
When a caregiver needs to act quickly because of a
patient’s clinical status, a succinct overview high-
lighting important events (e.g., that the patient was
hypertensive) can communicate information more
efficiently than an exhaustive log of every vital sign,
procedure, and laboratory result over a length of
time. For example, a single sentence that mentions an
inferred episode of hypertension occurring during 
a bypass operation could effectively summarize what
would otherwise be an overwhelming number 
of low-level raw blood pressure readings gathered
during the operation (1,080 readings for the average
five-hour bypass operation).1,2 Both brevity and
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Intraoperative Inferences for
Automated Health Care
Briefings on Patient Status
After Bypass Surgery

A b s t r a c t Objective: The authors present a system that scans electronic records from cardiac
surgery and uses inference rules to identify and classify abnormal events (e.g., hypertension) that
may occur during critical surgical points (e.g., start of bypass). This vital information is used as the
content of automatically generated briefings designed by MAGIC, a multimedia system that they
are developing to brief intensive care unit clinicians on patient status after cardiac surgery. By 
recognizing patterns in the patient record, inferences concisely summarize detailed patient data. 

Design: The authors present the development of inference rules that identify important information
about patient status and describe their implementation and an experiment they carried out to 
validate their correctness. The data for a set of 24 patients were analyzed independently by the 
system and by 46 physicians. 

Measurements: The authors measured accuracy, specificity, and sensitivity by comparing system
inferences against physician judgments, in cases where all three physicians agreed and against the
majority opinion in all cases.

Results: For laboratory inferences, evaluation shows that the system has an average accuracy of 98
percent (full agreement) and 96 percent (majority model). An analysis of interrater agreement, 
however, showed that physicians do not agree on abnormal hemodynamic events and could not
serve as a gold standard for evaluating hemodynamic events. Analysis of discrepancies reveals 
possibilities for system improvement and causes of physician disagreement. 

Conclusions: This evaluation shows that the laboratory inferences of the system have high 
accuracy. The lack of agreement among physicians highlights the need for an objective quality-
assurance tool for hemodynamic inferences. The system provides such a tool by implementing 
inferencing procedures established in the literature.
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identification of important events can be achieved by
recognizing relevant patterns in the patient’s record
that represent illness severity. However, if these
inferences are wrong, the summary can be useless or
even harmful. The research we describe here
addresses the development and evaluation of infer-
ence rules that identify important information about
the patient’s status to include in a summary.

We are carrying out our work on inferences in the
context of MAGIC (multimedia abstract generation of
intensive care data), an experimental system that gen-
erates multimedia presentations automatically to
explain a cardiac patient’s postoperative status to
caregivers.1,2 These presentations are based on
detailed medical data obtained during the patient’s
cardiac surgery and are intended to inform personnel
in the cardiac intensive care unit (ICU) of the patient’s
status prior to their arrival from the operating room
(OR). The transfer of an anesthetized and ventilated
patient is a critical event that entails a high degree of
risk. Notifying ICU personnel in advance of the
patient status and impending transfer minimizes
delays in therapy.3

Patient status at critical points4 represents information
that is necessary for continued care of the patient in
the ICU and for improvement in individual patients’
outcomes, as shown by mortality studies5 and the
resultant severity of illness measurements developed
by the New York State Heart Association.6 Without
such information, care may be inappropriate or

delayed.3 Because patients are aggressively treated in
the OR, those with derangements in physiologic val-
ues should be considered nonresponders to therapy,
or “treatment failures,” heightening the need to con-
vey problems to subsequent care providers.7

A key component of MAGIC is its set of medical
inference rules. These rules identify patterns in the
patient’s record, from which they infer information
that can be used to describe the patient’s status more
concisely, as shown in Figure 1.1,2 In this paper, we
present the inference rules that we designed and
describe an experiment to validate their correctness.
Our inference rules operate in real time, identifying
abnormal events  from numeric data in current cases,
but they can also be used on historical cases. Our
experiment compares system performance on a set of
historical cases with performance of a group of resi-
dents and attending physicians on the same cases.
The physicians were provided with the same patient
data given to the system and asked to identify
whether the abnormal conditions that the system
tracks occurred.

Background

While many researchers study the integration of indi-
vidual abnormalities to judge the overall severity of
patients’ conditions,8 our focus is on communication
of abnormalities and severity to clinicians. When a
cardiac patient arrives in the ICU after surgery, a
variety of information about the patient’s condition
and status must be summarized for the ICU medical
team. This summary is usually given orally by a
physician from the OR, the anesthesia resident, to
another physician and nurse in the ICU. Some critical
information about the patient is provided by tele-
phone during the operation, but this information is
cursory and OR physicians are rushed. In current
practice, the information that has been conveyed is
not easily accessible to a clinician who is responsible
for the patient‘s care but was not present at the brief-
ing. Therefore, as nursing shifts change and new
medical staff are added, these clinicians must review
the anesthesia chart along with other material in the
patient record. 

Our goal in developing MAGIC is to replace the tele-
phone call from the OR with an automatically gener-
ated briefing that provides the full information given
in the ICU briefing. This will supplement, rather than
replace, the ICU briefing, providing information ear-
lier so that ICU clinicians have time to prepare.3

MAGIC can also be used to replay the briefing for cli-
nicians who missed it. MAGIC offers the potential to
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F i g u r e  1 MAGIC-generated response including graph-
ics and speech.



provide a consistent, standard set of information for
each patient, offsetting the possibility that a resident
may forget to report to the ICU staff critical incidents
that require postoperative follow-up.

MAGIC is unique in its ability to determine automat-
ically the content and form of a briefing on patient
status, including the sentence structure and wording
of the language,9 the graphic representations,10 the
intonation of the speech,11 and the coordination of
the different media in a single briefing.1,12 Figure 1
shows a portion of MAGIC’s multimedia output. In
this context, inferencing plays a critical role in deter-
mining what is important to communicate. Given
that the resulting briefing must be concise, MAGIC
must select from a large quantity of information on
the patient only information that is critical to the
patient’s ongoing care. This places demands on the
inferencing process above and beyond those placed
on traditional expert systems, requiring reasoning
over time, limiting information, and linking it to
events that can be communicated (i.e., critical time
points). In the past, medical inferencing has been
used primarily to suggest diagnoses, recommend
practice, and provide decision support rather than to
select information to communicate.13,14

Although communicating the existence and degree of
abnormalities in physiologic parameters is important
at any time during cardiac surgical procedures, there
are several critical points at which transmitting the
status of this information to subsequent caregivers is
vital.5,15 The four critical points investigated here are
induction, skin incision, start of bypass, and end of
bypass. Induction (or intubation) is when the patient
is anesthetized and mechanically ventilated. Skin
incision initiates the onset of surgical stimulation and
stress. During cardiopulmonary bypass, the heart is
stopped and blood pressure is controlled by a
mechanical pump. Start of bypass refers to the point
when this begins, and end of bypass is the time when
the patient is taken off the pump. These milestones
constitute reference points4 at which surgical
processes commonly induce lability in heart rate,
blood pressure, and laboratory test results. 

Other researchers have developed systems to scan
electronic surgical records and report incidents.15

However, their focus was on outcome instead of com-
munication. They did not link incidents to critical
points, and they used higher thresholds for abnormal-
ity than we do. In our experience, this approach miss-
es events that, although more difficult to detect,
should be communicated when they occur at a critical
point. For example, hypocalcemia following bypass is
far more important than hypocalcemia at any other

point in the case.16 An ionized calcium concentration
below 0.7 mcg/dL is considered hypocalcemic. 

To determine when an event is abnormal, we use
severity-of-patient-illness scores developed previ-
ously, such as the Acute Physiologic and Chronic
Health Status Evaluation (APACHE III),5,8 Multi-organ
System Illness Score (MSIS),7 and the therapeutic
Intervention Severity Score (TISS).17 These scores
have been used individually or in combination for
many years for the prognostic scoring of surgical and
critically ill patients as well as for stratification of
patient illness severity.18 In this paper, the existence
and extent of physiologic derangement during
bypass surgery was assessed using APACHE III, MSIS,
and intraoperative thresholds19 representing abnor-
mality for blood pressure, heart rate, arterial blood
oxygen (both PO2 and saturation), pH, potassium,
glucose, hematocrit, and ionized calcium (see Table
1). Our use of these multiple scores is similar to the
use of composite outcome scales, such as the
American Society of Anesthesiology (ASA) Physical
Status16 and the MSIS,7 which allow quantification of
complex clinical phenomena that cannot be ade-
quately described by a single clinical or biochemical
measure.

System Description

The system architecture for MAGIC, shown in Figure
2, shows that during the course of a cardiac opera-
tion, information is automatically collected using the
LifeLog data acquisition system (Modular Instru-
ments Inc.), which is part of the existing information
infrastructure in the cardiac OR at New York
Presbyterian Hospital. It polls medical devices
(Hewlett Packard Merlin monitors, Ohmeda anesthe-
sia machines, and saturation monitors) every 50 sec-
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onds, recording indicators of patient status, includ-
ing vital signs, inhaled anesthetics, and ventilation
parameters. Bolus drugs, postoperative drugs, labo-
ratory results, intravenous lines, information about
devices such as a pacemaker, and data from echocar-
diograms are manually entered by the anesthesiolo-
gist using the LifeLog interface. Surgical events such
as time of intubation, skin incision, and start and stop
of bypass are also entered manually.

At the end of the operation, the collected data are
downloaded into an Oracle database, for easy access
using a standard query language. MAGIC’s inference
engine, which we developed for the purpose of gener-
ating multimedia briefings, scans heart rate and blood
pressure readings, for which values are available at 50-
second intervals, and laboratory results, for which val-
ues for one to ten tests are available before  the start of
bypass and after the end of bypass. The inference
engine applies a set of inference rules to determine
whether any abnormal events occurred within a 20-
minute window before or after any of the four critical
time points, determining the time interval of the event
(i.e., start and stop times) and identifying drugs that
were given. Any database entry labeled as DRUG is
extracted; typical drugs include pressors (e.g.,
phenylephrine, ephedrine) and depressors (e.g.,
esmolol, nitroglycerine). This yields eight possible
time periods (one before and one after each critical
point) during which abnormalities are detected and
reported, if they occur. 

For the rare cases in which the patient goes on and off
bypass multiple times, we currently use the first on-
bypass and the last off-bypass times, although it
would be relatively easy to include all on and off
bypass times if we found that this were preferable.
This inferred information is then stored in MAGIC’s
database, along with other extracted data such as
demographics, medical history, and drugs given, to
be used as the content for a multimedia briefing. At
the time of the inferencing experiments reported
here, there were no facilities for automatically trans-
ferring data from the OR to the Oracle database at the
end of each operation. Instead, information for a set
of patients could be transferred periodically. 

For the experiment, information on a test group of a
month’s worth of concurrent patients was stored in
the database once, and we evaluated MAGIC on this
test set. MAGIC has since been integrated into the
online information infrastructure  in the cardiac OR
at New York Presbyterian Hospital, although it is not
yet deployed. It runs in a networked environment
with full access to the OR database. Information on a

patient is automatically stored in the database as
soon as the operation is complete.

The inference engine can find two classes of abnormal
events: those relating to hemodynamics and those
indicated by laboratory results, both described below.
Hemodynamic inferences identify episodes of
hypotension, hypertension, bradycardia, and tachy-
cardia. Laboratory inferences identify acidosis, alkalo-
sis, hypercardia, hypoxia, low saturation, hypona-
tremia, hypernatremia, hypokalemia, hyperkalemia,
hypocalcemia, hypercalcemia, anemia, hypoglycemia,
and hyperglycemia. The algorithms used for each
class are rule-based and use thresholds based on
severity of illness scores developed and extensively
tested in previous work,5,7,8,19 as described below.
However, the algorithms differ because of differences
in the amount of information available. For hemody-
namics (i.e., arterial blood pressure and heart rate),
there is a tremendous amount of data, since heart rate
and systolic, diastolic, and mean blood pressures are
recorded every 50 seconds. In contrast, laboratory
results are reported sporadically, usually before and
after bypass. As a result, hemodynamic inference rules
operate over temporal intervals, using temporal
abstraction to determine abnormality from a set of fre-
quent readings, whereas laboratory inference rules
test a specific point in time. 

Hemodynamic Inferences

These inferences look for intervals of time when blood
pressure or heart rate rises above or falls below a pre-
determined threshold for a length of time. We devel-
oped rules that directly encode standard thresholds
for bradycardia, tachycardia, hypotension, and hyper-
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Table 1 ■

Threshold Values of the Inference Engine
Hypo/Low Hyper/High

Blood pressure 100 150

Heart rate 50(pre)/60(post) 120

Calcium 0.8 1.5

K+ 3.5 5

Carbon dioxide N/A 45

Oxygen 60 N/A

pH 7.35 7.45

Sodium 135 145

Saturated oxygen 90 N/A

Glucose 90 200

Hematocrit 32(pre)/30(post) N/A



tension,20,21 shown in Table 1. Berger et al.20 and
Block21 based these thresholds on experiments using
extensive data and statistical models. For example, our
rules detect hypotension when blood pressure falls
below 100 for 250 seconds (five 50-second intervals).

To smooth over temporal variations in data, we use a
sliding scale average,15 looking at a window of five
consecutive values of blood pressure and heart rate.
If the average does not meet the threshold, MAGIC
drops the oldest value and slides forward in time to
add a new value. If the average meets the threshold,
the start of an abnormal episode is recorded and we
continue calculating sliding averages across the win-
dow until the average returns to a normal value,
marking the end of the episode. Once the time period
for each episode has been calculated, MAGIC then
records the drugs and amounts that were given so
that the briefing can describe treatment. After all
abnormal episodes have been found, MAGIC links
each episode with one of the four critical time points
(induction/intubation, skin incision, start of bypass,
end of bypass), noting whether it occurred within a
window of 20 minutes before or after that point.
Since the anesthesiologist manually enters the critical
time points during the operation, this window also
helps compensate for errors in charting.

In almost all cases, we found artifacts in the data. For
example, a spike may occur in the heart rate or blood
pressure because of electric cautery, blood draws,
catheter flushing, or other reasons. To avoid making
false inferences, MAGIC automatically filters the data
before beginning inferencing, to retain only data in
cases both where values remain within valid ranges
and where changes in one value (e.g., heart rate) are
accompanied by an appropriate change in the other
(e.g., blood pressure). More specifically, our algorithm
for filtering artifacts is as follows:

1. Filter any values that fall within the following
invalid ranges:

A. All three blood pressures (mean, systolic, and
diastolic) are equal. This usually occurs when
the LifeLog controls are incorrectly set.

B. Any systolic blood pressure greater than 250. 

C. Both blood pressure and heart rate are zero.
This happens when the machine was not
turned on immediately. Zeros are replaced by
average heart rate and blood pressure, provid-
ed that the patient was not currently on bypass.

2. Remove cases in which one parameter’s change is
not accompanied by a change in another parameter.

If the patient had a change in heart rate greater than
50 within a 50-second interval, MAGIC retains the
spike if there is a corresponding change of 10 in
blood pressure. If blood pressure did not change,
then the spike is replaced with the last good heart
rate value. The reverse is also true; spikes in blood
pressure are retained when accompanied by changes
in heart rate.

Laboratory Inferences

Thresholds for laboratory values were taken directly
from APACHE scores.8 To accurately report abnormal
values, our system separately inspects data obtained
before and after bypass. If laboratory tests were per-
formed during bypass, we ignore the results because
of the difference between “normal” values and “on-
bypass” values. Results of laboratory tests taken dur-
ing bypass are not known to be indicative of patient
postoperative status and are used only to control
bypass settings.16 For each set of laboratory results,
we apply the corresponding APACHE threshold (list-
ed in Table 1) to calculate whether or not the results
were abnormal.

Methods

The performance of an automated system for medical
inferencing should, in principle, be evaluated against
a set of correct decisions on the same input data. If
such a gold standard were available, then measures
such as specificity, sensitivity, and accuracy could be
used to measure quantitatively system performance.
It could be argued that the carefully calculated deci-
sion thresholds and associated rules that are part of
methodologies such as APACHE5,8 would provide
such a standard for hemodynamic and laboratory
inferences. This is problematic, though, since MAGIC
itself incorporates these rules, so using the APACHE
rules as a standard would give very high scores to
our automated system and would not determine
whether system output was useful in practice.

Instead of using APACHE, we relate the evaluation to
actual physicians’ decisions in the ICU. Consequently,
we collected data from physicians on a set of historical
patients and compared their decisions to those auto-
matically produced by our system. One of the goals of
our study was to establish whether the physicians’
answers are consistent enough across different physi-
cians to be used to evaluate the automated system, or
whether the automated system should be used as a
quality assurance tool in the face of significant physi-
cian uncertainty about the correct answer.
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Selection of Human Judges

We obtained LifeLog data for input to MAGIC and
the corresponding human-readable charts for a set of
24 concurrent adult patients, aged 36 to 78 years, at
New York Presbyterian Hospital, who had under-
gone cardiac surgery, performed by a variety of sur-
gical teams, during February and March 1998.

A standard questionnaire was prepared and handed
out to physicians participating in the study, along with
each patient record; this questionnaire is given in
Appendix A. For each of the four critical time points
discussed previously, the questionnaire asked the
physician to determine, using a checklist, the presence
or absence, within 20 minutes before or after that
point, of each of the conditions that MAGIC can iden-
tify. For pre-bypass and post-bypass, a list of laborato-
ry results was provided, each of which was to be
marked by the subject if it was abnormal. Again, the
physicians made a binary (“yes”/”no”) decision on
each potential abnormality. No definition of abnormal
was provided; subjects used their own judgment. This
deliberate design decision was made to avoid forcing
physicians to use a definition that was not their own
and to learn how abnormalities can be identified in
practice. A final question asked the subject to identify
any other abnormality not covered and to indicate its
temporal relationship to the nearest critical time point.

Each individual patient’s chart (see Figure 3) was
given to three different physicians, yielding three
responses per patient. Most physicians saw more than
one chart. No physician reviewed their own patient’s
chart. A total of 46 physicians affiliated with New
York Presbyterian Hospital participated in the experi-
ment, of whom 18 were residents in anesthesiology
and 28 were attending physicians in anesthesiology,
ranging in age from 28 to 63 years. The residents were
in their third or fourth year of training. Using attend-
ing physicians in addition to residents means that the
accumulated responses may be of higher accuracy
than responses in practice, where the residents may be
the only ones who report on the patient’s intraopera-
tive course. Monitoring of a patient in the OR and the
ICU is performed by anesthesiologists, and thus they
may be more qualified than the other physicians
involved in the case (e.g., the thoracic surgeon or car-
diologist) to make decisions about laboratory and
hemodynamic abnormalities. Anesthesiologists man-
ually record these data in the OR and may have the
highest skill level required to read the surgical record. 

The experiment was conducted over a 2 _1
2 -day peri-

od, and assignment of cases to physician subjects was

done on a first-come first-served basis. Each physi-
cian was allowed to spend as much time as desired
on the questionnaire for a given patient (average, 20
minutes), and the patient’s record was available dur-
ing the entire time.

Both the physicians and the system produced judg-
ments on 60 variables for each patient whose chart
they examined. Each of these binary variables repre-
sents the presence or absence of a particular abnor-
mal condition at a particular time (e.g., hypotension
before the start of bypass). Hemodynamic inferences
include four conditions and four critical time points,
with time periods both before and after, giving a total
of 32 variables. Laboratory inferences include 14 con-
ditions and two time periods (before and after
bypass), giving a total of 28 variables.

We collected judgments for 24 patients; however, it
was impractical to have a physician produce judge-
ments on all 1,440 combinations of patients and
potential inferences (24 patients times 60 variables),
because of the time required (about 20 minutes per
review of each case). Instead, each of the 46 physi-
cians processed the entire set of data for a limited
number of patients (three or fewer per physician),
and we ensured that each patient received three sets
of judgments from three different physicians. In this
way, we were able to create three composite judges,
whose assessments of the patients’ conditions we
analyzed and compared with the system’s output.

Measuring Agreement among Human Judges

In the analysis that follows, we first look at the aver-
age agreement between the three composite judges,
as a means of determining the types of decisions for
which the physicians can be considered correct and
thus for which their responses can form a gold stan-
dard for evaluation. We measure the average rate of
agreement between the three human judges in each
case, which provides a measure of the validity of
their responses as a gold standard.22,23 The average
rate of agreement between three binary decision sets
is defined as the average of the three percentages of
pairwise agreement, calculated on each of the three
possible pairs of decision sets. 

We also calculate the average agreement rate
between the system and the judges when any one of
the latter is replaced by the system. Three replace-
ment operations are performed (in each case, one
human judge is left out), the average agreement
between the remaining two physicians and the sys-
tem is calculated as described earlier, and the three
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resulting numbers are averaged. Rates of agreement
in these pools of three sets of decisions (two by
humans and one by the system) that are similar to the
inter-agreement rate in the original pool of three
human judges validate that the system’s performance
is comparable with that of the physicians.

Comparing System Output with a 
Reference Standard

Whenever the agreement analysis provides evidence
that the three physicians’ judgments can form the
basis for an objective gold standard, we need to cre-
ate a single “best” set of responses, which becomes
the reference standard and can be compared with the
system’s output. We considered two methods for
constructing the standard:

■ Full agreement standard. We consider only the cases
in which all three physicians agree. These cases are
most likely to be truly correct, but may also be the
easiest ones to judge. Of the 1,440 patient–inference
pairs, 1,156 fall into this category.

■ Majority evaluation standard. We take the majority
opinion as the ground truth in each case. This may
increase the number of errors in the evaluation
standard; two rather than three physicians must
misinterpret the same data to cause an error. Since
the cases in which disagreement arises are likely to
be more difficult to judge, we expect a lower accu-
racy for the system if it is evaluated against that
standard and increased uncertainty in the quality
of the evaluation than what we get by use of the
first method. On the other hand, this approach
covers all 1,440 samples.

For each of these evaluation standards, we measured
sensitivity, the percentage of abnormal situations
correctly identified by the system among all abnor-
mal situations in the reference model; specificity, the
percentage of correctly avoided false positives
among all non-abnormal situations in the model; and
accuracy, the percentage of identical decisions
between the system and the gold standard across all
cases.

Results

Agreement between Human Judges

We measured the average agreement between the
three composite judges for each type of inference,
and for classes of inferences (hemodynamic vs. labo-
ratory); the results are shown in Table 2. We note that

the percentage of agreement is much higher in the
case of laboratory inferences (91.47 percent) than in
hemodynamic ones (82.81 percent). This can be
attributed to two possible causes—laboratory infer-
ences involve the assessment of a single number
(rather than a curve on the chart) and thresholds for
abnormal conditions are routinely reinforced in prac-
tice by the laboratory results. When the system takes
the place of one of the physicians, the inter-agree-
ment rate consistently decreases for hemodynamic
inferences but increases for laboratory inferences. If
the physicians were making their decisions at ran-
dom according to the observed rate of “yes” answers
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Table 2 ■

Average Agreement (%) Between Human Subjects
and Between System and Human Subjects 

Inference Human System and 
Subjects Human Subjects

Hemodynamic:

Hypotension 75.35 71.41

Hypertension 86.11 85.42

Bradycardia 83.33 79.40

Tachycardia 86.46 85.07

AVERAGE ACROSS

ALL HEMODYNAMIC

INFERENCES 82.81 80.32

Laboratory:

Acidosis 91.67 93.52

Alkalosis 83.33 83.80

Hypercardia 91.67 93.98

Hypoxia 98.61 99.07

Lowsaturation 91.67 94.44

Hypernatremia 100.00 100.00

Hyponatremia 98.61 98.61

Hyperkalemia 95.83 96.30

Hypokalemia 93.06 93.06

Anemia 80.56 81.02

Hyperglycemia 68.06 73.61

Hypoglycemia 100.00 100.00

Hypercalcemia 93.06 95.37

Hypocalcemia 94.44 95.83

AVERAGE ACROSS

ALL LABORATORY

INFERENCES 91.47 92.76

NOTE: Sample sizes were 192 for each hemodynamic inference, 48
for each laboratory inference.



(13 percent for hemodynamic inferences and 11 per-
cent for laboratory inferences), their expected rate of
agreement would be much closer to their actual rate
of agreement for hemodynamic inferences (77.2 vs.
82.8 percent) than for laboratory inferences (80.7 vs.
91.5 percent). 

Given the lower overall values of agreement in the
class of hemodynamic inferences, we conclude that
the physicians are not reliable enough to be used as a
gold standard for such inferences. This is further
supported by the fact that our system (which applies
a decision process established in the literature) agrees
more with the average human judge than the other
judges do in the case of laboratory inferences, but less
so in the case of hemodynamic inferences.

Comparison Between Human Judges and Our
System on Laboratory Inferences

Given the above analysis, it is possible, for laborato-
ry inferences only, to compare the decisions of the
three composite judges, taken collectively, with those
of the system. We constructed the majority and full

agreement models, as described earlier, and calculat-
ed measures of sensitivity, specificity, and accuracy
for our system. Table 3 shows the results of this eval-
uation. Averages for each inference class are calculat-
ed by either micro-averaging, which gives each sam-
ple equal weight, or macro-averaging, which calcu-
lates the result for each inference and averages those,
giving the same weight to each inference. Different
inferences have different sample sizes in the case of
the full agreement reference standard, because there
are different numbers of patients for which all physi-
cians agree. We report only micro-averaged results
for each separate inference, in the interest of brevity.

The evaluation indicates that our system performs with
high sensitivity and specificity compared with the
physicians on laboratory inferences, for an average of
88 and 91 percent (micro- and macro-averaging,
respectively) sensitivity and 99 percent specificity (both
micro- and macro-averaging) against the full agree-
ment model, and 77 and 78 percent sensitivity (micro-
and macro-averaging, respectively) and 97 and 98 per-
cent specificity (micro- and macro-averaging, respec-
tively) against the majority model. In almost all cases of
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Table 3 ■

Results for Laboratory Inferences

Inference
Full Agreement Reference Standard Majority Reference Standard

Sensitivity (%) Specificity (%) Accuracy (%) Sensitivity (%) Specificity (%) Accuracy (%)

Acidosis 100.00 (6) 100.00 (36) 100.00 100.00 (8) 95.00 (40) 95.83

Alkalosis 100.00 (3) 90.91 (33) 91.67 100.00 (6) 88.10 (42) 89.58

Hypercardia 100.00 (4) 100.00 (38) 100.00 100.00 (5) 97.67 (43) 97.92

Hypoxia N/A (0) 100.00 (47) 100.00 100.00 (1) 100.00 (47) 100.00

Lowsat N/A (0) 100.00 (42) 100.00 100.00 (1) 100.00 (47) 100.00

Hypernatremia N/A (0) 100.00 (48) 100.00 N/A (0) 100.00 (48) 100.00

Hyponatremia N/A (0) 100.00 (47) 100.00 N/A (0) 97.92 (48) 97.92

Hyperkalemia N/A (0) 100.00 (45) 100.00 100.00 (1) 95.74 (47) 95.83

Hypokalemia N/A (0) 97.67 (43) 97.67 0.00 (2) 97.83 (46) 93.75

Anemia 86.67 (15) 94.74 (19) 91.18 77.27 (22) 92.31 (26) 85.42

Hyperglycemia 66.67 (6) 100.00 (19) 92.00 56.25 (16) 100.00 (32) 85.42

Hypoglycemia N/A (0) 100.00 (48) 100.00 N/A (0) 100.00 (48) 100.00

Hypercalcemia N/A (0) 100.00 (43) 100.00 N/A (0) 100.00 (48) 100.00

Hypocalcemia N/A (0) 100.00 (44) 100.00 50.00 (2) 100.00 (46) 97.92

Average
(micro-averaged) 8.24 (34) 99.09 (552) 98.46 76.56 (64) 97.70 (608) 95.68

Average
(macro-averaged) 90.67 98.81 98.04 78.36 97.47 95.69

NOTE: The sample size is 48 for all individual inferences under the majority standard and varies between 25 and 48 for inferences under
the full agreement standard. The number of abnormal and normal events is listed in parentheses in the sensitivity and specificity columns
respectively (their sum equals the sample size).



individual inferences, the performance scores are in the
high 90s; the few cases in which our system displayed
poor sensitivity are associated with extremely low
counts of abnormal findings (e.g., the system found
none of the two cases of hypokalemia according to the
majority model). The results in Table 3 confirm our
expectation of slightly worse scores against the majori-
ty model, compared with the full agreement model
(especially on sensitivity), since the former is likely to
contain more marginal or harder cases.

Discussion

These results show that physicians are consistent in
identifying abnormal events indicated by laboratory
test results, and thus, both the full agreement and
majority models can be used as a gold standard
against which to evaluate the performance of MAGIC
on laboratory inferences.

MAGIC performs quite well in comparison with physi-
cians, achieving perfect accuracy on 10 of 14 inferences
in the full agreement model and 7 of 14 in the majority
model. Average accuracy is 98 percent for the full agree-
ment model and 96 percent for the majority model.

For the purposes of our study, physicians cannot be
used as a gold standard for the more difficult hemo-
dynamic events. In fact, physicians agree only 83 per-
cent of the time, while a chance assignment of results
with the same proportion of abnormal results would
yield a 77 percent rate of agreement. As we discuss
below, our examination of discrepancies between
system and physician performance revealed cases in
which the physicians were clearly in error.
Physicians did not identify abnormal events even
when therapy was given to correct for the event.
These are clear indications that the event was consid-
ered abnormal by the attending physician.

The lack of a viable gold standard in practice indi-
cates the need for a quality assurance tool that can
consistently identify and report hemodynamic prob-
lems. Given that MAGIC is based on the APACHE
thresholds, it could provide a predictable means for
reporting events over time. Currently, no existing
tool can perform this same service. Once we have
modified MAGIC’s rules as suggested by our experi-
ments and verified that they produce quality results,
our plan is to install MAGIC as a quality assurance
tool and do further testing.

Given that the consistency of physician decisions on
hemodynamic inferences appears low, and only mar-
ginally better than chance, we carried out further

analysis of the discrepancies to identify causes of the
differences. We re-examined the charts of the
patients for whom the physicians reported a hemo-
dynamic anomaly that the system did not report
(false negative results, if we consider the physicians a
gold standard) and cases in which the system report-
ed a hemodynamic anomaly but the physicians did
not (false positive results). This was performed by the
first author, as knowledge of MAGIC’s inferencing
procedure in addition to medical expertise was
essential for this comparative analysis.

False Negative Findings

There are 46 cases in which the physicians report an
abnormality that the system missed under the major-
ity model (out of decisions for hemodynamic infer-
ences), of which 8 also appear in the full agreement
model. By examining the charts, we found five major
causes for the discrepancies:

■ Artifact errors. An artifact in the chart caused the
physician to label an event abnormal when, in fact, it
was not. The system correctly screened out these arti-
facts. (4 cases total, 0 in the full agreement model.)

■ Charting errors. The relevant critical time point (e.g.,
intubation or skin incision) was not charted by the
anesthesiologist in the OR. It was missing from the
LifeLog data and was not shown on the chart. The
system misses all inferences around such time
points. Physicians, however, could sometimes infer
the approximate time of such events by observing
changes in the blood pressure and heart rate lines.
(18 cases, 0 in the full agreement model.)

■ Window errors. An abnormal event occurred and
was reported by the physicians, but outside the 20-
minute window around the critical time point.
Despite directions that clearly instruct physicians to
identify abnormal events within the 20 minutes
before and after a time point (Appendix A), physi-
cians did not always follow these instructions con-
sistently. (7 cases, 0 in the full agreement model.)

■ Threshold errors. The physicians used lower
thresholds than those established in the literature
and used by the system, usually by a small mar-
gin. (7 cases, 1 in the full agreement model.)

■ Corresponding changes. The physicians used a
lower threshold, as above, but were also influ-
enced by another curve in the chart that also
increased or decreased simultaneously (e.g., an
increase in the heart rate along with a below-
threshold increase in blood pressure may lead to
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their reporting of hypertension). This merits fur-
ther analysis, and may lead to the consideration of
dependencies between curves in the chart for
events that just missed the threshold, something
MAGIC currently does not do. (10 cases, 7 also in
the full agreement model.)

This analysis shows that 29 of the 46 discrepancies
(63 percent) that fall into the categories of artifacts,
charting errors, and window mismatches are ones in
which the system should not be penalized. None of
these errors occurred in the full agreement model. In
the case of charting errors, if data are missing from
the database, there is no way that the system can
compensate. For future experiments, we may want to
remove both artifact and charting discrepancies from
the set of test cases for evaluation. In the case of win-
dow discrepancies, we may be able to provide better
instructions to physicians. Instead of providing direc-
tions only once at the beginning of the set of instruc-
tions, we may want to highlight the appropriate time
period around each critical time point.

The remaining 17 cases may indicate system omissions
of abnormal conditions. For threshold errors, given the
small differences between physician and system
thresholds, it is possible that the system should use a
small window around the APACHE thresholds, but it is
equally possible that the physicians were incorrect.
More experimentation is required. 

Finally, correlated changes account for the largest
discrepancy in missed abnormalities in the full agree-
ment model, and these are second only to charting
errors in the majority model. We will experiment
with relaxing the thresholds when parallel changes in
corresponding measurements occur, investigating
the effect on both false negatives and false positives.

False Positive Findings

Analysis of the discrepancies that occurred when the
system identified an abnormal event that the physi-
cian missed revealed seven categories of differences.
Four of these—at threshold, above threshold, chart-
ing errors, and artifacts—are similar to problems
identified for false negative results and are described
again below. The new categories are related to the
duration of an event and where exactly in relation to
a critical time point it occurred. Of the total 102 false
positive findings, 60 occurred in the full agreement
model. In a few cases, there were two reasons for the
discrepancy (e.g., artifact and short duration), and in
these cases each reason was assigned 0.5 in deter-
mining counts.

■ Charting errors. The critical time point was entered
manually after it actually occurred. For example, if
start of bypass is entered too late, the system
detects hypotension in the interval before the start
of bypass instead of after. (13 cases total, 11 in the
full agreement model.)

■ Artifacts. An artifact occurred, which the system
did not screen out, whereas the physicians did.
(1.5 cases total, also in the full agreement model.) 

■ At threshold. An event occurred right at the thresh-
old specified by APACHE. The system caught these
cases, whereas the physicians did not count them.
(30.5 cases total, 18.5 of which occurred in the full
agreement model.)

■ Above threshold. These events were well above the
APACHE threshold but, depending on duration,
were missed by physicians. For example, when a
parameter (e.g., blood pressure) remained low or
high for a long duration, physicians often did not
call it abnormal, perhaps reasoning that it must
not be serious if the physicians on the case opted
not to treat it. In contrast, if the parameter stayed
at the same low or high rate but then had a quick
rise or dip, physicians would label it abnormal.
(24.5 cases total, of which 10 occurred in the full
agreement model.)

■ Short duration at specific time points. When systolic
blood pressure or heart rate crossed a threshold
for a short period of time at start or end of bypass,
physicians ignored the abnormality. We suspect
that physicians expect abnormalities briefly
around bypass and do not report them. (28.5 cases
total, 15 in the full agreement model.)

■ Fixed time points. While the system always uses an
interval of 20 minutes before and after a critical
time point, it appears that physicians use different
time intervals, depending on the critical time
point. For example, they use a narrower time inter-
val than the system for skin incision and a wider
time interval for induction. (3 cases total, all in the
full agreement model.)

■ Chart difficult to read. The chart is difficult to read
in cases where the hemodynamics change quickly,
such as after going off bypass (e.g., distinguishing
heart rate graph line from the blood pressure line
can be difficult). Readability for physicians is
made even more difficult by the presence of arti-
facts in the chart, but for the system these are
screened out. A portion of a chart, illustrating
these difficulties, is shown in Figure 3. (1 case
total, also in the full agreement model.)
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The system should not be penalized for charting errors.
Both categories of threshold discrepancies show that
MAGIC is in line with APACHE scores but in disagree-
ment with the physicians. Furthermore, addressing “at
threshold” discrepancies would conflict with address-
ing the “threshold” discrepancies identified for the
false negative findings. We suggested that for false

negative discrepancies, adding a window around the
threshold would allow the system to identify missed
cases, but this would cause an increase in the number
of “at threshold” false positives. Conversely, adjusting
the threshold for the false positive discrepancies would
increase the number of false negatives. More experi-
mentation with thresholds needs to be done. 
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In multiple cases in the set of discrepancies, the
physicians were clearly in error. For example, in sev-
eral cases, the patient experienced bradycardia or
tachycardia before end of bypass. Therapy was
given, and this was indicated on the chart. For brady-
cardic incidents, a pacemaker was placed, while for
tachycardic incidents, cardioversion was given. In
cases in which therapy has been given on the basis of
abnormal physiologic parameters, this should be
communicated to subsequent caregivers (e.g., the
patient is on a pacemaker because he had bradycar-
dia before the end of bypass).

On the other hand, the categories “short duration”
and “fixed time point” suggest some changes that
could be made to the system design. We may want to
modify MAGIC so that it ignores abnormal events
that occur for a short period of time immediately
before or after bypass. Similarly, we may need to
modify the length of the window in which we check
for abnormal events around critical points such as
skin incision and induction.

Study Limitations

The primary limitation of the study is the lack of
data. A set of 24 patients is a small sample size.
Furthermore, the interdependence of the inference
decisions, which all involve the same set of patients,
does not allow the computation of statistical signifi-
cance levels for comparing the observed agreement
with the agreement expected by chance. Nonetheless,
this initial study allowed us to determine the viabili-
ty of using physicians as a gold standard before
going on to large-scale studies. It also allowed us to
identify places where we can experiment with
changes to MAGIC. In addition, it allowed us to cri-
tique and improve possible plans for conducting a
real-time, prospective study. 

It is extremely difficult to obtain adequate data with-
out seriously interfering with normal physician prac-
tice in the stressful environment of the ICU. When we
are ready to do a large-scale, prospective study with
patients, it is important that our experimental
methodology place minimal demands on their time
and measure accuracy efficiently.

Future Work

Our analysis of discrepancies yielded some good
insights into changes that we can institute in MAGIC
and test in future studies. We found three rules used
by the physicians that seem to us to be justified and
that could be easily implemented. These include

checking for correlated changes (when a parameter is
close to a threshold and a corresponding parameter
also changes, count this as an abnormal event), short
duration (when a parameter crosses a threshold for a
short duration immediately after going on or coming
off bypass, ignore the abnormality, as it likely related
to bypass), and flexible time periods (use different
windows for different critical time points). Our study
also shows the need for a follow-up study on the use
of thresholds. It is unclear whether the physician or
the system is correct when discrepancies in the use of
thresholds occur, and we need more experimentation
to determine when and how to change thresholds.

One major issue for future work, in particular when
investigating disagreement about thresholds, is find-
ing a good gold standard. Some alternatives that have
been suggested include using experienced physicians
only (but this seriously limits the supply of judges
and does not reflect actual practice), using only physi-
cians present during the operation (but this limits us
to two or less per case), and using a panel of physi-
cians who discuss the results and come to agreement
among themselves as to what constitutes an abnormal
hemodynamic event. Given that clear standards for
abnormal hemodynamic events are not routinely
taught or discussed, having a panel of physicians who
spend time resolving disagreements seems the most
promising alternative. Given time constraints, this
would be most feasible if limited to the questionable
cases identified by our current study.

Finally, we plan to test MAGIC as a quality assurance
tool. Once it is used on a daily basis, we will conduct
a study based on a task analysis and subjective ques-
tioning to determine whether use of MAGIC demon-
strates the usefulness of the inferences. For example,
we will study whether identification of abnormalities
leads to differences in patient care and, through ques-
tioning, whether physicians find the identification of
abnormalities useful in practice.

Conclusions

We have presented an implemented system that can
detect abnormal events during cardiac surgery and,
thus, can identify information that is critical to the pro-
vision of responsible care for patients arriving in the
ICU. Furthermore, inferencing allows the system to
summarize large amounts of collected but otherwise
unexamined data in a meaningful way. Evaluation
shows the system to be quite accurate for laboratory
inferences, with an average accuracy of 98 percent (full
agreement) and 96 percent (majority model). An
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analysis of inter-rater agreement, however, showed
that physicians do not agree on hemodynamic abnor-
mal events; thus, we were left with no viable gold
standard for evaluating hemodynamic events. 

Examination of discrepancies between the system
and physicians yielded several suggestions for future
changes to MAGIC but also revealed cases in which
physicians were clearly in error. For example, physi-
cian judges reported no abnormality when attending
physicians on a case treated an abnormality. More
important, the lack of a viable gold standard suggests
that MAGIC should be tested as a quality assurance
tool, providing a service that is currently lacking in
practice. Such a tool could help physicians better
learn how to identify abnormal events. 

MAGIC is an ongoing group project that has benefited from the
design and development work of Elizabeth Chen, Shimei Pan,
James Shaw, and Michelle Zhou.  
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Appendix

QUESTIONNAIRE GIVEN TO PHYSICIANS FOR THE EXPERIMENT

Your Name:

MRN of Patient: 00000000

1) Please look over the following patient record and become familiar with the case.

2) Given the following list of critical points, please check all abnormalities (blood pressure and heart rate) that occurred during the procedure

before or after each critical point. Please check the “Nothing” slot if none of the listed abnormalities took place. Please check the “Not

Documented” slot and continue if the critical point was not documented in the patient report. (NOTE: “Before” and “after” should be inter-

preted as “up to 20 minutes before” and “up to 20 minutes after,” respectively. Please do not indicate abnormalities that occurred outside

this range.)

Induction —There was: __Nothing __Not Documented

Hypotension Hypertension Bradycardia Tachycardia

__before __after __before __after __before __after __before __after

Skin Incision —There was: __Nothing __Not Documented

Hypotension Hypertension Bradycardia Tachycardia

__before __after __before __after __before __after __before __after

Start of Bypass —There was: __Nothing __Not Documented

Hypotension Hypertension Bradycardia Tachycardia

__before __after __before __after __before __after __before __after

End of Bypass —There was: __Nothing __Not Documented

Hypotension Hypertension Bradycardia Tachycardia

__before __after __before __after __before __after __before __after

3) Please indicate whether or not the following abnormal labs occurred during the time period listed, where pre-bypass means the entire

time recorded before the start of bypass and post-bypass means the entire time after the end of bypass. Labs taken during bypass can

be ignored.

Pre-bypass —There was: __Nothing __No labs documented

__Acidosis __Alkalosis __Hypercarbia __Hypoxia

__Low saturation __Hypernatremia __Hyponatremia __Hyperkalemia

__Hypokalemia __Anemia __Hyperglycemia __Hypoglycemia

__Hypercalcemia __Hypocalcemia

Post-bypass —There was: __Nothing __No labs documented

__Acidosis __Alkalosis __Hypercarbia __Hypoxia

__Low saturation __Hypernatremia __Hyponatremia __Hyperkalemia

__Hypokalemia __Anemia __Hyperglycemia __Hypoglycemia

__Hypercalcemia __Hypocalcemia

4) If there are any abnormalities, not covered above, that you feel are important, please list them here along with where they fall with

respect to the critical points.


