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The application of the neuro-fuzzy inference system to predict the compressive strength of concrete is presented in

this study. The adaptive neuro-fuzzy inference system (ANFIS) is introduced for training and testing the data sets

consisting of various parameters. To investigate the influence of various parameters which affect the compressive

strength, 1551 data pairs are collected from the technical literature. These data sets cover early and late compres-

sive strengths from 3 to 365 days and low and high strength in the range 6.3–107.7 MPa. To reflect the effects of

other uncertain parameters and in situ conditions, the results of non-destructive tests (NDTs) such as ultrasonic

pulse velocity (UPV) and rebound hammer test are also included as input parameters, in addition to mix proportion

and curing histories. For the testing of trained ANFIS models, 20 cube specimens and 210 cylinders are prepared,

and compressive test and NDTs are conducted. For the comparative study of the applicability of ANFIS models

combined with NDT results, four ANFIS models are developed. Depending on whether the input parameters of

ANFIS models include NDT results or not, these are distinguished from each other. Among the four models, the

‘ANFIS-UR’ model having the parameters for both UPV and rebound hammer test results shows the best accuracy

in the prediction of compressive strength.

Introduction

Concrete is the most widely used construction mate-

rial in the world. Traditionally, concrete has been made

by mixing a few well-defined components: cement,

water, fine and coarse aggregates, and so on. Concrete

therefore has a highly heterogeneous and complex

microstructure. It is therefore very difficult to predict

its constitutive properties and behaviours. The response

of concrete to applied stress depends not only on the

stress type but also on how a combination of various

factors affects porosity of the different components of

concrete.1 The factors include properties and propor-

tions of materials that make up the concrete mixture,

degree of compaction and conditions of curing.

To obtain good-quality concrete structures, the con-

crete placed in a structure must have uniform quality

satisfying design criteria without voids and discontinu-

ities. Lack of sufficient attention to placing and curing

of concrete such as poor workmanship can result in

poor-quality concrete in the structure, even though

ready-mixed concrete is used with good quality control.

For the quality control of concrete handling work, var-

ious tests should be carried out to affirm the strength

of the concrete.

In this regard, the strength of concrete is a very

valuable property to structural designers and construc-

tion engineers. Many properties of concrete such as

elastic modulus and impermeability are directly related

to the strength. The strengths of concrete include com-

pressive, tensile, flexural, shear and bond. As the uni-

axial strength in compression is commonly accepted as

a general index of concrete strength, destructive or

non-destructive compressive tests are generally con-

ducted to evaluate the concrete quality.

In practice, standard uniaxial compressive test is

commonly used to determine compressive strength.

Currently, coring for samples to make an experiment

on load testing is widely adopted in the construction

field. It is, however, costly and time-consuming to

carry out coring. In addition, there is a practical limit

to decide how many samples should be taken to repre-

sent a whole structure and how many samples can be

taken from a structural member without harmful effects
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on its integrity. Also, because of the small number of

samples, it is generally quite difficult to find reliable or

statistically meaningful conclusions. Furthermore, ex-

perimental errors are inevitable and additional cost is

also needed.

For these above reasons, over a period of many years,

a lot of researchers have studied various new techni-

ques to evaluate concrete compressive strength physi-

cally or analytically. First, non-destructive techniques

have been developed with the intension of easy and

reliable assessment of concrete strength. Many re-

searchers have put their efforts into developing reliable

non-destructive test (NDT) methods to replace the ex-

isting destructive methods. In the construction field,

both the rebound hammer test and the ultrasonic pulse

velocity (UPV) test are most popular and they are

widely used. These tests have many advantages and

potential benefits because these are entirely non-de-

structive in nature, easy to operate and relatively inex-

pensive.

Second, in recent years, the analytical methods using

artificial intelligence (AI) such as neural network and

fuzzy logic have increasingly been applied to predict

concrete strength. The basic strategy for developing AI

systems to predict material behaviour is the training

process of AI systems based on the results of a series

of experiments. If the experimental results for the train-

ing process contain relevant information representing

the material behaviour, the trained AI systems will be

able to predict material behaviours. Even though sev-

eral researchers have recently proposed new methods

for mixing design and predicting the strength using

neural network and fuzzy logic, they have not fully

investigated the AI systems for predicting the concrete

strength; for example, effectively considering various

factors affecting the strength of in situ concrete. In

particular, a comparative study for AI systems based on

NDT results combining mix proportion, curing condi-

tion and age has not been presented yet.

In this research, a methodology using an adaptive

neuro-fuzzy inference system (ANFIS) is developed to

estimate the concrete compressive strength. To consider

in situ factors, the NDT results such as UPV and re-

bound number are included in the input parameters. For

the purpose of comparative study, four ANFIS models

– ‘ANFIS-B’ with only basic inputs such as mix pro-

portion, curing condition and age, ‘ANFIS-U’ addition-

ally including UPV, ‘ANFIS-R’ additionally including

rebound number and ‘ANFIS-UR’ additionally includ-

ing both UPV and rebound number—are trained and

tested. For the validation and test of the developed

ANFIS models, experiments including NDTs and uni-

axial compressive test are conducted using 210 cylind-

rical and 20 cube specimens, which are prepared with

different mix proportions and curing conditions. These

specimens are tested at 3, 7, 14, 28, 90, 180 and 365

days after placing the concrete.

From a practical point of view, these proposed

ANFIS models including NDT results show a reliable

increased accuracy in predicting concrete strength. In

particular, the ANFIS model with the results of two

different types of NDT, namely ANFIS-UR, provides

superior correlation compared with other ANFIS mod-

els having a single type of testing, such as ANFIS-U

and ANFIS-R. These results will be helpful for con-

struction engineers and structural designers to schedule

and manage the concrete works such as form removal

and pre- or post-tensioning.

Concrete strength and non-destructive

tests

Compressive strength

It is well recognised that the prediction of concrete

strength is very important in concrete construction

works such as bridges and dams. It is also a valuable

indicator for engineering judgement. This is because it

plays an important role in project scheduling and qual-

ity control and also provides the time for concrete form

removal, re-shoring to slab and application of pre- or

post-tensioning. The compressive strength of concrete

is, however, influenced by many factors; for example,

mix proportions, curing conditions such as temperature

and humidity, and methods of mixing, transporting,

placing and testing the concrete.

As Fig. 1 shows, even though the water/cement (w/c)

ratio is a well-known factor that has the most effect on

concrete strength, concrete strengths corresponding to

each w/c ratio show large variations. This figure is

obtained from collected experiment databases. (For

more details, see the section ‘Training and testing of

ANFIS models’.) In this figure, the values of compres-

sive strength represent the cylinder compressive

strength at 28 days. This figure indicates that it is very

difficult to predict compressive strength with reliable

accuracy and consistency.
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Fig. 1. Variation of compressive strength with w/c ratio

(28 days)
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Another feature of concrete is that its mechanical

strength increases continuously as a function of time

owing to the evolution of the hydration reaction of

cement. The evaluation of compressive strength with

time is of great concern for structural engineers. This

feature therefore also needs to be considered in the

process of the prediction of compressive strength.

For many years, various methods for predicting con-

crete strength have been proposed.2–4 Conventional

methods for predicting compressive strength of con-

crete are basically based upon statistical analyses. Re-

cently, AI systems have also been used to predict the

compressive strength of concrete.5–15 AI systems do not

need such a specific equation form: it is enough to

prepare sufficient input–output data sets. Also, it can

continuously retrain the new data, so that it can con-

veniently adapt to new data.

As previous researches generally used their own lim-

ited experimental data sets, however, they are effective

only for interpreting the specific data set used in their

analysis. Even though they demonstrated the effective-

ness and applicability of AI systems showing very high

accuracy, they cannot show how accurately they can

predict compressive strengths in general cases of prac-

tical field studies. In this study, therefore, to demon-

strate and validate the availability of AI systems as a

generalised practical prediction tool, various parameters

affecting compressive strength are introduced as input

variables and a lot of experimental results are collected

to develop training data sets.

Non-destructive tests

As defects such as crack, wear and ageing of concrete

can deteriorate civil structures, continuous inspection

and quality control are necessary. In addition to con-

ventional destructive uniaxial compressive tests, non-

destructive techniques have been developed and

commonly used in the concrete construction field. Dur-

ing the past decades, several NDT methods for the pre-

diction of concrete strength have been developed.

Among various NDTs, the UPV test and rebound ham-

mer test are widely used in the field. Each of these

methods has certain limitations and drawbacks, however,

and it is therefore difficult to obtain reliable results.16,17

Non-destructive methods are based on the empirical

relations between strength and non-destructive para-

meters.18–20 Such relationships are not, however, suitable

for all kinds of concrete: they need to be calibrated for

different mixtures. To improve the accuracy of strength

prediction, combined NDT tests were introduced.19,20 It

does not, however, show a clear relationship in estimat-

ing concrete strength with reliable accuracy. As men-

tioned, even though the results of NDTs are widely used

for the indicator of the quality of concrete, it is not easy

to obtain reliable results because the relationships be-

tween the compressive strength of concrete and rebound

number or UPV are not simple.21–23 It is widely recog-

nised that the relationship is not unique, but is affected

by numerous factors such as the properties and propor-

tion of the constituent materials, age of concrete, pre-

sence of microcracks, moisture content and stresses in

the concrete specimens. In general regression analysis,

such factors will result in a decrease in the accuracy of

any proposed regression

The main purpose of this study is to obtain easy-to-

use methodology, based on ANFIS, considering several

major parameters which have an effect on concrete

strength and reflecting the in situ condition of concrete

through the NDT results. As UPV and rebound number

are also affected by several in situ factors, they cannot

clearly represent the concrete strength with simple

equation forms. Fig. 2 shows the variation of cylinder

compressive strength corresponding to UPV and re-

bound number. In this figure, each dot indicates differ-

ent experimental results obtained from the section

‘Training and testing of ANFIS models’. This figure

illustrates that, even though experimental test samples

show the same rebound number or the same UPV, they

have different compressive strengths with very large

variation.

In this study, to consider this characteristic, various

material parameters and ages, which are noted to have

a large effect on UPV and rebound number, are in-

cluded in the input variables of ANFIS models. Even

though the other factors such as the presence of steel

reinforcement, surface carbonation of concrete and

aggregate type also have an effect on the UPV and
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Fig. 2. Variation of compressive strength with (a) UPV and

(b) rebound number
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rebound number, in order to simplify the ANFIS mod-

els in the practical purpose, they are not considered in

this study.

Experimental work

For the experimental study, NDTs such as rebound

hammer test and UPV test, and destructive uniaxial

cylinder compressive test were conducted. These ex-

perimental results are used as test data sets for the

validation of ANFIS models developed in this study.

For this purpose, specimens with two different shapes,

namely cylinder and cube, are prepared. Cube speci-

mens of size 200 3 200 3 200 mm are used in this

experimental work for measuring the UPV and rebound

number. Cylindrical specimens of size 100 3 200 mm

(ø 3 H) are tested to obtain compressive strength. Half

of all specimens are cured in water of approximate

temperature 208C. The remaining specimens are ex-

posed to natural outdoor atmosphere throughout the

curing period.

The mix proportions of the concrete used in this

experiment are given in Table 1. Concrete specimens

with a w/c ratio of 30, 40, 50, 60 and 70% were

prepared and tested at the ages of 3, 7, 14, 28, 90, 180

and 365 days. For each mix proportion, four cube

specimens were prepared and tested using the UPV test

and rebound hammer test (see Fig. 3). In measuring the

rebound number of the concrete cubes, the cubes were

fixed between the platens of the universal testing ma-

chine, with the application of a compressive stress of

2.5 MPa. For the uniaxial compressive test, 210 cylind-

rical specimens were prepared (5 mix proportions 3 7

ages 3 2 curing conditions 3 3 specimens). The aver-

age compressive strength of three specimens is used for

the test data sets of ANFIS models. Table 2 shows the

test results. It is composed of rebound number, UPV,

and compressive test results for 3, 7, 14, 28, 90, 180

and 365 days.

ANFIS models for prediction of concrete

strength

Recently, fuzzy logic, classed as AI, has been widely

used in civil and environmental engineering problems

from the evaluation of concrete structures to transporta-

tion control.6,7,24,25 Fuzzy logic provides a language

with syntax and semantics to translate qualitative know-

ledge into numerical reasoning.

In the current study, to propose a proper computa-

tional methodology for prediction of concrete compres-

sive strength, a neuro-fuzzy system is used. Among

various algorithms, ANFIS developed by Jang26 is cho-

sen to construct the prediction models.

Overview of neuro-fuzzy models

Fuzzy logic is the process of formulating the mapping

from a given input to an output. The mapping then

provides a basis from which decisions can be made, or

patterns discerned. Fuzzy systems have been success-

fully applied in fields such as automatic control, data

classification, decision analysis and expert systems. Ba-

sically a fuzzy system is composed of five parts: fuzzifi-

cation of the input variables; application of the fuzzy

Table 1. Mix proportions used in experimental study

No. w/c*:% Water: kg/m3 s/ay:% s.p/c{:% Cement: kg/m3 Sand: kg/m3 Gravel: kg/m3

1 30 175 38 1.1 583 547 994

2 40 185 42 0.5 462 618 990

3 50 185 45 0.5 370 693 983

4 60 185 47 0.5 308 746 976

5 70 185 47 0.4 264 809 940

*Water/cement ratio, ySand/aggregate ratio, {Super plasticiser/cement ratio

(a) (b) (c)

Fig. 3. Experimental study: (a) compressive test; (b) rebound hammer test; (c) UPV test

Na et al.
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operator (AND or OR) in the antecedent; implication

from the antecedent to the consequent; aggregation of

the consequents across the rules; and defuzzification.

Three middle processes among five parts are included in

the fuzzy inference engine of Fig. 4.

The primary mechanism of fuzzy logic is a list of

if–then statements called rules. All rules are evaluated

in parallel. The most important step to establish the

fuzzy model is to generate the rules. Clustering of the

input–output data is an intuitive approach to objective

rule generation. The idea of clustering is to divide the

output data into a certain number of fuzzy partitions.

The appropriate number of clusters is determined so

that the sum of the Euclidian distance of the output

data from the centre of the clusters is minimised.27

The neuro-fuzzy inference system is the advanced

fuzzy inference system with learning capability of neur-

al network. The main feature of the neuro-fuzzy infer-

ence system is that it can change the fuzzy inference

system structure and parameters using the training algo-

rithm. In this study, ANFIS, based on if–then rules of

the Takagi and Sugeno’s type,28 is used for predicting

the concrete strength. All computations can be presented

in diagrammatic form as illustrated in Fig. 5.

If the fuzzy inference system is assumed to have two

inputs x and y and one output z

Rule 1: If x is A1 and y is B1,

then f 1 ¼ p1xþ q1 yþ r1
(1a)

Rule 2: If x is A2 and y is B2,

then f 2 ¼ p2xþ q2 yþ r2
(1b)

In layer 1, the membership functions of fuzzy sets Ai,

Table 2. Experimental test results

No. Mix proportion No. 1 Mix proportion No. 2

Ages Rebound number UPV: km/s Compressive strength:

MPa

Rebound number UPV: km/s Compressive strength:

MPa

3 days 36.9 4.31 39.6 27.2 3.89 19.5

7 days 38.3 4.40 43.6 33.8 4.14 33.5

14 days 47.8 4.45 52.6 36.4 4.35 39.9

28 days 49.3 4.66 54.1 39.5 4.50 40.6

90 days 55.2 4.71 56.1 45.7 4.72 47.6

180 days 55.5 4.71 56.5 45.9 4.65 48.3

365 days 55.5 4.80 56.9 46.9 4.70 49.2

No. Mix proportion No. 3 Mix proportion No. 4

Ages Rebound number UPV: km/s Compressive strength:

MPa

Rebound number UPV: km/s Compressive strength:

MPa

3 days 32.6 3.96 16.7 20.4 3.74 8.9

7 days 34.2 4.25 19.5 21.0 4.17 14.0

14 days 35.5 4.20 30.1 25.3 4.40 31.0

28 days 37.9 4.35 39.4 29.6 4.41 32.9

90 days 43.5 4.49 41.5 30.0 4.50 33.0

180 days 42.1 4.75 41.9 32.4 4.50 33.7

365 days 46.4 4.60 43.2 36.6 4.60 34.7

No. Mix proportion No. 5

Ages Rebound number UPV: km/s Compressive strength:

MPa

3 days 14.0 3.48 5.2

7 days 15.7 3.51 6.1

14 days 17.1 3.84 16.0

28 days 20.7 4.13 20.4

90 days 23.1 4.25 23.3

180 days 22.6 4.30 24.2

365 days 26.3 4.30 27.0

Fuzzy rule base

Fuzzifier
x in U

Fuzzy sets
in U

Fuzzy inference
engine

Defuzzifier

Fuzzy sets
in V

y in V

Fig. 4. The structure of the fuzzy system26
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Bi, i ¼ 1, 2, would exist as �Ai
(x), �Bi

(y). Then, for

evaluating the rules, circle nodes labelled — multiply

incoming signals and send the product out. This evalu-

ating results in

wi ¼ �Ai
(x)3 �Bi

(y), i ¼ 1, 2 (2)

In layer 3, through the nodes labelled N, the ratios of

ith rule’s strength are calculated

wi ¼
wi

w1 þ w2

, i ¼ 1, 2 (3)

Then, the output z can be calculated as

z ¼
X
i

wi f i (4)

As far as the membership functions and rules are con-

cerned, there is no general rule for selecting the shape

type and the number of membership functions for each

input variable. Membership functions are mainly cho-

sen specifically depending on the problem and to some

extent these are selected depending on the quality of

training patterns.

Model architectures

In this study, four ANFIS models are constructed for

the purpose of comparison. The difference of each

ANFIS model is whether or not the each model in-

cludes NDT results as input variables. The number of

the input nodes is determined from the considered vari-

ables that have an effect on concrete strength. The

following variables are used as input parameters

(a) w/c ratio

(b) sand/aggregate ratio

(c) unit weight of cement

(d ) unit weight of sand

(e) unit weight of gravel

( f ) unit weight of water

(g) superplasticiser (%)

(h) unit weight of fly ash

(i) unit weight of silica fume

( j) unit weight of slag

(k) age

(l ) curing condition (in water or air)

(m) UPV

(n) rebound number.

The output node corresponds to compressive strength.

All four models commonly have basic input para-

meters from (a) to (l ). The ANFIS model without any

NDT results as input variables is referred to just as

‘ANFIS-B’, the model with UPV test result is referred

to as ‘ANFIS-U’, the model with rebound number is

referred to as ‘ANFIS-R’ and the model with both NDT

results is referred to as ‘ANFIS-UR’.

The architectures of four ANFIS models are shown

in Fig. 6. Input variables are categorised as material

properties (MP, 10 input variables), curing histories

(HIS, 2 input variables) and NDT results (NDT, 2 input

variables). For simplified schematic drawing, member-

ship functions and fuzzy inference engine layers in Fig.

5 are not depicted. The input variables which are not

used in each model are shown as shaded circles and

dotted lines in this figure. These four ANFIS models

are therefore trained with 12, 13, 13 and 14 input

variables, respectively.

Training and testing of ANFIS models

Four ANFIS models introduced in the section ‘Model

architectures’ were trained using data sets collected

from the literature and tested using the experimental

results conducted by the authors following the section

‘Experimental work’.

Data sets. For the training of ANFIS, 1551 test

results are collected from previous research.29–56 Some

collected experimental data pairs have either UPV or

rebound number and others have both. The range of the

values for each parameter is listed in Table 3. This

collected data set is used to construct the training data

sets. Even though many researchers focused on these

kinds of NDT tests, it is difficult to gather much useful

data from their technical literature because they did not

show the mix proportion or the exact values of experi-

mental results. Table 4 presents the part of details of

the data used for the training of ANFIS models in this

study. The compressive strengths of the last column of

Table 4 are used for the target values of ANFIS models.

The total number of input data pairs are 1551, 1103,

1040 and 871 for ANFIS-B, ANFIS-U, ANFIS-R and

ANFIS-UR, respectively.

For the testing of trained ANFIS models, test data sets

are prepared from the experimental study explained in

x

y

A1
N

Layer 2Layer 1 Layer 5Layer 3

A2

B1

B2

N

z

Layer 4

Π

Π

Σ

Fig. 5. The structure of the ANFIS28
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the section ‘Experimental work’. To collect the test data,

five mix proportions are prepared. Using these speci-

mens, compressive tests and NDTs are conducted under

at seven different ages under different curing conditions.

Trained ANFIS models. Training for each model

is successfully completed. To evaluate the prediction

accuracy of trained systems, the training data are

recalled for checking the trained ANFIS models. The

predicted compressive strength values of four ANFIS

models for the training data are shown in Fig. 7

compared with the actual values observed in the

experiments. In this figure, each point represents a

training vector. If the points appear closer to the

diagonal, it means the accuracy of training results is

high. The training errors of the points on the diago-

nal are zero. In terms of the ratio of the predicted

strength to experimental compressive strength, the

mean values of these ratios are 1.054, 1.022, 1.013

and 1.007 and the coefficients of variation (COVs)

are 23.4%, 15.2%, 11.7% and 10.2%, for the ANFIS-

B, ANFIS-U, ANFIS-R and ANFIS-UR respectively.

More statistical analyses based on the training results

will be presented in ‘Error analysis of ANFIS mod-

els’. Fig. 7 clearly illustrates that ANFIS-UR which

has input variables of both UPV and rebound number

shows the best prediction accuracy.

Testing of ANFIS models. The predicted compres-

sive strength values of four ANFIS models for the test-

ing data are shown in Fig. 8 compared with the actual

values observed in the experiments conducted by the

authors. The average values of the experimental to

predicted compressive strength ratios are 1.094, 1.061,

1.054 and 1.047 respectively, and the COVs are 39.4%,

24.9%, 22.7% and 7.3% respectively. In practice, the

predicted results of ANFIS-B, ANFIS-U and ANFIS-R

show relatively large errors. ANFIS-UR predicts, how-

ever, compressive strength with good accuracy. More

statistical analyses based on the testing results will be

presented in ‘Error analysis of ANFIS models’.

The results of the testing phase suggest that, although

the models were not trained for these data, the ANFIS

models, especially ANFIS-UR, were capable of gener-

alising the relationship between the input variables and

the output and yielded reasonably good predictions.

UPVRN.…….

.……………..

MP(10)

AgeW/C F.AWS

HIS(2) NDT(2)

Input layer

Output layer

C.C

Fuzzy inference

fck

RN.…….

.……………..

MP(10)

AgeW/C F.AWS

HIS(2) NDT(2)

Input layer C.C UPV

Fuzzy inference

Output layer fck

.…….

.……………..

MP(10)

AgeW/C F.AWS RN

HIS(2) NDT(2)

Input layer

Fuzzy inference

Output layer

C.C UPV .…….

.……………..

MP(10)

AgeW/C UPVF.AWS RN

HIS(2) NDT(2)

Input layer

Output layer

C.C

Fuzzy inference

fckfck

(a)

(c)

(b)

(d)

Fig. 6. Model architectures: (a) ANFIS-B: (b) ANFIS-U; (c) ANFIS-R; (d) ANFIS-UR

Table 3. The range of the input and output values covered in

this study

Input/output variables Data range used in training

Minimum Maximum

Cement: kg/m3 0 900.9

Water: kg/m3 118 238

Sand: kg/m3 208 879

Gravel: kg/m3 386 1285

Superplasticiser: % 0 3.5

Fly ash: kg/m3 0 275

Silica fume: kg/m3 0 90

Slag: kg/m3 0 500

Compressive strength: MPa 6.3 107.7

Neuro-fuzzy application for concrete strength prediction using combined non-destructive tests
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Analysis results and discussion

Error analysis of ANFIS models

To evaluate the prediction accuracy of each ANFIS

model, root-mean-square error (RMSE), absolute frac-

tion of variation (R2), mean absolute percentage error

(MAPE) and mean prediction ratio (MPR) were calcu-

lated using the following equations

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
i

ai � pij j2
s

(5)

R2 ¼ 1�

X
i

(ai � pi)
2

X
i

(pi)
2

0
BBB@

1
CCCA (6)

MAPE ¼ 1

N

X
i

(ai � pi)

pi

����
����3 100 (7)

MPR ¼ 1

N

X
i

pi

ai

� �
(8)

where ai is the actual compressive strength, pi is the

predicted value and N is total sample number.

Table 5 shows RMSE, R2, MAPE and MPR values

of training and testing data sets for the comparison of

the performance of the ANFIS models.

While the statistical parameters of RMSE, R2, MAPE

and MPR of the prediction results of ANFIS-B using

the training data set are 8.24, 0.9714, 18.81 and 1.054

respectively, these values of ANFIS-UR are 3.64,

0.9940, 7.5 and 1.007 respectively. All of the statistical

parameters demonstrated that ANFIS-UR has the best

accuracy and can predict compressive strength very

close to experiment results.

To find the statistical characteristics of models, histo-

grams of each ANFIS model are presented and statistical

analyses are conducted to find the probability density

function. All models are fitted to a log-normal distribu-

tion function as in Fig. 9. The mean of log-normal values

of compressive strength are 0.025, 0.010, 0.006 and

Table 4. The examples of collected data sets (in part)

Data set

ID No.

W/C S/A C S G W SP:

%

FA SF Slag Age:

days

Curing UPV:

km/s

RN Strength:

MPa

% kg/m3 kg/m3

1 35 47 450 793 943 161.5 2.7 100 50 0 7 Air 4.4 — 47.0

2 35 47 300 807 960 148 2.3 100 50 150 7 Air 4.3 — 39.1

31 40 34.5 377 635 1206 151 0.4 — — — 90 Water 4.5 24 37.6

32 43 39 377 707 1106 162 0.6 — — — 90 Water 4.55 25 40.6

55 40 40 394 697 1051 175 0.8 44 — — 7 Water 4.41 23 27.5

56 40 40 350 698 1040 175 0.8 88 — — 7 Water 4.35 19 23.3

71 25 33.1 648 480 1035 180 — — 72 — 7 Water 4.706 44 60

89 30 45.1 420 798 1035 140 — — 47 — 7 Water 4.747 39 51.3

121 35 47 200 791 941 167.5 1.5 — — 300 28 Water 4.61 — 62.9

122 35 47 0 785 933 163.5 2.3 — — 500 28 Water 4.79 — 60.3

211 58.8 41 332 746 1093 185 — — — — 3 Water 4.02 — 17.0

212 53.3 39 351 711 1134 187 — — — — 3 Water 4.02 — 17.0

357 40 34 522 540 1049 211 — — — — 90 Air 4.19 37 39.4

358 40 34 478 572 1106 191 — — — — 90 Air 4.18 35 32.1

359 40 34 453 588 1137 181 1.5 — — — 180 Air — 41 35.5

471 60 38.9 318 707 1105 190 — — — — 180 Air — 37 27.4

509 52 46 355 790 931 188 0.5 — — — 365 Air 3.78 36 23.3

W/C ¼ water/cement ratio; S/A ¼ sand/aggregate; C ¼ cement; S ¼ sand; G ¼ gravel; W ¼ water; SP ¼ superplasticeser; FA ¼ fuel ash;

SF ¼ silica fume; RN ¼ rebound number
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0.002 for ANFIS-B, ANFIS-U, ANFIS-R and ANFIS-UR

respectively, and the standard deviations of log-normal

values are 0.231, 0.151, 0.113 and 0.101 respectively.

This shows the tendency for the variance of the compres-

sive strength to decrease as the ANFIS models are chan-

ged from ANFIS-B to ANFIS-UR. It can also be

observed that as the standard deviation increases, the

positive skewness of the probability density function also

increases.

Simulation for the performance of ANFIS model

As the training data are scarce and limited so that

they cannot cover whole parameter space, it is expected

that the trained model may not be able to capture

completely the complex interrelationships among phy-

sical parameters. Hence, there is a need to validate the

performance of the ANFIS models through simulating

the behaviour of physical processes. This can be done

by testing the models with hypothetical data by varying

the values of some input parameters.

The one ANFIS model developed in this research,

ANFIS-UR, is used to predict the compressive

strengths corresponding to the varying rebound number

and UPV. In Fig. 10, based on the results of prediction,

the effects of rebound number and UPV are shown as a

surface plot of the compression strength. Fig. 10(a) is

Table 5. Statistical parameters for four ANFIS models

Data Statistical parameters ANFIS-B ANFIS-U ANFIS-R ANFIS-UR

Training data set RMSE 8.24 4.76 4.25 3.64

R2 0.9714 0.9896 0.9920 0.9940

MAPE (%) 18.81 11.32 8.41 7.52

MPR 1.054 1.022 1.013 1.007

Testing Data set RMSE 7.31 5.51 4.82 1.07

R2 0.9571 0.9757 0.9814 0.9833

MAPE (%) 27.42 18.24 16.01 10.99

MPR 1.094 1.061 1.054 1.047
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for the concrete sample with 70% of w/c and Fig. 10(b)

is for the sample with 30% of w/c. Compressive

strengths are predicted for the age of 28 days. For both

cases, the effects of rebound number and UPV on com-

pressive strength can be clearly shown in this figure.

The effect of increasing rebound number is found to

produce higher strength at the same levels of UPV.

These surface graphs based on the developed model

can be a useful tool for structural engineers and con-

struction managers in the field.

Conclusion

A neuro-fuzzy-based technique is presented for pre-

dicting the concrete compressive strength using mix

proportions and NDT results. For the comparative

study, four ANFIS models (ANFIS-B, ANFIS-U,

ANFIS-R and ANFIS-UR) are developed. The models

are trained with input and output data sets obtained

from the literature. As shown in previous research,

trained ANFIS-B model can be used to predict the

compressive strength at any ages. Because of the var-

ious in situ factors, however, the prediction of compres-

sive strength did not show high accuracy. In the current

study, therefore, a neuro-fuzzy-based model combined

with NDT results is proposed. The ANFIS-UR model,

which includes a mix proportion, UPV test and rebound

hammer test results as input parameters, shows the best

prediction accuracy.

For the validation of the ANFIS models, the experi-

mental study is conducted by the authors using several

mix proportions. For each specimen, the results of uni-

axial compressive test, UPV test, and rebound hammer

test are obtained. The test phase of the ANFIS models

shows that the trained models can reasonably predict

the compressive strength of different input data sets

which are not used in the training procedures. In addi-

tion, error analyses using RMSE, R2, MAPE and MPR

and statistical analysis to obtain statistical parameters

of the predicted results are also conducted. Simulation

for the performance of the ANFIS model is also pre-

sented using varying rebound number and UPV.

The conclusions of this study are based on the parti-

cular training and testing data sets and the input para-

meters and architectures of ANFIS models considered

herein. Perhaps the accuracy of these results can be

improved if more detailed input parameters, for exam-

ple cement grade, maximum aggregate size, curing

temperature, and air entrainment, are introduced. In

addition, because mineral admixtures such as fly ash

have a feature to retard the rate of strength gain, this

kind of age-dependent characteristic needs to be in-

cluded in the input parameters of the architectures.

Even though other architectures of ANFIS models, such

as modular AI architectures or separated ANFIS mod-

els for each prediction age, can be introduced, all four

ANFIS models are constructed using single architecture

in the current study. This is because this research

focused on the development and demonstration of a

generalised easy-to-use model rather than a high-accu-

racy model for specific data sets. The authors intend to

develop a one-set prediction tool that can cover various

concrete type such as low to high strength and early to

late ages.

Based on the results, it has been found that a numer-

ical technique, neuro-fuzzy model, can be used reliably

to predict compressive strengths of concrete, rather than

referring to costly experimental investigation. In addi-

tion, it can be said that if cost-effective NDT results are

combined with AI systems, the accuracy and effective-

ness of the strength prediction will increase dramati-

cally. It is also clear that a concrete strength prediction

model using combined NDT results, both of UPV and

rebound number, provides more accurate prediction re-

sults than other models with a single type of testing

result. The results of this study will give some helpful

information to construction engineers and structural de-

signers and this methodology can be used as a new tool

to support the decision process in the concrete construc-

tion field as a function of measured NDTs and mix

proportions. Further research is required to obtain a

better understanding of ANFIS models and to provide
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more accurate prediction results. Sensitivity studies and

field applicability combining various in situ conditions

and NDT results will be the focus of future research.
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