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Abstract

Pitch tracking algorithms have a long history in various applica-
tions such as speech coding and extracting information, as well
as other domains such as bioacoustics and music signal pro-
cessing. While autocorrelation is a useful technique for detect-
ing periodicity, autocorrelation peaks suffer ambiguity, leading
to the classic “octave error” in pitch tracking. Moreover, addi-
tive noise can affect autocorrelation in ways that are difficult to
model. Instead of explicitly using the most obvious features of
autocorrelation, we present a trained classifier-based approach
which we call Subband Autocorrelation Classification (SAcC).
A multi-layer perceptron classifier is trained on the principal
components of the autocorrelations of subbands from an au-
ditory filterbank. Training on bandlimited and noisy speech
(processed to simulate a low-quality radio channel) leads to a
great increase in performance over state-of-the-art algorithms,
according to both the traditional GPE measure, and a proposed
novel Pitch Tracking Error which more fully reflects the accu-
racy of both pitch extraction and voicing detection in a single
measure.

Index Terms: speech, pitch tracking, machine learning, sub-
band, autocorrelation, principal components

1. Introduction

Determining the fundamental period of voiced speech signals
(hereafter, “pitch tracking”) is important in a range of applica-
tions from speech coding through to speech and prosody recog-
nition and speaker identification. However, high-accuracy pitch
tracking is difficult because of the wide variability of periodic
speech signals [1]. There are many speech phenomena that can
make the true pitch hard to identify or even define.

When acoustic degradations such as frequency band limi-
tation and additive noise are introduced, the problem becomes
still more challenging. This work is motivated by the problem
of identifying and recognizing speech signals in low-quality ra-
dio transmissions, which we simulate, based on measurements
of a real narrow-FM radio channel.

Computational approaches to finding pitch of speech have
been studied extensively. There are two basic approaches in
finding the periodicity—time-domain methods which utilize
autocorrelation-like operations [2, 3]; and frequency-domain
methods that rely on Fourier transform-like operations [4].
While periodic signals have obvious features in these domains,
they also exhibit some ambiguity, leading to the well-known
“octave errors” and other phenomena. These can be ameliorated
by post-processing methods, such as Hidden Markov models
(HMMs) that impose sequential consistency [2].

This work was supported by the DARPA RATS program.

In this paper, we extend a pitch tracking system based on
the autocorrelation of multiple subbands coming out of an au-
ditory filterbank. However, rather than attempting to explicitly
detect the peaks that indicate particular pitches, we train a clas-
sifier on the full autocorrelation pattern corresponding to a cor-
pus of labeled training examples. Since these training examples
can be processed to include noise and channel characteristics
specific to particular conditions, it can be made much more ac-
curate in difficult conditions than “generic” pitch tracking. We
also propose a new metric that gives a balanced evaluation of
both pitch estimation accuracy and voicing detection.

The next section describes an existing subband autocorre-
lation algorithm on which our approach, described in section 3,
is based. The new pitch tracking performance measure is de-
scribed in section 4, and the experimental setup and the results
are described in section 5. Section 6 makes some observations
about the new algorithm and concludes the paper.

2. Previous work

Autocorrelation has been a successful basis both for predict-
ing human pitch perception [5, 6], and for machine pitch track-
ing. Wu, Wang, and Brown proposed a robust multi-pitch track-
ing algorithm (henceforth, the Wu algorithm) [2] that combines
pitch peaks identified in per-subband autocorrelations, followed
by HMM pitch tracking. Since this is the basis of our system,
we now describe it in more detail.

The input audio signal a[n] is expanded into s = 48 sub-
band signals x;[n], I = 1...48, using an auditory filterbank.
The normalized autocorrelation A; is calculated for each sub-
band every 10 ms (where ¢ indexes the analysis frame and 7 is
the autocorrelation lag):

ri(t,T)
At m) = S0/t - 7,0) W
where
N/2
n(t,r)= Y wlt+nlnlt+n+7] )
n=—N/2

and the window length N = 400. The largest lag is also 7 =
400, i.e., down to 40 Hz fundamental at 16 kHz sampling rate.

As a first attempt to identify the lag corresponding to the
pitch period, all lags with local maxima in the autocorrelation
are inspected for each subband. A period is selected if the nor-
malized autocorrelation maximum is greater than § = 0.945
[2]. (The original paper used a different criteria for high-
frequency subbands, but we used this single criteria through-
out.) Selected maxima from different subbands are combined
into a single score by spreading each peak according to an em-
pirical Laplacian fit, then averaging across all subbands. The
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Figure 1: Diagram of the proposed Subband Autocorrelation Classification (SAcC) pitch tracking system.

result can be interpreted as the likelihood of the observations
O at time ¢ given a period hypothesis 7, i.e., P(O¢|T)

The Viterbi path through an HMM is used to smooth the
pitch track, and to differentiate no-pitch and one-pitch states.
The HMM finds the period sequence that maximizes the likeli-
hood of the autocorrelation observations O; by optimizing the
sum across time of

P(Ot‘Tt7Tt_1) = P(Ot|Ti)P(Tt|Tt_1) (3)

where 7: and 7._; are the pitches at frames ¢ and ¢ — 1, and the
transition probabilities P(7¢|7¢—1) are optimized empirically.
7¢ = 0 is a special case meaning no-pitch, whose probability is
set to a fixed percentile of the real pitch probabilities.
Although our implementation of [2] differs from the origi-
nal, it has performance essentially equivalent to the c-code re-
leased by the original authors for single-pitch conditions.

3. The SAcC Pitch Tracker

The diagram of the proposed Subband Autocorrelation Classsi-
fication (SAcC) pitch tracking system is shown in Fig. 1. The
key change from the Wu algorithm is that the pitch period poste-
rior is calculated by a single classifier working on the autocorre-
lations from all subbands, rather than explicit peak picking and
cross-band integration. The modified stages are now described
in more detail:

3.1. Subband PCA Dimensionality Reduction

Each subband autocorrelation A; (, -) is 400 points long; com-
bining these across the s = 48 subbands would give an ex-
tremely large feature space. In fact, the normalized autocor-
relation of each band-pass filtered signal x;[n] is highly con-
strained, leading to large redundancy. To simplify the classifi-
cation problem, we reduce the dimensionality within each sub-
band by applying Principal Component Analysis (PCA).

The principal components corresponding to the k largest
eigenvalues were used to produce the subband k-dim PCA fea-
tures F (¢, m) for each subband where [ = 1,- - - , s is the sub-
band index, and m = 1,--- , k is the principal component in-
dex. We tried values for k£ in the range 5 to 20. The sorted
eigenvalues of the PCA components decreased very fast, reflect-
ing the redundancy in the autocorrelations.

3.2. MLP Classifier

The classifier for pitch candidates shown in Fig. 1 is a multi-
layer perceptron (MLP) trained using QuickNet'. The number
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Figure 2: The MLP outputs P(7|O:) (top panel); and Viterbi
tracking output of SAcC (blue diamond) and the ground truth
(red line) on a sample speech corrupted with RBF and pink
noise at 25dB SNR. (bottom panel)

of inputs to the MLP is s X k. We used a single hidden layer
with h hidden units, where h was varied between 50 and 800.

The MLP had separate outputs for different pitch (period)
values over a range which quantized 60 to 404 Hz using 24 bins
per octave (in a logarithmic scale), a total of 67 bins. Each
ground-truth pitch value in the training data was mapped to the
nearest quantized pitch target. Any pitches outside this range
were mapped to special “too low” and “too high” bins. Finally,
an additional “no-pitch” target output accounted for unvoiced
frames, giving p = 70 output units in total. To increase the
range and volume of training data, each example was resampled
at 8 rates from 0.6 to 1.6 and added to the training pool with a
correspondingly-shifted ground truth pitch label.

The output of the MLP estimates the posterior probability
of a pitch period given the observations, P(7|O;). Dividing
by the pitch prior P(7) gives a value proportional to P(O:¢|T)
which can then be HMM (Viterbi) smoothed as in (3).



YIN

Wu

SAcC

Pitch Index

0 1 2
time/s

Figure 3: The observation pitch likelihood of YIN, Wu, and
SAcC on a speech sample corrupted with RBF and pink noise at
25dB SNR. Note that the vertical axis is lag in samples (increas-
ing downwards) for YIN and Wu, but quantized (log-frequency)
pitch for SAcC. Also, for SAcC, we show log(P(7|O%)) to re-
veal detail in the incorrect pitch candidates.

4. Performance Metrics

The standard error measures for pitch tracking are Gross Pitch
Error (GPE) and Voicing Decision Error (VDE) [7]:
Efo _ Ev%u + Euﬁv
N VDE = N “)
where N is the total number of frames, N, is the count of
frames in which both the pitch tracker and the ground truth re-
ported a pitch, E's, counts the frames in which these pitches dif-
fer by some factor (typically 20%), E, ., is the count of voiced
frames misclassified as unvoiced, and E,_,, is the number of
misclassified unvoiced frames. The problem with this measure
is that GPE can be improved by labeling voiced frames whose
period is ambiguous as unvoiced, thereby reducing the N, de-
nominator. This will increase VDE, but it is difficult to compare
overall performance with this pair of numbers.

We therefore propose a modified metric to evaluate pitch
trackers which we call the Pitch Tracking Error (PTE). It is a
simple average of Voiced Error (VE) and Unvoiced Error (UE):

GPE =

PTE = VE + UE 5)
2
Ef + Evﬁ)u Eu%v
VE= 9% 777 UE = 6
N, N, ©)

where N, is the number of frames for which a pitch is reported
in the ground truth, and N, = N — N, is the remaining (un-
voiced) frame count.

It is more transparent to compare VE, UE, and PTE between
different pitch trackers because the denominators N, and N,
do not change with the system. If we consider pitch tracking
as detection, VE resembles miss rate, and UE is similar to false
alarm rate. Another advantage of PTE is that it can balance the
contribution of errors on voiced and unvoiced frames regardless
of their proportion in the actual evaluation material. (Different
weights for VE and UE could be considered for tasks where one
kind of error was more important.)
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Figure 4: The GPE, PTE, VDE, UE, R,., and VE for YIN at
various threshold and SNR points on FDA under RBF and pink
noise condition.
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Figure 5: The Cross Validation (CV) accuracy of the MLP using
the k-dimensional PCA feature.

5. Experiments
5.1. Data

We used the KEELE [8] and FDA [9] corpora for evaluation.
The lengths of the datasets are 337 s and 332 s respectively.
KEELE consists of 10 speakers each reading the same story for
about 30 s; FDA has two speakers reading the same 50 short
sentences of around 3 s each. Since KEELE includes greater
variation, and to illustrate generalization, we chose to train on
KEELE and report results on FDA. Since our interest is in pitch
tracking that can be used on low-quality radio transmissions,
our main experiment applied to both training and test material a
simulated radio-band filter (RBF) modeled from a real record-
ing made across a narrow-FM channel®, which amounted to a
bandpass spanning around 500 Hz to 2 kHz along with additive
pink noise at various levels.

5.2. Experiment Setup

YIN [3], Wu [2], and SWIPE’ [10] algorithms are used for
performance comparison. Both the ground truth and the pitch
trackers gave pitch values for every 10 ms.

To use YIN and SWIPE' as pitch trackers, the pitch strength
outputs (aperiodicity for YIN and pitch strength for SWIPE' )
are thresholded to provide voiced/unvoiced decisions. Fig. 4

2http://labrosa.ee.columbia.edu/projects/
renoiser/
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Figure 6: The PTE, GPE, VE, and UE for SAcC, Wu, YIN, and
SWIPE’ on FDA under RBF and pink noise condition.

shows the GPE, PTE, VDE, UE, R,., and VE of YIN versus
SNR for various thresholds for speech with RBF and pink noise,
where Ry, = Nyy/N and R, = N, /N. The threshold giv-
ing the best PTE was used in evaluation. For the Wu algorithm,
the probability of no-pitch is searched over the 1°¢ to 90" per-
centiles of the remaining pitch likelihoods to find the value that
optimized PTE.

For the SAcC MLP, 66.7% of the data was used for training,
with the rest used for cross validation (CV). Fig. 5 shows the CV
accuracy as a function of k, the number of principal components
retained, and h, the hidden layer size on the most challenging
RBF case. From these results, we chose k = 10 and h = 800.

5.3. Results

Looking at the right column of Fig. 4, we see that lowering
the threshold and thus reducing the proportion of voiced frames
lowers UE (as all frames, including the unvoiced ones, are
labeled unvoiced) while increasing VE. As the sum of these
competing trends, PTE shows a clear optimum for a threshold
around 0.4. In the left column, GPE appears to improve as the
threshold decreases, but this hides the disappearing proportion
of frames, N, (bottom pane), over which this measure is cal-
culated. When N,, = 0, an arbitrary high value (150%) is
assigned to GPE to reflect that it is based on zero frames. VDE
reveals an optimal threshold similar to PTE, but ignores actual
pitch estimation errors.

The performance comparison of SAcC, YIN, Wu, and
SWIPE’ on FDA dataset under the RBF plus pink noise con-
dition is shown in Fig. 6. For SAcC, PTE is dominated by UE
in the high SNR and VE in the low SNR. The result on FDA
dataset under pink noise only (not shown) has similar trend: In
low SNREs, pitch tracker outputs are mostly no-pitch, lowing UE
and increasing VE. Note that PTE gives higher absolute values
than GPE since it reflects both difficult voiced frames and voic-
ing errors; we consider performance in these areas to be critical.

6. Discussion and Conclusion

The output of the SAcC MLP P(7|O¢) on a sample speech is
shown on the top pane of Fig. 2. The most likely pitch candi-

date for each frame has a significantly stronger value than the
others. The HMM tracking result of SAcC on the same example
is shown on the bottom panel in Fig. 2 along with the ground
truth pitch. HMM tracking promotes continuous pitch tracks
and discourages voicing transitions, which sometimes causes
the extension of pitch tracks into unvoiced regions.

The observed pitch likelihood of YIN, Wu, and SAcC on
another speech sample corrupted with RBF and pink noise at
25dB SNR is shown in Fig. 3. For SAcC, the log of the MLP
output is shown to reveal details in the non-favorite candidates.
Both YIN and Wu are based on autocorrelation operations,
and have harmonic and subharmonic structures. Since SAcC
is trained to discriminate between these otherwise ambiguous
cases, it has one strong peak in most frames, reducing the like-
lihood of octave errors.

We have proposed a noise robust pitch tracking system,
SAcC, based on subband autocorrelation classification. The
proposed algorithm incorporates the learning power of an MLP
classifier, the smooth tracking of an HMM, and the low dimen-
sional representation of k-dimensional subband PCA. We have
also proposed a performance metric, PTE, to give a balanced
measure of performance in both voiced and unvoiced regions.

To simulate the target noise condition, a radioband filter
was learned from real recorded samples and used in combina-
tion with additive pink noise to make a useful simulation of poor
quality radio reception, the particular focus of our study. We be-
lieve, however, that the subband classification structure should
be advantageous in many challenging acoustic conditions, par-
ticularly when matched training data is available.

The performance evaluation on KEELE and FDA datasets
showed that SAcC improves the state-of-the-art for pitch track-
ing on this kind of data, particularly as measured by our PTE
metric.
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