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ABSTRACT
As the amount of social video content captured at physical-
world events, and shared online, is rapidly increasing, there
is a growing need for robust methods for organization and
presentation of the captured content. In this work, we sig-
nificantly extend prior work that examined automatic detec-
tion of videos from events that were captured at the same
time, i.e. “overlapping”. We go beyond finding pairwise
matches between video clips and describe the construction
of scenes, or sets of multiple overlapping videos, each scene
presenting a coherent moment in the event. We test multiple
strategies for scene construction, using a greedy algorithm
to create a mapping of videos into scenes, and a clustering
refinement step to increase the precision of each scene. We
evaluate the strategies in multiple settings and show that a
greedy and clustering approach results in best possible bal-
ance between recall and precision for all settings.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
algorithms, human factors

Keywords
audio fingerprinting, video, social media, synchronization

1. INTRODUCTION
Increasingly, video content is captured by individuals at-

tending or witnessing live events, from a MGMT music con-
cert to Arab Spring demonstrations; from a New York City
hurricane to the Chinese New Year’s parade in San Fran-
cisco. These immense volumes of social video content gen-
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erated around events can serve multiple purposes, includ-
ing allowing individuals to review, re-live and share the ex-
perience. Unfortunately, the social content is fragmented
and scattered across the Web, with no service that gener-
ates a coherent consumption experience for this content. We
build on previous work [8] to study the automatic detection
of event scenes, each including multiple overlapping videos.
The scene structure can support better viewing, understand-
ing and sensemaking for the event using social video content.
A robust scene structure generation will help build on the
information social videos carry about an event, to provide
for better organization of information, improved playback,
redundancy removal, highlighting of key content, generation
of summaries, and more [8, 13].

Since reliable temporal metadata is not available for videos,
finding overlapping videos and synchronizing them is a dif-
ficult task, even when starting with a set of videos taken
at a single event [8]. Past work had used audio fingerprint-
ing to find overlapping and synchronized social videos [8,
12] within videos taken at an event. As Kennedy and Naa-
man show [8], pairwise matching is often noisy and inac-
curate, demonstrating low recall-precision tradeoff – about
30% pairwise recall for acceptable levels of precisions. How-
ever, that work only studied pairwise matching and syn-
chronizing of clips. In other words, the research examined
all possible pairs of clips and whether or not they match, and
are detected correctly, ignoring the information available in
transitive overlap data: we can leverage knowledge about
the overlap of video clips (A,B) and video clips (B,C), to
reason about the overlap of clips A and C.

Matching and clustering video data is related, but dis-
tinct, from applications to other documents such as text and
images [4, 7]. Whereas the matching of local text shingles or
image interest points can often lead to an unambiguous as-
sociation between documents, the wide range in soundtrack
quality between videos of the same event mean that there
are always ambiguous cases where it is impossible to decide
if a particular pair, taken alone, constitute a match. In this
work, we use clustering to leverage the transitive similarity
within a group of matches to improve over local, pairwise
decisions. Secondly, the temporal dimension of videos mean
that it is important to distinguish between the case where
two videos show weak similarity because they are not re-
lated, as opposed to a low count of matching features simply
because they have a small proportion of time overlap – even
if the similarity within that overlap is strong. The existence
of edited videos, whose timebase does not preserve a uniform
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alignment to other versions, exacerbates this issue.
In this work, we go beyond pairwise match, to study

the performance of scene-generation algorithms that auto-
matically create a complete scene structure from pairwise
match scores of a set of clips. We use the pairwise audio
fingerprinting-based match score between each pair of clips
to generate an initial mapping of the event videos into scenes
(i.e. sets of clips when each clip overlaps with at least one
other in the set). We test various settings for generating
the scene mapping, and investigate post-mapping clustering
approach for refining the resultant scenes, to improve the
precision of the system (proportion of true overlapping clips
that are correctly detected as overlapping) while keeping
high levels of recall (proportion of clips that are identified
as overlapping out of the complete set of true overlapping
clips).

2. BACKGROUND AND RELATED WORK
Much work has been done around events, in particular

(but not only) music events. For example, research ad-
dressed retrieving videos (and other media) taken at a given
event [3, 9], which could serve as input for our system.
Other efforts looked at classifying and analyzing event con-
tent (e.g., [14]). Recent work showed how the output of
video synchronization can be used for auto-summarization
and presentation of content [13, 17] or even 3-D rendering
of multi-camera sources [2].

In this section we focus on work that serves as technical
foundations for our study. We describe the process of gen-
erating audio fingerprints for video clips, and the process of
finding the strength of the match between two potentially-
overlapping clips. We build on this previous work, and ex-
pand on it in the next sections, after highlighting the poten-
tial issues and complications with current approaches.

2.1 Generating Fingerprints
We compute audio fingerprints for audio segments by tak-

ing the short-time Fourier transform of a given audio seg-
ment and identifying “landmarks”, as proposed by Wang
[16], defined to be pairs of the onsets of local frequency
peaks. Each landmark consists of two adjacent onsets’ fre-
quency and time value, and is hashed into a fixed-length
value of a 3-tuple: 1st onset frequency, time difference, and
frequency difference.

We follow the settings and parameters described in [6] in
this work, including the frequency and time binning, and the
size of hashes. In our work, the frequency, the time difference
and the frequency difference are quantized into 8, 6 and 6
bits, respectively. Therefore, each hash value consists of a
concatenation of these three parameters, yielding a 20-bit
hash with 1,048,576 possible values.

The set of fingerprints hashes for clip i is defined as Hi,
with each single hi,t ∈ Hi is associated with a time offset t
from the beginning of the video clip.

2.2 Synchronizing Clips
The result of the fingerprinting process is a large set of

time-stamped fingerprints for each clip i, where the finger-
prints are simply a set of timestamped hash values, Hi. The
synchronization process determines whether a pair i, j of
clips are likely to include a recording of the same audio
source, and what is the difference in time between the two
recordings. We perform this detection task by finding all

occurrences of matching hash values between the two clips,
as described in [8]. Since there is a fixed vocabulary for hash
values, many spurious hash matches will be found between
different points in the pair of clips; in other words, that ex-
ist many hash values such that hi,tn = hj,tm . However, two
clips that are overlapping are likely to have a larger number
of matching hash values occurring at identical offsets in each
of the two clips. We detect a potential match between two
clips using the presence of a unique offset o where the two
clips demonstrate a large number of matching hash values.
In other words, we are looking for a series of hash values
hi,n1 , hi,n2 , hi,n3 , . . . and hj,m1 , hj,m2 , hj,m3 , . . . , such that
n1−m1 = n2−m2 = n3−m3 =, . . . = o. The size of the set
of matches at maximal offset o is denoted Mi,j(o). As in the
work of Kennedy and Naaman [8], the offsets of the found
hash matches are grouped into 50ms bins (representing a
rate of 20 frames per second).

Next, we describe how pairwise matches are decided based
on the set of matches, and discuss the limitations of the
pairwise alignment information.

2.3 Challenges with Pairwise Matching
The pairwise approach leads to clear limitations, trading

off precision and recall for pairwise matches according to the
set threshold.

A decision about whether or not the two clips are an ini-
tial match is made by checking whether the match between
the clips Mi,j(o) at the maximal offset exceeds a thresh-
old. Other options for thresholds are based on the number
of matches per seconds of overlap between the clips at the
maximum-match offset. Regardless, setting a high threshold
on the matching score will result in a large number of false
negatives (truly overlapping videos that are not recognized
as overlapping). Setting a low threshold will result in many
false positives (videos that do not overlap but are recog-
nized as overlapping). In both cases, the outcome would be
a less than ideal experience for a user browsing these videos:
the set of videos shown is likely to either be smaller than it
could be, or include spurious matches of videos that “do not
belong”.

Worse, the transitive nature of clip overlap can add fur-
ther noise and degrade the results. For example, Figure 1
shows a hypothetical set of four clips numbered 1 . . . 4, and
lines that represents the hash matches between the clips at
the maximum offset. Further assume that clips 1 and 2 are
overlapping, and so are clips 3 and 4, but the matching land-
marks between clips 2 and 3 are spurious. If we use the raw
value of Mi,j(o) to decide the relationship of tracks, setting a
threshold of four matches would fail to identify clips 3 and 4
as overlapping. Using a threshold of two, however, will not
only wrongly identify overlap between clips 2 and 3, but will
transitively, and wrongly, suggest an overlap between clips 2
and 4 as well.

3. FROM PAIRWISE MATCHES
TO COMPLETE SCENES

In this section, we describe a process that creates robust
groups of overlapping clips – scenes – given pairwise infor-
mation about clip matches. Each scene will be a set of clips
that captured a continuous, coherent moment in the show.
Note that an underlying assumption here is that we have
distinct, separate scenes captured by the audience (i.e., no
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Figure 1: Potential complications of transitive over-
lap data

large component of videos that together cover a large por-
tion of the event). This limitation can be controlled for by
trimming videos or scenes longer than a threshold to shorter
parts.

We use the co-information between pairs of matching clips
to improve the match data when creating the scenes. As-
sume clips 1, 2, 3 in Figure 1 are each 2 minutes long. If
Clip 1 initially matches Clip 2 with an offset of 20 seconds
(Clip 2 starts 20 seconds after before Clip 1), and Clip 2
initially matches Clip 3 with an offset of 20 seconds, that
means Clip 1 and Clip 3 should overlap with an offset of 40
seconds. In this case, given evidence that clips (1,2) match
and (2,3) match, we’d expect evidence that (1,3) match as
well. Existence of evidence for a (1,3) match will be consis-
tent with the other two matches and increase our “trust” in
them. Lack of such evidence might mean that one or more
of these two matches is wrong.

We take a greedy approach to generate initial scenes of
overlapping video clips, as described next (Section 3.1). The
greedy algorithm is threshold based. Thus, setting a low
threshold will generate overloaded scenes with many spuri-
ous matches (e.g., all the clips in Figure 1 will be wrongly
included in one scene). Setting a low threshold will generate
over-segmented scenes (e.g., Clip 3 and Clip 4 in Figure 1
will wrongly appear in different scenes).

To improve on the results of the greedy assignment, we
refine the scenes generated by the greedy algorithm using a
clustering step (section 3.2–3.3). We present an evaluation of
the methods and their combination for different thresholds
in Section 4.

3.1 Initial Overlap Computation
This first step in our process uses a greedy threshold-based

algorithm to generate a complete set of scenes from a large
set of pairwise matches of clips. The algorithm sorts all pair-
wise matches i, j according to the number of hash matches
between the clips at the maximal-match offset o. Scenes are
then created by iteratively adding videos from the sorted
queue to scenes when a) the video matches another video(s)
already in that scene, and b) the match offsets across all
videos in the scene are consistent (such that no conflicting
information about clip alignment is possible).

More precisely, the steps of computing this initial align-
ment are:

1. Compute the pairwise matches of all clips and choose
for each pair of clips i, j a “best offset” o such that the
number of hash matches between i and j at offset o,
Mi,j(o) is greater than all other offsets o.

2. Remove all pairwise matches (i, j) such that Mi,j <
threshold.

3. Sort all remaining pairwise matches (i, j) by Mi,j into
a queue Q.

4. Use a greedy procedure to generate an initial set of
overlapping clips, or scenes, as described in Algorithm 1.

Algorithm 1 Greedy algorithm used to create tentative
alignment of all clips

Q← sort({Mi,j}) a queue of pairwise matches p
S← empty set of scenes
p← pop(Q)
Add the match of i, j, o represented by p to a new scene
S in S
while Q not empty do
p← pop(Q)
for every scene Si in S do

if One of the clips of p is in Si then
if The offset information of p agrees with the in-
formation already in Si then

Add the match p to Si
end if

end if
end for
if the clips in p are not in any scene then

Add the match represented by p to a new scene S
end if

end while
for Si, Si in S do

if Si and Si share one or more common clips then
Merge the two scenes.

end if
end for

The output of Algorithm 1 is sets of clips, or initial scenes.
For each scene, we have the synchronization (offset) between
all clips in the scene, and those offsets are guaranteed to be
consistent. If Clip 3 is at 20 seconds offset from Clip 2,
and Clip 2 is at 20 seconds offset from Clip 1, then Clip 3
would be at 40 seconds offset from Clip 1 in the algorithm’s
assignment. Note that in each scene, it is not required that
all clips temporally overlap. Referring back to Figure 1,
clips 1 and 4 could be included in the same scene because
of their overlap with other clips in the scene, but even if
the matching is correct, there would be no actual overlap
between clips 1 and 4. Also note, as mentioned above, since
the input to the algorithm is noisy, the output is also likely
to include spurious matches. For example, it could be that
Clip 1 and Clip 3 are overlapping in the output but do not
actually capture the same moment according to the ground
truth.

A simple representation for the output of Algorithm 1 is
a set of scenes where each scene SI (we used capital letters
to mark scene indices) is a set of clips cI,1, cI,2, . . . , cI,m and
offsets o1, o2, . . . , om such that oi ≥ 0 capturing the start
time of each clip in respect to the earliest clip in the cluster
(for which oi = 0). Note that these offsets, in each scene,
define the offset between each pair of clips in the scene.

3.2 Scene Refinement
In this work we explore two approaches for achieving high

precision as well as and high precision-recall tradeoff in scene
assignments. One approach is simply setting a high thresh-



old for the scene alignment in Algorithm 1. The other ap-
proach, detailed in the remainder of this section, is to set
a low threshold for Algorithm 1, and refining the resultant
scenes using a clustering step. The clustering step examines
each scene computed as described above, and decides how
to split it to final “scenes” that are likely to include more
precise assignments. If the threshold for Algorithm 1 is low,
the scenes generated will achieve high recall, perhaps at the
expense of precision: the output is likely to be complete,
but not accurate. In other words, if clips ci and cj are in-
deed synchronous, they are likely to be in the same scene in
Algorithm 1’s output. The clustering step can only further
divide each scene in the output.

For each scene SI , we use a score si,j of match likelihood
at the offset decided by the greedy match for each two clips
in the scene. Note that some pairs of clips in the scene may
not have any overlap at all, in which case the match score
between them can be assigned a special value (e.g., 0 or
N/A). At the end, for each two clips in the scene, we have
a score that represents the likelihood these clips to overlap
at the offset suggested by Algorithm 1.

In this work, we consider two types of scores si,j for the
goodness of the pairwise match between clips i, j. We use
these scores as described below, and evaluate the perfor-
mance of the system based on the scoring function used.
The first score we use is the raw number of hash matches,
srawi,j = Mi,j . This score is defined in respect to an offset o
between the two clip as decided by Algorithm 1.

The second score we use is a direct estimate of the pos-
terior probability that the two streams contain the same
content in their region of overlap, based on the comparison
between the number of matches and what would be expected
for that duration of overlap. Assume that a random video
will include a particular landmark at a particular time off-
set with a uniform probability ε, which is small, and that
two video shots of the same event will share any given hash
with a probability q. We assume q is constant, although in
reality it depends on the relative quality and noise levels of
the two recordings. We further assume that we have found
the best alignment between Clip i and Clip j at an offset
of o seconds, giving an overlap duration of tov seconds and
Mi,j shared landmarks.

In that same region of overlap, there are a total of Lov(i)
landmarks from Clip i, which should be approximately

tov
duration(i)

L(i), where L(i) is the total number of landmarks

in Clip i; similarly, Lov(j) ≈ tov
duration(j)

L(j). Because we are

implicitly assuming comparable conditions in the two videos,
we expect Lov(i) and Lov(j) to be about the same. Let
Lmax = min(Lov(i), Lov(j)), which places an upper bound
on the number of matching landmarks.

Our simple model predicts that we would expect Mi,j to
be about q · Lmax. We can estimate q by dividing Mi,j

by Lmax over a set of “true” match regions obtained via
manual annotation. At the same time, we would expect to
see landmarks from a chance alignment give Mi,j = ε ·Lmax,
and thus we can also estimate ε from the best scores between
non-true-matching overlaps.

Assuming each landmark in the overlap has an indepen-
dent probability of occurring in the the other video, we
would expect the distribution of Mi,j given a true match

(tm) to be Binomial distributed:

Pr(Mi,j |tm) =

(
Lmax

Mi,j

)
qMi,j (1− q)(Lmax−Mi,j) (1)

The probability of a chance match is given by the same
equation, with ε replacing both instances of q.

To obtain the posterior, Pr(tm|Mi,j), as distinct from a
chance match (cm), we use Bayes rule:

Pr(tm|Mi,j) =
Pr(Mi,j |tm) · Pr(tm)

Pr(Mi,j |tm) · Pr(tm) + Pr(Mi,j |cm) · Pr(cm)
(2)

which we call our matching likelihood score. To compute this
score we need to estimate: q = average(Mi,j/Lmax) over
true match regions; ε = average(Mi,j/Lmax) over chance
match regions (where the averages are weighted in propor-
tion to Lmax to reduce the variance arising from short over-
laps); and Pr(tm) = proportion of video pairs with true
matches out of all pairs within the set of videos. For now,
we estimate Pr(tm) from our ground truth, representing
the proportion of all pairs of videos in the collection actu-
ally have a true overlap. Using statistics of past events and
their ground truth would be one way to find good values to
use for the priors. Alternatively, we could calculate a prior
based on the length of the event and the amount of content
captured.

3.3 Refinement Procedure
In this section, we assume we have the complete pairwise

data for clips and offsets in one scene SI output by Algo-
rithm 1. We cast this as a clustering problem: is there a
subdivision of the set of videos in one scene to two or more
clusters that results in a more “coherent” overall match? We
will drop the scene index and refer to it simply as scene S.
Subclusters of scene S will be denoted C1,C2, . . .Cn.

For example, if Algorithm 1 output the set of all four clips
from Figure 1 as a single scene, the output of the current
clustering step would strive to determine that this scene is
really two different scenes, C1 with clips 1 and 2, and C2

with clips 3 and 4.
As a clustering/allocation problem, this can be addressed

using any procedure that maximizes the ratio of overall
intra-cluster similarity to inter-cluster similarity over a set
of subclusters C1,C2, . . .Cn. Such a clustering algorithm
finds an allocation of items (clips) to clusters such that the
similarity between clips in the same cluster is high, and the
similarity between clips in different clusters is low. We use a
scoring method based on the Davies-Bouldin index [5]. The
question becomes how to define the similarity between clips
inside a cluster (intra-cluster similarity) and between clips
in different clusters (inter-cluster similarity). One way to do
so is to use the following:

Define s(i, j) as the similarity score of clips ci, cj using
the offset computed by Algorithm 1 in one of the ways listed
above. Define Sim(Ch), the intra-cluster similarity of clips
in a subcluster Ch of S, as:

Sim(Ch) =

∑
i,j∈Ch,i<j s(i, j)

|Ch| · (|Ch| − 1)
(3)

In other words, Sim(Ch) is the average pairwise similarity
of clips in Ch.

Similarly define inter-cluster similarity of two clusters Ch,C`:

Sim(Ch,C`) = max
i∈Ch,j∈C`

s(i, j) (4)



In other words, Sim(Ch,C`) is the maximum pairwise sim-
ilarity between pairs of clips where each clip belongs to one
of the proposed clusters.

An overall score for a subcluster Ch will capture the min-
imum distance between it and another subcluster – in other
words, the score is based on the similarity of the subcluster
to the most similar (closest) other subcluster:

R(Ch) = min
6̀=h

Sim(C`) + Sim(Ch)

Sim(C`,Ch))
(5)

The final goodness score of the clustering process that pro-
duces n subclusters for scene S is then the average of the
single subclusters’ distance scores:∑

h=1...n

R(Ch)

n
(6)

A higher value for the goodness score is better – it would
mean that all subclusters are sufficiently distant from all
other subclusters. Note that R(Ch) is not defined when
Ch is the only subcluster for the scene (when n = 1). If
n = 1, we subtitute the inter-cluster similarity with a value
T , where T is set to be equal to or slightly larger than the
least pairwise match amongst clips in S. Therefore, the final

clustering goodness for the case n = 1 is Sim(C1)
T

.
A procedure to decide on the final cluster assignment and

the number of clusters for each initial scene S does the fol-
lowing:

1. Compute a possible split of cluster S to k clusters,
where k = 1, 2, . . . |S|.

2. For each k, compute the goodness score for the clus-
tering of S for that number of clusters.

3. Pick the k that maximizes the goodness score, and
use the computed clusters as the final outcome of the
process.

We used Spectral Clustering [11] for the clustering step. The
results of the clustering procedure for all scenes are “flat-
tened” from the scenes-and-clusters hierarchy to a non hi-
erarchical set of final scenes. For example, if Algorithm 1
creates initial scenes S1, S2, S3, and the clustering breaks
the scenes to three, two and one (no split) clusters respec-
tively, C11 , C12 , C13 ,C21 ,C22 ,C31 , we treat the results as
six distinct final scenes: S = S1, S2, S3, S4, S5, S6.

In our running example in Figure 1, this process would
ideally result in k = 2 different scenes, S1 with clips 1 and 2,
and S2 with clips 3 and 4.

4. EVALUATION
The goals of the evaluation were to measure the perfor-

mance of the various strategies on content from real-world
events, as well as understanding the effect of the threshold
set for the greedy algorithm has on the outcome.

For the evaluation, we used videos captured at 10 different
music events, listed in Table 1. For each event, we generated
the ground truth of scenes as described below. We tested our
scene alignment using the techniques described above using
multiple thresholds (for Algorithm 1) and the two possible
scoring functions for the optional clustering step.

For each event, and each video, we extract the audio
fingerprints, and compute the maximum match offset be-
tween each two clips as described above. We then run the

Event Date Num of
Clips

Total
Dura-
tion

1 LCD Soundsystem in
New york

Apr 2 2011 174 1024

2 Linkin Park in Boston Feb 1 2011 156 482
3 The Decemberists In

San Francisco
Aug 14 2011 44 195

4 Daft Punk in Berkeley Jul 27 2007 122 268
5 Taylor Swift in Dallas Oct 8 2011 124 476
6 MGMT in LA July 16 2010 32 148
7 Beyonce In Greece Aug 11 2009 74 211
8 Radiohead in Rio de

Janeiro
Mar 20 2009 325 1161

9 Coldplay in Glaston-
bury

Jun 27 2011 25 109

10 Jay-Z in Nashville Nov 13 2009 30 92

Table 1: A list of events used for our evaluation,
with the number of video clips for each and the total
duration of the clips in minutes.

greedy Algorithm 1 with a low threshold=5 to get an initial
scene alignment for all clips that is likely to include all true
matches (as well as others as discussed above). We call this
scene alignment Greedy5. The Greedy5 alignment is then
used to generate the ground truth.

The ground truth is generated by marking, for every pair
of clips in a scene computed by Algorithm 1, whether the
two clips are a correctly marked as overlapping or whether
the match is wrong. Note that we do not check for potential
alignment of clips in different scenes, as it would be pro-
hibitive to do so for every pair of clips and every possible
offset. Instead, the scenes created by Algorithm 1 (with
threshold=5) serve as the basis for the ground truth anno-
tation. While this method might result in over-estimation
of the recall (i.e., as we might miss clips that should overlap
but were not detected), we estimate that this problem is not
likely given the low match threshold used.

For each event, two human judges viewed all pairs of clips
in each scene in Algorithm 1’s output, marking the pair as
true or false match as described above. The correct pairwise
matching was then used to reconstruct ground truth scenes
G = {G1, . . . GN} using in a process similar to Algorithm 1.
Note again that because of the way ground truth was gener-
ated, each ground truth scene is a subset of one of Greedy5 ’s
scenes.

While Greedy5 served as the baseline for computing the
ground truth, we evaluated three different strategies using
set of threshold values. The strategies included:

• Greedy: Using Algorithm 1’s output directly.

• Greedy+clustering Performing a clustering step on
the scenes as output from Algorithm 1 using scoring by
number of matches.

• Greedy+likelihood Performing a clustering step on
the scenes as output from Algorithm 1 using scoring by
likelihood of overlap as described above.

4.1 Evaluation Metrics
We use two sets of metrics: standard clustering metrics,

and pairwise match metrics. Because we create scenes, or a
grouping of clips into sets (each set is a scene), we can evalu-
ate this grouping using clustering quality metrics. However,
the overlap between clips is not necessarily transitive (e.g.,



clips 1 and 4 in Figure 1 do not overlap even if they belong to
the same scene). We therefore also evaluate the pairwise re-
call and precision of each alignment: how many of pairs that
overlap are correctly identified by our scene construction.

Although several clustering quality metrics exist (see [1]),
in this work we use on Normalized Mutual Information (NMI)
[10, 15] and B-Cubed [1]. NMI is an information-theoretic
metric that measures how much information is shared be-
tween the actual “ground truth” assignment of scenes, each
with an associated set of clips, and the assignment made
by our system under the different parameters. Specifically,
for a set of computed scenes S = {S1, . . . ,SN} and ground-
truth scenes G = {G1, . . . GM}, where each Sj and Gk is a
set of clips, and n is the total number of clips, NMI (S,G) =

I(S,G)
(H(S)+H(G))/2

, where: I(S,G) =
∑

k

∑
j

|Gk∩Sj |
n

log
n·|Gk∩Sj |
|Gk|·|Sj |

,

H(S) = −
∑

j

|Sj |
n

log
|Sj |
n

, and H(G) = −
∑

k
|Gk|
n

log |Gk|
n

.
B-Cubed is a measure that balances the the precision and

recall associated with matches in the dataset, where for pre-
cision P and recall R values it computes B-Cubed = 2·P ·R

P+R
.

For each event, precision is defined as the proportion of clip
pairs in the event that overlap in both the computed scenes
and the ground truth, out of all the pairs in the computed
scenes. Recall is defined as the proportion of clip pairs in the
event cluster that overlap in both the computed scenes and
the ground truth, out of all the pairs in the ground truth.
For example, say the system output all clips in Figure 1 as
belonging to a single scene. The pairs of detected overlap-
ping clips for this scene are (1,2), (1,3), (2,3), (2,4) and (3,4),
but not (1,4) as these clips do not actually overlap. Further
assume that the ground truth is in fact two scenes, one with
clips 1 and 2 and another with 3 and 4: the ground truth
set is (1,2), (3,4). The precision of the system is thus 2/5,
the recall is 1, and the B-Cubed score is 0.57.

Both NMI and B-Cubed balance the clustering properties
that we would like to have in our final solution: maximizing
the homogeneity of clips within each scene, and minimizing
the number of scenes that clips for each ground-truth scene
are spread across. In addition to NMI and B-Cubed we
will also directly examine the recall and precision values, as
defined above, so we can reason about their trade off for the
different strategies.

5. RESULTS
We evaluate the performance of the different strategies

listed above, for different threshold values. We present ag-
gregate results over all events and thresholds, then show re-
sults for individual events for a single threshold value. First,
though, to illustrate the results, we present the specific out-
come of the scene creation for event 3.

The constructed scenes for event 3 using two strategies,
Greedy, and Greedy+Clustering (both with threshold 5) is
shown in Figure 2, with Greedy results shown on top. The
x-Axis captures time and the y-Axis is clip ID, organized
by scene. Since scenes are not overlapping, time progress
is stacked: a scene is marked as starting at the time off-
set where the previous scene ended. For each clip, a dot
shown where there is a hash match with other clips in the
same scene. For example, the Greedy algorithm (top) com-
puted a total of eight scenes for the event, the first one be-
ing the largest with most clips. The arrows indicate two
Greedy scenes that were broken into finer scenes by the
clustering step. Indeed, the results below show that for

event 3, the Greedy strategy had low precision, while the
Greedy+Clustering (bottom) approach had almost perfect
precision and recall. Figure 2 illustrates the effect that er-
rors in threshold-based methods may have on results, which
we study in more detail next.
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Figure 2: Results (clip overlap and scene structure)
using two strategies for event 3; Greedy (top) and
Greedy+Clustering (bottom)

Figure 3 shows the precision, recall, B-Cubed and NMI
results, averaged over all events, for each of our three strate-
gies. For example, in Figure 3(d), the score for the Greedy+
Clustering strategy with threshold 5 is 0.92 (top left). The
figure shows that Greedy+Clustering performs best across
all threshold values in almost all measures. In terms of re-
call (Figure 3(b)), the Greedy output serves as an upper
bound for all strategies, due to the fact that the clustering
can only sub-divide Algorithm 1’s computed scenes. Still,
the recall results for Greedy+Clustering are very close to
the upper bound. In addition, considering the experience
of a person viewing the results of the alignment, precision
should probably be emphasized over recall.

Figures 4 and 5 show the detailed results for the differ-
ent strategies across all events, with two different threshold
values, 5 (Figure 4) and 15 (Figure 5). For example, Fig-
ure 4(a) shows that for Event 1, all strategies resulted in low
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Figure 3: Precision, recall, B-Cubed and NMI re-
sults for different strategies across different thresh-
old values

precision when using threshold 5, with Greedy+Likelihood
performing best at around 0.58. On the other hand, Fig-
ure 5(a) shows that the precision for the same event goes
up, for all strategies, reaching over 0.75. This rise is of
course expected (and reflected in Figure 3 above) and cor-
related with lower recall as Algorithm 1 will consider much
fewer matches when the threshold is higher. Note that the
recall for Greedy in Figure 4(b) is 1 for all events, as the
ground truth is defined in respect to Greedy5, and matches
not detected by this strategy (if any) were ignored.

Figures 4 and 5 highlight the fact that, by and large, with
threshold 15, all events demonstrates high level of precision
across all categories, with the exception of the events with
the largest numbers of videos (see Table 1). Recall levels,
however, vary. However, it does seem like the mixed strate-
gies were more effective for large events. For example, for
events 1, 2, and 8 in Figure 4, Greedy+Clustering achieves
high levels of both precision and recall compared to other
strategies and compared to the higher threshold in Figure 5.

6. CONCLUSIONS
We have investigated multiple strategies that aim to con-

struct scenes, or sets of overlapping videos taken by users
at events. We tested our methods on social videos from
10 different events of various scale. We showed the effect
of the match threshold on the recall and precision and re-
sultant scene matches. A hybrid strategy, with a greedy
match of clips followed by a clustering step to refine the
scene, performed best across multiple threshold settings.
The hybrid Greedy+Clustering strategy performed better
for large events, consisting of many captured videos. In
these events, due to the redundancy of multiple synchronous
camera shots, precision – where Greedy+Clustering has the
advantage – is more critical than recall.

One limitation is the robustness of the results. Since re-
sults significantly varied between events, we cannot conclu-
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Figure 4: Performance across all events, using three
different strategies, with threshold 5

sively determine that one strategy is overwhelmingly better
than others; more data and test are required that will al-
low for a statistical test of the significance of the results. In
addition, we are currently estimating prior likelihoods by av-
eraging the results of the ground truth data. In future work
we would also like to address integrating other signals, such
as text and time information from the videos that do pro-
vide it. The text, for example, can provide indicators about
common content for overlapping clips, as hinted by previ-
ous work [8]. Finally, many events contain social videos
that were edited by the user prior to upload. These remixes
would serve as a unique challenge, potentially overlapping
with multiple videos in a non-linear fashion, that we would
like to address in future work.
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