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SUMMARY

This paper describes the identification of finite dimensional, linear, time-invariant models of a 4-story
building in the state space representation using multiple data sets of earthquake response. The building,
instrumented with 31 accelerometers, is located on the University of California, Irvine campus. Multiple
data sets, recorded during the 2005 Yucaipa, 2005 San Clemente, 2008 Chino Hills and 2009 Inglewood
earthquakes, are used for identification and validation. Considering the response of the building as the
output and the ground motion as the input, the state space models that represent the underlying dynamics
of the building in the discrete-time domain corresponding to each data set are identified. The time-domain
Eigensystem Realization Algorithm with the Observer/Kalman filter identification procedure are adopted
in this paper, and the modal parameters of the identified models are consistently determined by constructing
stabilization diagrams. The four state space models identified demonstrate that the response of the building
is amplitude dependent with the response frequency and damping, being dependent on the magnitude
of ground excitation. The practical application of this finding is that the consistency of this building
response to future earthquakes can be quickly assessed, within the range of ground excitations considered
(0.005g–0.074g), for consistency with prior response—this assessment of consistent response is discussed
and demonstrated with reference to the four earthquake events considered in this study. Inclusion of data
sets relating to future earthquakes will enable the findings to be extended to a wider range of ground
excitation magnitudes. Copyright � 2010 John Wiley & Sons, Ltd.

Received 22 September 2009; Revised 25 June 2010; Accepted 5 July 2010

KEY WORDS: system identification; earthquake response; building structures; modal parameters

1. INTRODUCTION

System identification deals with building mathematical models from observations. This simple yet
general statement makes system identification a multidisciplinary research area since mathematical
models are approximate representations of physical phenomena or processes, and essential for
simulation, prediction and design in engineering and science. The theory, techniques and applica-
tions in the area have been developed over several years mostly by automatic control and system
theory disciplines. The techniques that depend on the properties of the models to be estimated can
be classified in many ways: linear, nonlinear, hybrid, parametric, nonparametric, etc. For instance,
in parametric identification techniques, a certain model structure is first adopted. The choice of
the model structure is often influenced by the intended use of the model and the simplicity of the
estimation algorithm. The model is then characterized by a set of unknown parameters. The model
provides physical insights if these adjustable parameters are chosen to be physical properties of
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the system. In what follows, the identification problem reduces to the estimation of unknown
parameters guided by observation data [1].

Identification techniques require excitation (input) and response (output) measurements for a
complete determination of a model. In order to obtain input and output data, one needs to perform
an experiment/test on the system/structure under study. For instance, in modal testing, it is a
common practice to excite the test structure by applying measurable excitations at several points,
then collect response data at the sensor locations [2]. However, many civil engineering structures
are difficult to excite artificially due to their large size, geometry and location. Equally a large
amount of external energy is needed to excite an entire structure at a desired level of vibration.
Besides, even if artificial excitation is provided, civil engineering structures, which by necessity
are tested in situ, continue to be excited by other unmeasurable forces (wind, waves and traffic for
example) and it is thus not possible to confidently declare that any measured response is necessarily
only due to any artificial excitation provided. In order to deal in part with such difficulties,
some identification algorithms have been developed based on output only vibration data due to
ambient and environmental forces, i.e. traffic, wind, etc. [3–5]. In this case, the measurement
of the excitation is circumvented, and a modal model consisting of a set of modal parameters
can be identified. Such modal parameters (natural frequencies, damping ratios, mode shapes) are
classified as operational parameters as they are not normalized relative to a known excitation.
A literature review on operational modal analysis is given in [6]. For civil engineering structures,
strong ground motions can be considered as excitation for system identification purpose. These
events can provide input data as well as output data if structures are adequately instrumented.
In this case, external energy is provided naturally, and the excitation is regarded to be the inertial
force that can be measured indirectly by the sensors at the ground.

Instrumentation of civil engineering structures, such as highway and suspension bridges, office
buildings and TV towers, has motivated researchers to develop and validate identification techniques
and algorithms for structural identification, health monitoring and damage detection purposes. The
practical and realistic way to validate such techniques is to use the response data of the full-
scale structures to actual events. Multiple data sets, if available, from different events at various
excitation levels are particularly valuable to evaluate the identified models and compare their
parameters. The frequencies of a 9-story building, the Millikan Library, obtained from ambient
and forces vibration tests, and earthquake response data were compared in [7]. The amplitude
and time-dependent changes of the apparent frequency of a 7-story building, the Van Nuys Hotel,
were addressed using multiple earthquake response data sets and two ambient tests [8, 9]. The
fundamental fixed-base frequency changes of the Van Nuys Hotel building were discussed by
analyzing the records of 11 earthquakes [10]. The effect of different input configurations on the
modal parameters was discussed [11]. Using the earthquake response of real structures, several
other applications of identification techniques to civil engineering structures have been reported
[12–15].

A time-domain method, called the Eigensystem Realization Algorithm (ERA), has been devel-
oped for modal parameter identification using the impulse response of a system [16]. For the case
when the impulse response is not measured directly, the method was later extended by adding a
procedure, called Observer/Kalman Filter IDentification (OKID), to recover the impulse response
from input–output data [17]. The ERA/OKID originates from the Ho-Kalman realization algorithm
[18]. The method presents a unified procedure to build state space models for linear time-invariant
systems from the observation data. Unlike the modal identification algorithms in which the modal
parameters merely are of interest, the method provides a model that can be used for a wide
range of subsequent different types of structural analysis. The applications of the method to civil
engineering structures were reported in [19, 20].

The objective of this study is to investigate the inherent differences and similarities in dynamic
response of the superstructure from event to event. In this study, identification of the state space
models for a 4-story building is extended for multiple seismic records. A model that represents
the underlying dynamics of the building is first identified from a single data set, the estimation
data set. The identified model is then tested through the other data sets, the validation data sets.
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SYSTEM IDENTIFICATION OF A BUILDING 663

The determination of the model order is discussed. The modal parameters are extracted from the
identified models by constructing stabilization diagrams. The excitation-dependent variation of the
modal parameters is also discussed. Instrumentation of the building and details of the recorded
ground motions are described.

2. METHODOLOGY

2.1. Mathematical descriptions of a linear system

Civil engineering structures are distributed parameter systems of infinite dimension. Discretization
in space leads to finite dimensional systems, and provides convenient and practical approaches
to the analysis and synthesis of complex systems. After discretization in time and space, a finite
dimensional, linear, time-invariant structural system can be described by

x(k+1) = Ax(k)+Bu(k) (1a)

y(k) = Cx(k)+Du(k) (1b)

where x∈Rn×1 is the state vector, y∈Rm×1 is the measurement vector, u∈Rr×1 is the excitation
vector, whereas A∈Rn×n is the state transition matrix, B∈Rn×r is the input matrix, C∈Rm×n is
the output matrix, D∈Rm×r is the feedforward matrix and the variable k indicates time dependency.
The transfer function of the system described by Equations (1) is

H(z)=D+C(zI−A)−1B=D+
∞∑

k=1
z−kCAk−1B, z =ej��t ∈C, j=√−1 (2)

where � is the frequency variable and �t is the sampling period. A set of differential/difference
equations, for instance, Equations (1), that describes the internal as well as the terminal behavior
of a system may be called the internal or the state-variable description of a system. On the
other hand, the transfer function that describes only the terminal property of a system may be
called the external or the input–output description of a system. In this study, given the external
description of the system, i.e., a finite samples of the input and output sequences {u(k)} and {y(k)},
k =0, . . . , l −1, the objective is to find a state-variable description of the system with the smallest
dimension. More explicitly, the aim is to find the system matrices A,B,C,D in Equations (1)
given the sequences {u(k)} and {y(k)}, k =0, . . . , l −1. Analogous to the fundamental solution in
mathematics, the expressions CAk−1B, k =1, . . . ,∞, in the transfer function are called the impulse
response in engineering, also known as the Markov parameters [18].

2.2. Identification of observer and system Markov parameters

The direct identification of the Markov parameters of the system described by Equations (1) is
not immediate if the damping in the system is low and the data length is not long enough. The
slow impulse response decay requires relatively a large number of the Markov parameters to be
identified. However, from the mathematical theory of the realization problem, it is also known that
all the system Markov parameters are not independent if data have a finite dimensional realization
[18]. Let Yk denote the system Markov parameters, CAk−1B, and then the Cayley–Hamilton
theorem implies that the Markov parameters can be written in a recursive form as

Yn+k+1 +
n∑

i=1
�n−i+1Yk+i =0, �i ∈R, k =0, 1, . . . ,∞ (3)

if the data have a finite dimensional, say n, realization. Hence, it is desirable to determine only a
certain number of the Markov parameters. The above-mentioned considerations lead one to first
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identify the Markov parameters of an observer system, then identify the system Markov parameters
afterwards. Let the observer system associated with Equations (1) be described by

x̂(k+1) = Ax̂(k)+Bu(k)+M�(k) (4a)

y(k) = Cx̂(k)+Du(k)+�(k) (4b)

where x̂(k) is the state estimation, �(k) is the residual error and M is the observer gain that
can be arbitrarily assigned such that the impulse response decay of the observer system is fast.
In such a system, the input–output relation can be described by a limited number of the Markov
parameters, say p, if M is chosen appropriately [17]. The observer system, Equations (4), can also
be described by

y(i)=C(A−MC)p x̂(i − p)+
p∑

k =1
Ŷ(2)

k y(i −k)+
p∑

k =1
Ŷ(1)

k u(i −k)+Du(i)+�(i) (5)

where Ŷ(1)
k =C(A−MC)k−1(B−MD), Ŷ(2)

k =C(A−MC)k−1M are defined as the block partitions
of the observer Markov parameters. The key idea is to suppress the first term on the right-hand
side of Equation (5) by assigning the gain matrix M such that (A−MC)k−1

≈0 for k>p, where
p is a sufficiently large number. Such a gain matrix would justify the truncation of this term
in Equation (5), and result in Ŷ(1)

k ≈0 and Y(2)
k ≈0 for k>p. Then, Equation (5) becomes Auto-

Regressive with eXogenous input (ARX) model and its coefficients can be estimated by the
Least-Squares method [1]. Let Y0 be defined by D. Once the observer Markov parameters are
estimated, the system Markov parameters, including p independent ones only, can be then extracted
from the recursive relation

Yk = Ŷ(1)
k +

k∑
i=1

Ŷ(2)
i Yk−i for k =1, . . . ,∞ (6)

2.3. Eigensystem Realization Algorithm

Once the system Markov parameters, Yk , are determined as explained in Section 2.2, the system
matrices A, B and C can be determined by the ERA [16]. The algorithm begins by forming a
block Hankel matrix that consists of the system Markov parameters

H(k−1)=

⎡
⎢⎢⎢⎢⎢⎢⎣

CAk−1B CAkB . . . CAk+�−2B

CAkB CAk+1B . . . CAk+�−1B

· · · · · · · · · · · ·
CAk+�−2B CAk+�−1B . . . CAk+�+�−3B

⎤
⎥⎥⎥⎥⎥⎥⎦

(7)

where � and � are two parameters that control the row and column dimension of the block Hankel
matrix, H, respectively. The system order is not known a priori. The singular value decomposition
of H(0) is used to determine the model order and system matrices afterwards. In theory, the
number of nonzero singular values is the model order. In practice, however, all the singular values
appear to be nonzero due to noise and other effects. In this case, one seeks an obvious gap between
two successive singular values. If such a gap exists, the number of the significant singular values,
say n, is chosen to be the model order, and H(0) is then approximated by retaining the significant
singular values and truncating the rest as follows:

H(0)=OC=URVT ≈ [U1 U2]

[
Rn 0

0 0

][
VT

1

VT
2

]
=U1RnVT

1 (8)

where O and C are the extended observability and controllability matrices, and can be determined
by Equations (9) and (10), respectively

O = U1R
1/2
n (9)
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C =R1/2
n VT

1 (10)

Finally, the system matrices are given by

A =R−1/2
n UT

1 H(1)V1R
−1/2
n (11)

B = C(1 :n,1:r ) (12)

C = O(1 :m,1:n) (13)

Further details of the procedure described in Sections 2.2 and 2.3 can be found in [16, 17, 21].

2.4. Identification of the modal parameters

A set of modal parameters can be determined after a state space model is identified from input–
output data. Given a model, the determination of the modal parameters is a straightforward eigen-
value problem. The key issue here is the choice of the model order, which is not known a priori.
The choice of model order determines the number of modal parameters, and often has effect on
their results. In theory, as mentioned in Section 2.3, the model order can be determined by looking
at the singular value spectrum of the Hankel matrix. The number of the significant singular values
is the model order. In practice, however, the determination of model order requires further analysis
because of noise and discretization errors. For real data sets, the choice of the number of the
significant singular values requires prior knowledge of the system or personal judgment because
there is often no clear gap to separate some singular values from the rest. The determination of the
model order then becomes subjective by looking only at singular values plot of the Hankel matrix
[19, 20]. The choice of model order can be further refined by the construction of the stabilization
diagram [2, 5]. Such a diagram simply helps tracking the behavior of the modal parameters versus
the model order, and it is a useful tool to identify actual modes, reject spurious or noisy modes
based on certain criteria. The implementation of the stabilization diagram starts with identifying
a model with a relatively high order. The model order is then reduced sequentially and the modal
parameters (the frequencies, the damping ratios and the mode shapes) of two successive models
are compared according to the imposed criteria. In this study, two sets of the modal parameters
obtained from two state space models of different orders are compared according to the following
criteria.

∣∣∣∣ f (1) − f (2)

f (1)

∣∣∣∣< 1% (14a)

∣∣∣∣∣�
(1) −�(2)

�(1)

∣∣∣∣∣< 5% (14b)

1−MAC(/(1),/(2)) < 2% (14c)

where superscript n is the model order; f , � and / are the frequency, the damping ratio and the
mode shape vector, respectively. The modal assurance criterion (MAC) is used to quantify the
similarity of two mode shapes vectors, and is defined by [2]

MAC(/(1),/(2))= |/(1) H
/(2)|2

(/(1) H
/(1))(/(2) H

/(2))

A set of modal parameters is labeled as stable one if each inequality given by Equations (14) is
satisfied. The idea is that the actual modal parameters show up consistently in models of different
orders, whereas inconsistent spurious parameters do not.
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3. INSTRUMENTATION SETUP AND GROUND MOTION RECORDS

Seismic monitoring of structural systems is a component of the national earthquake hazard reduction
program in the U.S. The seismic response of structures is obtained by recording vibrations during
the events of strong ground motions. The recorded data are then analyzed by engineering and
scientific communities to understand the actual behavior of the structures during earthquakes. Such
data have been shown to be useful in assessing analysis and design procedures, and improving
code provisions. These are main research objectives of the U.S. Geological Survey to instrument
and monitor structures in the context of the earthquake hazard reduction program.

The California institute for telecommunications and information technology, Calit2, building
site is one of more than 700 national strong motion monitoring stations in the U.S. The geographical
coordinates of the Calit2 building location are 33.64◦N latitude, 117.84◦W longitude and 21 m
altitude. In collaboration with the U.S. Geological Survey, the building and the surrounding soil
were instrumented during construction with 43 force-balanced, uni-axial acceleration sensors.
Thirty-one sensors were placed in the building at different levels, and 12 sensors were placed
in the soil so that both structural response and the ground motion could be recorded. Of the 12
soil sensors, six were placed 3 m deep underground and six were placed in the free-field ground
surface. Each floor was instrumented with at least five sensors to capture not only the transverse
and longitudinal motions but also the torsional motions of the structure. Four sensors oriented in
the vertical direction were mounted on the columns and shear walls at the ground level, and three
more sensors oriented in the vertical direction were placed at the fourth-level ceiling to monitor the
rocking motion of the structure. Figure 1 shows the sensor locations and their orientations. The data
acquisition system, installed in the equipment room at the second floor of the building, consists of
four recorders and a computer. A predetermined threshold level of the vibration amplitude was set
for triggering the data acquisition system automatically. It can also be triggered manually. Since
the building was constructed in 2004, four sets of ground motions and corresponding structural
responses have been recorded, with a sampling rate of 200 Hz, by automatic triggering due to four
Southern California earthquakes. Further details of the ground motions are summarized in Table I,
and Figures 2 and 3 show the time histories and the frequency contents of the ground motions,
respectively.

The Calit2 building, located on the University of California, Irvine campus is a 4-story reinforced
concrete structure with dimensions 26.82m×76.20m in plan, and 19.20m height from the ground
level. The building has four moment frames, spaced 8.84m apart, in the longitudinal direction and
eight moment frames, spaced 6.70m apart, in the transverse direction. Lateral stiffness is provided
by eight shear walls. Each floor has a reinforced concrete slab with a thickness of 0.20m. The
overall weight and the fundamental period of the structure are estimated to be 12300ton and
0.455s, respectively, in the design phase.

4. IDENTIFICATION RESULTS

The identification of the superstructure is of interest in this study. For the input, we consider the
lateral sensor measurements (sensors 2, 3, 7 and 8) at the ground floor (rather than those at the
down-hole or at the free-field) as the excitation. For the output, rigid body motions (the lateral
translations and the rocking motions) were subtracted from the total response. In other words, the
total response was decoupled into the structural and rigid body motions, and the structural motion
was used for the system identification purpose. Using each data set separately, a corresponding
state space model was identified for the building. Once a model is identified, it is assessed by
comparing the predicted and measured responses. To this end, the model is used to predict the
response to given input of the same data set. Two groups of the sensors, measuring the response in
the different directions and at different levels, were chosen as references for response comparison.
The first group of the sensors (14, 19 and 26), oriented in the transverse direction, is on the same
vertical axis at different levels. The second group of the sensors (18, 25, and 31), oriented in
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Figure 1. The Calit2 building sensor locations.

Table I. Recorded ground motions.

PGA (cm/s2)

Earthquake Date Magnitude Distance to the epicenter (km) Longitudinal Transverse

Yucaipa 16 June 2005 4.9 90 8.06 14.17
San Clemente 16 October 2005 4.9 135 2.45 4.47
Chino Hills 29 July 2008 5.4 35 54.85 47.85
Inglewood 17 May 2009 4.7 58 26.54 33.46

the longitudinal direction, is on another vertical axis at different levels. The predicted responses,
using a state space model of order six constructed from the Chino Hills data set, are compared
with the measured responses for these two groups of sensors in Figures 4 and 5. The predicted
responses show good agreement with the measured responses, particularly where the excitation
level is strongest. The agreement between the measured and predicted responses for the state space
models constructed from the other three earthquake data sets is similarly good. A state space
model of order six thus represents well the underlying dynamics of this particular building. To
quantify the error between the measured and predicted responses, a relative total error function, J ,
is defined by

J =
(∑

j
∑

k(y j (k)− ŷ j (k))2∑
j
∑

k y2
j (k)

)1/2

For a particular data set, i.e. given the input–output data, the error function, J , can be regarded as
an implicit function of the model order n. For different model orders, the normalized prediction
errors were calculated and presented in Figure 6. As can be seen from Figure 6, J decreases
monotonically, and after a certain model order, it does not change significantly as the model order

Copyright � 2010 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2011; 40:661–674
DOI: 10.1002/eqe



668 H. S. ULUSOY, M. Q. FENG AND P. J. FANNING

0

10
Yucaipa

0

5
San Clemente

0

60
Chino Hills

0 5 10 15 20

0

40
Inglewood

Time (sec)

G
ro

un
d 

A
cc

el
er

at
io

ns
 (

cm
/s

ec
2 )

Figure 2. The time histories of the recorded ground motions.

increases. In other words, the measure of fit between the observed and predicted responses does not
improve much after a certain model order, which implies that certain frequencies only are dominant
in the response data. However, the determination of the model order based on the measure of fit is
not a reliable approach especially when the contributions of some modes to the response are not
significant.

The stabilization diagram alternatively is used to determine the model order and identify the
modal parameters. Figure 7 shows the stabilization diagrams constructed for the Chino Hills data
set. It is evident from the stabilization diagram that the well-excited mode parameters stabilize at
low-order models, whereas poorly excited mode parameters stabilize at high model orders. The
stabilization diagrams constructed for all four data sets show that the first three modes are well
excited, thus dominant in the data. The identified first mode is the bending in the longitudinal
direction, whereas the second and third ones are the coupled bending modes in the transverse
and longitudinal directions. The frequencies and damping ratios identified are summarized in
Table II.

4.1. Discussion of results

The frequencies and damping ratios identified, using the state space models constructed for each
of the earthquake input–output data sets, vary depending on the earthquake data set considered.
The first natural frequency varies between 2.50 Hz in the Chino Hills event and 2.87 Hz in the
San Clemente event, whereas the associated damping ratios vary between 4.92 and 2.45% of
critical damping for the same data sets. The variation in the modal parameters implicitly indicates
nonlinear behavior of the structure within the range of earthquake excitation considered in this
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Figure 3. The frequency contents of the recorded ground motions.

study. However, the individual linear state space models for each data set represent the building
dynamics for each level of excitation well.

The response frequencies and damping values are plotted against the peak ground accelerations
in Figure 8. As the amplitude of ground motion increases, joints and structural interfaces are
mobilized more completely thereby reducing the response frequency and increasing the level of
damping—the building becomes apparently less stiff while exhibiting a greater capacity to dissipate
energy. This is consistent with the findings in [22] when studying the dynamic response of the
Di-Wang Tower in China.

Given the amplitude-dependent response, it is unreasonable to expect any one of the four
state space models to accurately predict the response due to other different excitation levels.
However where the level of excitation due to different earthquakes is similar, the models perform
very satisfactorily—in this study, the levels of excitation for the Chino Hills and the Inglewood
earthquakes are similar. Figure 9 compares the predicted response due to the Chino Hills earthquake
using the state space model identified by the Inglewood data set to the measured response of the
Chino Hills data set. It is evident from Figure 9 that the agreement between the predicted and
measured responses is very good.

It is also evident, from Figure 8, that within the range of earthquake excitation considered, 0.005g
to 0.074g, there is a practically linear relationship between the amplitude of ground acceleration
and the frequency of response. The minimum correlation coefficient, R2, for linear regressive lines
fitted to the frequency data is 0.93. The relationship between amplitude of ground acceleration and
damping is less strong (R2

min =0.55).
A practical application of the state space models developed is the ability to use the extracted

modal parameters—frequencies, damping values and mode shapes—as indicators of consistent
structural response in future earthquakes. Within the range of 0.005g to 0.074g the expectation is
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Figure 4. Comparison of the measured and predicted responses: The Chino Hills data set.

that the structure’s response, determined from a new state space model, should be consistent with
the linear relationships plotted in Figure 8. Further earthquake events will clearly add confidence
to the current data sets and also potentially enable the relationship to be extended to a wider range
of ground excitations.

Equally, within this range, a rapid assessment of the consistency of structural response is possible
by quantification of the magnitude of ground acceleration, from the ground sensors, and extraction
of the modal frequencies and damping values from the structural response and plotting this data
against the model data already reported in Figure 8. In the case of this particular structure, if the
Iglewood data were omitted and linear regression analysis is used with the three other earthquake
data sets, the expected frequencies of response for the first three modes are found to be within
2.5% of those experienced during that earthquake—in other words having only prior knowledge
of the response to the three other earthquakes, the frequency response to the Inglewood earthquake
could be deemed to be consistent with the expected structural response. While the relationships
between frequency, damping and ground excitation level are specific to this particular test structure,
similar relationships could be developed for other structures using the state space modeling—the
requirement being that both excitation and response measurement data are available.

5. CONCLUSIONS

In this paper, four state space models of a 4-story building have been identified from multiple sets
of earthquake response data. Each model accurately replicates the building dynamic response for
the earthquake from which it was constituted. Once constituted these mathematical models were
successfully used to extract the dominant frequencies, modes of vibration and associated damping
values for the building due to the four earthquake data sets.
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Figure 5. Comparison of the measured and predicted responses: The Chino Hills data set.
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Figure 6. Normalized prediction error as a function of model order.
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Figure 7. The stabilization diagram for the Chino Hills data set. The labels are: ‘⊕’ for a stable pole; ‘.v’
for a pole with stable frequency and vector; ‘.d’ for a pole with stable frequency and damping; ‘.f ’ for

pole with stable frequency; and ‘.n’ for a new pole.

Table II. Identified modal frequencies f and damping ratios �

2005 Yucaipa 2005 San Clemente 2008 Chino Hills 2009 Inglewood

Modes f (Hz) � (%) f (Hz) � (%) f (Hz) � (%) f (Hz) � (%)

1 2.77 4.36 2.87 2.45 2.50 4.92 2.59 4.50
2 2.92 3.48 2.94 2.82 2.68 4.10 2.74 3.84
3 3.55 3.50 3.59 1.65 3.43 3.85 3.46 3.75

Linear state space models of higher order were found to give a better correlation between
the measured and predicted responses. However, it was also shown that beyond a certain model
threshold the measure of fit does not improve significantly—for these particular data sets, models
with order of six were found to be sufficient. While the selection of model order, based on the
magnitude of an error function defined between the measured and predicted responses alone, is
somewhat subjective it was found that the model order selection can also be instructively informed
by construction and analysis of the stabilization diagrams for the various data sets.

The state space models derived were different for earthquakes of different magnitudes. As a
result, the dynamic characteristics of the building were found to be different during earthquakes
of different magnitudes. Larger amplitude earthquakes resulted in reduced natural frequencies and
increased damping. This nonlinear building response explains why any one of the four state space
models does not precisely capture the response to another one of the earthquakes.

However, taken cumulatively the four individual models give an insight into the extent and type
of amplitude dependent response. Over the range of ground motion excitation considered, 0.005g
to 0.074g, it was found that the first three natural frequencies strongly correlate with the peak
ground acceleration for this building. The associated damping values also exhibited amplitude
dependency in this range, but the correlation was not as strong. The practical use of this finding
is that a rapid assessment of the consistency of building response due to an earthquake can be
made. In the case of the Inglewood earthquake the projected frequencies of response, over the
first three modes, were found to be within 2.5% of those measured when the amplitude-dependent
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Figure 8. The variation of the modal parameters with the peak ground accelerations.

0

50

100
Sensor : 14

A
cc

. (
cm

/s
2 )

Measured
Predicted

0

50

100
Sensor : 19

A
cc

. (
cm

/s
2 )

0 5 10 15 20

0

50

100
Sensor : 26

Time (sec)

A
cc

. (
cm

/s
2 )

Figure 9. Comparison of the measured and predicted responses: The Chino Hills and Inglewood data sets.

response is defined by the other three earthquake data sets alone. Future data sets can thus be
used for performance evaluation and/or to extend or confirm this correlation between amplitude
of excitation and dynamic response.

Copyright � 2010 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2011; 40:661–674
DOI: 10.1002/eqe



674 H. S. ULUSOY, M. Q. FENG AND P. J. FANNING

ACKNOWLEDGEMENTS

The authors would like to acknowledge Calit2 of UC Irvine and the U.S. Geological Survey for providing
funding to instrument the Calit2 building. The authors also thank structural engineer Mick Wilson for
discussions and providing the basic design parameters of the building.

REFERENCES

1. Ljung L. System Identification: Theory for the Users (2nd edn). Prentice-Hall: Upper Saddle River, NJ, 1999.
2. Ewins DJ. Modal Testing: Theory, Practice and Application. Research Studies Press: Baldock, Hertfordshire,

U.K., 2000.
3. James GH, Carne TG, Lauffer JP. The natural excitation technique (NExT) for modal parameter extraction from

operating wind turbines. Report No. SAND92-1666, UC-261, Sandia National Laboratories, Sandia, NM, 1993.
4. Brincker R, Zhang LM, Andersen P. Modal identification of output-only systems using frequency domain

decomposition. Smart Materials and Structures 2001; 10(3):441–445.
5. Peeters B, De Roeck G. Reference-based stochastic subspace identification for output-only modal analysis.

Mechanical Systems and Signal Processing 1999; 13(6):855–878.
6. Peeters B, De Roeck G. Stochastic system identification for operational modal analysis: a review. Journal of

Dynamic Systems, Measurement and Control—Transactions of the ASME 2001; 123(4):659–667.
7. Udwadia FE, Trifunac MD. Time and amplitude dependent response of structures. Earthquake Engineering and

Structural Dynamics 1974; 2:359–378.
8. Trifunac MD, Ivanovic SS, Todorovska, MI. Apparent periods of a building. I: Fourier analysis. Journal of

Engineering Mechanics (ASCE) 2001; 127(5):517–526.
9. Trifunac MD, Ivanovic SS, Todorovska, MI. Apparent periods of a building. II: time–frequency analysis. Journal

of Engineering Mechanics (ASCE) 2001; 127(5):527–537.
10. Todorovska MI, Trifunac MD. Impulse response analysis of the Van Nuys 7-story hotel during 11 earthquakes

and earthquake damage detection. Structural Control and Health Monitoring 2008; 15(1):90–116.
11. Hong AL, Betti R, Lin CC. Identification of dynamic models of a building structure using multiple earthquake

records. Structural Control and Health Monitoring 2009; 16(2):178–199.
12. Beck JL, Jennings PC. Structural identifcation using linear models and earthquake records. Earthquake Engineering

and Structural Dynamics 1980; 8(2):145–160.
13. Safak E. Adaptive modeling, identification, and control of dynamic structural systems. II: applications. Journal

of Engineering Mechanics (ASCE) 1989; 115(11):2406–2426.
14. Loh CH, Lin HM. Application of off-line and on-line identification techniques to building seismic response data.

Earthquake Engineering and Structural Dynamics 1996; 25(3):269–290.
15. Smyth AW, Pei J-S, Masri SF. System identification of the Vincent Thomas suspension bridge using earthquake

records. Earthquake Engineering and Structural Dynamics 2003; 32(3):339–367.
16. Juang J-N, Pappa RS. An eigensystem realization algorithm for model parameter identification and model

reduction. Journal of Guidance, Control and Dynamics 1985; 8(5):620–627.
17. Juang J-N, Phan M, Horta LG, Longman RW. Identification of Observer/Kalman filter Markov parameters: theory

and experiments. Journal of Guidance, Control and Dynamics 1993; 16(2):320–329.
18. Ho BL, Kalman RE. Effective construction of linear state variable models from input/output data. Regelungstechnik

1966; 14:545–548.
19. Lus H, Betti R, Longman RW. Identification of linear structural systems using earthquake-induced vibration data.

Earthquake Engineering and Structural Dynamics 1999; 28(11):1449–1467.
20. Lus H, Betti R, Longman RW. Obtaining first-order predictive models of linear structural systems. Earthquake

Engineering and Structural Dynamics 2002; 31(7):1413–1420.
21. Juang J-N. Applied System Identification. Prentice-Hall: Englewood Cliffs, NJ, 1994.
22. Li QS, Yang K, Zhang N, Wong CK, Jeary AP. Field measurements of amplitude-dependent damping in a

79-story tall building and its efects on the structural dynamic responses. Structural Design of Tall Buildings
2002; 11(2):129–153.

Copyright � 2010 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2011; 40:661–674
DOI: 10.1002/eqe


