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NONLINEAR STATIC PROCEDURE FOR FRAGILITY

CURVE DEVELOPMENT

By Masanobu Shinozuka,1 Honorary Member, ASCE,
Maria Q. Feng,2 Associate Member, ASCE, Ho-Kyung Kim,3 and Sang-Hoon Kim4

ABSTRACT: This study examines the fragility curves of a bridge by two different analytical approaches; one
utilizes the time-history analysis and the other uses the capacity spectrum method. The latter approach is one
of the simplified nonlinear static procedures recently developed for buildings. In this respect, a sample of 10
nominally identical but statistically different bridges and 80 ground-motion time histories are considered to
account for the uncertainties related to the structural capacity and ground motion, respectively. The comparison
of fragility curves by the nonlinear static procedure with those by time-history analysis indicates that the agree-
ment is excellent for the state of at least minor damage, but not as good for the state of major damage where
nonlinear effects clearly play a crucial role. Overall, however, the agreement is adequate even in the state of
major damage considering the large number of typical assumptions under which the analyses of fragility char-
acteristics are performed.

provided by Columbia Universit
INTRODUCTION

In performing a seismic risk analysis of a structural system,
it is important to identify the seismic vulnerability of com-
ponent structures associated with various states of damage. It
is a widely practiced approach to develop vulnerability infor-
mation in the form of fragility curves. The first writer has
presented the development of empirical and analytical fragility
curves for bridges (Shinozuka et al. 2000). Empirical curves
were developed by utilizing the damage data associated with
past earthquakes, while analytical curves were developed by
numerically simulating seismic response with the aid of struc-
tural dynamic analysis. Although the most reliable analytical
method is the use of complete nonlinear time-history analysis,
the present state of the physical understanding of the physics
of damage, in general, appears to be premature for the so-
phistication such a rigorous analysis represents.

Recently, there has been an increasing interest in the sim-
plified nonlinear analysis method, referred to generally as the
nonlinear static procedure. A report by the Applied Technology
Council (ATC) (1996) stated: ‘‘Available nonlinear static pro-
cedures include (1) the capacity spectrum method (CSM)
(ATC 1996) that uses the intersection of the capacity (or push-
over) curve and a reduced response spectrum to estimate max-
imum displacement; (2) the displacement coefficient method
(FEMA 1997) that uses pushover analysis and a modified ver-
sion of the equal displacement approximation to estimate max-
imum displacement; and (3) the secant method [e.g., City of
Los Angeles (COLA 1995)] that uses a substitute structure and
secant stiffness.’’ These methods are basically targeted to the
seismic evaluation and retrofit of buildings, not bridges. How-
ever, similar concepts and procedures are currently under in-
vestigation by bridge researchers and engineers to introduce
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standardized, simplified procedures for performance-based
seismic evaluation of bridges (Barron 1999; Dutta 1999).

Conforming to this current trend, this study considers a fea-
sible means for developing fragility curves of bridges by uti-
lizing the CSM. Preliminarily, responses by the CSM for a set
of ground-motion time histories are evaluated and compared
with those by the nonlinear time-history analysis. Based on
this examination, fragility curves for a typical bridge are de-
veloped by the CSM and are compared with those by the time-
history analysis, as proposed in a preceding study (Shinozuka
et al. 2000).

MEMPHIS BRIDGE AND SEISMIC GROUND MOTION

To ensure the most efficient comparison between the CSM
and the time-history analysis method, the same representative
bridge in Memphis, with a precast, prestressed-continuous
deck, and the same set of 80 time histories of ground motion
as adopted in Shinozuka et al. (2000) are considered again.
This bridge and the 80 time histories were originally studied
by Jernigan and Hwang (1997) and Hwang and Huo (1996).

Memphis Bridge

The plan, elevation, and column cross section of the Mem-
phis bridge are depicted in Fig. 1. Each pier has 2 columns
4.58 m in height. Following Jernigan and Hwang (1997), the
strength fc of 20.7-MPa concrete used for the bridge is as-
sumed to be best described by a normal distribution with a
mean strength of 31.0 MPa and a standard deviation of 6.2
MPa. The yield strength fy of Grade 40 reinforcing bars used
in the design is described by a lognormal distribution having
a mean strength of 336.2 MPa, with a standard deviation of
36.0 MPa. The same sample of 10 ‘‘nominally identical but
statistically different’’ bridges, as used in the simulation anal-
ysis performed in Shinozuka et al. (2000), is then created for
the bridge by simulating 10 realizations of fc and fy according
to assumed respective probability distribution functions. These
bridges are referred to as Sample Bridge 1, 2, . . . , 10, distin-
guishing them from the representative Memphis bridge. Other
parameters that could contribute to the variability of the struc-
tural response were not considered in the present analysis, with
the assumption that their contributions could be disregarded.

Seismic Ground Motion

For the seismic ground motion, the time histories generated
by Hwang and Huo (1996) at the Center for Earthquake Re-
JOURNAL OF ENGINEERING MECHANICS / DECEMBER 2000 / 1287
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FIG. 1. Representative Memphis Bridge
search and Information at the University of Memphis are used.
To minimize computational effort, samples of 10 time histories
were randomly selected from 50 histories generated by Hwang
and Huo (1996) for each of the following eight combinations
of M (magnitude) and R (epicentral distance): M = 6.5 with R
= 80 and 100 km, M = 7.0 with R = 60 and 80 km, M = 7.5
with R = 40 and 60 km, and M = 8.0 with R = 40 and 60 km.
The spectral accelerations, averaged over 10 acceleration time
histories from each combination of M and R, are shown in Fig.
2(a) with four combinations. This figure also shows the spec-
tral acceleration averaged over 80 total acceleration time his-
tories, to provide insight to the frequency content of these
ground motion time histories. Figs. 2(b and c) show the ve-
locity response spectrum and the displacement response spec-
trum, respectively, averaged over 80 total ground motions.

CSM

Two key elements of the CSM are ‘‘demand’’ and ‘‘capac-
ity.’’ Demand represents the intensity of the seismic ground
motion to which bridges are subjected, while capacity repre-
sents the bridge’s ability to resist the seismic demand. The
determination of three primary elements are required by the
CSM: Capacity spectrum, demand spectrum, and performance
point. Each of these elements utilized in this study basically
conforms to the report by the ATC-40 (1996), and is briefly
described below using the Memphis bridge and the set of seis-
mic ground-motion time histories introduced above as exam-
ples.

Capacity Spectrum

To determine a capacity behind the elastic limits, the push-
over analysis is performed. The standard procedure for plotting
NGINEERING MECHANICS / DECEMBER 2000

J. Eng. Mech. 2000.1
the force-displacement curve is by tracking the total shear
force at the column bottoms as a function of displacement of
the superstructure. The lateral forces are applied in proportion
to the fundamental mode shape as

N

F = w f w f V (1)i i i i iS YO D
i=1

where Fi = lateral force of node i (i = 1, 2, . . . , N); wi = dead
weight assigned to node i; fi = amplitude of the fundamental
mode at node i; V = base shear; and N = number of nodes
(ATC 1996).

The initial fundamental mode shape can be obtained from
eigenvalue analysis performed by most general-purpose struc-
tural analysis computer codes. By gradually increasing lateral
forces, plastic hinges are formed in succession at the column
bottoms, and the overall pushover curve deviates from the in-
itial straight line for elastic deformation. The effective stiffness
gradually decreases, and consequently, the fundamental natural
period of the bridge at any state, related to the secant slope of
the radial line between the origin and corresponding point on
the capacity curve, gradually increases. As a result, the fun-
damental mode shape eventually changes significantly, and the
lateral forces in the inelastic range distribute somewhat differ-
ent from those in the elastic range. With very few exceptions,
general-purpose nonlinear structural analysis computer codes
are capable of performing eigenvalue analysis only with tan-
gential stiffness being at any state of deformation. However,
they are incapable of obtaining mode shapes and natural pe-
riods with secant stiffness, which considers gradual decrease
of stiffness with inelastic deformation of plastic hinges, as in
the problem under consideration. For this reason, the period
26:1287-1295.
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FIG. 2. Response Spectra Averaged over 80 Time Histories
(5% Damping): (a) Acceleration Response Spectra; (b) Velocity
Response Spectrum; (c) Displacement Response Spectrum

and mode shape of the fundamental mode are approximated
in this study by the use of the statics principle, with iterative
procedures based on the following (ATC 1996):

N N

2T = 2p w d g F d (2)i i i iSO DYS O DÎ
i=1 i=1

where T = period of the fundamental mode; di = lateral dis-
placement at node i due to lateral forces; and g = acceleration
due to gravity.

To use the CSM, it is necessary to convert the capacity
curve to the capacity spectrum. The capacity curve expresses
overall shear force on all supports as a function of the hori-
zontal displacement of the superstructure, whereas the capacity
spectrum represents the capacity curve in the acceleration-dis-
placement response spectra (ADRS) format. The spectral ac-
celeration Sa and the spectral displacement Sd can be calculated
using modal parameters at any level of load magnitude as fol-
lows (ATC 1996):
J. Eng. Mech. 2000.
FIG. 3. Nonlinear Model of Columns

V/W
S = (3)a

a

D ugirder pl
S = = (4)d

PFf PFfgirder pl

where W = overall dead weight of bridge; Dgirder = horizontal
displacement of girder; upl = rotation of plastic hinge; fgirder

and fpl = amplitudes of the fundamental mode at the girder
and plastic hinge, respectively; and PF and a = modal partic-
ipation factor and modal mass coefficient, respectively, of the
fundamental mode defined as follows:

N

(w /f )/gi iO
i=1

PF = (5)NF G2(w f )/gi iO
i=1

2N

(w f )/gi iFO G
i=1

a = (6)N N

2w /g (w f )/gi i iFO G FO G
i=1 i=1

The spectral displacement Sd can be obtained from any dis-
placement component of the structure as shown in (4). For
bridge structures, the horizontal displacement of the girder is
the most critical displacement component for developing the
capacity curve. However, the rotation of the plastic hinge is
more conveniently used to develop the capacity curve when
the rotational ductility demand of the plastic hinge at the col-
umn bottom is used to represent the damage states as in the
present study.

The DIANA 7.1 finite-element code (DIANA 1999) is uti-
lized for the pushover analysis of the Memphis bridge. The
SAP2000 (SAP2000 1999), used for the nonlinear time-history
analysis in Shinozuka et al. (2000), has a special option for
pushover analysis, but only with the elastic response spectrum
as recommended by the ATC-40 (1996). The SAP2000
(SAP2000 1999) also covers some local nonlinear problems in
dynamics, but not those in statics; this is the primary reason
for the use of another code in this study. Both finite-element
models for nonlinear static pushover analysis and for nonlinear
time-history analysis are conceptually the same, although they
are developed for different computer codes. The bridge is
modeled as a fishbone model with frame, spring, and inelastic
hinge elements. The modeling of plastic hinge with inelastic
hinge elements is illustrated in Fig. 3. The column is modeled
as an elastic frame element of length He, with a plastic zone
of length Lp at the column bottom. The moment-rotation re-
lationship of the nonlinear hinge is established using the col-
umn ductility program COLx (COLx 1993).
JOURNAL OF ENGINEERING MECHANICS / DECEMBER 2000 / 1289
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FIG. 4. Fundamental Natural Periods of 10 Sample Bridges on
or near Ductility Demand of Plastic Hinge Equal to 1, 2, 3, 4, and
10

FIG. 5. Capacity Curve versus Capacity Spectrum of Sample
Bridge 1

FIG. 6. Capacity Spectra of 10 Sample Bridges

Static pushover analyses are performed for 10 sample
bridges to develop capacity curves. The spectral displacement
in (4) is expressed with the rotation of the plastic hinge, as
mentioned earlier. The bridge consists of three symmetrically
positioned piers along the longitudinal axis. By increasing the
lateral forces, it is found that the internal pier yields first and
the external piers yield later. This slightly delayed yielding of
external piers results in a smaller rotation of plastic hinges of
external piers. To ensure the consistency in evaluating the min-
imum ductility demand of all columns at performance point,
the rotation of the external pier is taken as fpl in (4). The
modal parameters in (3) and (4) gradually change while the
plastic hinges undergo rotations beyond the yielding limit.
Hence, modal parameters are calculated in several loading
1290 / JOURNAL OF ENGINEERING MECHANICS / DECEMBER 2000
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TABLE 2. Values for Damping Modification Factor k (ATC)
1996)

Structural behavior
type
(1)

b0

(2)
k

(3)

A #16.25
>16.25

1.0
1.13 2 0.008b0 $ 0.77

B #25
>25

0.67
0.845 2 0.007b0 $ 0.53

C Any value 0.33

TABLE 1. Minimum Allowable SRA and SRV Values (ATC 1996)

Structural behavior type
(1)

SRA

(2)
SRV

(3)

A 0.33 0.50
B 0.44 0.56
C 0.56 0.67

states and are linearly interpolated between the calculated
points. These modal parameters are calculated on or near the
ductility demand of the plastic hinge equal to 1, 2, 3, 4, and
10. Fundamental natural periods of 10 bridges at those ductil-
ity demands are calculated using (2) and are presented in Fig.
4. As shown in this figure, the fundamental natural periods for
10 bridges fall into the range from approximately 1.2 to 3.0
s. Fig. 5 shows the capacity curve of Sample Bridge 1 with
the corresponding transformed capacity spectrum for the afore-
mentioned ductility demands. Finally, Fig. 6 shows capacity
spectra for the 10 sample bridges.

Demand Spectrum

The standard elastic acceleration response spectrum can be
converted to ADRS format with the aid of the following (ATC
1996):

2T
S = S g (7)d a24p

According to the ATC (1996), the reduced inelastic ADRS
is developed by multiplying the reduction factors SRA and SRV

for the range of constant spectral peak acceleration and con-
stant spectral peak velocity, respectively, as follows:

3.21 2 0.68 ln(b )eff
SR = $ values in Table 1 (8)A 2.12

2.31 2 0.41 ln(b )eff
SR = $ values in Table 1 (9)V 1.65

where beff (in percent) = effective viscous damping including
assumed 5% structural viscous damping as follows:

63.7k(a d 2 d a )y pi y pi
b = kb 1 5 = 1 5 (10)eff 0

a dpi pi

where b0 = equivalent viscous damping associated with full
hysteresis loop area of capacity spectrum; and k = damping
modification factor to compensate for the uncertainty in b0

because of probable imperfections in real bridge hysteresis
loops, and defined as a function of structural behavior type,
as shown in Table 2. Also in (10), dy, ay represents the yielding
points on the bilinear capacity spectrum, and dpi, api are the
performance points on the bilinear capacity spectrum at the ith
trial with the significance of yield points and performance
points graphically depicted later in Fig. 10.

Performance Point

When the displacement dpi at the intersection of the reduced
demand spectrum with the capacity spectrum falls within the
126:1287-1295.
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65% range of the displacement of the performance point ob-
tained at the i 2 1th iteration [i.e., # #0.95d dp(i21) pi

dpi becomes the performance point. If the intersec-1.05d ],p(i21)

tion of the reduced demand spectrum and the capacity spec-
trum is not within the acceptable tolerance, then the iterative
process will proceed. Basically, the ATC (1996) suggested
three different procedures that standardize and simplify this
iterative process (Procedures A, B, and C). These alternate
procedures are based on the same concepts and mathematical
relationships but vary in their dependence on analytical versus
graphical methods. This study utilizes Procedure A, which is
more of an analytical method than a graphical method.

SINGLE GROUND-MOTION EXCITATION

To examine more clearly the differences between evaluated
responses, two methods—the CSM and the time-history anal-
ysis method—responses are calculated and compared for a set
of single ground-motion time histories prior to comparing fra-
gility curves. For this purpose, Sample Bridge 1 and eight
ground-motion time histories are selected. The eight ground-
motion time histories represent a randomly chosen one-time
history for each combination of M and R (eight total combi-
nations) to cover the wide range of peak ground acceleration
(PGA).

While time-history analysis gives a unique response for
each ground-motion time history, the response by the CSM
usually depends on the engineer’s judgments for some param-
eters. One of them is the ‘‘structural behavior type’’ when the
procedure in ATC-40 (1996) is considered. The selection of
structural behavior type in ATC-40 (1996) depends on both
the quality of the primary elements of the seismic resisting
system and the duration of shaking. Even though ATC-40
(1996) suggested the criteria to determine an appropriate type
for a given structure, it is not so clear to determine one proper
category for this example of the purely idealized bridge. Based
on (8)–(10), the selection of structural behavior type affects
the response of the bridge in connection with two parameters,
such as the ‘‘minimum allowable values of reduction factors’’
in Table 1 and the ‘‘damping modification factor’’ k in Table
2. Both parameters play an important role in determining the
spectral reduction factors, SRA and SRV .

Considering that any probable imperfection in real bridge
hysteresis loops is not considered in time-history analysis, SRA

and SRV in (8) and (9) can be obtained without reducing b0

with k (i.e., k = 1.0) in (10) and without limiting by the min-
imum allowable values in Table 1. This case (hereinafter re-
ferred to as the ‘‘no modification’’ case) may overestimate the
effective damping, resulting in an overly reduced response.
The structural behavior Type A is considered to be the most
reasonable assumption in this idealized example, while the
structural behavior Types B or C seems not to be so appro-
priate. However, the sensitivity analysis of this parameter is
valuable because the reduction of the elastic response spectrum
is the core of the CSM. Accordingly, four possible cases—
cases of structural behavior Types A, B, and C and one ad-
ditional case of no modification—are considered in case stud-
ies. As mentioned earlier, the fundamental natural periods are
over 1.2 s for the bridge under consideration, and Fig. 2(c)
shows that these periods belong to the range of constant-peak
spectral displacement. Nevertheless, SRV , the reduction factor
for the range of constant-peak spectral velocity, is applied to
obtain the reduced inelastic demand spectrum because the re-
duction factor for the range of constant peak spectral displace-
ment is not defined in ATC-40 (1996).

The maximum horizontal displacement of the girder and the
maximum total shear force at the column bottoms by both
methods are examined in this example. The response ratios,
defined as the response by the CSM divided by the response
J. Eng. Mech. 2000
FIG. 7. Response Ratios of Sample Bridge 1 as Function of
PGA: (a) Maximum Horizontal Displacement of Girder; (b) Maxi-
mum Total Shear Forces at Column Bottoms

by the time-history analysis, are plotted for the corresponding
PGA values of eight time histories as shown in Fig. 7. For the
maximum horizontal displacement of the girder, the responses
by the two methods are almost the same up to a PGA of 0.2g.
In fact, the CSM gives slightly greater displacements than the
time-history analysis for this range. The structural behavior
type does not affect the calculated responses because the
bridge still deforms in the elastic range. This fact can be more
clearly demonstrated by plotting the same response ratios as
functions of the ductility demand of the plastic hinge rather
than PGA, as shown in Fig. 8. This figure shows that the
ductility demands are <1.0 for the case up to PGA of 0.2g,
which means the bridge deforms in the elastic range. For PGA
between 0.2g and 0.3g, the difference in the response by the
two methods increases up to 20%, as shown in Fig. 7(a). Fig.
8(a) also shows that the ductility demands for this case range
between 1.0 and 2.0. For this case, the maximum horizontal
displacement is slightly influenced by the structural behavior
type. For a high range of PGA between 0.3g and 0.4g, the
possible error in predicting the maximum horizontal displace-
ment between the two methods reaches 50% depending on the
structural behavior type. Fig. 8(a) shows that the ductility de-
mands for this range of PGA can exceed 5.0. In this case of
highly inelastic deformation, the CSM overestimates the hys-
teretic damping, and as a result, underestimates displacement
considerably. It is also found that the case of structural Type
A is practically the same as the case of no modification for all
ground-motion time histories considered. On the other hand,
the case of structural behavior Types B and C give signifi-
cantly increased maximum displacement compared with the
case of no modification, although the maximum displacements
for these cases are still less than those by the time-history
analysis. The same trend is shown in Figs. 7(b) and 8(b) for
JOURNAL OF ENGINEERING MECHANICS / DECEMBER 2000 / 1291
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FIG. 8. Response Ratios of Sample Bridge 1 as Function of
Ductility Demand of Plastic Hinge at External Pier (Ductility De-
mand Based on Time-History Analysis): (a) Maximum Horizon-
tal Displacement of Girder; (b) Maximum Total Shear Forces at
Column Bottoms

the maximum total shear force, where the difference between
the two methods is negligible because the shear force changes
relatively little after yielding.

FRAGILITY CURVE

It is assumed that fragility curves can be expressed in the
form of two-parameter (median and log-standard deviation)
lognormal distribution functions. For this purpose, the PGA is
used to represent the intensity of the seismic ground motion
even though the use of intensity measures other than PGA such
as peak ground velocity, spectral acceleration, spectral inten-
sity, and modified Mercalli intensity for fragility curve devel-
opment is possible; in fact, the usefulness of these measures
are examined systematically by Shinozuka et al. (2000).

Fragility Curves by Time-History Analysis
(Shinozuka et al. 2000)

The estimation of the two parameters (median and log-stan-
dard deviation of the lognormal distribution) is performed with
the aid of the maximum likelihood method. The likelihood
function L for the present purpose is expressed as

K

x 12xj jL = [F(a )] [1 2 F(a )] (11)j jP
j=1

where F(?) represents the fragility curve for a specific state of
damage; aj = PGA value to which bridge j is subjected; xj =
1 or 0 depending on whether or not the bridge sustains the
state of damage under PGA = aj; and K = total number of
bridges inspected after the earthquake. Under the current log-
normal assumption, F(a) takes the following analytical form:
1292 / JOURNAL OF ENGINEERING MECHANICS / DECEMBER 2000
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FIG. 9. Mean, Mean 1 1s and Mean 2 1s ADRS for Time His-
tories Grouped to PGA = 0.25g

a
ln S DcF GF(a) = F (12)

z

where a = PGA; and F[?] is the standardized normal distri-
bution function. The two parameters c and z in (12) are com-
puted as c0 and z0 satisfying the following equation to maxi-
mize ln L and hence L:

d ln L d ln L
= = 0 (13)

dc dz

This computation is performed by implementing a straightfor-
ward optimization algorithm.

Fragility Curves by CSM

The CSM is considered as a very simplified and yet as ju-
dicious a procedure as possible in evaluating bridge response
using a code-type predetermined response spectrum, rather
than an individual spectrum associated with a particular
ground-motion time history. To enjoy the most benefit that the
CSM offers, fragility curves are developed along with the fol-
lowing approaches.

Ground-motion time histories are sorted by PGA and
grouped to the nearest representative PGA (e.g., 0.10, 0.15,
0.20, . . . , 0.40) with scaling. For each group of PGA, the
mean and standard deviation of the elastic acceleration re-
sponse spectra for all the time histories in the group are cal-
culated for the considered range of structural period. By de-
veloping three elastic acceleration response spectra in this way
(i.e., mean and mean 6 1 SD) and transforming them to ADRS
format, three ADRS [i.e., mean (m) and mean 6 1 SD (m 6
s)] can be developed. An example of these ADRS is shown
in Fig. 9 for the time histories grouped to the representative
PGA = 0.25g. A capacity spectrum for each sample bridge is
then constructed one at a time, and drawn on the same coor-
dinates. The three performance points for each of the capacity
spectra are determined as its intersections with m and m 6 s
ADRS reduced properly, using the reduction factors intro-
duced in (8) and (9). These three spectral displacements are
defined as S̄d(a) and S̄d(a) 6 sd(a) and are shown in Fig. 10
for the time histories grouped to PGA = 0.25g. Indeed, they
are functions of a (PGA) since the three ADRS are developed
on the time histories sorted and grouped by PGA.

S̄d(a) and S̄d(a) 6 sd(a) of the Sample Bridge 1 for each
PGA are shown in Fig. 11. This figure shows that S̄d(a),

and increase gradually as PGA increases. It is1 2s (a), s (a)d d

also found that the magnitude of at any PGA is not the1s (a)d

same as that of In other words, the distribution of spec-2s (a).d
.126:1287-1295.
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FIG. 10. Calculation of Performance Displacement for Time
Histories Grouped to PGA = 0.25g: (a) Mean ADRS; (b) Mean 1
1s ADRS; (c) Mean 2 1s ADRS

tral displacement for given PGA is not symmetric. This study
assumes that the spectral displacement has the mean S̄d(a) and
the standard deviation sd(a) redefined as 1 2s (a)?s (a).Ï d d

Assuming the two-parameter lognormal distribution for the
spectral displacement, the parameters can be obtained from the
following equations:

2S̄ (a) = c(a)exp[{z(a)} /2] (14)d

2 2 2¯{s (a)} = {S (a)} [exp({z(a)} ) 2 1] (15)d d

The limit displacement dl defined as the spectral displacement
Sd(a) for the specified state of damage can be expressed by
(16) with the aid of (4)

u /u (ductility demand)pl y damage
d = = (16)l

PFf /u (PFf ) /upl y pl damage y
J

J. Eng. Mech. 2000.1
FIG. 11. Mean, Mean 1 1s, and Mean 2 1s Performance Dis-
placement of Sample Bridge 1

where (X)damage denotes the value of X at the specified state of
damage; and uy = yielding rotation of the plastic hinge. To be
consistent with the analytical fragility curves for the Memphis
bridge developed in Shinozuka et al. (2000), the state of dam-
age by ductility demand being larger than 1.0 (minor) or 2.0
(major), exists simultaneously for all the bridge columns.
Hence, (ductility demand)damage in (16) should be 1.0 for the
state of at least minor damage and 2.0 for the state of major
damage. It should be mentioned that the limit displacement dl

for each sample bridge is slightly different from the other for
even the same state of damage due to (PFfpl)damage not being
identical for each sample bridge. The probability that sample
bridge j will have a state of damage exceeding dl is given by

P [S (a) $ d for sample bridge j ] = P (a, d )d l j l

dl, j
ln S Dc (a), jF G= 1 2 F

z (a), j (17)

where dl = (dl)1 and dl = (dl)2 represent, respectively, the states
of minor and major damage under the assumption that the
same state of damage will be imposed on all the columns
simultaneously, as the nonlinear static analysis tends to imply.
The subscript j on c, j(a), and z, j(a) in (17) explicitly de-d ,l, j

notes that these three parameters are dependent on each sample
bridge j. The fragility value at PGA = a for the state of damage
represented by dl can be estimated by taking all K bridges in
the PGA group under consideration as follows:

K

P (a, d )j lO
j=1

F(a, d ) = (18)l
K

These values are plotted in terms of open squares in Fig.
12, whereas the values of Pj(a, dl) are plotted in terms of
crosses to show the degree of fragility variation due to the
variability in structural characteristics. Eighty diamonds plot-
ted on the two horizontal axes, which represent xi = 0 and xi

= 1 in relation to (11), and the fragility curve by the time-
history method are replotted here from Shinozuka et al. (2000).
The comparison of these results indicates that the agreement
is excellent for the state of at least minor damage, but it is not
as good for the state of major damage where nonlinear effects
obviously play a crucial role. Overall, however, the agreement
is adequate even in the case dealing with the state of major
damage, considering a large number of typical assumptions
under which the analysis of fragility characteristics are per-
formed.

Fig. 13 shows the sensitivity of the structural behavior type
OURNAL OF ENGINEERING MECHANICS / DECEMBER 2000 / 1293
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FIG. 12. Fragility Curves of 10 Sample Bridges: (a) State of at
Least Minor Damage; (b) State of Major Damage

to the fragility curves. Fig. 13(a) shows that the significance
of the structural behavior type can be neglected in developing
the fragility curve for the state of at least minor damage. On
the contrary, Fig. 13(b) shows the dependency of the fragility
curve for the state of major damage on the structural behavior
type.

DISCUSSIONS AND CONCLUSIONS

This study examines the fragility curves of bridges by two
different analytical approaches; one utilizes the time-history
analysis approach and the other makes use of the CSM. The
latter is one of the simplified nonlinear static procedures re-
cently developed, or currently in development, mainly for
building structures.

The comparison of fragility curves by the nonlinear static
procedure with those by the time-history analysis indicates that
the agreement is excellent for the state of at least minor dam-
age, but it is not as good for the state of major damage where
nonlinear effects obviously play a crucial role. This result ap-
pears to be attributable to the following reasons. First, any
possible imperfection in real bridge hysteresis loops is not con-
sidered in the finite-element models. But, the spectral reduc-
tion factors found in ATC-40 (1996) are basically determined
for real structures which show considerable degradation in
strength and stiffness by hysteretic cycling deformation. This
could lead to the discrepancy between the two methods es-
pecially for the cases of strong ground motion, Second, the
spectral reduction factors used in the case studies are for the
range of constant peak spectral velocity. ATC-40 (1996) sug-
gests the spectral reduction factors only for two ranges of con-
stant peak spectral acceleration and constant peak spectral ve-
1294 / JOURNAL OF ENGINEERING MECHANICS / DECEMBER 2000

J. Eng. Mech. 2000
FIG. 13. Fragility Curves of Memphis Bridge: (a) State of at
Least Minor Damage; (b) State of Major Damage

locity. But the response spectra of utilized ground motions
consist of only two ranges of constant peak—the range of
constant peak spectral acceleration and the range of constant
peak spectral displacement. Considering the fundamental nat-
ural periods of the bridges under investigation, the spectral
reduction factor should be taken for the range of constant peak
spectral displacement rather than constant peak spectral veloc-
ity. This effect should be examined in detail by using other
ground-motion time histories in future studies. Although the
CSM in ATC-40 (1996) suggests a more simplified practical
tool for evaluating seismic response, the theoretical back-
ground of estimating effective hysteretic damping should be
validated more clearly in future studies.

Overall, however, the agreement is adequate even in the
case dealing with the major state of damage considering a
large number of typical assumptions under which the analyses
of fragility characteristics are performed.

ACKNOWLEDGMENTS
In carrying out this work, the first and third writers were supported by

the Federal Highway Administration, McLean, Va., through the Multidis-
ciplinary Center for Earthquake Engineering Research, Buffalo, N.Y., un-
der Contract Nos. DTFH61-92-C00112 and DTFH61-92-C-00106 and by
the National Science Foundation, Arlington, Va., through the Multidis-
ciplinary Center for Earthquake Engineering Research under Contract
Nos. R90623 and R92629. The third writer was also supported by the
Korea Science and Engineering Foundation, Seoul, Korea, as a postdoc-
toral fellow. The second and fourth writers were supported by the Na-
tional Science Foundation under Grant No. CMS-9812585.

APPENDIX I. REFERENCES
Applied Technology Council (ATC). (1996). ‘‘Seismic evaluation and ret-

rofit of concrete buildings.’’ Rep. No. SSC 96-01: ATC-40,1, Redwood
City, Calif.
.126:1287-1295.



D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

C
O

L
U

M
B

IA
 U

N
IV

E
R

SI
T

Y
 o

n 
03

/1
9/

13
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.
Barron, R. (1999). ‘‘Spectral evaluation of seismic fragility of structures.’’
PhD dissertation, Dept. of Civ., Struct. and Envir. Engrg., State Uni-
versity of New York at Buffalo, Buffalo.

City of Los Angeles (COLA). (1995). ‘‘Earthquake hazard reduction in
existing reinforced concrete buildings and concrete frame buildings
with masonry infills.’’ Tech. Rep., Los Angeles.

COLx user’s manual. (1993). California Department of Transportation
(Caltrans), Sacramento, Calif.

DIANA user’s manual—Release 7.1. (1999). TNO Building and Construc-
tion Research, Delft, The Netherlands.

Dutta, A. (1999). ‘‘On energy based seismic analysis and design of high-
way bridges.’’ PhD dissertation, Dept. of Civ., Struct. and Envir.
Engrg., State University of New York at Buffalo, Buffalo.

Federal Emergency Management Agency (FEMA). (1997). ‘‘NEHRP
guidelines for the seismic rehabilitation of buildings.’’ FEMA-273,
Washington, D.C.

Hwang, H. M., and Huo, J.-R. (1996). ‘‘Simulation of earthquake accel-
eration time histories.’’ Tech. Rep., Ctr. for Earthquake Res. and Infor-
mation, University of Memphis, Memphis.

Jernigan, J. B., and Hwang, H. M. (1997). ‘‘Inventory and fragility anal-
ysis of Memphis bridges.’’ Tech. Rep., Ctr. for Earthquake Res. and
Information, University of Memphis, Memphis.

SAP2000 user’s manual—Nonlinear version 7.1. (1999). Computers and
Structures, Inc., Berkeley, Calif.

Shinozuka, M., Feng, M. Q., Kim, H., Uzawa, T., and Ueda, T. (2000).
‘‘Statistical analysis of fragility curves.’’ Tech. Rep., Multidisciplinary
Center for Earthquake Engineering Research, State University at Buf-
falo, Buffalo, N.Y.

APPENDIX II. NOTATION

The following symbols are used in this paper:

a, aj = PGA to which bridge j is subjected;
ay, api = spectral acceleration at yielding and ith trial

performance point on bilinear capacity spec-
trum, respectively;

c = median of lognormal distribution;
dl = limit displacement defined as spectral displace-

ment for specified state of damage;
dy, dpi = spectral displacement at yielding and ith trial

performance point on bilinear capacity spec-
trum, respectively;

Fi = laterally applied force on node i for pushover
analysis;

F(?) = fragility value for specified state of damage;
fc, fy = ultimate strength of concrete and yield strength

of reinforcing bar, respectively;
g = acceleration due to gravity;

He = length of elastic frame in finite-element model
of column;

i = node number;
J. Eng. Mech. 200
K = total number of bridges considered to develop
fragility curve;

L = likelihood function;
Lp = length of plastic hinge, i.e., length of rigid

frame in finite-element model of column;
l = limit state of bridge;

M = magnitude of ground-motion;
m = mean of normal distribution;
N = number of nodes in analysis model;

PF = modal participation factor for fundamental
mode;

Pj(a, dl) = probability that sample bridge j experiences
maximum spectral displacement greater than dl

for time history group of PGA = a;
R = epicentral distance of ground-motion time his-

tory;
Sa = spectral acceleration;

Sd, Sd(a), S̄d(a) = spectral displacement, spectral displacement
and mean spectral displacement for time-his-
tory group of PGA = a, respectively;

SRA, SRV = spectral reduction factors for range of constant
peak spectral acceleration and constant peak
spectral velocity of spectrum, respectively;

T = period of fundamental mode;
V = base shear;

W, wi = overall dead weight and dead weight assigned
to node i of bridge, respectively;

(X )damage = value of X at specified state of damage;
xj = 1 or 0 depending on whether or not bridge sus-

tains state of damage under PGA = aj ;
a = modal mass coefficient of fundamental mode;

b0, beff = equivalent viscous damping associated with full
hysteresis loop area of capacity spectrum and ef-
fective viscous damping including assumed 5%
structural viscous damping, respectively;

Dgirder = horizontal displacement of girder;
di = lateral displacement at node i due to lateral

forces;
F[?] = standardized normal distribution function;

fgirder, fi, fpl = amplitudes of fundamental mode at girder,
node i, and plastic hinge, respectively;

k = damping modification factor;
s = standard deviation of normal distribution;

sd(a) = standard deviation of spectral displacement for
time-history group of PGA = a;

1 2s (a), s (a)d d = 11s and 21s SD of spectral displacement for
time-history group of PGA = a, respectively;

upl = rotation of plastic hinge; and
z = log-standard deviation of lognormal distribu-

tion.
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