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ABSTRACT

Tournaments with forbidden substructures and

the Erdös-Hajnal Conjecture

Krzysztof Choromanski

A celebrated Conjecture of Erdös and Hajnal states that for every undirected graph

H there exists ε(H) > 0 such that every undirected graph on n vertices that does

not contain H as an induced subgraph contains a clique or a stable set of size at

least nε(H). In 2001 Alon, Pach and Solymosi proved ([2]) that the conjecture has

an equivalent directed version, where undirected graphs are replaced by tourna-

ments and cliques and stable sets by transitive subtournaments. This dissertation

addresses the directed version of the conjecture and some problems in the directed

setting that are closely related to it. For a long time the conjecture was known to

be true only for very specific small graphs and graphs obtained from them by the

so-called substitution procedure proposed by Alon, Pach and Solymosi in [2]. All

the graphs that are an outcome of this procedure have nontrivial homogeneous sets.

Tournaments without nontrivial homogeneous sets are called prime. They play a



central role here since if the conjecture is not true then the smallest counterexample

is prime. We remark that for a long time the conjecture was known to be true only

for some prime graphs of order at most 5. There exist 5-vertex graphs for which

the conjecture is still open, however one of the corollaries of the results presented in

the thesis states that all tournaments on at most 5 vertices satisfy the conjecture.

In the first part of the thesis we will establish the conjecture for new infinite classes

of tournaments containing infinitely many prime tournaments. We will first prove

the conjecture for so-called constellations. It turns out that almost all tournaments

on at most 5 vertices are either constellations or are obtained from constellations

by substitutions. The only 5-vertex tournament for which this is not the case is a

tournament in which every vertex has outdegree 2. We call this the tournament C5.

Another result of this thesis is the proof of the conjecture for this tournament. We

also present here the structural characterization of the tournaments satisfying the

conjecture in almost linear sense. In the second part of the thesis we focus on the

upper bounds on coefficients ε(H) for several classes of tournaments. In particular

we analyze how they depend on the structure of the tournament. We prove that

for almost all h-vertex tournaments ε(H) ≤ 4
h
(1 + o(1)). As a byproduct of the

methods we use here, we get upper bounds for ε(H) of undirected graphs. We also

present upper bounds on ε(H) of tournaments with small nontrivial homogeneous

sets, in particular prime tournaments. Finally we analyze tournaments with big

ε(H) and explore some of their structural properties.
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11
Introduction

1.1 Notation and basic definitions

We use || to denote the size of the set. Let G be a graph. We denote by V (G) the

set of its vertices and by E(G) the set of its edges. By |G| we denote the number

of vertices of G and call it the size of G. For a graph G and a subset X ⊆ V (G) we

denote by G|X the subgraph of G induced by X and by G\X the graph obtained

from G be deleting all vertices from X and all edges with at least one endpoint in

X.

If an undirected graph G does not contain another undirected graph H as an

induced subgraph then we say that G is H-free. A clique in an undirected graph is
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a set of pairwise adjacent vertices and a stable set in an undirected graph is a set

of pairwise nonadjacent vertices. We denote by ω(G) the size of the largest clique

and by α(G) the size of the largest stable set of the undirected graph G. For an

undirected graph G we denote by Gc the complement of G, i.e. the graph with the

same set of vertices as G and such that there is an edge between two vertices in Gc

iff there is no edge between these two vertices in G.

An undirected graph G is bipartite if its vertex set V (G) can be partitioned into

two subsets V1, V2 such that no edge of G has both endpoints in V1 or in V2. We

call subsets V1, V2 the color classes of G. Bipartite undirected graph G with color

classes V1, V2 is complete if for any two given v1 ∈ V1, v2 ∈ V2 there is an edge

{v1, v2} ∈ E(G). A complete bipartite graph G in which the sizes of two its color

classes differ by at most 1 is called a bi-clique. A matching in a bipartite graph

is the set of edges such that no two of them are incident to the same vertex. A

matching is called perfect matching if every vertex of a bipartite graph is incident

to some edge of it.

A tournament is a directed graph such that for every two vertices v and w exactly

one of the directed edges (v, w) or (w, v) exists. If (v, w) is an edge of the tournament

then we say that v is adjacent to w and w is adjacent from v. In such a case vertex

w is an outneighbour of a vertex v and vertex v is an inneighbour of a vertex w. The

outdegree of a vertex v of a tournament T is the number of vertices of T adjacent
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from it. For two disjoint sets of vertices V1, V2 ⊆ V (T ) we say that V1 is complete

to V2 (or equivalently V2 is complete from V1) if every vertex of V1 is adjacent

to every vertex of V2. A tournament is transitive if it contains no directed cycle.

For the set of vertices V = {v1, v2, ..., vk} we say that an ordering (v1, v2, ..., vk)

is transitive if v1 is adjacent to all other vertices of V , v2 is adjacent to all other

vertices of V but v1, etc. If a tournament T does not contain another tournament

H as a subtournament then we say that T is H-free. In this definition we consider

tournaments to be unlabelled.

A coloring of a tournament H is an assignment of colors to its vertices such that no

directed triangle is monochromatic. The minimal number of colors needed to color

H is called the chromatic number of H and will be denoted as χ(H).

We denote by t(H) the number of directed triangles of the n-vertex tournament

H. A tournament H is called δ-dense if it contains at least δ|H|3 directed triangles

(not necessarily edge-disjoint).

Let us say that ε ≥ 0 is an EH-coefficient for a tournament H if there exists c > 0

such that every H-free tournament G satisfies α(G) ≥ c|G|ε. (We introduce c in

the definition of the Erdős-Hajnal coefficient to eliminate the effect of tournaments

G of bounded order; now, whether ε is an EH-coefficient for H depends only on

arbitrarily large tournaments not containing H.) For a fixed tournament H, define

ξ(H) to be the supremum of all ε for which the following holds: for some n0 and
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every n > n0 every H-free tournament with n ≥ n0 has a transitive subtournament

of size at least nε. We call ξ(H) the EH-supremum of H. For a fixed undirected

graph G, define ξ(G) to be the supremum of all ε for which the following holds:

for some n0 and every n > n0 every G-free undirected graph with n ≥ n0 has a

clique or a stable set of size at least nε. We call ξ(G) the EH-supremum of G. The

Erdös-Hajnal Conjecture is true if and only if ξ(H) > 0 for every H.

There exist tournaments H (so-called celebrities) that satisfy the conjecture in

the strongest - linear sense. For a celebrity H there exists c(H) > 0 such that if

a n-vertex tournament does not contain H as a subtournament then it contains a

transitive subtournament of size at least c(H)n. All tournaments H with this prop-

erty were described in [7]. However the question whether there exist tournaments

satisfying the conjecture in almost linear sense remained open. A tournament H

satisfies the conjecture in almost linear sense if it is not a celebrity but for every

0 < ε < 1 there exists nε such that for every n > nε every H-free n-vertex tourna-

ment contains a transitive subtournament of size at least nε. We prove in the thesis

that tournaments with this property exist and describe all of them (this chapter is

based on a joint work with Maria Chudnovsky and Paul Seymour, see [12]). As a

corollary we describe all tournaments H with ξ(H) > 5
6
.

The EH-supremum for a tournament H is not necessarily itself an EH-coefficient for

H; indeed, most of the Chapter 2 concerns finding tournaments H with ξ(H) = 1
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for which 1 is not an EH-coefficient.

A subset of vertices S ⊆ V (G) of a tournament G is called homogeneous if for

every v ∈ V (G)\S the following holds: either ∀w∈S(w, v) ∈ E(G) or ∀w∈S(v, w) ∈

E(G). Similarly, a subset of vertices S ⊆ V (G) of an undirected graph G is called

homogeneous if for every v ∈ V (G)\S the following holds: either ∀w∈S{w, v} ∈

E(G) or ∀w∈S{w, v} ∈ E(Gc). A homogeneous set S is called nontrivial if |S| > 1

and S 6= V (G). A graph is called prime if it does not have nontrivial homogeneous

sets.

All logarithms used in the thesis except those in Chapter 2 are natural logarithms.

All graphs considered in the thesis are finite, loopless and without multiple edges.

This thesis is organized as follows:

• in this chapter we introduce the conjecture and several definitions used later,

we also show some previous results concerning the conjecture,

• in Chapter 2 we give a complete structural characterization of all tournaments

satisfying the conjecture in almost linear sense,

• in Chapter 3 we give several definitons and technical lemmas used in Chapters

3 and Chapter 4,

• in Chapter 4 we formally define an infinite family of tournaments called con-

stellations and prove the conjecture for tournaments from this family,
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• in Chapter 5 we prove the conjecture for all tournaments on at most 5 vertices,

• in Chapter 6 we give upper bounds on EH-suprema for several classes of tour-

naments, in particular we present upper bounds for almost all tournaments

and tournaments with small nontrivial homogeneous sets,

• in Chapter 7 we summarize all our results and mention some open problems

related to the conjecture.

1.2 The conjecture

A celebrated unresolved Conjecture of Erdös and Hajnal ([18]) states that:

1.2.1 For every undirected graph H there exists ε(H) > 0 such that every n-vertex

undirected graph that does not contain H as an induced subgraph contains a clique

or a stable of size at least nε(H).

In 2001 Alon, Pach and Solymosi proved ([2]) that Conjecture 1.2.1 has an equiv-

alent directed version, where undirected graphs are replaced by tournaments and

cliques and stable sets by transitive subtournaments.

The equivalent directed version ([2]) states that:

1.2.2 For every tournament H there exists ε(H) > 0 such that every n-vertex

H-free tournament contains a transitive subtournament of size at least nε(H).
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We say that an undirected graph H has the Erdös-Hajnal property (or equivalently:

the conjecture is true for H / is satisfied by H) if there exists ε(H) > 0 such

that every H-free n-vertex undirected graph contains a clique or a stable set of

size at least nε(H). Similarly, we say that a tournament H has the Erdös-Hajnal

property (or equivalently: the conjecture is true for H / is satisfied by H) if there

exists ε(H) > 0 such that every H-free n-vertex tournament T contains a transitive

subtournament of size at least nε(H). The Erdös-Hajnal property is a hereditary

property, i.e. if a graph H has the Erdös-Hajnal property then all its induced

subgraphs also have the Erdös-Hajnal property.

Note first that the conjecture is true if and only if for every tournament H its

EH-supremum ξ(H) is positive. Equivalently, the conjecture is true if and only if

for every undirected graph G its EH-supremum ξ(G) is positive.

We cannot find stable sets or cliques of polynomial size in the undirected setting, or

transitive subtournaments of polynomial size in the directed setting for an arbitrary

graph if we do not assume anything about its structure. Indeed, if we take a

random graph on n vertices, where for every pair of different vertices v,w we make

v adjacent to w independently and with probability 1
2

then with probability tending

to 1 as n→∞ its biggest cliques and and stable sets are only of logarithmic order.

Similarly, for an n-vertex tournament, in which for every pair of different vertices

v, w we make v adjacent to w with probability 1
2

independently for every pair,
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with probability tending to 1 as n → ∞ its biggest transitive subtournaments are

of logarithmic order. Therefore the conjecture states that if a graph H is fixed

and we consider only the family of H-free graphs then the logarithmic sizes of

the mentioned substructures may be replaced by polynomial sizes. If true, the

conjecture says that the local condition of not having some forbidden subgraph H

implies a global structural property of having some very simple large substructure.

The emergence of a clique or a stable set of size ω(log(n)) has been already proven

by Erdös and Hajnal in the same paper where the conjecture was stated ([18]).

1.2.3 For any undirected graph H there exists ε(H) > 0 such that every H-free

n-vertex undirected graph contains a clique or a stable set of size at least eε(H)
√

log(n).

A similar theorem can be proven for tournaments. Thus the conjecture states that

in the theorem above we can replace
√

log(n) factor by log(n) factor.

In the directed version of the conjecture one needs to prove the existence of one

specific substructure - a transitive subtournament. In the undirected version we

have substructures of two types: cliques and stable sets. However there is also a

formulation of the undirected version of the conjecture that involves only one type

of an induced substructure - a perfect graph. An undirected graph G is perfect if

every induced subgraph H of G satisfies ω(H) = χ(H).
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The equivalent undirected version of the conjecture involving perfect graphs states

that:

1.2.4 For any undirected graph H there exists ε(H) > 0 such that every H-free

n-vertex undirected graph contains perfect induced subgraph of size at least nε(H).

The equivalence follows directly from the following basic but very useful property

of perfect graphs:

1.2.5 If G is perfect then either ω(G) ≥
√
|G| or α(G) ≥

√
|G|.

The formulation 1.2.4 has an advantage over the original one since instead of dealing

with two graph objects (cliques and stable sets) it deals with one - perfect induced

subgraph.

There is a characterization of all perfect graphs that uses forbidden induced sub-

graphs (the Strong Perfect Graph Theorem, see [13]):

1.2.6 A graph G is perfect if and only if no induced subgraph of G or Gc is an odd

cycle of length at least five.
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1.3 Graphs with the Erdös-Hajnal property

1.3.1 The substitution procedure

For a long time the Erdös-Hajnal Conjecture was known to be true only for some

graphs on at most 5 vertices and graphs obtained from them by the so-called substi-

tution procedure, proposed by Alon, Pach and Solymosi in [2]. We define it now. Let

H1 and H2 be either two undirected graphs or two tournaments with disjoint sets

of vertices. Assume furthermore that |V (H1)|, |V (H2)| ≥ 2. For a given v ∈ V (H1)

we say that graph H (H is a tournament in the directed setting) is obtained from

H1 by substituting H2 for v (or is obtained from H1 and H2 when we do not take

care of details) if the following conditions are satisfied:

• V (H) = (V (H1)
⋃
V (H2))\v

• H|(V (H1)\v) = H1\v

• H|V (H2) = H2

• vertex u ∈ V (H1) is adjacent in H to a vertex w ∈ V (H2) if and only if u is

adjacent to v in H1

In [2] Alon, Pach and Solymosi proved that the Erdös-Hajnal property is preserved

under substitution:
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1.3.1 Let H1 and H2 be two graphs with the Erdös-Hajnal property (we assume

that either both H1 and H2 are undirected or they are both tournaments). If H is

obtained from H1 and H2 by a substitution procedure then H has the Erdös-Hajnal

property.

Let us remind that a graph H is prime if it does not have nontrivial homogeneous

sets. Note that H is prime if and only if it is not obtained from smaller graphs

by substitution. The substitution procedure was the only known procedure that

allowed us to obtain infinitely many tournaments satisfying the conjecture. From

Theorem 1.3.1 we know that if the conjecture is not true then the smallest coun-

terexample is prime. That is why prime graphs are of special interests. Until very

recently not much was known about the conjecture for prime graphs. The conjec-

ture has been proven for most prime graphs on at most 5 vertices but it was open

for all prime graphs on at least 6 vertices. Thus, in particular the question whether

there are infinitely many prime tournaments satisfying the conjecture was open.

We answer this question in this thesis in Chapter 4 by proving the conjecture for a

new infinite family of tournaments containing infinitely many prime tournaments.

Those results are based on [10].
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1.3.2 Prime graphs with the Erdös-Hajnal property

We describe now what was known about the conjecture for prime graphs. We

consider first the undirected scenario. All undirected graphs on at most three

vertices trivially satisfy the conjecture. It turns out that the only prime undirected

graphs on 4 vertices is the three-edge path. Theorem 1.2.6 implies that every

undirected graph G that does not contain a three-edge path as an induced subgraph

is perfect and thus, by 1.2.5, a three-edge path has the Erdös-Hajnal property. The

other way to prove that the conjecture is satisfied by the three-edge path is by an

induction and the result below:

1.3.2 If G is an undirected graph with |G| ≥ 2, H is a three-edge path and G is

H-free then either G or Gc is not connected.

The proof of this theorem may be found [29].

The prime undirected graphs on 5 vertices are:

• the cycle of length 5

• the four-edge path

• the complement of the four-edge path

• the graph with vertex set {v1, v2, v3, w1, w2} and edge set

{v1v2, v1v3, v2v3, v1w1, v2w2} (sometimes called the bull).
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Thus, according to Theorem 1.3.1, all other graphs on at most 5 vertices have the

Erdös-Hajnal property. The Conjecture is still open for the cycle of length 5, the

four-edge path (thus also for every path of at least four edges) and the complement

of the four-edge path. However it is known to be true for the bull.

In [14] it has been proven that:

1.3.3 Every bull-free undirected graph G contains a clique or a stable set of size

at least |G| 14 .

We note here that the coefficient 1
4

in the theorem above cannot be improved.

Indeed, take a graph B which is triangle-free and does not contain stable sets of

size larger than
√
|B| log(|B|) (for a construction look here: [23]). If G is obtained

from B by substituting a copy of Bc for every vertex of B then G is triangle-free

and contains no clique or stable set of size larger than 2
√
|B| log(|B|).

We will now introduce the notion of α-narrowness which is helpful while working on

the undirected version of the conjecture for prime graphs. A function f : V (G)→

[0, 1] is good if the following holds for every perfect induced subgraph P of the

undirected graph G: ∑
v∈V (P )

f(v) ≤ 1. (1.1)
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We say that an undirected graph G is α-narrow if for every good function f the

following holds: ∑
v∈V (G)

f(v)α ≤ 1. (1.2)

Note that perfect graphs are 1-narrow. We already know, by 1.2.5, that perfect

graphs have cliques or stable sets of polynomial size. It is easy to see that for

every α ≥ 1 every α-narrow graph has a clique or a stable set of a polynomial

size. Let M = max |V (P )|, where the maximum is taken over all perfect induced

subgraphs P of G. Therefore if we take f = 1
M

, then 1.1 is trivially satisfied, so f

is good. Since G is α-narrow, by 1.2, we get M ≥ |G| 1α . Thus, by Theorem 1.2.5,

we conclude that G has a clique or a stable set of size at least |G| 1
2α . Therefore if

one can prove that for a given undirected graph H every H-free graph is α-narrow

for some α ≥ 1, that immediately implies the Erdös-Hajnal property for H. The

following conjecture was stated in [16]:

1.3.4 For every undirected graph H there exists α(H) ≥ 1 such that every H-free

graph is α(H)-narrow.

This conjecture has been proven to be equivalent to the Erdös-Hajnal Conjecture

by Fox ([22]). The approach that uses α-narrowness turned out to be useful while

working on particular special cases of the Erdös-Hajnal Conjecture. Theorem 1.3.3

has been proven by showing that every bull-free graph is 2-narrow. We have al-
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ready mentioned that the Erdös-Hajnal property is preserved by the substitution

procedure. Note that α-narrowness is also preserved by this procedure. In [14] it

was shown that:

1.3.5 If H1, H2 are undirected α-narrow graphs for some α ≥ 1 and H is obtained

from H1 and H2 by substitution, then H is α-narrow.

Let us describe now what was known for prime tournaments. The conjecture is

trivially true if we consider tournaments on at most three vertices. There are no

prime tournaments on four vertices. Thus, the conjecture was known to be true for

all tournaments on at most four vertices. However there exist prime tournaments

on five vertices. Some of them were proven to be heroes in [7] therefore they satisfy

the conjecture in the strongest - linear sense. However for other prime five-vertex

tournaments the conjecture was open. In particular, it was open for C5 - a unique

tournament on five vertices, where each vertex has outdegree two. One of the results

of this thesis is that all tournaments on at most 5 vertices satisfy the conjecture.

1.4 Excluding families of graphs

For a set S of graphs (either all undirected or all tournaments) we say that a graph

G (where G is undirected in the undirected scenario and is a tournament in the

directed one) is S-free if it is H-free for every H ∈ S. Instead of analyzing the
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biggest cliques/stable sets in the undirected scenario or transitive subtournaments

(in the directed one) of H-free graphs one may try to do the same for S-free graphs,

where S is some set of graphs (undirected graphs in the undirected scenario and

tournaments in the directed scenario). We say that a set of undirected graphs S

has the Erdös-Hajnal property if there exists ε(S) > 0 such that every n-vertex

S-free undirected graph contains a clique or a stable set of size at least nε(S).

Similarly, we say that a set of tournaments S has the Erdös-Hajnal property if there

exists ε(S) > 0 such that every n-vertex S-free tournament contains a transitive

subtournament of size at least nε(S).

In particular, some previous results concern excluding pairs of graphs. One can

propose the following conjecture which is a weaker version of the Erdös-Hajnal

Conjecture:

1.4.1 For every undirected graph H the two-element family {H,Hc} has the Erdös-

Hajnal property.

This conjecture is still open too. However strengthening the condition put on the

graph G by excluding several graphs rather than just one allows us to use methods

that are not useful when |S| = 1. We state here few results that deal with excluding

pairs of undirected graphs. In [16] it was shown that:

1.4.2 If H1 is a four-edge path and H2 is a complement of the five-edge path then
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an {H1, H2}-free undirected n-vertex graph contains a clique or a stable set of size

at least n
1
6 .

Chudnovsky and Seymour proved in [15] the following:

1.4.3 Let H be a five-edge path. Then the family {H,Hc} has the Erdös-Hajnal

property.

Thus, a five-edge path satisfies Conjecture 1.4.1.

In the same paper they proved also the following related result:

1.4.4 Let H1 be a six-edge path and H2 be a four-edge path. Then the family

{H1, H
c
2} has the Erdös-Hajnal property.

In Chapter 7 we propose an open problem in which a family of tournaments is

excluded.

1.5 Polynomial-size cliques or stable sets in geometric graphs

and some general approximate results

Even though the conjecture is still open, much work was done to prove related ap-

proximate results. Some of those results concern finding inH-free graphs polynomial-

size substructures that are somehow close to cliques and stable sets. In others,
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special families of undirected graphs with a clique or a stable set of polynomial

size are considered. In this section we focus on these types of problems. Most of

the problems we consider here are for the undirected setting. However we will also

state an open problem concerning tournaments. Its analogous undirected version

was solved.

Erdös, Hajnal and Pach proved in [19] that for every undirectd graph H there

exists ε(H) > 0 such that every H-free n-vertex undirected graph G satisfies the

following: either G or Gc contains a bi-clique of at least nε(H) vertices (similar result

is true for tournaments). However this result does not say anything about graphs

induced by color classes of the bi-clique. The result was strengthened by Fox and

Sudakov who proved in [21] that:

1.5.1 For every undirected graph H there exists ε(H) > 0 such that every H-free

n-vertex undirected graph G contains either a stable set of size at least nε(H) or a

bi-clique of at least nε(H) vertices.

We say that a hereditary family of undirected graphs F is good if there exists a

constant ε > 0 such that every n-vertex graph F ∈ F contains either a clique

or a stable set of size at least nε. The Erdös-Hajnal Conjecture states that for

every undirected graph H the family of all H-free undirected graphs is good (an

analogous version using goodness property can be formulated for tournaments).
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Checking the goodness property for a class of H-free graphs (for some fixed H) is

very difficult in general. However some research was done to prove the goodness

property for other families of undirected graphs such that graphs that may be

described as intersection graphs of some geometric objects.

Before showing some of those results we need to introduce one more definition. We

say that a hereditary family F of undirected graphs is strongly good if the following

holds for some ε > 0: for every n-vertex graph F ∈ F either F or F c contains a

bi-clique of at least εn vertices. It was observed in [1] that:

1.5.2 If a hereditary family F of undirected graphs is strongly good then it is also

good.

Thus to prove the Erdös-Hajnal Conjecture it suffices to prove that for every undi-

rected graph H the family of H-free graphs is strongly good. Unfortunately this

statement is not true. Indeed, for instance the family of triangle-free graphs is not

strongly good. However some families of geometric graphs do have this property.

We will focus here on the family of intersection graphs of some two-dimensional

objects. For a finite family O of two-dimensional objects we define its intersec-

tion graph as an undirected graph G such that V (G) = O and two vertices of G

are adjacent iff they intersect as geometric objects. Consider a plane with given

coordinate system.We say that a planar connected set is vertically convex if its

intersection with any vertical line is an interval. Larman et al. proved in [24] that
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the hereditary family of intersection graphs of convex planar sets is good. They

showed that:

1.5.3 Any family of n vertically convex sets in the plane contains at least n
1
5

members that are either pairwise disjoint or pairwise intersecting.

We say that a continuous curve is x-monotone if it intersects every vertical line in

at most one point. Clearly, every x-monotone curve is vertically convex. However

for the hereditary family of intersection graphs of x-monotone curves other results

can be proven. In [20] it was shown that:

1.5.4 There exists a constant c > 0 with the property that the intersection graph

G of any collecton of n x-monotone curves in the plane satisfies at least one of the

following conditions:

• G contains a bi-clique of size at least cn
log(n)

; or

• Gc contains a bi-clique of size at least cn.

The family of intersection graphs of convex bodies in Rd for d ≥ 3 is not good.

However some special families of intersection graphs of objects taken from high-

dimensional space are good. An example is the family of so-called K-fat sets. For

a given d ≥ 1 we say that a set S ⊆ Rd is K-fat if there exist d-dimensional balls
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B1, B2 with radii R1, R2 > 0 such that B1 ⊆ S ⊆ B2 and R2

R1
≤ K. In [27] it has

been proven that:

1.5.5 For any constant K ≥ 1 and for any positive integer d, the family of inter-

section graphs of K-fat convex bodies in Rd is strongly good.

We saw above that certain hereditary families of graphs have the Erdös-Hajnal

property. The problem whether for every undirected graph H the family FH of

H-free graphs is good is still open. However if we do not consider all H-free graphs

but almost all then the goodness property can be proven. For any 0 < ε < 1 and an

undirected graph H let F εH ⊆ FH be the family of those H-free undirected graphs

G that contain a clique or a stable set of size at least |G|ε. If the Erdös-Hajnal

Conjecture is true then there exists ε > 0 such that FH = F εH . It has been proven

in [25] that:

1.5.6 For every undirected graph H there exists ε > 0 such that limn→∞
|FεH |
|FH |

= 1.

We may consider an analogous problem for tournaments. Let H be a tournament

and let FH be the family of H-free tournaments. For a parameter 0 < ε < 1 let

F εH ⊆ FH be the family of those H-free tournaments T that contain a transitive

subtournament of size at least |T |ε. The following is still open:

1.5.7 For every tournament H there exists ε > 0 such that limn→∞
|FεH |
|FH |

= 1.



Chapter 2. Pseudo-celebrities 22

22
Pseudo-celebrities

2.1 Introduction

There are some tournaments H with the property that every H-free tournament has

chromatic number at most a constant (depending on H). These are called heroes,

and they were all explicitly described in [7]. In this chapter we describe the most

heroic non-heroes. All results of this chapter is a joint work with Maria Chudnovsky

and Paul Seymour ([12]). It turns out that for some non-heroes H, the chromatic

number of every H-free tournament G is at most a polylog function of the number

of vertices of G, and all the others give nothing better than a polynomial bound.

We prove in this chapter that:
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2.1.1 Every tournament has exactly one of the following properties:

• for some c, every H-free tournament has chromatic number at most c (the

heroes)

• for some c, d, every H-free tournament G with |G| > 1 has chromatic number

at most c(log(|G|))d, and for all c, there are H-free tournaments G with |G| >

1 and with chromatic number at least c(log(|G|))1/3

• for all c, there are H-free tournaments G with |G| > 1 and with chromatic

number at least c|G|1/6.

We also give an explicit construction for all tournaments of the second type, which

we call pseudo-heroes.

Consider the following problem closely related to the Erdös-Hajnal Conjecture:

for which tournaments is some given ε > 0 an EH-coefficient ? In [7], this question

was completely answered for ε = 1; and our goal in this chapter is a similar result

for ε > 5/6.

Before we go on, let us state the result of [7] properly; and to do so we need some

more definitions and denotations. In this chapter we denote by Tk the transitive

tournament with k vertices. If G is a tournament and X, Y are disjoint subsets of

V (G) such thatX is complete to Y , we writeX ⇒ Y . We write v ⇒ Y for {v} ⇒ Y ,

and X ⇒ v for X ⇒ {v}. If G is a tournament and (X, Y, Z) is a partition of V (G)
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into nonempty sets satisfying X ⇒ Y , Y ⇒ Z, and Z ⇒ X, we call (X, Y, Z) a

trisection of G. If A,B,C,G are tournaments, and there is a trisection (X, Y, Z)

of G such that G|X,G|Y,G|Z are isomorphic to A,B,C respectively, we write

G = ∆(A,B,C). It is convenient to write k for Tk here, so for instance ∆(1, 1, 1)

means ∆(T1, T1, T1), and ∆(H, 1, k) means ∆(H,T1, Tk).

A tournament is a celebrity if 1 is an EH-coefficient for it; that is, for some c > 0,

every H-free tournament G satisfies α(G) ≥ c|G|. The main result of [7] is:

2.1.2 The following hold:

• A tournament is a hero if and only if it is a celebrity.

• A tournament is a hero if and only if all its strong components are heroes.

• A strongly-connected tournament with more than one vertex is a hero if and

only if it equals ∆(1, H, k) or ∆(1, k,H) for some hero H and some integer

k > 0.

In this chapter, we study the tournaments H which are “almost” heroes, in the sense

that all H-free tournaments have chromatic number at most a polylog function of

their order. More precisely, we say a tournament H is

• a pseudo-hero if there exist c, d ≥ 0 such that every H-free tournament G

with |G| > 1 satisfies χ(G) ≤ c(log(|G|))d
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• a pseudo-celebrity if there exist c > 0 and d ≥ 0 such that every H-free

tournament G with |G| > 1 satisfies α(G) ≥ c |G|
(log(|G|))d .

Logarithms are of base two throughout this chapter. The conditions |G| > 1 are

included just to ensure that log(|G|) > 0.) The next result is an analogue of 5.2.1:

2.1.3 The following hold:

• A tournament is a pseudo-hero if and only if it is a pseudo-celebrity.

• A tournament is a pseudo-hero if and only if all its strong components are

pseudo-heroes.

• A strongly-connected tournament with more than one vertex is a pseudo-hero

if and only if either

– it equals ∆(2, k, l) for some k, l ≥ 2, or

– it equals ∆(1, H, k) or ∆(1, k,H) for some pseudo-hero H and some

integer k > 0.

More generally, let 0 ≤ ε ≤ 1; we say that a tournament H is

• an ε-hero if there exist c, d ≥ 0 such that every H-free tournament G with

|G| > 1 satisfies χ(G) ≤ c|G|1−ε log(|G|)d; and
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• an ε-celebrity if there exist c > 0 and d ≥ 0 such that every H-free tournament

G with |G| > 1 satisfies α(G) ≥ c−1|G|ε log(|G|)−d.

Thus, a 1-hero is the same thing as a pseudo-hero, and a 1-celebrity is the same as

a pseudo-celebrity. We will prove:

2.1.4 For all ε with 0 ≤ ε ≤ 1:

• a tournament is an ε-hero if and only if it is an ε-celebrity

• a tournament is an ε-celebrity if and only if its strong components are ε-

celebrities

• if H is an ε-celebrity and k ≥ 1, then ∆(1, H, k) and ∆(1, k,H) are ε-

celebrities.

(Much of 2.1.3 is implied by setting ε = 1 in 2.1.4.) In addition, we will prove the

following theorem:

2.1.5 Every tournament H with ξ(H) > 5/6 is a pseudo-hero and hence satisfies

ξ(H) = 1.

Thus, if ξ(H) > 5/6 then every H-free tournament has chromatic number at most

a polylog function of its order. We do not know if 5/6 is best possible; but the

polylog behaviour is best possible, in the following sense:
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2.1.6 For every real d with 0 ≤ d < 1
3

and all sufficiently large integers n (de-

pending on d), there is a tournament G with n vertices such that

• α(G) ≤ n(log(n))−d, and

• every pseudo-hero contained in G is a hero.

This last is a corollary of a result of [7]; let us see that now. Since every pseudo-

hero that is not a hero contains ∆(2, 2, 2), by 5.2.1 and 2.1.3, it follows that 2.1.6

is implied by the following result of [7]:

2.1.7 For every real d with 0 ≤ d < 1
3
, and all sufficiently large integers n (de-

pending on d), there is a tournament G with n vertices, not containing ∆(2, 2, 2),

such that

α(G) ≤ n

(log(n))d
.

(More precisely, the result of [7] asserts this with log(n) replaced by ln(n); we leave

the reader to check the equivalence.) The chapter is organized as follows:

• in Sections 2.2,2.3 and 2.4 we prove the first, second and third assertion of

2.1.4 respectively;

• in Section 2.5 we prove that for all k, l ≥ 2, ∆(2, k, l) is a pseudo-celebrity,

and indeed there exists c > 0 such that every ∆(2, k, l)-free tournament G

with |G| > 1 satisfies α(G) ≥ c|G|/ log(|G|);
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• in Section 2.6 we prove the “only if” part of the third statement of 2.1.3, and

thereby finish the proof of 2.1.3; and we also prove 2.1.5.

2.2 ε-celebrities are ε-heroes

In this section we prove the first statement of 2.1.4. Let us say a function φ is

round if for each integer n ≥ 2, φ(n) is a real number, at least 1 and (non-strictly)

increasing with n. We need:

2.2.1 Let φ be round. Suppose that G is a tournament with |G| > 1, and for all

n > 1, every n-vertex subtournament of G has a transitive set of cardinality at least

n/φ(n). Then χ(G) ≤ φ(|G|) log(|G|).

Proof. We proceed by induction on |G|. Let n = |G|. By hypothesis, G has a

transitive set X of cardinality x say, where x ≥ n/φ(n) > 0. Thus 1 ≤ φ(n) log(n)

(since φ(n) ≥ 1, and logarithms are to base 2), and so we may assume that χ(G) ≥

2. In particular, x ≤ n−1, and so n−1 ≥ n/φ(n). Consequently φ(n) ≥ n/(n−1) ≥

2/ log(n), and so 2 ≤ φ(n) log(n). Hence we may assume that χ(G) ≥ 3. In

particular, G\X has at least two vertices, and therefore we may apply the inductive

hypothesis to G \X. Since χ(G) ≤ 1 + χ(G \X), we deduce that

χ(G) ≤ 1 + φ(n− x) log(n− x) ≤ 1 + φ(n) log(n− x).
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Now

log(1− x/n) ≤ ln(1− x/n) ≤ −x/n ≤ −(φ(n))−1,

and so 1 + φ(n) log(1− x/n) ≤ 0. Consequently

χ(G) ≤ 1 + φ(n) log(n− x) = 1 + φ(n) log(1− x/n) + φ(n) log(n) ≤ φ(n) log(n).

This proves 2.2.1.

Sometimes the previous result can be improved:

2.2.2 Let G be a tournament with |G| > 0, and for each integer n with 1 ≤ n ≤

|G|, let φ(n) be a positive real number, and let ε be a real number with 0 < ε ≤ 1,

such that

• every subtournament H of G with |H| > 0 has a transitive set of cardinality

at least |H|/φ(|H|), and

• φ(n)/φ(m) ≥ (n/m)ε for all m,n with 1 ≤ m ≤ n ≤ |G|.

Let c = 2ε − 1. Then χ(G) ≤ c−1φ(|G|).

Proof. We proceed by induction on |G|. Let n = |G|. From the hypothesis, there

is a transitive subset with cardinality at least n/φ(n) ≥ 2ε−1n/φ(n). Let us choose

X1, . . . , Xk ⊆ V (G), pairwise disjoint and each transitive with cardinality at least
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2ε−1n/φ(n), with k maximal; it follows that k ≥ 1. Let X1 ∪ · · · ∪Xk = W , and let

G \W = G′, and |G′| = n′. Let x = n′/n. Now W includes k disjoint subsets of

cardinality at least 2ε−1n/φ(n), and so

n− n′ = |W | ≥ k2ε−1n/φ(n),

that is, k ≤ (1− x)φ(n)21−ε. If n′ = 0, then

χ(G) ≤ k ≤ φ(n)21−ε ≤ c−1φ(|G|),

as required. Thus we may assume that n′ > 0. Now G′ has no transitive set

of cardinality at least 2ε−1n/φ(n) by the maximality of k, and yet by hypothesis,

it has a transitive set of cardinality at least n′/φ(n′). It follows that n′/φ(n′) <

2ε−1n/φ(n), that is,

φ(n′)/φ(n) > 21−εx.

By hypothesis, φ(n′)/φ(n) ≤ xε, and so 21−εx < xε, that is, x < 1/2. From

the inductive hypothesis, χ(G′) ≤ c−1φ(n′). Since χ(G) ≤ χ(G′) + k, and k ≤

(1− x)φ(n)21−ε, we deduce that

χ(G) ≤ c−1φ(n′) + (1− x)φ(n)21−ε.



Chapter 2. Pseudo-celebrities 31

Since φ(n′) ≤ φ(n)xε, it follows that

cχ(G)/φ(G) ≤ xε + (1− x)21−εc.

Now the function (1−xε)/(1−x) is minimized for 0 ≤ x ≤ 1/2 when x = 1/2, and

its value then is 21−εc; and so (1− xε)/(1− x) ≥ 21−εc, that is,

xε + (1− x)21−εc ≤ 1.

It follws that cχ(G)/φ(G) ≤ 1. as required. This proves 2.2.2.

Thus if φ grows sufficiently quickly then we can avoid the extra log factor introduced

by 2.2.1. Curiously, it has been proven in [7] that the same is true when φ is

constant. We do not know whether it is also true in the cases in between, when φ

is not constant but only grows slowly. Unfortunately, these are the cases of most

interest to us in this chapter, and for them we have to make do with 2.2.1.

We deduce the first statement of 2.1.4, namely:

2.2.3 For 0 ≤ ε ≤ 1, a tournament is an ε-hero if and only if it is an ε-celebrity.

Proof. Let H be an ε-celebrity, and choose c > 0 and d ≥ 0 such that every H-free

tournament G with |G| > 1 satisfies α(G) ≥ c−1|G|ε log(|G|)−d. We may assume

that c ≥ 1. Define φ(n) = cn1−ε(log(n))d for n ≥ 2. Thus φ is round, and every
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H-free tournament G with |G| > 1 satisfies α(G) ≥ |G|/φ(|G|). Then if G is H-free

and |G| > 1, the hypotheses of 2.2.1 are satisfied, and so

χ(G) ≤ φ(|G|) log(|G|) ≤ c|G|1−ε(log(|G|))d+1,

and therefore H is an ε-hero. (Note that, if ε < 1, we could apply 2.2.2 here instead,

and avoid the extra log factor.)

For the converse, letH be an ε-hero. Thus there exist c, d ≥ 0 such that everyH-free

tournament G with |G| > 1 satisfies χ(G) ≤ c|G|1−ε(log(|G|))d. But every non-null

tournament G has a transitive set of cardinality at least |G|/χ(G) (take the largest

set of the partition given by the colouring). Consequently, every H-free tournament

G with |G| > 1 has a transitive set of cardinality at least c−1|G|ε(log(|G|))−d. It

follows that H is an ε-celebrity. This proves 6.3.6.

2.3 ε-celebrities that are not strongly connected

In this section we prove the second statement of 2.1.4, the following.

2.3.1 For 0 ≤ ε ≤ 1, a tournament is an ε-celebrity if and only if all its strong

components are ε-celebrities.

We need the following theorem of [6].
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2.3.2 For every tournament H and every real λ > 0 there exists a real c > 0 with

the following property. For every H-free tournament G there exist disjoint subsets

X, Y ⊆ V (G) with |X|, |Y | = dc|V (G)|e, such that d(X, Y ) < λ.

Let H1, H2 be tournaments. Let G be a tournament such that there is a partition

(V1, V2) of V (G) with V1 ⇒ V2, where for i = 1, 2, the subtournament of G with

vertex set Vi is isomorphic to Hi. We denote such a tournament G by H1 ⇒ H2.

For two sets of tournaments F1 and F2, we denote by F1 ⇒ F2 the set consisting

of all tournaments (up to isomorphism) of the form H1 ⇒ H2 for some H1 ∈ F1

and H2 ∈ F2. For a set F of tournaments, we say that a tournament T is F-free

if no subtournament of T is isomorphic to a member of F . We need the following

lemma.

2.3.3 Let h ≥ 1 be an integer, and let F1 and F2 be two sets of tournaments,

where each tournament in F1 ∪F2 has at most h vertices. Then there exists C > 0

with the following property. Let φ be round, such that for i = 1, 2, every Fi-free

tournament T of order n > 1 satisfies α(T ) ≥ n/φ(n). Then every (F1 ⇒ F2)-free

tournament T of order n > 1 satisfies α(T ) ≥ Cn/φ(n).

Proof. If one of F1 and F2 is empty, the result is trivial, so we assume both are

non-empty, and hence F1 ⇒ F2 is nonempty. Choose one of its members, H0 say.

Choose c > 0 satisfying 2.3.2, taking H = H0 and λ = (4h)−1. Let C = c/2. We
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will show that C satisfies the theorem.

Let T be an (F1 ⇒ F2)-free tournament with n > 1 vertices. By 2.3.2, there exist

disjoint V1, V2 ⊆ V (G) with |V1|, |V2| ≥ c|V (T )| such that d(V2, V1) < (4h)−1. Let

X be the set of all vertices in V1 with at least (1 − (2h)−1)|V2| out-neighbours in

V2. Every vertex in V1 \X is adjacent from at least (2h)−1|V2| members of V2, and

so

|V1 \X|(2h)−1|V2| ≤ (4h)−1|V1||V2|,

that is, |X| ≥ |V1|/2.

Now |V1| ≥ cn. Suppose that T |X is F1-free. From the hypothesis, X includes

a transitive subset of cardinality at least |X|/φ(|X|); but φ(|X|) ≤ φ(n), and

|X| ≥ cn/2, and so α(T ) ≥ Cn/φ(n) as required. Thus we may assume that there

exists X ′ ⊆ X such that T |X ′ is isomorphic to some member H1 of F1. For each

x ∈ X ′, at most (2h)−1|V2| vertices in V2 are adjacent to x, since x ∈ X; and since

|X ′| ≤ h, it follows that at most |V2|/2 vertices in V2 are adjacent to a vertex in

X ′. Let Y be the set of all y ∈ V2 that are adjacent from every vertex in X ′; then

|Y | ≥ |V2|/2. Since T is (F1 ⇒ F2)-free, it follows that T |Y is F2-free; and so from

the hypothesis, Y includes a transitive subset of cardinality at least |Y |/φ(|Y |).

But φ(|Y |) ≤ φ(n), and

|Y | ≥ |V2|/2 ≥ cn/2 = Cn,



Chapter 2. Pseudo-celebrities 35

and so α(G) ≥ Cn/φ(n). This proves 2.3.3.

Proof of 2.3.1. Since every subtournament of an ε-celebrity is an ε-celebrity, the

“only if” part of 2.3.1 is clear. The “if” part is implied by 2.3.3, taking φ(n) =

cn1−ε(log(n))d for appropriate c, d. This proves 2.3.1.

2.4 Adding handles

To complete the proof of 2.1.4, we need to show the following, which is proved in

this section:

2.4.1 For 0 ≤ ε ≤ 1, let H be an ε-hero, and let k ≥ 1 be an integer. Then

∆(H, 1, k) and ∆(k, 1, H) are ε-heroes.

We prove, more generally:

2.4.2 Let H be a tournament, and let φ be round, such that every H-free tourna-

ment G satisfies χ(G) ≤ φ(|G|). Let k ≥ 1 be an integer. Then there exists c ≥ 0

such that every ∆(H, 1, k)-free tournament G satisfies χ(G) ≤ cφ(G) log(|G|), and

the same for ∆(k, 1, H).

We remark that if φ grows sufficiently quickly to satisfy the hypotheses of 2.2.2 we

could use the latter to avoid the extra log factor.
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Let H,K be tournaments, and let a ≥ 1 be an integer. An (a,H,K)-jewel in a

tournament G is a subset X ⊆ V (G) such that |X| = a, and for every partition

(A,B) of X, either G|A contains H or G|B contains K. An (a,H,K)-jewel-chain

of length t is a sequence Y1, . . . , Yt of (a,H,K)-jewels, pairwise disjoint, such that

Yi ⇒ Yi+1 for 1 ≤ i < t. We need the following lemma, proved in [7]:

2.4.3 Let H,K be tournaments, and let a ≥ 1 be an integer. Then there are inte-

gers λ1, λ2 ≥ 0 with the following property. For every ∆(H, 1, K)-free tournament

G, if

• c1 is such that every H-free subtournament of G has chromatic number at

most c1, and every K-free subtournament of G has chromatic number at most

c1, and

• c2 is such that every subtournament of G containing no (a,H,K)-jewel-chain

of length four has chromatic number at most c2,

then G has chromatic number at most λ1c1 + λ2c2.

Proof of 2.4.2, 2.4.1 and 2.1.4. Let K be a transitive tournament with k ver-

tices; from the symmetry, it suffices to show the result for ∆(H, 1, K). Let φ be as

in the hypothesis of the theorem. We may assume that φ(2) ≥ 2k, by scaling φ.

Let a = 2k|V (H)|, and let λ1, λ2 ≥ 0 be as in 2.4.3.
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(1) If G is a tournament with |G| > 1, not containing an (a,H,K)-jewel, then

χ(G) ≤ aφ(|G|).

Choose pairwise vertex-disjoint subtournamentsH1, . . . , Ht ofG, each isomorphic to

H, with tmaximum, and let the union of their vertex sets beW . If t ≥ 2k, then since

every tournament with at least 2k vertices has a transitive subset of cardinality k, it

follows that V (H1)∪· · ·∪V (H2k) is an (a,H,K)-jewel, a contradiction. Thus t < 2k.

Consequently χ(G|W ) ≤ |W | ≤ a, and χ(G \W ) ≤ φ(|G| − |W |) ≤ φ(|G|) since

G \W is H-free. It follows that χ(G) ≤ a + φ(|G|) ≤ aφ(|G|) since a, φ(|G|) ≥ 2.

This proves (1).

(2) There exists C ≥ 0 such that if G is a tournament with |G| > 1, not con-

taining an (a,H,K)-jewel-chain of length four, then χ(G) ≤ Cφ(G) log(|G|).

By (1), if G is a tournament with n > 1 vertices, not containing an (a,H,K)-jewel,

then α(G) ≥ a−1n/φ(n). By 2.3.3 applied twice, there exists C > 0 such that every

tournament G of order n > 1 containing no (a,H,K)-jewel-chain of length four

satisfies α(G) ≥ C−1n/φ(n). By 2.2.1, every such G satisfies χ(G) ≤ Cφ(n) log(n).

This proves (2).
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Let c = λ1 +λ2C; we claim that c satisfies the theorem. For let G be a ∆(H, 1, K)-

free tournament, with n > 1 vertices. Let c1 = φ(n). Then every H-free subtour-

nament of G has chromatic number at most c1; and so does every K-free subtour-

nament of G, since every K-free tournament has at most 2k vertices and hence has

chromatic number at most 2k ≤ φ(2) ≤ φ(n) = c1. Let c2 = Cφ(n) log(n); then

every subtournament of G not containing an (a,H,K)-jewel-chain of length four

has chromatic number at most c2, by (2). By 2.4.3,

χ(G) ≤ λ1c1 + λ2c2 = λ1φ(n) + λ2Cφ(n) log(n) ≤ (λ1 + λ2C)φ(n) log(n).

This proves 2.4.2, and hence 2.4.1, and therefore finishes the proof of 2.1.4.

That completes all we have to say about ε-heroes in general.

2.5 Excluding ∆(2, k, l)

Now we return to the case ε = 1 and the proof of 2.1.3. So far we have proved the

first two statements of 2.1.3, and part of the “if” half of the third statement, all

as corollaries of 2.1.4. In this section we complete the proof of the “if” half of the

third statement of 2.1.3, by proving the following.

2.5.1 For all k, l ≥ 2, there exists c > 0 such that every ∆(2, k, l)-free tournament
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G with |G| > 1 satisfies α(G) ≥ c|G|/ log(|G|).

This follows immediately from 2.5.3 and 2.5.4, proved below. We need the “bipartite

Ramsey theorem”, proved by Beineke and Schwenk [5], the following. If X, Y are

disjoint subsets of the vertex set of a graph G, we say X is complete to Y if every

vertex in X is adjacent to every vertex in Y , and X is anticomplete to Y if there

are no edges between X and Y .

2.5.2 For all integers l ≥ 0 there exists K ≥ 0, such that for every graph with

bipartition (A,B) where |A|, |B| ≥ K, there exist X ⊆ A and Y ⊆ B with |X| =

|Y | = l, such that either X is complete to Y or X is anticomplete to Y .

The smallest K satisfying the statement of 2.5.2 will be denoted by K(l).

If G is a tournament and uv is an edge, we say that u is adjacent to v and v is

adjacent from u. Let (v1, ..., vn) be an enumeration of the vertex set of a tournament

G (thus, with n = |V (G)|). We say that an edge vivj of G is a backedge under this

enumeration if i > j. If t ≥ 0 is an integer, an enumeration (v1, . . . , vn) of V (G) is

said to be t-forward if for every two sets X, Y ⊆ V (G) with |X| = |Y | = t, there

exist vi ∈ X and vj ∈ Y such that either i ≥ j, or vivj is an edge of G.

2.5.3 For all integers k ≥ 2, there exists c > 0 such that, if G is a ∆(2, k, k)-

free tournament with |G| > 1 that admits a 2k-forward enumeration, then α(G) ≥

c|G|/ log(|G|).
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Proof. Let M = 2kK(2k) and c = 1/(4M). We will show that c satisfies the

theorem. For let G be a ∆(2, k, k)-free tournament with |G| > 1, and let (v1, . . . , vn)

be a 2k-forward enumeration of V (G). For 1 ≤ i ≤ n, we define φ(vi) = i. A

backedge vu of G is left-active if there is no set A ⊆ V (G) such that:

• |A| = K(2k)

• for each a ∈ A, φ(u) < φ(a) < (φ(u) + φ(v))/2

• each a ∈ A is adjacent from u and from v.

Similarly, a backedge vu is right-active if there is no set B ⊆ V (G) such that:

• |B| = K(2k)

• for each b ∈ B, (φ(u) + φ(v))/2 < φ(b) < φ(v)

• each b ∈ B is adjacent to u and to v.

(1) Every backedge vu is either left-active or right-active.

For suppose that vu is a backedge that is neither left-active nor right-active. Thus

there exists sets A and B as above. Let J be the graph with bipartition (A,B),

in which a ∈ A and b ∈ B are adjacent if ba is an edge (and hence a backedge) of

G. By 2.5.2, there exist X ⊆ A and Y ⊆ B such that |X| = |Y | = 2k, and X is
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either complete or anticomplete to Y in J . Since the enumeration is 2k-forward,

and φ(x) < (φ(u) + φ(v))/2 < φ(y) for all x ∈ X and y ∈ Y , it follows that there

exists x ∈ X and y ∈ Y such that yx is not a backedge of G, and thus x, y are

not adjacent in J ; and consequently X is anticomplete to Y in J , and so every

vertex in y is adjacent in G from every vertex in X. Since |X| = |Y | = 2k, there

are transitive subsets X ′ of X and Y ′ of Y , both of cardinality k (by a theorem

of [30]). But then the subtournament of G with vertex set X ′ ∪ Y ′ ∪ {u, v} is

isomorphic to ∆(2, k, k), a contradiction. This proves (1).

For a backedge vu, we call φ(v)− φ(u) its length.

(2) There do not exist M log(n) left-active edges in G with the same tail v.

Suppose there do exist such edges. Since their lengths are all between 1 and n− 1,

it follows that for some integer t with 0 ≤ t ≤ log(n), there are M left-active

edges all with tail v and all with length between 2t and 2t+1 − 1. Let them be

vui (1 ≤ i ≤ M), numbered such that φ(ui) < φ(uj) for 1 ≤ i < j ≤ M . For

1 ≤ i < j ≤M , since

φ(v)− φ(uj) ≥ 2t > (φ(v)− φ(ui))/2,
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it follows that φ(ui) < φ(uj) < (φ(ui) + φ(v))/2. Let X = {ui : 1 ≤ i ≤ 2k},

and Y = {ui : 2k < i ≤ M}. For each ui ∈ X, vui is left-active, and so ui is

adjacent in G to at most (K(2k) − 1) members of Y . Consequently there are at

least |Y | − |X|(K(2k) − 1) ≥ 2k members of Y that are adjacent in G to each

member of X, contradicting that the enumeration is 2k-forward. This proves (2).

By (2) there are at most Mn log(n) left-active edges in G, and similarly at most

Mn log(n) right-active. By (1), it follows that there are at most 2Mn log(n) =

(2c)−1n log(n) backedges. Let J be the graph with vertex set V (G) in which u, v

are adjacent for each backedge vu. Thus |E(J)| ≤ (2c)−1n log(n). By Turan’s

theorem [17], applied to J , we deduce that J has a stable set of cardinality at least

cn/ log(n), and so α(G) ≥ cn/ log(n). This proves 2.5.3.

2.5.4 For all integers k ≥ 2 there exists c > 0 such that every ∆(2, k, k)-free

tournament G has a subtournament with at least c|G| vertices that admits a 2k-

forward enumeration.

Proof. Let b = 2k+1, and d = (12k−1)b. Let c > 0 be the real number satisfying

log(c) = −240b227bd.

We will show that c satisfies the theorem.
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Let G be a ∆(2, k, k)-free tournament. Let us say a chain is a sequence A1, . . . , Am

of subsets of V (G) with the following properties:

• A1, . . . , Am are pairwise disjoint

• for 1 ≤ i ≤ m, |Ai| = bd and Ai is transitive

• for 1 ≤ i < j ≤ m, each vertex in Aj is adjacent to at most d vertices in Ai,

and each vertex in Ai is adjacent from at most d vertices in Aj.

(1) We may assume that G admits a chain A1, . . . , Am with m ≥ 4.

For if n < 24bd then the theorem holds, since c < 2−4bd and so any one-vertex

subtournament of G satisfies the theorem (and if G is null then G itself satisfies

the theorem). Thus we assume that n ≥ 24bd, and so G contains a transitive set of

cardinality 4bd. But then there is a chain A1, A2, A3, A4. This proves (1).

Let A1, . . . , Am be a chain with m maximum. Define A = A1 ∪ · · · ∪ Am. For

1 ≤ i < m, let Bi be the set of all v ∈ V (G) \A such that there exists Y ⊆ Ai and

Z ⊆ Ai+1 with |Y | = |Z| = k and {v} ⇒ Y ⇒ Z ⇒ {v}. Let B = B1 ∪ · · · ∪Bm−1,

and C = V (G) \ (A ∪B).

(2) |B| ≤ m(bd)2k.
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For suppose not. Then |Bi| > (bd)2k for some i with 1 ≤ i < m. For each v ∈ Bi,

choose Yv ⊆ Ai and Zv ⊆ Yi such that |Yv| = |Zv| = k and {v} ⇒ Yv ⇒ Zv ⇒ {v}.

Since there are at most (bd)2k possibilities for the pair (Yv, Zv), there exist distinct

u, v with Yu = Yv and Zu = Zv. But then the subtournament of G with vertex set

{u, v} ∪ Yv ∪ Zv is isomorphic to ∆(2, k, k), a contradiction.

(3) For each v ∈ C, there is no i with 1 ≤ i < m such that v has at least k

out-neighbours in Ai and at least (d + 1)k in-neighbours in Ai+1. Also, there is

no i with 1 ≤ i < m such that v has at least (d + 1)k out-neighbours in Ai and

at least k in-neighbours in Ai+1. In particular, there is no i with 1 ≤ i < m such

that v has at least bd/2 out-neighbours in Ai and at least bd/2 in-neighbours in Ai+1.

For the first claim, suppose that Y ⊆ Ai and Z ⊆ Ai+1 with |Y | = k and

|Z| ≥ (d + 1)k , and v is adjacent to every vertex in Y and adjacent from ev-

ery vertex in Z. Now each vertex in Y has at most d in-neighbours in Z, and so

at most dk vertices in Z have an out-neighbour in Y . Consequently, there exists

Z ′ ⊆ Z with |Z ′| = k, such that Y ⇒ Z ′. But then Y, Z ′ show that v ∈ Bi ⊆ B, a

contradiction. This proves the first claim, and the second follows from the symme-

try. The third follows since bd/2 ≥ k and bd/2 ≥ (d+ 1)k. This proves (3).
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For 1 ≤ i < m let Ci be the set of all vertices v ∈ C such that v has at least bd/2 in-

neighbours in Ai and at least bd/2 out-neighbours in Ai+1. (Note that bd is odd, so

equality is not possible here.) Let C0 be the set of all v ∈ C with at least bd/2 out-

neighbours in A1, and let Cm be the set of all v ∈ C with at least bd/2 in-neighbours

in Am. By (3), it follows that C0, C1, . . . , Cm are pairwise disjoint and have union C.

(4) Let 0 ≤ i ≤ m and let v ∈ Ci. Then for 1 ≤ h < i, v has at most k − 1

out-neighbours in Ah; and for i+ 1 < j ≤ m, v has at most k − 1 in-neighbours in

Aj.

For v has at least bd/2 in-neighbours in Ai, and since v /∈ B, it follows from

(3) that v has at least bd/2 in-neighbours in each of A1, . . . , Ai. In particular, v has

at least bd/2 in-neighbours in Ah+1. By (3), v has at most k − 1 out-neighbours

in Ah. This proves the first assertion. The second follows by the symmetry. This

proves (4).

For 2 ≤ i ≤ m let Li = A1∪· · ·∪Ai−2, and for 0 ≤ i ≤ m−2 let Ri = Ai+3∪· · ·∪Am.

Let L0, L1, Rm−1, Rm all be the null set.

(5) Let 0 ≤ i ≤ m, and let u, v ∈ Li be distinct. Then there is no transitive

set Z ⊆ Ci with |Z| = k such that Z → {u, v}, and consequently there are at most
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2k vertices in Ci that are adjacent to both u and v. Similarly, for 0 ≤ i ≤ m, if

u, v ∈ Ri then there is no transitive set Z ⊆ Ci with |Z| = k such that {u, v} ⇒ Z,

and hence there are at most 2k vertices in Ci that are adjacent from both u and v.

For let 0 ≤ i ≤ m, and let u, v ∈ Li (thus i ≥ 3), and suppose that there ex-

ists a transitive set Z ⊆ Ci with |Z| = k such that every vertex in Z is adjacent to

both u, v. By (4), each member of Z has at most k−1 out-neighbours in Ai−1. Also,

u, v each have at most at in-neighbours in Ai−1. Consequently there is a subset Y

of Ai−1 with |Y | = k such that {u, v} ⇒ Y ⇒ Z, since bd − (k − 1)k − 2d ≥ k.

But then the subtournament of G with vertex set {u, v} ∪ Y ∪ Z is isomorphic to

∆(2, k, k), a contradiction. This proves the first assertion, and the second follows

by symmetry. This proves (5).

(6) For 0 ≤ i ≤ m, and all u ∈ Li and v ∈ Ri, there are fewer than 27bd ver-

tices in Ci that are adjacent to u and from v.

For since Li, Ri 6= ∅, it follows that 3 ≤ i ≤ m − 3. Suppose that there are at

least 27bd vertices in Ci adjacent to u and from v; then they include a transitive set

Y of cardinality 7bd. Choose a chain Y1, . . . , Y7 of subsets of Y such that Yh ⇒ Yj

for all h, j with 1 ≤ h < j ≤ 7. By (5), every vertex in Li\{u} has at most k−1 ≤ d

in-neighbours in Y , and every vertex in Ri \{v} has at most d out-neighbours in Y .
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Also, each vertex in Y has at most k−1 ≤ d out-neighbours in Ah for 1 ≤ h ≤ i−2,

and at most d in-neighbours in Aj for i + 2 ≤ j ≤ m, by (4). Choose h, j with

u ∈ Ah and v ∈ Aj. Then

A1, . . . , Ah−1, Ah+1, . . . , Ai−2, Y1, Y2, . . . , Y7, Ai+3, . . . , Aj−1, Aj+1, . . . , Am

is a chain with m+ 1 terms, contrary to the maximality of m. This proves (6).

(7) Let 0 ≤ i ≤ m, and let Z ⊆ Ci be transitive. Let p be an integer such that

|Z| ≤ bdp and 2b(k − 1)p < d. Then there are fewer than 2bp vertices in Li that

are adjacent from at least d members of Z.

For suppose that there exists W ⊆ Li with |W | = 2bp such that each member

of W is adjacent from at least d members of Z. Each member of W has at least d

in-neighbours in Z, and yet every two distinct members of W have at most k − 1

common in-neighbours in Z, by (5). Hence |Z| ≥ d|W | − (k − 1)|W |2/2. Since

|Z| ≤ bdp and |W | = 2bp, it follows that 2(k − 1)bp ≥ d, a contradiction. Thus

there is no such W . This proves (7).

(8) For 0 ≤ i ≤ m and all v ∈ Ri, if Y ⊆ Ci is transitive and v ⇒ Y then

|Y | < 12b · 27bd.
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It follows that i ≤ m − 3. Choose a maximal subset Z of Y such that every

vertex in Li is adjacent from at most d members of Z. Suppose that |Z| ≥ 6bd, and

choose a chain Z1, . . . , Z6 of subsets of Z such that Zh ⇒ Zj for 1 ≤ h < j ≤ 6. By

(2), every vertex of Ri different from v is adjacent to at most k − 1 ≤ at members

of Y . Let v ∈ Aj. By (4), if i ≥ 2 then

A1, . . . , Ai−2, Z1, . . . , Z6, Ai+3, . . . , Aj−1, Aj+1, . . . , Am

is a chain with m + 1 terms, contrary to the maximality of m; while if i ≤ 1 then

the chain

Z1, . . . , Z6, Ai+3, . . . , Aj−1, Aj+1, . . . , Am

gives a contradiction similarly. Thus |Z| < 6bd.

We say u ∈ Li is saturated if u is adjacent from exactly d members of Z. Since

|Z| < 6bd and 12(k − 1)b < d, it follows from (7) with p = 6 that there are

fewer than 12b saturated vertices in Li. But every vertex in Y \ Z is adjacent to

a saturated vertex in Li, from the maximality of Z. Since every saturated vertex

in Li is adjacent from at most 27bd members of Y , by (6), and hence from at most
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27bd − d members of Y \ Z, it follows that |Y \ Z| ≤ 12b(27bd − d), and so

|Y | ≤ 12b(27bd − d) + 6bd < 12b · 27bd.

This proves (8).

(9) For 0 ≤ i ≤ m, there is no transitive subset Y of Ci with |Y | ≥ 240b227bd.

Let Y ⊆ Ci be transitive. Choose a maximal subset Z of Y such that every

vertex of Li is adjacent from at most d members of Z, and every vertex in Ri is

adjacent to at most d members of Z. Suppose that |Z| ≥ 5bd, and choose a chain

Z1, . . . , Z5 of subsets of Z such that Zh ⇒ Zj for 1 ≤ h < j ≤ 5. If 2 ≤ i ≤ m− 2

then by (4),

A1, . . . , Ai−2, Z1, . . . , Z5, Ai+3, . . . , Am

is a chain with m+ 1 terms, a contradiction; while if i ≤ 1 then

Z1, . . . , Z5, Ai+3, . . . , Am

gives a contradiction, and if i ≥ m− 1 then

A1, . . . , Ai−2, Z1, . . . , Z5
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gives a contradiction. Thus |Z| < 5bd.

We say u ∈ Li is saturated if it is adjacent from exactly d members of Z; and

v ∈ Ri is saturated if it is adjacent to exactly d members of Z. Since |Z| ≤ 5t,

and 10(k − 1)b < d, it follows from (7) with p = 5 that there are at most 10b

saturated vertices in Li, and similarly at most 10b saturated vertices in Ri. From

the maximality of Z, every vertex of Y \Z is adjacent to at least one of the saturated

vertices in Li or from at least one of the saturated vertices in Ri. But by (8), each

saturated vertex in Li is adjacent from at most 12b27bd members of Y and hence

from at most 12b27bd − d members of Y \ Z, and similarly every saturated vertex

in Ri is adjacent to at most 12b27bd − d members of Y \ Z. We deduce that

|Y | < 20b(12b27bd − d) + 5bd ≤ 240b227bd.

This proves (9).

(10) |A| ≥ 2c|G| where c is as defined in the statement of the theorem.

From (9), each Ci has cardinality at most 2240b227bd−1, and so |C| ≤ (m+1)2240b227bd−1.

Since m ≥ 2 (and hence m + 1 ≤ 2m), and |B| ≤ m(bd)2k by (2), and |A| = mbd,
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we deduce that

|G| ≤ (2240b227bd + (bd)2k + bd)m ≤ (2240b227bd + (bd)2k + bd)|A|/(bd).

It follows that |A| ≥ 2c|G| where c is as defined in the statement of the theorem.

This proves (10).

Let V be the union of all Ai with 1 ≤ i ≤ m and i odd. Then |V | ≥ |A|/2 ≥ c|G|.

Number the members of V as {v1, . . . , vt} say, where for 1 ≤ r < s ≤ t, if xr ∈ Ai

and xs ∈ Aj then i ≤ j, and either i < j or xr is adjacent to xs. (This is possible

since each Ai is transitive.) We claim that this order is 2k-forward. For let Y, Z be

disjoint subsets of V with |Y | = |Z| = 2k, such that for 1 ≤ r, s ≤ t, if xr ∈ Y and

xs ∈ Z then r < s. We must show that there exists y ∈ Y and z ∈ Z such that

y is adjacent to z. Suppose not. Choose i with 1 ≤ i ≤ m and i odd, maximum

such that Ai ∩ Y 6= ∅. It follows that Ah ∩ Z = ∅ for all h < i. If Z ∩ Ai 6= ∅, let

vr ∈ Ai∩Y and vs ∈ Ai∩Z; it follows that r < s from the choice of the numbering,

and so vr is adjacent to vs, a contradiction. Thus Z ∩ Ai = ∅. It follows that

j ≥ i + 2 for each j with 1 ≤ j ≤ m such that z ∩ Aj 6= ∅. Since |Y | = 2k, there

exists Y ′ ⊆ Y with |Y | = k such that Y is transitive, and similarly there exists a

transitive Z ′ ⊆ Z with |Z ′| = k. Now each member of Y ′ is adjacent from at most

d members of Ai+1, and so there are at most dk vertices in Ai+1 adjacent to some
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member of Y ′; and similarly at most dk are adjacent from some member of Z ′.

Since bd ≥ 2dk + 2, there are two vertices u, v ∈ Ai+1 such that Y ′ ⇒ {u, v} and

{u, v} ⇒ Z ′. But then the subtournament of G with vertex set {u, v} ∪ Y ′ ∪ Z ′ is

isomorphic to ∆(2, k, k), a contradiction. This proves that the order is 2k-forward,

and so completes the proof of 2.5.4.

Proof of 2.5.1. This follows immediately from 2.5.3 and 2.5.4.

2.6 Strongly-connected pseudo-heroes

In this section we complete the proof of 2.1.3, and also prove 2.1.5. As a biproduct

of the remainder of the proof of 2.1.3, we are able to identify all the minimal

tournaments that are not pseudo-heroes (there are six). Here they are:

• Let H1 be the tournament with five vertices v1, . . . , v5, in which vi is adjacent

to vi+1 and vi+2 for 1 ≤ i ≤ 5 , reading subscripts modulo 5 (the tournament

C5).

• Let H2 be the tournament obtained from H1 by replacing the edge v5v1 by

an edge v1v5.

• Let H3 be the tournament with five vertices v1, . . . , v5 in which vi is adjacent

to vj for all i, j with 1 ≤ i < j ≤ 4, and v5 is adjacent to v1, v3 and adjacent
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from v2, v4.

• Let H4 be the tournament ∆(1,∆(1, 1, 1),∆(1, 1, 1))

• Let H5 be the tournament ∆(2, 2,∆(1, 1, 1))

• Let H6 be the tournament ∆(3, 3, 3).

First, we prove they are not pseudo-heroes, but also it is helpful to give the best

upper bounds on their ξ-values that we can. We begin with:

2.6.1 If H is a strongly-connected tournament with more than one vertex that does

not admit a trisection, then ξ(H) ≤ 1/ log(3). In particular, ξ(Hi) ≤ 1/ log(3) for

i = 1, 2, 3, and so H1, H2, H3 are not pseudo-heroes.

Proof. LetD0 be the one-vertex tournament, and for i ≥ 1 letDi = ∆(Di−1, Di−1, Di−1).

Thus |Di| = 3i. For i > 0, no transitive subtournament of Di intersects all three

parts of the trisection of Di, so α(Di) = 2α(Di−1); and consequently α(Di) =

2i = |Di|1/ log(3). We claim that for all i ≥ 0, Di does not contain H; for suppose

Di contains H for some value of i, and choose the smallest. Then i ≥ 1 since

|V (H)| ≥ 2, and so Di admits a trisection (A,B,C) where Di|A,Di|B,Di|C are all

isomorphic to Di−1. Choose a subtournament T of Di isomorphic to H. From the

minimality of i, V (T ) is not a subset of any of A,B,C, and therefore has nonempty

intersection with at least two of them; and since H is strongly-connected, V (T ) has
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nonempty intersection with all three of A,B,C. But then T admits a trisection, a

contradiction.

This proves that no Di contains H. Let ε be an EH-coefficient for H, and choose

c > 0 such that every H-free tournament G satisfies α(G) ≥ c|G|ε. In particular,

taking G = Di implies that

|Di|1/ log(3) = α(Di) ≥ c|Di|ε,

for all i ≥ 0. It follows that 1/ log(3) ≥ ε. Since this holds for all EH-coefficients ε,

it follows that ξ(H) ≤ 1/ log(3). This proves 2.6.1.

2.6.2 ξ(H4) ≤ 1/2, and hence H4 is not a pseudo-hero.

Proof. For k ≥ 1, let Dk be the tournament with k2 vertices v1, . . . , vk2 , in which

for 1 ≤ i < j ≤ k2, vi is adjacent to vj if k does not divide j− i, and otherwise vj is

adjacent to vi. (This construction is due to Gaku Liu, in private communication.)

For 1 ≤ i ≤ k, let Ci = {vi, vi+k, vi+2k, . . . , vi+(k−1)k}. Then C1, . . . , Ck are disjoint

and have union V (Dk).

(1) α(Dk) ≤ 2k − 1.

Let X ⊆ V (Dk) induce a transitive tournament. For 1 ≤ i ≤ k, if X ∩ Ci 6= ∅, let
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pi be the smallest value of j such that vj ∈ X ∩Ci, and qi the largest; and let Ii be

{vj : pi ≤ j ≤ qi}. If X ∩ Ci = ∅, let Ii = ∅. Note that if vj ∈ X ∩ Ii then j ∈ Ci;

because otherwise {vpi , vqi , vj} would induce a cyclic triangle, contradicting that X

is transitive. This has two consequences:

• For each i ∈ {1, . . . , k}, |X ∩ Ii| ≤ 1 + (|Ii| − 1)/k, since between any two

members of X in Ii there are k − 1 members of Ci \X. Summing over i, we

deduce that |X| ≤ k − 1 +
∑

i |Ii|/k.

• The sets Ii (1 ≤ i ≤ k) are pairwise disjoint, and so
∑

i |Ii| ≤ k2.

Combining these, we deduce that |X| ≤ 2k − 1. This proves (1).

(2) Dk does not contain H4.

For 1 ≤ j ≤ k2, let φ(vj) be the value of i ∈ {1, . . . , k} with vj ∈ Ci. Thus,

let a, b, c ∈ V (Dk) be distinct:

(P) if {a, b, c} induces a cyclic triangle in Dk then |{φ(a), φ(b), φ(c)}| = 2; and

(Q) if ab, ac, bc are edges and φ(a) = φ(c) then φ(b) = φ(a).

(R) if {a, b, c} induces a cyclic triangle and d is some other vertex such that

d⇒ {a, b, c} or d⇐ {a, b, c} then φ(d) 6= φ(a), φ(b), φ(c).
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(The third condition above follows easily from the other two, but we use it enough

to give it a separate name.) For X ⊆ V (Dk), φ(X) denotes {φ(v) v ∈ X). Suppose

that Dk contains H4, and let A,B,C be the trisection of H4 with |A| = |B| = 3;

let A = {a1, a2, a3}, and B = {b1, b2, b3}, and C = {c}. Thus from property P

applied to A, |φ(A)| = 2, and similarly |φ(B)| = 2; by property R applied to A

and each member of B, φ(A) and φ(B) are disjoint; and by property R applied to

A and c, φ(c) /∈ φ(A) and similarly φ(c) /∈ φ(B). Choose a ∈ A and b ∈ B; then

φ(a), φ(b), φ(c) are all distinct, contrary to property P. This proves (2).

Let ε be an EH-coefficient for H4, and choose c > 0 such that every H4-free tourna-

ment G satisfies α(G) ≥ c|G|ε. In particular, for each k ≥ 1, α(Dk) ≥ c|Dk|ε, and

so from (1), 2k − 1 ≥ ck2ε. Since this holds for all k ≥ 1, we deduce that ε ≤ 1/2,

and so ξ(H4) ≤ 1/2. This proves 2.6.2.

The above is not the easiest way to prove that H4 is not a pseudo-hero, but it gives

the best bound on ξ(H4).

Next we need a lemma proved in [11] (it will be also given in Chapter 6), the

following:

2.6.3 The vertex set of every tournament H can be ordered such that the set of

backward edges of every non-null subtournament S of H has cardinality at most

(|S| − 1)(ξ(H))−1.
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We deduce

2.6.4 ξ(H5) ≤ 5/6, and so H5 is not a pseudo-hero.

Proof. Let H = H5, and let V (H) = A ∪B ∪ C, where

• A = {a1, a2}, B = {b1, b2}, and C = {c1, c2, c3}

• A⇒ B ⇒ C ⇒ A

• c1-c2-c3-c1 is a directed cycle.

Suppose there is an ordering of V (H) such that no cycle of the backedge graph

has length at most six; let X be the set of backedges in this ordering, and let

Y = E(H) \X. We have two properties:

(P) For every directed cycle of H, at least one of its edges in in X.

(Q) For every undirected cycle of H of length at most six, at least one of its edges

is in Y .

Since every undirected graph with seven vertices and eight edges has a cycle of

length at most six (indeed, at most five), it follows that |X| ≤ 7. Suppose first that

a1b1, a2b2 ∈ Y . From property P applied to the directed cycle ci-aj-bj-ci, at least

one of ciaj, bjci is in X, for i = 1, 2, 3 and j = 1, 2. Thus there are at least six edges
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in X between A ∪ B and C. By property P applied to H|C, some edge of X has

both ends in C. Since |X| ≤ 7, it follows that all edges from A to B belong to Y ;

and so by property P, for i = 1, 2, 3 either cia1, cia2 ∈ X, or b1ci, b2ci ∈ X. Thus

from the symmetry we may assume that c1a1, c1a2, c2a1, c2a2 ∈ X. But these four

edges form a cycle contrary to property Q.

Thus not both a1b1, a2b2 ∈ Y , and similarly not both a1b2, a2b1 ∈ Y . Suppose next

that a1b1, a1b2 ∈ Y . Thus a2b1, a2b2 ∈ X. By property Q applied to the cycle

a2-b1-ci-b2-a2, for i = 1, 2, 3 not both b1ci, b2ci ∈ X. By property P applied to the

directed cycles ci-a1-b1-ci and ci-a1-b2-ci it follows that cia1 ∈ X, for i = 1, 2, 3. But

some edge of X has both ends in C, contrary to property Q.

It follows that not both a1b1, a2b2 ∈ Y , and so from the symmetry, at most one

edge from A to B belongs to Y . By property Q, not all four of these edges are in

X, so we may assume that a1b1 ∈ Y , and a2b1, a1b2, a2b2 ∈ X. From property P,

some edge of H|C belongs to X, say c1c2. Now by property P again, for i = 1, 2 at

least one of cia1, b1ci ∈ X. But then there are six edges in X each with both ends

in V (H) \ {c3}, contrary to property Q.

It follows that in every ordering of V (H), some cycle of the backedge graph has

length at most six. From 2.6.3, we deduce that ξ(H) ≤ 5/6. This proves the first

assertion of the theorem, and the second follows.

Finally:
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2.6.5 ξ(H6) ≤ 3/4, and so H6 is not a pseudo-hero.

Proof. Let H = H6, and let V (H) = A ∪B ∪ C, where

• A = {a1, a2, a3}, B = {b1, b2, b3}, and C = {c1, c2, c3}

• A⇒ B ⇒ C ⇒ A

• A,B,C are all transitive.

Suppose there is an ordering of V (H) such that no cycle of the backedge graph

has length at most four; let X be the set of backedges in this ordering, and let

Y = E(H) \X. We have two properties:

(P) For every directed cycle of H, at least one of its edges in in X.

(Q) For every undirected cycle of H of length at most four, at least one of its

edges is in Y .

If there is a three-edge matching of members of Y between A,B, and also between

B,C and between C,A, then the union of these three matchings uncludes a directed

cycle of H, contrary to property P. So we may assume there is no three-edge match-

ing of members of Y between A and B. By Hall’s theorem, there are two vertices

x, y ∈ A ∪ B such that every edge in Y between A and b is incident with one of

x, y. If x ∈ A and y ∈ B, and x = a3, y = b3 say, then a1b1, a1b2, a2b1, a2b2 are all in
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X, contrary to property Q. Thus we may assume that x, y ∈ A; say x = a1, y = a2.

Hence a3b1, a3b2, a3b3 ∈ X. Let 1 ≤ k ≤ 3. We claim that cka1, cka2 ∈ X. For sup-

pose that cka1 ∈ Y say. From property Q at most one of the edges a1b1, a1b2, a1b3

is in X (otherwise there is a cycle of edges in X of length four passing through

a3); say a1b1, a1b2 ∈ Y . Now from property P applied to a1-bj-ck-a1, it follows that

bjck ∈ X for j = 1, 2, contrary to property Q. This proves that cka1, cka2 ∈ X, for

k = 1, 2, 3; but again this contradicts property Q. This proves 2.6.5.

Now we complete the proof of 2.1.3; all that remains is to prove the “only if” half

of the third statement of 2.1.3, which is the equivalence of the first two statements

of the following.

2.6.6 Let H be a strongly-connected tournament with more than one vertex. Then

the following are equivalent:

• H is a pseudo-hero

• every strong component of H is isomorphic to ∆(2, k, l) for some k, l ≥ 2,

or to ∆(1, P, T ) or ∆(1, T, P ) for some pseudo-hero P and some nonempty

transitive tournament T

• H contains none of H1, . . . , H6.
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Proof. The first statement implies the third, by 2.6.1, 2.6.2, 2.6.4 and 2.6.5, since

every subtournament of a pseudo-hero is a pseudo-hero. By 2.5.1 and 2.4.1 with

ε = 1, and 2.3.1 with ε = 1, the second statement implies the first. It remains to

show that the third implies the second, and we proceed by induction on |V (H)|.

Thus, let H contain none of H1, . . . , H6. If H is not strongly-connected, then

inductively we may assume that all its strong components are pseudo-heroes, and

hence so is H, by 2.3.1 with ε = 1. If H is strongly-connected, then by a theorem of

Gaku Liu, proved in [7], since H contains none of H1, H2, H3, it admits a trisection

(A,B,C). We may assume that |C| ≤ |A|, |B|. If |C| = 1 then since H does not

containH4, it follows that at least one of A,B is transitive, and soH = ∆(1, P, T ) or

H = ∆(1, T, P ) for some pseudo-hero P and some nonempty transitive tournament

T , and the theorem holds. If |C| ≥ 2, then since H does not contain H5 and

|A|, |B| ≥ 2 it follows that A,B,C are all transitive, and therefore |C| = 2 since H

does not contain H6; but then H = ∆(2, k, l) for some k, l ≥ 2, and the theorem

holds. This proves 2.6.6, and hence completes the proof of 2.1.3.

Proof of 2.1.5. If H is not a pseudo-hero then from 2.6.6, H contains one of

H1, . . . , H6, and so ξ(H) ≤ max(ξ(H1), . . . , ξ(H6)). But by 2.6.1, 2.6.2, 2.6.4 and

2.6.5, this maximum is at most 5/6. This proves 2.1.5.
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33
Tools

3.1 The regularity lemma

In this chapter we prove several technical lemmas and give some definitions that will

turn out to be very useful in next two chapters. We start by introducing regularity

lemma.

The regularity lemma is one of the most fundamental mathematical tools in modern

graph theory. We will use its directed version to prove some of the results concerning

constellations and tournaments on at most 5 vertices.

Let X, Y ⊆ V (T ) be disjoint. Denote by eX,Y the number of directed edges (x, y),

where x ∈ X and y ∈ Y . The directed density from X to Y is defined as d(X, Y ) =
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eX,Y
|X||Y | .

Given ε > 0 we call a pair A,B of disjoint subsets of V (T ) ε-regular if all X ⊆ A and

Y ⊆ B with |X| ≥ ε|A| and |Y | ≥ ε|B| satisfy: |d(X, Y )− d(A,B)| ≤ ε, |d(Y,X)−

d(B,A)| ≤ ε.

Consider a partition {V0, V1, ..., Vk} of V (T ) in which one set V0 has been singled

out as an exceptional set. (This exceptional set V0 may be empty). We call such a

partition an ε-regular partition of T if it satisfies the following three conditions:

• |V0| ≤ ε|V |

• |V1| = ... = |Vk|

• all but at most εk2 of the pairs (Vi, Vj) with 1 ≤ i < j ≤ k are ε-regular.

The following directed version of the Regularity Lemma has been proven in [3]:

3.1.1 For every ε > 0 and every m ≥ 1 there exists an integer DM = DM(m, ε)

such that every tournament of size at least m admits an ε-regular partition {V0, V1, ..., Vk}

with m ≤ k ≤ DM .

We also need the following lemma that will be used together with the regularity

lemma:
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3.1.2 For every natural number k and real number 0 < λ < 1 there exists 0 <

η = η(k, λ) < 1 such that for every tournament H with vertex set {x1, ..., xk}

and tournament T with vertex set V (T ) =
⋃k
i=1 Vi, if the Vi’s are disjoint sets,

each of size at least one, and each pair (Vi, Vj), 1 ≤ i < j ≤ k is η-regular, with

d(Vi, Vj) ≥ λ and d(Vj, Vi) ≥ λ, then there exist vertices vi ∈ Vi for i ∈ {1, . . . , k},

such that the map xi → vi gives an isomorphism between H and the subtournament

of T induced by {v1, ..., vk}.

The proof of the undirected version of Lemma 3.1.2 can be found in [8]. We omit

the proof of 3.1.2 since it is completely analogous to the undirected version.

3.2 ε-critical tournaments

We will prove here several properties of so-called ε-critical tournaments that play

an important role in all our proofs establishing lower bounds on EH-suprema for

several families of tournaments.

We denote by tr(T ) the size of the largest transitive subtournament of T . We

call a tournament T ε-critical for ε > 0 if tr(T ) < |T |ε but for every proper

subtournament S of T we have: tr(S) ≥ |S|ε. Below we list some properties of

ε-critical tournaments.

3.2.1 For every N > 0 there exists ε(N) > 0 such that for every 0 < ε < ε(N)
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every ε-critical tournament T satisfies |T | ≥ N .

Proof. Since every tournament contains a transitive subtournament of size 2, it

suffices to take ε(N) = logN(2).

3.2.2 Let T be an ε-critical tournament with |T | = n and ε, c, f > 0 be constants

such that ε < logc(1 − f). Then for every A ⊆ V (T ) with |A| ≥ cn and every

transitive subtournament G of T with |G| ≥ ftr(T ) A is not complete from V (G)

and A is not complete to V (G).

Proof. Assume otherwise. Let AT be a transitive subtournament in T |A of size

tr(A). Then |AT | ≥ (cn)ε. Now we can merge AT with G to obtain a transitive

subtournament of size at least (cn)ε+ftr(T ). From the definition of tr(T ) we have

(cn)ε + ftr(T ) ≤ tr(T ). So cεnε ≤ (1− f)tr(T ), and in particular cεnε < (1− f)nε.

But this contradicts the fact that ε < logc(1− f).

The next lemma is a starting point for all of our constructions. This is also the only

step in the proof where we use 3.1.1. Note that in what follows we do not require

for the pairs (Ai, Aj) to be regular, and so even we do not need the full strength of

3.1.1.

3.2.3 Let H be a tournament, P > 0 be an integer and 0 < λ < 1
2
. Then there is

an integer N such that for every H-free tournament T with |T | ≥ N there exists
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a constant c > 0 and P pairwise disjoint subsets A1, A2, ..., AP of vertices of T

satisfying:

• d(Ai, Aj) ≥ 1− λ for i, j ∈ {1, 2, ..., P}, i < j

• |Ai| ≥ c|T | for i ∈ {1, 2, ..., P}.

Proof. Write |T | = n, |H| = h. Let R(t1, t2) be the smallest integer such that

every graph of size at least R(t1, t2) contains either a stable set of size t1 or a clique

of size t2 (so R(t1, t2) is simply a Ramsey number, see [17]). Write k = R(2P−1, h).

Write η = min
{

1
2(k−1)

, η0(h, λ)
}

(where η0 is as in the statement of 3.1.2). Let

u > 0 be the smallest integer such that:
(
û
2

)
− ηû2 > 1

2
k−2
k−1

û2 holds for all û ≥ u.

By 3.1.1 there exists an integer N > 0 such that every tournament T with |T | ≥ N

admits an η-regular partition of at least u parts. Denote by DM the upper bound

(from 3.1.1) on the number of parts of this partition. Denote the parts of the

partition by: W0,W1, ...,Wr, where u ≤ r ≤ DM and W0 is the exceptional set.

We have: |Wi| ≥ (1−η)n
DM

. Now consider the graph G with V (G) = {W1, . . . ,Wr},

where there is an edge between two vertices if the pair (Wi,Wj) is η-regular. Then,

from the definition of u, we have: |E(G)| ≥ k−2
2(k−1)

|V (G)|2. So by Turan’s theorem

([17]) it follows that G has a clique of size at least k. That means that there

exist k parts of the partition, without loss of generality W1, ...Wk, such that for all

i, j ∈ {1, 2, ..., k}, i 6= j the pair (Wi,Wj) is η-regular. We say that a pair (Wi,Wj)

for i, j ∈ {1, 2, ..., k}, i 6= j is good if λ ≤ d(Wi,Wj) ≤ 1− λ. Otherwise we say this
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pair is bad. Now consider the graph Ĝ with V (Ĝ) = {W1, ...Wk}, where there is an

edge between Wi and Wj for i, j ∈ {1, ..., k}, i 6= j if (Wi,Wj) is a good pair. From

the definition of k we know that Ĝ contains a clique of size h or a stable set of size

2P−1. In other words, either

• there exist h parts of the partition, without loss of generality denote them by

W1, ...Wh, such that every pair (Wi,Wj) is η-regular and λ ≤ d(Wi,Wj) ≤

1− λ for i, j ∈ {1, 2, ..., k}, i 6= j, or

• there exist 2P−1 parts of the partition, without loss of generality denote them

by W1, ...W2P−1 , such that every pair (Wi,Wj) is η-regular and d(Wi,Wj) >

1− λ or d(Wj,Wi) > 1− λ for i, j ∈ {1, 2, ..., 2P−1}, i 6= j.

Since T is H-free and η ≤ η0, 3.1.2 implies that the former is impossible.

Now define T̂ to be a tournament with V (T̂ ) = {W1, ...,W2P−1}, where an edge is

directed from Wi to Wj if d(Wi,Wj) > 1−λ and from Wj to Wi otherwise. Using the

fact that every tournament of size at least 2P−1 contains a transitive subtournament

of size at least P ([30]), we conclude that T̂ contains a transitive subtournament

of size P . That means that there exist P parts of the partition, without loss of

generality W1, ...,WP , such that d(Wi,Wj) ≥ 1 − λ for i, j ∈ {1, 2, ..., P}, i < j.

Note that each Wi is of size at least (1−η)n
DM

, so taking Ai = Wi for i = 1, 2, ...P and

c = 1−η
DM

completes the proof.
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The following is an easy but useful fact.

3.2.4 Let A1, A2 be two disjoint sets such that d(A1, A2) ≥ 1 − λ and let 0 ≤

η1, η2 < 1. Let λ̂ = λ
η1η2

. Let X ⊆ A1, Y ⊆ A2 be such that |X| ≥ η1|A1| and

|Y | ≥ η2|A2|. Then d(X, Y ) ≥ 1− λ̂.

Proof. Denote by B the set of edges directed from A2 to A1. We have |B| ≤

λ|A1||A2|. On the other hand |B| ≥ (1 − d(X, Y ))|X||Y |. Therefore d(X, Y ) ≥

1− λ |A1|
|X|
|A2|
|Y | and the result follows.

Next we refine 3.2.3 further.

3.2.5 Let 0 < λ < 1, c > 0, 0 < ε < log c
2
(1

2
) be constants and P be a pos-

itive integer. Let T be an ε-critical tournament with |T | = n. Assume that

A1, A2, ..., AP ⊆ V (T ) are pairwise disjoint sets of vertices such that d(Ai, Aj) ≥

(1 − λ) for i, j ∈ {1, 2, ..., n}, i < j and |Ai| ≥ cn for i ∈ {1, 2, ..., P}. Let v be a

{0, 1}-vector of length P . Define I = {i : vi = 1}. Write I = {i1, i2, ...ir}, where

i1 < i2 < ... < ir. Let Λ = (4P )|I|λ. Then there exist transitive tournaments T i1∗ ,

T i2∗ ,...T ir∗ such that V (T is∗ ) ⊆ Ais, |V (T is∗ )| ≥ 1
2
tr(T ) for s ∈ {1, 2, ..., r} and for

every T is∗ we have

• if i < is and i /∈ I then d(Ai, T
is
∗ ) ≥ 1− Λ

• if i > is and i /∈ I then d(Ai, T
is
∗ ) ≤ Λ
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• if i, j ∈ I and i < j then d(T i∗, T
j
∗ ) ≥ 1− Λ

Proof. The proof is by induction on |I|. For |I| = 0 the statement is obvi-

ous. Write Î = {i1, ..., ir−1}. Inductively, we may assume the existence of the

sets T i1∗ , T
i2
∗ , ..., T

ir−1
∗ as in the statement of the lemma. Since T is ε-critical, we

deduce that tr(Air) ≥ |Air |ε ≥ ( c
2
)εnε, and therefore Air contains a transitive sub-

tournament of size d1
2
nεe. Denote this transitive tournament by T ir1 . We have

|T ir1 | ≥ 1
2
tr(T ). Similarly there exist an integer w and a family of pairwise disjoint

transitive subtournaments: W = {T ir1 , T
ir
2 , ..., T

ir
w } such that

⋃w
j=1 |T

ir
j | ≥

|Air |
2

and

for every j ∈ {1, 2, ..., w} |T irj | ≥ 1
2
tr(T ). Denote by T ir a tournament induced by⋃w

j=1 V (T irj ). We have |T ir | ≥ |Air |
2

.

Write Λ̂ = (4P )|I|−1λ. For i < ir and i /∈ Î denote by Ri the subset of W that

consists of tournaments T irx for which d(Ai, T
ir

x ) < (1 − 4Pλ). For i > ir and

i /∈ Î denote by Ri the subset of W that consists of tournaments T irx for which

d(T i
r

x , Ai) < (1 − 4Pλ). For i < ir and i ∈ Î denote by Ri the subset of W that

consists of tournaments T irx for which d(T i∗, T
ir

x ) < (1 − 4P Λ̂). Finally, for i > ir

and i ∈ Î denote by Ri the subset of W that consists of tournaments T irx for which

d(T i
r

x , T
i
∗) < (1 − 4P Λ̂). Since d(Ai, Air) ≥ (1 − λ), by 3.2.4 we have |Ri| ≤ 1

2P
w

for all i /∈ Î such that i 6= ir. Similarly, from the induction hypothesis and 3.2.4

we have |Ri| ≤ 1
2P
w for all i ∈ Î. Write: R =

⋃
i 6=ir Ri. Note that R ⊆ W and

|R| ≤ 1
2P
w · (P − 1) < w. Therefore there exists a tournament T ir∗ ∈ W\R, and
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from the definition of R, the following holds for every is ∈ I

• if i < is and i /∈ I then d(Ai, T
is
∗ ) ≥ 1− 4P Λ̂

• if i > is and i /∈ I then d(Ai, T
is
∗ ) ≤ 4P Λ̂

• if i < is and i ∈ I then d(T i∗, T
is
∗ ) ≥ 1− 4P Λ̂

• if i > is and i ∈ I then d(T i∗, T
is
∗ ) ≤ 4P Λ̂.

That completes induction since 4P Λ̂ = (4P )|I|λ = Λ.

We need one more definition. Let c > 0, 0 < λ < 1 be constants, and let w be a

{0, 1}-vector of length |w|. Let T be a tournament with |T | = n. A sequence of

disjoint subsets (S1, S2, ..., S|w|) of V (T ) is a (c, λ, w)-structure if

• whenever wi = 0 we have |Si| ≥ cn

• whenever wi = 1 the set T |Si is transitive and |Si| ≥ ctr(T )

• d(Si, Sj) ≥ 1− λ for all 1 ≤ i < j ≤ |w|.

We say that (c, λ, w)-structure is strong if in addition it satisfies the following con-

dition:

• if wi = 1 and wj = 1 for 1 ≤ i < j ≤ |w| then Si is complete to Sj.

We now use 3.2.3 and 3.2.5 to prove the following:
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3.2.6 Let S be a tournament, let w be a {0, 1}-vector, and let 0 < λ < 1
2

be a

constant. Then there exist ε0, c1 > 0 such that for every 0 < ε < ε0, every S-free

ε-critical tournament contains a (c1, λ, w)-structure.

Proof. Write n = |T | and w = (w1, . . . , wP ), where P > 0 is an integer. Define

C = |{i : wi = 1}|. Let Λ = λ
(4P )C

. By 3.2.1 we can choose ε0 small enough such

that |T | > N , where N is an integer from 3.2.3. Now it follows from 3.2.3 that there

exist a constant c > 0 and sets A1, ..., AP such that |Ai| ≥ cn for i ∈ {1, 2, ..., P} and

d(Ai, Aj) ≥ 1 − Λ for i, j ∈ {1, 2, ..., n}, i < j. We may assume that ε0 < log c
2
(1

2
).

We now use 3.2.5 to complete the proof.

Let U be a transitive tournament with V (U) = {u1, u2, ..., u|U |}, where (u1, u2, ..., u|U |)

is a transitive ordering. An (m, c)-subdivision of U is defined as the sequence

U cm = (U1, U2, ..., Um), where Uj = {uij , uij+1, ..., ukj} for i1, i2, ..., im, k1, k2, ..., km

satisfying 1 ≤ i1 ≤ k1 < i2 ≤ k2 < ... < im ≤ km ≤ |U | and |Uj| ≥ c|U | for

j ∈ {1, 2, ...,m}.

3.2.7 Let m, c1, c2, c3, ε > 0, be constants, where m > 0 is an integer, 0 <

c1, c2, c3 < 1, and 0 < ε < log c1
m

(1 − c2c3). Let T be an ε-critical tournament

with |T | = n, and let A ⊆ V (T ) with |A| ≥ c1n. Let U be a transitive subtour-

nament of T with |U | ≥ c2tr(T ) and V (U) ⊆ V (T )\A, and let U c3m = (U1, ..., Um)

be an (m, c3)-subdivision of U . Then there exist vertices u1, u2, ..., um, x such that
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x ∈ A, ui ∈ Ui and ui is adjacent to x for i ∈ {1, 2, ...,m}. Similarly, there ex-

ist vertices w1, w2, ..., wm, d such that d ∈ A, wi ∈ Ui and d is adjacent to wi for

i ∈ {1, 2, ...,m}.

Proof. We prove only the first statement because the latter can be proved analo-

gously. Suppose no such u1, u2, ..., um, x exist. That means that every a ∈ A is com-

plete to Ui for at least one i ∈ {1, 2, ...,m}. Therefore there exists i∗ ∈ {1, 2, ...,m}

such that at least |A|
m

vertices of A are complete to Ui∗ . But this contradicts 3.2.2

since T is ε-critical and ε < log c1
m

(1− c2c3).

We continue with more definitions related to (c, λ, w)-structures. Let (S1, S2, ..., S|w|)

be a (c, λ, w)-structure, let i ∈ {1, . . . , |w|}, and let v ∈ Si. We say that v is M -

good with respect to the set Sj if either j > i and d(Sj, {v}) ≤ Mλ or j < i and

d({v}, Sj) ≤ Mλ; and that v is M -good with respect to (S1, S2, ..., S|w|) if it is M -

good with respect to every Sj for j ∈ {1, 2, ..., |w|}\{i}. Denote by Sj,v the set of

the vertices of Sj adjacent from v for j > i and adjacent to v for j < i. Now, if

v ∈ Si is M -good with respect to (S1, S2, ..., S|w|) , then |Sj,v| ≥ (1 −Mλ)|Sj| for

all j 6= i. Next we list some easy facts about (c, λ, w)-structures.

3.2.8 Let (S1, S2, ..., S|w|) be a (c, λ, w)-structure. Then for every i, j ∈ {1, 2, ..., |w|},

i 6= j all but at most 1
M
|Si| of the vertices of Si are M-good with respect to Sj.

Proof. We may assume without loss of generality that i < j (for i ≥ j the proof is
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analogous). Denote by B ⊆ Si the set of the vertices of Si that are not M -good with

respect to Sj. From the definition of M -goodness we have d(B, Sj) < (1 −Mλ).

Therefore |B| ≤ 1
M
|Si| because otherwise we get a contradiction to 3.2.4 taking

X = B, Y = Sj.

3.2.9 Let (S1, S2, ..., S|w|) be a (c, λ, w)-structure. Then for every i ∈ {1, 2, ..., |w|}

all but at most |w|
M
|Si| of the vertices of Si are M-good with respect to (S1, S2, ..., S|w|).

Proof. Denote by Bj the subset of vertices of Si that are not M -good with respect

to Sj for j ∈ {1, 2, ..., |w|}\{i}. Denote by B the subset of vertices of Si that are

not M -good with respect to (S1, S2, ..., S|w|). We have: B =
⋃
j 6=iBj. From 3.2.8

we know that |Bj| ≤ 1
M
|Si|. Therefore we have: |B| ≤ |w|

M
|Si|.
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44
Constellations

4.1 Basic definitions

For a long time the only prime tournaments for which the Erdös-Hajnal Conjecture

was known to be true were all prime tournaments on at most 4 vertices and some

prime tournaments on 5 vertices. In this chapter we will prove the conjecture for

an infinite family of tournaments called constellations that contains infinitely many

prime tournaments ([10]). All the methods that allow us to prove the conjecture

for several classes of tournaments can be used to obtain lower bounds on the coef-

ficient ε(H) as a function of the order of a tournament.In fact even though in the

proofs that constellations and C5 satisfy the conjecture we use regularity lemma,
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it is possible to avoid it. Thus our approach may be easily applied to construct

algorithms finding large transitive subsets in certain families of tournaments with

forbidden substructures. We will not discuss algorithmic results in the thesis. An

algorithmic approach that does not use regularity lemma is presented in [9]. We

mentioned in the introduction that the conjecture is still open for undirected paths

of at least 5 vertices. In the directed scenario there is an analogous family of so-

called directed paths (it will be defined later). Every directed path on at least 5

vertices is prime. It turns out that every directed path is also a constellation. Thus

as a corollary of our main result we will prove that every directed path satisfies

the Erdös-Hajnal Conjecture. Another corollary is that all tournaments on at most

five vertices satisfy the conjecture. However to prove the latter we will also need

to prove the conjecture for C5 which is not a constellation. Both corollaries were

first proven in [6] and were implied by the fact that the family of so-called galaxies

satisfies the conjecture and so does C5. However now we will prove the conjecture

for a larger family of tournaments than galaxies. We now introduce definitions that

will be used later in this chapter.

Let T be a tournament with vertex set V (T ). Fix some ordering of its vertices.

The graph of backward edges under this ordering, denoted by B(T, θ), has vertex

set V (T ), and vivj ∈ E(B(T, θ)) if and only if (vi, vj) or (vj, vi) is a backward edge

of T under the ordering θ. For an integer t, we call the graph K1,t a star. Let S be
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a star with vertex set {c, l1, . . . , lt}, where c is adjacent to vertices l1, . . . , lt. We call

c the center of the star, and l1, . . . , lt the leaves of the star. Note that in the case

t = 1 we may choose arbitrarily any one of the two vertices to be the center of the

star, and the other vertex is then considered to be the leaf. Let θ = (v1, v2, ..., vn)

be an ordering of the vertex set V (T ) of a n-vertex tournament T . For a subset

S ⊆ V (T ) we say that vi ∈ S is a left point of S under θ if i = min{j : vj ∈ S}.

We say that vi ∈ S is a right point of S under θ if i = max{j : vj ∈ S}. If from the

context it is clear which ordering is taken we simply say: left point of S or right

point of S. For an ordering θ and two vertices vi, vj with i 6= j we say that vi is

before vj if i < j and after vj otherwise. We say that a vertex vj is between two

vertices vi, vk under an ordering θ = (v1, ..., vn) if i < j < k or k < j < i. We

denote by Pk for k = 1, 2, ... a tournament for which there exists an ordering of

vertices under which the graph of backward edges is a path of k vertices. We call

it the directed path with k vertices.

A right star in B(T, θ) is an induced subgraph with vertex set {vi0 , . . . , vit}, such

that B(T, θ)|{vi0 , . . . , vit} is a star with center vit , and it > i0, . . . , it−1. In this

case we also say that {vi0 , . . . , vit} is a right star in T . A left star in B(T, θ) is an

induced subgraph with vertex set {vi0 , . . . , vit}, such that B(T, θ)|{vi0 , . . . , vit} is a

star with center vi0 , and i0 < i1, . . . , it. In this case we also say that {vi0 , . . . , vit}

is a left star in T . A star in B(T, θ) is a left star or a right star.
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Let H be a tournament and assume there is an ordering θ of its vertices such that

every connected component of B(H, θ) is either a star or a singleton under this

ordering. We call this ordering a star ordering. A star ordering of the vertices of

the tournament under which no center of a star is between leaves of another star is

called a galaxy ordering. A tournament is a galaxy if its set of vertices has a galaxy

ordering. In [6] in joined work with Eli Berger and Maria Chudnovsky we proved

that:

4.1.1 Every galaxy has the Erdös-Hajnal property.

The interstellar graph of H under a star ordering θ is an undirected graph, whose

vertices are the sets of leaves of the stars of H under θ and two vertices L1 and L2

are adjacent if:

• the left point of L1 preceeds the right point of L2 in θ and

• the left point of L2 preceeds the right point of L1 in θ

For each connected component C of the interstellar graph of H denote by Z(C) the

union of subsets of V (H) corresponding to its vertices (this is the union of some

subsets of V (H) of the vertices of H). Next let us define C(Z(C)) as follows. We say

that a vertex v ∈ C(Z(C)) if v ∈ Z(C) or v is between some two vertices of Z(C)

under the ordering θ. Let C1, ..., Ck be the connected components of the interstellar
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graph. Note that for any given 1 ≤ i < j ≤ k either every vertex of C(Z(Ci)) is

before every vertex of C(Z(Cj)), or every vertex of C(Z(Cj)) is before every vertex

of C(Z(Ci)). Thus there is a natural ordering of the sets C(Z(Ci)) for i = 1, 2, ..., k

induced by the ordering of the vertices. Denote the ordered sequence of the sets

C(Z(Ci)) for i = 1, 2, ..., k as (W1, ..., ,Wk), where a set Wi is before a set Wj for

1 ≤ i < j ≤ k. Denote W0 =Wk+1 = ∅. For i = 1, 2, ..., k + 1 denote by Ri the set

of the vertices of H that are after all the vertices ofWi−1 and before all the vertices

of Wi under the ordering θ. Note that if Ri is nonempty then all its elements are

centers of the stars of H. Denote the set of nonempty sets Ri as {M1, ...,Mr} for

some r ≥ 0. Note that {W1, ...,Wk,M1, ...,Mr} is a partition of the vertices of H.

Denote this partition by Pθ(H). We are ready to define constellations.

A tournament T is a constellation if there exists a star ordering θ of its vertices

such that if a center of a star is in some P ∈ Pθ(H) then no leaf of this star is in P .

We call such an ordering a constellation ordering of T . Let Σ1, . . . ,Σl be the non-

singleton components of B(T, θ). We say that Σ1, . . . ,Σl are the stars of T under

θ. If V (T ) =
⋃l
i=1 V (Σl), we say that T is a regular constellation.

The goal of this chapter is to prove the following result that first appeared in [10]:

4.1.2 Every constellation has the Erdös-Hajnal property.

Theorem 4.1.2 extends Theorem 4.1.1 since every galaxy is a constellation.
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4.2 Erdös-Hajnal property of constellations

In this section we prove Theorem 4.1.2.

Let s be a {0, 1}-vector. Denote by sc the vector obtained from s by replacing

every subsequence of consecutive 1′s by single 1. Let δs : {i : sc = 1} → N be a

function that assigns to every nonzero entry of sc the number of consecutive 1′s of

s replaced by that entry of sc.

Let H be a regular constellation, and let θ = (v1, . . . , vh) be its constellation order-

ing. Let Σ1, . . . ,Σl be the stars of H. For i ∈ {0, . . . , l} define H i = H|
⋃i
j=1 V (Σj),

where H l = H, and H0 is the empty tournament. Let sH,θ be a {0, 1}-vector such

that sH,θ(i) = 1 if and only if vi is a leaf of one of the stars of H. We say that a

(c, λ, w)-structure corresponds to H under the ordering θ if w = sH,θc . We say that

a (c, λ, w)-structure is constellation-correlated with H under the ordering θ if the

length of w is the number of parts of the partition Pθ(H) (see the definition of a

constellation) and wi = 1 for i = 1, 2, ..., |Pθ(H)|.

Let (S1, S2, ..., S|w|) be a strong (c, λ, w)-structure that corresponds to H under

θ, and let ir be such that w(ir) = 1. Assume that Sir = {s1
ir , ..., s

|Sir |
ir
} and

(s1
ir , ..., s

|Sir |
ir

) is a transitive ordering. Write m(ir) = b |Sj |
δw(ir)

c.

Write Sjir = {s(j−1)m(ir)+1
ir

, ..., s
jm(ir)
ir

} for j ∈ {1, 2, ..., δw(ir)}. For every v ∈ Sjir

write ξ(v) = (|{k < ir : w(i) = 0}|+
∑

k<ir:w(i)=1 δ
w(k)) + j. For every v ∈ Sir such
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that w(ir) = 0 write ξ(v) = (|{k < ir : w(i) = 0}|+
∑

k<ir:w(i)=1 δ
w(k)) + 1. We say

that H is well-contained in (S1, S2, ..., S|w|) that corresponds to H if there is a ho-

momorphism f of H into T |
⋃|w|
i=1 Si such that ξ(f(vj)) = j for every j ∈ {1, . . . , h}.

Write Pθ(H) = {P1, P2, ..., Pz} and assume that first |P1| vertices of H under θ are in

P1, next |P2| are in P2, etc. Let (S1, S2, ..., S|w|) be a (c, λ, w)-structure constellation-

correlated with H under θ. Assume that Si = {s1
i , ..., s

|Si|
i } and that (si1, ..., s

i
|Si|)

is a transitive ordering. Write n(i) = b |Si||Pi|c. Write Sji = {s(j−1)n(i)+1
i , ..., s

jn(i)
i } for

j ∈ {1, 2, ..., |Pi|}. For every v ∈ Sji write ξ(v) =
∑

k<i |Pi| + j. We say that H is

constellation-contained in (S1, S2, ..., S|w|) that is constellation-correlated with H if

there is a homomorphism f of H into T |
⋃|w|
i=1 Si such that ξ(f(vj)) = j for every

j ∈ {1, . . . , h}.

At the very beginning we need the following technical lemma:

4.2.1 Let H be a regular constellation with |H| = h and let θ be its constellation-

ordering. Let Σ1,Σ2, ...,Σl be the stars of H under θ. Let c > 0, 0 < λ ≤

1
h2(2(h+1))2h+2 be constants, and w be a vector. Fix k ∈ {0, ..., l}. Let T be a tourna-

ment and let (S1, ..., S|w|) be a strong ( c
(2(h+1))l−k

, (2(h + 1))2(l−k)λ,w)-structure in

T corresponding to Hk. Then there exists εk > 0 such that if 0 < ε < εk and T is

ε-critical, then Hk is well-contained in (S1, ..., S|w|).

Proof. Let h1, ..., h|H| be the vertices of H in order θ. Let Σ1, ...,Σl be the stars
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of H under θ. Write |T | = n. Taking εk > 0 small enough we may assume that

tr(T ) ≥ h(h+1)
c

by 3.2.1. The proof is by induction on k. For k = 0 the statement is

obvious since H0 is the empty tournament. Write M = 2h(h+1), ĉ = c
(2(h+1))l−k

, λ̂ =

(2(h+ 1))2(l−k)λ. By 3.2.9 we know that for every i ∈ {1, ..., |w|} every Si contains

at least (1− 1
2(h+1)

)|Si| M -good vertices with respect to (S1, ..., S|w|). We call this

property the purity property of (S1, ..., S|w|). Assume that hq0 is the center of Σk

and hq1 , ...hqp are its leaves for some integer p > 0. For i ∈ {0, . . . , p}, define Di to

be the set of all vertices v of
⋃|w|
i=1 Si with ξ(v) = qi that are M -good with respect

to (S1, ..., S|w|). Note that for 1 ≤ i < j ≤ p subset Di is complete to the subset

Dj. Besides each Di for i = 1, 2, ..., p induces a transitive subtournament. From the

purity property and the fact that tr(T ) ≥ h(h+1)
c

it follows that |Di| ≥ ĉ
2(h+1)

tr(T )

for i = {1, ..., p}, and |D0| ≥ ĉ
2
n. We may assume that εk < log ĉ

2h
(1− ĉ

2(h+1)
). Now

we use 3.2.7 to conclude that there exist vertices: d0, ..., dp such that di ∈ Di for

i = 0, ..., p and

• d1, ..., dp are all adjacent to d0 if Q is a left-star, and

• d1, ..., dp are all adjacent from d0 if Q is a right-star.

Therefore {d0, ..., dp} induces a copy of Σk. Let x ∈ {1, ..., |w|} be such that d0 ∈ Sx.

Now since (S1, ..., S|w|) corresponds to Hk and hq1 , ..., hqp are leaves , we also know

that there exist y1, ..., yp ∈ {1, ..., |w|}\{x} so that di ∈ Syi for all i ∈ {1, ..., p}, and

T |(Sy1
⋃
...
⋃
Syp) is a transitive tournament. Let i ∈ {1, ..., |w|}\{x, y1, ..., yp}.
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Write Sfi =
⋂p
j=0 Si,dj . Since each dj is M -good with respect to (S1, ..., S|w|) we

have |Si,dj | ≥ (1 −Mλ̂)|Si|. Therefore |Sfi | ≥ (1 −Mhλ̂)|Si|. By the definition

of λ̂ we conclude that |Sfi | ≥ (1 − 1
2(h+1)

)|Si|. Write H = {1, ..., h}\{q0, ...qp}. If

{v ∈ Syi : ξ(v) ∈ H} 6= ∅, then we define S∗yi = Syi,d0 . By a similar argument as

above we conclude that if S∗yi is defined then |S∗yi | ≥ (1− 1
2(h+1)

)|Syi |. If S∗yi is defined

then define Ŝyi = {v ∈ S∗yi : ξ(v) ∈ H}. Let Iyi = {j : ∃v∈Ŝyiξ(v) = j}. Note that if

Ŝyi is defined then Iyi 6= ∅. Assume now that Ŝyi is defined. For every j ∈ Iyi select

arbitrarily d ĉ
2(h+1)

e vertices v in Ŝyi with ξ(v) = j and denote the union of these

|Iyi | sets by Sfyi . We can always do this selection since for every j ∈ Iyi we have

|v : ξ(v) = j| ≥ |Syi |
h+1

and also |S∗yi| ≥ (1 − 1
2(h+1)

)|Syi |. Thus we have defined some

number of sets Sfi . Denote this number by t. We have: |Sfi | ≥ ĉ
2(h+1)

tr(T ) for every

(defined) Sfi with w(i) = 1 and |Sfi | ≥ ĉ
2(h+1)

n for every (defined) Sfi with w(i) = 0.

Now 3.2.4, implies that the sets Sf1 , ..., S
f
t form a strong ( ĉ

2(h+1)
, 4(h + 1)2λ̂, z)-

structure that corresponds to Hk−1 for an appropriate vector z. Inductively Hk−1

is well-contained in this structure for εk > 0 small enough. But now we can merge

the well-contained copy of Hk−1 and a copy of Σk that we have already found to

get a well-contained copy of Hk. This completes the proof.

From the previous lemma we get the following lemma:

4.2.2 Let H be a regular constellation with |H| = h. Let c be a positive constant.

Then there exists ε > 0 such that every ε-critical tournament containing a strong
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(c, 1
h2(2h+2)2h+2 , z)-structure corresponding to H for an appropriate vector z is not

H-free.

Proof. Let θ be a constellation-ordering of H and let Σ1, ...,Σl be the stars of H

under θ. Then Lemma 4.2.2 follows from Lemma 4.2.1 if we take k = l.

We also need the following lemma:

4.2.3 Let H be a regular constellation with |H| = h and let θ be its constellation-

ordering. Let Σ1,Σ2, ...,Σl be the stars of H under θ. Let c > 0, 0 < λ ≤

1
h2(2(h+1))2h+2 be constants, and w be a vector. Fix k ∈ {0, ..., l}. Let T be a tourna-

ment and let (S1, ..., S|w|) be ( c
(2(h+1))l−k

, (2(h + 1))2(l−k)λ,w)-structure in T which

is constellation-correlated with Hk. Then there exists εk > 0 and c1 > 0 such that

if 0 < ε < εk and T is ε-critical, then

• Hk is constellation-contained in (S1, ..., S|w|) or

• there exist 1 ≤ i < j ≤ |w| and Si ⊆ Si, Sj ⊆ Sj such that Si is complete to

Sj and |Si| ≥ c
(2(h+1))lh

tr(T ), |Sj| ≥ c
(2(h+1))lh

tr(T ).

Proof. The proof is similar to the proof of Lemma 4.2.1. Let h1, ..., h|H| be the

vertices of H in order θ. Let Σ1, ...,Σl be the stars of H under θ. Write |T | = n.

Taking εk > 0 small enough we may assume that tr(T ) ≥ h(h+1)
c

by 3.2.1. The

proof is by induction on k. For k = 0 the statement is obvious since H0 is an
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empty tournament. So it suffices to prove the statement for k ≥ 1. Write M =

2h(h + 1), ĉ = c
(2(h+1))l−k

, λ̂ = (2(h + 1))2(l−k)λ. By 3.2.9 we know that for every

i ∈ {1, ..., |w|} every Si contains at least (1 − 1
2(h+1)

)|Si| M -good vertices with

respect to (S1, ..., S|w|). We call this property the purity property of (S1, ..., S|w|).

Assume that hq0 is the center of Σk and hq1 , ...hqp are its leaves for some integer

p > 0. For i ∈ {0, . . . , p}, define Di to be the set of all vertices v of
⋃|w|
i=1 Si with

ξ(v) = qi that are M -good with respect to (S1, ..., S|w|). Note that each Di for

i = 0, 1, 2, ..., p induces a transitive subtournament. From the purity property and

the fact that tr(T ) ≥ h(h+1)
c

it follows that |Di| ≥ ĉ
2(h+1)

tr(T ) for i = {0, 1, ..., p}.

Assume first that there are no vertices d0, d1, ..., dp such that di ∈ Di for i = 0, ..., p

and

• d1, ..., dp are all adjacent to d0 if Q is a left-star, and

• d1, ..., dp are all adjacent from d0 if Q is a right-star.

Without loss of generality assume that Σk is a left star. Then for every d ∈ D0 there

exists id ∈ {1, 2, ..., p} such that {d} is complete to Did . Therefore, by pigeonhole

principle, there exists i∗ ∈ {1, 2, ..., p} and a set D∗ ⊆ D0 such that |D∗| ≥ |D0|
p

and

D∗ is complete to Di∗ . But then we can take Si = D∗ and Sj = Di∗ and we are

done. Thus we conclude that there exist vertices: d0, ..., dp such that di ∈ Di for

i = 0, ..., p and
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• d1, ..., dp are all adjacent to d0 if Q is a left-star, and

• d1, ..., dp are all adjacent from d0 if Q is a right-star.

Therefore {d0, ..., dp} induces a copy of Σk. Let x ∈ {1, ..., |w|} be such that d0 ∈

Sx. Now, since (S1, ..., S|w|) is constellation-corellated with Hk and hq1 , ..., hqp are

leaves , we also know that there exists y ∈ {1, ..., |w|}\{x} so that di ∈ Sy for

all i ∈ {1, ..., p}, and T |Sy is a transitive tournament. Let i ∈ {1, ..., |w|}\{x, y}.

Write Sfi =
⋂p
j=0 Si,dj . Since each dj is M -good with respect to (S1, ..., S|w|) we

have |Si,dj | ≥ (1 −Mλ̂)|Si|. Therefore |Sfi | ≥ (1 −Mhλ̂)|Si|. By the definition

of λ̂ we conclude that |Sfi | ≥ (1 − 1
2(h+1)

)|Si|. Write H = {1, ..., h}\{q0, ...qp}. If

{v ∈ Sy : ξ(v) ∈ H} 6= ∅, then we define S∗y = Sy,d0 . By a similar argument as

above we conclude that if S∗y is defined then |S∗y | ≥ (1− 1
2(h+1)

)|Sy|. If S∗y is defined

then define Ŝy = {v ∈ S∗y : ξ(v) ∈ H}. Let Iy = {j : ∃v∈Ŝyξ(v) = j}. Note that if

Ŝy is defined then Iy 6= ∅. Assume now that Ŝy is defined. For every j ∈ Iy select

arbitrarily d ĉ
2(h+1)

e vertices v in Ŝy with ξ(v) = j and denote the union of these

|Iy| sets by Sfy . We can always do this selection since for every j ∈ Iy we have

|v : ξ(v) = j| ≥ |Sy |
h+1

and also |S∗y | ≥ (1 − 1
2(h+1)

)|Sy|. Thus we have defined some

number of sets Sfi . Denote this number by t. We have: |Sfi | ≥ ĉ
2(h+1)

tr(T ) for every

(defined) Sfi . Now 3.2.4, implies that the sets Sf1 , ..., S
f
t form a ( ĉ

2(h+1)
, 4(h+1)2λ̂, z)-

structure that is constellation-correlated with Hk−1 for an appropriate vector z.

Inductively either Hk−1 is constellation-contained in this structure for εk > 0 small
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enough or there exists 1 ≤ i < j ≤ |w| and Si ⊆ Si, Sj ⊆ Sj such that Si is

complete to Sj and |Si| ≥ c
(2(h+1))lh

tr(T ), |Sj| ≥ c
(2(h+1))lh

tr(T ). If the latter follows

then we are obviously done. However if the former follows then we are also done

since if this is the case we can merge the constellation-contained copy of Hk−1 and

a copy of Σk that we have already found to get a constellation-contained copy of

Hk. This completes the proof.

From the previous lemma we get the following lemma:

4.2.4 Let H be a regular constellation with |H| = h. Let c be a positive constant.

Then there exists ε1 > 0 such that for every 0 < ε < ε1, for every ε-critical tour-

nament T containing a (c, 1
h2(2h+2)2h+2 , z)-structure Π = (S1, ..., S|z|), constellation-

correlated with H for an appropriate vector z, the following holds:

• T is not H-free or

• there exists 1 ≤ i < j ≤ |z| and Si ⊆ Si, Sj ⊆ Sj such that Si is complete to

Sj and |Si| ≥ c
(2(h+1))lh

tr(T ), |Sj| ≥ c
(2(h+1))lh

tr(T ).

Proof. Let θ be a constellation-ordering of H and let Σ1, ...,Σl be the stars of H

under θ. Then Lemma 4.2.4 follows from Lemma 4.2.3 if we take k = l.

We are ready to prove Theorem 4.1.2.
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Proof. Fix some constellation H. We can assume that it is regular since every

constellation is a subtournament of some regular constellation. Denote its constel-

lation ordering by θ and related partition by Pθ(H). Let Σ1, ...,Σl be the stars of

H under θ. Assume that the maximal number of consecutive 0’s in a vector w of

a strong (c, λ, w)-structure that corresponds to H is s and the number of 1’s in

w is u (note that vector w depends only on H and the ordering θ). Let T be an

ε-critical tournament. It is enough to show that for ε > 0 small enough T is not

H-free. Denote by ε1 the ε from Lemma 4.2.4, taken for c = c0((2(h + 1))lh)−(r2).

We may assume that for the ε-critical tournament T that we consider we have

ε < ε1. Write Λ0 = h−2−2(r2)(2h + 2)−2h−2−2l(r2) and r = 2max{u,|Pθ(H)|}+1. We

may assume, according to Lemma 3.2.6, that T contains a (c0,Λ0, z)-structure for

z = (z0, ..., z(r+1)s+r−1), where zi = 0 for i mod (s + 1) ≤ (s − 1) and zi = 1

for i mod (s + 1) = s for some constant c0 > 0. Now consider the sequence of

undirected graphs (G0, G1, ...) and the sequence of (c, λ, w)-structures (Π0,Π1, ...)

defined recursively as follows. G0 is a graph on r vertices with no edges such that

V (G0) = {1, 2, ..., r} and Π0 = (S0
1 , ..., S

0
(r+1)s+r) is some fixed (c0,Λ, z)-structure

in T . Assume that we have defined Gi and Πi = (Si1, ..., S
i
(r+1)s+r). Assume fur-

thermore that Πi is a (ci,Λi, z)-structure for some ci > 0 and Λi > 0. For every

1 ≤ m ≤ r define ρi(m) = Sim∗ , where m∗ is the index that corresponds to the

mth nonzero entry in z. If Gi does not contain stable sets of size |Pθ(H)| then

Gi+1 and Πi+1 are not defined. If this is the case we say that we reached state 0.
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If Gi contains a stable set of size |Pθ(H)| then take any of them and denote it by

A = {g1, ..., g|Pθ(H)|}. Without loss of generality assume that g1 < g2 < ... < g|Pθ(H)|.

Consider the following sequence (Siρi(g1), ..., S
i
ρi(g|Pθ(H)|)

). It is a (ci,Λi, q)-structure

for some appropriate vector q. Note that it is constellation-correlated with H.

If Λi >
1

h2(2h+2)2h+2 then we do not define Gi+1 and Πi+1 and we say that the

state 1 was reached. So assume that Λi ≤ 1
h2(2h+2)2h+2 . Assume also that we have

ci ≥ c0((2(h + 1))lh)−(r2). But now we can use Lemma 4.2.4 and conclude (taking

ε to be small enough) that either T is not H-free or there exists gi1 < gj1 and

Sρi(gi1 ) ⊆ Siρi(gi1 ), Sρi(gj1 ) ⊆ Siρi(gj1 ) such that Sρi(gi1 ) is complete to Sρi(gj1 ) and

|Sρi(gi1 )| ≥ ci
(2(h+1))lh

, |Sρi(gj1 )| ≥ ci
(2(h+1))lh

. If the former holds then we say that we

reached state 2. So assume that the former does not hold, but the latter holds.

Then Gi+1 is obtained from Gi by adding an edge {i1, j1}. Structure Πi+1 is ob-

tained from Πi by replacing Siρi(gi1 ) by Sρi(gi1 ) and Siρi(gj1 ) by Sρi(gj1 ).

If we have ci < c0((2(h+1))lh)−(r2), then we do not define Gi+1 and Πi+1 and we say

that state 3 was reached. Note that the sequences (G0, G1, ...) and (Π0,Π1, ...) are

finite. Indeed, graph Gi+1 has one more edge than Gi and if V (Gi) induces a clique

then we reach state 0. Therefore we can write both sequences as: (G0, G1, ...Gl),

(Π0,Π1, ...Πl), for some l ≤
(
r
2

)
. Using induction and Lemma 3.2.4 we easily get that

ci ≥ c0
((2(h+1))lh)i

and Λi ≥ Λ0((2(h+ 1))lh)2i. Therefore we can conclude that state

3 can never be reached. Assume that we constructed two sequences: (G0, G1, ...Gl)

and (Π0,Π1, ...Πl), according to the rules above. Since those sequences are finite,
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we reached one of the states: 0, 1, 2. State 1 in fact cannot be reached because of

the lower bound on Λi we derived above and the formula on Λ0. Reaching state 2

implies that a copy of H was found in T so we are done. Therefore we can assume

that state 0 was reached. Since Gl has 2max(u,|Pθ(H)|)+1 vertices, it has either a clique

or stable set of size at least max {u, |Pθ(H)|}. Since state 0 was reached, Gl does

not have stable sets of size |Pθ(H)|. Therefore it has a clique of size u. Denote

this clique by {c1, c2, ..., cu}. Let Sl
ρl(c1)

, Sl
ρl(c2)

, ..., Sl
ρl(cu)

be the corresponding sets.

Note that from the definition of a vector z we know that ρl(cj) − ρl(ci) ≥ (s + 1)

for 1 ≤ i < j ≤ u. But then, again from the definition of u and z, we can easily

complete the sequence (Sl
ρl(c1)

, Sl
ρl(c2)

, ..., Sl
ρl(cu)

) by the sets of the form Sli (for which

zi = 0), to get a (cl,Λl, q)-structure (for an appropriate vector q) that corresponds

to H. Note that this is a strong (cl,Λl, q)-structure since for every 1 ≤ i < j ≤ u

we have: Sl
ρl(ci)

is complete to Sl
ρl(cj)

. Now, using the derived lower bound on Λl

and the formula on Λ0, we can conclude for ε > 0 small enough that, according

to Lemma 4.2.2, a tournament T contains a copy of H as a subtournament. That

completes the proof of Theorem 4.1.2.

Now we prove an interesting corollary of Theorem 4.1.2 ([6]) which we restate

below:

4.2.5 For every k the tournament Pk satisfies the Erdös-Hajnal Conjecture.
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Proof. Take a path Pk. We can assume without loss of generality that k = 2l

for some l. By Theorem 4.1.2, it is enough to prove that Pk is a constellation.

Assume that V (Pk) = {1, ..., 2l} and that under the ordering given by this labeling

the only backward edges are of the form (i+ 1, i) for i = 1, ..., 2l− 1. Now take the

following ordering of the vertices of Pk: θ = (2, 1, 4, 3, 6, 5, ..., 2l, 2l− 1). Under this

ordering the set of backward edges is the collection of edges of the form (2s+ 1, 2s)

for s = 1, ..., l − 1. Therefore Pk is a constellation and the result follows.
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55
The Erdös-Hajnal Conjecture for small

tournaments

5.1 Introduction

In this chapter we prove that every tournament on at most 5 vertices has the

Erdös-Hajnal property. Thus, we prove the following result of [6]:

5.1.1 The Erdös-Hajnal Conjecture is true for all tournaments on at most 5 ver-

tices.

In the undirected scenario there are three graphs on at most 5 vertices for which

the conjecture is still open (path of 5 vertices, its complement and cycle of length
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5). Unfortunately the result for tournaments does not seem to provide clues to

prove the undirected version of the conjecture for those three remaining undirected

graphs.

We need some definitions. Denote by C5 the (unique) tournament on 5 vertices in

which every vertex is adjacent to exactly two other vertices. One way to construct

this tournament is to take a vertex set {0, 1, 2, 3, 4} and make vertex i adjacent to

i + 1 mod 5 and i + 2 mod 5 for i = 0, 1, 2, 3, 4. The tournament C5 is a prime

tournament that is not a constellation. It turns out that Theorem 5.1.1 is implied

by Theorem 4.1.2, the fact that C5 has the Erdös-Hajnal property and some results

of [7].

Therefore in this chapter we also prove the following result:

5.1.2 The tournament C5 has the Erdös-Hajnal property.

This result first appeared in [6].

5.2 Small tournaments

Our goal in this section is to prove Theorem 5.1.1. We asssume here that C5 has

the Erdös-Hajnal property. The proof of this fact is given in the next section. First,

we need some definitions. Let us remind that a tournament S is a celebrity if there
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exists a constant c(S), with 0 < c(S) ≤ 1, such that every S-free tournament T

satisfies tr(T ) ≥ c(S)|T |. Celebrities were fully characterized in [7].

Let G1 be the tournament with 5 vertices v1, . . . , v5, such that under the ordering

(v1, . . . , v5) the backward edges are: (v4, v1), (v5, v2). Let G2 be the tournament

with 5 vertices w1, . . . , w5, such that under the ordering (w1, . . . , w5) the backward

edges are: (w5, w1), (w5, w3).

We need the following result from [7].

5.2.1 Every tournament on at most 5 vertices, except C5, G1, G2, is a celebrity.

We are ready to prove 5.1.1:

Proof. Clearly every celebrity satisfies the Erdös-Hajnal Conjecture, so by 5.2.1

it is enough to prove the result form G1, G2, C5. Since (v1, . . . , v5) is a constellation

ordering of G1, and (w1, . . . , w5) is a constellation ordering of G2, Theorem 4.1.2

implies that both G1 and G2 satisfy the Erdös-Hajnal Conjecture, and by 5.1.2 so

does C5. This completes the proof.

.
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5.3 The tournament C5

We prove in this section Theorem 5.1.2. We start with some preliminary ob-

servations. Let v1, ..., v5 be the vertices of C5. Then there exists an ordering

(vθ(1), vθ(2), vθ(3), vθ(4), vθ(5)) of v1, ..., v5 where the set of backward edges is the follow-

ing {(vθ(5), vθ(1)), (vθ(4), vθ(1)), (vθ(5), vθ(2))}. We call this ordering the path ordering

of C5 since under this ordering the set of backward edges forms a path (and one

isolated vertex). There also exists an ordering (vρ(1), vρ(2), vρ(3), vρ(4), vρ(5)) of the

vertices of C5 where the set of backward edges is

{(vρ(5), vρ(3)), (vρ(3), vρ(1)), (vρ(5), vρ(1)), (vρ(4), vρ(2))}. We call this ordering the cyclic

ordering of C5, since under this ordering the set of backward edges forms a graph

containing a cycle (a triangle plus an edge).

5.3.1 Let c, d > 0, 0 < λ < 1, ε < log dc
2

(1
2
) and w = (0, 0, 1, 0, 0). Let (S1, ..., S5)

be a (c, λ, w)-structure of an ε-critical tournament T . Let s1 ∈ S1, s3 ∈ S3, s5 ∈ S5.

Assume that s5 is adjacent to both s1 and s3 and s3 is adjacent to s1. Let Ŝ2 be

the subset of the vertices of S2 adjacent to s3, s5 and from s1. Let Ŝ4 be the subset

of the vertices of S4 adjacent to s5 and from s1, s3. Assume that |Ŝi| ≥ d|Si| for

i ∈ {2, 4}. Then T contains a copy of C5.

Proof. By 4.2.2, and since T is ε-critical and ε < log dc
2

(1
2
) , there exist s2 ∈ Ŝ2

and s4 ∈ Ŝ4 such that s4 is adjacent to s2. But now {s1, ..., s5} induces a copy of
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C5 in T and the ordering (s1, ..., s5) is a cyclic ordering.

We will now prove 5.1.2 which we restate below:

5.3.2 The tournament C5 satisfies the Erdös-Hajnal Conjecture.

Proof. Assume otherwise. Taking ε > 0 small enough, we may assume that

there exists a C5-free ε-critical tournament T . By 3.2.6 T contains a (c, λ, w)-

structure (S1, ..., S5) for some c > 0, λ = 1
720

and w = (0, 0, 1, 0, 0). We may

assume without loss of generality that |S3| mod 3 = 0. Let (T1, T2, T3) be a (3, 1
3
)-

subdivision of S3. Let M = 30. Let S∗i be the subset of Si of M -good vertices with

respect to (S1, ..., S5). By 3.2.9 we have |S∗i | ≥ (1 − 5
M

)|Si|. Denote T ∗i = S∗3 ∩ Ti

for i ∈ {1, 2, 3}. We have: |T ∗i | ≥ 1
2
|Ti|. So by 3.2.4 (S∗1 , S2, T

∗
1 , S4, S

∗
5) is a

( c
6
, 36λ,w)-structure. Similarly, (S∗1 , S2, T

∗
3 , S4, S

∗
5) is a ( c

6
, 36λ,w)-structure. Write

δ = 1
2
(1 − 5

M
). We may assume that ε < logδ(

1
2
), and so by 4.2.2 there exists an

integer k ≥ 5
12
c and vertices x1, ..., xk, y1, ..., yk such that xi ∈ S∗1 , yi ∈ S∗5 and yi is

adjacent to xi for i ∈ {1, ..., k}. Denote by X the subset of {x1, ..., xk} consisting of

the vertices with an inneighbour in T ∗3 , and by Y the subset of {y1, ..., yk} consisting

of the vertices with an outneighbour in T ∗1 . We may assume that ε < log 5
36
c(1− c

6
),

and thus 3.2.2 implies that |X| > k
2

and |Y | > k
2
. Consequently, there exists an

index j ∈ {1, ..., k} and vertices xj, yj, t1, t3 such that t1 ∈ T ∗1 , t3 ∈ T ∗3 , t3 is adjacent

to xj, and yj is adjacent to t1. If xj is adjacent to t1 and t3 is adjacent to yj then
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write E∗ = S3,xj ∩ S3,yj ∩ T ∗2 . From the fact that xj, yj are M -good with respect to

(S1, ..., S5) and since |T2| = |S3|
3

, it follows that |E∗| ≥ 1
2
|T2|, in particular |E∗| > 0.

Let q ∈ E∗. Then xj, t1, q, t3, yj induce a copy of C5 in T , where the ordering

(xj, t1, q, t3, yj) is the tree ordering, a contradiction. Therefore we may assume that

either t1 is adjacent to xj, or yj is adjacent to t3. Write Ei = Si,xj ∩Si,t1∩Si,t3∩Si,yj

for i ∈ {2, 4}. From the fact that xj, yj, t1, t3 are M -good with respect to (S1, ..., S5)

it follows that |Ei| ≥ (1− 4Mλ)|Si| ≥ 1
2
|Si| for i ∈ {2, 4}.

We may assume that ε < log c
12

(1
2
). Observe that (S∗1 , S2, T

∗
1 , S4, S

∗
5) and (S∗1 , S2, T

∗
3 , S4, S

∗
5)

are both ( c
6
, 36λ,w)-structures. But now, applying 5.3.1 to (S∗1 , S2, T

∗
1 , S4, S

∗
5) if t1

is adjacent to xj, and to (S∗1 , S2, T
∗
3 , S4, S

∗
5) if yj is adjacent to t3, we deduce that

T contains a copy of C5 (with the path ordering), a contradiction.
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66
Upper bounds for EH-suprema

6.1 Introduction

In this chapter we give upper bounds for EH-suprema of several classes of tourna-

ments. As a byproduct of our methods we will also obtain some results on EH-

suprema for undirected graphs. Our main results of the first part of this chapter

are the following:

6.1.1 The Erdös-Hajnal supremum of every undirected graph H is at most 4
|H| .

6.1.2 There exists η > 0 such that the Erdös-Hajnal supremum of almost every

tournament T on k vertices is at most 4
k
(1 + η

√
log(k)
√
k

), i.e. the proportion of tour-
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naments on k vertices with the supremum exceeding 4
k
(1 + η

√
log(k)
√
k

) goes to 0 as k

goes to infinity.

Besides we show how the parameter t(H) (the number of directed triangles) of a

given tournament H can be used to obtain upper bounds on its EH-supremum

ξ(H). We also show that tournaments with big EH-suprema have very nonrandom

properties by establishing an inequality combining two important parameters of the

tournament: EH-supremum ξ(H) and chromatic number χ(H):

6.1.3 Every tournament H satisfies: χ(H) < b 2
ξ(H)
c+ 1.

We show these results in the first part of this chapter. This part of the chapter is

based on [11].

The upper bound ξ(H) ≤ 4
h
(1 + o(1)) is valid for tournaments with quadratic num-

ber of backward edges under every ordering such as random tournaments. However

these results do not say anything about ξ(H) for an arbitrarily chosen tournament

with no nontrivial homogeneous sets, i.e. an arbitrary prime tournament. We

address that problem in the subsequent part, proving the following:

6.1.4 There exists C > 0 such that every prime h-vertex tournament H satisfies

ξ(H) ≤ C log(h)
h

.
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We also introduce a parameter called the partition number of a tournament that

measures how well it can be decomposed into homogeneous sets. We show its close

relation to the EH-supremum of the tournament. We also show that tournaments

with small nontrivial homogeneous sets have small EH-suprema. Using quotient

graphs of tournaments we also give some structural characterization and upper

bounds on sizes of families of tournaments with given lower bound on their EH-

suprema. This part of the chapter is based on [10].

6.2 EH-suprema of almost all graphs

6.2.1 Probabilistic tools

The most renowned previous work in this area is the determination of the assymp-

totics of the Ramsey number R(k, t) for fixed k, as t goes to infinity. R(k, t) is the

smallest n such that every graph with n vertices contains a clique of size k or an

independent set of size t. Thus, the Erdös-Hajnal supremum of a clique of size k is

the inverse of the infimum of those c such that R(k, n) exceeds nc for all sufficiently

large n. The earliest results in this area are due to Spencer[1975]. His approach

was to choose a parameter p such that the sum of the number of cliques of size k

plus the stable sets of size t in a graph with n vertices, where each edge is present

independently with probability p, was, on average, less than one. This implied that

there was a choice, where the sum was zero, i.e. an n-vertex graph with no clique of
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size k and no stable set of size at least t, and hence R(k, t) > n. One can refine this

approach, if the expectation of the sum is at most n
2
. It can be done by deleting one

vertex from each large clique and each large stable set to get a graph which shows

that R(k, t) > n
2
. This gives a slightly better result. One can refine the result even

further, using the Lovasz Local Lemma (for details see [26]).

To prove Theorem 6.1.1, we proceed in a similar manner. We can assume that H

has more edges than non-edges (since we can consider H or its complement). We

choose p such that the sum of the number of copies of H plus the number of stable

sets of size (n
2
)f in a graph with n vertices, where n is sufficiently large and each

edge is present independently with probability p is, on average, less than n
2
. That

proves that ξ(H) ≤ f .

To prove Theorem 6.1.2 we proceed as follows. We consider a random tournament

on vertices v1, ..., vn with sufficiently large n, where for each pair i, j with 1 ≤ i <

j ≤ n independently, vivj is an edge with probability p and vjvi is an edge with

probability 1 − p. We choose a p such that the sum of the number of vertex sets

of copies of T plus the number of transitive subtournaments of size (n
2
)f in this

random tournament is, on average, less than n
2
. This proves that the Erdös-Hajnal

supremum is at most f .

More precisely, in the proof of Theorem 6.1.2, we choose p so that the expected

number of transitive subtournaments of size (n
2
)f in the random tournament is, on
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average, less than one. We then examine what properties of a tournament T ensure

that the expected number of vertex sets of copies of T in this random tournament

is less than n
2
.

Using the probabilistic method we show the following:

6.2.1 The vertices of every tournament H can be ordered in such a way that the

set of backward edges of every subtournament S of H has size at most |S|−1
ξ(H)

.

Theorem 6.1.2 is a direct consequence of this result since almost every tournament

on k vertices has at least (1 + o(1))k(k−1)
4

backward edges under every ordering of

its vertices.

Bounding the size of the set of backward edges also bounds the number of directed

triangles of the tournament. Thus, as we will show, Theorem 6.2.1 also implies:

6.2.2 Let H be an n-vertex tournament H. Then if t(H) > 0, the following holds

ξ(H) ≤ min

{
2(n− 1)(n− 2)

t(H)
,
(n− 1)(

√
(2n− 5)2 + 8t(H) + (2n− 5))

4t(H)

}

Theorem 6.2.1 and 6.1.2 clarify that not all tournaments have Erdös-Hajnal supre-

mum 1. Within the class of tournaments which do, the family of celebrities is a

special subclass.

The following has been proven in [7]:
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6.2.3 The vertices of a celebrity H can be ordered in such a way that backward

edges form a forest.

Even though Proposition 6.2.3 does not explicitly follow from Theorem 6.2.1, the

techniques used to prove Theorem 6.2.1 can be also adapted to prove Proposi-

tion 6.2.3. We remark that Theorem 6.2.1 easily implies Corollary 6.1.3.

6.2.2 Proof of Theorem 6.1.1 and Theorem 6.2.1

We start by proving Theorem 6.1.1. In fact we will prove a slightly stronger result

from which Theorem 6.1.1 easily follows. Denote by N the set of nonedges of a

given undirected graph H.

6.2.1 The Erdös-Hajnal supremum of any undirected graph H with edge set E and

the set of nonedges N on h vertices satisfies: ξ(H) ≤ (h−1)
max{|N |,|E|} .

Proof. We can assume that |E| > |N | since the result holds for H if and only if

it holds for the complement of H. Denote m = |E|. We will the use probabilistic

method. All we need to do is to show for arbitrary f ∗ > h−1
m

an infinite family of

graphs G without H as an induced subgraph and without cliques and independent

sets of size at least |G|f∗ . Fix some f ∗ > h−1
m

. Denote ε =
(f∗−h−1

m
)

2
and let

f = h−1
m

+ ε. Consider a random graph Gn
f on n vertices, where for any two given

vertices i, j the probability p that i is adjacent to j is equal to 4 log(n)
nf

.
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We introduce three random variables: X, Y and Z such that:

• X counts the number of of independent sets of size nf in Gn
f

• Y counts the number of induced subgraphs of Gn
f isomorphic to H

• Z counts the number of cliques of size nf in Gn
f

Using the inequality (1− x) ≤ e−x we get:

EX =

(
n

nf

)
(1− p)(

nf

2 ) ≤ nn
f

e−p
nf (nf−1)

2 (6.1)

Therefore

EX ≤ en
f log(n)−pn

f (nf−1)
2 = o(1) (6.2)

because of the choice of p.

We also have:

EZ =

(
n

nf

)
p(

nf

2 ) (6.3)

and again we get: EZ = o(1).
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Finally, we have:

EY = O(

(
n

h

)
pm) ≤ C(log(n))mnh−fm (6.4)

for some constant C > 0.

From the assumption about f we get:

EY ≤ C(log(n))mn1−δ (6.5)

for some δ > 0.

Now, using Markov’s inequality we can conclude that for n large enough the prob-

ability that X > 0 and the probability that Z > 0 are both less than 1
3

(we use

here the fact that EX = o(1) and EZ = o(1)). Again, using Markov’s inequality

we conclude that Pr(Y > 3EY ) < 1
3
. So, from the union bound, we get that the

event E = {X = Z = 0, Y ≤ 3EY } has positive probability. That is, there is

some Gn
f for which X = Z = 0 and Y ≤ 3EY . From each copy of H in that Gn

f

we can delete one vertex. Therefore altogether we delete at most 3EY vertices,

i.e. at most 3C(log(n))mn1−δ vertices. Denote by Dn
f the graph obtained from

Gn
f by these deletions. Note that this graph has no clique of size at least nf , no

independent set of size at least nf and no induced subgraphs isomorphic to H.
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Besides it has at least n − 3C(log(n))mn1−δ vertices. We can take n big enough

such that |Dn
f |f+ε ≥ nf . Therefore Dn

f has no cliques or stable sets of size at least

|Dn
f |f+ε and no induced subgraphs isomorphic to H. That completes the proof of

Theorem 6.1.1, since f + ε = f ∗.

Now we prove Theorem 6.2.1, which we restate:

6.2.4 The vertices of every tournament H can be ordered in such a way that the

set of backward edges of every subtournament S of H has size at most |S|−1
ξ(H)

.

Proof. We use the probabilistic argument again. Fix some 0 < f ∗ < 1. Assume

that for every ordering o of the vertices of a tournament H there exists a subtour-

nament S of H such that |bo,S| > |S|−1
f∗

, where bo,S is the set of backward edges

of the subtournament S in the ordering o. All we need to prove then is that for

all n large enough there exists a n-vertex tournament without transitive subtour-

naments of size nf
∗

and without copies of H as subtournaments. Our n-vertex

tournament will be constructed randomly. From what we said so far we know that

exists 0 < f < 1, ε > 0 such that f ∗ = f + ε and for every ordering o of the vertices

of a tournament H there exists a subtournament S of H such that |bo,S| > |S|−1
f

,

where bo,S is the set of backward edges of the subtournament S in the ordering o.

Take a set of n vertices {1, 2, ..., n}. For each pair {i, j}, where i, j ∈ {1, 2, ..., n}

and i < j we choose independently at random the edge (i, j) with probability p
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and (j, i) with probability (1 − p), where p = 4 log(n)
nf

. As a result we obtain some

random tournament T nf .

We introduce two random variables: X and Y such that:

• X counts the number of transitive subtournaments of size nf in T nf

• Y counts the number of subtournaments HS of at most |H| vertices of T nf

with the following property: if the vertices of HS are ordered according to

decreasing index, namely: v1 > v2 > ... > v|HS |, then this ordering induces

more than |HS |−1
f

backward edges.

Our first goal is to bound EX. We need the following lemma.

6.2.5 For the probabilistic model introduced above the following is true for n large

enough:

EX ≤ nn
f

e−p(
nf

2 )

Proof. We have

EX =

(
n

nf

)
P, (6.6)

where P is defined as a probability that the set of vertices {1, 2, ...,m}, where

m = nf induces transitive subtournament. It is enough to show that

P ≤ (nf )!e−p(
m
2 ), (6.7)
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since
(
n
nf

)
(nf )! ≤ nn

f
.

Note that from the definition of the introduced probabilistic model we immediately

have:

P ≤ (nf )!Pb, (6.8)

where Pb is the probability that the set M = {1, 2, ...,m} induces a transitive

subtournament such that m is an inneighbour of all other vertices in M , m − 1 is

an inneighbour of all other vertices in M but m, etc. This configuration is clearly

the most likely configuration giving the transitive subtournament on the set M .

The total probability P differs from the probability of that particular configuration

at most by the factor (nf )!. In the Appendix to this chapter exact closed expression

on P is given. This result is of its own interest, we will not prove it here since a

very rough estimation is all that we need to finish the proof of Lemma 6.2.5.

Since we have Pb = (1 − p)(
m
2 ) and (1 − x) ≤ e−x, we get inequality 6.7 and that

completes the proof of Lemma 6.2.5.

Note that Lemma 6.2.5 immediately implies that EX → 0 as n→∞, since

EX ≤ en
f log(n)e−p

nf (nf−1)
2 elog( 1−p

1−2p
)nf = o(1). (6.9)
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Now we need to calculate EY .

Clearly, we have for some ε > 0:

EY = O(

|H|∑
h=1

(
n

h

)
p
h−1
f

+ε), (6.10)

because every edge of the form: (vj, vi) for j > i is chosen with probability p.

Therefore we have

EY ≤ C

|H|∑
h=1

nh
log

h−1
f

+ε(n)

nh−1+εf
(6.11)

for some constant C > 0.

But this means that

EY = O(n1−η) (6.12)

for some η > 0.

Now note that the condition Y = 0 implies that there are no copies of H in the

random n-vertex tournament. To see why this is true assume by contradiciton

that H appears somewhere in a random tournament. Assume that tournament H

is induced by the following vertices of a random tournament: v1, v2, ..., v|H|, where

v1 > v2 > ... > v|H|. Then we can denote by o∗ the ordering of vertices {1, 2, ..., |H|}
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of H that is induced by the ordering {v1, ..., v|H|}. Parameter f was chosen in such

a way that for every ordering o of vertices of H there exists a subtournament S of

H such that |bo,S| > |S|−1
f

. So now we can take such a subtournament S∗ for o∗ and

from the fact that |bo∗,S∗| > |S∗|−1
f

and the definition of Y, we obtain: Y > 0.

Using Markov’s inequality we see that Pr(Y ≥ 3EY ) ≤ 1
3
. Besides Pr(X > 0) ≤

E(X) ≤ 1
3

for n large enough, since EX → 0 as n→∞. So using the union bound,

we see that with probability at least 1
3

random n-vertex tournament T nf , constructed

according to our probabilistic model, has at most s = Cn1−η subtournaments iso-

morphic to H (for some constant C) and no transitive subtournaments of size nf .

We can denote by Dn
f the tournament obtained from T nf by deleting one vertex from

every subtournament isomorphic to H. So with probability at least 1
3

tournament

Dn
f is created by deleting at most s vertices, has no subtournaments isomorphic to

H and has no transitive subtournaments of size nf . So for n large enough there

exists (n-s)-vertex tournament D that has no subtournaments isomorphic to H and

has no transitive subtournaments of size nf . We can take n sufficiently large such

that (n− s)f+ε > nf . So we know that for every ε > 0 there exists tournament D

that has no subtournaments isomorphic to H and has no transitive subtournaments

of size |D|f+ε. That completes the proof of Theorem 6.2.1, since f + ε = f ∗.
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6.2.3 Properties of tournaments with large EH suprema

Below we give some applications of Theorem 6.2.1. In particular we prove Theo-

rem 6.1.2. But first, we prove Corollary 6.1.3.

Proof. By Theorem 6.2.1 we know that there exists an ordering o of the vertices

of a tournament H such that: ∀S⊆V (H)bo,S < |S|−1
c

. Take an undirected graph G

with the set of vertices V(H) induced by backward edges of H under an ordering

o. It suffices to prove that χ(G) < b2
c
c+ 1. Take any induced subgraph of G with

the set of vertices S. Such a graph has fewer than |S|−1
c

edges, so it has a vertex

of degree less than 2
c
|S|−1
|S| . So the coloring number of G ([28]) is less than b2

c
c+ 1.

Thus χ(G) < b2
c
c+ 1.

Now we will prove Theorem 6.1.2.

Proof. Take a random tournament T on k vertices where for every two vertices

u, v an edge uv is chosen independently at random with probability 1
2
. Denote by

P the probability that such a random tournament has an ordering σ under which

the set of backward edges is of size less than 1
2

(
k
2

)
− a, where a = C

(
k
2

)√log(k)
√
k

for some sufficiently big constant C > 0. Using the classic Chernoff’s bound and

the union bound we get: P ≤ k!e
− a2

2(k2) . Now, using the formula for a we get

that P → 0 as k → ∞. So almost all tournaments on k vertices contain at least

1
2

(
k
2

)
− a backward edges under each ordering of vertices. But that, according to
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Theorem 6.2.1, completes the proof.

We conclude with a few explicit constructions of the families of tournaments with

the Erdös-Hajnal supremum of order O( 1
n
), where n is the order of the tournament.

One of the explicit constructions of families of tournaments with the Erdös-Hajnal

supremum around 4
n
, where n is the order of the tournament, is the family of so-

called quadratic residue tournaments ([4], p.106-109). A quadratic residue tourna-

ment Hp of order p, for p being a prime number of the form 4k+3, is a tournament

where (i, j) is an edge if (i − j) is a quadratic residue modulo p. It can be shown

that a quadratic residue tournament Hp has at least 1
2

(
p
2

)
−O(p

3
2 log(p)) backedges

under every ordering of its vertices. So according to what we have proven so far,

we obtain: ξ(Hp) ≤ 4
p
(1 + c log(p)√

p
) for some constant c.

In fact there exist much easier constructions of tournaments H with ξ(H) = O( 1
|H|)

than quadratic residue tournaments. We will present one of them below. First we

need to note that

6.2.6 If ∆(H) denotes the maximal number of edge disjoint directed triangles of

the tournament H then ξ(H) ≤ |H|−1
∆(H)

.

The remark is an immediate consequence of Theorem 6.2.1 and the fact that under

every ordering each directed triangle induces at least one backward edge.

Define the following family of tournaments
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For a fixed k ∈ N a tournament H belongs to the family B(k) if:

• H consists of three pairwise disjoint sets of vertices: A,B,C such that:

|A| = |B| = |C| = k

• every vertex in B is an outneighbour of every vertex in A

• every vertex in C is an outneighbour of every vertex in B

• every vertex in A is an outneighbour of every vertex in C.

6.2.7 For H ∈ B(k) we have ξ(H) ≤ 3k−1
k2

Proof. We will use remark 6.2.6. It suffices to prove that if H ∈ B(k) then

∆(H) ≥ k2. So we only need to find a family S of at least k2 edge-disjoint directed

triangles in H. But this is easy. From the definition of H we know that there are k

edge-disjoint perfect matchings: M1,M2, ...,Mk that match vertices in B and C. We

construct now the family S. Denote A = {a1, a2, ..., ak}. For every ai ∈ A, where

i = 1, 2, ..., k we take matching Mi, obtaining exactly k edge-disjoint triangles of

the form: ((ai, bj), (bj, cj), (cj, ai)) for (bj, cj) ∈ Mi and j = 1, 2, ..., k. Altogether

we obtain k2 triangles which are edge-disjoint. Those triangles establish the family

S.
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6.2.4 Directed triangles in tournaments with large EH suprema

In this section we connect the Erdös-Hajnal supremum of the tournament H with

the number of its directed triangles. Below we prove Theorem 6.2.2.

Proof. Take the ordering from Theorem 6.2.1. Denote by b the number of back-

ward edges in such an ordering. We know that b satisfies an inequality

ξ(H) ≤ n− 1

b
(6.13)

Therefore it suffices to prove that

b ≥ max

{
t(H)

2(n− 2)
,

4t(H)√
(2n− 5)2 + 8t(H) + (2n− 5)

}
(6.14)

On the one hand we have

t(H) ≤
(
b

2

)
+ b(n− 2), (6.15)

where the last inequality follows directly from counting directed triangles of the

tournament using given ordering and the set of backward edges (every directed

triangle uses either two backward edges and one forward edge or two forward edges

and one backward edge from this ordering).
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The expression
(
b
2

)
came from counting number of directed triangles using exactly

two backward edges. The expression: b(n − 2) is an upper bound on the number

of triangles using exactly one backward and two forward edges. But on the other

hand for every single backward edge we can choose at most (n− 2) other backward

edges to form a directed triangle of two backward edges. Therefore we also have

t(H) ≤ 2b(n− 2), (6.16)

Using both inequality 6.15 and 6.16 and choosing bigger lower bound on b we get

our desired lower bound 6.14.

Using the bound: ξ(H) ≤ 2(n−1)(n−2)
t(H)

we obtain the following corollary

6.2.8 Every δ-dense tournament H of order n for δ > 0 satisfies: ξ(H) ≤ 2
δn

.

So the family of δ-dense tournaments is the family for which we obtain the bound on

the Erdös-Hajnal supremum of the same order as for a random h-vertex tournament,

namely: O( 1
h
).
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6.3 EH-suprema of tournaments without large nontrivial

homogeneous sets

6.3.1 Partition number and k-modular partitions

All results of this section can be found in [10].

We will give now explicit upper bounds for EH-suprema of tournaments without

large nontrivial homogeneous sets, in particular for prime tournaments. Let us first

describe the main results of this section. We prove here Theorem 6.1.4, which we

restate:

6.3.1 There exists C > 0 such that every prime h-vertex tournament H satisfies

ξ(H) ≤ C log(h)
h

.

Note that this bound is worse from the bound obtained in previous sections only by a

logarithmic factor, however it can be applied to much wider families of tournaments,

some with very nonrandom properties.

For a tournament T with |V (T )| > 1 a k-modular partition is a partition of V (T )

into k nonempty pairwise disjoint parts {V1, ..., Vk} such that for every 1 ≤ i < j ≤

k Vi is complete to Vj or from Vj. Note that {V1, V2, ..., Vk} is in fact a partition of

V (T ) into k homogeneous sets. A partition number p(T ) of a tournament T with

|V (T )| > 1 is the smallest k > 1 such that there exists a k-modular partition of
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V (T ). For T with |V (T )| = 1 we define p(T ) = 1.

Note that clearly p(T ) ≤ |V (T )|. A tournament T is prime if and only if p(T ) =

|V (T )|.

Our next result of this section combines partition numbers and EH-suprema.

6.3.2 There exists a constant C > e such that if φ(x) : [ee,∞] → (0,∞) is a

function defined as φ(x) = log(log(x))
log(x)

, then for any tournament H with ξ(H) > 0 the

following holds:

p(H) ≤ bφ−1(
ξ(H)

C
)c,

where φ−1 is the inverse of φ.

(Note that φ decreases on [ee,∞] and φ(ee) > 1
C

. Thus φ−1( ξ(H)
C

) is well defined.)

Therefore the bigger EH-supremum of a tournament, the more structured a tour-

nament is (since there exists a k-modular partition of its vertices consisting of

fewer parts). On the other hand it can be easily proven that a random h-vertex

tournament H with high probability satisfies p(H) = h.

We have just proven that almost all labeled h-vertex tournaments have very small

EH-suprema, namely of order O( 1
h
). In this section we give upper bounds on the

sizes of families of tournaments characterized by big EH-suprema. These bounds

cannot be derived using methods introduced by us earlier. Denote by Cε(h) the
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number of all labeled h-vertex tournaments H with ε(H) ≥ ε. We prove that:

6.3.3 There exists a constant C > e such that if φ(x) : [ee,∞) → (0,∞) is a

function defined as φ(x) = log(log(x))
log(x)

, then for any 1 ≥ ε > 0 we have:

h! ≤ Cε(h) ≤ h!(2π)
k
2 2(h−1)(k2)e−k(h+1+log(2))(h+ 1)k(h+ 3

2
)(1 + o(1)),

where k = bφ−1( ε
C

)c.

We already know that Cε(h) = o(2(h2)). However using the upper bound given

above and Stirling’s formula we see that in fact Cε(h) = o(2h log(h)r(h)), where r is

any function satisfying r(h) → ∞ as h → ∞. From the inequality Cε(h) ≥ h!, by

Stirling’s formula, we also have: Cε(h) = ω(2h log(h)).

In the next subsection we prove Theorem 6.1.4, Theorem 6.3.2 and Theorem 6.3.3.

6.3.2 Proof of Theorem 6.1.4

For X ⊆ V (T ), write tr(X) for tr(T |X). Let H be a tournament. Assume that

V (H) admits a k-modular partition P = {V1, ..., Vk}. We associate with the par-

tition P a k-vertex tournament HP with V (HP ) = {v1, v2, ..., vk} such that for

1 ≤ i < j ≤ k vertex vi is adjacent to a vertex vj in HP if Vi is complete to Vj. We

call HP the quotient tournament of P . We say that a tournament T is H-far if T

is HP -free for every k > 1 and every k-modular partition P of H.
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First we prove the following result:

6.3.4 Let H be a tournament with at least two vertices. Assume that T is H-far.

Then

ξ(H) ≤ log(tr(T ))

log(|T |)
.

Proof. Denote V (T ) = {1, 2, ..., |T |}. Consider a family of tournaments {F0, F1, ...}

defined in the following recursive way. A tournament F0 is just a single vertex. For

i > 0 a tournament Fi is defined as follows. V (Fi) = P i
1

⋃
P i

2

⋃
...P i

|T |, where each

P i
j for j = 1, 2, ..., |T | induces a tournament isomorphic to Fi−1 and besides for any

two 1 ≤ j1 < j2 ≤ |T | the set P i
j1

is complete to the set P i
j2

if j1 is adjacent to j2

in T and complete from the set P i
j2

if j1 is adjacent from j2. Note first that every

Fi is H-free. To see this we use induction on i. For i = 0 this is trivial. Now

take tournament Fi+1. If Fi+1 is not H-free, then since T is H-far and Fi is H-

free, we can conclude that V (H) has k-modular partition for some 1 < k < p(H).

That contradicts definition of p(H). Knowing that every Fi is H-free we calcu-

late the size of the biggest transitive subtournament of Fi. For i = 0 we have

tr(Fi) = 1. Assume that i > 0. Let Tri be the biggest transitive subtournament

of Fi. Write Sj = V (Tri)
⋂
P i
j for j = 1, 2, ..., |T |. Assume that {Sj1 , ..., Sjk} is

the set of nonempty sets Sj. Note that the subtournament of T induced by the

set {j1, ..., jk} must be transitive. Otherwise, according to the definition of the

family {Fj}j=0,1,2,..., we conclude that Tri contains vertices inducing directed tri-
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angle (that contradicts the fact that Tri is transitive). Therefore we must have

k ≤ tr(T ). Since Sj ⊆ P i
j we must have |Sj| ≤ tr(Fi−1). Therefore we have

|V (Tri)| = tr(Fi) ≤ tr(T )tr(Fi−1). So by induction, tr(Fi) ≤ tr(T )i. In fact from

our analysis we easily see that we have tr(Fi) = tr(T )i. We also have |V (Fi)| = |T |i.

Therefore we have tr(Fi) = |Fi|log|T |(tr(T )). So we have tr(Fi) = |Fi|
log(tr(T ))
log(|T |) . We con-

clude that each Fi is H-free and does not contain transitive subtournaments of size

at least |Fi|ε, where ε = log(tr(T ))
log(|T |) . This implies that ξ(H) ≤ ε.

We are now ready to prove Theorem 6.1.4 and Theorem 6.3.2. We encapsulate

them both in the following statement:

6.3.5 There exists C > 0 such that every h-vertex tournament H satisfies ξ(H) ≤

C log(log(p(H)))
log(p(H))

. Furthermore, if p(H) = h then ξ(H) ≤ C log(h)
h

for some universal

constant C > 0.

Theorem 6.1.4 follows from Theorem 6.3.5 since every prime tournament H satisfies

p(H) = |H|.

Proof of Theorem 6.3.5. We may assume that p(H) is large enough since for

every tournament H we trivially have: ξ(H) ≤ 1. Let G be a n-vertex tournament,

where for any two vertices 1 ≤ i < j ≤ n an edge (i, j) is chosen with probability 1
2
.

Let c be some large constant. Denote byX the number of transitive subtournaments

of G of size at least c log(n) and by Y the number of copies in G of subtournaments
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isomorphic to some HP , where P is some k-modular partition of H. Write r =

c log(n). Note that we have EX ≤ r!
(
n
r

)
(1

2
)(
r
2). Therefore EX ≤ er log(n)− r(r−1)

2
log(2).

Taking c large enough we have EX < 1
3
. Assume first that p(H) = h. Note that

in this case there is a unique HP and it is isomorphic to H. Write n = edh, where

d > 0 is a small enough constant. We have: EY ≤
(
n
h

)
h!2−(h2) ≤ nh2−(h2) < 1

3

for d small enough. Therefore for c large enough and d small enough we have:

EX < 1
3

and EY < 1
3
. Thus, using Markov’s inequality, we conclude that with

probability less than 1
3

we have Y ≥ 1 and with probability less than 1
3

we have

X ≥ 1. So from the union bound we know that with probability bigger than 1
3

we

have X < 1 and Y < 1. So there exists a tournament G that is H-far and does not

contain transitvie subtournaments of size c log(n). Since we have n = ep(H), using

Theorem 6.3.4, we immediately obtain Theorem 6.1.4. In the general case when

the condition p(H) = h is not necessarily satisfied, we use the same analysis. The

only difference is the choice of n. Let n = p(H)−1. In this scenario Y is trivially 0

since every HP has at least p(H) vertices so cannot be contained in the tournament

on p(H)− 1 vertices. The rest of the proof is exactly the same as in the case when

p(H) = h. That completes the proof of Theorem 6.3.2.

Let us make the following remark. Celebrities satisfy Conjecture 1.2.2 in the

strongest, linear sense. In [7] it has been proven that every celebrity H has an

ordering of vertices such that the set of backward edges forms a forest. The con-
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verse is not true. There do exist tournaments that are not celebrities but have an

ordering of vertices under which the set of backward edges forms a forest. However

all the examples of h-vertex tournaments with EH-suprema of order O( 1
h
) given in

the first part of this chapter involved tournaments with qudratic number of back-

ward edges under every ordering. Therefore the following question is natural: does

the existence of an ordering with the set of backward edges forming a forest im-

ply big EH-suprema ? Theorem 6.1.4 shows that this is not the case since there

are many examples of prime tournaments having ordering under which the set of

backward edges forms a forest (one of them is a long enough directed path).

Now we prove Theorem 6.3.3.

Proof. In the context of this proof the partition of a given integer h into k parts is a

set of integers {h1, ..., hk} such that h1, ..., hk ≥ 0 and h1 + ...+hk = h. We call such

a partition a valid partition if in addition there exist 1 ≤ i < j ≤ k with hi, hj > 0.

We use the following notation for a valid partition: < h1, ..., hk >. Fix some 0 <

ε ≤ 1. Write g(h) = h!et(h), where t(h) = (h−1)
(
k
2

)
log(2)+k log((h+1)!)−k log(2)

for h ≥ 1 and t(0) = 0. Note first that every transitive tournament H on h vertices

satisfies ξ(H) = 1. Therefore, since the number of all labeled h-vertex transitive

tournaments is equal to the number of orderings of the set {1, 2, ..., h}, we have:

Cε(h) ≥ h!. We will prove now that we also have: Cε(h) ≤ g(h). This will be done

by induction on h. For h = 0, 1 the inequality is trivial. Thus we can assume that
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h > 1. The following is true:

Cε(h) ≤
∑

<h1,...,hk>

2(k2)
(
h

h1

)(
h− h1

h2

)
...

(
h− h1 − h2 − ...− hk−1

hk

)
Cε(h1)...Cε(hk),

where the sum goes over all possible valid partitions of h into k parts. To see

why the inequality above is true note that V (H) has k1-modular partition for some

1 < k1 ≤ k. This comes from Theorem 6.3.5. Each hi corresponds to the size of

one of the parts of the partition of V (H), where we allow empty parts. The part

of the fixed size h1 can be chosen in
(
h
h1

)
ways, then next one given the first one

in
(
h−h1
h2

)
ways, etc. Finally, given all the parts of the modular partition, the type

of the connection between any two of them Pi, Pj may be chosen in 2 ways (either

Pi is complete to or from Pj). Note also that at least two parts must be nonempty

because k1 > 1. That is why we assume that there exist 1 ≤ i < j ≤ h such that

hi, hj > 0. In the following calculations we omit index ε since we use only one ε in

the whole proof. We have:

C(h) ≤
∑

<h1,...,hk>

2(k2) h!

h1!...hk!
C(h1)...C(hk).

Therefore we have:

C(h)

h!
≤

∑
<h1,...,hk>

2(k2)C(h1)

h1!
...
C(hk)

hk!
.
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Note that h1, ..., hk < h. From the induction hypothesis we have:

∑
<h1,...,hk>

2(k2)C(h1)

h1!
...
C(hk)

hk!
≤

∑
<h1,...,hk>

2(k2)et(h1)+...+t(hk).

Thus it suffices to prove that:

et(h) ≥
∑

<h1,...,hk>

2(k2)et(h1)+...+t(hk).

The number of valid partitions < h1, ..., hk > is bounded by
(
h+1
k

)
. To see that,

take a sequence of h elements and cut it in k places. The place for every cut can

be chosen in at most h + 1 ways. Clearly the number of ways we can do such a

k-cut is an upper bound for the number of partitions < h1, ..., hk >. Denote by M

the maximum over all valid partitions < h1, ..., hk > of the expression et(h1)+...+t(hk).

We have ∑
<h1,...,hk>

2(k2)et(h1)+...+t(hk) ≤
(
h+ 1

k

)
M2(k2),

so ∑
<h1,...,hk>

2(k2)et(h1)+...+t(hk) ≤ (h+ 1)kM2(k2).

Therefore it suffices to prove that et(h) ≥ elog(M)+k log(h+1)+(k2) log(2), i.e. that:

t(h) ≥ log(M) + k log(h+ 1) +

(
k

2

)
log(2) (6.17)
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Note first that:

6.3.6 M ≤ et(h−1).

Proof. We need one more definition. We say that the sequence (t(0), ..., t(h)) is

strictly convex if

t(1)− t(0) < t(2)− t(1) < ... < t(h)− t(h− 1)

. We need to prove that the maximum over all valid partitions < h1, ..., hk >

of the expression t(h1) + ... + t(hk) is t(h − 1) + t(1) (since t(1) = 0). Denote

this maximum by H. Note that t(i) − t(i − 1) =
(
k
2

)
log(2) + k log(i + 1) for

i = 2, ..., h. Therefore t(1) − t(0) < t(2) − t(1) < ... < t(h) − t(h − 1). Thus

(t(0), t(1), ..., t(h)) is strictly convex. Denote by < hopt1 , ..., hoptk > the valid partition

for which t(hopt1 )+...+t(hoptk ) = H. We will prove that in every such partition exactly

two hopti , hoptj are nonzero and besides one of them is 1 and one is h − 1. Assume

this is not the case. Let assume first that there are three nonzero elements and

without loss of generality assume that these are 0 < hopt1 ≤ hopt2 ≤ hopt3 . But then

we may replace hopt1 by hopt1 −1 and hopt3 by hopt3 +1 to obtain another valid partition.

Denote this partition by < h
′
1, ..., h

′

k >. From the strict convexity property of the

sequence (t(1), ..., t(k)) we have t(h
′
1) + ... + t(h

′

k) > t(hopt1 ) + ... + t(hoptk ) which

contradicts definition of (hopt1 , ..., hoptk ). Thus we may assume that there are exactly
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two nonzero elements in < hopt1 , ..., hoptk >. Without loss of generality we may

assume that 0 < hopt1 ≤ hopt2 . Assume by contradiction that hopt1 > 1. But then we

may replace hopt1 by hopt1 − 1 and hopt2 by hopt2 + 1 getting a contradiction as in the

previous case. That completes the proof of Lemma 6.3.6.

Note that we have: t(h)−t(h−1) =
(
k
2

)
log(2)+k log(h+1). This and Lemma 6.3.6

imply 6.17. Thus we proved that

Cε(h) ≤ h!e(h−1)(k2) log(2)+k log((h+1)!)−k log(2). (6.18)

To finish the proof of Theorem 6.3.3 it is enough to use inequality 6.18 and standard

Stirling’s formula therefore we leave it to the Reader.

We prove one more structural result about tournaments H with ξ(H) ≥ ε that may

be of interest on its own. We already know that p(H) ≤ bφ−1( ε
C

)c, where φ−1 is the

inverse of φ(x) : [ee,∞] → ∞ defined as φ(x) = log(log(x))
log(x)

and C is some constant

that does not depend on ε. Let P be a p(H)-modular partition (V1, ..., Vp(H)) of the

set V (H) and let HP be the corresponding quotient tournament. For every vertex

vi ∈ V (HP) denote by wi the number of vertices of H that correspond to vi. We say

that HP is x-transitive if there exists S ⊆ V (HP) such that |S| > 1,
∑

vi∈S wi ≥ x

and S induces a transitive subtournament. Note that HP is transitive if and only

if it is |V (H)|-transitive.
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Our next result is the following:

6.3.7 Let H be a tournament with ξ(H) > 0. Then HP is (V (H)− 3
ξ(H)

(p(H)−2))-

transitive.

Proof. Let (V1, ..., Vp(H)) be a p(H)-modular partition of V (H). LetA = {V1, ..., Vp(H)}.

As long as there exist in A three sets Vi,Vj,Vk with 1 ≤ i < j < k ≤ p(H) such that

in HP set {vi, vj, vk} induces a directed triangle, we remove from A the smallest

one. Note that when no three sets with these properties can be found in A then

vertices of HP that correspond to elements left in A induce a transitive tournament.

Since we start with |A| ≥ 2 then when we stop removing elements from A we also

have |A| ≥ 2. Thus, since we can remove from A at most (p(H) − 2) elements, it

suffices to prove that whenever element Vi is removed from A we have wi ≤ 3
ξ(H)

.

Assume that this is not true. Write r = 3
ξ(H)

. Therefore at some stage we removed

from A three sets Va, Vb, Vc such that |Va|, |Vb|, |Vc| > r and besides we have either:

• Va is complete to Vb, Vb is complete to Vc, Vc is complete to Va or

• Va is complete to Vc, Vc is complete to Vb, Vb is complete to Va.

In both scenarios the tournament H
′
induced by Va

⋃
Vb
⋃
Vc satisfies ξ(H

′
) ≤ 3r−1

r2
.

That has been already proven by us (see family B(k)). Thus we have ξ(H
′
) < ξ(H).

But on the other hand, since H
′

is a subtournament of H, we have: ξ(H
′
) ≥ ξ(H),

contradiction.
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6.4 Appendix: More precise evaluation of EX from Lemma 6.2.5

Note that in the proof of Lemma 6.2.5 we derived the following equality: EX =(
n
nf

)
P . We will now give exact closed-form expression on P .

6.4.1 For the probabilistic model considered in Lemma 5.2.7 the following is true:

P = (1− p)(
m
2 )
∏m

i=1(1− qi)
(1− q)m

,

where m is the size of the transitive tournament and q = p
1−p .

Proof. Denote by Σm the set of all permutations of the set {1, 2, ...,m}. Each

possible transitive tournament induced by the set {1, 2, ...,m} correspondence to

exactly one permutation σ ∈ Σm. This permutation is obtained by putting at the

ith place in the permutation, where i = 1, 2, ...,m, this element v from {1, 2, ...,m}

that has (m-i) inneighbours in {1, 2, ...,m}. Denote by ζ : Trm → Σm the bijection

that maps every m-vertex transitive tournament to the corresponding permutation.

Denote by At for t ∈ Trm the event that a set {1, 2, ...,m} induces transitive

tournament t. Then we have

P =
∑
t∈Trm

Pr(At) (6.19)
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An easy observation leads to the conclusion that

Pr(At) = (1− p)(
m
2 )−I(ζ(t))pI(ζ(t)), (6.20)

where by I(σ) we denote the number of inversions of a permutation σ = {σ(1), ..., σ(m)},

i.e. the number of pairs (σ(i), σ(j)), where i < j and σ(i) > σ(j). Therefore we

have

P =
∑

t∈ Trm

(1− p)(
m
2 )−I(ζ(t))pI(ζ(t)) (6.21)

So we have

P = (1− p)(
m
2 )
∑
σ∈Σm

qI(σ) (6.22)

If we now introduce new denotation: Kt =
∑

σ∈Σt
qI(σ) for t = 1, 2, ..., then we have

the following recursive formula that can be easily checked

• K1 = 1,

• Kt = 1−qt
1−q Kt−1, for t > 1

From this recursion we obtain

Kt =

∏t
i=1(1− qi)
(1− q)t

, (6.23)
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for t = 1, 2, ....

That allows us us to express P as

P = (1− p)(
m
2 )
∏m

i=1(1− qi)
(1− q)m

(6.24)

and completes the proof of Lemma 6.4.1.
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77
Conclusions

In this thesis we showed several results concerning tournaments characterized by

forbidden substructures. All of them were motivated by the celebrated Erdös-

Hajnal Conjecture. We proved the conjecture for new families of tournaments for

which it was open before. In particular, we showed that the conjecture is satisfied

by all tournaments on at most 5 vertices and proved the conjecture for infinitely

many prime tournaments. We described all tournaments satisfying the conjecture in

almost linear sense and obtained several results on upper bounds for EH-suprema.

There are still many open questions that are worth to work on.

An obvious one is to determine whether the conjecture is true or not in the most
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general setting.

We have already mentioned one open problem at the end of Chapter 1.

It would be also interesting to know whether we can obtain upper bounds on the

EH-suprema of order o( 1
h
) since the best upper bounds we obtained so far (for

random tournaments) were of order O( 1
h
).

One may also try to improve the lower bounds on EH-suprema obtained here.

Even though all the proofs presented in the thesis are constructive, the methods

that were used give very weak lower bounds. In a recent paper ([9]) we propose a

new algorithmic proof of the fact that constellations satisfy the conjecture. This

proof gives much better lower bounds since it does not use regularity lemma. It

would be interesting to reduce the gap between the best upper and lower bounds

we obtained for prime tournaments for which we proved the conjecture.

Another nontrivial problem is to better understand possible values of EH-suprema.

In this thesis we showed that there are no EH-suprema in the range (5
6
, 1), but the

following question seems to be interesting: are there tournaments H that are not

pseudo-celebrities but satisfy ξ(H) ≥ 1
2

? A related task would be to improve the

bound 5
6

since it is almost certainly not the best possible.

All results of this thesis concerning lower bounds on EH-suprema were obtained

only in the directed scenario. One may consider answering the question whether
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techniques used in that scenario can be somehow translated to the undirected case.

Other nontrivial problems involve excluding families of tournaments rather than

just a single tournament. Let V1 and V2 be two nonempty and disjoint sets of

vertices. Fix directed edges going between V1 and V2. Denote this set of edges by

EV1,V2 . Consider the set T (EV1,V2) of all tournaments T with V (T ) = V1

⋃
V2 and

such that EV1,V2(T ) = EV1,V2 , where: EV1,V2(T ) is the set of edges going between V1

and V2 in T . The following question is still open: is it true that for every set of

directed edges EV1,V2 the family T (EV1,V2) has the Erdös-Hajnal property ?
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