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OPTIMAL COMMODITY STOCK-PILING RULES 

By DAVID M. G. NEWBERY and JOSEPH E. STIGLITZ 

1. Introduction 

IN May, 1976, a special meeting of UNCTAD passed a resolution calling for 
the establishment of an Integrated Programme for Commodities, which was 
intended, amongst other objectives, to stabilize the prices of the ten core 
commodities' identified by UNCTAD as suitable for stockpiling. Four years 
later, the Brandt commission endorsed these objectives, and called for 
adequate resources to enable the Common Fund 'to encourage and finance 
effective International Commodity Agreements (ICAs) which would 
stabilize prices at remunerative levels; to finance national stockpiling outside 
ICAs; and to facilitate the carrying out of Second Window activities such as 
storage, processing, marketing, productivity improvement and diversifica- 
tion.' (Brandt, 1980, pp. 158-9). 

In response to this political call for commodity price stabilization, 
economists have not been slow to provide theoretical and empirical analyses 
of the desirability of such price stabilization. (See in particular, Newbery and 
Stiglitz, 1981a, and its references, or the extensive references in Wright, 
1979). With a few notable exceptions the resulting literature is theoretically 
unsatisfactory as it ignores the obvious organising principle of competitive 
economic theory. 

There are two strategies that economists can follow in addressing this 
appeal for commodity price stabilization. The broad primrose path can be 
caricatured as follows. First, is is true that it is desirable to stabilize prices in 
a market subject to random shocks? The question requires a criterion of 
desirability, and the usual choice is the maximization of average Marshallian 
surplus. Given this criterion, the answer is that, in specific models, perfect 
price stabilization would be desirable if it were feasible and costless to 
achieve. Many writers stop there, but some press on to ask how the gains of 
stabilization would be distributed between producers and consumers under 
various model specifications. (See e.g., the survey by Turnovsky, 1978). A 
very few observe that perfect price stability of the kind sought is infeasible, 
and/or, infinitely costly. Once it is recognised that storage is costly (if only 
because interest rates are positive) the question is naturally recast as one of 
finding the optimum degree of price stability. Of course, those involved in 
formulating Commodity Agreements recognise this problem at a rather 
earlier stage, and typically adopt a rather pragmatic approach. Since the 
objective is to stabilize prices, then what is needed is a specification of the 
limits within which prices are to be stabilized, and a decision as to the 
desired level of stocks to hold and of finance required for further purchases. 

' The ten core commodities are sugar, coffee, cocoa, tea, cotton, jute, sisal, rubber, copper 
and tin. See UNCTAD documents, series TD/B/C.]. 
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404 OPTIMAL COMMODITY STOCK-PILING RULES 

The result is a band width rule, which the Agency will defend by selling 
commodities from stock when the price moves above the upper intervention 
price, and buying them for storage when the price falls below the lower 
intervention price. Since this is the way exchange rates are pegged, it is a 
natural rule to choose when the objective is to stabilize prices. The specifica- 
tion of the band width and the required stocks can be investigated analyti- 
cally (Edwards and Hallwood, 1981) or by stochastic simulation (Behrman, 
1978). 

The other approach is to ask what economic theory has to say. Commod- 
ity markets are usually held up as paradigms of competitive markets. We 
know from competitive theory that, in the absence of externalities, if the 
market structure is complete and competitive, then the equilibrium is Pareto 
efficient. What case can be made for market intervention in the form of 
some Commodity Agreement? One obvious objection to the market equilib- 
rium is that it is inequitable, and this theme carries much force in the Brandt 
report. If so, then the same competitive theory argues that lump sum 
transfers (aid, in short) are preferable to price distortions. This is a conve- 
nient way of side-stepping equity considerations which we shall provisionally 
accept for the moment, whilst recognising that the alternatives may not be 
politically feasible. We discuss what to do in such cases below in Section 4. 

The second objection to the market equilibrium is that even if commodity 
markets are competitive (as seems to be the case), they are not complete. 
Although primary commodities provide most of the small number of exam- 
ples of futures markets, these markets extend less than two years ahead, 
whilst the required insurance markets are, for the most part, simply absent. 
These objections carry considerable force, though remarkably few econom- 
ists have addressed the question of what market incompleteness implies for 
policy intervention. Newbery and Stiglitz (1982) show that in general a 
competitive market equilibrium is not even constrained Pareto efficient; that 
is, the Government could make everyone better off by setting constant ad 
valorem taxes (or subsidies) plus lump sum subsidies (or taxes) even if it 
were not able to establish currently absent markets. However, they also 
show that if agents are risk-neutral and hold rational expectations, then the 
competitive equilibrium will be efficient. The reason is obvious. If agents are 
risk-neutral, and hold common (objective) beliefs about the economy, then 
they would not wish to trade on risk markets even if they existed. Similarly, 
if they hold common (objective) beliefs about future prices, they would not 
wish to trade on future markets, and in both cases such markets would be 
redundant. 

Now, it is interesting to note that almost without exception, the models 
built to analyse the benefits of price stabilization assume risk neutrality, for 
otherwise their criterion of maximizing expected consumer plus producer 
surplus is inappropriate.2 The economic theorist can thus immediately 

2 One notable exception is the paper by Turnovsky, Shalit and Schmitz (1980), which follows 
a similar approach to Newbery and Stiglitz (1979). 
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D. M. G. NEWBERY AND J. E. STIGLITZ 405 

deduce what the optimum price stabilization rule is in these models-it is to 
reproduce the storage decisions which risk neutral competitive speculators 
would make if their price forecasts were rational (unbiased). It is also 
interesting to note that this result, now over twenty years old, was estab- 
lished, not by appeal to the theorems of competitive equilibrium, but by 
interpreting the solution to the underlying stochastic dynamic programming 
problem. Gustafson's (1958) seminal monograph derived the solution by 
adopting existing methods of optimal inventory analysis, but he was careful 
to point out that optimal amounts to be stored 'are exactly the same as the 
amounts that would be stored in the aggregate by private firms in a so called 
"idealized" free market'. (Gustafson, 1958, p. 32). This is later explicitly 
described as one in which 'firms seek to maximize discounted expected 
profit' (ibid, p. 49) i.e. are risk neutral. 

In our own work on commodity price stabilization (Newbery and Stiglitz, 
1977, 1981) we have proceeded as follows. We first establish the conditions 
under which a competitive market economy is constrained Pareto efficient in 
the absence of a complete set of risk and futures markets. If these conditions 
are satisfied, then the optimum stockpiling rule is just the competitive 
speculative storage equilibrium. The next step is to identify the biases 
present in the competitive equilibrium when these conditions are not 
satisfied, and either find the policy interventions required to restore effi- 
ciency, or find the desired degree of price stabilization. We would argue that 
there are several decisive advantages of this approach over the alternative of 
investigating particular price stabilization rules in specific, usually very 
special, models.3 

The first advantage is that competitive theory is firmly based on individual 
utility, and hence does not prejudge the sense in which price stability is 
desirable. The second is that is immediately draws attention to potential 
market failures, and particularly the absence of risk and futures markets, 
which are typically ignored in simple modelling approaches. It thus raises 
questions which can then be addressed directly. Finally, it raises the question 
of decentralising the efficient allocation. In the present context this means 
asking whether the proposed stabilization should be undertaken by the 
market or by an agency, and, in the latter case, what the impact of the 
actions would be on private speculative storage, and whether indeed the 
actions of private speculators will jeopardize the desired outcome. 

The present paper has two main objectives. The first is to characterise the 
competitive stockpiling rule, which is the optimum rule if agents are risk 
neutral. Once this has been done, it becomes possible to explore the impact 
of stabilization on the market, to measure the degree of stabilization 
achieved, and the benefits which accrue. It is also possible to compare the 
efficient rule with alternatives such as the band width rule, and measure the 
losses associated with following such inefficient rules. Our main contribution 

3 Some of the senses in which these models are special and misleading are listed in Newbery 
and Stiglitz (1979). 
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406 OPTIMAL COMMODITY STOCK-PILING RULES 

here is to identify a special case in which the optimum rule can be solved 
analytically, and to show how this solution is modified in more general cases. 

The second objective is to demonstrate a method for measuring the bias 
in the competitive rule when producers are risk averse. We also suggest 
policy interventions which can then improve allocative efficiency, and show 
how to measure their costs and benefits. 

2. Competitive stockpiling rules 

The basic result which serves as a benchmark for our analysis is the 
following proposition. 

Proposition 

If agents are risk neutral and hold common objective beliefs about the 
price distribution over states of the world, and if they have access to perfect 
capital markets, then the rational expectations competitive equilibrium is 
Pareto efficient. 

Proof 

Consider the artificial economy identical to the one under consideration 
except that it possesses a full set of Arrow-Debreu contingent and futures 
markets. Since agents are risk-neutral and hold common beliefs, there are 
no gains from trade on any risk market, and such markets are thus 
redundant. Likewise, given a perfect capital market which permits inter- 
temporal wealth transfer, futures markets in goods are redundant. The 
artificial economy thus achieves the same allocation of goods as the refer- 
ence economy since trade is confined to the same set of markets. Since the 
artificial economy is Pareto efficient, so is the reference economy. 

Remarks 

In general, markets serve two functions-to provide price information and 
to permit trade. Given shared objective information (the implicit assumption 
behind rational expectations) this first role is redundant. Risk-neutrality 
ensures risk market redundancy, so together the assumptions allow one to 
dispense with risk markets. The assumption of shared common beliefs in the 
absence of such markets is clearly a strong one. The assumption of risk 
neutrality is also strong, since it requires price risk neutrality as well as the 
more familiar income risk neutrality. It can be defended in partial equilib- 
rium analysis if consumers spend a small proportion of their income on the 
(single) risky commodity, but in a General Equilibrium model is a very 
stringent condition (see Newbery and Stiglitz, 1982; Stiglitz, 1969). 

We shall first examine the implications of the competitive stocking rule in 
a general model and then derive an analytical solution for a special simple 
case. Throughout we consider only supply disturbances, largely because the 
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welfare analysis of demand disturbances depends sensitively on the source of 
the disturbance and would require a lengthy examination of alternative 
cases. (For further discussion, see Newbery and Stiglitz, 1981a, Ch. 8.) The 
notation and structure of the model are as follows: 

(i) There is a stock St-1 carried forward from the previous year. 
(ii) To this is added a random harvest, ht, so that at date t the amount 

available for consumption, Ct, and for storage, St, is the total supply, x,: 

Xt = ht + St-, -= Ct + St. (1) 

We assume that there are no losses in storage (though these are easy to 
handle-see Samuelson, 1971), and that weather and other random factors 
are serially uncorrelated. In the simple case planned production does 
not vary from year to year, in which case harvests will be serially uncorre- 
lated. This is a reasonable assumption for tree crops like cocoa and coffee 
where production decisions cannot be much altered during the life of the 
tree. For annual crops like wheat the assumption is less reasonable, for high 
current storage, resulting from a high current harvest, will depress expected 
future prices, and induce a supply reduction. In such cases harvests would be 
negatively serially correlated. In principle it is straightforward to model this 
supply response, which will require specifying planned production as a 
function of current expectations. The usual formulation makes planned 
production a function of the action certainty equivalent price, which de- 
pends on the expected future price. In the special linear case discussed in 
Appendix 2 the certainty equivalent price is equal to the expected price, but 
in general they will differ. (See e.g., Newbery and Stiglitz, 1981a, Ch. 5-6). 

Finally, we assume that demand is stationary and non-stochastic, so that 
the market clearing price, pt, depends only on current consumption, Ct: 

p = p(C). (2) 

The competitive storage rule can be found by maximising expected social 
welfare (the approach taken by Gustafson, 1958, and Samuelson, 1971) or 
derived directly from the competitive arbitrage conditions. It is easy to 
demonstrate the equivalence of these two approaches (see Newbery and 
Stiglitz, 1981a) so we shall follow the second, more transparent approach. 

If the annual storage costs excluding interest is k per unit at the margin, 
then a speculator who buys after the harvest at price p, and sells after the 
next harvest at price pt+i will have made a marginal profit (in money terms 
at date t+1) of 

p,+, - (p +k)( + r) 

per unit, where r is the rate of interest. If speculators are risk neutral then 
they will store nothing if expected profit is negative (i.e., the current price is 
too high) but will otherwise continue to store until they have driven 
expected marginal profit down to zero. These two cases can be combined in 
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the fundamental arbitrage equation 

Pt + k : f3Ep,+)I complimentarily (i.e., if one equation has a strict 3 
St:0 J inequality, the other must have an equality.) (3) 

where f3 = 1/(1 + r) is the discount factor. Our objective is to find a storage 
rule which satisfies this fundamental arbitrage equation. Since price de- 
mands only on consumption from (2), and since from (1) 

Ct = xt - St (4) 

it follows that we are looking for a stock rule which is a function only of 
total supply, x,: 

St = f(xt) :,: ?. (5) 

This ensures that consumption, and hence price, will only depend on supply, 
x. Contrast this with the band width rule, where the stabilization authority 
defends upper and lower intervention prices. In this case the carry over 
depends typically on both initial stocks and the current harvest, as do 
consumption and prices. Clearly, the band width rule does not arbitrage 
prices in the sense of equation (3), and hence is not an efficient method of 
stabilizing consumption, which, given our assumptions about risk neutrality, 
is the basic reason for stabilizing price. Later we shall see just how inefficient 
this rule can be. 

To return to the problem of finding the competitive stock rule, we seek a 
function f(x) which solves equation (3), which, given (2), (4) and (5), can be 
written 

p{Xt -f(x,)}+ k : f3Ep[ht+1 +f(xt)-f{ht+1 +f(xt)}] complementarily (6) 
f(x ):O J 

If planned production depends on the expected price then, with additive 
risk 

ht+1 = qt + at, Ea, = ? 

q, = q(Ep,+?) 

which would initially appear to further complicate the functional relation- 
ships. In Appendix 2 this complication is shown to be more apparent than 
real, because the arbitrage equation (3) allows this production dependency 
to be simplified. The real problem in solving equation (6) arises in the term 
f{h+f(x)} and most of the ingenuity in finding solution algorithms lies in 
dealing with this term. One key feature of the rule is, however, immediate. 

(i) The optimum storage rule is non-linear. This follows because stocks 
must be non-negative, so f(x) = 0 below some critical value of x0, for which 

p(xo) + k = f3Ep{h -f(h)} (7) 

The other characteristics of the optimum storage rule are not quite so 
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Stock rulej (x) 

Maximium 
stock, S,, 

)450 
0 Xh h7,, XI, X* Supply, X 

FIG. 1. Storage Rule 

obvious, but should become clear from the arguments given in Appendix 1. 
(ii) The stock function f(x) is continuous and monotonically increasing. 
(iii) The derivative f'(x) is less than unity. This follows because current 

consumption is an increasing function of supply, i.e. dC/dx > 0, which, since 
C = x -f(x), implies the result. 

(iv) In a stationary world with bounded harvests stocks are also bounded. 
If the maximum possible harvest is hm, then there is a unique number xm 
such that 

Xm = hrn +f(Xm), f(x) < x-ha for x > x ( > hm). (8) 
This follows from results (ii) and (iii), which together imply that the stock 
function looks as in Fig. 1, with xn defined by the unique intersection of f(x) 
with the line x - hm. 

If by some unforeseen event supply ever rises above some level xm, say to 
x* the stock level must steadily decrease, for even a sequence of bumper 
harvests hm will lead to a successive decrease in supply and hence stocks, as 
shown by the arrowed line in Fig. 1. 

3. Solving for the competitive stock rule 

At least four different methods have been employed for finding the 
storage rule. The first two employ brute force and require the number 
crunching abilities of a computer. If supply is insensitive to price, then a 
fairly simple approach is available. Specify a time horizon (say, five years), 
and a zero terminal stock, and then calculate recursively the carryforward in 
year t given the probability distribution of supplies (and carryforward) in 
year t+ 1. This is the method described in detail in Gustafson, (1958), 
Gardner (1979), and adopted by Goreux (1978). 
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410 OPTIMAL COMMODITY STOCK-PILING RULES 

The second method has been developed by Wright and Williams (1981) to 
deal with supply responses, and is considerably more complicated. It in- 
volves iteratively refining a fourth order polynomial approximation to the 
relationship between the expected price and current carryover, tp(St) 
Ep,+1(S,). The aim is to find by successive approximation for any given value 
of St a consistent set of planned production and expected price. Then the 
relationship between current supply and storage can be deduced from the 
arbitrage relationship. The effects of the storage rule are found by Monte 
Carlo simulation (10,000 trials). Clearly, such a method requires considera- 
ble programming ability. Both brute force methods require extensive sen- 
sitivity analysis to identify the contributions of the various parameters 
(discount rate, storage cost, demand and supply elasticity, and the mag- 
nitude of the underlying variability). 

The third method is more suitable for the case of no supply response and 
is reported in Newbery and Stiglitz (198 ib). The method is to expand f(x) as 
a Taylor series in (x-xo), and solve by equating coefficients. This method 
works well if the distribution of the harvest h has a simple form, either 
discrete, or rectangular. It allows a reasonable approximation to be calcu- 
lated in a few minutes using a pocket calculator. 

The final method appears to be the best simple method available, and 
appears to be surprisingly accurate and quick. It was developed and tested 
by Gustafson (1958). The technique is to replace the random variable h on 
the right hand side of equation (6) with its expected value to find the form of 
f(x), then using this approximation, to calculate x0 from equation (7). 
Gustafson's calculations show that the general shape of f(x) is approximated 
quite accurately by this assumption, but its horizontal location does depend 
on the variability of output. The first step finds the shape, the second locates 
the position. 

Appendix 1 demonstrates that if the demand schedule is linear, then the 
approximation to the optimum stock rule, which we shall call 4 (x), is 
piecewise linear, with successive segments having a steeper slope. Moreover, 
these slope coefficients and the length of the successive segments are given 
by simple formulae, and their numerical solution is immediate. They appear 
capable of replicating Gustafson's results to an accuracy of 1% over the 
whole range. If the demand schedule is non-linear, it is simple to take this 
into account in computing the linear approximation. For example, Appendix 
I shows that if the demand schedule has constant elasticity, the effect is to 
reduce the slope of the storage function, i.e., reduce the marginal propensity 
to store. Finally, Appendix 2 shows how to extend this method to allow for 
price responsive production, and again derives simple algebraic formulae. In 
this case the effect is to raise the marginal propensity to store, by an amount 
which increases with the ratio of the supply to the demand elasticity. Again, 
she method appears quite accurate at replicating the numerical results of 
Wri iyght and Williams (1981). 

The main reason for computing the optimum storage rule is to compare its 
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impact with either no storage or with the impact of some alternative rule, 
such as the band width rule. If the function has been computed numerically, 
the logical method is to use Monte Carlo simulation. If, however, the 
function can be reasonably approximated by a piecewise linear rule, then it 
is possible to proceed algebraically, as Newbery and Stiglitz (1981a, Ch. 30) 
show. However, the present purpose is to obtain a qualitative feel for the 
impact of the optimum storage rule, and to that end we seek a simple model 
specification for which the storage function is particularly simple. Fortu- 
nately, this is possible. First, assume demand is linear: 

P(C)= {1 ? (C_ }9 

where e is the elasticity of demand at mean consumption, C, and price, f. 
Choose units so that C= 1, and assume that production is insensitive to 
price, so that Eh = C 1. Equation (6) now becomes 

0(1-3) +k--) 3{x-f(x)-13E[h+f(x)-f{h+f(x)}]}J me- El ~~~~~~~~~mentary 
x ? xO. J inequalities 

(10) 

where xO is defined by equation (7). 
Next, suppose the marginal propensity to store is constant above xO, so 

that the storage rule becomes 

f (x ) = ax (x -xo), xO x XIO (1 1) 
where xin is defined by equation (8). Substitute (11) into (10) and rearrange 
to give 

(1+O3)f(x) =x -a+P3Ef{h+a(x -xo)}, xO<X-Xrn (12) 

where a is a constant: 

a = 1 +E(1-I + k/p) = 1 +Ec, c r+ k/P. (13) 

The problem lies in the behaviour of the term h + a(x - xO), which may be 
greater or less than xO, the point at which f(x) is non-linear. Define 

Prob {h h xO - a (x - xo)} = lr(x) (14) 

Eh I h xO- a(x-xO) = H(x) (15) 
then 

(1+ 1)f(x) = x - a + Pc37(x){H(x) + a (x - xo) - xo}, XO S x S xm. 

(16) 

The stock rule can only be linear over [xO, xm] if 7T(x) is independent of x 
over this range; and H(x) is constant or linear in x. This is equivalent to 
requiring 

Prob{h I (1+a)xo-axmn hxo=0. (17) 
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For example, suppose the harvest has a two point distribution 

1 +u Probp p 
l-,yu Prob 1-p 1-p 

so that Eh = 1, Var h =,Yu2 = 2, the squared coefficient of variation. 
To ensure a linear stock rule we require that if the current harvest is low 

(h = 1- yu), then no matter how large was the carryover, current storage 
must be zero, and if the current harvest is high (h = 1 + u), then even with 
zero carryover, some stocking must occur. In that case p(x)=p, H(x) = 
1 + u, and equation (16) can be solved for x by finding ths value of x at 
which the RHS is zero: 

x = a - p(l+) (18) 

The marginal propensity to store, a, is found by equating coefficients of x. 

+ 2(31 + )2 _ sp (19) 
213p 

The maximum stock is found from equation (8). 

1+ u-axo (20) 

1-a 

Sm = a(xm-xo) a (1 + u -x0) (21) 
1-a 

The condition of positive carryovers if and only if the current harvest is good 
is equivalent to 

1-yYU+Sm <Xo< 1+U (22) 

which is identical to equation (17). Given specific values of (3, E, c, u, and p, 
a and x0 can be found and checked to see if they satisfy the constraints of 
equation (22). 

For example, if e=0.8, (3= 0.95, c =10%, (so that a=1.08) p=2 (so 
y=2), and u=0.15 (so that a = 21.2%), then the parameters of the stock 
rule are 

a = 0.6501, x0= 1.031, Xm = 1.371, Sm = 0.221, 

so that the conditions of equation (22) are satisfied. The optimum stock 
rule is 

f(x) = 0.65(x - 1.031) x 1.031 (23) 

It can be shown that condition (22) cannot be satisfied for a symmetric two 
point distribution (i.e. with p = 0.5), though the example we have chosen is 
empirically interesting, as it corresponds to the prospect of a periodic 
disastrous harvest (one year in three). However, it is easy to find a symmet- 
ric four point distribution for which the optimum rule is linear (above x0). 
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For example, if the harvest can take values 1 +?u, 1 ? u with equal probabil- 
ity then if a =1.05, 13=0.95, u= 0.10 (so that a = 7.9%) then a =0.6, 
xO = 1.04, xm = 1.19, S, = 0.09, and there will be positive carryovers only in 
the two good states. 

3.1. The impact of the optimum stocking rule 

The stocking rule increases current supply (by last year's carryover, 
possibly zero) and, in good years, reduces current sales (by the amount of 
the carryover). Both effects are readily described for the two state world just 
described. The probability distribution of last year's carryover is easily 
found, since it merely depends on the probability of a run of n previous 
good years. Let S(n) be the size of the carryover in such cases, for which the 
probability is (1 - p)p". Then 

S(n)= a(l+u+S(n-1)-xO), S(O)=0, 

S(n)=a(1+u-x0)- (ka ) with probability (1 -p)p'1, (24) 

which clearly converges to the maximum value given in equation (21). The 
average stock carried will be 

E 2 S(n)(1 - p)p n = opl+U-X)(25) 
0 1-ap 

For example, for the parameters which gave equation (23), S=9.1% of 
average harvest. This large average stock size is very much a property of the 
shape of the probability distribution, which, in our example, is very disperse. 
Newbery and Stiglitz (1981a, Ch. 30) show that for the typical UNCTAD 
core commodity, if outputs are normally distributed, average stocks are 
more likely to be 5%/o of average harvest. 

The probability density of stock sizes is shown in Fig. 2, and will have the 

I\ I-Po 

0 S(1) S(2) S,,, Stock size 
FIG. 2. Probability density of stock size 
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+ Probability 

P - (No stocking) 

p(I-P) 

(No stocking) .W With stocking 
4 F_____ ~~~i-p f 

?(1 -- -- - -- -p)2 

I-yu I-Yu-itS,, 1 -I, I +u1+S Supply 

FIG. 3. Probability density of supply 

same general declining shape for all distributions of harvest, with a fairly 
high probability of zero stocks, and a rapidly decreasing probability of 
high stocks. 

The variance of stock size can be computed in the same way as the 
average stock, and is 

VarS= (1-P)( )g2 (26) 

which, given the parameters of equation (23) is 0.00576, CV = 83%. 
The probability density of total supply is given by the sum of two 

independent random variables of current harvest and last year's carryover, 
and will look like Fig. 3. 

The relationship between supply and price is given by equations (4), (5), 
(9) and (11): 

0 -{(1 + 1 x} x <xo 
P(XPZ 

The non-linearity in the supply-price relationship occurs at the point at 
which storage first occurs, and its effect is to increase the elasticity there by a 
factor 1/(1- a), or 2.86. 

The effect of storage on the effective schedule facing farmers is to shift the 
schedule to the left by the amount of last year's carryover, S, and to 
introduce a kink at the point x0,-S, as shown in Fig. 4. 

It is interesting to note from (27) that the average price is unchanged by 
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Price 

Before stabilization 

After stabilization with 
\\ 'carryover S 

Xo-S Harvest 

FIG. 4. Effective demand schedule facing farmers 

price stabilization in this linear example. The effect of introducing price 
stabilization is to raise farmer's average profits by 

ZAEjh upS (28) 

whilst the effect on average social welfare, ignoring storage costs, is found 
from the utility function which corresponds to the demand schedule: 

U(C) = i( + ?i)C-+ Cj d = p(C). 2 ~d C 

AEU(C) =(-+ AEC2) = E(C, - Cs)(C, + Cs) (29) 

where CQ is unstabilized consumption, C. is stabilized consumption, and 

Cs = C + s-f(h+ S). 
Solving: 

_ xEU(c) = Et{- S + f(h + S)}{h+2S -2 24f(h + S)} 
p 

-S--ES2+paE(b+S){1+u+S-'a(b+S)}, b 1+u-xO. 

Note that, from (25), ap(b+S>)S, so 
?EU(C) - {S(u -4ab{l - p(2-a)}) -4(1 - ap(2 - a))ES2}. (30) 

This can be further simplified and/or solved using equation (26). For the 
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numerical example of equation (23) the gross benefit amounts to 1.3% of 
riskless expenditure.4 

It is interesting to compare this with the gross benefits of perfect price 
stabilization-the conventional, but misleading benchmark. In this case 
equation (29) gives 

AEU(C) = P P - N2 
2E 1-p 

or 2.8% of riskless expenditure. However, we have so far ignored the costs 
or stabilization, which are considerable. The average annual cost of storage 
is cpS, or, in the present case, 0.9% of riskless expenditure and thus 70% of 
gross benefits, reducing net benefits to 0.4 of 1% of riskless consumer 
expenditure. Storage costs are a high proportion of the gross benefits of 
optimal stabilization and, obviously, a higher proportion of any greater 
degree of price stabilization. To assume costless price stabilization is mis- 
leading indeed. 

3.2. The benefits of price stabilization 

In general it is difficult to calculate the benefits of competitive price 
stabilization directly, and in any case, the method used for the linear 
stocking rule only gives the average net benefits, not the present value of 
introducing such a rule in any given year, with a known current supply. 
Instead it is necessary to use dynamic programming arguments, which are 
set out more fully and justified in Gustafson (1958), Samuelson (1971) or 
Newbery and Stiglitz (1977, Appendix F). 

This approach has been applied in Newbery and Stiglitz (198 la, pp. 
428-430) and gives particularly simple formulae in the case of the linear 
stocking rule. Thus, the present discounted benefit of introducing the 
storage rule when current supply is x is 

B(x) = [1P3p (1 + u _xO)2+{min (x - xo), }2] (31) 

Obviously, it is more beneficial to start stockpiling in a year of high 
current supply, x, though if x is only slightly above x(, the second term will 
be very small. If we ignore this term, and compute the benefit for the 
parameters of equation (23), the PDV is 7.287%, equivalent to an annual 
benefit of 0.384 of 1% of riskless consumer expenditures. (Compare this 
with the figure of 0.387 of 1%, computed above from equation (30).) 
Moreover, equation (31) is considerably more elegant and simple to 
evaluate than (30), showing the power of dynamic programming arguments. 

3.3. Comparisons with the bandwidth rule 

The bandwidth rule defines upper and lower intervention prices which are 
to be defended as far as possible by selling from or adding to stocks. Once 

' We have chosen units so that average consumption is 1, as is average price, p, so, in the 
absence of any instability (setting u = 0), consumer expenditure would also be unity. Benefits 
and costs are thus most easily measured as fractions of riskless expenditure. In the presence of 
fluctuations, with no stabilization average consumer's expenditure is 1 (1/e)o2, or 0.94. 
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the intervention prices have been specified, then, assuming the demand 
schedule and the distribution of harvests are known, the size of the buffer 
stock follows a known stochastic process and can be analysed. The effect on 
the price distribution and the utility of consumption can also be determined, 
as can the cost of stock holding. 

For example, in the case of the two point distribution of harvests, with 
harvest of 1+ u in good years (2 years out of 3) and 1- 2u in bad years (1 
year in 3) for which the optimum stock rule was given in equation (23), the 
obvious bandwidth rule is to place Au units into store in good years and 
remove 2Xu units in bad years. The buffer stock will now follow a general- 
ised random walk, increasing by one step (of length Au) with probability 2/3, 
and being reduced by 2 steps with probability 1/3. The origin constitutes an 
elastic barrier, as would the maximum storage capacity. (If there were no 
such upper limit, the maximum stock size ever reached would increase 
without limit.) It is relatively straightforward to compute the average stock 
size as a function of the maximal capacity, and also compute the degree of 
price and consumption stability achieved. 

Thus if the maximum capacity is 3Xu tunits, the average stock will be 2Au 
units, and the distribution of consumption will be 

1 + u Prob 24/75 
1 + (1-X)u 26/75 

C = 1-2(1-k)u 16/75 
1 - u 6/75 
1-2u 3/75 

(The method of calculating the distribution of consumption is set out in 
Newbery and Stiglitz, 1981, Ch. 29.) Thus if A = 1/3 the variance of 
consumption is reduced to 0.025 or by 45% of its unstabilized value, with 
average stock of 10% of average harvest. This bandwidth rule thus achieve 
essentially the same degree of price stabilization as the optimum rule (which 
achieved a reduction of 46%), with slightly higher average stocks. Its annual 
average net benefit is, however, only 0.3 of 1% of riskless expenditure or 
only 71% of that achieved by the optimum rule. If A were chosen to be 0.5, 
the variance of prices would fall by 570/o, but net benefits would be negative. 
In general as Newbery and Stiglitz (1981, ?30.4.2) have shown, the best 
bandwidth rule achieves appreciably lower benefits than the optimum rule, 
whilst a carelessly chosen bandwidth rule will achieve the same price 
stabilization as the optimum rule at appreciably higher cost. 

4. The bias in the competitive stock rule 
The competitive stock rule is optimal if we ignore risk benefits and the 

distribution of income. Now it could be argued that the distribution of 
income should be ignored, since price stabilization is likely to be an 
inefficient method of influencing it, but in international negotiations alterna- 
tive more efficient methods may not be available. We therefore ask, under 
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the competitive stock rule, would producers benefit from an increase in price 
stabilization (achieved, for example, by a subsidy on storage costs)? 

This question can be answered by applying the methods developed in 
Newbery and Stiglitz (1979b) (and also set out in Newbery and Stiglitz, 
1981a, Ch. 18). We ask, what will be the effect of storing an extra 8Q units 
at date 0 when the harvest is high and the price low, to be sold next year 
when the harvest is (probably) smaller and the price higher. If Q, is supply in 
year t, and CQ is consumption then, since the transfer only affects income in 
years 0 and 1, the change in the farmer's present discounted utility is solely 
the result of changes in po and pl: 

dpo p 
U - U'(y,,)Q0 8d Q + fEU'(yD)Ql 8Q. (32) 

dC0 dC, 

(Transferring 8Q from year 0 lowers consumption then, which affects price, 
and hence income, yo= p0Q0. The opposite effects occur in year 1. c.f. 
Newbery and Stiglitz, 1979, eq. 5, p. 804.) 

If the demand schedule is linear, then 

p(C)~~ = a ( dC ? 

where ? is the elasticity of demand at the mean price, p. Substituting this in 
(32) gives 

8 U = {U'(yo)Qo- PEU'(yD)Q1} 8Q. 

If the farmer is risk neutral, then U' will be constant, and his expected 
revenue (and utility) will increase with more storage, since Q0 represents a 
large current harvest, above the expected future harvest, EQ,. This result 
continues to hold for risk averse farmers provided U'(y) does not increase 
too rapidly as Q falls and p rises. Provided income rises with price (i.e., 
provided demand is inelastic) the marginal utility U'(yl) will be lower than 
U'(yo), and producers continue to gain from more storage. Further analysis 
would identify the critical values of risk aversion and demand elasticity 
beyond which producers would prefer less stabilization. The only difference 
between the present case and that discussed in Newbery and Stiglitz (1979) 
is that there we ignored the effect of discounting, which, in the linear case, 
strengthens the case for stabilization. 

If, on the other hand, the consumer demand schedule has constant 
elasticity, ?, then (32) can be rewritten as 

SU=!{ U'(yo) POQ - EU'(y1) (PQ? )} Q 
E ~co Cl 

If stocks are being transferred from date 0 to date 1 for consumption then, 
Q0> Co, and Q, <C1. For risk neutral producers, with constant U'(y), the 
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change in revenue is then 

Y<- (po--Ep1j -- ? <0 

from the arbitrage equation (3). Hence a producer facing a constant elastic- 
ity of demand receives less revenue on average as the amount of storage 
increases. This result continues to hold for risk averse producers provided 
U'(y) does not fall too far as price rises. This will be ensured if demand is 
elastic. 

Changes in storage will affect consumers as well, but it seems reasonable 
to ignore the impact of risk on consumers, on the grounds that for the core 
commodities specified by UNCTAD consumers typically spend less than 1% 
of their income on these goods, and hence their marginal utility of income 
will be insensitive to price fluctuations. If transfers from (richer) consumers 
to (poorer) producers are considered socially desirable, then we can sum- 
marize the results of this section as follows: 

(i) With linear consumer demand, inelastic over the relevant range, 
competitive price stabilization should be subsidized or supplemented. 

(ii) With constant elastic consumer demand of elasticity greater than 
unity, competitive price stabilization should be taxed or reduced. 

The determination of the optimal degree of intervention can be found by 
calculating the increased cost of further subsidization and the increased 
benefit in reduced producer income risk and increased transfers (weighted 
by the difference in producer and consumer weights). 

4.1. Alternative stabilization policies and the problem of speculative attack 

Once it is appreciated that producer's income risk is an important deter- 
minant of the attractiveness of price stabilization, the obvious question to 
ask is whether there is some more direct method of providing essentially 
income insurance without the conventional problems of moral hazard and 
adverse selection. This problem is discussed in Newbery and Stiglitz (1981a, 
Ch. 20) where it is shown that if so, the potential benefits are appreciable. 

d a rule where producers and consumers face different prices. 
The consumers face market clearing prices whilst producers are paid a price 

Y 
PtQt 

where V is trend revenue for the region and Q, is the actual production at 
date t. This scheme stabilizes individual producer's income to the extent that 
his output is correlated with regional output, but it apparently avoids the 
usual insurance problems of adverse selection and moral hazard. The first 
and most obvious problem is that the consumer price would typically differ 
from the producer price, and hence provide strong incentives for black 
markets to develop. The second problem is that it might be vulnerable to 
private storage by producers. 
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Assume, for instance, that there were only two states of nature, a good 
harvest with output 1 +0- and a bad harvest with output 1 - (. If there is a 
large harvest this year, the expected (proportional) increase in price is 
approximately 

1/ 1 1 \ 1 
2 \1+u 1-u I 1+u 1 (u 

0- -1 = 
1 ~1-(J 1-(J 

1+ C 

which, for large o- will exceed the rate of interest and private storage costs 
by a considerable amount. This provides a strong incentive for private 
storage (speculation). Parenthetically, the same problem of the vulnerability 
of buffer stock policies to speculative attack arises with the bandwidth rule. 

Thus, the extent to which the buffer stock agency is constrained by private 
speculation in determining producer prices (assuming that it can separate 
that policy from the policy for consumer prices) is determined by the 
magnitude of the storage (interest) costs which they face, and in particular, 
by the extent to which they exceed those facing the buffer stock agency (net 
of any subsidy which the agency might receive). 

4.2. The costs of increased price stabilization 

The competitive storage rule is optimal for reducing fluctuations in 
aggregate consumption, but is not efficient if producers (or consumers) are 
risk averse. The effect of additional (or reduced) price stabilization on 
producers' income risk are reasonably easy to calculate, using, for example, 
the techniques developed in Newbery and Stiglitz (1979b) and illustrated 
above in Section 3. Here we are concerned to measure the costs of 
increasing (or reducing) price stabilization above (or below) the competitive 
level. The logical way to achieve this is to subsidize (or tax) storage (not the 
discount rate, since we wish the optimal inter-temporal pattern of stabiliza- 
tion to be retained-unless there is reason to believe that the market rate of 
discount differs from the efficient rate, in which case the remedy is obvious). 
If storage costs are reduced by a proportional subsidy, T, the effect will be to 
lower x0, raise S, and lower the variance of prices and consumption. Here 
we examine the magnitude of these effects, using the two-state model 
developed in Section 3.1 for which exact formulae are available. 

First, note that a is reduced, because from (13) a now becomes 

a =1+E41-1+(1-T)k/p} 

Changes in a have no effect on the slope coefficient, a, but do affect x0, for, 
from (18) 

dxo 1 da -Ek/p 
dT 1 --appdi- 1--acp 
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The effect on the average amount stored is given by (25) 

dS -ap 
dx0 1 - ap 

whilst the effect on the annual average net benefits of stabilization, V0 
(ignoring distribution and risk) is given by differentiating the annualized 
form of equation (31). 

V0 - B (x0) 

d -0 - pa (1+u-x0). 
dx0 E 

However, V0 is calculated on an estimated storage cost which is TkS on 
average too low, so the annual social net benefit, Z, is changed by 

dZ_ d d Vodx0 k~( dS 
dT dT ( ? k) dxo dT ( dk! 

kaP(l+u- x)-k (1+1 ap lkl) 
- ap3p I-ap 1-a3pp 

which, from (25), can be rewritten as 

dZ_ apkS T1 + Ek 

dT 1-a-Bpp 1-pap 

With the parameters given in equation (23) this has a value at T 0 of 
-0.017 of 1%. The effect on average stock size is more dramatic though, 
with dS/dT =5.2% (of average output). Thus a 50% subsidy on direct 
storage costs (a reduction in the annual cost of storage of 21% of the 
average value of stock) would incur extra costs of 0014 of 1% (of riskless 
consumer expenditure) and increase average stocks from 9.1% (of average 
output) to 11.7%. 

With a continuous probability density of harvests the effect would be 
greater, as the probability of storage, as well as the amount then stored, 
would also rise, in contrast to the present two-state case. 

5. Conclusions 

The objective of the paper has been to characterize the optimal storage 
rule and hence the best way of stabilizing prices on competitive markets. We 
showed that if agents were risk neutral and held rational expectations, then 
the competitive arbitrage rule would be efficient. The first part of the paper 
showed how to characterize this competitive storage rule, and found a 
specification in which the rule could be solved analytically. This analytical 
solution was used to explore the degree of price stabilization, the costs and 
benefits of efficient stabilization compared with the alternative bandwidth 
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rule, and the effect of storage on the net demand schedule facing the farmer. 
In the simple case the storage rule is to store a constant fraction of the 
excess of current supply (stocks plus harvest) over a fixed amount. The 
appendices show how to derive successively more accurate approximations 
to the competitive storage rule in more general cases. The approximate rule 
will be piecewise linear for a linear demand schedule, with successive, 
steeper segments reflecting the probability that the stock will be held for one 
further year. If, however, the demand schedule has constant elasticity, 
instead of being linear as in the special case, then the marginal propensity to 
store is lowered, whilst if supply is responsive to the changes in the expected 
future price induced by storage, then the marginal propensity to store is 
increased. 

The probability distribution of stocks appears quite skew, with a rapidly 
falling probability of high stocks, and a relatively small average stockpile 
(typically less than 10% of average harvest). The net gains from the optimal 
storage scheme, though small, are significantly greater than those obtained 
from the alternative storage policies (e.g. maintaining prices within a band- 
width) often proposed. It should be observed, however, that the optimal 
buffer stock scheme leaves considerable remaining price variability, typically 
reducing the variance of prices by about one-half. 

The second part of the paper explored the bias in the competitive rule 
when agents are risk averse and distributional issues are important. Techni- 
ques which the authors developed elsewhere allow the direction of the bias 
to be identified, and this bias can in principle then be corrected by taxing or 
subsidizing private storage. The costs of such taxes and subsidies can also be 
readily calculated, given the form of the storage rule. 

The main conclusion is that the optimal storage rule is quite different from 
the rules typically adopted by stabilization authorities, and yet can be 
approximated by a simple form. We would urge future researchers to 
employ this simple form (or more accurate approximations) in studying 
questions of price stabilization. 

APPENDIX 1: APPROXIMATION TECHNIQUES FOR FINDING THE OPTIMAL 
STOCK RULE 

Gustafson (1958) found that the optimal stock rule, f(x), had a form which was relatively 
insensitive to the various parameters, and in particular, to the degree of harvest variability. 
Different coefficients of variation of harvest essentially displaced the function horizontally. He 
therefore suggested a short cut for obtaining an approximate solution-first calculate an 
approximate function +(x) assuming no variability in harvest, and then use this approximation 
to estimate an accurate value of x, using equation (7). 

First Step: The certainty equivalent approximation 

This 'certainty equivalence' method is useful in characterizing and explaining the general form 
of the stocking rule, as well as providing a good approximation. The approximate function 4(x) 
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satisfies 
p{x- 4(x)} +k =p[l + 4(x)--{1+4+(x)}] 

x : x (Al) 

where the random harvest h has been replaced by its certainty equivalent of unity. The key to 
solving the functional equation (Al) is to note that if x is only slightly above xo, that all the 
carryover +(x) will be consumed next year. At some point, xl, this year's carryover is 
sufficiently large that it will last two years, and at a higher level, x., it will last three years, and 
so on. Let qt(x) be the stocking rule relevant to a supply x which will be sufficient for n years 
of carryover, then (At) can be rewritten 

p{x -h,, (x)}?- k = p[1 +4,,(x) -4 {1 + ,~(x)}] (A2) 

Consider the first segment of 4(x), XI(x), for which xo <x <xl, and stock will all be sold next 
year. Since 40(x) is by definition 0 (no carryover), (A2) simplifies to 

p x- 0 ,(x)}+ k = p{1 +4,(x)}, X(<x<xl. (A3) 

The point x(, is the point at which 01(x)= 0, and is found from 

p(x0) + k = ,4p(1) 

whilst x1 is the point at which next year's supply would reach xo, so that any higher initial 
supply would be carried two years. Hence xl satisfies 

x(,= 1 +01(xI) (A4) 

The function 41(x) is implicitly defined by (A3), which is readily solved if p(C) is linear. 
Here, our main interest is in the general form of +(x), as exemplified by its slope. Differentiate 
(A3) and rearrange to give 

1 dp 

pi- l l Up, PidC c=ci 
Po, 

Clearly, if p(C) is linear, then XI has a constant slope over (x0, xl). In general, however, p,/pt, 
is likely to be nearly constant, for two related reasons. First, arbitrage moves prices close 
together. With perfect arbitrage, Po = pI and clearly the slopes would be the same. With low 
carrying costs (k + rpo) the difference in the slopes will be small, and hence the ratio will be close 
to unity. Second, the prices will differ by an essentially constant absolute and relative amount 
(k + rpo), and so one might expect the slopes at the two points to bear a roughly constant 
relationship to each other. 

Let a=4 ,then 1 

with exact equality for linear demand function. The same argument applies to each segment, 
and the slope, aj, is found by differentiating (A2): 

I 
"1+ {3p 

O<'" 
_ 1) jp ' xtt < x < x?1+ (A5) 

a',,-{1 + b (1 - an - 1)} (A6) 
whilst x,, satisfies (cf A4) 

1 + (hil (xIl) =11 x~ _ l(A7) 

These two recursive relations can be readily solved to find the piecewise linear approximation 
to the certainty equivalent rule: 

at.. = l A,,,, ~~~~(A8) 
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+2(X2) - 

1(xI) - - -- -- -- -- -- - -- -- - 

0 X0 XI X2 Supply X 

FIG. Al: Piecewise linear approximation to storage rule 

whilst O(x) = an(x -xn1)+4.1I(x -1). (A9) 

Equations (A7) and (A9) imply 

1 + an (Xn - Xn- 1) + Ot, -I (X,-)Xn- I 

or an(xn -x,,1) = (xn --xn_2), x 1- 1. (A10) 

The coefficients a,, are immediately soluble from (A7), and the lengths of the segments are 
then solved from (A10). Fig. Al illustrates. 

Equation (A5) gives immediately one key characteristic of the storage rule-its slope is 
monotonically increasing but always strictly less than unity-which is equivalent to the 
conclusion that current consumption, C = x -45(x), is an increasing function of supply, x. 

With a non-linear convex demand schedule, since p I > po for storage, p /p/ > 1 and the slope 
coefficients an will be somewhat reduced, the effect being similar to a rise in the discount factor, 
f3, in equation (A8). For a demand schedule with constant elasticity ? the effect is one of 
replacing f3 in (A8) by 

('= j{1 + (I + E)(r + k/p0)} 

For ?=l, r+k/po=8%, 03'= 1.1, and aI falls from 0.513 to 0.476. Less marginal storage is 
done, for with a convex demand schedule, current prices rise more rapidly with storage than 
with a linear demand schedule. (This argument refers to marginal storage-the location of x(, 
which affects the amount of total storage, will be affected by the shape of the demand schedule 
as well.) 

Second Step: Allowing for random harvests 

Once the piecewise linear approximation has been computed, the next step in finding the 
approximate storage function is to recompute x0 more accurately as the solution to 

x0= a - (3E(h) 

x0 a- 3 | (h-a)dF(h) (All) 

where F(h) is the distribution function of h, and f has been approximated by the first line 
segment, 0b. For example, if h is normally distributed as N(l, o.2) with distribution function (D 
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then the second term of equation (All) is approximately 

03 [ - 1/a-_1\2) /a -\1 1= 1 exp --[ 2 ) -1)(-l)1(- l)}] (A12) 
l +3 L /2n 2 \o JL\ .J 

APPENDIX 2: THE EFFECT OF SUPPLY RESPONSE ON THE STOCK RULE 

It is relatively straightforward to study the effect of allowing planned future production to 
depend on the expected future price in a linear model with additive risk and risk neutral 
farmers. (Newbery and Stiglitz, 1981, Ch. 5-6 show that the action certainty equivalent price is 
then equal to the expected price.) Let demand be linear with elasticity E at the mean price, and 
choose units so that in the absence of any stockpiling, average consumption is unity, as is 
average price. Then 

P (C) == 1 + - -- C (A13) 
? ? 

If planned production likewise has an elasticity q at the mean price, planned production will be 

q = 1 - X + -qEp (A14) 

The arbitrage equation (3) implies that 

qt+l = 1-71+ (p + k) x :--X0 
x0x 

= q() X <X0 

where q% is planned production if the current supply is too low to affect the future price. If 
current supply is x, then 

C' = x-fAX), Ct+1 = qt+l + +Ax) - St+ 1 

St+I = f{q,+I + + +f(x)}, Et = O 

where q,+ + Ct is the actual harvest. The arbitrage equation can now be written, for x x 

pt +k = P3Ep(Ct1) = 13(-F -)- [1 - + (pt + k) +f(x) - ESt+] 

Collecting terms; this becomes 

13 + a/ )(p, + k -3 ) + f (x) = ES,+ 

Substitute for pt p(C,), and define 

a -1 + e(l -3 ? k) 1 + s(r+ k) 

Then f(x){1l+1 (1+A-/I) =1 (1+Ti/E)(x -a) +ES(+ 

or f(x)= A (x-a) + 1.Ef [q0+ nlx(+C+ (1?+ t )f(x)--qxE (A1]5) 

where A (1l? ) l = 

This can be solved using the approximation techniques set out in Appendix 1. Thus, setting 
u = 0, x0 solves 

0 = A(xo- a) + fkf(q0) 
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Now q(, solves 

q10=l1- tq+ rlE [1 + - - - qO+a -f(q(,+ u)j ? ? 

If instead of taking expectations we replace Mi by its certainty equivalent value 0 this expression 
reduces to 

q0) = 1, f~q) = ( xO -- a. (A16) 

Once again, f(x) can be approximated by the piecewise linear certainty equivalent function 
<5(x) with successive segments having slope a,,, found by differentiating (A3): 

a,, = A + a,, I [ I 
, ] 

If nWe 6 < I (for stability) then 

1+ 0 I 0 -a,,-,) 1J (A 1.7) 

which reduces to the same formula as given in Appendix 1 if supply is inelastic, -0, and 
6 = 0. The points of slope change, x,,, satisfy 

q,+ (1 + ),(X))- (X,1 -1) = x,,l, q% = 1. 

This can be rearranged to give (after factoring out I + 61/) 

1 + a,, (X,, -- x1) , (Xt1 - 1) X,, _ 

which yields the same result as (AlO). 

The effect of supply response 

If we restrict attention to the certainty equivalence rules, the critical point at which stocking 
occurs is the same-x()= a. Moreover, the points x,, satisfy the same equation (A10). However, 
equation (A17) shows that a positive value for y (and 8) increases the slope coefficients a,, and 
hence results in more storage (to offset the negative serial correlation in supply). 

Another way to interpret this result is that since planned production will fluctuate in a way 
uncorrelated with the current disturbance, the total variability in production will be larger the 
larger is the supply response, A. More production variability implies more storage, to achieve a 
given degree of price stability. 

World Bank, Washington, D. C., 
Princeton University, New Jersey. 
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