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A technique to improve the empirical mode decomposition 

in the Hilbert-Huang transform 

Yangbo Chen ( ~ ) t  and Mafia Q. Feng (~ ( -~ )*  
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Abstract: The Hilbert-based time-frequency analysis has promising capacity to reveal the time-variant behaviors of a sys- 
tem. To admit well-behaved Hilbert transforms, component decomposition of signals must be performed beforehand. This 
was first systematically implemented by the empirical mode decomposition (EMD) in the Hilbert-Huang transform, which 
can provide a time-frequency representation of the signals. The EMD, however, has limitations in distinguishing different 
components in narrowband signals commonly found in free-decay vibration signals. In this study, a technique for decompo- 
sing components in narrowband signals based on waves' beating phenomena is proposed to improve the EMD, in which the 
time scale structure of the signal is unveiled by the Hilbert transform as a result of wave beating, the order of component ex- 
traction is reversed from that in the EMD and the end effect is confined. The proposed technique is verified by performing 
the component decomposition of a simulated signal and a free decay signal actually measured in an instrumented bridge 
structure. In addition, the adaptability of the technique to time-variant dynamic systems is demonstrated with a simulated 
time-variant MDOF system. 
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1 In troduct ion  

The classical system analysis theory and practice 

have been overwhelmingly dominated by Fourier 

transform, which represents system characteristics in 

the frequency domain. However, by computing the 

global characteristics of the system averaged over the 

whole period of time, Fourier transform loses the time 

track of the sudden events and the gradual variation of 

the system. In reality, many of the signals observed 

are of transient nature; more importantly, there are 

many applications that concern the time-variant prop- 

erties of the system, such as structural health monito- 

ring. In some cases, one can assume a piecewise lin- 

ear time-invariant system and apply the Fourier trans- 

form within each of the limited time windows, which 

is the short time Fourier transform or the spectrogram 

analysis ( Grtichenig, 2001 ; Mallat, 1999). Howev- 

er, to represent the time-variant properties of the sys- 

tem, the time width of the window is preferably short, 

but a short-windowed Fourier transform may not 
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provide satisfactory resolution to reveal the changes in 

the system "s frequencies. The tradeoff is harder to 

reach when the phenomenon contains multiple time 

scales ( Huang et al. , 1998). 

Take the structural health monitoring application 

as a particular example. The time-variant properties 

of the monitored structural system can be attributed to 

( 1 )  the non-linearity of the system, such as the 

structural damages due to extreme loading conditions 

or the structural degradation due to aging or fatigue; 

( 2 )  non-stationary external excitation, for example 
the traffic on the bridges and the earthquakes; ( 3 )  

the time varying boundary conditions and temperature 
stress affected by the environmental temperature chan- 

ges; or even (4)  the ill-defined system itself, for ex- 
ample, for bridge monitoring based on traffic-induced 

vibrations, the decrease of the system's natural fre- 
quency due to the additional mass of vehicles running 
on the bridge is oftentimes mistakenly interpreted as a 

decrease in the stiffness of the bridge structure. These 

time-variant phenomena have different time scales. 

For example, the structural degradation may have a 

time scale of years, while the temperature changes 

may have a time scale of seasons or days, the non- 

stationary external excitation a scale of hours or mi- 

nutes and the structural damage a scale of several sec- 
onds. 

Therefore, an adaptive alternative for analyzing 
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the time-variant system is desirable. One of the prom- 
ising alternatives is the Hilbert-Huang transform, a 
time-frequency domain method based on the Hilbert 
transform proposed by Huang and demonstrated to 
possess the capacity for analyzing the non-linear non- 
stationary data by applying it to the numerical results 
of some classical nonlinear equation systems and data 
from natural phenomena (Huang et a l . ,  1998; 
1999 ). The key part of Huang~ method is the empiri- 
cal mode decomposition (EMD) to decompose the 
signal into a finite number of components admitting 
well-behaved Hilbert transforms. The Hilbert-Huang 
transform has found application in different fields, in- 
cluding earthquake engineering (Zhang and Ma, 
2000),  wind engineering (Pan et a l . ,  2003) and 
structural dynamics ( Yang and Lei, 2000 ; Salvino, 
2000). 

However, the EMD method has its limitation in 
distinguishing different components in narrowband sig- 
nals. In some cases, a narrowband signal is practical- 
ly considered as only one component; but there are 
other cases where further decomposition is necessary 
to reveal its component structure, especially for the 
purpose of analyzing the system properties based on 
the free decay response signals. A narrowband signal 
may contain either (1 )  components that have adja- 
cent frequencies, or ( 2 )  components that may not 
have adjacent frequencies, but one of them has domi- 
nant energy intensity much higher than the other com- 
ponents. In Huang et al. (1998)  , the EMD method 
has been used to analyze narrowband signals of the 
first category, but extremely stringent criteria have to 
be enforced on the EMD so that it can be carried out 
to an extreme extent (3000 iterations, as in Huang 
et a l . ,  1998) to distinguish different components, 
which involves significant effort. Narrowband signals 
of the second category, commonly found in the struc- 
tural vibration measurements, have not yet been ad- 
dressed. They are hardly distinguishable with the 
EMD method either, as will be shown later with ex- 
amples in section 5. 

In this study, a technique to improve the EMD 
method for efficiently distinguishing components in 
narrowband signals is proposed. The technique is 
based on the beating phenomenon of waves, Combi- 
ning with Hilbert transform, the technique possesses 
better power to reveal the time-variant properties of 
the system embedded in the measured narrowband sig- 
nals. The new technique is demonstrated by applying 
it to the simulated data and the data recorded in the 
real bridge structure under traffic loading. Prior to the 
presentation of the proposed technique, some con- 
cepts important in time-frequency analysis and an im- 
portant property of Hilbert transform are reviewed, 

and the idea of component decomposition contributed 
by Huang is also reviewed, which is retained and im- 
plemented in the proposed technique. 

2 Instantaneous frequency/amplitude 

The cornerstone of time-frequency domain analysis 
is the concepts of instantaneous frequency and instan- 
taneous amplitude of a signal. The well-known Heis- 
enberg uncertainty theorem (Grschenig, 2001 ) has 
ruled out the possibility of an exact definition of in- 
stantaneous frequency based on the Fourier definition 
of frequency ; that is, if the energy is well localized at 
some special point in time, it is not possible to be lo- 
calized at any specific value in frequency, and vice 
versa. Nevertheless, by introducing the Hilbert trans- 
form and the notation of the analytic signal, the 
unique and physical definitions of the instantaneous 
frequency and the instantaneous amplitude of a signal 
can be obtained, but with a different physical expla- 
nation of frequency, generalized from the conventional 
Fourier definition. 

An arbitrary real signal S( t )  has its Hilbert trans- 
form Y ( t )  and its analytic signal Z ( t ) ,  as 

Y ( t )  = __1 [S(T)dr" " 1) 
qr J t - T  

Z ( t )  = S ( t )  + i Y ( t )  = a ( t ) e  i~ 

a ( t )  = [ S 2 ( t )  + y 2 ( t ) ] l / 2  

2) 

3) 

O(t) = arctan Y( t )  (4) 
s(t) 

to ( t )  = O' ( t )  (5) 

where, to(t) is denominated as the instantaneous fre- 
quency and a ( t ) the instantaneous amplitude. The 
physical explanation (Hahn, 1996) can be achieved 
in polar coordinate representation of the analytic sig- 
nal Z ( t ) ,  in which the instantaneous amplitude a ( t )  
is the length of the phasor and the instantaneous fre- 
quency to (t)  is the instantaneous angular speed of the 
phasor rotation. 

As can be seen from Eq. ( 1 ) ,  the local property 
of S ( t )  at time t is magnified by Hilbert transform 
when 7 approaches t; indeed, Hilbert transform of a 
signal is its best local fit of an amplitude and phase 
varying trigonometric function (Huang et al. , 1998). 

To show the relationship between the Hilbert- 
based instantaneous frequency/amplitude in Eqs. 
(5) and (3) and the conventional Fourier-based fre- 
quency/ amplitude, it is worthwhile to revisit an im- 
portant property of Hilbert transform. 
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H [ f ( t ) g ( t )  ] = f ( t ) H [ g ( t )  ] (6)  

provided that f ( t )  and g ( t )  are signals of non-over- 
lapping spectra and that f ( t )  has low-pass spectrum 
while g ( t ) has high-pass spectrum. H [ S ( t ) ] de- 
notes the Hilbert transform of signal S ( t ) .  The proof 
of this property can be found in Hahn (1996) .  

By inserting a modulated signal S (t)  -- A (t) cos (tot) 
into Eqs. ( 1 ) through ( 5 ) ,  where A ( t )  is a gradu- 
ally variant function varying not as fast as cos ( to t ) ,  
and noticing that by Eq. (6)  the Hilbert transform of 
this signal is Y(t) = A ( t )  sin ( tot ) ,  the instantaneous 
amplitude becomes A ( t )  and the instantaneous fre- 
quency becomes to. Therefore, the Hilbert-based def- 
initions are generalized from the Fourier notations and 
their physical explanations agree with the authors" in- 
tuition. 

The Hilbert transform plays a key role in the defi- 
nitions above. The representation of a signal S ( t )  in 
the form of S ( t )  = a ( t )  cos[ 0 ( t )  ] is, unfortunately, 
not unique, which implies that there exist many possi- 
ble choices of aCt) and tO(t). The Hilbert transform 
nevertheless yields a unique pair of a ( t )  and 0( t )  for 
S( t )  via its analytic signal Z ( t )  (Hahn,  1996). 

The property in Eq. (6 )  can also help to explain 
the reason why Hilbert-based analysis can be applied 
to time-variant system analysis. Given a time variant 
vibration system as in Eq. (7)  

x + 2ho( t )x  + to~(t)x : f (7)  

if the system properties h 0 ( t )  and too ( t )  are gradual- 
ly varying, by taking Hilbert transform on both sides, 

HEs + 2ho( t )H[x]  + to~(t)HEx] = H[f~ 

(8) 
the time-variant properties of the system are separated 
from the Hilbert transforms of the excitation and the 
response signals (compared to the Fourier ease where 
the changing of the system properties will be involved 
in the Fourier transform). Indeed, theory to identify 
time-variant h 0 ( t )  and too ( t )  based on Hilbert trans- 
form for a SDOF vibration system has been developed 
(Feldman, 1994a; 1994b).  For a non-linear sys- 
tem, h 0 and too depend on x ( t ) ,  which in turn is a 
time function, non-linear systems can therefore also 
be represented by Eq. ( 7 ) .  

The Hilbert-based instantaneous frequency/ampli- 
tude have rendered the Hilbert-Huang transform the 
capacity to localize the energy distribution on both 
time and frequency axes, which, therefore, possessed 
the power to analyze the time-variant properties of the 
system. 

3 EMD and Hilbert-Huang transform 

Only a mono-eomponent signal admits a well-be- 
haved Hilbert transform (Huang et al. , 1998 ). This 
can be intuitively demonstrated by a signal with two 
components S( t ) : a~ ( t ) cos ( to l t )  + a2 ( t ) cos ( to~t ). 
After the Hilbert transform, the analytic signal of 
S ( t ) ,  Z ( t )  gives only one pair of to(t)  and a( t )  at 
time t, they fail to provide frequency/amplitude infor- 
mation of either of the two components. The revolu- 
tionary idea of the Hilbert-Huang transform is to cle- 
compose a complex signal of multi-components into a 
finite number of mono-component signals before com- 
puting their time-frequency distribution ( Huang 
et a l . ,  1998; 1999) .  The process proposed by 
Huang is referred to as the EMD, which will be re- 
viewed, with its limited capacity shown by examining 
a simulated narrowband signal. 

The method of EMD is developed based on the fol- 
lowing observations of the behaviors of a mono-compo- 
nent signal : ( 1 ) the number of local extrema and the 
number of zero crossings must either equal or differ at 
most by one; and (2 )  at any point, the mean value 
of the envelope defined by the local maxima and the 
envelope defined by the local minima is zero. Any 
signal satisfying these two conditions is called an in- 
trinsic mode function ( I M F ) ,  FIM , which is practi- 

cally considered as a mono-component signal. The 
EMD process is therefore to decompose an arbitrary 
real signal into its IMFs by an operation called sif- 
ting. A sifting consists three steps: (1 )  find out all 
the local maxima of the signal S ( t )  and determine the 
upper envelope U( t )  , by cubic-spline interpolation of 
the local maxima; (2 )  determine the lower envelope 
L(t )  similarly but using the local minima instead; 
and (3)  obtain an [MF by subtracting from the signal 
the mean of the upper and lower envelopes FIM ( t )  = 
S( t )  - [ U ( t )  +L(t )  ] / 2 ;  the remain signal R ( t )  = 
S ( t )  -FlM(t  ) is referred to as the residual. The first 
IMF is resulted from the first sifting, and then the re- 
sidual R ( t )  is treated as the signal in the second sif- 
ting to obtain the second IMF. The sifting operation is 
thus repeated until all the IMFs are extracted and the 
residual becomes a monotonic trend. The advantage of 
the EMD is that it decomposes the signal according to 
the intrinsic time scales defined by the local extrema 
at each round of sifting; therefore, it is an adaptive 
process able to deal with time-variant signal with com- 
plex time scale structures. 

However, the EMD has limitations in distinguis- 
hing components in narrowband signals. The first rea- 
son is the end effect issue. The EMD relies on cubic- 
spline interpolation to determine the upper and lower 
envelopes of the signal, but the absence of the control 
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knots and constrain conditions at both ends has made 
the interpolation around both ends highly unreliable. 
The end effect can further swing inwards and distort 
the signal, which is worse for IMFs with a longer time 
scale. The second reason is the order of the IMF ex- 
tractions. In the EMD process, an IMF with a shorter 
time scale (hence a higher frequency ) is extracted 
before those with lower frequencies. Therefore, errors 
are accumulated towards the lower modes that may be 
of more importance for system analysis because they 
usually carry more energy and are relatively better 
measured with less noise. But the accumulated error 
plus the end effect may have deformed the low 
modes. And the third reason is EMD's unsatisfactory 
resolution. It has to be carried out to extreme extent 
to distinguish components in narrowband signals of 
first category (Huang et al. , 1998). For narrowband 
signals of the second category, especially when a 
higher mode with less energy is riding on a lower 
mode carrying much more energy, the humps of the 
higher mode may not properly show up as the local 

extrema of the signal, which may lead to time scale 
misfit. In either case, the improvement of the effi- 
ciency of component decomposition is desirable. 

This limitation of the EMD method is illustrated in 
Fig. 1, which is the EMD of a simulated signal imita- 
ting the free decay vibration. The simulated signal 
can be roughly accepted as an IMF, since it has equal 
number of local extrema and zero crossings and is al- 
most symmetric; however it consists of three compo- 
nents, which the EMD method cannot distinguish. In 
this case, the EMD cannot identify the time scale of 
the riding waves, but ends up with a residual having a 
much longer time scale that bears no physical mean- 
ing. The deviations, 6 ' s  in the figures are calculated 
by Eq. (27) .  

When more information of the system is to be ob- 
tained from the narrowband signals, both the resolu- 
tion and the efficiency of the EMD method need to be 
improved. The technique proposed below can signifi- 
cantly improve the performance of the EMD method in 
this case. 
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Fig. 1 A simulated 3-component signal and its E n D  

4 Proposed technique of component de- 
composition 

The proposed technique is based on the beating 
phenomena of waves, in which the envelope of the su- 
perposition of two waves will be oscillating at the fre- 
quency difference of the two waves. This phenomenon 
has been explored by Feldman to decompose a 2-com- 
ponent signal (Feldman, 1997). However, for real 
applications it has to be extended to signals with more 
than two components. Suppose that the signal S( t )  is 

the superposition of n components: 

n 
S ( t )  = ~ Ci( t  ) (9) 

i=1 

C i ( t )  = A i ( t ) c o s [ O i ( t )  ] , O i ( t )  = t w i ( t )  + q~i 

(i  = 1 , 2 , . . . , n )  (10) 

where A i ( t )  and eo~ ( t )  are positive functions gradual- 

ly varying compared to cos[ Oi ( t )  ]. Notice that S( t )  

can be rewritten as: 
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n 

S(t)  = [ ~ Ai(t)cosAOit(t) ]cosO,(t ) 
i = l  

n 

- [ ~__Ai(t)sinAOi1(t)]sinO,(t ) (11) 
i = 1  

in which and hereafter, 

AOii(t) = Oi(t) -Or(t ) = tAtoo.(t ) + A~po (12) 

Awij(t ) = wi(t)  -oJ j ( t ) ,  Acpi j = :Pi -q~j (13) 

n n 

If ~,Ai(t)cosAOi,(t) and EAi(t)sin~Oil(t) are va- 
i = l  i = 1  

rying not as fast as cos01 (t)  and sinO~ ( t ) ,  Eq. ( 11 ) 
can be further represented as: 

S(t)  = a(t)cos[O,(t)  + a ( t ) ] ,  (14) 

n n n 

a2(t) : ~ A ~ ( t )  + 2 ~  E Ai(t) Aj(t) cosA00(t ) 
i = 1  i = 1  j = i + l  

(15) 

• A~(t)sinAO~, (t) 
or(t) = arctan i=~ (16) 

n 

E Ai(t)e~ (t)  
i = 1  

Therefore by Eq. ( 6 ) ,  after the Hilbert trans- 
form, the squared instantaneous amplitude a2( t )of  
S(t)  will have two parts: the gradually varying trend 
T(t) and the fluctuating part F ( t )  oscillating with 
the frequency differences of any two components, 
where 

rt 

T(t) = ~, A~(t) (17) 
i = 1  

n 

F(t)  = 2 E Ai(t) Ai(t)c~ 
i = l  j = i + l  

(18) 

Assume that the signal's energy is intense in its 
first several components, that is 

A,( t )  > > A 2 ( t  ) >> .. .  >> A.( t ) .  (19) 

This assumption can be justified in many free de- 
cay vibration signals. As an example, the Fourier 
transform of a typical signal of traffic-induced bridge 
free vibration is illustrated in Fig. 2, where the energy 
carried by each component is indicated by the magni- 
tudes of the corresponding peaks. Free decay signals 
can be obtained from impulse test of structures, or 
from ambient vibration measurement by the Random- 
Dec technique ( Ibrahim, 1977), or by selecting qua- 
si-free decay segments from the signal, such as the 
segments when vehicles traveling off the bridge leave 
the bridge vibrating with no vehicles on it. 

Fig. 2 A typical free decay signal from ambient vibration 
measurement of a bridge and its Fourier trans- 
form 

With this assumption in Eq. ( 19 ) ,  Eqs. ( 16 ) ,  
(17) and (18) can be approximately reduced to, re- 
spectively, 

o~(t) = 0 ( 2 0 )  

T(t) = A~(t) (21) 

n 

F( t )  = 2Al(t ) ~ Aj(t)cosAOjt(t) (22) 
j = 2  

Therefore, a new component decomposition tech- 
nique can be developed, consisting the following 
steps : 

(1) Compute the Hilbert transform of the signal 
S ( t ) ,  and construct the analytic signal Z(t )  for S(t)  
according to Eq. (2) ; 

(2)  Obtain the squared instantaneous amplitude 
a2(t) and the instantaneous phase O(t) by Eqs. (3) 
and (4) ; 

(3) Obtain the instantaneous frequency of the first 
component to, (t) by differentiating O(t) , for a( t )  is 
approaching zero and 0(t)  is approximately 0, ( t ) ;  

(4)  Separate the gradually variant trend T( t ) 
and the fluctuation part F( t )  of a2(t ) ,  and find the 
instantaneous amplitude of the first component AI ( t )  
by Eq. ( 2 1 ) ,  therefore the first component can be 
fully reconstructed ; 

(5) Calculate the residual R(t)  which is defined 
by 

n 

R(t)  = ~ Aj(t)cosAOs,(t ) - F(t)  (23) 
j=z 2A l ( t )  
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and 
(6)  Treat the residual as the signal and repeat the 

procedure to obtain the next component, with the in- 
stantaneous amplitude A2 ( t )  obtained in the same 
manner, but A021 ( t )  adjusted to obtain the instanta- 
neous phase and subsequently the frequency of the 
second component : 

0 2 ( t  ) = A 0 2 1 ( t )  + O,( t )  ( 2 4 )  

The above procedure is repeated until the ampli- 
tude of the component is small enough to be ignored. 
In each round, the component with the largest energy 
is extracted and the order of the system is reduced by 
1. The errors are accumulated to the components with 
less energy and thus less importance. 

However, one issue remains to be solved: how to 
separate the trend T(t)  and the fluctuating part F ( t )  
in step(4).  This study adopted the spline smoothing 
technique (Mathworks, 1999a) to estimate the 
trend, which gives the pieeewise cubic function 
T E ( t )  as an approximation of the trend T(t) by mini- 
mizing 

2 

D[TE] = Jmin(t) [ dt z 

with a constrain 

l 
maxO) 

[ TE(r) - a2 ( r ) ]2  dr  _< g. (26) 
dmin(t) 

It may take several iterations to reach an appropri- 
ate 6,  which will result in F E ( t )  with almost symmet- 

ric upper and lower envelopes about t axis. In the 
authors" practice, a low-pass filtered signal is used to 
estimate the value of 8,  which is found satisfactory. 

In this proposed component decomposition tech- 
nique, the Hilbert transform unveils the time scale 
structure of the signal as a result of the beating phe- 
nomena of waves, the component extraction order is 
opposite to that of.the EMD method, and the end 
effect of spline interpolation is somehow suppressed by 
employing a constrain condition for the full range of 
data. Therefore the proposed technique improves the 
EMD method in component decomposition for narrow- 
band signals. 

5 Examples of the proposed method 

5 .1  Example  1 

To verify the proposed technique of component de- 
composition, the same simulated 3-component signal 
shown in Fig. 1 is decomposed into its three compo- 
nents by this technique. The 1 s,, 2,a and 3ra rounds of 

component decomposition are illustrated in Figs 3 , 4  
and 5, respectively. The three components are recon- 
structed by their instantaneous amplitudes and instan- 
taneous phases identified in this technique. The re- 
constructed components are compared to their theoret- 
ical counterparts in Fig. 6. Also notice here that the 
segments of the signal with ignorable small amplitude 
are cut off to avoid numerical difficulties. It is demon- 
strated that the proposed technique can identify the 
components of the signal of different time scales with 
satisfactory accuracy. As a result of this technique, 
the simulated signal is decomposed into its three 
mono-component components, which is verified in 
Fig. 7. 
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Fig. 4 Second round component decomposition of the sim- 
ulated signal in Fig. 1 

Fig. 5 Third round component decomposition of the simu- 
lated signal in Fig. 1 
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where S R ( t )  is the reconstructed signal and S ( t )  is 

the target signal. The deviation 6 of each of the com- 
ponents and that of the signal are also shown in each 

of the plots. 

5 .2  Example  2 

To illustrate the capacity of the proposed technique 
for analyzing time-variant systems, a simple classical 
shear building model but with time varying stiffness is 
adopted as an example. The model has 2 DOFs as 
shown in Fig. 8. For simplicity, the properties of the 
model are normalized so that the initial stiffness of 

each story is unit, where m 1 =m 2 =0.001 kg, kl = 1 
N/m,  k2(t ) = 1 - 0 . 0 5 t  N/m where t is the time vari- 

able in second, Cl =c2 =0.  0012 Ns/m. Notice that 

the stiffness of the lower story is decreasing with a rate 
of 5% per second; at the end of the duration of the 
simulation, which is 12s, it is reduced to 40% of its 
initial value. The time histories of the displacement 
responses, Xl ( t )  and x~ ( t ) ,  to the impulse excitation 

at m I are simulated in SIMULINK (Mathworks, 
1999b) with a sampling frequency of 100I-Iz, and they 
are shown in Fig. 9. 

Fig. 6 Verification of the identified components of the 
simulated signal in Fig. 1 

Fig. 8 A 2 - D O F  shear building model with time-variant 
stiffness 

Fig. 7 Verification of the proposed technique by recon- 
structing the signal in Fig. 1 from identified com- 
ponents in Fig. 6 

To evaluate the accuracy of the method, define the 
dimensionless deviation as 

~m~x(t) 
: ]min(t) [ SR( r )  - S ( r ) ] 2  dr  

�9 ( 2 7 )  
~m~x(t) 

maX(t) S 2 ( ,T ) d~" 
in(t) 

Fig. 9 Simulated displacement responses to the impulse 
excitation 
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The equation of motion governing is 

LmI  +0Ill 1 Cl Iil 1+ 
0 m 2 - Cl cl + c2 x 

k~ - kl x 8 ( t )  
(28) 

where t~(t) is the unit impulse. 
The Fourier transforms of x, ( t )  and x2 ( t )  are 

show in Fig. 10, in which the Fourier transforms can- 
not reveal the time-variant nature of the system. The 
short time Fourier transform of one of the response sig- 
nals x2 ( t )  is also constructed and shown in Fig. 11, 
which, as can be seen, has unsatisfactory resolution to 
represent the time variance of the system. This can be 
understood by looking at the fact that to achieve a res- 
olution of 0.1 Hz, the window width should be at least 
1000 points when sampling at 100Hz, but the total 
length of the 12 s data is only 1200 points, which is 
merely enough for only one window, not allowing it to 
slide along the time axis without overlapping. Exami- 
ning the signal x2 ( t ) ,  it should have two components 

( the system has 2 DOFs),  which again the EMD can- 
not distinguish. Applying the proposed technique, the 
signal is decomposed into its two components as shown 
in Fig. 12. The Hilbert transforms of both components 
give the instantaneous frequency for each of the com- 
ponents as shown in Fig. 13. The instantaneous fre- 
quencies of both components decrease vs. time, re- 
vealing the time-variant property of the system, de- 
spite the end effect of Hilbert transform and the fluctu- 
ation due to the spline approximation (which are exag- 
gerated by differentiating the instantaneous phase to 
obtain the instantaneous frequency). 

5 .3 Example  3 

The proposed technique is also applied to the free 

Fig. 10 The Fourier transforms o fx l ( t  ) and x2(t ). 

Fig. 11 The short time Fourier transform ofx2 (t) ( num- 
ber of points of FFT:256, width of window:200, 
number of points overlapping: 100) 

Fig. 12 Component decomposition of x 2 ( t )  by the pro- 
posed technique 

Fig. 13 The instantaneous frequencies of both components 
of x2(t) 

decay signals obtained from the traffic-induced vibra- 
tion measurement of an instrumented highway concrete 
bridges monitored by the authors (Feng and Kim, 
2001 ). The signal shown in Fig. 2 is taken as an ex- 
ample. The first and second components are extracted 
in the first two rounds of the component decomposi- 
tion. The decomposition demonstrates sufficient accu- 
racy in Fig. 14. Therefore the Hilbert spectrum 
(Huang e t  a l .  , 1998; 1999) of the free decay signal 
can be calculated and presented in Fig. 15 with Gauss- 
ian smoothing. 
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Fig. 14 The component decomposition of the measured 
signal in Fig. 2 

Fig. 15 

2~ f 
~ lO 

r ~  

o[--- 
0 5 10 15 20 

Time (s) 

The Hilbert spectrum of the measured signal in 
Fig. 2 ( with 9 by 9 Gaussian smoothing, std = 1.2 ) 

6 Conclusion 

The time-frequency domain analysis based on the 
Hilbert transform has the capacity to localize the time- 
variant characteristics of the structural system. The 
signal has to be decomposed into its components be- 
forehand to admit a well-behaved Hilbert transform. 
The idea of component decomposition is first imple- 
mented by the EMD, which, however, has its limita- 
tion in distinguishing components in narrowband 

signals often obtained in real vibration measurement. 
A new technique for decomposing component based on 
waves" beating phenomena is proposed to improve the 
EMD, in which the time scale structure of the signal is 
unveiled by the Hilbert transform as a result of the 
beating phenomenon, the order of component extrac- 
tion is opposite to that of the EMD and the end effect 
is confined. The proposed technique is verified by 
performing the component decomposition of a simula- 
ted signal and a free decay signal measured in a real 
bridge structure. The capability of the proposed tech- 
nique in capturing the time-variant characteristics of 
dynamic systems is demonstrated with a simulated 2- 
DOF shear-building model with time-variant stiffness. 
The proposed technique can achieve satisfactory accu- 
racy in reconstructing the components imbedded in the 
narrowband signals, which are commonly found in 
structures'free decay responses. However, the identi- 
fication of the instantaneous frequency and damping 
characteristics involves differentiation, which is vul- 
nerable to noise or numerical error. This will be stud- 
ied in the future. 

The potential application of the proposed technique 
in structural health monitoring remains to be explored. 
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