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This article analyzes the role of competitive compensation schemes (in which pay depends
on relative performance) in economies with imperfect information. These compensation
schemes have desirable risk, incentive, and flexibility properties; they provide for an au-
tomatic adjustment of rewards and incentives in response to common changes in the
environment. When environmental uncertainty is large, such schemes are shown to be
preferable to individualistic reward structures; in the limit, as the number of contestants
becomes large, expected utility may approach the first-best (perfect information) level. We
study the design of contests, including the optimal use of prizes versus punishments and
absolute versus relative performance standards. The analysis can also be viewed as a
contribution to the multiagent, single-principal problem.

1. Introduction

B One of the dominant characteristics of modern capitalist economies is the important
role played by competition; competition is the force providing work incentives. Rewards
within a firm or even to a firm in a competitive marketplace seldom take the form of a
pure piece rate (equal to the value of marginal product in the conventional competitive
paradigm). More commonly, rewards are at least partially based on relative performance:
the student with the highest score is given an “A,” the salesman who sells the most is
given a large bonus, the firm with the largest market share becomes the leader, and the
best manager gets promoted to the company vice presidency. This conception of com-
petition is better represented by patent races and sports contests than by the static form
of pure price competition embodied in the Arrow-Debreu model.

In the past two years, there has been a rekindling of interest in the role of competition
as an incentive device. The initial work of Lazear and Rosen (1981) and Stiglitz (1980)
has been expanded upon by Green and Stokey (1981), Hart (1981), Holmstrom (1982),
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Mookherjee (1981), Nalebuff (1982), Fitzroy (1981), and O’Keefe, Viscusi, and Zeck-
hauser (1982). This recent literature has begun to delineate the circumstances in which
rewards based on relative output are superior to payments based on individualistic output.

The essential problem with which we are concerned here arises because the input
(effort) of workers (managers) is not directly and costlessly observable. Firms must either
attempt to monitor inputs or they must devise reward structures in which compensation
(using the term in its broadest sense, including promotions, pensions, etc.) is a function
of variables which are (a) themselves functions of inputs and (b) less costly to observe
than the inputs themselves.

There are three critical characteristics of any reward structure:

(a) Risk. Incentive schemes linking rewards to output inevitably result in the workers’
bearing risks; and if individuals are risk averse, there is a loss of welfare as a result.

(b) Incentive levels. To ameliorate the risk problem, a significant part of most individuals’
compensation is not directly related to output. This reduces the incentive to provide the
right level of effort and also the incentive to make the correct decisions.

(c) Flexibility. The incentive compensation scheme that is “correct” in one situation will
not in general be correct in another. In principle, there could be a different incentive
structure for each set of environmental variables. Such a contract would obviously be
prohibitively expensive to set up; but more to the point, many of the relevant environ-
mental variables are not costlessly observable to all parties to the contract. Thus, a single
incentive structure must do in a variety of circumstances. The lack of flexibility of the
piece rate system is widely viewed to be its critical shortcoming: the process of adapting
the piece rate is costly and contentious.

It is the flexibility characteristic of competitive compensation schemes which makes
them so attractive. When a task is easy for one person, it is likely to be easy for his rivals.
Consider the effect of a technological innovation that occurs in a work environment in
which employees are compensated on the basis of relative performance. Producing more
than one’s rivals becomes easier so that in the new equilibrium everyone will work harder
for the same prizes. Compensation per unit output is automatically reduced. Similarly,
while it is very difficult to design a fixed grading system (90 = 4, 80 = B, .. .) for a test
of unknown difficulty, grading students according to percentiles permits the same scoring
system to be used in different courses, different classes, and in different ability groups.

There are a variety of circumstances in which the performance of individuals (or
firms) conveys information about the environment which can and should be introduced
into the compensation scheme (Hart, 1981; Nalebuff and Stiglitz, 1983; Stiglitz, 1982).
Contests are one way of doing this; rewards based on performance standards, which, in
turn, are based on the performance of the group, are another.

Compensation structures also serve a second, critical function: they enable the dif-
ferentiation and screening of workers of different abilities (Stiglitz, 1975). This article
focuses on the incentive properties of compensation schemes; hence, except as noted
briefly below, we shall assume that all individuals have the same abilities.

We first present the general theory of compensation in Sections 3-5. We then examine
the theory of contests (Sections 6-8) and compare contests with other compensation
schemes (Sections 9-11). Sections 12-14 provide some important extensions of the basic
theory.

2. A summary of the results

B After setting up the general problem, we focus our attention on certain special cases;
for example, in most of the analysis, output is assumed to be linear in effort. We ask
under what circumstances would contests (where it is only the individual’s rank that
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counts) be preferred to individualistic compensation schemes in which payment is based
only on output. Because the analysis is fairly detailed, it may prove useful to summarize
the major results here.

(1) The second-best solution will in general require knowledge of each agent’s output.
This can be simplified when the set of outputs can be characterized through the use of
a sufficient statistic. For example, when there is a sufficiently large number of agents,
optimal compensation may be based solely on the individual’s output and the average
output.

(2) With risk neutral agents, the first-best optimum can be obtained through an appro-
priately designed contest.

(3) In contests with little risk and hence small prizes, no symmetric pure strategy Nash
equilibrium will exist.

(4) Although the general principal-agent problem arises because of the difficulty in mo-
tivating unmonitored effort, in the second-best solution agents may supply more effort
than they would in the first-best optimum. Even so, there is a moral hazard problem;
working harder would raise utility.

(5) The use of a contest as an incentive device can induce agents to abandon their natural
risk aversion and adopt “riskier” and more profitable production techniques.

(6) When there is a large number of contestants: (i) appropnately designed contests can
often approach the first-best optimum; and (ii) a penalty to the lowest ranked individual
will be superior to a prize to the highest ranked individual in motivating effort.

(7) Contests may be preferred to individualistic reward schemes, especially when the risk
associated with common environmental variables is large.

(8) Even when the agents are independent, a two-agent contest can dominate the optimal
individualistic linear payment schedule.

(9) It is usually possible to improve on a simple contest by requiring that an agent beat
his opponent by a positive gap before being ranked above him in a tournament.

(10) In contests where no pure strategy exists, the mixed strategy equilibrium can come
relatively close to the first best when there are only two agents competing. But, as the
number of participants grows, competition becomes more intense and eventually all
surplus is eliminated.

(11) Tournaments with multiple prizes cannot in general replicate nonlinear compen-
sation schemes (and vice versa). In the examples of two commonly used error distributions,
even when it is possible to use 7 different rewards in a contest, the optimal solutions entail
at most three different prizes.

(12) When output is no longer linear in effort, a tournament may or may not be able
to replicate the marginal incentives corresponding to the first-best allocation of effort. We
present an example of each possibility.

3. Basic model

B We consider a particularly stylized economic environment. Agent { has an observable
output, @;, which is a random function of his effort, u;:

Qi = Q(”'is 09 6i)' (1)

The randomness arises from a common “‘environmental” variable, 6, and an “individ-
ualistic” noise, ¢;. There are several alternative interpretations of (1). In an agricultural
context, for instance, 6 represents the general weather in the area and ¢ the weather
(rainfall) on a particular farm. Alternatively, # could represent the general level of difficulty
of a set of tasks, while ¢ could represent the individual’s comparative advantage (or
disadvantage) in performing one of the various tasks. In our analysis it is important that:
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(a) Q.0 # 0, the state of nature affects the return to effort; and
(b) for each 6, from knowledge of ; and 6, one cannot infer precisely the
value of u.

Otherwise, (a) the state of nature does not affect the work environment or (b) through
observing output it would be possible to directly monitor effort. Throughout, we assume
the contract must be signed before 8 and e are known; the worker then observes 0 and
decides on u, neither of which is observable to the firm. The probability distribution of
6 and ¢ is known to both firms and workers.

Most of the analysis focuses on a special case in which

Qi=uf + ¢, (1a)

where G is the distribution function of ¢;, g its density, and Ele]) = 0, E[ee;] = 0, and
ET#] = 1. The linear equation for output is chosen for its analytical simplicity.' The effect
of relaxing this assumption is discussed in Section 13. In relation to the principal-agent
literature, equation (la) is particularly important since Mirrlees’ (1975) optimal income
tax model can be viewed as a special case with ¢2 = 0 and Varian’s (1980) analysis of
social insurance can be viewed as a special case in which ¢} = 0.

‘Our analysis will focus on a competitive market in which firms are risk neutral and
expected profits are driven to zero. Compensation schemes in which a worker’s expected
payment is equal to his expected output will be called feasible. In the case of several
agents, this assumes that the value of outputs {Q, . .., @,} is just £ Q;. In a patent race,
where 1/Q; could be the discovery time for process i, it would be more reasonable to
assume that only the max {Q;} matters and the definition of feasible would be different
(Nalebuff and Varian, 1981).

Agents are identical. Their utility function is assumed to be additively separable in
income, Y, and labor, u. When income is a random variable, the expected utility, W, is

W= ETU(Y) — V(u(®))]. (2)

The marginal utility of income is positive but weakly declining (individuals are not risk
preferrers), while the disutility from effort is positive and increasing;

Uy)>0, U"Y) =<0, V(n) > 0, and V() > 0. 3)

4. Sufficient statistics

B Since only the set {Q;} is observable, compensation schemes are a function only of
{Qi}:
Yi=Y(Qla--~5Qi"~'>Qn)' (4)

To achieve any greater flexibility, the principal must design a two-stage game involving
signalling. With an appropriate incentive structure, individuals’ announcements about
6 can convey relevant information. These revelation schemes are discussed in Nalebuff
and Stiglitz (1983).

A general interdependent compensation scheme is clearly no worse than an individ-
ualistic one,

Y; = Yi(Q). &)

The question is when is it better? Sometimes there will be no choice, and the principal
will be forced to use a single output as the basis for all of the rewards. In the example

' This is not, of course, the most general form of linear structures: we could have written (1b)
Q= uf + ¢ + v + wim;, i.e., there is also an idiosyncratic effect on marginal productivity and a common effect
on total output.
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of a patent race, there may only be one observable output, the time to discovery. Those
who lose redirect their efforts and generally do not produce any measurable output.

The advantage of using the muitiple outputs to form the basis for each agent’s com-
pensation is that usually some information about § can be gleaned from observing the
whole array of @;’s. This information can be used to make inferences about the u;’s that
permit the principal to tighten up and improve the reward scheme.

Theorem 1. When all the outputs are independent (¢ = 0), then observing all of the Q;’s
provides no additional information about any agent’s effort level, u;. In this case, the
optimal compensation scheme is individualistic.

Proof. There is a simple constructive proof. Choose Y;(Q;) such that

UYAQ) = ELTUYAQy, ..., Qi..., Q0O = O)]. (6)
A worker is given the same expected utility as a function of his output. Since he is risk
averse, Y;(Q) < EIY(Q,,...,Qi, ..., 0.0 = Q)] The principal can provide exactly the

same incentives and expect to make a larger profit. The advantage of an individualistic
reward scheme when agents are independent is a special case of a sufficient statistic
theorem. Often it is possible to find a sufficient statistic, 7(Q), for the information about
the common element of the agents’ projects, 8. The optimal compensation scheme may
then be simplified to

Y: = YdQi, T(Q)). Q)

Intuitively, all of the information relevant to person i is contained in Q; and T(Q). The
use of any other variable would only add random noise to the compensation and would
thus be suboptimal.’ A special application of the sufficient statistic theorem is the previous
result, Theorem 1. When ¢ = 0, then a sufficient statistic for § is a constant, and,
therefore, the optimal compensation scheme is individualistic. Other applications are also
immediate. If both # and ¢ are normally distributed random variables (with a known
variance), then the average value of Q, Q, is a sufficient statistic for fu(f) and hence for
6. In the example of a classroom, when there is a large number of students, the average
test score will reveal how hard the test was. The estimate of 8 derived from Q = 6u(8)
will converge to the true 6 as the number of contestants becomes large. In the limit we
shall have a sufficient statistic for 6 since we shall actually know 6. We can then apply
the sufficient statistic theorem to show that the optimal second-best compensation scheme
will depend only on an individual’s output and 6, Y; = Y.(#, Q)). Even when the number
of workers is limited, it may be advantageous to base compensation on the size of output
relative to the mean, as this can reduce the noise associated with 8 (as is done in the
relative performance scheme in Section 11).

One can view the problem we are posing, of the choice of a payment scheme, as a
statistical problem. The firm does not know the individual’s level of effort. It attempts,
from knowledge of the structure of the situation and observations of individual behavior,
to make the “best” estimate, and then bases compensation on this estimated value. The
difficulty with this approach is that the statistic used has both risk and incentive effects,
and these must be taken into account in the choice of the “best™ statistic.

5. The first-best optimum: a benchmark

® In the subsequent discussion, it will prove useful to compare the results of alternative
compensation schemes with the equilibrium with perfect information in which both u
and ¢ are observable. In the first-best optimum with risk neutral firms and risk averse

2 We are indebted to Joe Farrell for extensive discussion on this question. For similar sufficient statistic
results and proofs, see Farrell (1981), Grossman and Hart (1980), Holmstrom (1982), and Arrow (1970).
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workers, the workers are given perfect insurance and receive a prespecified reward, Y,
that is dependent only on the expected output. Effort is supplied until the marginal utility
of income multiplied by the increase in output with effort is just equal to the marginal
disutility of work:
QU'(Y) = V'(u(8)) — u*(6) = V"' (6U(Y)). (8)
Hence
Y = E[6u(8)] = E[OV"'(6U'(Y))]. 9)

6. The basic structure of contests

B A rank order tournament is a compensation scheme in which contestants’ rewards
are based on their ordinal positions alone and not on the actual size of their output. With
two contestants, there is a winner’s salary. Y,,, and a loser’s salary, Y; . Unlike the standard
marginal analysis, the winner’s output is not necessarily worth Y,,. The winner is paid
more than his marginal product so as to introduce a carrot to motivate greater effort
among the contestants.

A principal maximizes his workers’ utilities while being constrained by the compet-
itive market to make zero expected profits. Hence, Y,, + Y, must equal the sum of the
expected outputs, 2Q. (This is the dual of the problem in which the principal maximizes
profits subject to the agents’ utility constraints.) It is thus instructive to change notation.

Let
- Y, + 7Y, Y, - Y
Y=E[Q,-]=T" and x=TL.

Any two prizes can always be thought of as a safe income, Y, plus risk (or prize), x.

(10)

O Individual effort. The individual’s expected utility is a function of the probability of
his winning. This in turn depends on his level of effort, his opponent’s level of effort, the
environmental variable 6, and the distribution of e. For a given distribution of ¢, the
probability of winning is denoted by P(u,, u,, 6). An agent’s expected utility is

W= PUY + x) + (1 — PHU(Y — x) — E[V(W)]. (1

By paying individuals on the basis of a contest, rather than on the basis of output,
we take a random disturbance, ¢, which has zero mean and is uncorrelated with effort,
u, and replace it by a disturbance, x, that is correlated with effort. If a contestant works
harder, he is more likely to win, and thus the chance (P) of a positive x rises. In the
symmetric equilibrium, the chance of winning is 1/2, so that the expectation of the prize
(x or —x) is zero.

Workers will supply effort until their marginal disutility from work is just balanced
by their increased chance of winning the value of the prize. After observing 8, effort is
set so that

[0P(ny, pa, 0)/0m]JAU — V'(u(0)) = O, (12)
where
AU = UY + x) — (Y — x).

This equation can be solved for u, as a function of u,, and a symmetric reaction function
giving u, as a function of u, can similarly be derived.> Although it should be apparent

¥ If u, is a continuous, increasing function of u, and if for large enough values of u, duy/du, < 1 (if “one”
works harder so does “two,” but his increment in work effort is smaller), then there exists a (symmetric)
equilibrium. It is conceivable, however, that “two™ decreases work effort in response to an increase by *“one,”
and indeed, the response may be discontinuous. In this case there may exist no symmetric equilibrium, but
there may be an asymmetric one, or no pure strategy equilibrium, or multiple equilibria (see discussion in the
Appendix).
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that it is possible that there exist asymmetric equilibria, with one individual working hard
and the other slacking off, for this part we focus on the symmetric equilibrium with
K1 = M2,

O The return to effort. With two contestants, the agent with the greater output wins.
If agent 1, working at effort level y,, is to beat agent 2, working at effort u,, it must be
the case that the realizations of epsilon satisfy

Ouy + € > Ou; + €. (13)
The probability of this occurring for a given e is
1 = GO(u2 — 1) + €). (14)

To calculate the total probability of winning, we integrate over all possible values of e,
weighted by the density of e, g(e;). Hence,

Py, po, 0) = f [1 = G(0(uz — 1) + e)]g(e)de,. (15)

At the symmetric solution, u; = u,, P = ', and player I’s increased chance of winning
by working harder is

OP(u, u, 0)/0p, = 0 f 8(e)g(e)de; = 0g, (16)
where g = E[g(e)].*

O The cornerstone equation of contests. Substituting (16) into the first-order condition
(12) yields the fundamental equation describing the equilibrium in contests:

0aUg = V(u(9)). (17)

The marginal disutility of labor just equals the utility value of the increased chance of
winning the prize. For the contest to be feasible (zero expected profits), the expected
compensation must equal expected output,

Y = E[6u(0)] = E[0V"""(0AUE)]. (18)

The optimal contest is the pair (¥, x) that maximizes the contestants’ expected utilities
subject to the feasibility constraint (18).

O Central properties of contests. The cornerstone equation illustrates one essential prop-
erty of tournaments: effort varies with 6, while expected income does not. This adaptability
to varied environmental states is one of the important characteristics of a good compen-
sation scheme. It is even possible to replicate the first-best pattern of effort supply by
setting
U'(Y) = gAU, (19)
as this implies
BU(Y) = 0AUZ = V'(u*(9)). (20)

Although it is possible to replicate the first-best level of effort, the contest will not
at the same time yield the first-best level of utility. In tournaments, agents must bear risk
because the prize is x or —x. Of course, if individuals are risk neutral, then this variation

* We may now see that the second-order conditions will be satisfied under a broad range of conditions.
Differentiating (12), we require 8 W/du® = 0AU [ g(e)g'(e)de — V() < 0. If the disturbance is symmetric, then
the first term drops out while the second term is negative by assumption. More generally, the second-order
conditions will be satisfied if 0AU[g?(¢) — g%(€)] < 2V"(u), where € and ¢ are the maximum and minimum values
on the support of e.
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is unimportant, and setting the prize according to (19) will achieve the full information
first-best outcome. In general, the principal will choose to sacrifice some efficiency to
reduce the risk borne by agents.

Theorem 2. A larger prize motivates greater effort and thus increases mean income.

Proof. To determine how effort varies with the prize, differentiate the worker’s first-order
condition (17),

0g[U(Y + x){dY/dx + 1} — U(Y — x){d¥/dx — 1}) = V"(u)du(8)/dx. 21
Multiplying through by 6 and taking expectations,
d¥/dx = {gSE[6*/V"(w(6N}/{1 — AUE[6*/V"(u(6))]} > O, (22)
where _
S=UF+x)+UF —x) and
AU =UX +x)— U —-x)<0.

Although agents believe that by working harder they will increase their chance of
winning, P, in fact both agents work equally harder, thereby leaving P at Y2 in equilibrium.
But as a result of their greater effort supply, the new feasible compensation scheme must
commensurately increase Y.

When the prize is sufficiently large to motivate the first-best level of effort, agents
may find the losing state of nature particularly unpleasant. In such circumstances, d¥/dx
can be greater than one and a contest has some of the features of a “rat race” (Akerlof,
1976). As the prize is increased, an agent works so much harder that his income in the

losing state, Y — x + (d¥Y/dx — 1)dx, is actually bigger than before; his increased effort
more than compensates for the increase in the prize.

O The optimal contest. We are now in a position to solve for the optimal prize, x, in
a two-person rank order tournament. Recall that at the symmetric equilibrium, P = %2
and effort supply is determined by (17), so that expected utility from (11) is

W= (1/2)[U(Y + x) + U(Y — x)] — E[V(V""'(6AUZ))). (23)
Differentiating with respect to x, at the optimal prize, X,
dW/dx = (1/2)SY' + (1/2)AU’ — E[V'du/dx]
= (1/2)SY’ + (1/2)AU’ — E[gAUbdu/dx]
= [(1/2)S — gAU1Y' + (1/2)AU’ = 0, (24)
where Y is as in (22) and the value of V' = AUg is taken from (17).

Theorem 3. There is an undersupply of effort in the second-best solution. Observable
increases in the agents’ effort levels improve their welfare.

Proof. At the optimal prize, if the principal could observe a marginal increase in effort,
the change in welfare would be

dW/du = [(1/2)S — gAU1Y > 0, (25)
which follows directly from (24).

7. Properties of the second-best solution using contests

@ This section considers when a prize system is likely to be an effective compensation
scheme.
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O Problem from a nonconvexity. Our model of a prize system will in general have a
pure strategy Nash equilibrium. There is one important exception.

Theorem 4. When the variance of ¢ becomes small, there is a nonconvexity in the
maximand that disrupts the second-best pure strategy solution.

Proof. As a? approaches zero, the increased chance of winning by working harder, 6g,
must become infinite. By definition, £ = E[g(e)]. When the variance of a mean zero
distribution approaches zero, the density collapses to a peak at the origin. The mean value
of the density then becomes arbitrarily large. For example, when g(e) is the normal density
with mean 0 and variance o2, then § = 1/[47c2]'/2

Intuitively, when there is a small amount of noise, a little more effort guarantees the
contestant first prize. As £ becomes large, the first-best level of effort can be generated
with arbitrarily small prizes. But, when the prize is very small, the symmetric solution
is only a local optimum. Why work at all? An agent who chooses not to supply effort
u* and instead does no work is sure to lose. The prize is so small, however, that while
he is forfeiting his chance at winning the vanishing amount AU, he saves all his disutility
of effort, V(u*) — 1(0).

Doing no work is not dropping out of the game. It is more akin to cheating on the
contract. With the variance of the noise becoming arbitrarily small, there would be no
doubt that this low output resulted from a lack of effort rather than bad luck. But the
prize reward system is too simple to deter this violation. The rewards are based only on
ordinal rank and so in this case, a mile is as good as a miss! Were different punishments
established for different low levels of output, this would be a return to general nonlinear
compensation schemes. Various resolutions of the problems presented by this noncon-
vexity are discussed in the conclusion, in Stiglitz (1980), and in Nalebuff (1982, chapt.
2). In the following analysis we must obviously restrict our attention to situations in which
there is sufficient noise that the symmetric solution is indeed an equilibrium.

O Comparison with the first-best level of effort. The claim in the summary that it is
possible for the second-best optimum with a prize scheme to motivate more effort than
in the first-best solution should be greeted with skepticism. If the first best is unobtainable
because the principal cannot monitor effort, and effort is undersupplied, then it would
initially seem doubtful that with a prize system we might desire more than the first-best
optimal amount of effort. But the introduction of a prize forces the agent to bear some
risk. The cost associated with this risk is related to his income. Agents with declining
absolute risk aversion can reduce this cost by working harder, earning a higher income,
and thus lowering their risk aversion. Examples in Nalebuff (1982) show that this effect
can be sufficiently strong for the second-best solution to involve more effort supply than
the first-best optimum.

This result is sensitive to the specification of the utility function. In the framework
of Lazear and Rosen (1981), expected utility is defined by’

W = E[U(Y ~ V(w))]. (26)

Here it must always be the case that the second-best level of effort is less than the first
best. This result follows from the fact that the optimal supply of effort, V'(u*) = 6, is
unaffected by any random fluctuations in income.

O The effect of changes in the variance in 6 in a contest. If the prize system is chosen
optimally, changes in the variance of ¢ affect expected utility directly and through the

3 One implication of this specification is that disutility of work is negatively correlated with income.
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effect on effort (but not through an effect on x). The direct effect of the change in the
distribution of 8 is difficult to sign and in general will depend on whether the disutility
of effort, ¥{(u(#)), is concave or convex as a function of 6.

Theorem 5. With a quadratic disutility of effort, welfare is an increasing function of the
variance of 8.

Proof.
V) = u’/2 = w(B) = 65AU; Y = gAUE[S®),  E[V(w(0))] = (1/2)3AUY, (27)

and

dY/AE[0%] = gAU/{1 — gAU'E[6%]} > 0. (27a)
To calculate the total effect of a change in the distribution of 4, note that
W= (1/2)[UY + x) + U(Y — x)] — (1/2)gAUY (28)

dw dx ow aY

dw/dEL*) = —— 50T " o 9E (29)
= [(1/2)S — (1/2)gAU — (1/2)gAU' Y19 Y/9E[6?] (29a)
> [(1/2)S — gAU){9Y/OE[6?]} > O, (29b)

where dW/dx = 0 and the final inequality both follow from the first-order condition (24)
determining X. In this example, mean preserving increases in the spread of 6 raise welfare.
Hence, the loss in welfare for zero variance in 8 represents an upper bound to the loss in
welfare from a contest. More generally, this result will depend on assumptions concerning
V" which determine how the new distribution of effort affects output and disutility
of work.

Stiglitz (1980) demonstrates conditions in which increases in the variance of § im-
prove welfare in a contest while they diminish welfare in a piece rate scheme. Intuitively,
when @ is highly volatile, to give piece rate workers a sufficient incentive to supply effort,
the piece rate must be positive and workers will bear the risk associated with large fluc-
tuations in Q;. In contrast, a contest can replicate the first-best level of effort and thus
the monetary value of the loss in welfare relative to the first best is strictly less than the
loss from the risk associated with the prize (which is of the order of —x2U"(Y)/2U'(Y))
which stays relatively constant as ¢ increases.

Although risk is normally associated with the variance of §, it may also be appropriate
to consider the effects of changes in the higher moments of 6. Consider a mean preserving
spread that increases the variance of 2 while holding both the mean and variance of §
constant. In the example of quadratic disutility of effort, from (27) and (28) welfare is
only a function of E[8?], and, hence,

dW/dE[8%] = 0. (30)
When workers have a quadratic disutility of effort, a contest is sensitive to the distribution
of 6 only through its first two moments.

8. Improving on the standard tournament
® This section introduces two modifications of the standard tournament which improve
the equilibrium outcome.

O Winning by a gap. The idea behind any incentive scheme in the principal-agent
problem is to provide large marginal incentives to work hard without exposing the agent

¢ This argument can be further generalized to show the conditions under which a contest will dominate
even nonlinear piece rate schemes as the variance of 8 becomes large.
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to risk. The introduction of “gaps” can lower the probability that any prize will be paid
while maintaining the same level of marginal incentives. Instead of ranking agents solely
on the basis of the relative position of their outcomes, a principal can decide to rank one
agent above another only if that agent’s output is greater than his opponent’s by a positive
gap. In horse racing and Olympic swimming, first place can be determined by a head or
a hair. But, in the marketplace, a firm is the leader in its industry only when it has a
significantly higher market share than its competitors’.

In a contest with a gap, v, there are three possible outcomes: win, lose, and tie. Let
the reward for tying be ¥ and the gain for winning over losing be as before, AU. In the
two-person contest, expected utility in the symmetric equilibrium is

W= (1 - 2P)U(Y) + PUY + x) + PUY — x) — E[V(w)]. (31)

Agent | wins if
Ouy + € > 0y + €2 + 7. (32)

This leads to a transformation of equations (15) and (16):

Py, pz, 0, v) = f [1 = GOz — p1) + &2 + v)]g(ex)de,. (15a)

At the symmetric solution, player 1’s increased chance of winning by working harder is

0P(u, u, 0)/0p, = 0 f 8(e2 + v)g(e2)dex = 6(v), (16a)

where g(y) = E[g(e + v)]. An increase in vy always lowers the probability that either agent
will win and it lowers that probability by an amount just equal to 1/8 times an agent’s
increased chance of winning by working harder,

0P/dy = —&(v). (33)

Theorem 6. If the distribution of the disturbance term is symmetric, or more generally
if g(¢) = g(¢), where € and ¢ are the maximum and minimum values on the support of
¢, then introducing a strictly positive gap will improve the outcome of a tournament.

Proof: The proof proceeds by solving for the optimal gap, v, and then showing that under
the conditions of Theorem 6, the optimal « is strictly positive. At the symmetric equi-
librium,

9g(v)/oy = Elg'(e + v)]. (34)
A change in v affects an agent’s effort supply and his expected level of output,
aY/0y = gAUEY/V")/{1 — gAU'E[8*/V"]}. (35)

The sign of this change is determined by the sign of '. As the prize, x, is chosen optimally,
an increase in v changes expected utility only through its effect on effort, expected output,
and the probability of winning,

OW/dy = —g(WMIUY + x) + UY - x) — 2U(Y))
+[PS + (1 — 2P)U(Y) — gAUNY".  (36)

The first term is always positive by the concavity of U(Y). At vy = 0, P = ', the second
term will have the same sign as Y’ since (1/2)S > gAU from (24). Under the conditions
of Theorem 6, Y’ will also be positive,

g(0)/3y = Yalg*(®) — &%) > 0 — ¥' > 0. (37

Hence, at v = 0, 3W/dvy > 0, and it is worthwhile to introduce a gap. More generally,
to solve for the optimal gap requires finding the solution to dW/dy = 0 from (36).
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Implementing the use of gaps in competitive reward systems within an organization
may also improve the sustainability of a contest. Workers who win contests and rise to
the top of the managerial hierarchy have the power to redesign the incentive scheme.
These top managers have had, on average, better than average luck. Many of the luckier
ones know that were they subjected to repeated evaluation through a contest, they might
lose their position. Thus, for a contest to be sustainable it is important to make skill and
effort more influential than luck in determining winners. One solution to this problem
is found in the asymmetric equilibrium with gaps (Nalebuff, 1982). If some agents work
harder than others, winners are determined mostly by extra effort and only sometimes
by luck.

O Contests with a large number of players. Increasing the number of players does two
things: the amount of information conveyed by output is expanded (as seen in the suf-
ficient statistic result in Section 4), and the scope for designing reward schemes is increased.
We start with a very simple generalization, a single prize to the one winner and postpone
the discussion of tournaments with n prizes until Section 12.

When there are n agents competing for a single prize, we can think of each of them
putting an amount x into a kitty and the winner collecting nx. At the symmetric equi-
librium, expected utility is

W= UY - x) + (1/n)AU(n) — E[V(w)}, (38)
where AU(n) = (Y — x + nx) — U(Y — x).
As before, we can calculate the expected return to increased effort. Assume that

everyone else supplies effort i, and the ith individual supplies effort x;; then, if he obtains
a realization ¢;, he wins only if

€ < ¢+ O0(p— i) for all j. (39)

The chance of this occurring is G(e; + 6(u; — r))"'. The probability of winning is the
expectation of this chance conditional on ¢;,

P= f G(ei + 8 — 1)) 'gle)de;. (40)

At the symmetric equilibrium, P = 1/n, and the marginal increase in the chance of
winning by working harder, dP/du, is

0P/ = 0g(n) = bB(n — 1) f [G(e)]"*g*(e)de. (41)

The principal can determine a prize, x*(n), such that each agent will supply the same
effort as in the first-best optimum by setting

g&mAUn) = U'(Y). (42)
In rewriting (19) as (42), we note that provided g(n) goes to zero slower than (1/n), then
AU(n)/n must in the limit be zero,

lim ng(n)- (AU(n)/n) = U'(Y) = [lim ng(n) = co — lim (AU/n) = 0]. 43)
Recalling the expected utility from (11), if the utility function has a linear asymptote’
(so that marginal utility is bounded below) and AU(n)/n approaches zero, then the prize
X must also approach zero and the level of utility will tend to the first best:

lim AUn)/n > nxU(Y + nx)/n = xU'(Y + nx) = 0 — lim x*(n) = 0, (44)

n—oo n—ow

7 Otherwise, if U(Y) tends to zero, then for any finite x, AU(n)/n approaches zero, and the nonconvexity
problem will still arise.
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lim W = U(Y) — E[V(u*)], the first-best level of utility. (45)

But, the symmetric equilibrium is disrupted by nonconvexity constraints. An agent

who chooses to do no work only loses AU with probability (1/n) while saving disutility
of effort V(0) — V(u*). The agent who chooses to do no work has an expected utility

lim W, = U(Y) — V(0) > U(Y) — E[V(p*(8))]. (46)

Increasing the size of the tournament was initially attractive as it provided better incentives

for smaller risks. Unfortunately, it also changes the rewards in a way that makes breaking

the equilibrium more attractive.

O Penalties. The solution to the nonconvexity problem is suggested in Mirrlees’ (1974)
discussion of a punishment scheme for workers who fail to meet their quota. In the
framework of contests, this implies a penalty for the single worker with the lowest output.
As the number of agents increases, the chance of being the one with the lowest output
becomes very small. But it is the marginal conditions that are important in determining
the size of the penalty. Provided the marginal incentives do not fall too quickly, the
principal will not need to give increasingly horrific punishments to the loser.
Mathematically, the punishment model is identical to the prize model if we replace
x by —x and the chance of winning by the chance of losing. At the symmetric equilibrium,

W(n) = U(Y + x) — AU(n)/n — E[V(u(9))), (47)

where AU(n) = U(Y + x) — U(Y + x — nx). As before with a single prize, the first-order
condition determining effort is

—0AUmE(n) — V'(u(6)) = 0, (48)

where §g(n) is the marginal decrease in the chance of losing by working harder, and
&mn) = —(n— l)f [1 = G’ (e)de. (49)

In general, when the error distribution is on a support [—co, o}, the marginal change in
the probability of losing, 8¢, will tend to zero as the number of players becomes very large.
But, provided the approach is slower than 1/n (that is, the limit as n — oo of
ng(n) = —oo), then the expected utility of the agents will approach the first-best optimum
and a pure strategy Nash equilibrium will exist.

To replicate the first-best level of effort supply, choose x such that

U(Y) = —gm)AU = —ng(m)[AU(n)/n). (50)

As —ng approaches infinity, the prize must be such that AU(n)/n tends to zero. If
AU(n)/n goes to zero, then the prize must also approach zero,

AUn)/n > nxU (Y + x)/n = xU(Y + x). &)
Thus, welfare approaches the first best,
W =lim U(Y + x) — AU(n)/n — E[V(u*(6))) = U(Y) — E[V(u*(0))]. (52)

In the penalty framework, the solution with all workers supplying effort levels
w*(0) will be a Nash equilibrium. In the model with only a single winner, shirking costs
at most AU(n)/n, which falls with n eventually to zero. Here, shirking may cost as much
as (n — 1)AU(n)/n, which rises with n up to AU(n). Shirking may not cause a player to
forfeit his entire chance of winning. The agent’s maximization problem is concave because
(i) the more an agent shirks, the less he saves on the margin as his marginal disutility of
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FIGURE 1

CHEATING WHEN THERE IS A PENALTY SHIFTS THE MARGINAL EPSILONS TOWARDS 0
AND A REGION WITH A HIGHER DENSITY. CHEATING WHEN THERE IS A PRIZE SHIFTS
THE MARGINAL EPSILONS UPWARDS, BUT AWAY FROM THE ORIGIN, TOWARDS A
REGION WITH A LOWER DENSITY.

gl€) h DENSITY OF THE
ERROR DISTRIBUTION

DECREASED CHANCE OF LOSING
BY WORKING HARDER WHEN
SLACKING OFF

MARGINAL INCENTIVES
AT NASH EQUILIBRIUM

INCREASED CHANCE
OF WINNING BY
WORKING HARDER
WHEN SLACKING OFF
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effort is assumed to be increasing, (ii) the more an agent shirks, the marginal epsilons on
which he loses will be smaller and thus more likely and hence the greater is his marginal
cost in terms of an increased chance of losing. More formally, for unimodal distributions
with sign (g'(e)) = —sign(e), the marginal decrease in an agent’s chance of losing becomes
increasingly negative the more he shirks.

In a contest with just a prize to the winner, as an agent cheats more, the marginal
epsilons on which he wins become greater and thus less likely so that the marginal cost
from cheating falls and the problem has a nonconvexity. This is illustrated in Figure 1.
There is a danger in trying to translate Mirrlees’ argument suggesting infrequent but large
penalties into high but unlikely bonuses. Holmstrom (1982, Theorem 4; 1977, p. 242)
claimed “if the agent’s utility function has a linear asymptote and the principal is risk
neutral, then we can essentially reproduce the earlier argument to conclude that first-best
approximations via high but unlikely bonuses are possible.” The problem may be locally
concave (so that the second-order conditions are locally satisfied), but if the first best is
to be approximated, then the expected prize must go to zero. An agent who cheats can
do no worse than lose the expected prize which is going to zero while saving all of his
disutility of effort. The first-order conditions do not describe the global optimum. In
contrast, with a penalty, the more an agent cheats, the more his costs rise. If he could
cheat enough, the expected penalty would go from zero to a sure loss of —AU(n).

9. Individualistic schemes: piece rates and quotas

B The two simplest and most commonly studied compensation schemes are the linear
piece rate system and the quota system. Here we analyze these reward devices to compare
them with contests.
The zero-profit condition implies that an agent’s compensation under a linear piece
rate scheme is
Y= aQi+ (1 — a)Q. (53)
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An individual receives as compensation the expected output plus an incentive bonus
based on the difference between his output and the expected output of the group. The
first-order condition determining effort supply®

abE[U'(aQ; + (1 — 2)Q)] = V'(u(6)). (54)

As in the contest, u adjusts to 8. But the response is less than with a contest or in
the first-best optimum,

@:
do

It is even possible for u to move inversely with §. When ¢2 and ¢? are small, then for
logarithmic utility du/df ~ 0.

For a fixed piece rate and small 62, a change in the variance of ¢ increases or decreases
effort according to U” > 0 or U” < 0. In contrast, the effect in a contest from the change
in the distribution of ¢ depends only on the effect on g.

The simplest nonlinear individualistic payment scheme is the quota (or bonus)

scheme, with R
Y= {Y. if 0o>0

a[E(U" + abpUN)/[V" — o202EU"). (55)

Y, if Q<0 (56)
The individual chooses u to
max U(Y))(1 = G(Q — uf)) + U(Y)G(Q ~ ub) — V), (57)
which has a first-order condition
6AUg(Q — 1b) = V'(u(0)), (58)

where AU = U(Y,) — U(YY).

There are two immediate difficulties with the use of such a simple quota or bonus
scheme. First, even when the worker is risk neutral, the bonus scheme cannot replicate
the first-best solution (because g’ # 0 unless g is uniform). Second, there is a nonconvexity
problem that arises when 8 is small. When the quota is high and the task is difficult, then
the worker may decide that it is not worth competing for the bonus.

10. Comparison of contests and piece rates

B A prize system is likely to be better than a piece rate when the range of outputs is
highly variable. A contest truncates the extreme possibilities, restricting the risk to +.x.
In a piece rate system, the worker must accept a small chance of a very small income.

Both the piece rate and the contest are able to achieve the first-best level of effort
when agents are risk neutral. In the piece rate system, the principal sets the piece rate,
«, equal to one. There is no loss from risk, and incentives are identical to what they would
be in the first-best optimum. In the contest, the principal can induce the first-best level
of effort state by state by setting the prize x according to (19), x* = 1/(2¢). Having
motivated u*(# ), the prize does not affect the agent’s utility because its expectation is zero
and the agent is risk neutral.

Although there are many ways to introduce risk aversion, we consider just the simple
example of a quadratic utility function so that

W= E{a+ bY — c(Y — Y*? — u?/2}, (59)
where Y* is the expected output in the first-best solution. Of course, ¢ = 0 corresponds

to risk neutrality. We start by considering changes in the expected utility of the contest
as ¢ is increased from 0,

8 As discussed in Arnott and Stiglitz (1980), there may be problems with the second-order conditions.
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dWC/ldc -0 = (AWC/dx)(dx/dc) + (W /au)du/dc) + IW*/dc. (60)

The first term is zero as the prize, X, is chosen optimally. Effort supply is determined by
u = 0gAU = 852bx. (61)

The optimal effort level is not directly affected by changes in ¢ when ¢ = 0 and thus the
second term is also zero. The utility loss from an increase in risk aversion is thus pro-
portional to the variance of the risk, x. This result does not depend on either ¢2 or ¢2
being small. At ¢ = 0, x = 1/[22] and

dWCldcc—o = OWC</dc = —E[(Y — Y*)?] = —x? = —1/[4g?). (62)
In the piece rate system,
dW?jdc ..o = (AW?/da)(dajdc) + (@W?P/Iu)(du/dc) + (@W?P/dc). (63)

As o is optimally chosen at 1, a slight change in « will have no effect. From the worker’s
optimal choice of effort supply, the decrease in consumption due to less effort is just offset
by the gain in leisure, dW?/du = 0. Again, the only term that is important is the direct
effect of ¢. The variance of output is the sum of the variance of ¢ and the variance of
0u(8). At ¢ = 0, u = b8, so that the variance of 9u(8) is b* Var (8°):

dW?/dcic-o = (W?/dc) = —(a? + b* Var (8?)). (64)

Comparisons between the welfare of contests versus linear piece rates are very easy
to make for small c,
we¢> we if (62 + b? Var(6?) > 1/[457]. 65)

Clearly, for large enough values of Var (8%) the contest will always be preferred. Even
when Var (8%) = 0, it is possible to find distributions of e such that the contest is better
(for example g(¢) = %he* on [—1, 1] and O elsewhere).’

11. Relative performance

@ The distinctive feature of contests is that only information about rank is used in
determining compensation. We consider here some simple schemes in which the mag-
nitude of relative performance enters into the compensation scheme. This will enable us
to obtain some intuition concerning the kinds of situations where contests may be
preferred.

Consider the compensation scheme

Y;i=BQ-Q)+7Y. (66)

The amount received by the individual is a fixed sum, Y, plus a linear function of the
difference between the two individuals’ levels of output. In the symmetric equilibrium

Yi=Be—¢)+ 7, (67)

and hence the variance of the individual’s income is just 28%¢2.

The two agents’ outputs have identical correlation with 6, but independent ¢;’s. Rel-
ative to an individualistic piece rate, using a second agent’s output as a negatively cor-
related “asset™ eliminates all the uncertainty in income due to the variance of 6u(6) at
the expense of adding the variance of another e. This scheme will be preferred to an
individualistic piece rate if E(¢?) is sufficiently smaller than E[(8u(6))?).

% From the sufficient statistic theorem we know that when 8 is constant, the optimal nonlinear piece rate
is superior to a contest. The fact that it is possible to demonstrate a prize system that dominates a linear piece
rate when 6 is constant is conclusive proof that a linear piece rate is far from optimal when the utility function
is quadratic with only a slight amount of risk aversion.
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This compensation scheme is further illuminated in the context of Holmstrom’s
(1982) sufficient statistic results. With a large number of agents, compensation can be
based on the difference between an individual’s production and the average output. As
the average output converges to the true 6u(9), agents need only bear the risk associated
with their individualistic noise, ¢;.

Compensation based on the magnitude of the differences between two agents’ outputs
can motivate the first-best level of effort by choosing 8 (potentially greater than 1) ac-
cording to

BEIU'(B(er — &) + 1)) = U(Y). (68)

This is not the case, however, if we base compensation on the ratio of the ind_ividual’s
output to the mean output when there is a large number of agents, Y; = f(Q/Q),

Qi Hi €
= =4 — 69
0w o ©
Individuals will set u; so that |
— ELUf1 = V(. (70)
)

Here, p varies with 6 only through the effect of f. Thus,
@ _ _E{(Ur/fnz + U’f")e;}/uzliz
do V" — E( U”frz + U/f”) / p'Z :

(70

If 2 = 0, u is invariant to @ in contrast to the first-best solution, where an increase in
the productivity of the individual () leads to an increase in his effort. This relative
performance criterion lacks the important property of ““flexibility” we emphasized earlier.

12. Extensions: tournaments with multiple prizes

m As the number of participants in a tournament becomes large, it is possible to improve
on a single-winner or single-loser tournament by taking advantage of the increased flex-
ibility of having n different prizes. Let the probability that an agent i finishes in position
j up from the bottom be P(Q; = j). Then

-
RQ = )= | o #0610 — )+ 1L~ Glos ~ 8) + O)F e, (72)

where p is the effort level of the other » — 1 agents. At the symmetric equilibrium
(z; = R), agent i has an equal chance of ending up in any position, XQ; = j) = 1/n. When
the prize for coming in at position j is @;, then expected utility is

W= (l/n)[gl U(@;)] — E[V(u(0)]. (73)
Effort supply is determined by
> 01 1y, - viuey - o (74)
j=1 Wi

By working harder at the symmetric equilibrium there is an increased (or decreased)
chance of coming in at position j,

- ) )
oM@ = i)ioui=0 ﬁ,f_—,), g1 — GOy G(ey
X {(j = (1 = G(&) — (n — )G(O)}de. (75)

It is tempting to hypothesize that a tournament with enough different positions can
essentially replicate any general individualistic nonlinear compensation scheme. The idea
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would be to divide the general nonlinear scheme into percentiles and then to approximate
it by a reward structure that is flat over the range of a percentile (as is done in Green and
Stokey (1981)). The reward in a contest for an agent who has rank f is then equalized
with the payment to an agent who places in the 100j/nth percentile. While these two
compensation schemes yield the same expected utility at the symmetric solution, the
marginal incentives are not the same. Thus, the equality cannot in general be sustained
in a Nash equilibrium. In a contest, from equations (74) and (75), the optimal effort
supply satisfies

V'(1(6))/6 = constant (independent of 8). (76)

For the general nonlinear piece rate scheme, Y(Q)), the first-order condition determining
effort supply does not have disutility of effort proportional to 6,

OELU'{Y(6u(6) + )} Y(Q)] = V'(u(6)). n

The nonlinear piece rate scheme is only able to duplicate a contest (and vice versa)
when either (i) 8 is not variable (Green and Stokey (1981) considered a model where the
common disturbance did not affect the marginal productivity of effort), or (ii) the agent
is induced to act as if he were risk neutral, U(Y(Q)) = z, + z,Q defines Y(Q).

There are two special cases where it is relatively easy to consider the optimal prize
structure in a rank order tournament with # positions,

(1) uniform density, g(e) = & {e[—A4, 4]},
(2) exponential density, g(e) = e {&:[—c0, 1}}.

With a uniform error distribution, prizes 2, ..., n — 1 contribute nothing towards
work incentives. The chances of moving in and moving out of any interior position are
the same. Hence, the net increase in the probability of winning any interior prize by
working harder is zero. All the incentives must be provided by &, and &,. To
minimize risk, the principal will find it optimal to equalize all of the interior prizes,
@y = @3 = + -+ = &,.,. Even with n potential prizes, the most general reward schemes
with a uniform error distribution require only three different prizes: a last place, a first
place, and a constant middle prize. This result has to be qualified to the extent that as
the number of positions becomes large, the principal may have to use a greater number
of penalties to ensure that the agents choose the interior maximum.

With an exponential density, it can be shown that increasing effort supply reduces
equally the probability of getting anything but the top prize. Because the marginal in-
centives are exactly the same for n — 1 of the prizes, these prizes should be equalized to
minimize risk. Hence, the principal only needs two distinct prizes to achieve the general
second-best solution using a tournament.

Although as before there is still the qualification about nonconvexities, these examples
show that the study of tournaments with a simple reward structure may indeed approx-
imate the solution for a more complicated rank order tournament.

13. Extension: when output is nonlinear in effort

B The analysis up to this point has considered only cases in which output, Q;, is linear
with regard to effort, Q; = 6u; + ¢;. A more general framework is to have output as a
function of effort. If we think of ¢ as a measurement error, then

(1) Qi = F(Ou) + ¢.

A second (and perhaps more interesting) case is when ¢ may be reasonably interpreted
as a luck factor in which case
(ll) Q,' = F(Hu,- + 6,').
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Recall that effort is chosen once the common environmental factor, 8, is known.
In case (i), the first best is characterized by:

Y = E[F(O:(0)] (78)
and
QU'(Y)F'(0pi(0)) = V'(ns) defines pi(6). (79

In a tournament effort is supplied to increase one’s chances of winning. Player 1 wins
if F(11,0) — F(u:0) + €, > €. At the symmetric solution, g, = u2, working harder increases
the probability of winning by a factor proportional to F’,

dP(u, p, 0)/0u; = Py, = 0F'(6p:(6)) f gX(e)de = OF'(Op:(0))g (80)
and
P, AU = V'(u;(0)) defines ui(9). (81)

The principal can still replicate the first-best level of effort by choosing a prize such that
gAU = U'(Y). The analysis of tournaments may be carried out as before.

It is more interesting to consider the interpretation where ¢ is like a luck factor. For
this case, in the first best,

OU(Y )F'(6pi(8)) = V'(wi()) defines'® p;. (82)

With a tournament in this situation, the presence of the production function Fis irrelevant
in determining the winner of the process as it is nothing more than a monotonic trans-
formation of uf + €. That is,

F(0ui(0) + €) > F(0ux(0) + &) = 8u,(0) + € > Oua(6) + €. (83)
Hence, the first-order condition determining work effort is just
6gAU = V'(u;(8)) defines u(0). (84)

Unfortunately, the expression is now missing the term F’ and thus except when F is
linear, we can no longer replicate the first-best effort supply using a tournament. Hence,
even when agents are risk neutral the first best is not achievable.

14. Prizes that influence choice of techniques

B The choice of techniques when the reward system has a prize structure was initially
studied in the context of credit rationing by Stiglitz and Weiss (1981). A loan from a bank
is like a quota coupled with a linear piece rate. Should the agent earn less than the interest
payment, he goes bankrupt and is rewarded zero. If he has produced more than his interest
payment, the agent may keep the surplus. A rise in the interest rate (quota level) results
in “riskier” (Rothschild and Stiglitz, 1970) strategies’ being adopted by the borrowers.

Credit rationing may result from lending banks’ being unwilling to accept the greater
risks that accompany higher interest rates. But in other circumstances these greater risks
would be welcomed. In contrast to the credit market, a potential advantage of competitive
compensation schemes (i.e., contests or quotas) over piece rates is that they encourage
entrepreneurs to disregard their natural risk aversion and choose more profitable although
riskier strategies. This benefit is especially great in fields like research and development
where prizes (in the form of patents) encourage risk taking that can dramatically shorten
the time to discovery.

19 The other variables are defined by F = E[F(8u(8) + ¢)], the expectation is taken over ¢ and ¥ = E[F],
the expectation is taken over 8.
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The compensation schemes we have been considering simply do not have enough
instruments to separately control both inputs (effort) and techniques.

15. Concluding remarks

@ Society may find the aftermath of competition, that is the presence of losers, to be
unacceptable. An advantage of individualistic schemes is that everyone can have a high
output, meet quota, and be rewarded. By contrast, when the principal does not know
where to set the quota and thus bases rewards on relative performance, someone must
come in last and be a loser. A problem with penalties is that they can become self-
perpetuating. The loser becomes demoralized, fails to continue competing, and thus con-
tinues to lose. But prizes alone are ineffective in motivating effort from a large group as
the expected prizes are too small to stop shirking.

Competition works best when all the participants are similar. A difficulty with the
implementation of penalties is that the losers are usually more than just unlucky, they
are often not so able. For them to compete, they would have to work harder than the
average worker. Worse, the presence of a sure loser destroys everyone’s incentives to work
hard. When the different relative abilities are known, handicapping (i.e., as in golf tour-
naments) can restore the competitive environment that arises in a “fair”’ contest.

In noncompetitive production arrangements, considerable reliance may be placed
on social incentives rather than on economic incentives. Individuals do not shirk because
of the disapproval it generates. The nonconvexity problem with a small prize and a large
number of players arises from each worker’s desire to do no work and still reap the
benefits of the loser’s prize. Although the manager (principal) is assumed unable to mon-
itor the agents’ effort levels, it is likely that workers can observe each other. A worker
may be reluctant to report a coworker who is doing only slightly less work, but the cheating
strategy involves a discreet reduction in effort. If we can penalize cheaters rather than
just giving them the loser’s prize, then a pure strategy Nash equilibrium will exist even
for the smallest of prizes. The possibility of obtaining the first-best solution gives each
individual an incentive for extending disapproval to those who shirk (cf. Akerlof and
Soskice’s (1976) theory of sanctions).

The use of competitive compensation schemes seems less widespread than their
evident advantages would suggest. This may be a result of important aspects of worker
satisfaction which traditional economic models ignore. These considerations (i.e., work
environment, group homogeneity) are probably less important in the analysis of com-
petition between firms than in the competition within a firm.

In situations where contests are frequently observed, such as a patent race, there may
be technological returns to cooperation, as in sharing information. In the competitive
system, there are no incentives for cooperation. There are even rewards from engaging
in destructive activity if it can hurt one’s rival more than oneself. The piece rate system
will encourage agents to cooperate when it is mutually beneficial, and this potentially may
be very important. When the principal’s reward function is strictly convex with respect
to his agents’ outputs, there is a further tradeoff in using contests. Although agents may
have better incentives to work, there is an efficiency loss to the principal of having more
than one project in operation (Nalebuff and Varian, 1981).

The models presented in this article have argued that there is a distinct role for
competition—real competition, in the sense the word is ordinarily used, not the peculiar
static sense in which much of neoclassical economics has come to use the term—in
situations where there is imperfect information about the difficulties associated with dif-
ferent tasks, where it is prohibitively costly to observe inputs directly, and where it is
difficult to measure the outputs with precision. The advantage of competitive systems is




NALEBUFF AND STIGLITZ / 41

that they have greater flexibility and greater adaptability to change in the environment
than do other forms of compensation.

Appendix
Mixed strategy equilibria

B We have shown in the text that in the simple prize to the winner contest, no symmetric
pure strategy Nash equilibrium exists either as the number of contestants becomes large
or as the variance (risk) due to epsilon vanishes. In both instances, the expected prize is
sufficiently small that it is not worth competing for it. Thus, both agents would prefer to
do no work and earn the loser’s reward. This difficulty can be partially eliminated by
combining performance standards with contests when e has a finite support (Stiglitz,
1975). Here we consider the mixed strategy equilibrium.

Assume, as the extreme case, that ¢? = 0. Clearly, any individual can, by increasing
his level of effort slightly above that of his rival, assure his victory. Each contestant’s
reaction function is discontinuous, and no pure strategy equilibrium exists. Let H(u) be
the probability distribution of the maximum of the effort levels facing an individual
competitor. In a mixed strategy equilibrium, the expected utility of an individual when
pursuing any effort level, u;, must be constant,

U(Y — x) + Hu)AU — V(w) = k. (A1)

Clearly, if
k=UY — x) — V0) and (A2)
H(u) = [V(p) — V(0))/AT, (A3)

the individual is indifferent as to his level of effort. Let the distribution of an individual’s
effort supply be R(n). With n players, each agent faces n — 1 opponents,

H(y) = R(u)y"™ (A4)
R(p) = {[V(w) — O))/AU}/"1, (Ada)

The expected output is X )
Y= f ur(p)dp = f [1 — R(u))dp, (AS5)

0 0

where the maximum level of effort i satisfies
(i) — V(0) = AU. (A6)

The optimal feasible mixed strategy equilibrium is determined by the choice of a
prize, x*, that maximizes expected utility, k. From equation (A2) this implies

Uy —-x[Y-1]1=0. (A2a)
Thus, we shall look for the solution to ¥’ = 1. From (A5) and (A6),
dY¥ydx = [(i — ¥)S)/[(n — NAU — (& — Y)AU]. (A7)

To provide a complete example of the mixed strategy solution, we further assume
(i) V() = 4*/2 and

(ii) U(x) = x, risk neutrality.

We choose a risk neutral utility function because it is analytically simple and because
deficiencies of the mixed strategy solutions will be most apparent when compared with
the first-best outcome that is achievable by using a simple piece rate. Substituting into
(A5) and (A6) yields
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i/2 = 2x, (A6a)
Y= f C {1~ /R Y = 2/ + 1), (ASa)
0

At x*, dY¥/dx = 1, which from equation (A7) implies
n—x=[E—-7] (A7a)
Thus at the optimal mixed strategy equilibrium
E=4/(n+1), x* = 4/[(n + 1)}, and Y=8/[(n+ 1), (A8)
expected utility: EU = U(Y — x*) — V(0) = ¥ — x* = 4/[(n+ 1)3).
In the first-best solution, workers choose u to maximize
EU=p—p}2 - p*=1 and EU=5 (A9)
We observe that with only two workers, the mixed strategy is able to come reasonably

4 /1 - .
close (5 / 5) to the first-best level of utility. But as the number of contestants increases,

competition of this form is so ruthless that all consumer surplus is eliminated. Since
workers know that once they become engaged in a competitive battle, all of their consumer
surplus will be competed away, they will not sign contracts of this form (if there are
contracts with positive consumer surplus available). When ¢? is small, the terms of the
contest can be set in such a way that ruthless competition prevails only for some values
of 9, while for other (smaller) values of 6, a conventional contest occurs. Contracts entailing
some piece rate compensation can also eliminate such quandaries (see Gilbert and Stiglitz
(1979) for a more extended discussion in the context of patent races).
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