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A system that can produce informative summaries, highlighting common information found in
many online documents, will help Web users to pinpoint information that they need without
extensive reading. In this article, we introduce sentence fusion, a novel text-to-text generation
technique for synthesizing common information across documents. Sentence fusion involves
bottom-up local multisequence alignment to identify phrases conveying similar information and
statistical generation to combine common phrases into a sentence. Sentence fusion moves the
summarization field from the use of purely extractive methods to the generation of abstracts that
contain sentences not found in any of the input documents and can synthesize information across
sources.

1. Introduction

Redundancy in large text collections, such as the Web, creates both problems and
opportunities for natural language systems. On the one hand, the presence of numer-
ous sources conveying the same information causes difficulties for end users of search
engines and news providers; they must read the same information over and over again.
On the other hand, redundancy can be exploited to identify important and accurate
information for applications such as summarization and question answering (Mani
and Bloedorn 1997; Radev and McKeown 1998; Radev, Prager, and Samn 2000; Clarke,
Cormack, and Lynam 2001; Dumais et al. 2002; Chu-Carroll et al. 2003). Clearly, it would
be highly desirable to have a mechanism that could identify common information
among multiple related documents and fuse it into a coherent text. In this article, we
present a method for sentence fusion that exploits redundancy to achieve this task in
the context of multidocument summarization.

A straightforward approach for approximating sentence fusion can be found in the
use of sentence extraction for multidocument summarization (Carbonell and Goldstein
1998; Radev, Jing, and Budzikowska 2000; Marcu and Gerber 2001; Lin and Hovy
2002). Once a system finds a set of sentences that convey similar information (e.g.,
by clustering), one of these sentences is selected to represent the set. This is a robust
approach that is always guaranteed to output a grammatical sentence. However, ex-
traction is only a coarse approximation of fusion. An extracted sentence may include
not only common information, but additional information specific to the article from
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which it came, leading to source bias and aggravating fluency problems in the extracted
summary. Attempting to solve this problem by including more sentences to restore the
original context might lead to a verbose and repetitive summary.

Instead, we want a fine-grained approach that can identify only those pieces of
sentences that are common. Language generation offers an appealing approach to the
problem, but the use of generation in this context raises significant research challenges.
In particular, generation for sentence fusion must be able to operate in a domain-
independent fashion, scalable to handle a large variety of input documents with various
degrees of overlap. In the past, generation systems were developed for limited domains
and required a rich semantic representation as input. In contrast, for this task we require
text-to-text generation, the ability to produce a new text given a set of related texts as
input. If language generation can be scaled to take fully formed text as input without
semantic interpretation, selecting content and producing well-formed English sentences
as output, then generation has a large potential payoff.

In this article, we present the concept of sentence fusion, a novel text-to-text gen-
eration technique which, given a set of similar sentences, produces a new sentence
containing the information common to most sentences in the set. The research chal-
lenges in developing such an algorithm lie in two areas: identification of the fragments
conveying common information and combination of the fragments into a sentence.
To identify common information, we have developed a method for aligning syntac-
tic trees of input sentences, incorporating paraphrasing information. Our alignment
problem poses unique challenges: We only want to match a subset of the subtrees in
each sentence and are given few constraints on permissible alignments (e.g., arising
from constituent ordering, start or end points). Our algorithm meets these challenges
through bottom-up local multisequence alignment, using words and paraphrases as
anchors. Combination of fragments is addressed through construction of a fusion lattice
encompassing the resulting alignment and linearization of the lattice into a sentence
using a language model. Our approach to sentence fusion thus features the integration
of robust statistical techniques, such as local, multisequence alignment and language
modeling, with linguistic representations automatically derived from input documents.

Sentence fusion is a significant first step toward the generation of abstracts, as
opposed to extracts (Borko and Bernier 1975), for multidocument summarization. Un-
like extraction methods (used by the vast majority of summarization researchers), sen-
tence fusion allows for the true synthesis of information from a set of input documents.
It has been shown that combining information from several sources is a natural strat-
egy for multidocument summarization. Analysis of human-written summaries reveals
that most sentences combine information drawn from multiple documents (Banko and
Vanderwende 2004). Sentence fusion achieves this goal automatically. Our evaluation
shows that our approach is promising, with sentence fusion outperforming sentence
extraction for the task of content selection.

This article focuses on the implementation and evaluation of the sentence fu-
sion method within the multidocument summarization system MultiGen, which daily
summarizes multiple news articles on the same event as part1 of Columbia’s news
browsing system Newsblaster (http://newsblaster.cs.columbia.edu/). In the next sec-
tion, we provide an overview of MultiGen, focusing on components that produce input
or operate over output of sentence fusion. In Section 3, we provide an overview of

1 In addition to MultiGen, Newsblaster utilizes another summarizer, DEMS (Schiffman, Nenkova, and
McKeown 2002), to summarize heterogeneous sets of articles.
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our fusion algorithm and detail on its main steps: identification of common infor-
mation (Section 3.1), fusion lattice computation (Section 3.2), and lattice linearization
(Section 3.3). Evaluation results and their analysis are presented in Section 4. Analy-
sis of the system’s output reveals the capabilities and the weaknesses of our text-
to-text generation method and identifies interesting challenges that will require new
insights. An overview of related work and a discussion of future directions conclude
the article.

2. Framework for Sentence Fusion: MultiGen

Sentence fusion is the central technique used within the MultiGen summarization
system. MultiGen takes as input a cluster of news stories on the same event and
produces a summary which synthesizes common information across input stories. An
example of a MultiGen summary is shown in Figure 1. The input clusters are automati-
cally produced from a large quantity of news articles that are retrieved by Newsblaster
from 30 news sites each day.

In order to understand the role of sentence fusion within summarization, we
overview the MultiGen architecture, providing details on the processes that precede
sentence fusion and thus, the input that the fusion component requires. Fusion itself is
discussed in the subsequent sections of the article.

MultiGen follows a pipeline architecture, shown in Figure 2. The analysis com-
ponent of the system, Simfinder (Hatzivassiloglou, Klavans, and Eskin 1999) clusters
sentences of input documents into themes, groups of sentences that convey similar
information (Section 2.1). Once themes are constructed, the system selects a subset of
the groups to be included in the summary, depending on the desired compression

Figure 1
An example of MultiGen summary as shown in the Columbia Newsblaster Interface. Summary
phrases are followed by parenthetical numbers indicating their source articles. The last sentence
is extracted because it was repeated verbatim in several input articles.
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Figure 2
MultiGen architecture.

length (Section 2.2). The selected groups are passed to the ordering component, which
selects a complete order among themes (Section 2.3).

2.1 Theme Construction

The analysis component of MultiGen, Simfinder, identifies themes, groups of sen-
tences from different documents that each say roughly the same thing. Each theme will
ultimately correspond to at most one sentence in the output summary, generated by
the fusion component, and there may be many themes for a set of articles. An example
of a theme is shown in Table 1. As the set of sentences in the table illustrates, sentences
within a theme are not exact repetitions of each other; they usually include phrases
expressing information that is not common to all sentences in the theme. Information
that is common across sentences is shown in the table in boldface; other portions of
the sentence are specific to individual articles. If one of these sentences were used as
is to represent the theme, the summary would contain extraneous information. Also,
errors in clustering might result in the inclusion of some unrelated sentences. Evalua-
tion involving human judges revealed that Simfinder identifies similar sentences with
49.3% precision at 52.9% recall (Hatzivassiloglou, Klavans, and Eskin 1999). We will
discuss later how this error rate influences sentence fusion.

To identify themes, Simfinder extracts linguistically motivated features for each
sentence, including WordNet synsets (Miller et al. 1990) and syntactic dependencies,
such as subject–verb and verb–object relations. A log-linear regression model is used
to combine the evidence from the various features into a single similarity value. The
model was trained on a large set of sentences which were manually marked for similar-
ity. The output of the model is a listing of real-valued similarity values on sentence pairs.
These similarity values are fed into a clustering algorithm that partitions the sentences
into closely related groups.

Table 1
Theme with corresponding fusion sentence.

1. IDF Spokeswoman did not confirm this, but said the Palestinians fired an antitank missile at
a bulldozer.
2. The clash erupted when Palestinian militants fired machine guns and antitank missiles at a
bulldozer that was building an embankment in the area to better protect Israeli forces.
3. The army expressed “regret at the loss of innocent lives” but a senior commander said troops
had shot in self-defense after being fired at while using bulldozers to build a new embankment
at an army base in the area.
Fusion sentence: Palestinians fired an antitank missile at a bulldozer.
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2.2 Theme Selection

To generate a summary of predetermined length, we induce a ranking on the themes
and select the n highest.2 This ranking is based on three features of the theme: size
measured as the number of sentences, similarity of sentences in a theme, and salience
score. The first two of these scores are produced by Simfinder, and the salience score is
computed using lexical chains (Morris and Hirst 1991; Barzilay and Elhadad 1997) as
described below. Combining different rankings further filters common information in
terms of salience. Since each of these scores has a different range of values, we perform
ranking based on each score separately, then induce total ranking by summing ranks
from individual categories:

Rank (theme) = Rank (Number of sentences in theme) + Rank (Similarity of sentences in theme)
+ Rank (Sum of lexical chain scores in theme)

Lexical chains—sequences of semantically related words—are tightly connected to
the lexical cohesive structure of the text and have been shown to be useful for determin-
ing which sentences are important for single-document summarization (Barzilay and
Elhadad 1997; Silber and McCoy 2002). In the multidocument scenario, lexical chains
can be adapted for theme ranking based on the salience of theme sentences within their
original documents. Specifically, a theme that has many sentences ranked high by lexical
chains as important for a single-document summary is, in turn, given a higher salience
score for the multidocument summary. In our implementation, a salience score for a
theme is computed as the sum of lexical chain scores of each sentence in a theme.

2.3 Theme Ordering

Once we filter out the themes that have a low rank, the next task is to order the selected
themes into coherent text. Our ordering strategy aims to capture chronological order
of the main events and ensure coherence. To implement this strategy in MultiGen, we
select for each theme the sentence which has the earliest publication time (theme time
stamp). To increase the coherence of the output text, we identify blocks of topically
related themes and then apply chronological ordering on blocks of themes using theme
time stamps (Barzilay, Elhadad, and McKeown 2002). These stages produce a sorted set
of themes which are passed as input to the sentence fusion component, described in the
next section.

3. Sentence Fusion

Given a group of similar sentences—a theme—the problem is to create a concise and
fluent fusion of information, reflecting facts common to all sentences. (An example of a
fusion sentence is shown in Table 1.) To achieve this goal we need to identify phrases
common to most theme sentences, then combine them into a new sentence.

At one extreme, we might consider a shallow approach to the fusion problem,
adapting the “bag of words” approach. However, sentence intersection in a set-theoretic
sense produces poor results. For example, the intersection of the first two sentences

2 Typically, Simfinder produces at least 20 themes given an average Newsblaster cluster of nine articles.
The length of a generated summary typically does not exceed seven sentences.
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from the theme shown in Table 1 is (the, fired, antitank, at, a, bulldozer). Besides its
being ungrammatical, it is impossible to understand what event this intersection de-
scribes. The inadequacy of the bag-of-words method to the fusion task demonstrates the
need for a more linguistically motivated approach. At the other extreme, previous ap-
proaches (Radev and McKeown 1998) have demonstrated that this task is feasible when
a detailed semantic representation of the input sentences is available. However, these
approaches operate in a limited domain (e.g., terrorist events), where information ex-
traction systems can be used to interpret the source text. The task of mapping input text
into a semantic representation in a domain-independent setting extends well beyond
the ability of current analysis methods. These considerations suggest that we need a
new method for the sentence fusion task. Ideally, such a method would not require a
full semantic representation. Rather, it would rely on input texts and shallow linguistic
knowledge (such as parse trees) that can be automatically derived from a corpus to
generate a fusion sentence.

In our approach, sentence fusion is modeled after the typical generation pipeline:
content selection (what to say) and surface realization (how to say it). In contrast to
that involved in traditional generation systems in which a content selection component
chooses content from semantic units, our task is complicated by the lack of semantics in
the textual input. At the same time, we can benefit from the textual information given
in the input sentences for the tasks of syntactic realization, phrasing, and ordering; in
many cases, constraints on text realization are already present in the input.

The algorithm operates in three phases:

� Identification of common information (Section 3.1)
� Fusion lattice computation (Section 3.2)
� Lattice linearization (Section 3.3)

Content selection occurs primarily in the first phase, in which our algorithm uses local
alignment across pairs of parsed sentences, from which we select fragments to be
included in the fusion sentence. Instead of examining all possible ways to combine these
fragments, we select a sentence in the input which contains most of the fragments and
transform its parsed tree into the fusion lattice by eliminating nonessential information
and augmenting it with information from other input sentences. This construction of the
fusion lattice targets content selection, but in the process, alternative verbalizations are
selected, and thus some aspects of realization are also carried out in this phase. Finally,
we generate a sentence from this representation based on a language model derived
from a large body of texts.

3.1 Identification of Common Information

Our task is to identify information shared between sentences. We do this by aligning
constituents in the syntactic parse trees for the input sentences. Our alignment process
differs considerably from alignment for other NL tasks, such as machine translation,
because we cannot expect a complete alignment. Rather, a subset of the subtrees in
one sentence will match different subsets of the subtrees in the others. Furthermore,
order across trees is not preserved, there is no natural starting point for alignment, and
there are no constraints on crosses. For these reasons we have developed a bottom-
up local multisequence alignment algorithm that uses words and phrases as anchors
for matching. This algorithm operates on the dependency trees for pairs of input sen-
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tences. We use a dependency-based representation because it abstracts over features
irrelevant for comparison such as constituent ordering. In the subsections that follow,
we describe first how this representation is computed, then how dependency subtrees
are aligned, and finally how we choose between constituents conveying overlapping
information.

In this section we first describe an algorithm which, given a pair of sentences,
determines which sentence constituents convey information appearing in both
sentences. This algorithm will be applied to pairwise combinations of sentences in the
input set of related sentences.

The intuition behind the algorithm is to compare all constituents of one sentence
to those of another and select the most similar ones. Of course, how this comparison
is performed depends on the particular sentence representation used. A good sentence
representation will emphasize sentence features that are relevant for comparison, such
as dependencies between sentence constituents, while ignoring irrelevant features,
such as constituent ordering. A representation which fits these requirements is a
dependency-based representation (Melcuk 1988). We first detail how this representation
is computed, then describe a method for aligning dependency subtrees.

3.1.1 Sentence Representation. Our sentence representation is based on a dependency
tree, which describes the sentence structure in terms of dependencies between words.
The similarity of the dependency tree to a predicate–argument structure makes it a
natural representation for our comparison.3 This representation can be constructed
from the output of a traditional parser. In fact, we have developed a rule-based
component that transforms the phrase structure output of Collins’s (2003) parser into
a representation in which a node has a direct link to its dependents. We also mark verb–
subject and verb–node dependencies in the tree.

The process of comparing trees can be further facilitated if the dependency tree is
abstracted to a canonical form which eliminates features irrelevant to the comparison.
We hypothesize that the difference in grammatical features such as auxiliaries, number,
and tense has a secondary effect when the meaning of sentences is being compared.
Therefore, we represent in the dependency tree only nonauxiliary words with their
associated grammatical features. For nouns, we record their number, articles, and class
(common or proper). For verbs, we record tense, mood (indicative, conditional, or
infinitive), voice, polarity, aspect (simple or continuous), and taxis (perfect or none).
The eliminated auxiliary words can be re-created using these recorded features. We also
transform all passive-voice sentences to the active voice, changing the order of affected
children.

While the alignment algorithm described in Section 3.1.2 produces one-to-one
mappings, in practice some paraphrases are not decomposable to words, forming
one-to-many or many-to-many paraphrases. Our manual analysis of paraphrased sen-
tences (Barzilay 2003) revealed that such alignments most frequently occur in pairs of
noun phrases (e.g., faculty member and professor) and pairs including verbs with parti-
cles (e.g., stand up, rise). To correctly align such phrases, we flatten subtrees containing
noun phrases and verbs with particles into one node. We subsequently determine
matches between flattened sentences using statistical metrics.

3 Two paraphrasing sentences which differ in word order may have significantly different trees in
phrase-based format. For instance, this phenomenon occurs when an adverbial is moved from a position
in the middle of a sentence to the beginning of a sentence. In contrast, dependency representations of
these sentences are very similar.
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Figure 3
Dependency tree of the sentence The IDF spokeswoman did not confirm this, but said the Palestinians
fired an antitank missile at a bulldozer on the site. The features of the node confirm are explicitly
marked.

An example of a sentence and its dependency tree with associated features is
shown in Figure 3. (In figures of dependency trees hereafter, node features are omitted
for clarity.)

3.1.2 Alignment. Our alignment of dependency trees is driven by two sources of in-
formation: the similarity between the structure of the dependency trees and the similar-
ity between lexical items. In determining the structural similarity between two trees, we
take into account the types of edges (which indicate the relationships between nodes).
An edge is labeled by the syntactic function of the two nodes it connects (e.g., subject–
verb). It is unlikely that an edge connecting a subject and verb in one sentence, for
example, corresponds to an edge connecting a verb and an adjective in another sentence.

The word similarity measures take into account more than word identity: They
also identify pairs of paraphrases, using WordNet and a paraphrasing dictionary. We
automatically constructed the paraphrasing dictionary from a large comparable news
corpus using the co-training method described in Barzilay and McKeown (2001). The
dictionary contains pairs of word-level paraphrases as well as phrase-level para-
phrases.4 Several examples of automatically extracted paraphrases are given in Table 2.
During alignment, each pair of nonidentical words that do not comprise a synset in

4 The comparable corpus and the derived dictionary are available at
http://www.cs.cornell.edu/˜regina/thesis-data/comp/input/processed.tbz2 and
http://www.cs.cornell.edu/˜regina/thesis-data/comp/output/comp2-ALL.txt. For details on the
corpus collection and evaluation of the paraphrase quality, see Barzilay (2003).
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Table 2
Lexical paraphrases extracted by the algorithm from the comparable news corpus.

(auto, automobile), (closing, settling), (rejected, does not accept), (military, army), (IWC,
International Whaling Commission), (Japan, country), (researching, examining), (harvesting,
killing), (mission-control office, control centers), (father, pastor), (past 50 years, four decades),
(Wangler, Wanger), (teacher, pastor), (fondling, groping), (Kalkilya, Qalqilya), (accused,
suspected), (language, terms), (head, president), (U.N., United Nations), (Islamabad, Kabul),
(goes, travels), (said, testified), (article, report), (chaos, upheaval), (Gore, Lieberman), (revolt,
uprising), (more restrictive local measures, stronger local regulations) (countries, nations),
(barred, suspended), (alert, warning), (declined, refused), (anthrax, infection), (expelled,
removed), (White House, White House spokesman Ari Fleischer), (gunmen, militants)

WordNet is looked up in the paraphrasing dictionary; in the case of a match, the pair
is considered to be a paraphrase.

We now give an intuitive explanation of how our tree similarity function, denoted
by Sim, is computed. If the optimal alignment of two trees is known, then the value of
the similarity function is the sum of the similarity scores of aligned nodes and aligned
edges. Since the best alignment of given trees is not known a priori, we select the max-
imal score among plausible alignments of the trees. Instead of exhaustively traversing
the space of all possible alignments, we recursively construct the best alignment for
trees of given depths, assuming that we know how to find an optimal alignment for
trees of shorter depths. More specifically, at each point of the traversal we consider two
cases, shown in Figure 4. In the first case, two top nodes are aligned with each other,
and their children are aligned in an optimal way by applying the algorithm to shorter
trees. In the second case, one tree is aligned with one of the children of the top node of
the other tree; again we can apply our algorithm for this computation, since we decrease
the height of one of the trees.

Before giving the precise definition of Sim, we introduce some notation. When T
is a tree with root node v, we let c(T) denote the set containing all children of v.
For a tree T containing a node s, the subtree of T which has s as its root node is denoted
by Ts.

Figure 4
Tree alignment computation. In the first case two tops are aligned, while in the second case the
top of one tree is aligned with a child of another tree.
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Given two trees T and T′ with root nodes v and v′, respectively, the similar-
ity Sim(T, T′) between the trees is defined to be the maximum of the three expres-
sions NodeCompare(T, T′), maxs∈c(T) Sim(Ts, T′), and maxs′∈c(T′ ) Sim(T, T′

s′ ). The upper
part of Figure 4 depicts the computation of NodeCompare(T, T′), in which two top
nodes are aligned with each other. The remaining expressions, maxs∈c(T) Sim(Ts, T′),
and maxs′∈c(T′ ) Sim(T, T′

s′ ), capture mappings in which the top of one tree is aligned
with one of the children of the top node of the other tree (the bottom of Figure 4).

The maximization in the NodeCompare formula searches for the best possible
alignment for the child nodes of the given pair of nodes and is defined by

NodeCompare(T, T′) = NodeSimilarity(v, v′)

+ max
m∈M(c(T),c(T′ ))


 ∑

(s,s′ )∈m

(EdgeSimilarity((v, s), (v′, s′)) + Sim(Ts, T′
s′ ))




where M(A, A′) is the set of all possible matchings between A and A′, and a matching
(between A and A′) is a subset m of A× A′ such that for any two distinct elements
(a, a′), (b, b′) ∈ m, both a �= b and a′ �= b′. In the base case, when one of the trees has
depth one, NodeCompare(T, T′) is defined to be NodeSimilarity(v, v′).

The similarity score NodeSimilarity(v, v′) of atomic nodes depends on whether the
corresponding words are identical, paraphrases, or unrelated. The similarity scores for
pairs of identical words, pairs of synonyms, pairs of paraphrases, and edges (given in
Table 3) are manually derived using a small development corpus. While learning of
the similarity scores automatically is an appealing alternative, its application in the fu-
sion context is challenging because of the absence of a large training corpus and the lack
of an automatic evaluation function.5 The similarity of nodes containing flattened
subtrees,6 such as noun phrases, is computed as the score of their intersection nor-
malized by the length of the longest phrase. For instance, the similarity score of the
noun phrases antitank missile and machine gun and antitank missile is computed as a ratio
between the score of their intersection antitank missile (2), divided by the length of the
latter phrase (5).

The similarity function Sim is computed using bottom-up dynamic programming,
in which the shortest subtrees are processed first. The alignment algorithm returns
the similarity score of the trees as well as the optimal mapping between the subtrees
of input trees. The pseudocode of this function is presented in the Appendix. In the
resulting tree mapping, the pairs of nodes whose NodeSimilarity positively contributed
to the alignment are considered parallel. Figure 5 shows two dependency trees and their
alignment.

As is evident from the Sim definition, we are considering only one-to-one node
“matchings”: Every node in one tree is mapped to at most one node in another tree. This
restriction is necessary because the problem of optimizing many-to-many alignments

5 Our preliminary experiments with n-gram-based overlap measures, such as BLEU (Papineni et al. 2002)
and ROUGE (Lin and Hovy 2003), show that these metrics do not correlate with human judgments on the
fusion task, when tested against two reference outputs. This is to be expected: As lexical variability across
input sentences grows, the number of possible ways to fuse them by machine as well by human also
grows. The accuracy of match between the system output and the reference sentences largely depends on
the features of the input sentences, rather than on the underlying fusion method.

6 Pairs of phrases that form an entry in the paraphrasing dictionary are compared as pairs of atomic entries.
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Table 3
Node and edge similarity scores used by the alignment algorithm.

Category Node Similarity Category Node Similarity

Identical words 1 Edges are subject-verb 0.03
Synonyms 1 Edges are verb-object 0.03
Paraphrases 0.5 Edges are same type 0.02
Other −0.1 Other 0

is NP-hard.7 The subtree flattening performed during the preprocessing stage aims to
minimize the negative effect of the restriction on alignment granularity.

Another important property of our algorithm is that it produces a local alignment.
Local alignment maps local regions with high similarity to each other rather than
creating an overall optimal global alignment of the entire tree. This strategy is more
meaningful when only partial meaning overlap is expected between input sentences,
as in typical sentence fusion input. Only these high-similarity regions, which we call
intersection subtrees, are included in the fusion sentence.

3.2 Fusion Lattice Computation

Fusion lattice computation is concerned with combining intersection subtrees. During
this process, the system will remove phrases from a selected sentence, add phrases
from other sentences, and replace words with the paraphrases that annotate each
node. Among the many possible combinations of subtrees, we are interested only
in those combinations which yield semantically sound sentences and do not distort
the information presented in the input sentences. We cannot explore every possible
combination, since the lack of semantic information in the trees prohibits us from
assessing the quality of the resulting sentences. In fact, our early experimentation
with generation from constituent phrases (e.g., NPs, VPs) demonstrated that it was
difficult to ensure that semantically anomalous or ungrammatical sentences would
not be generated. Instead, we select a combination already present in the input sentences
as a basis and transform it into a fusion sentence by removing extraneous informa-
tion and augmenting the fusion sentence with information from other sentences. The
advantage of this strategy is that, when the initial sentence is semantically correct
and the applied transformations aim to preserve semantic correctness, the resulting
sentence is a semantically correct one. Our generation strategy is reminiscent of Robin
and McKeown’s (1996) earlier work on revision for summarization, although Robin and
McKeown used a three-tiered representation of each sentence, including its semantics
and its deep and surface syntax, all of which were used as triggers for revision.

The three steps of the fusion lattice computation are as follows: selection of the
basis tree, augmentation of the tree with alternative verbalizations, and pruning of

7 The complexity of our algorithm is polynomial in the number of nodes. Let n1 denote the number of
nodes in the first tree, and n2 denote the number of nodes in the second tree. We assume that the
branching factor of a parse tree is bounded above by a constant. The function NodeCompare is evaluated
only once on each node pair. Therefore, it is evaluated n1 × n2 times totally. Each evaluation is computed
in constant time, assuming that values of the function for node children are known. Since we use
memoization, the total time of the procedure is O(n1 × n2).
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Figure 5
Two dependency trees and their alignment tree. Solid lines represent aligned edges. Dotted and
dashed lines represent unaligned edges of the theme sentences.

the extraneous subtrees. Alignment is essential for all the steps. The selection of the
basis tree is guided by the number of intersection subtrees it includes; in the best case,
it contains all such subtrees. The basis tree is the centroid of the input sentences—
the sentence which is the most similar to the other sentences in the input. Using the
alignment-based similarity score described in Section 3.1.2, we identify the centroid
by computing for each sentence the average similarity score between the sentence and
the rest of the input sentences, then selecting the sentence with the highest score.

Next, we augment the basis tree with information present in the other input
sentences. More specifically, we add alternative verbalizations for the nodes in the basis
tree and the intersection subtrees which are not part of the basis tree. The alternative
verbalizations are readily available from the pairwise alignments of the basis tree with
other trees in the input computed in the previous section. For each node of the basis tree,
we record all verbalizations from the nodes of the other input trees aligned with a given
node. A verbalization can be a single word, or it can be a phrase, if a node represents
a noun compound or a verb with a particle. An example of a fusion lattice, augmented
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Figure 6
A basis lattice before and after augmentation. Solid lines represent aligned edges of the basis
tree. Dashed lines represent unaligned edges of the basis tree, and dotted lines represent
insertions from other theme sentences. Added subtrees correspond to sentences from Table 1.

with alternative verbalizations, is given in Figure 6. Even after this augmentation, the fu-
sion lattice may not include all of the intersection subtrees. The main difficulty in subtree
insertion is finding an acceptable placement; this is often determined by syntactic, se-
mantic, and idiosyncratic knowledge. Therefore, we follow a conservative insertion pol-
icy. Among all the possible aligned sentences, we insert only subtrees whose top node
aligns with one of the nodes in a basis tree.8 We further constrain the insertion procedure
by inserting only trees that appear in at least half of the sentences of a theme. These two

8 Our experimental results show that the algorithm inserts a sufficient amount of new subtrees despite this
limitation.
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constituent-level restrictions prevent the algorithm from generating overly long, un-
readable sentences.9

Finally, subtrees which are not part of the intersection are pruned off the basis
tree. However, removing all such subtrees may result in an ungrammatical or seman-
tically flawed sentence; for example, we might create a sentence without a subject.
This overpruning may happen if either the input to the fusion algorithm is noisy
or the alignment has failed to recognize similar subtrees. Therefore, we perform
a more conservative pruning, deleting only the self-contained components which
can be removed without leaving ungrammatical sentences. As previously observed
in the literature (Mani, Gates, and Bloedorn 1999; Jing and McKeown 2000), such com-
ponents include a clause in the clause conjunction, relative clauses, and some ele-
ments within a clause (such as adverbs and prepositions). For example, this procedure
transforms the lattice in Figure 6 into the pruned basis lattice shown in Figure 7 by
deleting the clause the clash erupted and the verb phrase to better protect Israeli forces.
These phrases are eliminated because they do not appear in the other sentences of the
theme and at the same time their removal does not interfere with the well-formedness
of the fusion sentence. Once these subtrees are removed, the fusion lattice construc-
tion is completed.

3.3 Generation

The final stage in sentence fusion is linearization of the fusion lattice. Sentence
generation includes selection of a tree traversal order, lexical choice among avail-
able alternatives, and placement of auxiliaries, such as determiners. Our generation
method utilizes information given in the input sentences to restrict the search space
and then chooses among remaining alternatives using a language model derived from
a large text collection. We first motivate the need for reordering and rephrasing, then
discuss our implementation.

For the word-ordering task, we do not have to consider all the possible travers-
als, since the number of valid traversals is limited by ordering constraints encoded
in the fusion lattice. However, the basis lattice does not uniquely determine the
ordering: The placement of trees inserted in the basis lattice from other theme sen-
tences is not restricted by the original basis tree. While the ordering of many sentence
constituents is determined by their syntactic roles, some constituents, such as time,
location and manner circumstantials, are free to move (Elhadad et al. 2001). Therefore,
the algorithm still has to select an appropriate order from among different orders of
the inserted trees.

The process so far produces a sentence that can be quite different from the ex-
tracted sentence; although the basis sentences provides guidance for the generation
process, constituents may be removed, added in, or reordered. Wording can also be
modified during this process. Although the selection of words and phrases which
appear in the basis tree is a safe choice, enriching the fusion sentence with alternative
verbalizations has several benefits. In applications such as summarization, in which
the length of the produced sentence is a factor, a shorter alternative is desirable. This
goal can be achieved by selecting the shortest paraphrase among available alternatives.
Alternate verbalizations can also be used to replace anaphoric expressions, for instance,

9 Furthermore, the preference for shorter fusion sentences is further enforced during the linearization stage
because our scoring function monotonically decreases with the length of a sentence.
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Figure 7
A pruned basis lattice.

when the basis tree contains a noun phrase with anaphoric expressions (e.g., his visit)
and one of the other verbalizations is anaphora-free. Substitution of the latter for the
anaphoric expression may increase the clarity of the produced sentence, since frequently
the antecedent of the anaphoric expression is not present in a summary. Moreover,
in some cases substitution is mandatory. As a result of subtree insertions and dele-
tions, the words used in the basis tree may not be a good choice after the transfor-
mations, and the best verbalization might be achieved by using a paraphrase of them
from another theme sentence. As an example, consider the case of two paraphras-
ing verbs with different subcategorization frames, such as tell and say. If the phrase
our correspondent is removed from the sentence Sharon told our correspondent that the
elections were delayed . . . , a replacement of the verb told with said yields a more readable
sentence.

The task of auxiliary placement is alleviated by the presence of features stored
in the input nodes. In most cases, aligned words stored in the same node have
the same feature values, which uniquely determine an auxiliary selection and con-
jugation. However, in some cases, aligned words have different grammatical
features, in which case the linearization algorithm needs to select among avail-
able alternatives.
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Linearization of the fusion sentence involves the selection of the best phrasing
and placement of auxiliaries as well as the determination of optimal ordering. Since
we do not have sufficient semantic information to perform such selection, our algo-
rithm is driven by corpus-derived knowledge. We generate all possible sentences10

from the valid traversals of the fusion lattice and score their likelihood according to
statistics derived from a corpus. This approach, originally proposed by Knight and
Hatzivassiloglou (1995) and Langkilde and Knight (1998), is a standard method used
in statistical generation. We trained a trigram model with Good–Turing smoothing
over 60 megabytes of news articles collected by Newsblaster using the second version
CMU–Cambridge Statistical Language Modeling toolkit (Clarkson and Rosenfeld 1997).
The sentence with the lowest length-normalized entropy (the best score) is selected as
the verbalization of the fusion lattice. Table 4 shows several verbalizations produced
by our algorithm from the central tree in Figure 7. Here, we can see that the lowest-
scoring sentence is both grammatical and concise.

Table 4 also illustrates that entropy-based scoring does not always correlate with
the quality of the generated sentence. For example, the fifth sentence in Table 4—
Palestinians fired antitank missile at a bulldozer to build a new embankment in the area—is
not a well-formed sentence; however, our language model gave it a better score than
its well-formed alternatives, the second and the third sentences (see Section 4 for
further discussion). Despite these shortcomings, we preferred entropy-based scoring
to symbolic linearization. In the next section, we motivate our choice.

3.3.1 Statistical versus Symbolic Linearization. In the previous version of the
system (Barzilay, McKeown, and Elhadad 1999), we performed linearization of a
fusion dependency structure using the language generator FUF/SURGE (Elhadad
and Robin 1996). As a large-scale linearizer used in many traditional semantic-to-text
generation systems, FUF/SURGE could be an appealing solution to the task of surface
realization. Because the input structure and the requirements on the linearizer are
quite different in text-to-text generation, we had to design rules for mapping between
dependency structures produced by the fusion component and FUF/SURGE input. For
instance, FUF/SURGE requires that the input contain a semantic role for prepositional
phrases, such as manner, purpose, or location, which is not present in our dependency
representation; thus we had to augment the dependency representation with this
information. In the case of inaccurate prediction or the lack of relevant semantic
information, the linearizer scrambles the order of sentence constituents, selects wrong
prepositions, or even fails to generate an output. Another feature of the FUF/SURGE
system that negatively influences system performance is its limited ability to reuse
phrases readily available in the input, instead of generating every phrase from scratch.
This makes the generation process more complex and thus prone to error.

While the initial experiments conducted on a set of manually constructed themes
seemed promising, the system performance deteriorated significantly when it was
applied to automatically constructed themes. Our experience led us to believe that
transformation of an arbitrary sentence into a FUF/SURGE input representation is
similar in its complexity to semantic parsing, a challenging problem in its own right.
Rather than refining the mapping mechanism, we modified MultiGen to use a statis-

10 Because of the efficiency constraints imposed by Newsblaster, we sample only a subset of 20,000 paths.
The sample is selected randomly.
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Table 4
Alternative linearizations of the fusion lattice with corresponding entropy values.

Sentence Entropy

Palestinians fired an antitank missile at a bulldozer. 4.25
Palestinian militants fired machine guns and antitank missiles at a
bulldozer.

5.86

Palestinian militants fired machine guns and antitank missiles at a
bulldozer that was building an embankment in the area.

6.22

Palestinians fired antitank missiles at while using a bulldozer. 7.04
Palestinians fired antitank missile at a bulldozer to build a new
embankment in the area.

5.46

tical linearization component, which handles uncertainty and noise in the input in a
more robust way.

4. Sentence Fusion Evaluation

In our previous work, we evaluated the overall summarization strategy of MultiGen
in multiple experiments, including comparisons with human-written summaries in
the Document Understanding Conference (DUC)11 evaluation (McKeown et al. 2001;
McKeown et al. 2002) and quality assessment in the context of a particular informa-
tion access task in the Newsblaster framework (McKeown et al. 2002).

In this article, we aim to evaluate the sentence fusion algorithm in isolation from
other system components; we analyze the algorithm performance in terms of content
selection and the grammaticality of the produced sentences. We first present our eval-
uation methodology (Section 4.1), then we describe our data (Section 4.2), the results
(Section 4.3), and our analysis of them (Section 4.4).

4.1 Methods
4.1.1 Construction of a Reference Sentence. We evaluated content selection by com-
paring an automatically generated sentence with a reference sentence. The reference
sentence was produced by a human (hereafter the RFA), who was instructed to gener-
ate a sentence conveying information common to many sentences in a theme. The RFA
was not familiar with the fusion algorithm. The RFA was provided with the list of
theme sentences; the original documents were not included. The instructions given to
the RFA included several examples of themes with fusion sentences generated by the
authors. Even though the RFA was not instructed to use phrases from input sentences,
the sentences presented as examples reused many phrases from the input sentences.
We believe that phrase reuse elucidates the connection between input sentences and
a resulting fusion sentence. Two examples of themes, reference sentences, and system
outputs are shown in Table 5.

4.1.2 Data Selection. We wanted to test the performance of the fusion component on
automatically computed inputs which reflect the accuracy of the existing preprocessing
tools. For this reason, the test data were selected randomly from material collected by
Newsblaster. To remove themes irrelevant for fusion evaluation, we introduced two

11 DUC is a community-based evaluation of summarization systems organized by DARPA.
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Table 5
Examples from the test set. Each example contains a theme, a reference sentence generated by
the RFA, and a sentence generated by the system. Subscripts in the system-generated sentence
represent a theme sentence from which a word was extracted.

#1 The forest is about 70 miles west of Portland.
#2 Their bodies were found Saturday in a remote part of Tillamook State Forest, about

40 miles west of Portland.
#3 Elk hunters found their bodies Saturday in the Tillamook State Forest, about

60 miles west of the family’s hometown of Portland.
#4 The area where the bodies were found is in a mountainous forest about 70 miles

west of Portland.
Reference The bodies were found Saturday in the forest area west of Portland.
System The bodies4 were found2 Saturday2 in3 the Tillamook3 State3 Forest3 west2 of2

Portland2.
#1 Four people including an Islamic cleric have been detained in Pakistan after a fatal

attack on a church on Christmas Day.
#2 Police detained six people on Thursday following a grenade attack on a church that

killed three girls and wounded 13 people on Christmas Day.
#3 A grenade attack on a Protestant church in Islamabad killed five people, including

a U.S. Embassy employee and her 17-year-old daughter.
Reference A grenade attack on a church killed several people.
System A3 grenade3 attack3 on3 a Protestant3 church3 in3 Islamabad3 killed3 six2 people2.

additional filters. First, we excluded themes that contained identical or nearly identical
sentences (with cosine similarity higher than 0.8). When processing such sentences,
our algorithm reduces to sentence extraction, which does not allow us to evaluate the
generation abilities of our algorithm. Second, themes for which the RFA was unable to
create a reference sentence were also removed from the test set. As mentioned above,
Simfinder does not always produce accurate themes,12 and therefore, the RFA could
choose not to generate a reference sentence if the theme sentences had too little in
common. An example of a theme for which no sentence was generated is shown in
Table 6. As a result of this filtering, 34% of the sentences were removed.

4.1.3 Baselines. In addition to the system-generated sentence, we also included in
the evaluation a fusion sentence generated by another human (hereafter, RFA2) and
three baselines. (Following the DUC terminology, we refer to the baselines, our system,
and the RFA2 as peers.) The first baseline is the shortest sentence among the theme
sentences, which is obviously grammatical, and it also has a good chance of being rep-
resentative of common topics conveyed in the input. The second baseline is produced
by a simplification of our algorithm, where paraphrase information is omitted during
the alignment process. This baseline is included to capture the contribution of para-
phrase information to the performance of the fusion algorithm. The third baseline
consists of the basis sentence. The comparison with this baseline reveals the contri-
bution of the insertion and deletion stages in the fusion algorithm. The comparison
against an RFA2 sentence provides an upper bound on the performance of the system
and baselines. In addition, this comparison sheds light on the human agreement on
this task.

12 To mitigate the effects of Simfinder noise in MultiGen, we induced a similarity threshold on input
trees—trees which are not similar to the basis tree are not used in the fusion process.
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Table 6
An example of noisy Simfinder output.

The shares have fallen 60% this year.
They said Qwest was forcing them to exchange their bonds at a fraction of face value—between
52.5% and 82.5%, depending on the bond—or else fall lower in the pecking order for repayment
in case Qwest went broke.
Qwest had offered to exchange up to $12.9 billion of the old bonds, which carried interest rates
between 5.875% and 7.9%.
The new debt carries rates between 13% and 14%.
Their yield fell to about 15.22% from 15.98%.

4.1.4 Comparison against the Reference Sentence. One judge was given a peer sen-
tence along with the corresponding reference sentence. The judge also had access
to the original theme from which these sentences were generated. The order of the
presentation was randomized across themes and peer systems. Reference and peer
sentences were divided into clauses by the authors. The judges assessed overlap on
the clause level between reference and peer sentences. The wording of the instructions
was inspired by the DUC instructions for clause comparison. For each clause in
the reference sentence, the judge decided whether the meaning of a corresponding
clause was conveyed in a peer sentence. In addition to 0 score for no overlap and 1
for full overlap, this framework allows for partial overlap with a score of 0.5. From the
overlap data, we computed weighted recall and precision based on fractional count
(Hatzivassiloglou and McKeown 1993). Recall is a ratio of weighted clause overlap
between a peer and a reference sentence, and the number of clauses in a reference
sentence. Precision is a ratio of weighted clause overlap between a peer and a reference
sentence, and the number of clauses in a peer sentence.

4.1.5 Grammaticality Assessment. Grammaticality was rated in three categories:
grammatical (3), partially grammatical (2), and not grammatical (1). The judge was in-
structed to rate a sentence in the grammatical category if it contained no grammatical
mistakes. Partially grammatical included sentences that contained at most one mistake
in agreement, articles, and tense realization. The not grammatical category included
sentences that were corrupted by multiple mistakes of the former type, by erroneous
component order or by the omission of important components (e.g., subject).

Punctuation is one issue in assessing grammaticality. Improper placement of
punctuation is a limitation of our implementation of the sentence fusion algorithm
that we are well aware of.13 Therefore, in our grammaticality evaluation (following the
DUC procedure), the judge was asked to ignore punctuation.

4.2 Data

To evaluate our sentence fusion algorithm, we selected 100 themes following the proce-
dure described in the previous section. Each set varied from three to seven sentences,

13 We were unable to develop a set of rules which works in most cases. Punctuation placement is
determined by a variety of features; considering all possible interactions of these features is hard. We
believe that corpus-based algorithms for automatic restoration of punctuation developed for speech
recognition applications (Beeferman, Berger, and Lafferty 1998; Shieber and Tao 2003) could help in our
task, and we plan to experiment with them in the future.
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with 4.22 sentences on average. The generated fusion sentences consisted of 1.91 clauses
on average. None of the sentences in the test set were fully extracted; on average, each
sentence fused fragments from 2.14 theme sentences. Out of 100 sentence, 57 sentences
produced by the algorithm combined phrases from several sentences, while the rest
of the sentences comprised subsequences of one of the theme sentences. (Note that
compression is different from sentence extraction.) We included these sentences in the
evaluation, because they reflect both content selection and realization capacities of the
algorithm.

Table 5 shows two sentences from the test corpus, along with input sentences. The
examples are chosen so as to reflect good- and bad-performance cases. Note that the
first example results in inclusion of the essential information (the fact that bodies were
found, along with time and place) and leaves out details (that it was a remote location
or how many miles west it was, a piece of information that is in dispute in any
case). The problematic example incorrectly selects the number of people killed as six,
even though this number is not repeated and different numbers are referred to in the
text. This mistake is caused by a noisy entry in our paraphrasing dictionary which
erroneously identifies “five” and “six” as paraphrases of each other.

4.3 Results

Table 7 shows the length ratio, precision, recall, F-measure, and grammaticality score
for each algorithm. The length ratio of a sentence was computed as the ratio of its
output length to the average length of the theme input sentences.

4.4 Discussion

The results in Table 7 demonstrate that sentences manually generated by the second
human participant (RFA2) not only are the shortest, but are also closest to the reference
sentence in terms of selected information. The tight connection14 between sentences
generated by the RFAs establishes a high upper bound for the fusion task. While
neither our system nor the baselines were able to reach this level of performance, the
fusion algorithm clearly outperforms all the baselines in terms of content selection,
at a reasonable level of compression. The performance of baseline 1 and baseline 2
demonstrates that neither the shortest sentence nor the basis sentence is an adequate
substitution for fusion in terms of content selection. The gap in recall between our
system and baseline 3 confirms our hypothesis about the importance of paraphrasing
information for the fusion process. Omission of paraphrases causes an 8% drop in
recall due to the inability to match equivalent phrases with different wording.

Table 7 also reveals a downside of the fusion algorithm: Automatically generated
sentences contain grammatical errors, unlike fully extracted, human-written sentences.
Given the high sensitivity of humans to processing ungrammatical sentences, one
has to consider the benefits of flexible information selection against the decrease in
readability of the generated sentences. Sentence fusion may not be a worthy direction
to pursue if low grammaticality is intrinsic to the algorithm and its correction requires

14 We cannot apply kappa statistics (Siegel and Castellan 1988) for measuring agreement in the content
selection task since the event space is not well-defined. This prevents us from computing the probability
of random agreement.
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Table 7
Evaluation results for a human-crafted fusion sentence (RFA2), our system output, the shortest
sentence in the theme (baseline 1), the basis sentence (baseline 2), and a simplified version of our
algorithm without paraphrasing information (baseline 3).

Peer Length Ratio Precision Recall F-measure Grammaticality

RFA2 54% 98% 94% 96% 2.9
Fusion 78% 65% 72% 68% 2.3
Baseline 1 69% 52% 38% 44% 3.0
Baseline 2 111% 41% 67% 51% 3.0
Baseline 3 73% 63% 64% 63% 2.4

knowledge which cannot be automatically acquired. In the remainder of the section, we
show that this is not the case. Our manual analysis of generated sentences revealed
that most of the grammatical mistakes are caused by the linearization component,
or more specifically, by suboptimal scoring of the language model. Language model-
ing is an active area of research, and we believe that advances in this direction will
be able to dramatically boost the linearization capacity of our algorithm.

4.4.1 Error Analysis. In this section, we discuss the results of our manual analysis of
mistakes in content selection and surface realization. Note that in some cases multiple
errors are entwined in one sentence, which makes it hard to distinguish between a
sequence of independent mistakes and a cause-and-effect chain. Therefore, the pre-
sented counts should be viewed as approximations, rather than precise numbers.

We start with the analysis of the test set and continue with the description of some
interesting mistakes that we encountered during system development.

Mistakes in Content Selection. Most of the mistakes in content selection can be attributed
to problems with alignment. In most cases (17), erroneous alignments missed relevant
word mappings as a result of the lack of a corresponding entry in our paraphrasing
resources. At the same time, mapping of unrelated words (as shown in Table 5) was
quite rare (two cases). This performance level is quite predictable given the accuracy
of an automatically constructed dictionary and limited coverage of WordNet. Even
in the presence of accurate lexical information, the algorithm occasionally produced
suboptimal alignments (four cases) because of the simplicity of our weighting scheme,
which supports limited forms of mapping typology and also uses manually assigned
weights.

Another source of errors (two cases) was the algorithm’s inability to handle
many-to-many alignments. Namely, two trees conveying the same meaning may not
be decomposable into the node-level mappings which our algorithm aims to compute.
For example, the mapping between the sentences in Table 8 expressed by the rule
X denied claims by Y ↔ X said that Y’s claim was untrue cannot be decomposed into
smaller matching units. At least two mistakes resulted from noisy preprocessing
(tokenization and parsing).

In addition to alignment, overcutting during lattice pruning caused the omission of
three clauses that were present in the corresponding reference sentences. The sentence
Conservatives were cheering language is an example of an incomplete sentence derived
from the following input sentence: Conservatives were cheering language in the final version
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Table 8
A pair of sentences which cannot be fully decomposed.

Syria denied claims by Israeli Prime Minister Ariel Sharon . . .
The Syrian spokesman said that Sharon’s claim was untrue . . .

that ensures that one-third of all funds for prevention programs be used to promote abstinence.
The omission of a relative clause was possible because some sentences in the input
theme contained the noun language without any relative clauses.

Mistakes in Surface Realization. Grammatical mistakes included incorrect selection of
determiners, erroneous word ordering, omission of essential sentence constituents, and
incorrect realization of negation constructions and tense. These mistakes (42) originated
during linearization of the lattice and were caused either by incompleteness of the
linearizer or by suboptimal scoring of the language model. Mistakes of the first type
are caused by missing rules for generating auxiliaries given node features. An exam-
ple of this phenomenon is the sentence The coalition to have play a central role, which
verbalizes the verb construction will have to play incorrectly. Our linearizer lacks the
completeness of existing application-independent linearizers, such as the unification-
based FUF/SURGE (Elhadad and Robin 1996) and the probabilistic Fergus (Bangalore
and Rambow 2000). Unfortunately, we were unable to reuse any of the existing large-
scale linearizers because of significant structural differences between input expected
by these linearizers and the format of a fusion lattice. We are currently working on
adapting Fergus for the sentence fusion task.

Mistakes related to suboptimal scoring were the most common (33 out of 42);
in these cases, a language model selected ill-formed sentences, assigning a worse
score to a better sentence. The sentence The diplomats were given to leave the coun-
try in 10 days illustrates a suboptimal linearization of the fusion lattice. The correct
linearizations—The diplomats were given 10 days to leave the country and The diplomats
were ordered to leave the country in 10 days—were present in the fusion lattice, but
the language model picked the incorrect verbalization. We found that in 27 cases the
optimal verbalizations (in the authors’ view) were ranked below the top-10 sentences
ranked by the language model. We believe that more powerful language models that
incorporate linguistic knowledge (such as syntax-based models) can improve the
quality of generated sentences.

4.4.2 Further Analysis. In addition to analyzing errors found in this particular study,
we also regularly track the quality of generated summaries on Newsblaster’s Web
page. We have noted a number of interesting errors that crop up from time to time
that seem to require information about the full syntactic parse, semantics, or even
discourse. Consider, for example, the last sentence from a summary entitled Estrogen-
Progestin Supplements Now Linked to Dementia, which is shown in Table 9. This sentence
was created by sentence fusion and clearly, there is a problem. Certainly, there was a
study finding the risk of dementia in women who took one type of combined hormone pill, but
it was not the government study which was abruptly halted last summer. In looking
at the two sentences from which this summary sentence was drawn, we can see that
there is a good amount of overlap between the two, but the component does not have
enough information about the referents of the different terms to know that two different
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Table 9
An example of wrong reference selection. Subscripts in the generated sentence indicate the
theme sentence from which the words were extracted.

#1 Last summer, a government study was abruptly halted after finding an increased risk
of breast cancer, heart attacks, and strokes in women who took one type of combined
hormone pill.

#2 The most common form of hormone replacement therapy, already linked to breast
cancer, stroke, and heart disease, does not improve mental functioning as some earlier
studies suggested and may increase the risk of dementia, researchers said on Tuesday.

System Last1 summer1 a1 government1 study1 abruptly1 was1 halted1 after1 finding1 the2 risk2
of2 dementia2 in1 women1 who1 took1 one1 type1 of1 combined1 hormone1 pill1.

studies are involved and that fusion should not take place. One topic of our future work
(Section 6) is the problem of reference and summarization.

Another example is shown in Table 10. Here again, the problem is reference. The
first error is in the references to the segments. The two uses of segments in the first
source document sentence do not refer to the same entity and thus, when the modifier
is dropped, we get an anomaly. The second, more unusual problem is in the equation
of Clinton/Dole, Dole/Clinton, and Clinton and Dole.

5. Related Work

5.1 Text-to-Text Generation

Unlike traditional concept-to-text generation approaches, text-to-text generation
methods take text as input and transform it into a new text satisfying some constraints
(e.g., length or level of sophistication). In addition to sentence fusion, compression
algorithms (Chandrasekar, Doran, and Bangalore 1996; Grefenstette 1998; Mani, Gates,
and Bloedorn 1999; Knight and Marcu 2002; Jing and McKeown 2000; Reizler et al. 2003)
and methods for expansion of a multiparallel corpus (Pang, Knight, and Marcu 2003)
are other instances of such methods.

Compression methods have been developed for single-document summarization,
and they aim to reduce a sentence by eliminating constituents which are not crucial
for understanding the sentence and not salient enough to include in the summary.
These approaches are based on the observation that the “importance” of a sentence
constituent can often be determined based on shallow features, such as its syntactic
role and the words it contains. For example, in many cases a relative clause that is

Table 10
An example of incorrect reference selection. Subscripts in the generated sentence indicate the
theme sentence from which the words were extracted.

#1 The segments will revive the “Point-Counterpoint” segments popular until they
stopped airing in 1979, but will instead be called “Clinton/Dole” one week and
“Dole/Clinton” the next week.

#2 Clinton and Dole have signed up to do the segment for the next 10 weeks, Hewitt said.
#3 The segments will be called “Clinton Dole” one week and “Dole Clinton” the next.
System The1 segments1 will1 revive1 the3 segments3 until1 they1 stopped1 airing1 in1 19791

but1 instead1 will1 be1 called1 Clinton2 and2 Dole2.
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peripheral to the central point of the document can be removed from a sentence without
significantly distorting its meaning. While earlier approaches for text compression were
based on symbolic reduction rules (Grefenstette 1998; Mani, Gates, and Bloedorn 1999),
more recent approaches use an aligned corpus of documents and their human written
summaries to determine which constituents can be reduced (Knight and Marcu 2002;
Jing and McKeown 2000; Reizler et al. 2003). The summary sentences, which have
been manually compressed, are aligned with the original sentences from which they
were drawn.

Knight and Marcu (2000) treat reduction as a translation process using a noisy-
channel model (Brown et al. 1993). In this model, a short (compressed) string is treated
as a source, and additions to this string are considered to be noise. The probability of a
source string s is computed by combining a standard probabilistic context-free grammar
score, which is derived from the grammar rules that yielded tree s, and a word-bigram
score, computed over the leaves of the tree. The stochastic channel model creates a large
tree t from a smaller tree s by choosing an extension template for each node based on
the labels of the node and its children. In the decoding stage, the system searches for
the short string s that maximizes P(s|t), which (for fixed t) is equivalent to maximizing
P(s)× P(t|s).

While this approach exploits only syntactic and lexical information, Jing and
McKeown (2000) also rely on cohesion information, derived from word distribution in
a text: Phrases that are linked to a local context are retained, while phrases that have no
such links are dropped. Another difference between these two methods is the extensive
use of knowledge resources in the latter. For example, a lexicon is used to identify
which components of the sentence are obligatory to keep it grammatically correct. The
corpus in this approach is used to estimate the degree to which a fragment is extraneous
and can be omitted from a summary. A phrase is removed only if it is not grammati-
cally obligatory, is not linked to a local context, and has a reasonable probability of
being removed by humans. In addition to reducing the original sentences, Jing and
McKeown (2000) use a number of manually compiled rules to aggregate reduced
sentences; for example, reduced clauses might be conjoined with and.

Sentence fusion exhibits similarities with compression algorithms in the ways in
which it copes with the lack of semantic data in the generation process, relying on
shallow analysis of the input and statistics derived from a corpus. Clearly, the difference
in the nature of both tasks and in the type of input they expect (single sentence versus
multiple sentences) dictates the use of different methods. Having multiple sentences in
the input poses new challenges—such as a need for sentence comparison—but at the
same time it opens up new possibilities for generation. While the output of existing
compression algorithms is always a substring of the original sentence, sentence fusion
may generate a new sentence which is not a substring of any of the input sentences. This
is achieved by arranging fragments of several input sentences into one sentence.

The only other text-to-text generation approach able to produce new utterances is
that of Pang, Knight, and Marcu (2003). Their method operates over multiple English
translations of the same foreign sentence and is intended to generate novel paraphrases
of the input sentences. Like sentence fusion, their method aligns parse trees of the input
sentences and then uses a language model to linearize the derived lattice. The main
difference between the two methods is in the type of the alignment: Our algorithm
performs local alignment, while the algorithm of Pang, Knight, and Marcu (2003)
performs global alignment. The differences in alignment are caused by differences in
input: Pang, Knight, and Marcu’s method expects semantically equivalent sentences,
while our algorithm operates over sentences with only partial meaning overlap. The
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presence of deletions and insertions in input sentences makes alignment of comparable
trees a new and particularly significant challenge.

5.2 Computation of an Agreement Tree

The alignment method described in Section 3 falls into a class of tree comparison
algorithms extensively studied in theoretical computer science (Sankoff 1975; Finden
and Gordon 1985; Amir and Keselman 1994; Farach, Przytycka, and Thorup 1995)
and widely applied in many areas of computer science, primarily computational bi-
ology (Gusfield 1997). These algorithms aim to find an overlap subtree that captures
structural commonality across a set of related trees. A typical tree similarity measure
considers the proximity, at both the node and the edge levels, between input trees.
In addition, some algorithms constrain the topology of the resulting alignment based
on the domain-specific knowledge. These constraints not only narrow the search space
but also increase the robustness of the algorithm in the presence of a weak similarity
function.

In the NLP context, this class of algorithms has been used previously in example-
based machine translation, in which the goal is to find an optimal alignment between
the source and the target sentences (Meyers, Yangarber, and Grishman 1996). The
algorithm operates over pairs of parallel sentences, where each sentence is represented
by a structure-sharing forest of plausible syntactic trees. The similarity function is
driven by lexical mapping between tree nodes and is derived from a bilingual dictio-
nary. The search procedure is greedy and is subject to a number of constraints needed
for alignment of parallel sentences.

This algorithm has several features in common with our method: It operates
over syntactic dependency representations and employs recursive computation to find
an optimal solution. However, our method is different in two key aspects. First, our
algorithm looks for local regions with high similarity in nonparallel data, rather than for
full alignment, expected in the case of parallel trees. The change in optimization criteria
introduces differences in the similarity measure—specifically, the relaxation of certain
constraints—and the search procedure, which in our work uses dynamic programming.
Second, our method is an instance of a multisequence alignment,15 in contrast to the
pairwise alignment described in Meyers, Yangarber, and Grishman (1996). Combining
evidence from multiple trees is an essential step of our algorithm—pairwise comparison
of nonparallel trees may not provide enough information regarding their underlying
correspondences. In fact, previous applications of multisequence alignment have been
shown to increase the accuracy of the comparison in other NLP tasks (Barzilay and
Lee 2002; Bangalore, Murdock, and Riccardi 2002; Lacatusu, Maiorano, and Harabagiu
2004); unlike our work these approaches operate on strings, not trees, and with the
exception of (Lacatusu, Maiorano, and Harabagiu 2004), they apply alignment to paral-
lel data, not comparable texts.

6. Conclusions and Future Work

In this article, we have presented sentence fusion, a novel method for text-to-text
generation which, given a set of similar sentences, produces a new sentence contain-
ing the information common to most sentences. Unlike traditional generation methods,

15 See Gusfield (1997) and Durbin et al. (1998) for an overview of multisequence alignment.
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sentence fusion does not require an elaborate semantic representation of the input
but instead relies on the shallow linguistic representation automatically derived from
the input documents and knowledge acquired from a large text corpus. Generation is
performed by reusing and altering phrases from input sentences.

As the evaluation described in Section 4 shows, our method accurately identifies
common information and in most cases generates a well-formed fusion sentence. Our
algorithm outperforms the shortest-sentence baseline in terms of content selection,
without a significant drop in grammaticality. We also show that augmenting the fu-
sion process with paraphrasing knowledge improves the output by both measures.
However, there is still a gap between the performance of our system and human
performance.

An important goal for future work on sentence fusion is to increase the flexibility
of content selection and realization. We believe that the process of aligning theme
sentences can be greatly improved by having the system learn the similarity function,
instead of using manually assigned weights. An interesting question is how such a
similarity function can be induced in an unsupervised fashion. In addition, we can
improve the flexibility of the fusion algorithm by using a more powerful language
model. Recent research (Daume et al. 2002) has show that syntax-based language
models are more suitable for language generation tasks; the study of such models is
a promising direction to explore.

An important feature of the sentence fusion algorithm is its ability to generate
multiple verbalizations of a given fusion lattice. In our implementation, this property is
utilized only to produce grammatical texts in the changed syntactic context, but it can
also be used to increase coherence of the text at the discourse level by taking context
into account. In our current system, each sentence is generated in isolation, inde-
pendently from what is said before and what will be said after. Clear evidence of
the limitation of this approach is found in the selection of referring expressions. For
example, all summary sentences may contain the full description of a named entity
(e.g., President of Columbia University Lee Bollinger), while the use of shorter descriptions
such as Bollinger or anaphoric expressions in some summary sentences would in-
crease the summary’s readability (Schiffman, Nenkova, and McKeown 2002; Nenkova
and McKeown 2003). These constraints can be incorporated into the sentence fusion
algorithm, since our alignment-based representation of themes often contains several
alternative descriptions of the same object.

Beyond the problem of referring-expression generation, we found that by selecting
appropriate paraphrases of each summary sentence, we can significantly improve the
coherence of an output summary. An important research direction for future work is
to develop a probabilistic text model that can capture properties of well-formed texts,
just as a language model captures properties of sentence grammaticality. Ideally, such
a model would be able to discriminate between cohesive fluent texts and ill-formed
texts, guiding the selection of sentence paraphrases to achieve an optimal sentence
sequence.

Appendix. Alignment Pseudocode

Function: EdgeSim(edge1, edge2)
Returns: The similarity score of two input edges based on their type
begin

if type of(edge1) = type of(edge2) = ‘subject-verb’ then
return SUBJECT VERB SCORE ;
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else if type of(edge1) = type of(edge2) = ‘object-verb’ then
return OBJECT VERB SCORE ;

else
return EDGE DEFAULT ;

end
end

Function: NodeSim(node1, node2)
Returns: The similarity score of two words or flattened noun phrases based on their

semantic relation
begin

if is phrase (node1) or is phrase (node2) then
return IDENTITY SCORE * |intersection(node1,node2 )|

max(|node1|,|node2|) ;
else if node1 = node2 then

return IDENTITY SCORE ;
else if is synonym (node1, node2) then

return SYNONYMY SCORE ;
else

return NODE DEFAULT ;
end

end

All the comparison functions employ memoization, implemented by hash table
wrappers.

Function: MapChildren(tree1, tree2) memoized
Returns: Given two dependency trees, MapChildren finds the optimal alignment of tree

children. The function returns the score of the alignment and the mapping
itself.

begin
/*Generate all legitimate mappings between the children on tree1 and tree2 */
all-maps← GenerateAllPermutations (tree1, tree2) ;
best← 〈−1, void〉 ;
/*Compute the score of each mapping, and select the one with the highest score */
foreach map in all-maps do

res← 0 ;
foreach 〈s1, s2〉 in map do

res← res + EdgeSim (edge (tree1.top, s1), edge (tree2.top, s2))
+ Sim (subtree (tree1, s1), (subtree (tree2, s2));

end
if res > best.score then

best.score← res ;
best.map←map ;

end
end
return best

end

Function: NodeCompare(tree1, tree2) memoized
Returns: Given two dependency trees, NodeCompare finds their optimal alignment that
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maps two top nodes of the tree one to another. The function returns the score
of the alignment and the mapping itself.

begin
node-sim← NodeSim(tree1.top, tree2.top) ;
/*If one of the trees is of height one, return the NodeSim score between two tops */
if is leaf(tree1) or is leaf(tree2) then

return 〈node-sim, 〈tree1, tree2〉〉 ;
else

/*Find an optimal alignment of the children nodes */
res← MapChildren(tree1, tree2) ;
/*The alignment score is computed as a sum of the similarity of top nodes and

the score of the optimal alignment of node. The tree alignment is assembled
by adding a pair of top nodes to the optimal alignment of their children. */

return 〈node-sim + res.score, 〈tree1.top, tree2.top〉 ∪ res.map〉 ;
end

end

Function: NodeCompare(tree1, tree2) memoized
Returns: Given two dependency trees, Sim finds their optimal alignment. The function

returns the score of the alignment and the mapping itself.
begin

best← 〈−1, void〉 ;
/*find an optimal alignment between one of the children of tree1 and tree2 */
foreach s in tree1.children do

res← Sim(s, tree2) ;
if res.score > best.score then best← res ;

end
/*find an optimal alignment between one of the children of tree1 and tree2 */
foreach s in tree2.children do

res← Sim(tree1, s) ;
if res.score > best.score then best← res ;

end
/*find an optimal alignment that include the two top nodes */
res← NodeCompare(tree1, tree2) ;
if res.score > best.score then best← res ;
return best

end
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