc−g∗,g−g∗,Q(j) are inside the row

space of T̃c,g(Q) with coefficients only depending on g∗. Suppose that all the vectors

of the form

Bc−g∗,g−g∗;Q(j1, ..., jl)

for all 1 ≤ l ≤ ι can be written linear combinations of the row vectors of T̃c,g(Q) with

coefficients only depending on g∗. Then, we consider

Bc,g;Q(j1, ..., jι+1) = Υι+1
h=1

(
Bc−g∗,g−g∗;Q(jh) + g∗jhE

)
.

The left hand side is just a row vector of T̃c,g(Q). We expand the right hand side of

the above display. Note that the last term is precisely

Bc−g∗,g−g∗;Q(j1, ..., jι+1) = Υι+1
h=1Bc−g∗,g−g∗;Q(jh).

The rest terms are all of the form Bc−g∗,g−g∗;Q(j1, ..., jl) for 1 ≤ l ≤ ι multiplied by

coefficients only depending on g∗. Therefore, according to the induction assumption,

we have that Bc−g∗,g−g∗;Q(j1, ..., jι+1) can be written as linear combinations of rows of

T̃c,g(Q) with coefficients only depending on g∗.

From the above construction, we conclude the proof.
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