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ABSTRACT 

 

The Role of microRNAs in Bladder Urothelium Development and Tumorigenesis 

 

Angela Yuanyuan Jia 

There are two morphologically distinct cell types in the normal urothelium: umbrella cells 

and basal/intermediate cells. Immunohistochemical studies from our group suggest that there 

may be more than one urothelial progenitor. Bladder cancer is the fifth most common cancer in 

the United States and the second most prevalent genitourinary malignancy. Urothelial 

carcinoma accounts for 90% of bladder cancers. Based on clinical and histological studies, 

urothelial carcinomas are thought to develop through two independent pathways and are 

classified into two main phenotypic variants: low-grade tumors (usually papillary and “superficial” 

with high recurrence), and high-grade tumors (usually flat carcinoma in situ lesions that are 

often associated with and progress to muscle invasion).  

MicroRNAs (miRNAs) are single-stranded non-coding RNA molecules, approximately 

21-23 nucleotides in length, that regulate gene expression. Since their discovery in 1993, they 

have emerged as major mediators of cellular functions and tissue homeostasis. Importantly, 

distortion of their normal function is commonly observed in human malignancies, suggesting 

that they act as a new class of tumor suppressors and oncogenes. Despite the strong links 

reported between miRNAs and the pathogenesis of numerous human cancers, there are few 

studies centering on their characterization in normal urothelium and there is little consensus on 

which miRNAs contribute to urothelial tumor initiation and progression.  

Through a series of studies, we profiled the expression of miRNAs in distinct 

compartments of the normal bladder, including umbrella and basal-intermediate urothelial cells, 

as well as the muscularis propria; and bladder carcinoma in situ (CIS) lesions. We discovered 



and validated the expression of miR-133a and miR-139-3p in umbrella cells, and miR-142-3p in 

basal-intermediate cells. This study represents the first molecular characterization of miRNA 

expression in the normal urothelium. Strikingly, we found that miRNA expression levels of CIS 

most closely resembled the miRNA profile of umbrella cells. Finally, we examined well-

established umbrella and basal-intermediate cell immunohistochemical biomarkers in an 

independent series of CIS samples. Once more, this analysis revealed that CIS lesions shared 

a common  phenotype with  umbrella cells through the expression of umbrella-specific markers.  

Mechanistic studies were performed in parallel to further delineate the potential role of 

two critical miRNAs involved in cell invasion that were previously unassociated with urothelial 

carcinomas: miR-198 and miR-126. Overexpression of miR-198 increased cell invasion in non-

invasive bladder cancer cells, an effect that was magnified with concurrent down-regulation of 

the miR-200 family. In contrast, elevated levels of miR-126 suppressed cell invasion in invasive 

bladder cancer cells, possibly through regulation of gene expression of the matrix 

metalloproteinase ADAM9.  Correspondingly, knock-down studies of ADAM9 in invasive bladder 

cancer cells also inhibited cell invasion. We further demonstrated preferential expression of 

ADAM9 in muscle-invasive bladder tumors compared to non-muscle invasive tumors, and that 

ADAM9 expression significantly correlated with a poor prognosis in patients with urothelial 

carcinoma. 

Our studies represent a comprehensive and accurate description of the different 

miRNAs expressed in distinct urothelial cellular compartments and CIS tumors. This study is 

also the first to provide evidence of the possible origin of CIS lesions from umbrella cells. 

Additionally, important translational results of our studies support the use of miR-198, miR-126, 

and ADAM9 as clinical biomarkers of disease progression, and provide a rationale for the 

therapeutic inhibition of ADAM9 in aggressive urothelial carcinomas. Overall, the findings 

reported here indicate that several miRNAs are differentially regulated in urothelium 



development and tumorigenesis, and may form a basis for clinical development of new 

biomarkers for urothelial carcinoma. 
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1. Chapter 1: Introduction 

 

Bladder development and histology 

The bladder sprouts as a tubular organ from the upper urogenital sinus and allantois in 

the embryo [1]. The primitive urogenital sinus develops from the expansion of the hindgut in the 

embryo between weeks four to six [1]. Mesoderm-derived mesenchymal cells that differentiate 

into fibroblasts and smooth muscle comprise the stroma, while endoderm-derived epithelial cells 

differentiate to form the urothelium. The urothelium coats the entire urinary tract, including the 

renal pelvis, ureter, bladder and female proximal urethra. In humans, the urothelium is pseudo-

stratified, ranging from three to seven cell layers in thickness depending on distension. One 

layer of compact and cuboidal cells lines the basal membrane, a few layers of intermediate cells 

oriented perpendicular to the basal membrane constitute the majority of the urothelium, and a 

single layer of umbrella cells oriented parallel to the basal membrane face the lumen. The basal 

lamina separates the urothelium from the stromal part of the bladder, which includes the lamina 

propria and the muscularis propria. The lamina propria is composed of loose collagen, thin 

bundles of smooth muscle (muscularis mucosae), small blood, and lymphatic vessels, while the 

muscularis propria has thick interlacing bundles of smooth muscle fibers, nerves and foci of 

adipose tissue. 

The three urothelial cell types (basal, intermediate, and umbrella cells) are distinct in 

both morphology and expression of specific biomarkers (Figure 1.1). While basal and 

intermediate (B/i) cells present clear and amphophilic cytoplasms, superficial umbrella (UM) 

cells display an eosinophilic cytoplasm and a large nucleus that is usually bi- or multi-nucleated. 

UM cells express high levels of uroplakin II (UPKII) [2], low molecular weight cytokeratins (e.g. 

CK18 and CK20) [3], and Lewis X determinant [4]; while none of these markers is expressed in 
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B/i cells. In contrast, B/i cells stain strongly for high molecular weight cytokeratins (e.g. CK5, 

CK10, CK14), p63 [5], and mature A and B blood group antigens – all of which are negative in 

UM cells. While it has been proposed that UM cells mature from the underlying B/i cells in a 

manner similar to epithelial development of the skin, the vast number of differences between the 

two cell types suggests that UM cells may originate from a precursor distinct from B/i cells. 
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The urothelium can undergo proliferation in response to injury, but is otherwise normally 

quiescent [6,7]. To date, urothelial stem or progenitor cells have not been identified. Although 

one research group has reported potential adult bladder stem cells to be CD43+CD45-, these 

 
 

B C

D E  

Figure 1.1 Normal bladder urothelium 

(A) UM cells (indicated by arrows) form a single layer facing the lumen and are distinct from 

subsequent layers of B/i cells. Representative immunohistochemical analyses of (B) CK20, 

(C) CK18, (D) p63, and (E) HMWCKs (CK1, CK5, CK10, CK14) in normal urothelium. 
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cells were not shown to possess stem cell features such as self-renewal and differentiation 

capacity [8]. Cells from the bladder trigone, a region with an elevated incidence of tumorigenesis, 

were shown to maintain higher proliferative capacity and colony-formation efficiency; however, a 

stem cell was not isolated [9]. Other approaches utilizing the unique label-retaining ability of 

stem cells [10] reported contradictory findings. Likely due to different labeling techniques, 

bladder “label-retaining cells” have been identified as confined to the basal layer [11] as well as 

throughout the urothelium in random distribution [12]. Given the distinct immunohistochemical 

profiles of UM and B/i cells, more than one urothelial progenitor may exist [13]. 

Bladder cancer 

The association of bladder cancer with occupational exposure to certain organic 

compounds, such as β-naphthylamine, was first observed in 1895 in workers in the German dye 

industry [14]. Other risk factors include tobacco smoking, radiation therapy of neighboring 

organs, and chronic infection with Schistosoma species (also known as bilharzia, mainly 

associated with the squamous cell carcinoma variant) [15]. The urothelium functions as a 

permeability barrier between blood and urine and is constantly exposed to potential carcinogens 

in urine. Therefore, it is not surprising that 90% of bladder tumors originate from the urothelium 

[16]. Due to the pseudo-stratified and non-squamous nature of the epithelium, the urothelium is 

also called the transitional epithelium; the majority of bladder cancers are therefore transitional 

cell carcinomas, more commonly known as bladder urothelial carcinoma (UC). 

Bladder cancer ranks second as the most commonly diagnosed genitourinary 

malignancy after prostate cancer and fifth among all cancers in the United States [17], with 

higher prevalence in developed countries [18]. Bladder neoplasms present as superficial 

bladder tumors (stages Ta, Tis, and T1) in 75-85% of initial diagnoses and are often multifocal 

with frequent recurrence, although only 2-5% of Ta and 20% of T1 bladder tumors progress to a 
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higher stage [16]. The remaining 15-25% of carcinomas are invasive (stages T2, T3, and T4) or 

metastatic lesions at initial clinical presentation [16].  

Bladder UCs can be classified as either low-grade or high-grade tumors based on 

distinct phenotypic and molecular profiles (Figure 1.2). Low-grade tumors are always papillary 

(i.e. protruding into the lumen) and usually do not invade the muscularis propria (clinically 

termed “superficial”). These tumors include urothelial papilloma, papillary urothelial neoplasms 

of low malignant potential, and non-muscle invasive low-grade papillary UC. Chromosomal 

aberrations associated with the development of papillary tumors include deletion of 

chromosome 9 and activating mutations in oncogenes. Loss of heterozygosity (LOH) on 9q 

mapped to three regions: PTCH (Gorlin syndrome gene) at 9q22, DBC1 (deleted in bladder 

cancer 1) at 9q33, and TSC1 (tuberous sclerosis complex gene 1) at 9q34 [16]. Of these three 

genes, only TSC1, which encodes for hamartin, has an established role as a tumor suppressor. 

The TSC1/TSC2 complex regulates mTOR activity by inhibiting Rheb; loss of TSC1 results in 

inactivation of the complex and leads to enhanced mTOR signaling [19]. Another frequently 

perturbed region is 9p21. This locus harbors CDKN2A (encodes p16 and p14ARF) and CDKN2B 

(encodes p15) genes [20]. Homozygous deletion of CDKN2A is linked to papillary tumors of 

high grade and higher recurrence [21,22]. Although it remains unclear whether loss of 9q 

precedes the loss of 9p, the loss of 9q phenotype is more frequent in non-muscle invasive than 

muscle-invasive tumors [23]. 

Oncogenes frequently mutated in low-grade superficial tumors include FGFR3 (fibroblast 

growth factor receptor-3), PIK3CA (the catalytic p110 subunit of phosphoinositide 3-kinase), 

and HRAS (v-Ha-ras Harvey rat sarcoma viral oncogene homolog). A missense mutation in 

FGFR3 resulting in increased receptor stability and decreased degradation [24] is present in 

over 70% of all low-grade, non-muscle invasive papillary tumors [25,26]. Gain of function 

mutations in PIK3CA are rare in muscle-invasive tumors, predominately found in bladder tumors 

of low grade and stage, and show a significant association with FGFR3 mutations [27]. In 
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contrast, HRAS and FGFR3 mutations are mutually exclusive, likely because these proteins 

stimulate the same mitogen-activated protein kinase pathway [28]. Activating HRAS mutations 

are detected in 30-40% of UCs [29,30]. Furthermore, experimental overexpression of 

constitutively active Hras driven by the mouse uroplakin II promoter only produced low-grade 

papillary tumors [31].  

 

In contrast, high-grade tumors can be papillary or non-papillary, such as the flat 

carcinoma in situ (CIS) lesions, and often progress to muscle-invasive disease. These tumors 

 

Figure 1.2 Molecular pathways in bladder tumorigenesis 

Urothelial tumors initiate and progress via two distinctive pathways. The majority present as 

low-grade papillary tumors, characterized by the loss of regions on chromosome 9q and 

mutations that result in constitutive activity of FGFR3, HRAS, and PI3KCA. The remaining 

high-grade tumors frequently display loss of function of RB, TP53, and PTEN. 
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frequently display loss of key functional tumor suppressors, events that are rare or absent in 

low-grade bladder tumors. More than 50% of CIS and high-grade UCs are associated with a 

dysfunctional p53 protein [32], and the presence of TP53 mutations corresponds to higher 

probability of disease progression [33]. Loss of function of RB, both through genomic deletions 

or mutations, primarily correlates with muscle-invasive UC [34] and is associated with 

aggressive clinical behavior [35]. LOH on chromosome 10 at the PTEN locus is another 

common occurrence in muscle-invasive UCs [36,37] and is an important prognostic predictor of 

poor overall survival [38]. Additional chromosomal abnormalities that contribute to progression 

of high-grade tumors into muscle-invasive UCs include deletion of 3p, 11p, and 18q [39,40].  

The transformed cells within a bladder tumor are not homogeneous. One explanation 

attributes the source of intratumoral heterogenetiy to cancer stem cells (CSCs). By definition, 

these cells are capable of self-renewal and asymmetrical cell division to give rise to 

differentiated progeny that constitute the bulk of the tumor [41]. Recent studies have 

characterized putative bladder CSCs to resemble normal basal cells [42,43]. One group 

characterized CD44+ bladder tumor cells with tumor-initiating capabilities in vivo as basal-like 

due to positive CK5 expression [42], however, human xenograft tumors produced in another 

study did not identify preferential CD44 expression in basal-like cells [43]. Furthermore, human 

UCs do not uniformly express CD44 [42], suggesting that CD44 is not a universal marker for 

bladder CSCs. Therefore, the possibility of more than one cancer progenitor cell exists. It is 

conceivable that oncogenic events affecting different progenitor cells may give rise to two 

pathways of bladder cancer transformation (low-grade non-muscle invasive versus high-grade 

muscle-invasive).  

microRNAs (miRNAs) 

MicroRNAs (miRNAs) were first discovered in developmental studies of temporal gene 

expression control in Caenorhabditis elegans by the Ambros group in 1993 [44]. To date, more 
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than 21,000 distinct mature miRNA sequences have been identified in 193 different species 

(miRBase 19) with more than 2,000 miRNAs identified in humans [45,46]. Although first 

believed to be required only in multicellular organisms, the recent discovery of miRNAs in the 

unicellular algae Chlamydomonas reinhardtii [47] suggests that miRNAs are evolutionarily older 

than previously thought. miRNAs have been implicated in development and tumorigenesis, as 

reviewed in [48-50]. 

miRNA mechanism of function 

Biogenesis 

miRNAs can be transcribed from independent miRNA genes (intergenic) or as introns of 

protein-coding mRNAs (intragenic) into precursor molecules (pri-miRNA). Pri-miRNAs fold into 

hairpin structures that are cleaved by the RNase III family nuclease Drosha to generate hairpins 

known as pre-miRNA. The pre-miRNA hairpins are exported to the cytoplasm by exportin5, a 

Ran-GTP dependent exporter [51].  

In the cytoplasm, pre-miRNAs are recognized and processed by Dicer, an 

endoribonuclease, to generate 22 base-pair miRNA duplexes with a two nucleotide overhang at 

the 3' end. miRNAs then complex with other ribonucleoproteins, the most studied of which is the 

Argonaute family, to generate miRNA-induced silencing complexes (miRISC). Asymmetry in the 

miRNA duplex determines which strand is loaded into miRISC and which one is degraded [52]; 

the strand whose 5' end is less thermodynamically stable, or less tightly paired to its 

complement, is kept as the mature miRNA that will guide miRISC to translationally repress 

specific mRNAs through base pairing [53] (Figure 1.3, adapted from [51]).  
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miRNA-mRNA interaction  

miRNAs bind their targets at the 3' untranslated region (UTR) of the mRNA. A miRNA-

mRNA duplex with nearly perfect complementarity usually results in endonucleolytic cleavage of 

the duplex through an RNAi like mechanism. This is often the case in plants, where the targeted 

mRNA is degraded [52]. By contrast, most metazoan miRNAs do not complement their targets 

exactly. Instead, base pairing is perfect and contiguous in the miRNA from the second to eighth 

nucleotides, known as the "seed" region, but mismatches are present in the central region of the 

 

Figure 1.3 miRNA biogenesis and assembly into silencing machinery 

miRNA-containing genes are transcribed into pri-miRNAs, processed by Drosha, and 

exported into the cytoplasm as pre-miRNAs. Pre-miRNAs are cleaved by Dicer to generate 

22-nucleotide duplexes that associate with other ribonucleoproteins to form the silencing 

complex miRISC. miRNA-mediated repression results in mRNA endonucleolytic cleavage 

or translational repression. Figure adapted from Filipowicz and colleagues [43]. 
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miRNA-mRNA duplex [51]. Although one binding site on the mRNA is sufficient to regulate gene 

expression, miRNAs have also been shown to bind cooperatively to their targets.  

Mechanisms of miRNA-mediated repression from imperfect base pairing include 

proteolysis, deadenylation of the poly-A tail followed by mRNA decay, and translational block. 

For example, Argonaute proteins can compete with the eukaryotic initiation factor 4E subunit for 

binding to the mRNA 5’-terminal 7-methylguanosine cap. This blocks translational initiation [54]. 

In addition, miRNAs can cause ribosomes to "drop-off" or dissociate prematurely from the 

transcript to induce early termination [55].  

While the ability to repress gene expression is well known, miRNAs can also up-regulate 

target expression. Vasudevan and colleagues [56] showed that miRNAs can coordinate both 

repression and activation of genes depending on cell cycle. Specifically, under serum-starved 

conditions, miR-369-3 is recruited by AU-rich elements in the tumor necrosis factor- to promote 

downstream gene expression. Conversely, miR-369-3 represses the same targets during cell 

proliferation. This adds to the dynamic range of miRNA function. In silico studies suggest that up 

to 30% of all protein-coding genes may be controlled by miRNAs [51].  

miRNAs share many similar features with transcription factors as gene regulatory 

molecules with numerous targets, however, miRNAs also maintain unique qualities. Owing to 

their small size and ability to function outside the nucleus, miRNA-mediated gene regulation can 

be compartmentalized and reversible [57]. Studies of miRNA regulation in neurons demonstrate 

the ability of miRNAs to modify gene repression at the synapse [58,59]. This level of subcellular 

specificity is not possible with transcription factors, which are limited to act within the nucleus. 

Furthermore, the miRISC can be disengaged from the mRNA to resume target expression 

[59,60]. This makes protein repression rapidly reversible, as opposed to transcription of new 

mRNA.  
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The role of miRNAs in human cancer 

More than 50% of the miRNAs implicated in cancer map to areas of the genome highly 

susceptible to chromosome damage, such as sites of chromosomal amplification, breakage, 

and fusion [61]. These areas, known as fragile sites, are more vulnerable to replicative stress. 

miRNA are associated with genomic alterations, as such, their expression patterns differ from 

cancer cells as compared to normal tissue of the same organ. Based on this and their tissue 

and cell lineage specificity, miRNAs can be used to identify the tissue of origin in metastatic 

tumors and facilitate diagnosis [62]. As regulators of gene expression, aberrant expression of 

miRNAs can be tumorigenic if they target mRNAs that code for either a tumor suppressor or an 

oncogene.  

Oncogenic miRNAs and tumor suppressive miRNAs 

The first study reporting the oncogenic role of a miRNA was on the development of 

lymphomagenesis in chickens following overexpression of the gene BIC [63]. Due to lack of an 

open reading frame, BIC was believed to function as a noncoding RNA, and was later confirmed 

to encode for miR-155. miR-155 is overexpressed in many B-cell cancers, including diffuse 

large cell B-cell lymphoma, pediatric Burkitt lymphoma, and Hodgkin lymphoma. Elevated levels 

of miR-155 in a variety of tumor cell lines was shown to target cell cycle regulators and 

consequently undermine DNA damage response mechanisms [64]. Similarly, transgenic mice 

overexpressing mir-155 in B cells exhibited pre-leukemic pre-B-cell proliferation in the spleen 

and bone marrow, and eventually developed B-cell malignancy [65]. The mouse model 

suggests that the gain of miR-155 may be an early event or a “first hit” that predisposes cells to 

tumor formation following secondary mutations.  

miR-21 is another miRNA up-regulated in a multitude of solid tumors and hematopoietic 

malignancies. mir-21-/- mice reduced the formation of skin papilloma in a chemical-induced skin 

carcinogenesis model [66]. Genomic deletion of mir-21 was observed to decrease proliferation 
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of the epidermis and increase apoptosis in papilloma cells [66]. On the other hand, 

overexpression of mir-21 driven by an inducible nestin promoter, which drives miR-21 

expression in the central and peripheral nervous system and in myogenic tissues, developed 

pre-B-cell lymphoma that was reversed when endogenous miR-21 levels were reestablished 

[67]; this demonstrated the dependence of tumors on a single miRNA. In a non-small cell lung 

cancer mouse model bearing a constitutively active KRAS mutant, overexpression of mir-21 

was shown to increase tumor burden [68]. However, miR-21 did not affect tumorigenesis in the 

absence of the oncogenic mutant KRAS, suggesting it may enhance tumor pathology and not 

be an instigator of tumor initiation [68]. KRAS activation was shown to increase miR-21 

expression in vivo, therefore additional miR-21 expression may provide a “second hit” that 

accelerated tumor formation [68].  

Similar to the autoregulatory loop connecting KRAS and miR-21, the miR-17~92 cluster, 

a cluster of six miRNAs, is activated by the MYC oncogene [69]. Located within a fragile site of 

the genome, the miR-17~92 cluster is amplified in many different human cancers [70]. The rate 

of tumor formation was significantly increased in a B-cell lymphoma transgenic model 

expressing both c-myc and a truncated version of the cluster, mir-17~19b-1, in the mouse 

hematopoietic stem cells [70].  

The miR-15~16 cluster, composed of miR-15a and miR-16, is also situated within a 

fragile site, but unlike the miR-17~92 cluster, this cluster is lost in more than half of B-cell 

chronic lymphocytic leukemia. Both genomic deletion and conditional deletion in B-cells of the 

mir-15~16 locus in mice resulted in a spectrum of symptoms associated with chronic 

lymphocytic leukemia, including lymphoma [71]. Interestingly, levels miR-15a and miR-16 are 

also reduced in fibroblasts surrounding prostate cancer [72]. Reintroduction of the two miRNAs 

in fibroblast cells impaired cell proliferation and conditioned the fibroblast media to inhibit 

prostate cancer cell migration in vitro and expansion of prostate cancer xenografts in vivo [72]. 
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 In accordance with the idea that miRNAs adopt tumor suppressive roles, miRNA 

processing machinery disruptions are commonly observed in tumors. For instance, single allele 

deletion of DICER1 is observed in several different human cancers [73]. Notably, single copy 

loss of Dicer1 in the mutant Kras-driven lung cancer mouse model led to shortened lifespans 

compared to control, and homozygous deletion of Dicer1 was never observed in tumors from 

Dicer1flox/flox mice [73]. This implies that DICER may function as a haploinsufficient tumor 

suppressor, where complete deletion may inhibit tumor formation and is selected against [73]. 

Since DICER is crucial in the production of mature miRNAs, reduction in DICER1 gene dosage 

would be expected to decrease global miRNA function, whereas full loss of DICER1 would 

abolish miRNA activity and lead to cell death. Indeed, loss of Dicer1 is embryonically lethal in 

mice [74]. Therefore, a fine balance of miRNA expression must be maintained to ensure cell 

viability but inhibit tumor proliferation.  

miRNAs involved in metastasis 

Metastasis accounts for more than 90% of mortality related to cancer [75]. To achieve 

tumor formation at the secondary site, neoplastic epithelial cells at the primary tumor first 

degrade the basal membrane and invade the surrounding extracellular matrix, enter the blood 

stream (intravasation), survive in circulation to distant organs, exit the blood stream 

(extravasation), adapt and proliferate in the foreign tissue (colonization) [75,76]. Propelled by 

both internal signals and interactions with the microenvironment, one pathway of invasion 

employs epithelial-to-mesenchymal transition (EMT), whereby epithelial cells adopt 

mesenchymal traits, most notably increased motility [76]. Many miRNAs are reported to affect 

various stages of metastasis. Detailed understanding of their roles may provide insights on how 

to manipulate miRNAs for therapeutic applications. 

The miR-200 family (miR-200a, b, c, miR-141 and miR-429) has been show to target 

ZEB1 and ZEB2 [77-79]. These two transcription factors promote EMT by targeting E-cadherin, 
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a key protein that is responsible for preserving intercellular junctions by immobilizing epithelial 

cells in sheets. Loss of miR-200 is frequently associated with aggressive clinical outcome in 

lung, prostate and pancreatic cancers [80-82]. Specifically, in a mouse lung adenocarcinoma 

model driven by oncogenic KrasG12D and dysfunctional p53, miR-200 expression determined 

whether or not tumors metastasized, where the absence of miR-200 resulted in metastasis and 

its restoration prevented muscle-invasion [80]. 

Other miRNAs lost in invasive carcinomas include miR-31, miR-335, and miR-126. 

There is a marked decrease in miR-31 expression in invasive breast cancer cell lines compared 

to primary normal human mammary epithelial cells [83]. Delivery of miR-31 expressing MDA-

MB-231 human metastatic breast cancer cells into the mammary fat pad of mice impaired 

metastasis to the lung, but did not affect the growth of the primary tumor. miR-31 is shown to 

convert metastatic breast cancer into non-muscle invasive tumors in orthotopic implants by 

activating cell cycle arrest and apoptosis, and inhibiting Akt-dependent signaling [84]. Loss of 

miR-335 and miR-126 is associated with poor metastasis-free survival in breast cancer. 

Overexpression of miR-335 and miR-126 in MDA-MB-231 cells injected into mice prevented 

bone and lung metastasis. Specifically, miR-126 suppressed overall tumor growth while miR-

335 reduced invasion, presumably by targeting the transcription factor SOX4 and extracellular 

matrix component tenascin C [85]. miR-126 is also reduced in invasive pancreatic ductal 

adenocarcinoma [86] and metastatic hepatocellular carcinoma [87]; in both cases, restoration of 

miR-126 in vitro attenuated cell migration and invasion. 

Conversely, a forward genetic screen was used to identify miRNAs that promoted 

muscle-invasion. A library set of approximately 450 miRNAs was transduced into MCF-7, a non-

migratory and non-metastatic breast cancer cell line. Repeated transwell migration assays 

found miR-373 and miR-520c to be enriched in the pool of migratory cells, and both miRNAs 

were confirmed to stimulate migration and invasion in vitro and in vivo [88]. Similarly, miR10b 

expression is positively correlated with high-grade breast cancer [89] as well as pancreatic 
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adenocarcinomas [90], glioblastomas [91], and metastatic hepatocellular carcinomas [92]. 

Systemic treatment with miR-10b antagomiRs in a breast tumor mouse model effectively 

silenced its expression and suppressed metastasis without affecting primary tumor [89].  

miRNA-based therapeutics 

Evidence of the role of miRNAs in carcinogenesis in various animal models suggests 

that inhibiting up-regulated oncogenic miRNAs and replacing lost tumor suppressive miRNAs 

may have therapeutic effects. The small size of miRNAs lends to easier cellular uptake and 

allows for less toxic methods of delivery compared to protein-coding gene moieties, which 

require viral-based expression mechanisms. They are also less antigenic. Intravenous and 

intratumoral injections are commonly used methods of delivery in animal models [93].  

Molecules created to suppress of miRNA function are designed to bind to mature miRNA 

sequences and prevent miRNA interactions with downstream silencing complexes through 

either competitive inhibition or degradation. One strategy uses chemically modified antisense 

molecules directly complementary to the target miRNA, such as locked nucleic acid (LNA)-

modified anti-miRNA oligonucleotides [94]. An alternate approach exploits the miRNA-mRNA 

interaction, where transcripts expressing multiple tandem repeats of the seed region for the 

miRNA of interest are introduced. These transcripts, aptly named miRNA sponges or miRNA 

decoys, contain miRNA-binding sites that are modified to prevent cleavage of the sponge by 

miRISC, thereby “soaking up” the existing pool of miRNAs [95]. Sponges and decoys can be 

expressed in a plasmid driven by an appropriate promoter, lending a higher level of context-

dependent and temporal control for expression in animal systems. Furthermore, instead of 

targeting one specific miRNA at a time, a sponge can theoretically target an entire miRNA family 

that share a common seed region. So far, the most promising method of silencing endogenous 

miRNAs in non-human primate and mouse models uses antagomirs [96]. Antagomirs are 2’ O-

methyl phosphorothioate-modified single-stranded RNA oligonucleotides complementary to the 
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target miRNA and covalently bound to a cholesterol moiety to facilitate cell entry. Antagomir-

miR-122 suppressed hepatitis C viremia in primates [97] and antagomir-miR-10b reduced 

metastatic breast cancer in mice [89]; in both studies, effective silencing was achieved at non-

toxic doses.  

The expression of miRNA mimics traditionally employ adenoviral- and lentiviral-based 

systems. While viral systems are efficient, they pose risks such as insertional mutagenesis. 

Lipid-based nanoparticles are being explored as methods to deliver synthetic miRNA 

oligonucleotides [93]. Wiggins and colleagues formulated a nanoparticle vehicle composed of a 

commercially available lipid-based emulsion mixed with synthetic miR-34a, and was able to 

successfully administer both locally and systemically into a lung cancer mouse model to block 

tumor growth [98]. Following this technique with slight variations on the lipid complex used, 

therapeutic replacements of let-7 and miR-34a in the lung [99], and miR-34a in the prostate [100] 

have led to persistent tumor reduction in the respective mouse models. Replacement miRNAs 

and antogmirs are also reported to have the ability to sensitize cancer cells in vitro to various 

chemotherapeutics, including tamoxifen [101], gefitinib [102], paclitaxel [103], 5-fluorouracil 

[104], gemcitabine [105], and cisplatin [106]. 

However, the use of miRNAs in treatment is not without potential problems. First, while it 

is difficult to direct a miRNA to a specified destination, it is equally challenging to make sure the 

miRNA does not escape the tumor cell. miRNAs are tissue specific, their role depends on 

cellular context. For instance, while overexpression of miR143 in pancreatic xenografts reduced 

tumor growth [107], miR-143 is elevated in hepatocellular carcinoma and anti-miR-143 is 

required to suppress liver tumor formation [108]. Second, overexpression of miRNAs could 

saturate components of the silencing machinery; elevated miRNA and siRNA levels led to 

reduction in exportin 5 and Argonaute 2 expression [109], which could affect proper processing 

of other unrelated miRNAs. 
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Although there are no current miRNA clinical trials in humans, therapy in non-human 

primates are promising. Development of safer methods of expression is necessary as the 

current strategy relies on adenoviral- and lentiviral-based systems. Future challenges in delivery 

method include optimizing particles involved in organ targeting, cellular uptake by cancer cells, 

maintaining controlled release of the miRNA, and crossing tissue barriers (such as the blood-

brain barrier to target glioblastomas) [93].  

Objectives 

The objectives of this dissertation are to examine the mechanistic roles of miRNAs in 

urothelial tumorigenesis and progression. Different stages and grades of bladder UCs have 

distinct phenotypic and genotypic signatures. Therefore, accurate profiling of biological 

determinants, including miRNAs, can improve the molecular classification of heterogeneous 

UCs. This can translate to a better understanding of tumor initiation and progression, and may 

improve accuracy in diagnoses and proper supervision of treatments. For this purpose, I have 

divided my work into two projects as follows.  

miRNA expression in bladder urothelium physiology 

Our group and others have demonstrated the presence of distinctive cell types in normal 

bladder urothelium. However, since no definitive urothelial stem cell has been identified the 

development of the urothelium remains unknown. Given the vast number of differences between 

UM and B/i cells, we hypothesize that the two cell types may be derived from separate 

precursor cells. This also introduces the idea that the two pathways of UC initiation (low-grade 

papillary tumors versus high-grade CIS) may stem from different urothelial progenitor cells.  

miRNAs are reported to distinguish tissue samples based on tissue of origin, and tumors 

based on their respective developmental lineage. The expression of miRNAs has not been 

examined in UM and B/i cells. The aim of this study is to profile the expression of miRNAs in 

bladder CIS and distinct cell compartments of the normal bladder, namely UM and B/i urothelial 
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cells, as well as the stroma (MP). Importantly, we will isolate UM, B/i, and CIS samples using 

laser capture microdissection (LCM) to ensure pure populations.  

The role of miRNAs in bladder urothelial carcinoma progression  

High-grade CIS tumors frequently develop to a muscle-invasive phenotype. Low-grade 

papillary tumors, on the other hand, have high recurrence rates while only a small portion 

progress to invade the musculature. Muscle invasion and metastasis is associated with very 

poor prognosis in bladder cancer and the ultimate cause of patient death. There is currently no 

reliable diagnostic marker for determining whether a papillary tumor will develop into a muscle-

invasive disease.  

miRNAs are frequently deregulated in tumors, making them attractive candidates for 

molecular diagnosis and prognosis as biomarkers. To determine whether dysregulation of 

miRNA expression contributes to muscle-invasion, we propose to compare miRNA expression 

between various grades and stages of bladder UCs. miRNAs that are significantly differentially 

expressed between non-muscle invasive and muscle-invasive tumors are worth further 

experimentation in vitro. These mechanistic approaches serve in the discovery of potential 

targets. As an initial screen, bioinformatics and computational tools will be used to predict 

downstream targets of candidate miRNAs in an effort to identify biomarkers for molecular 

classification of UC patients with respect to prognosis. 
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2. Chapter 2: A common miRNA profile clusters normal bladder 

urothelium with bladder carcinoma in situ 

 

Compartments of normal bladder urothelium: umbrella and basal/ 

intermediate cells 

 While it has been proposed that bladder UM cells mature from the underlying B/i cells in 

a manner similar to epithelial development of the skin, the considerable differences between the 

two cell types suggests that UM cells may originate from a precursor distinct from B/i cells. UM 

cells are characterized by the expression of UPKII, low molecular weight cytokeratins, and 

Lewis X determinant. Conversely, B/i cells display specificity for high molecular weight 

cytokeratins, p63, and mature A and B blood group antigens.  

Our group has reported the presence of an altered bladder urothelium in p63-/- mice [110] 

consisting of a single-cell layer with typical features of UM cells [13,111] (Figure 2.1, adapted 

from [110]). p63 is critical in epithelial development [112], therefore it is unsurprising that the B/i 

layers are absent in p63-/- mice. However, the presence of cells displaying a UM phenotype 

implies a developmental pathway independent of p63. Furthermore, the Sun group has 

generated two UPK knock-out mice, UPKII-/- and UPKIII-/-, both of which formed hyperplastic 

urothelial layers that lacked superficial UM cells (Figure 2.2, adapted from [113,114]). Data 

from these mouse models allude to the concept of two different developmental pathways in the 

urothelium, where UM and B/i cells develop independently. 
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CIS is a flat lesion seen in association with up to 90% of high-grade papillary cases and 

present in 45-65% of all muscle-invasive urothelial tumors [115,116]. Presence of CIS greatly 

 

Figure 2.1 p63-/- mice develop a single-layer of UM cells 

p63-/- mice develop a small bladder that is coated with a single layer of UM cells and no B/i 

cells. Figure adapted from Urist and colleagues [87]. 

 

Figure 2.2 UPKII-/- and UPKIII-/- mice lack a superficial layer of UM cells 

The urothelium of UPKII-/- and UPKIII-/- mice are hyperplastic and characterized by a 

smooth apical surface (arrowheads) that lack UM cells. L, bladder lumen; M, mesenchyme. 

UPKII figure adapted from Kong and colleagues [114]; UPKIII figure adapted from Hu and 

colleagues [113]. 
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increases the risk of disease progression to muscle-invasive UC; once the tumor is metastatic, 

the median survival rate is approximately 7-20 months [16,117]. Histologic and genetic 

abnormalities of CIS frequently include enlarged nuclei and nucleolus, hyperchromasia and 

aneuploidy [115]. Given the heterogeneity of bladder tumors, it is possible that the two distinct 

populations of normal urothelium – UM cells and B/i cells – may give rise to distinct subtypes of 

bladder tumors. A better characterization of both normal urothelium and bladder cancer cases is 

therefore needed to delineate the role of these cells in tumorigenesis.  

To the best of our knowledge, miRNA profiles of UM and B/i cells have not been 

previously examined. miRNA expression profiling has been reported to be a powerful tool to 

classify tissue samples, including cancers, based on their developmental lineage [118]. Several 

groups have compared miRNA expression between normal mucosa and bladder tumors [119-

127], but none has assessed miRNA expression in CIS samples relative to subpopulations of 

normal urothelium.  

Experimental design 

In order to elucidate the relationship between populations of the normal urothelium and 

CIS tumors, we employed LCM to obtain pure UM and B/i cell populations, as well as pure CIS 

cells. We then profiled the expression of both miRNAs and mRNAs in CIS tumors and three 

distinct histological areas of the urinary bladder: UM (lumen-facing cells), B/i cells, and 

muscularis propria (MP, stromal). We identified and verified the expression of several miRNAs 

differentially expressed between UM and B/i cells. Experimental set-up is depicted in Figure 2.2.  
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Results 

1. Isolation of pure populations of urothelium by LCM 

As we previously described [13,111], UPKII and CK5 were shown to be differentially 

expressed in UM versus B/i cells in normal bladder urothelium (Figure 2.3A). Membranous 

expression of UPKII was observed exclusively in the UM layer, while cytoplasmic CK5 

expression was specific for the cells in the B/i layers. Three cases of normal bladder samples 

were used. The urothelium was microdissected to separate UM from B/i cells as explained in 

the material and methods section (Figure 2.3B). The MP population was obtained by removing 

the urothelium and lamina propria through macrodissection. Quantitative RT-PCR (qRT-PCR) 

 

Figure 2.3 LCM experimental design 

Microphotograph of frozen tissue section was taken with PALM Microbeam IV Laser 

Capture Microscope. UM, B/i, and CIS samples were isolated using LCM and analyzed with 

both miRNA and mRNA microarrays. MP samples were macrodissected (MD) and 

analyzed only in the miRNA microarray. 



23 
 

 
 

showed on average an eight-fold decrease in UPKII levels in B/i versus UM, and a two-fold 

increase in CK5 in B/i versus UM (Figure 2.3C). These results demonstrated that the distinct 

urothelial subpopulations could be efficiently separated by microdissection.  

 

2. miRNA microarray profiling associates CIS with normal UM cells  

Once we had isolated pure populations of urothelial subtypes and stroma, we examined 

the miRNA expression in these cells, along with four CIS cases and a human urothelium cell 

line (HUC). Of the 984 human miRNAs evaluated there were 295 miRNAs differentially 

expressed (fold change ≥ 2) across normal bladder, HUC line, and CIS. Interestingly, 

 

Figure 2.4 Isolation of UM and B/i cells from normal bladder urothelium 

(A) Representative immunohistochemical analyses of UPKII and CK5 in normal urothelium; 

arrows point to prominent UM cells (scalebar, 50m). (B) Delineation of UM cells, before 

and after laser capture (scalebar, 75m). (C) qRT-PCR on UM and B/i cells for UPKII and 

CK5. Graph shows B/i log2 fold expression; B/i expression normalized to UM. Sample 

median marked with horizontal line. Sample mean marked with square. *p < 0.05 by 

Student’s T-Test. 
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hierarchical cluster analysis of these 295 miRNAs separated samples based on cell type of 

origin instead of normal versus cancer. Endoderm-derived cells, including the urothelium, CIS, 

and HUC, clustered into one arm, while mesoderm-derived MP branched into another arm 

(Figure 2.4). Expression of individual samples was averaged into groups, with the exception of 

the HUC line. Notably, the level of expression of miRNAs in CIS most closely resembled the 

level observed in normal UM cells, whereas the HUC line shared greater similarity in miRNA 

expression with B/i cells. So far, analysis of a broad sampling of miRNAs indicates a correlation 

between UM and CIS cells. 

 

 

Figure 2.5 Hierarchical clustering of normal urothelium and CIS 

Samples are in columns, miRNAs are in rows. Expression of individual samples were 

averaged into groups, with the exception of HUC, and clustered according to the 

expression signature of 295 differentially expressed miRNAs (p ≤ 0.05). One-way ANOVA, 

Tukey HSD was performed as post-hoc (FDR ≤ 0.05). 
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We then focused our analyses on the individual miRNA and mRNA profiles of UM, B/i 

and CIS, since MP is not epithelial in origin and HUC is a cell line. With the removal of MP and 

HUC, there were 41 miRNAs and 1113 mRNAs differentially expressed across UM, B/i and CIS 

samples. Hierarchical cluster analysis of individual cases revealed distinct miRNA expression 

profiles between UM cells and B/i cells, while interestingly, the majority of CIS samples 

clustered with UM cells (Figure 2.5A). From these 41 miRNAs, four (let-7b*, miR-1281, miR-

133a, and miR-139-3p) exhibited higher levels of expression in both CIS and UM cells when 

compared to B/i cells. Conversely, nine miRNAs (miR-142-3p, miR-199b-5p, miR-200a, miR-

200b, miR-205, miR-21, miR-27b, miR-424, and miR-491-3p) displayed higher levels of 

expression in B/i cells than CIS and UM cells. Importantly, only five of the 41 miRNAs were 

significantly altered between UM and B/i cells (Table 1). 

 

In contrast, based on mRNA expression levels, normal urothelium (UM and B/i) and CIS 

formed two separate arms (Figure 2.5B). From the 1113 mRNAs differently expressed, 23 were 

commonly down-regulated in UM cells and CIS in comparison to B/i cells, while another 23 

followed the opposite trend (Table 2). Notably, TP63, specific to B/i cells while absent in UM 

cells, was down-regulated in UM cells and CIS compared to B/i cells. Interestingly, amongst the 

genes that were up-regulated in UM cells and CIS compared to B/i cells, we found CD24, a 

MicroRNA Chromosome FC (UM vs. B/i) p-value 
qRT-PCR 

verification ISH verification 

hsa-miR-139-3p 11q13.4 2.30 0.006 Yes Yes 

hsa-miR-199b-5p 9q34.11 -4.03 0.024 Yes Not Detectable 

hsa-miR-142-3p 2q35 -3.12 0.030 Yes Yes 

hsa-miR-133a 18q11.2 2.26 0.037 Yes Yes 

hsa-miR-221 Xp11.3 -5.04 0.048 Yes Not Detectable 

 

Table 1 miRNAs differentially expressed between UM and B/i cells 

Statistical results and location of a set of miRNAs significantly differentially expressed between UM 

and B/i cells in the normal urothelium. FC = fold change. ISH = in situ hybridization. 
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proposed marker of tumor-initiating cells (reviewed by Gires [128]), and genes involved in 

metabolism such as GFOD2, NDUFB2 and NQO1. 

 

 

 

 

Figure 2.6 . Hierarchical clustering of normal urothelium and CIS 

(A) Samples are in columns, miRNAs are in rows. Individual samples of normal urothelium 

and CIS were clustered according to the expression signature of 41 differentially expressed 

miRNAs (p ≤ 0.05). (B) Samples are in columns, mRNAs are in rows. Normal urothelium 

and CIS samples were clustered according to the expression signature of 1113 differentially 

expressed mRNAs (p ≤ 0.05). (C) Venn diagram illustrating 698 mRNAs up-regulated in 

common between CIS compared to normal UM and B/i cells. 753 mRNAs up-regulated in 

CIS compared to B/i cells; 738 mRNAs up-regulated in CIS compared to UM cells. Arbitrary 

assignment of cluster groups is as follows: A = UM cells, B = B/i cells, C = CIS. 
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Gene Symbol Gene Title 
 

Up in CIS and UM vs B/i 
 

PPP2R1B protein phosphatase 2, regulatory subunit A, beta 
TMED3 transmembrane emp24 protein transport domain containing 3 
BMP8B bone morphogenetic protein 8b 
CFL1 cofilin 1 (non-muscle) 
CD24 CD24 molecule 
SHANK1 SH3 and multiple ankyrin repeat domains 1 
HIST3H2A histone cluster 3, H2a 
RCAN1 regulator of calcineurin 1 
NQO1 NAD(P)H dehydrogenase, quinone 1 
SLC35A2 solute carrier family 35 (UDP-galactose transporter), member A2 
GFOD2 glucose-fructose oxidoreductase domain containing 2 
SND1 staphylococcal nuclease and tudor domain containing 1 
CD80 CD80 molecule 
CRAT carnitine O-acetyltransferase 
KCTD17 potassium channel tetramerisation domain containing 17 
EN1 engrailed homeobox 1 
PPAP2B phosphatidic acid phosphatase type 2B 
PDLIM2 PDZ and LIM domain 2 (mystique) 
SEC24A SEC24 family, member A (S. cerevisiae) 
NDUFB2 NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 2, 8kDa 
TBCD tubulin folding cofactor D 
SLCO1C1 solute carrier organic anion transporter family, member 1C1 
DLG3 discs, large homolog 3 (Drosophila) 
 

Down in CIS and UM vs B/i 
 

CRLF3 cytokine receptor-like factor 3 
ELP3 elongation protein 3 homolog (S. cerevisiae) 
FZD6 frizzled homolog 6 (Drosophila) 
SRSF11 serine/arginine-rich splicing factor 11 
RBM26 RNA binding motif protein 26 
ZNF571 zinc finger protein 571 
TNFRSF11A tumor necrosis factor receptor superfamily, member 11a, NFKB activator 
SLC25A36 solute carrier family 25, member 36 
DCAF8 DDB1 and CUL4 associated factor 8 
PLP1 proteolipid protein 1 
C5orf42 chromosome 5 open reading frame 42 
HNRNPL heterogeneous nuclear ribonucleoprotein L 
ZNF302 zinc finger protein 302 
MGEA5 meningioma expressed antigen 5 (hyaluronidase) 
LOC100506168 hypothetical LOC100506168 
ACVR1B activin A receptor, type IB 
NCOR1 nuclear receptor corepressor 1 
TP63 tumor protein p63 
EIF3M eukaryotic translation initiation factor 3, subunit M 
FUBP1 Far upstream element (FUSE) binding protein 1 
PCGF3 polycomb group ring finger 3 
GUCY1A2 guanylate cyclase 1, soluble, alpha 2 
FAM149B1 family with sequence similarity 149, member B1 

 

Table 2 Statistically significant genes altered between UM cells and CIS versus B/i 
cells 
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In fact, more than half of the differentially expressed mRNAs (698) were up-regulated in 

CIS compared to UM and B/i samples (Figure 2.5C). Gene ontology (GO) enrichment was 

performed on the 698 mRNAs to investigate biologically driven effects. This analysis revealed 

74 biological processes with enrichment scores > 3 (p ≤ 0.05), and as expected, the top seven 

(p ≤ 0.005) are involved in genomic alterations, transcription regulation, and cell cycle (Table 3). 

We further examined differentially expressed pathways in the group of 698 mRNAs up-regulated 

in CIS using Pathway ANOVA (Partek Genomics 6.6). Statistically significant pathways with 

more than 10 genes involved include “metabolic pathways” and “pathways in cancer” (Table 4). 

Not surprisingly, the “bladder cancer” pathway was enriched (enrichment score 3.2) in this list 

(Table 5). As supported by GO analysis, hierarchical clustering by global gene expression 

separated samples based on normal (UM and B/i) versus cancer (CIS).   

 

GO Function E-score p-value % genes involved 

rRNA transcription 7.60 0.0005 44.44 

M phase of mitotic cell cycle 6.31 0.0018 13.10 

pre-miRNA processing 6.30 0.0018 50.00 

steroid hormone receptor signaling pathway 6.02 0.0024 30.77 

chromatin modification 5.53 0.0040 9.60 

regulation of primary metabolic process 5.44 0.0043 26.67 

 

Table 3 GO enrichment of genes up-regulated in CIS 

Biological processes with enrichment p ≤ 0.005 are shown. 
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Pathway Name # of genes involved     p-value 

Metabolic pathways 81 9.973E-05 

Pathways in cancer 25 1.252E-02 

HTLV-I infection 17 5.478E-04 

Phagosome 16 8.687E-04 

Cell cycle 15 6.688E-04 

Protein processing in endoplasmic reticulum 14 4.469E-04 

Systemic lupus erythematosus 13 9.570E-04 

Focal adhesion 13 5.897E-02 

Herpes simplex infection 12 1.979E-03 

Ubiquitin mediated proteolysis 11 3.587E-04 

Cell adhesion molecules (CAMs) 11 3.143E-04 

Tuberculosis 11 5.594E-04 

Dopaminergic synapse 11 5.298E-04 

Neurotrophin signaling pathway 11 3.166E-03 

Huntington's disease 10 4.607E-08 

Oocyte meiosis 10 7.928E-05 

Fc gamma R-mediated phagocytosis 10 4.341E-05 

Lysosome 10 1.410E-04 

Vascular smooth muscle contraction 10 2.680E-02 

Hepatitis C 10 9.471E-04 

 

Table 4 Statistically significant pathways in up-regulated genes in CIS 

Statistically significant pathways that involve more than 10 genes in the set of 698 mRNAs 

that are up-regulated in CIS. 
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3. Five miRNAs are differentially expressed between UM and B/i cells 

Having examined miRNA and mRNA profiles globally in both normal urothelium and in 

CIS cases, we then decided to further explore the five miRNAs that were statistically 

differentially expressed between UM cells and B/i cells (Table 1), according to the microarray 

data. We performed qRT-PCR to determine the expression of the mature form of these five 

miRNAs (Figure 2.6A). qRT-PCR results showed an average Pearson correlation to the 

microarray data of 0.95. miR-133a and miR-139-3p were up-regulated in UM cells compared to 

B/i cells, while miR-142-3p, miR-199b-5p, and miR-221 were down-regulated in UM cells 

compared to B/i cells. Taken together, the qRT-PCR results confirmed that these five miRNAs 

were differentially expressed between UM and B/i cell populations. 

We then went on to verify the localization of our miRNAs of interest via in situ 

hybridization. We used LNA oligonucleotide probes for detection of the miRNAs of interest in 

human and mouse bladders. Positive control using U6 gave strong signals in human and mouse 

urothelium, while no signal was detected using a non-specific probe for the miR-424/503 cluster 

Pathway Name E-score p-value % of genes involved 

Cell cycle 5.24 0.0053 10.43 

Steroid biosynthesis 5.11 0.0060 23.53 

Mineral absorption 4.55 0.0106 14.29 

Phagosome 4.38 0.0125 9.03 

Systemic lupus erythematosus 3.98 0.0188 9.17 

Herpes simplex infection 3.71 0.0245 8.05 

Pathogenic Escherichia coli infection 3.48 0.0307 11.32 

Alanine, aspartate and glutamate 
metabolism 

3.35 0.0352 14.29 

Rheumatoid arthritis 3.25 0.0389 9.30 

Fanconi anemia pathway 3.24 0.0390 11.90 

Bladder cancer 3.24 0.0390 11.90 

Asthma 3.12 0.0440 13.33 

 

Table 5 Pathways enriched in up-regulated genes in CIS 

Pathway enrichment of statistically significant pathways composed of genes up-regulated in CIS. 
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(Figure 2.6B). Robust in situ hybridization conditions were established for three out of these five 

miRNAs. Expression of miR-133a and miR-139-3p was observed in UM cells, while miR-142-3p 

expression was localized to B/i cells with low expression in UM cells. In order to further validate 

the phenotypes described for human urothelial tissues, we extended the study to the analysis of 

mouse urothelium. We observed that the miRNA phenotypes of both human and murine bladder 

samples were consistent (Figure 2.6C).  
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Figure 2.7 Validation of differentially expressed miRNAs from microarray data 

(A) qRT-PCR on UM and B/i cells for various miRNAs. Graph shows B/i log2 fold 

expression; B/i expression is normalized to UM. Sample median marked with horizontal 

line. Sample mean marked with square. *p ≤ 0.05 by Student’s T-Test. (B) Localization of 

miR-133a, miR-139-3p, and miR-142-3p in human bladder samples by in situ hybridization 

(scalebar, 100m). Inset for miR-142-3p shows umbrella cells (scalebar, 25m). No 

staining was observed in a negative control ISH using the sense strand of miR-424/503, 

while a strong signal was observed in a positive control ISH using U6 in representative 

cases of normal bladder (scalebar, 100m). 
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4. CIS samples express UM but not B/i urotehlium specific protein markers  

To explore further whether CIS samples were more closely related to UM cells than B/i 

cells, as suggested by the miRNA microarray results, we examined the expression of miRNAs 

specific to UM cells in CIS. Compared to B/i cells, expression of the five miRNAs by qRT-PCR 

in six independent CIS biopsies were similar to that of UM cells. miR-133a and miR-139-3p 

were up-regulated in CIS compared to B/i, while miR-142-3p, miR-199b-5p, and miR-221 were 

down-regulated in CIS compared to B/i (Figure 2.7A).  

Since miRNA expression revealed a correlation between CIS and UM cells, we decided 

to assess the expression of several well-established differentiation biomarkers of the urothelium 

in a cohort of CIS lesions. We have previously reported that B/i cells to be positive for high 

molecular weight cytokeratins (HMWCKs), while UM cells are characterized by low molecular 

weight cytokeratins and UPKII [13,111]. Indeed, a high percentage of CIS lesions revealed a 

positive UPKII (83.3%) and CK20 (84.2%) phenotype similar to that of UM cells, as well as a 

negative HMWCKs phenotype (only 10.5% of the cases expressed HMWCKs) (Figure 2.7B, C). 

Table 6 summarizes the individual immunohistochemical profiles of the 19 CIS tissue samples.  
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Figure 2.8 Phenotypic association of CIS with UM cells by qRT-PCR and IHC 

(A) qRT-PCR results on B/i and CIS samples for various miRNAs. Graph shows CIS log2 

fold expression; CIS expression is normalized to B/i. Sample median marked with 

horizontal line. Sample mean marked with square. p ≤ 0.05, **p ≤ 0.005 by Student’s T-

Test. (B) Quantification of the percentage of cases with expression of the respective 

biomarkers. (C) Representative immunohistochemical analyses of UPKII, CK20, and 

HMWCKs in four different CIS tissue samples (scalebar, 100m). 
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Discussion 

To date, there have not been any studies examining miRNA expression within normal 

bladder urothelium and bladder CIS. Despite a limited number of samples, our study reveals 

that the phenotype of CIS most closely resembles that of UM cells, rather than B/i cells.  

A novel approach undertaken in this study is the microanatomical isolation of normal 

bladder into three compartments: UM cells, B/i cells, and MP tissue. Thus far there is no 

consensus and there are several inconsistencies between different microarray studies for the 

majority of miRNAs reported as mis-expressed. For instance, Lin et al. reported miR-125b and 

miR-199b to be significantly down-regulated in tumors compared to normal tissue [126], while 

Veerla et al. reported high expression of the same two miRNAs in invasive (T2/T3) tumors [129]. 

One explanation for this discrepancy is that different populations of normal bladder tissue were 

 

Table 6 Summary of IHC results in individual CIS tissue samples  

NA: core not available 
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used. It is extremely difficult to obtain pure urothelium by macrodissection, as this method often 

leads to contamination of the urothelial sample with the lamina propria. Furthermore, while 

some groups use normal bladder mucosa [122,123,125], others use normal tissue adjacent to 

the tumor [126,127], which can include non-urothelium components such as the muscularis 

propria. Therefore, microdissection is necessary to ensure clean urothelial samples, and is the 

only method to dissect single-layer UM cells. 

We profiled the expression of 984 human miRNA and 22,277 human mRNA genes in the 

sub-populations of normal bladder, CIS tumors, and a normal urothelial cell line (HUC). 

Surprisingly, miRNA expression profile revealed CIS tumors to share a molecular profile 

displayed by UM cells, while mRNA expression profile clustered B/i and UM cells together and 

separate from CIS. These data suggest that gene expression analysis is able to separate 

normal from tumor tissues. In fact, more than half of the differentially expressed genes that were 

up-regulated in CIS when compared to normal UM and B/i cells were related with proliferative 

phenotypes (e.g. cell cycle, metabolic pathways and pathways in cancer). In contrast, miRNA 

expression has been shown to classify tissue samples based on histogenesis [118], and our 

data show that CIS samples share more similarity with UM cells than B/i cells in the normal 

urothelium.  

There were five miRNAs that were significantly altered between B/i and UM cells. qRT-

PCR and in situ hybridization confirmed miR-133a and miR-139-3p to be specific to UM cells, 

while miR-142-3p was expressed only in B/i cells. Interestingly, the two UM cell specific miRNAs, 

miR-133a and miR-139-3p, are located on chromosome 18q and 11q, respectively. It is well 

known that deletions of chromosomes 18 and 11 are associated with invasive bladder 

carcinomas [40], which mainly arise from high-grade lesions such as CIS. Conversely, B/i 

specific miR-199b-5p is located on chromosome 9q, the deletion of which is associated almost 

exclusively with papillary, non-muscle invasive tumors [16,130]. It is plausible that deletion of 

these miRNAs may affect downstream targets involved in bladder tumorigenesis.  
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It is well accepted that there are two paths of bladder tumor progression [16,131-133]. 

The development of papillary, non-muscle invasive tumors is largely independent from that of 

CIS lesions, as demonstrated through transgenic mouse models [31,38,134]. While bladder-

specific expression of mutant HRAS led to growth of papillary tumors [31], simultaneous 

deletion of tumor suppressors p53 and Pten gave rise to CIS with progression to muscle-

invasive tumors and metastasis [38]. Furthermore, the double inactivation of p53 and Rb 

through UPKII-driven expression of SV40T also led to the development of CIS and high-grade 

muscle-invasive tumors [134], Although a clonal origin of bladder cancer has been suggested 

[135], the study did not include CIS tumors in the analyses. Therefore, it remains unclear 

whether oncogenic changes that give rise to two phenotypic variants occur within one cell, or 

arise in different progenitors (UM versus B/i). Our current study identifies a strong association 

between CIS and UM cells in miRNA expression and expression of a few well-established 

differentiation markers of the UM cell, and provides evidence of the possible relationship 

between the two. 
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Materials and Methods 

Cell culture 

The immortalized normal urothelial cell line, Human Urothelial Cell (HUC) from ScienCell 

Research Laboratories (Carlsbad, CA), was grown in Urothelial Cell Medium (ScienCell) at 37˚C 

in a humidified air atmosphere at 5% CO2. RNA was extracted from the cells using the 

miRVANA Kit (Ambion, Foster City, CA). 

 

Laser capture microdissection (LCM) of normal bladder urothelium and CIS biopsies  

Human normal (n=3) and tumor bladder (CIS, n=4) tissue samples were obtained through IRB 

approved protocols. The three normal bladders were obtained from organ donors (males, ages 

15, 25 and 28 years old) with no history of bladder cancer through the International Institute for 

the Advancement of Medicine (IIAM). Fresh tissues were processed and frozen in OCT molds, 

which were used for laser capture microdissection. CIS samples were obtained from patients 

who had undergone radical cystectomy for an invasive urothelial carcinoma, and sections that 

did not include the invasive area were chosen for further processing. Frozen normal bladder 

urothelium was microdissected to obtain pure populations of UM cells, B/i cells, and muscularis 

propria (MP). Frozen CIS samples were also microdissected to obtain pure populations of tumor 

cells. To rule out the possibility of normal urothelial cell contamination in CIS samples, only 

cases where the CIS lesion permeated the whole thickness of the epithelium were chosen. 

Cases in which we could histologically identify UM or B/i cells surrounding the malignant cells by 

H&E stain, and cases with pagetoid spread or denuded CIS were not used. Briefly, 20-μm 

sections from OCT blocks were cut and mounted on MembraneSlide NF 1.0 PEN (Zeiss, 

Munich, Germany) and stored at -80˚C until use. Slides were fixed in ethanol at -20˚C for 2 min, 

washed in DEPC-H2O, stained with hematoxylin for 1 min, washed in DEPC-H2O, and air-dried. 

PALM Microbeam IV Laser Capture Microscope was used to perform laser microdissection. A 
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total of 25 sections (20-μm) were prepared from each sample, where the microdissected tissue 

was pooled per patient to extract RNA. Formalin-fixed paraffin-embedded (FFPE) CIS samples 

(n=6) were macrodissected by scratching 40 sections (10-μm), where dissected tissue was 

pooled per patient.   

 

RNA extraction and Microarray profiling and data analysis 

RNA was extracted from microdissected samples using RNAquesous-Micro Kit (Ambion, 

Carlsbag, CA). RNA was extracted using RecoverAll™ Total Nucleic Acid Isolation Kit for FFPE 

(Ambion) for macrodissected samples. The quality of all RNA samples was verified using a RNA 

Pico Kit (Agilent, Santa Carla, CA). Only sample qualities with RNA Integrity Number (RIN) > 6.0 

with clean 18S and 28S peaks were used, as previously described [136].  

Agilent Human miRNA Microarray (V3, based on Sanger miRbase release 12.0) were used for 

measuring miRNA expression in bladder samples. Samples used for the Agilent miRNA 

microarray were labeled as described by the manufacturer.  

Affymetrix Human U133 Plus 2.0 arrays were used for measuring gene expression in bladder 

samples. Samples used for Affymetrix microarray were amplified using the Ovation RNA 

Amplification System (NuGEN, San Carlos, CA) and labeled using FL-Ovation cDNA Biotin 

Module V2 (NuGEN) following manufacturer’s protocol. Raw intensity miRNA data were 

normalized and median transformed using GeneSpring GX 12 (Agilent). The raw mRNA data 

were log transformed and analyzed using Partek Genomics Suite 6.6 (Partek, Saint Louis, MO). 

Only detected probesets were used, compromised or undetected probesets were filtered out. 

One-way ANOVA and Tukey’s honestly significant difference (HSD) post-hoc test were 

performed across all samples to obtain miRNAs or mRNAs differentially expressed (p < 0.05). 

Unsupervised hierarchical cluster analysis was performed on the list of differentially expressed 

probesets with a fold change ≥ 2 (295 miRNAs, 1113 mRNAs).  
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Quantitative reverse transcription-PCR (qRT-PCR) miRNA expression profiling 

TaqMan microRNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA) was used 

to convert miRNA to cDNA. Reverse transcription primers (44-nucleotide) were designed so that 

the first 36-nucleotide formed an internal stem loop and the last 8-nucleotide were 

complementary to the mature miRNA sequence of interest. A universal reverse primer was used: 

5’ GTGTCGTGGAGTCGGC 3’. Qiagen Reverse Transcriptase System (Qiagen, Valencia, CA) 

was used to produce cDNA from mRNA. The following primers were used to reverse transcribe 

miRNAs from Table 1. 

miRNA Forward primer 

miR-139-3p 5' CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGACTCCAAC 3’ 

miR-199b-5p 5’ CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGGAACAGAT 3’ 

miR-142-3p 5' CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGTCCATAAA 3’ 

miR-133a 5' CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCAGCTGGT 3’ 

miR-221 5'CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGGAAACCCA 3’ 

 

Qiagen QuantiTect PCR (Qiagen) was used to measure quantitative expression of miRNA and 

mRNA. PCR assays were performed as described by the manufacturer using a Stratagene 

MX3005P PCR system (Agilent). For normalization, we used RNU6B or ACTIN for miRNA and 

mRNA respectively.  

 

Immunohistochemical (IHC) detection of biomarkers 

Immunohistochemical analyses were conducted on formalin-fixed and paraffin-embedded 

(FFPE) tissue sections from 10 cases of normal human bladder, and 19 CIS specimens 

following the standard avidin-biotin protocol. The 10 cases of normal bladder included the three 

cases used for the laser microdissection (organ donors) and seven cases of histologically 

normal urothelium obtained from patients who had undergone a radical cystectomy for an 

invasive carcinoma. From the 19 CIS specimens, 10 corresponded to biopsies of patients with 
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primary CIS and the other nine were obtained from cystectomy specimens of patients with a 

diagnosis of invasive bladder cancer. Briefly, 5-μm sections were deparaffinized and submitted 

to antigen retrieval by steamer treatment for 15 min in 10 mM citrate buffer at pH 6.0. 

Subsequently, slides were incubated in 10% normal serum for 30 min, followed by primary 

antibody incubation overnight at 4˚C. Primary antibodies used were anti-UPKII goat polyclonal 

(Santa Cruz, Dallas, TX), anti-CK5 rabbit polyclonal (AF138, Covance), anti-CK20 mouse 

monoclonal (clone Ks20.8, DAKO, Carpinteria, CA) and anti-high molecular weight cytokeratin 

mouse monoclonal (clone 34βE12, DAKO). Then slides were incubated with biotinylated 

immunoglobulins at a 1:500 dilution for 30 min (Vector Laboratories, Inc, Burlingame, CA.) 

followed by avidin-biotin peroxidase complexes at a 1:25 dilution (Vector Laboratories, Inc.) for 

30 min. Diaminobenzidine was used as chromogen and Hematoxylin as the nuclear 

counterstain. Slides were analyzed with a Nikon Eclipse 50i microscope equipped with a SPOT 

Insight™2MP Mosaic camera and SPOT™ Advanced software (Diagnostic Instruments, Sterling 

Heights, MI). 

 

In situ detection of miRNAs 

In situ detection of miRNAs was performed on 10-μm frozen tissue sections from normal human 

bladders obtained from healthy donor patients (n=3) and B6-wt mouse bladders (n=15). 

Sections were fixed in 4% paraformaldehyde, acetylated, and prehybridized in hybridization 

solution (50% formamide, 5X SSC, 0.5mg/ml yeast tRNA, 1X Denhardt’s solution) for 3h at 

25°C below the predicted Tm of the probe. Probe (5pmol; LNA-modified and FITC-labeled 

oligonucleotide; Exiqon, Woburn, MA) complementary to U6 (positive control), miR-133a, miR-

139-3p, and miR-142-3p was hybridized to the sections overnight in a humidified chamber at 

pre-hybridization temperature. Posthybridization, slides were washed with 5X and 0.2X SSC, 

blocked in 10% normal goat serum for 30 min, and incubated in anti-FITC/alkaline-phosphatase 

antibody (Vector-Labs) at 1:400 at 4°C overnight. The sense-strand of the primary transcript of 
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the miR-424/503 cluster (5pmol; sequence in table below) was used as negative control. In situ 

hybridization signals were detected using BM purple (Roche, Indianapolis, IN). Slides were 

counterstained with Nuclear Fast Red (Sigma-Aldrich, Saint Louis, MO), mounted using 80% 

glycerol, and analyzed with a Nikon Eclipse 50i microscope equipped with a SPOT 

Insight™2MP Mosaic camera and SPOT™ Advanced software (Diagnostic Instruments).  

miR-424/503 probe sequence Hybridization temperature 

GGGCAGTCAACGACATTTTTCTCCATTAATCCCAAAGTCAGTGT
AAAAGTTGTTTGTAAATATCATTGCCAAAACAAGATGGAATGTAG
AGATACTTGATTGTCGCAATTTAGGGAATGGGGTTATTGTTACTA
ATGACTTTTTTTTTTTACCATGACATAGTGTATTTGTTACCACTGG
ATCTCAGTCTGGATGTTATAAATTCGATACTTAATCTTATTAAATA
CTCTGCACATTTTATTAACTAATAAATAGGACACTTAACATTCATT
GTACTGGTTTTGAAAAACCGACTTAATTTGTAAGTGTAACAAGAT
ACTTACAGTTGGATAATTT 

65˚C 
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3. Chapter 3: Invasive bladder urothelial carcinoma is characterized 

by distinct miRNA expression  

 

Invasive bladder UC 

At tumor initiation, bladder tumors can be classified into two groups: low-grade papillary 

tumors; and high-grade tumors (either papillary or non-papillary). Tumor cell invasion and 

metastasis in bladder cancer is a primary cause of patient mortality. Patients with unresectable 

metastatic bladder cancer have a median survival of 7-20 months despite systemic 

chemotherapy, while the 5-year survival rate is just 5.5% [137]. However, little is known 

regarding the transition from “superficial” papillary tumors to muscle-invasive tumors. 

Changes in the tumor microenvironment that promote invasion and metastasis include 

loss of E-cadherin expression [138], increased levels of matrix metalloproteinases [139], and 

increased expression of angiogenic factors [140]. Chromosomal alterations that favor the 

transformation of non-muscle invasive high-grade tumors to muscle-invasive UCs have been 

identified in comparative genomic hybridization studies [141], although the specific genes have 

yet to be mapped. In addition, the genetic processes that promote the progression of low-grade 

superficial UCs to a muscle-invasive phenotype are unknown. Investigating miRNAs can 

improve the molecular classification of these heterogeneous tumors, which may translate to 

more effective and tailored treatments. 

Experimental Design 

The aim of this study is to identify miRNAs differentially expressed between non-muscle 

invasive and muscle-invasive UCs, and characterize their subsequent downstream targets. We 

profiled miRNA and mRNA expression on a repertoire of 22 bladder tumors: CIS (n=4), TaG1 

(n=3), TaG2 (n=3), T1G1 (n=3), T1G2/3 (n=3), T2G2/3 (n=6). miRNAs differentially expressed 



44 
 

 
 

between non-muscle invasive Ta and muscle-invasive T2 tumors were selected for further study. 

Stable bladder cancer cell lines were generated to overexpress miRNAs potentially involved in 

tumor cell invasion. Transwell invasion assays were employed to quantitate invasive effects of 

candidate miRNAs.  

Results 

1. miRNAs and mRNAs clustered tumors based on tumor stage  

There were 150 miRNAs differentially expressed (fold change ≥ 2) across 22 tumor 

samples (Figure 3.1A). Unsupervised hierarchical clustering grouped the tumors based on 

tumor stage. Interestingly, CIS tumors formed a separate branch from the rest instead of 

clustering with invasive tumors. 72 miRNAs were differentially expressed (fold change ≥ 2.5) 

between Ta and T2 tumors (Table 7); 31 miRNAs were up-regulated in T2 tumors, while 41 

miRNAs were up-regulated in Ta tumors. qRT-PCR was performed on the 72 miRNAs in seven 

bladder cancer cell lines: HUC (normal primary urothelial cells), three non-invasive cell lines 

(BFTC-905, RT4, RT112), and three invasive cell lines (TCCSUP, J82, and EJ138). Of the 72, 

five miRNAs had a fold change > 10 according to qRT-PCR. The five miRNAs were: miR-200c, 

miR-141, miR-429, miR-126, and miR-198 (Figure 3.2). With the exception of miR-198 that had 

the opposite trend, the four other miRNAs were expressed at higher levels in non-invasive cells 

than invasive cells. 

Similar to the miRNA profile, the cohort of 1493 differentially expressed mRNAs also 

clustered tumors based on stage (Figure 3.1B). 17 tumors were used instead of the original 22; 

five tumor samples were excluded from mRNA microarray analysis due to tissue scarcity. This 

set of genes will be used to identify downstream targets of candidate miRNAs using TargetScan.  
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Figure 3.1 miRNA and mRNA expression profiles in non-muscle invasive and 
muscle-invasive bladder UCs 

(A) Samples are in columns, miRNAs are in rows. Samples were clustered according to the 

expression signature of 150 differentially expressed miRNAs (p ≤ 0.05). (B) Samples are in 

columns, mRNAs are in rows. Samples were clustered according to the expression 

signature of 1493 differentially expressed mRNAs (p ≤ 0.05).  
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Table 7 miRNAs differentially expressed between TaG1 and T2G2-3 tumors 

FC = fold change; NMI = non-muscle invasive tumors (TaG1); MI = muscle-invasive tumors 

(T2G2-3) 
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2. Generation of firefly luciferase (FL) and renilla luciferase (RL) cell lines  

To quantify the amount of cell invasion, stably expressing firefly luciferase (FL) and 

renilla luciferase (RL) were separately established in each cell line. Because the RL cells are 

not infected with miRNAs, these cells invade as would the native cell line. The RL cells can 

 

Figure 3.2 qRT-PCR validation of miRNAs differentially expressed between TaG1 and 
T2G2-3 tumors 

(A) Table summarizing miRNAs with a calculated qRT-PCR fold change > |10| in bladder 

cancer cells. (B) qRT-PCR validation; fold changes are normalized to the HUC line. Non-

invasive cells are: BFTC-905, RT4, RT112. Invasive cells are: TCCSUP, J82, EJ138. 
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therefore normalize differences between individual transwell chambers and serve as an internal 

control. Both FL and RL expression are directly proportional to the cell amount in a linear 

fashion (Figure 3.3). 

 

In a transwell invasion assay, a 50% mixture of FL and RL cells were seeded in the well 

(Figure 3.4). After incubation, cells remaining in the well and those that have invaded through 

the matrigel were collected and subjected to luciferase assay. To evaluate the invasive potential 

of the miRNA, all quantifications of miRNA-induced invasion were calculated relative to invasion 

of the FL cell line. Comparisons to the FL line also correct for any potential secondary effects 

 

Figure 3.3 Establishing firefly luciferase (FL) and renilla luciferase (RL) cell lines.  

Firefly luciferase assays (A) and renilla luciferase (B) assays in respective cell lines. 
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produced by FL expression. Therefore, there are two levels of normalization: within each 

transwell chamber by RL cells, and between FL and FL_miR lines. 

 

3. Generation of miRNA and HRAS overexpressing cell lines 

Mature miRNA sequences expressed in a lentiviral vector were stably infected into 

bladder cancer cell lines. For each cell line, FL and the miRNA of interest were co-expressed in 

the same cell (with suffix FL_miR). Potentially invasive miR-198 was transduced into non-

invasive cells BFTC-905, RT4, and RT112. The other five non-invasive miRNAs were 

transduced into invasive cells J82 and EJ138. qRT-PCR was performed to verify miRNA 

expression levels in the cell lines (Figure 3.5). 

 

Figure 3.4 Invasion experimental design 

Transwell matrigel chambers were used to assess invasion  in vitro. miRNAs were stably 
infected into cell lines stably expressing FL. The same cell line expressing RL was used as 
an internal control. Non-invasive lines were incubated for 48h, invasive lines were 
incubated for 24h. Cells both on top and underneath the well were harvested and assayed 
for luciferase expression. The  FL signal was normalized to the RL signal in the same well. 
Normalized luciferase ratios were then calibrated to the ratio of the FL line.  
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To generate a positive control for non-invasive cell lines, the constitutive active HRASV12 

was stably infected into FL expressing lines of BFTC-905, RT4, and RT112 (Figure 3.6). Non-

invasive and invasive cell lines were subjected to transwell invasion assays to examine the 

native invasive potential of each cell line (Figure 3.7). As expected, mutant HRASV12 

significantly increased the invasiveness of the non-invasive cell lines; a two to six fold increase 

was observed in HRASV12 lines. 

 

 

Figure 3.5 qRT-PCR validation of miRNA expression in FL_miR infected cell lines 

Fold changes were calibrated to the respective FL line. Validation of miR-198 in BFTC-905 

(A), RT4 (B), and RT112 (C). Validation of miR-126, miR-141, miR-200c, and miR-429 in 

EJ138 (D) and J82 (E). *p < 0.05, **p < 0.005, ***p < 0.0005 by Student’s T-Test. 
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4. Overexpression of miR-198 promotes invasion in non-invasive cells 

Overexpression of miR-198 generated a six-fold and two-fold increase in invasion in RT4 

and RT112, respectively, an extent comparable to that of HRASV12 (Figure 3.8A, B, C). Similar 

to cells expressing HRASV12, miR-198 did not stimulate cell proliferation in any of the non-

 

Figure 3.6 Establishing HRASV12 in non-invasive FL cell lines 

FL cell lines expressing HRASV12 (FLR) were used as a positive control for invasion of non-

invasive cells. Protein blots show  presence of  FL (82 kDa) and HRAS (21 kDa) in the FLR 

line. 

 

 

 

Figure 3.7 Invasion potential of bladder cancer cell lines 

Percent invasion measured as the ratio of cells that have invaded relative to those that 

have remained in the well. *p < 0.05 by Student’s T-Test. 
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invasive cell lines (Figure 3.8C, D, E). This ruled out the possibility that the rise in invasion was 

due to a confounding effect of an increase in proliferation.   

 

 

Figure 3.8 Effect of miR-198 overexpression in non-invasive cells 

Matrigel invasion assay of BFTC-905 (A), RT4 (B), and RT112 (C). FLR lines were used as 

a positive control for invasion. Cell proliferation assays performed on BFTC-905 (D), RT4 

(E), and RT112 (F).  *p < 0.05, **p < 0.005, ***p < 0.0005 by Student’s T-Test. 
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5. Concurrent knock-down of miR-200c, miR-141, and miR-429 promote invasion 

in non-invasive cells 

Anti-miRNA inhibitors, chemically modified single stranded RNA complementary to the 

endogenous miRNA, were used to transiently knock-down miR-200c, miR-141, and miR429 in 

BFTC-905, RT4, and RT112 cells. Individual knock-downs of each miRNA did not produce a 

significant change in cell invasion. However, knock-down of all three miRNAs simultaneously 

resulted in a seven-fold and 1.5-fold increase in invasion in RT4 and RT112, respectively 

(Figure 3.9). Furthermore, combined knock-down of the three miRNAs against a background of 

miR-198 overexpression produced a cumulative effect in BFTC-905, RT4, and RT112; in RT4 

the increase in invasion was additive (Figure 3.9). 

 

6. Overexpression of miR-200c and miR-126 inhibit invasion in invasive cells 

Of the three miR-200 family members, only stable overexpression of miR-200c induced 

a statistically significant (two-fold) decrease in invasion in J82 and EJ138. miR-429 induced a 

noticeable decrease in magnitude of invasion EJ138 but was not statistically significant; while 

 

Figure 3.9 Effect of miR-200 family knock-down in non-invasive cells 

Matrigel invasion assay of BFTC-905 (A), RT4 (B), and RT112 (C). FLR lines were used as 

a positive control for invasion. A cocktail of anti-miR-200c, 141, 429 inhibitors (50nM; 

designated as anti-miR-200) was transiently transfected into the FL or FL_198 line. *p < 

0.05, **p < 0.005, ***p < 0.0005 by Student’s T-Test. 
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no effect by miR-429 was observed in J82. miR-141 did not produce any appreciable effects on 

invasion in either cell line.  

Transient concurrent overexpression of all three miRNAs resulted in a four-fold 

suppression of invasion in J82, a greater effect than miR-200c alone (Figure 3.10A). Such an 

effect was not observed in EJ138, where overexpression of all three miRNAs decreased 

invasion to a level similar to that of miR-200c alone (Figure 3.10B). miR-126 also inhibited 

invasion in J82 and EJ138 by two-fold. None of the miRNAs affected cell proliferation in EJ138 

(Figure 3.10D), suggesting the reduction in invasion was not a consequence of inhibition of 

proliferation. However, expression of miR-200c, miR-429, and miR-126 decreased J82 

proliferation (Figure 3.10C). This may account for the greater fold reduction from concurrent 

overexpression of the miR-200 family observed in J82.  
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7. Identification of potential downstream miRNA targets via TargetScan 

In silico target prediction for the five miRNAs was performed using TargetScan on the list 

of 1493 differentially expressed mRNAs. The list of potential targets was modified to include 

only genes with expression patterns that inversely correlated with miRNA expression (e.g. a 

gene expressed at higher levels in muscle-invasive tumors than non-muscle invasive would not 

be a target of miR-198). miR-200c and miR-429 shared identical targets. There were four 

unique gene targets predicted for miR-126, 32 for miR-198, 215 for miR-141, and 306 for miR-

200c/miR-429 (Figure 3.11). Between the three miR-200 family members there were 30 targets 

 

Figure 3.10 Effect of miR-126 and miR-200 family overexpression in invasive cells 

Matrigel invasion assay of J82 (A) and EJ138 (B). A cocktail of miR-200c, 141, 429 mimics 

(25nM; designated miR-200) was transiently transfected into the FL line. Cell proliferation 

assays performed on each miRNA infected cell line of J82 (C) and EJ138 (D). *p < 0.05, **p 

< 0.005, ***p < 0.0005 by Student’s T-Test. 
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in common. KANK2 was a predicted target for both miR-126 and miR-200c/miR-429, and PEX5 

was a common target between miR-126 and miR-141. Since miR-198 affected cell invasion in 

the opposite manner as the miR-200 family and miR-126, there were no common targets.  

 

 

Figure 3.11 miRNA targets predicted via TargetScan 

Targets were predicted using TargetScan 5.0 by combining the miRNA and mRNA 

microarray data. (A) Venn diagram illustrating common targets shared between the miR-

200 family and miR-126. miR-200c and miR-429 shared identical targets. (B) Four targets 

predicted for miR-126. (C) 30 targets in common between the miR-200 family members. (D) 

32 targets predicted for miR-198. 
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Discussion 

To investigate miRNAs potentially involved in invasion, we profiled the expression of 

miRNAs and mRNAs in bladder tumors of various stage and grade. Both miRNA and mRNA 

expression levels clustered tumors based on stage. Of the 72 miRNAs differentially expressed 

between non-muscle invasive (Ta) and muscle-invasive (T2) tumors, 31 were up-regulated and 

41 were down-regulated in muscle-invasive tumors. From this list we identified two miRNAs, 

miR-198 and miR-126, previously not associated with bladder cancer invasion.  

In this study we employed a novel method of assaying invasion. The standard method to 

measure transwell matrigel invasion is by staining invasion chambers with crystal violet to 

visualize cells. However, it is a challenge to procure an accurate cell count because many 

bladder cancer cell lines, especially RT4, grow in tight clusters. Because FL and RL levels 

increase linearly with cell amount, measurements of FL and RL expression could provide a 

more quantitative assessment of cell invasion. In our assay, errors that may arise due to 

physical variations between transwells and cell seeding irregularities are addressed by the use 

of RL expressing cells that do not express the miRNAs of interest and a measure of cells that 

remain in the transwell (i.e. cells that did not invade).  

We focused on five miRNAs that displayed the highest differential expression between 

non-invasive bladder cancer cell lines and invasive cell lines by qRT-PCR (fold change > 10). 

Notably, three of the five miRNAs – miR-200c, miR-141, and miR-429 – belong to the miR-200 

family. We found that simultaneous knock-down of all three miRNAs in non-invasive cells 

enhanced invasion, while forced overexpression of the three miRNAs in invasive cells inhibited 

invasion. The miR-200 family is previously reported to be silenced in muscle-invasive bladder 

tumors as well as undifferentiated bladder cancer cells (T24 cell line) [142]. Another study 

revealed that the miR-200 family was down-regulated in “mesenchymal” bladder cancer cells 

(UMUC2, UMUC3, UMUC13, T24, and KU7) compared to “epithelial” cells that express E-
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cadherin (UMUC6, UMUC9, UMUC16, and UMUC5) [143], suggesting that miR-200 may 

function to maintain an epithelial phenotype in bladder cancer cells. Furthermore, miR-200c was 

shown to reverse the EMT process in UMUC3 cells and reduce migration, possibly through 

inhibition of ZEB1 and ZEB2. Unsurprisingly, ZEB1 was also identified as a miR-200c and miR-

429 target in our in silico screen.  

miR-198 was up-regulated in T2 tumors compared to Ta. Although miR-198 was 

detected in HUC (normal bladder cells), it was highly expressed in invasive bladder cancer cell 

lines, and either at very low levels (BFTC-905) or non-existent (RT4 and RT112) in the non-

invasive cell lines. High levels of miR-198 were reported in retinoblastoma [144] and squamous 

cell carcinoma of the tongue [145]. In contrast, miR-198 was found to be down-regulated in 

hepatocellular carcinoma, where overexpression of miR-198 reduced hepatocyte growth factor 

induced cell invasion in vitro by inhibiting c-MET [146]. Contrary to its effect in liver cancer cells, 

we found that overexpression of miR-198 in the non-invasive bladder cancer cell lines increased 

invasion. In addition, increased miR-198 expression augments invasion caused by suppression 

of the three miR-200 family members. This suggests that miR-198 and the miR-200 family may 

function in separate pathways. We have also identified several potential targets previously 

unassociated with miR-198: EI24, SPTBN1, and RPL41. EI24 is a proapoptotic factor regulated 

by p53 that is frequently mutated or deleted in invasive cervical [147] and breast carcinomas 

[148]. EI24 is expressed in ductal CIS of the breast but lost in invasive ductal carcinoma, 

suggesting a role in suppressing invasion [148]. Expression of EI24 also sensitizes breast 

cancer cells to the chemotherapy drug etoposide, which functions through p53 [149]. SPTBN1 is 

a member of the F-actin superfamily of cross linking proteins, essential for maintaining 

cytoskeletal integrity and may play a role in cell adhesion, migration, and invasion. This 

scaffolding protein has been implicated in the regulation of the TGF- signaling pathway through 

Smad molecules [150]. SPTBN1 is present in chronic pancreatitis but lost in poorly differentiated 

tumor cells, where reduced expression is correlated with worsened prognosis of pancreatic 
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cancer [151]. Lastly, RPL41 is a microtubule-associated protein involved in proper chromosome 

segregation during mitosis, where depletion of RPL41 resulted in premature splitting of the 

centrosome [152]. RPL41 expression is reduced in breast carcinoma [152] and addition of 

RPL41 to lung carcinoma cells increased their sensitivity to cisplatin, presumably through 

degradation of the transcription factor ATF4 [153]. Since these targets have seemingly tumor 

invasion suppressive roles, it is reasonable that an oncogenic miR-198 may target them in 

bladder tumors. Further steps should be taken to verify the miR-198 regulation of these targets, 

such as through a 3’UTR assay.  

We observed a significant decline in miR-126 in T2 compared to Ta tumors. The same 

trend was observed in bladder cancer cells, where miR-126 was expressed highly in HUC and 

non-invasive cell lines, but at barely discernible levels in invasive cells. As mentioned previously, 

down-regulation of miR-126 is observed in invasive tumors of the breast [85], pancreas [86], 

and liver [87]. In addition, low serum levels of miR-126 in a three-miRNA plasma signature 

served as a significant prognostic biomarker for tumor progression in lung adenocarcinoma 

[154]. Reduced miR-126 expression also correlated with tumor progression and nodal 

metastasis in oral squamous cell carcinoma [155]. Four genes with increased expression in 

invasive bladder tumors versus non-invasive were identified by TargetScan as potential miR-

126 targets: KANK2, PEX5, ADAM9, and PLXNB2. Of these four, ADAM9 is of particular 

interest because of its implication in the progression of tumors [156]. The role of ADAM9 in 

bladder cancer cell invasion is further explored in Chapter 4.  
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Materials and Methods 

Cell culture and human clinical samples 

All cell lines were grown according to manufacturer’s protocols at 37˚C in a humidified air 

atmosphere at 5% CO2. The HUC line was purchased from ScienCell Research Laboratories. 

BFTC-905 cells were purchased from the Leibniz Institute DSMZ-German Collection of 

Microorganisms and Cell Cultures. RT112 and EJ138 were gifts from Dr. Sanchez-Carbayo 

(Tumor Markers Group, Madrid). MCF10A, RT4, TCCSUP, J82, and 293FT cells were 

purchased from the American Type Culture Collection (ATCC). The following human bladder 

tumor tissue samples were obtained through IRB approved protocols: TaG1 (n=3), TaG2 (n=3), 

CIS (n=4), T1G1 (n=3), T1G2/3 (n=3), T2G2/3 (n=6). CIS biopsies were dissected using laser 

capture microdissection as previously described in Chapter 2 to isolate tumor from adjacent 

normal urothelium.  

 

RNA extraction 

RNA was extracted from cell lines and tumor samples using the miRVANA Kit (Ambion). RNA 

from microdissected CIS samples were extracted using the RNAquesous-Micro Kit (Ambion). 

The quality of all RNA samples was verified using a RNA Pico Kit (Agilent). Only sample 

qualities with RIN above 6.0 with clean 18S and 28S peaks were used.  

 

Microarray profiling and data analysis 

Agilent Human miRNA Microarray (V3, based on Sanger miRbase release 12.0) and the 

Affymetrix Human U133 Plus 2.0 arrays were used for measuring miRNA and mRNA 

expression in bladder samples. All procedures were carried out according to manufacturer’s 

protocol. Data analyses were performed as described in Chapter 2, with the exception that 

mRNA data were analyzed using GeneSpring GX 12 instead of Partek Genomics Suite 6.6. 
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Only detected probesets were used, compromised or undetected probesets were filtered out. 

One-way ANOVA and Tukey’s honestly significant difference (HSD) post-hoc test were 

performed across all samples to obtain miRNAs or mRNAs differentially expressed (p < 0.05). 

Unsupervised hierarchical cluster analysis was performed on the list of differentially expressed 

probesets with a fold change ≥ 2 (150 miRNAs, 1493 mRNAs). 

 

Plasmid generation 

RNA from MCF10A cells were used to PCR amplify pre-miRNA regions. Amplified pre-miRNA 

fragments were subcloned into an empty pLemiR vector (Open Biosystems, Pittsburgh, PA) and 

verified by sequencing, hereby referred to as pLemiRNA. The following sense and antisense 

oligonucleotides were used: 

miRNA PCR primers 

miR-198 
Forward: 5’ TCTGCTCGAGGAGCAAGGGTGCCTTAGA 3’ 

Reverse: 5’ ATGACTGGCGGCCGCAAGTCACAGTTT 3’ 

miR-126 
Forward: 5’ CATTCTCGAGTGGCTGTTAGGCAT 3’ 

Reverse: 5’ TGGGCGGCCGCCTCTGCACTTCTT 3’ 

miR-200c 
Forward: 5’ AAGGCTCGAGGGGGTAGGGGAAGGT 3’ 

Reverse: 5’ AGCGGCCGCCGACAGAGAACTA 3’ 

miR-141 
Forward: 5’ CGTCTCGAGCTGAGAGCGTTGCAC 3’ 

Reverse: 5’ AGACGCGGCCGCCCCAATCCTGAGT 3’ 

miR-429 
Forward: 5’ TAAGTCGACCGAGCTTCAGGAAGCCA 3’ 

Reverse: 5’ ACGGCGGCCGCAGCATCTGCCCGGGGACTACA 3’ 

  

Renilla luciferase was subcloned into a modified pLPCX (Clontech) plasmid that contains GFP, 

hereby referred to as pLPCX-Ren. The sense and antisense oligonucleotide sequences used to 

amplify renilla luciferase from pRL-SV40 (Promega) were 5’-AAAAACTCGAGCGCCACCATGA-

CTTCGAAAGTTTATGATCC-3’ and 5’-AAAAAGAATTCTTATTGTTCATTTTTGAGAACTC-3’, 

respectively. Lentiviral plasmids PMB and CMV, retroviral plasmids VSVG and helper, firefly 

luciferase plasmid (FUW-Luc), and pBABE HRASV12 plasmids were gifts from Dr. Jose Silva. 
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Transient transfection and infection 

Transient transfections using miRIDIAN microRNA Human Inhibitors or Mimics (Thermo 

Scientific) were performed using TransIT-TKO transfection reagent (Mirus). A final concentration 

of 50nM was used for miRIDIAN Inhibitors and 25nM was used for miRIDIAN Mimics.  

293FT cells were transfected with lentiviral or retroviral particles using Lipofectamine 2000 

(Invitrogen, Grand Island, NY). Media from 293FT 48 hours after transfection were collected to 

infect bladder tumor cell lines. Cell lines infected with FUW-Luc were subsequently infected with 

a pLemiRNA, and maintained using puromycin (0.5ug/ml) and geneticin (800ug/ml). Cell lines 

infected with pLPCX-Ren were maintained using puromycin (0.5ug/ml).  

 

Quantitative real-time reverse transcription-PCR (qRT-PCR) miRNA expression profiling 

TaqMan microRNA Reverse Transcription Kit (Applied Biosystems) was used to convert miRNA 

to cDNA. Reverse transcription primers (44nt) were designed so that the first 36nt formed an 

internal stem loop and the last 8nt were complementary to the mature miRNA sequence of 

interest. Qiagen QuantiTect PCR (Qiagen) was used to measure quantitative expression of 

miRNA. PCR assays were performed as described by the manufacturer using a Stratagene 

MX3005P PCR system. For normalization, we used mir-92b because it provided comparable 

expression levels across the bladder cell lines. miR-92b has also been cited as a stable 

reference gene for miRNA qRT-PCR [157].  

 

Invasion and luciferase assays 

In-vitro invasion assays were carried out using BD BioCoat Matrigel Invasion Chambers (8-μm 

pore, BD Biosciences, San Jose, CA) in 6-well tissue culture plates according to manufacturer’s 

protocol. Cells were placed in serum-free media 24 hours prior to invasion assay set-up. Cells 

were seeded in a 50/50 mixture of FL to RL cell lines to a total amount of 2x106 cells for non-

invasive cell lines (BFTC-905, RT4, RT112) and 1.5x106 cells for invasive cell lines (TCCSUP, 
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J82, EJ138) per well. Cells were suspended in serum-free media were added to each chamber 

and allowed to invade towards the underside of the chamber for 24h (invasive cell lines) or 48h 

(non-invasive cell lines) at 37˚C. After incubation, remaining cells inside the chamber were 

collected along with cells that have invaded the membrane. FL and RL activities were measured 

using the Dual-Glo Luciferase Assay System (Promega, San Luis Obispo, CA).  

FL signals were normalized to that of RL. Separate controls (invasion of FL cell line) were 

performed for each test condition (i.e. FL_miR cell line, over-expression or knock-down or miR-

200c/141/429) but were pooled into the left bar in the graph for the purpose of simplicity 

(Figures 3.8, 3.9, and 3.10). Each test condition was normalized to the respective individual 

control. A student T-test was performed between each test condition and the individual control.  

 

Cell proliferation assay 

Cell viability was determined at 24, 48, 72, 96, 144 hours by using the CellTiter 96 Aqueous 

One Solution Cell Proliferation Assay kit (Promega) according to the manufacturer’s protocol. 

Absorbance was measured at 490nm. Data are presented as the mean value for octuplicate 

wells.   
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4. Chapter 4: miR-126 inhibits invasion in bladder cancer cells via 

regulation of ADAM9 

 

miR-126 and ADAM9 in cancer 

As discussed in Chapter 3, miR-126 was down-regulated in muscle-invasive T2 tumors 

compared to non-muscle invasive Ta tumors. Overexpression of miR-126 in invasive bladder 

cancer cell lines produced a marked reduction in cell invasion. Conversely, ADAM9 expression 

was significantly higher in T2 tumors than Ta tumors. ADAM9 is a predicted target of miR-126 

via TargetScan and has also been shown to be suppressed by miR-126 in pancreatic cancer 

cells [86].  

ADAMs are membrane-anchored cell surface proteins and members of the metzincin 

superfamily of matrix metalloproteinases (MMPs). Characteristic domains conserved across the 

ADAM family include: an N-terminal signal peptide, a prodomain, a metalloprotease domain, a 

disintegrin sequence, a cysteine-rich region, an EGF-like domain, a transmembrane domain, 

and a cytoplasmic tail [158]. The prodomain maintains the enzyme in an inactive state until it is 

removed by a furin-type proprotein convertase or by autocatalysis; the disintegrin domain has 

also been implicated in facilitating the removal of the prodomain [159]. As proteases, ADAMs 

have been reported to cleave and release the ectodomain of tumor-promoting factors such as 

ligands of the epidermal growth factor receptor (EGFR) and human EGFR (HER) family of 

receptors [158]. Specifically, ADAM9, an 84kDa protein, has been shown to release and 

activate EGF and heparin-binding EGF(HB-EGF) [160]. While ADAM9 expression is ubiquitous 

during mouse development, adam9-/- mice were viable, developed normally, and presented no 

abnormal phenotypes [161]. However, ADAM9  expression has been correlated with 

progression of many human cancers.  
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Elevated levels of ADAM9 have been correlated with breast cancer progression [162] 

and metastases to the liver and brain from colon and lung, respectively [163,164]. A soluble 

form of ADAM9 secreted by hepatic stellate cells has been found to promote colon cancer 

invasion through interactions with 64 and 21 integrins [165]. Inhibition of ADMA9 in prostate 

cancer cell lines resulted in apoptotic cell death [166]. Furthermore, loss of ADAM9 in prostate 

cancer mouse model led to the development of well-differentiated prostate tumors as opposed 

to poorly differentiated tumors in control littermates [167]. To the best of our knowledge, 

functional studies of ADAM9 in the context of bladder cancer has not been examined.  

Experimental Design 

To further investigate the role of ADAM9, we performed ADAM9 knock-down 

experiments in invasive bladder cancer cells followed by the luciferase invasion assay described 

in Chapter 3. Additionally, we stained transwell invasion chambers with DAPI to further visualize 

invasion and validate luciferase assay results. We also assessed ADAM9 expression in a cohort 

of 103 bladder tumors via immunohistochemistry; this is a separate panel of bladder tumors 

independent of the samples used in Chapter 3 microarray studies. 

Results 

1. miR-126 suppresses ADAM9 expression in vitro  

As predicted by TargetScan, miRanda, and miRWalk, miR-126 targets the 3’UTR of ADAM9 

(Figure 4.1A). Invasive bladder cancer cells stably infected with miR-126 displayed a significant 

decrease in ADAM9 mRNA (Figure 4.1B) and protein (Figure 4.1C, D). This confirms that miR-

126 negatively regulates ADAM9 expression in vitro. 
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2. Knock-down of ADAM9 inhibits invasion 

Transient siRNA knock-down of ADAM9 at 25nM was complete in J82 but only 50% in 

EJ138 (Figure 4.2). There was no difference between an siRNA concentration of 25nM and 

50nM.  

 

Figure 4.1 miR-126 targets ADAM9 in bladder cancer cells  

(A) Complementary miR-126 binding sequences in the ADAM9 3’UTR as predicted by 

miRanda, miRWalk, and Targetscan.  (B) ADAM9 mRNA expression in miR-126 infected 

cell lines (n = 3). (C) ADAM9 protein expression in miR-126 infected cell lines. Right, 

densitometric analysis of ADAM9 protein expression level (n = 5) relative to the respective 

FL line. Expression levels are calculated as log2 fold change. (D) Immunofluorescence 

detecting ADAM9 expression in miR-126 infected cell lines. *p < 0.05, **p < 0.005, by 

Student’s T-Test. 
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Transient knock-down of ADAM9 reduced cell invasion at a level comparable to miR-126 

induced inhibition (Figure 4.3A, C) as quantified by the luciferase assay method described in 

Chapter 3. In a separate invasion set-up, we stained the transwell invasion chamber with DAPI 

to provide a qualitative assessment (Figure 4.3B, D). In this alternate set-up, RL cells were not 

mixed into the seeding population, therefore DAPI staining directly corresponded to the amount 

of FL cells that has invaded. Because this method lacks the internal control present in the 

luciferase assay method, the luciferase assay is provides a more rigorous quantitative 

measurement. This method also confirmed that transient knock-down of ADAM9 and 

overexpression of miR-126 suppressed cell invasion by a similar amount.  

 

Figure 4.2 ADAM9 knock-down in invasive cells  

ADAM9 protein expression at 48h after transfection of ADAM9 siRNA and matrigel invasion 

assay in J82_FL (A) and EJ138_FL (B). Right, densitometric analysis of ADAM9 protein 

expression level (n = 5) relative to the respective FL line. Expression levels are calculated 

as log2 fold change. (C) Immunofluorescence detecting ADAM9 expression in cell lines 

transfected with ADAM9 siRNA. *p < 0.05, **p < 0.005, by Student’s T-Test. 
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3. Higher ADAM9 expression levels detected in invasive bladder tumors 

Finally, to examine the prevalence of ADAM9 in human bladder tumors, we assayed the 

expression of ADAM9 in a panel of 103 UCs (Table 8). We observed that ADAM9 expression 

significantly correlated with tumor stage (Figure 4.4A, B). Indeed, the percentage of ADAM9 

positive tumors increased with higher stage (from 44.8% of Ta tumors to 100% of T4 tumors; p 

= 0.022).  

To determine whether ADAM9 has any prognostic significance, we performed Kaplan-Meier 

survival curve. High ADAM9 expression was associated with poor prognosis in patients, with 

 

Figure 4.3 Effect of ADAM9 knock-down in cell invasion 

Effect of ADAM9 knockdown (25nM) on J82_FL (A) and EJ138_FL (C) cell invasion. 

Representative images from FL cell invasion in J82_FL (B) and EJ138_FL (D), stained with 

DAPI. *p < 0.05, **p < 0.005, by Student’s T-Test. 
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both a shorter disease-specific survival (DSS) and overall survival (OS). Patients with a positive 

ADAM9 phenotype had a median DSS of 52.5 months (95% CI 33.1 – 71.9 months), whereas 

patients with a negative phenotype did not reach median DSS (p < 0.130) (Figure 4.4C). 

Although not statistically significant, there is a clear trend that ADAM9 expression predicts a 

worse outcome for DSS. Similarly, patients displaying a positive ADAM9 phenotype had a 

significantly (p = 0.019) lower median OS (34.0 months, 95% CI 24.9 – 43.2 months) compared 

to patients presenting with an ADAM9 negative phenotype, for whom media OS was not 

reached at the current follow-up time (Figure 4.4D). However, multivariate analysis did not 

show ADAM9 to be an independent factor in affecting DSS or OS (data not shown). Therefore, 

stage could be a confounding factor in the Kaplan-Meier analyses since ADAM9 expression has 

a direct correlation with this pathological parameter. A larger cohort of patient data should be 

sampled to confirm this. 

 

 

Table 8 Clinicopathological characteristics of patient cohort. 

Outcome available in 88 out of 103 patients. AWOD: alive without disease, AWD: alive with 

disease, DOD: dead of disease, DOOC: dead of other causes. 
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Discussion 

Metastatic bladder cancer manifests an extremely poor prognosis and is the primary 

cause of patient death [137]. While low miR-126 expression has been associated with an 

invasive phenotype in many tumors, we confirm this trend in bladder cancer and show for the 

first time the invasion suppressive activities of miR-126 in bladder cancer through ADAM9. 

 

Figure 4.4 Prognostic significance of ADAM9 in bladder UCs 

(A) Representative immunohistochemical analyses of ADAM9 in muscle-invasive UCs and 

non-muscle invasive papillary UCs. 100x, scalebar = 200m; 400X, scalebar = 100m. (B) 

Summary ofADAM9 IHC results, *p = 0.022 by 2-distribution. Kaplan-Meier analysis for 

disease-specific survival (p < 0.130) (C) and overall survival (p = 0.019) (D) based on 

ADAM9 expression. Median survival is indicated by dotted red line.  
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In this study, introduction of miR-126 in invasive bladder cancer cells caused a 

significant reduction in ADAM9 mRNA and protein levels. This is consistent with experiments in 

pancreatic cancer cells, where miR-126 was shown to directly target the 3’UTR of ADAM9 [86]. 

We showed previously in Chapter 3 that overexpression of miR-126 inhibited bladder cancer 

cell invasion (Figure 3.10). We were able to reproduce the same level of suppression of cancer 

cell invasion by a transient knock-down of ADAM9.  

Upon ligand-induced receptor dimmerization, EGFR activation stimulates a multitude of 

signaling cascades that results in cell proliferation, survival, angiogenesis, and migration [168]. 

A prominent downstream pathway turned on by EGFR signaling is the PI3K/AKT axis. Although 

up-regulated PI3K/AKT signaling in invasive bladder cancer can be attributed to loss of function 

of PTEN, it is possible that enhanced EGFR activity also contributes to this anti-apoptotic 

pathway. EGFR signaling can be augmented either through activating mutations of the receptor 

or abnormal abundance of either receptor and/or ligand. While overexpression of EGFR has 

been identified in some bladder cancer cases, mutations in EGFR have not been reported [169]. 

Increased expression of ADAM9 would lead to increased ectodomain shedding of EGF, 

releasing the membrane-anchored ligand that would otherwise only engage with EGFRs on the 

same cell or neighboring cell to participate in paracrine signaling. This ultimately augments 

EGFR signaling and subsequently the PI3K/AKT network, as seen in muscle-invasive bladder 

UCs. Consistent with this, we observed elevated ADAM9 levels in muscle-invasive bladder 

tumors compared to non-muscle invasive tumors.  

While ADAM17 (tumor-necrosis factor -converting enzyme) and ADAM10 (Kuzbanian) 

have been well studied, it is unclear what regulates ADAM9 expression [156,158]. It is possible 

that reduced levels of miR-126 in invasive bladder cancer de-repress ADAM9 expression, 

leading to its accumulation. Although our data suggest ADAM9 to have prognostic clinical 

implications, our cohort is too small to perform separate analyses in the different UC stages. 
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Therefore, further studies in larger cohorts of both non-muscle invasive and muscle-invasive UC 

should be performed to validate our findings. 
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Materials and Methods 

Cell culture 

J82 and EJ138 cell lines in addition to each cell line’s derivations (e.g. FL, RL, FL_126) were 

generated and maintained as outlined in Chapter 3. 

 

Quantitative real-time reverse transcription-PCR (qRT-PCR) expression profiling 

QuantiTect Reverse Transcription Kit (Qiagen) was used to convert RNA to cDNA. QuantiTect 

PCR (Qiagen) was used to measure quantitative expression of ADAM9 using the following 

sense and antisense primers: 5'-GTTCCTGTGGAGCAAAGAGC-3', 5'- CCAGCGTCCACCAAC-

TTATT-3'. PCR assays were performed as described by the manufacturer using a Stratagene 

MX3005P PCR system. ACTIN was used for normalization. 

 

Transient transfection and infection 

Transient knock-down of ADAM9 was conducted using the ON-TARGET plus SMARTpool 

siRNA against ADAM9 (Thermo Scientific, Pittisburgh, PA) using Lipofectamine 2000 

(Invitrogen). A final siRNA concentration of 25nM was used.  

293FT cells were transfected with lentiviral or retroviral particles using Lipofectamine 2000 

(Invitrogen). Media from 293FT 48 hours after transfection were collected to infect bladder 

tumor cell lines. Cell lines infected with FUW-Luc were subsequently infected with a pLemiRNA, 

and maintained using puromycin (0.5ug/ml) and geneticin (800ug/ml). Cell lines infected with 

pLPCX-Ren were maintained using puromycin (0.5ug/ml). 

 

Invasion and luciferase assays 

In-vitro invasion assays were carried out using BD BioCoat Matrigel Invasion Chambers (8-μm 

pore, BD Biosciences) in 6-well tissue culture plates according to manufacturer’s protocol. Cells 
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were placed in serum-free media 24 hours prior to invasion assay set-up. Cells were seeded in 

a 50/50 mixture of FL to RL cell lines to a total amount of 1.5x106 cells per well. Cells were 

suspended in serum-free media were added to each chamber and allowed to invade towards 

the underside of the chamber for 24h at 37˚C. After incubation, remaining cells inside the 

chamber were collected along with cells that have invaded the membrane. FL and RL activities 

were measured using the Dual-Glo Luciferase Assay System (Promega). FL signals were 

normalized to that of RL.  

An alternate method of visualizing invasion was established by seeding only FL cells in 24-well 

tissue culture plates of BD BioCoat Matrigel Invasion Chambers (8-μm pore) at 5x104 cells per 

well. Cells were placed in serum-free media 24 hours prior to invasion assay set-up. Cells were 

allowed to invade for 20h at 37˚C. After incubation, a Q-tip was used to remove remaining cells 

in the chamber. Each chamber was fixed in cold 4% paraformaldehyde and washed in PBS. 

The membrane at the bottom of each chamber was excised and mounted onto glass coverslips 

using ProLong-Gold with DAPI (Invitrogen). 

 

Immunoblotting 

For immunoblotting, cells were lysed in RIPA lysis buffer (Boston BioProducts) and protease 

inhibitor cocktail (Roche). Proteins were resolved by 4-20% SDS-PAGE and transferred to a 

nitrocellulose membrane. Blots were blocked with 5% non-fat dry milk and probed with primary 

antibodies, as follows: ADAM9 rabbit monoclonal (2099; Cell Signaling, Danvers, MA), and 

Actin rabbit monoclonal (A2066; Sigma-Aldrich). Horseradish peroxidase (HRP)-conjugated 

anti-rabbit antibody (GE healthcare, Pittsburgh, PA) was used. Reactive bands were visualized 

using ECL plus Western blotting detection reagents (GE Healthcare).  

 

TMAs of bladder cancer samples 



75 
 

 
 

To perform ADAM9 expression analysis in UC, we used three different tissue microarrays 

(TMAs) from two different institutions (Columbia University, New York and Centro Nacional de 

Investigaciones Oncologicas (CNIO), Spain). The TMAs were built following institutional review 

board (IRB) approved protocols. From each specimen, triplicate tissue cores with diameters of 

0.6mm were represented. Follow-up clinical information of the 103 patients included in these 

TMAs and their clinicopathological characteristics are summarized in Table 8. Tissues analyzed 

corresponded to different stages of bladder cancer from Ta to T4.  

 

Immunohistochemistry analysis 

Immunohistochemical analyses were performed on three TMAs (mentioned above) following 

standard avidin-biotin procedure as outlined in Chapter 2. To confirm the sensitivity and 

specificity of antibodies (ADAM9 rabbit monoclonal (2099; Cell Signaling)), we ran positive and 

negative controls in parallel with the TMAs. ADAM9 expression was characterized by 

cytoplasmic staining. Immunoreactivity was scored by assessing the percentage of cells that 

displayed a positive immunostaining profile [from undetectable (0%) to homogeneous 

expression (100%)], as well as the intensity of expression [from negative (0) to high intensity (2)]. 

Average values of the representative cores from each arrayed sample were obtained and only 

cases that displayed a high intensity of expression in more than 10% of the tumor cells were 

considered positive for statistical purposes. 

 

Statistical analysis 

The associations between protein expression values and stage were assessed using the χ2 test. 

The association of ADAM9 expression with disease-specific survival and overall survival were 

assessed using the log-rank test. Survival curves were plotted using standard Kaplan-Meier 

methodology. A two-sided value of p<0.05 was considered statistically significant. Statistical 

analyses were carried out with SPSS v19.0 (SPSS Inc., IL).  
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5. Chapter 5: Conclusions and Future Directions  

 

A common signature clusters CIS with normal UM cells  

Bladder tumors are not homogeneous. The development of low-grade superficial tumors 

with frequent recurrence verses high-grade tumors that often become invasive follows distinct 

courses of tumor progression. Similarly, normal bladder urothelium contains two phenotypically 

different cell types. Contrary to the process by which epithelium development in the skin occurs, 

whereby stem cells reside in the basal layer and differentiates into subsequent superficial layers, 

UM and B/i cells in the urothelium may stem from separate progenitors. Unlike the pseudo-

stratified urothelium, the epidermis maintains p63 expression throughout all layers, and there is 

no biomarker that can distinguish one cell from another. Rather, the urothelium shares more 

similarities with epithelium of the breast and prostate. Superficial luminal cells in the breast and 

prostate, like UM cells in the bladder, are negative for p63 expression, while basal-like 

myoepithelial cells express p63, similar to the B/i cells in the bladder [170,171]. In vitro colony 

assays have identified three independent progenitor groups: luminal-restricted, myoepithelial-

restricted, and bipotent [172]. While luminal and myoepithelial developed into the respective cell 

types, the bipotent collection of cells formed luminal clusters surrounded by myoepithelial cells 

[172]. Flow cytometry-based approaches isolated a multipotent mammary population in adult 

mouse that was able to form an entire mammary gland in vivo [173]. Immunohistochemical 

analyses of these putative mammary epithelial stem cells revealed discrete cell fractions that 

expressed either basal (smooth muscle actin and CK4) or luminal (CK18) biomarkers, but not 

both [173]. This suggests a hierarchical structure by which a bipotential progenitor develops into 

lineage-restricted progenitors that then give rise to luminal and myoepithelial cells. While adult 

mammary tissue has a large regenerative potential, where it can expand and regress during 

pregnancy and each menstrual cycle, the human prostate epithelium is normally quiescent [171]. 
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The prostate regresses following castration, but androgen treatment can restore the organ to its 

original size [171]. Evidence exists for both a basal and a luminal location for prostate epithelial 

stem cell. A fraction of prostate epithelial cells expressing basal cell markers was isolated by 

flow cytometry and shown to reconstitute tubular structures in vivo that contained both basal 

and luminal cell types [174]. Alternatively, lineage tracing studies identified a luminal epithelial 

cell population that express the homeobox gene Nkx3.1, the earliest marker for prostate 

epithelium, in the absence of androgens [175]. These cells gave rise to both basal (CK5, p63) 

and luminal (CK18) cells in vivo [175]. These studies suggest that prostate epithelial lineage-

specific progenitors may maintain some bipotentiality to develop into the other cell type. As seen 

in breast and prostate progenitor development, a similar situation may exist in the bladder 

urothelium, where luminal-like UM cells and B/i cells are derived from independent precursors. 

Understanding normal development is central in understanding the origin of bladder cancer.  

To our knowledge, we are the first to examine miRNA expression in pure populations of 

UM and B/i cells. Five miRNAs were differentially expressed between UM and B/i cells; in situ 

hybridization validated the expression of miR-133a and miR-139-3p in UM cells and miR-142-3p 

in B/i cells. It remains unknown whether these miRNAs affect urothelial cell-fate determination 

or are a by-product of cell differentiation. One method to determine the role of these miRNAs is 

by lineage tracing. In theory, cells that express the miRNA of interest can be marked using a 

genetically engineered mouse line in which Cre recombinase is driven by the endogenous 

promoter for the host gene the miRNA resides on. The Cre-expressing mouse can be crossed 

with a mouse carrying a reporter, such as green fluorescent protein (GFP), whose expression is 

turned on following Cre-induced recombination. GFP is then expressed wherever there is Cre 

recombinase. Cells that express the miRNA promoter should be green. A preliminary three-

layered urothelium develops by embryonic day 15 in mice [176]. The presence of green cells 

during urothelial formation and prior to differentiation into UM and B/i layers would suggest that 
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the miRNA is involved in cell-fate determination. On the other hand, if cells only turn green after 

a well-defined urothelium has formed, then the miRNA is likely a consequence of differentiation.  

While the reporter would reflect endogenous levels of miRNA expression, one drawback 

is that knock-in of Cre recombinase effectively generates a null allele for the miRNA of interest 

and disrupts gene dosage. Another limitation with this approach is the lack of definitive miRNA 

promoters. While mir-139-3p is located in the intron of PDE2A (phosphodiesterase 2A, cGMP-

stimulated) and may be co-transcribed with its host gene, recent studies suggest that up to one-

third of intronic miRNAs (i.e. intragenic) do not share the same transcription initiation regions as 

their host [177,178]. mir-133a and mir-142-3p reside in non-coding transcripts, further signifying 

that miRNAs may have their own promoters. Chromatin immunoprecipitation experiments 

characterized putative miRNA transcription initiation sites as nucleosome-free regions as far as 

40kb upstream of the pre-miRNA sequence [177,178]. However, there is no conclusive 

evidence of where a miRNA promoter may be located and further studies are needed in 

elucidating transcriptional regulation of miRNAs. Additionally, assuming that mir-139-3p is co-

transcribed with PDE2A, another problem is how to separate the effect of the gene product from 

that of the miRNA if both are driven by the same promoter. To tease apart the role of miR-139-

3p from PDE2A in mice, mir-139-3p can be removed, since it is located in an intron, without 

disturbing Pde2a expression, in a manner similar to deleting only the mir-15a~16 cluster from its 

host gene Dleu2 [71].  

An alternative strategy to lineage tracing is to conditionally knock-down the miRNA of 

interest in the bladder, as previously described with mir-21 knock-out studies [66]. If the deletion 

of mir-142-3p produces the same bladder phenotype as the p63-/- mice, where only the UM 

layer exists, it would suggest a differentiation role for the miRNA. However, a lack of phenotype 

does not necessarily imply the miRNA as no role in determining cell-fate. Compensatory 

mechanisms may be activated to correct for the loss of function of the miRNA. This is seen in 

mice that still produce urothelial plaques even in absence of UPKIII. UPKIII deletion induced a 
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five-fold increase in UPKIb expression, and two-fold increase in UPKIa and UPKII expression 

[113]. Therefore, expression levels of other B/i-specific miRNAs, such as miR-199b-5p and miR-

221, should be examined following mir-142-3p knock-out in the bladder to uncover any 

functional redundancies.  

Another aspect of our study was to investigate the relationship between CIS and normal 

urothelium. CIS tumors are high-grade and frequently become invasive. Unfortunately, unlike 

papillary tumors that protrude into the lumen, CIS is embedded within the urothelium and is 

difficult to detect in cystoscopies. Although gene expression abnormalities in CIS have been 

reported [179], alterations in miRNA expression between normal urothelium and CIS were 

unknown. In line with previous reports that miRNAs can classify tissues based on lineage, our 

study revealed that cluster analysis of miRNA expression grouped samples based on 

developmental origin (endoderm versus mesoderm). While CIS is epithelial in origin and is 

predicted to cluster separately from the stromal compartment, it is highly unexpected that CIS 

would display the closest resemblance to normal UM cells in miRNA expression. Gene 

expression, on the other hand, segregated samples based on histological variation. More than 

half of the genes differentially expressed across CIS, UM, and B/i were up-regulated in CIS and 

were associated with pathways involved in cancer. Given the high degree of similarity between 

CIS and UM cell, both in genetic profile and histology, and that the UM cell is the only normal 

cell in the body that can be multi-nucleated, we postulate that CIS may arise from 

transformation of UM-like precursors (Figure 5.1). Interestingly, miRNA expression levels 

across different UC stages and grades shared the same pattern as those observed in UM and 

B/i cells. Higher levels of B/i specific miRNAs (miR-142-3p, miR-199b-5p, and miR-221) were 

observed in papillary tumors relative to other tumor stages, while UM specific miRNAs (miR-

133a and miR-139-3p) were generally expressed at greater amounts in CIS and muscle-

invasive (T2) tumors (Figure 5.2).  
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Figure 5.1 A proposed model of urothelial development and tumorigenesis 

Different urothelial progenitor cells may give rise to two independent cell lineages, UM and 

B/i. UM cells are characterized by the expression of CK18, CK20, Lewis X factor, and UPK. 

In contrast, B/i cells express CK5, CK10, CK14, mature A/B blood group antigens, and p63. 

Transformation of UM and B/i precursors may result in the development of CIS and 

papillary tumors, respectively.  

 

Figure 5.2 Expression levels of five urothelium-specific miRNAs in UCs 

miRNA levels in UC tumors are acquired from miRNA microarray results.   
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Transgenic mouse models may be used to test the our hypothesis that the two pathways 

of bladder tumorigenesis evolve from oncogenic changes acquired by distinct UM and B/i 

precursors. The aforementioned p63-/- mice is non-viable due to the lack of epidermis, however, 

a small bladder exists that contains a single layer of UM-like cells [13,111]. A UPKII-driven Cre 

recombinase mouse can be crossed with a p63flox/flox to conditionally delete p63 in the bladder. 

Provided that the bladder is still functional, conditional p63-/- mice can be fed N-butyl-N-(-4-

hydroxybutyl)nitrosamine (BBN) or N-methyl-N-nitrosourea (MNU), two carcinogens commonly 

used to induce UCs in vivo [180]. Following our model, since B/i cells do not form in p63-/- mice, 

BBN or MNU should only induce the formation of CIS tumors. However, BBN caused primarily 

muscle-invasive tumors in mice [181], and while treatment with MNU produced multi-focal 

lesions in rats that were mainly non-muscle invasive tumors, further experimentation is needed 

to determine its effect in mice [182]. Therefore, development of CIS tumors in conditional p63-/- 

mice from BBN may not provide conclusive evidence that UM cells give use to CIS. This can be 

addressed by examining whether papillary tumors form in UPKIII-/- and ARF-/- mice, discussed 

below. 

UPKII-/- and UPKIII-/- mice developed a urothelium that lacked UM cells. While UPKII-/- 

mice died approximately 10 days after birth from renal defects [114], UPKIII-/- mice enjoyed a 

normal lifespan albeit with a compromised leaky urothelium due to reduction in urothelial 

plaques [113]. Following our hypothesis, BBN- or MNU-induced tumor formation in UPKIII-/- 

should lead to the development of only papillary tumors. Alternatively, bladder tumorigenesis in 

ARF-/- mice may also be used to test our model. p19ARF expression is confined to UM cells 

(unpublished data). ARF-/- mice developed a broad range of tumors spontaneously, including 

fibrosarcoma, salivary gland carcinoma, and lymphoma [183]. However, while bladder 

abnormalities were not noted, bladder histology in these mice was not characterized. It would be 

interesting to determine whether UM cells are present in ARF-/- mice. If only B/i cells subsist, 
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then treatment of ARF-/- mice with BBN or MNU should give rise to papillary tumors in the 

bladder, according to our model.  

In summary, our findings support a novel model of urothelial tumorigenesis in which UM 

and B/i originate from different cell lineages, which may account for the divergent pathways of 

bladder tumorigenesis. Further studies are needed to identify and characterize these putative 

urothelial progenitor cells in order to understand their contribution to bladder tumorigenesis.  

 

Characterization of miRNAs differentially expressed between muscle- 

invasive and non-muscle invasive UCs 

The management of bladder cancer requires intensive physician-patient surveillance and 

costly procedures due to the high risk of recurrence in superficial papillary tumors, the most 

common form at initial presentation, thus making this one of the most expensive neoplasms to 

treat [16]. While the majority of high-grade CIS tumors progress to invade the musculature 

because it shares many genomic alterations as muscle-invasive tumors, it remains largely 

unknown the genetic processes that promote the progression of low-grade papillary tumors to a 

muscle-invasive phenotype. Patients with muscle-invasive and metastatic bladder tumors have 

a very poor prognosis. Therefore, identifying miRNAs and genes that participate in the transition 

from papillary to invasive tumors is necessary for development of effective therapies. 

In line with previous studies [122,184], we found reduced expression of miR-200 family 

members (miR-200c, miR-141, miR-429) in invasive tumors. Re-expression of miR-200c was 

able to decrease cell invasion by two-fold in invasive bladder cancer cells. Of note, concomitant 

expression of the three miR-200 family members produced a cumulative effect in J82 and 

decreased cell invasion by four-fold. This could be explained by anti-proliferative effects of miR-

429 and miR-200c in J82 cells. In addition, the unique molecular profiles of J82 and EJ138 

could account for the differences observed in each cell line’s response to variations in the 
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expression of miR-200 family members. For instance, immunohistochemical data in our lab 

show that J82 has the normal wild-type HRAS while EJ138 has the activated mutant HRASV12.  

We also identified two miRNAs previously unassociated with bladder cancer with 

opposing effects: miR-198 and miR-126. miR-198 is located on chromosome 3q (3q13.33), a 

fragment that is amplified in up to 24% of UCs [141]. miR-198 was up-regulated in muscle-

invasive UCs and its overexpression in non-invasive bladder cancer cells, RT4 and RT112, 

increased cell invasion by two- to six-fold. A combination of miR-200 family knock-down and 

miR-198 overexpression produced a greater increase in cell invasion than either condition alone. 

Interestingly, a statistically significant increase in BFTC-905 cell invasion was only observed 

with concurrent miR-200 family knock-down and miR-198 overexpression. This is the first 

reporting of a tumor invasive role of miR-198 in vitro (Figure 5.3). Since invasion is a multi-

genic phenotype, it is unclear whether miR-198 and miR-200 operate in close proximity in a 

signaling pathway. This is reflected in the results from bladder cancer cell lines. While the effect 

of miR-198 addition and miR-200 knock-down appear additive in RT4, suggesting the miRNAs 

may operate in separate pathways, the increases in invasion in BFTC-905 and RT112 are non-

additive, which is indicative of the miRNAs functioning in the same pathway. It is unlikely that 

miR-198 and miR-200 share the same gene targets since they affect invasion in opposite ways. 

Additional in vitro experiments should be done to determine if inhibition of miR-198 in invasive 

cells can decrease invasion, and whether an additive or a cooperative effect with the miR-200 

family is observed (i.e. knocking-down miR-198 in J82_FL_200c cells).  
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Contrary to miR-198, miR-126 was down-regulated in muscle-invasive UCs and its 

restoration in invasive bladder cancer cells decreased cell invasion by two-fold. miR-126 resides 

on chromosome 9q, a region that frequently undergoes heterozygous deletion in superficial 

papillary tumors [16,20]. It is unknown whether both copies of the 9q region are lost in muscle-

invasive UCs. In addition to suppressing invasion, miR-126 also reduces J82 proliferation. Both 

roles have been observed in tumor cells previously; miR-126 inhibits pancreas and liver cancer 

cell invasion in vitro with no effect on proliferation [86,87] and causes regression of overall 

tumor growth in an orthotopic breast cancer model [85]. Future experiments can be done to 

investigate apoptotic effects of miR-126 and if inhibition of miR-126 promotes invasion in non-

invasive bladder cancer cells.   

To examine whether miR-198 or miR-126 promotes tumor invasion in vivo, orthotopic 

transurethral inoculation of miRNA-overexpressing cell lines into nude female mice can be 

performed following previously published protocols [185,186] (Figure 5.4). Since the cells 

 

Figure 5.3 Potential regulation of invasion by miR-200 and miR-198 in bladder UCs 

An increase in the expression of miR-200 family members is sufficient to reduce invasion of 

bladder cancer cells. Down-regulation of miR-200 promotes invasion of non-invasive 

bladder cancer cells, an effect that is augmented by addition of  miR-198.  
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express firefly luciferase, tumor formation and development can be monitored in real-time using 

non-invasive bioluminescent imaging as previously described [186]. RT4 behaves as a non-

invasive papillary tumor in mice [187]. Current studies in our lab is ongoing to characterize in 

vivo the tumor forming capacity of BFTC-905, RT112, J82 and EJ138. Based on in vitro results, 

RT4_FL_198, BFTC-905_FL_198, and RT112_FL_198 are expected to form invasive and 

metastatic tumors. Conversely, miR-126 is expected to revert J82 and EJ138 to a non-invasive 

phenotype. If orthotopic experiments confirm the oncogenic and tumor suppressive roles of 

miR-198 and miR-126, respectively, the next step would be to examine whether 

pharmacological manipulations of miRNA expression in an invasive bladder cancer model can 

prevent invasion and metastasis. 

There are two transgenic models that reproduce the development of invasive and 

metastatic bladder cancer in mice: the bladder-specific double knock-out of p53 and Pten via 

surgical delivery of Cre recombinase [38], and the inactivation of p53 and Rb through UPKII-

driven expression of SV40T [134]. Similar to the silencing of miR-10b in a mouse mammary 

tumor model using antagomirs [89], an antagomir against miR-198 can be designed and 

administered intravenously into the metastatic murine models described. Inhibition of miR-198 

should prevent tumor invasion. Likewise, systemic delivery of lipid-based synthetic miR-126 

should also prevent tumor invasion. Construction of a miR-126 mimetic can follow as previously 

described in the transgenic lung cancer model where miR-34a was complexed with a neutral-

lipid emulsion [99].  

In conclusion, we have identified two miRNAs – miR-198 and miR-126 – involved in the 

progression of bladder UCs. Increased miR-198 is associated with certain cancers, however, we 

are the first to show an oncogenic effect of miR-198 in vitro. Furthermore, we demonstrate a 

putative interaction between miR-198 and the miR-200 family. While a tumor suppressive role of 

miR-126 has been observed in other cancers, we are the first to provide evidence of such a role 
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in bladder cancer. Future experiments to investigate the therapeutic potential of these miRNAs 

in vivo are warranted.  

 

 

miR-126 targets ADAM9 in bladder cancer cells to inhibit invasion 

Our mRNA expression array identified increased ADAM9 in muscle-invasive tumors 

compared to non-muscle invasive papillary tumors. This is consistent with other findings that 

report ADAM9 is overexpressed in invasive carcinomas [162-164,166]. In a separate panel of 

103 bladder tumors, we observed high ADAM9 expression in 82.7% of muscle-invasive bladder 

tumors (>T2) and only 50.4% of non-muscle invasive papillary tumors (Ta and T1). Moreover, 

 

Figure 5.4 Orthotopic invasion mouse model 

Five to eight weeks old female SCID mice can be used. Parental and cell lines 

overexpressing miR-198 or miR-126 would be injected into the bladder via the urethra with 

an angiocatheter. Inoculated cells are visualized in real-time through bioluminescent 

imaging following intraperitoneal administration of luciferin to monitor tumor formation and 

invasion in vivo. Distinct bioluminescent foci at distant sites are indicative of secondary 

metastatic tumor formation. 
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for the first time, we observed ADAM9 expression to be a marker of poor prognosis in UC 

patients. Patients with elevated levels of ADAM9 displayed a shorter overall survival and 

disease-specific survival.  

ADAM9 is a predicted target of miR-126 in silico and this has been verified in pancreatic 

cells [86]. Inhibition of ADAM9 by siRNA in invasive bladder cancer cells suppresses cell 

invasion by two-fold. To further assess whether miR-126 prevents acquisition of invasive traits 

through suppressing ADAM9, restoration of functional ADAM9 should reverse the effects of 

miR-126 and reestablish cell invasive properties. As such, a lentiviral ADAM9 construct can be 

introduced into J82_FL_126 and EJ138_FL_126 cells. Re-expression of ADAM9 in miR-126 

overexpressing cells should increase invasion back to parental cell levels in the invasion 

luciferase assay. Similarly, if miR-126 reduces tumor invasion and metastasis in the mouse 

orthotopic model, overexpression of ADAM9 should revert J82_FL_126 and EJ138_FL_126 

tumor cells back to an invasive phenotype.  

Another method to verify the invasive effects of ADAM9 would be to administer selective 

ADAM9 inhibitors into J82 and EJ138 cells. To attribute the potential decrease in invasion to 

ADAM9, the ADAM9 siRNA knock-down cells, J82_FL_126 cells, and EJ138_FL_126 cells 

should not be affected by inhibitor treatment. ADAMs are zinc proteases, therefore many ADAM 

inhibitors contain a zinc-binding group, usually hydroxamate, to chelate the catalytic zinc ion in 

the active site [156]. Several specific inhibitors to ADAM17 and ADAM10 have been described. 

Compound INCB3619 (Incyte Corporation) has been shown to block the release of ADAM17 

and ADAM10 HER ligands: TGF-, HB-EGF, amphiregulin, and heregulin [188]. INCB3619 has 

also shown to synergize with paclitaxel and cisplatin in mouse xenograft models of breast 

cancer and head and neck cancer, respectively [188]. In a separate study, INCB3619 used in 

combination with gefitinib or paclitaxel was able to reduce tumor growth in mice bearing non-

small cell lung cancer xenografts [189]. INCB7839 (Incyte Corporation), a similar compound to 

INCB3619, was evaluated in a 28-day phase 1b study  to treat patients with chemorefractory 
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cancers [190]. Plasma levels of HER and EGFR ligands heregulin and TGF-, both associated 

with poor prognosis, were reduced in patients. Six out of 20 subjects displayed disease 

stabilization two months after therapy. The drug was generally well tolerated with minor side 

effects (mild diarrhea) and no significant toxicities [190]. Another selective inhibitor of ADAM17, 

WAY-022 (Wyeth-Aherst) suppressed DNA replication and cell proliferation in colorectal cancer 

cells [191].  

Four compounds have been shown to target ADAM9. The mouse prodomain of ADAM9 

(proA9; amino acids 24-204) is a competitive inhibitor of human ADAM9 [192], while Rav-18 is a 

humanized monoclonal antibody against ADAM9 (Raven Biotechnologies, now a subsidiary of 

Macrogenics, San Francisco) [193]. While these two compounds are highly specific, they are 

not commercially available. The other two ADAM9 inhibitors, CGS27023 (GlaxoSmithKline, 

Stevenage, UK) and batimastat (Sigma-Aldrich), are broad-spectrum MMP inhibitors [194]. 

These are not as desirable because they are associated with musculoskeletal side effects and 

may inadvertently target protective MMPs such as MMP3 and MMP8, the inhibition of which 

could have pro-tumorigenic effects [195]. Unlike other members of the ADAMs family, such as 

ADAM17 and ADAM10, ADAM9 is not inhibited by tissue inhibitors of metalloproteinases 

(TIMPs) [194]. Therefore, CGS27023 and batimastat can be administered into J82 and EJ138 

as a proof-of-principle experiment to test whether drug-induced inhibition of ADAM9 reduces 

invasion. However, use specific ADAM9 inhibitors, proA9 and Rav-18, would be preferred in 

clinical trials.  

Another aspect to examine is tumor-stromal interdependence. It has been suggested 

that MMPs are secreted by stromal cells surrounding the tumor as opposed to the invading 

tumor [195]. For instance, ADAM9 expression was localized to stromal liver myofibroblasts, 

particularly at the invasive front, in human liver metastases, and secretion of soluble ADAM9 by 

hepatic stellate cells promoted colon cancer cell invasion in vitro [165]. We detected ADAM9 

expression predominantly in tumor cells, but the surrounding stroma also exhibited some 
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ADAM9 positivity. Therefore, systemic delivery of a specific ADAM9 inhibitor in the invasive 

bladder orthotopic model should also be performed. Based on our studies, we provide a 

rationale for the therapeutic inhibition of ADAM9 in aggressive UCs.  
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