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Structural Health Monitoring by Recursive Bayesian Filtering
Yangbo Chen, Ph.D., M.ASCE1; and Maria Q. Feng, F.ASCE2

Abstract: A new vision of structural health monitoring �SHM� is presented, in which the ultimate goal of SHM is not limited to damage
identification, but to describe the structure by a probabilistic model, whose parameters and uncertainty are periodically updated using
measured data in a recursive Bayesian filtering �RBF� approach. Such a model of a structure is essential in evaluating its current condition
and predicting its future performance in a probabilistic context. RBF is conventionally implemented by the extended Kalman filter, which
suffers from its intrinsic drawbacks. Recent progress on high-fidelity propagation of a probability distribution through nonlinear functions
has revived RBF as a promising tool for SHM. The central difference filter, as an example of the new versions of RBF, is implemented
in this study, with the adaptation of a convergence and consistency improvement technique. Two numerical examples are presented to
demonstrate the superior capacity of RBF for a SHM purpose. The proposed method is also validated by large-scale shake table tests on
a reinforced concrete two-span three-bent bridge specimen.
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Introduction

Recently, structural health monitoring �SHM� has been a subject
intensively investigated. As a branch of the wide-ranging efforts
of SHM, many researchers seek to measure the structural vibra-
tion behaviors �dynamic responses of a structure with or without
measuring the exerting excitations�, and infer from the vibration
data the level of structural integrity. A thorough literature review
on the vibration-based SHM was first presented by Doebling et al.
�1996�, summarizing hundreds of publications up to 1995. A four-
level hierarchy, namely, �1� detecting the existence of damage; �2�
locating damaged portions; �3� evaluating the severity of damage;
and �4� predicting its future consequences, was cited and defined
as the goals of SHM. Recently, an updated review of the state was
presented by Sohn et al. �2003�, summarizing publications from
1996 to 2001. This review interprets vibration-based SHM fol-
lowing a statistical pattern recognition paradigm, consisting of a
four-part process: �1� operational evaluation; �2� data acquisition,
fusion, and cleansing; �3� feature extraction and information con-
densation; and �4� statistical model development for feature dis-
crimination. In this paradigm, features that are believed damage
sensitive are extracted from vibration data, and a pattern recogni-
tion procedure is employed to classify the feature vectors in order
to determine the existence, location, and severity of structural
damage. While the important role of statistical methods in SHM
was recognized, the ultimate goal of SHM is still damage identi-
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fication, as was defined in the previous review. In view of the
difficulties associated with mathematical models �often referring
to finite-element models� of structural systems, especially the dif-
ficulty in quantifying the modeling uncertainty and the bias due to
modeling errors, the reviewers uphold methods that are not based
on mathematical models as more attractive. However, difficulties
of non-model-based methods were also recognized, especially in
quantifying the severity of damage where a supervised learning
mode is usually adopted. Training patterns have to be generated
by a mathematical model whose fidelity remains to be verified,
because data sets from a damaged real-life structure are seldom
documented, and if they do exist, they are not adequate to cover
all possible damage scenarios. A sufficient coverage on various
scenarios by training patterns, nonetheless, is essential in the su-
pervised learning procedure.

Evident by these reviews and more recent papers �e.g., Bolton
et al. 2001; Hera 2004; Koh et al. 2003; Lam et al. 2004; Yang
and Lin 2005�, despite significant efforts, damage identification
by SHM is still a highly challenging problem. When implement-
ing vibration-based SHM to real-life structures, the limitation of
sensing capacity �e.g., spatial limitation due to insufficient sensor
number or prohibitive positions of instrumentation, and temporal
limitation due to insufficient sensor frequency range and excita-
tion bandwidth�, and the operational and environmental variation
of the structures have significantly increased the difficulties.

Nonetheless, the writers of this paper believe that part of the
challenges in SHM can be attributed to a preference among schol-
ars to an inductive, objective, and entirely data-driven methodol-
ogy. A shift of epistemology from a purely inductive to a
deductive–inductive hybrid methodology might help to ease the
problem and bring forward useful results. In the deductive–
inductive methodology, a priori knowledge, derived either from
established theories, engineering experiences, or even subjective
postulations, is incorporated in a probabilistic model of the struc-
tural system. In this model, the extent of knowledge limitation is
represented by the uncertainty of the model structure and param-
eters. This model is subjected to correction or refinement based
on sensor data, by first deducing the expected vibration behaviors

from the a priori model, and then comparing them with the sensor
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observations and updating the model in a systematic induction to
reconcile the predicted and observed vibration. The advantage of
this approach is that gaps of necessary information not provided
by sensor data are filled in with the currently available best un-
derstanding of the system. Therefore, SHM is no longer merely a
mean of nondestructive damage evaluation, but a procedure of
information collection to correct or refine the probabilistic model
of the structural system so as to diminish, gradually, the system
uncertainty.

The above methodology is essentially a Bayesian approach.
This vision of SHM can be traced back to Beck �1989�, where a
Bayesian framework was laid down for structural system identi-
fication that selects the most probable model from a class of mod-
els based on input/output measurement. Later, Beck and
Katafygiotis �1998� formalized this version not only to update the
model, but also to assess the uncertainties of the model itself and
its predictions. This formulation addresses explicitly the difficult
problem in parameter identification: the inherent ill conditioning
and nonuniqueness. In the latter case, prediction of structural be-
haviors is still possible in this framework, using more than one
candidate models, but weighting their predictions according to
their model a posteriori probability. This was treated by Beck and
Au �2002� using a Markov chain Monte Carlo method. Beck and
Yuen �2004� extended the Bayesian framework to address the
modeling error issue arising when the “true” system is not within
the class of models being examined. The capacity of a data-
updated model to predict the structural responses to future loads,
in a probabilistic sense, was utilized to make a connection be-
tween SHM results and structural reliability evaluation �Pa-
padimitriou et al. 2001; Beck and Au 2002�. Vanik et al. �2000�
treated the variation of modal parameters �frequencies and mode
shapes� in a Bayesian framework to set a probabilistic measure of
the significance of modal changes. Although damage identifica-
tion is not the major concern of the model updating procedure, it
is also possible if damage can be defined quantitatively in terms
of parameter changes �Yuen et al. 2004�.

This approach is certainly model dependent. However, it can
be argued that models are almost inevitable anyway in structural
condition assessment �e.g., in training pattern generation� and in
evaluation of current and future performance of a structure. To
minimize the disadvantage caused by modeling errors, one shall
avoid a deterministic perspective of a model, but instead, shall
use a probability to measure the level of modeling uncertainty.

This Bayesian approach for SHM, however, often results in
extremely demanding computation in high dimensional spaces.
This paper focuses only on a relatively tractable problem, recur-
sive Bayesian filtering �RBF�. Operating in a recursive mode,
RBF is suitable for a continuous SHM practice. This paper will
review the development of RBF, the obstacles that have limited
its successful usage in the past, some recent breakthroughs that
can revive this approach for SHM, and a technique that can be
incorporated to improve the convergence and estimation consis-
tency. Then, two numerical examples will be presented to dem-
onstrate the use of RBF for SHM purposes. And, finally, this
method is validated by data obtained in a large-scale shake table
test on a reinforced concrete bridge specimen.

Review on RBF

The Bayesian theorem provides a way to infer conditional prob-

ability P�Bi �A� from conditional probability P�A �Bi�, where
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events �Bi�, i=1 to n are a set of mutually exclusive and collec-
tively exhaustive events, by

P�Bi�A� =
P�A�Bi�P�Bi�

�i=1
n P�A�Bi�P�Bi�

�1�

If only the relative likelihood of Bi is concerned, the denominator
in Eq. �1� is simply a constant of normalization.

In a Bayesian point of view, conditional probability P�Bi �A�,
or the a posteriori probability, conveys the entire knowledge
about Bi after observing the occurrence of event A. Based on
P�Bi �A�, one can obtain optimal estimation of Bi, as well as the
uncertainty associated with the estimation. Similarly, P�Bi� con-
veys the entire a priori knowledge about Bi, which is subjected to
correction or refinement. Conditional probability P�A �Bi� repre-
sents the procedure of deduction: how likely A is to occur as a
result of Bi. Therefore, a Bayesian framework is a vehicle that
implements the deductive–inductive approach outlined previ-
ously. When recursively applied to a dynamic system represented
by a state-space model, to estimate the current system states based
on previous and current observations, the framework is referred to
as RBF.

RBF

A state-space model is defined as

Xk = f�Xk−1,Uk−1,Wk−1;�� �2�

Zk = h�Xk,Uk,Vk;�� �3�

where X�hidden states; Z�observations �measurements�;
U�deterministic input; W=process noise; V=measurement
noise; and k=time index. The state transfer function f and obser-
vation function h are argumented by parameters �, which could
be dependent on k. Applying Eq. �1�, the RBF at time k is

p�Xk�Z1:k� =
p�Zk�Xk�p�Xk�Z1:k−1�

�p�Zk�xk�p�xk�Z1:k−1�dxk
�4�

where Z1:k denotes the collection of observations from time 1 to
k. Further, in view of state transfer and observation functions in
Eqs. �2� and �3�

p�Xk�Z1:k� =
p�Zk�Xk��p�Xk�xk−1�p�xk−1�Z1:k−1�dxk−1

��p�Zk�xk�p�xk�xk−1�p�xk−1�Z1:k−1�dxk−1dxk
�5�

Probability density p�Xk−1 �Z1:k−1� represents the knowledge up-
dated using measurements up to time k−1. Conditional probabili-
ties p�Xk �Xk−1� and p�Zk �Xk� represent the deduction procedure
by Eqs. �2� and �3�, respectively. And p�Xk �Z1:k� is the a poste-
riori after incorporating information gained in measurement Zk.
This procedure is applied recursively as k increases. At k=0, the
a priori probability density to initiate RBF is given by p�X0�.

RBF, as in Eq. �5�, is valid for general systems that can be
represented by a state-space model. However, it turns out that the
deduction through Eqs. �2� and �3�, and the integration in Eq. �5�,
are only tractable when Eqs. �2� and �3� are both linear and noise
sources W and V are independent Gaussian white processes. In
this linear-Gaussian case, it leads to a closed-form solution, the
celebrated Kalman filter.

Parameter Estimation: Difficulties and Breakthroughs

For the SHM purpose, however, structural properties �e.g., ele-

ment stiffness� are of concern, which usually is represented by
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parameter � in functions f and h. To trace structure changes or to
update the model and its uncertainty, it suffices to estimate � and
its probability distribution. To this end, � is regarded as part of
the extended state �Xk ,�k�T and the state-space model is restruc-
tured as

�Xk,�k�T = F��Xk−1,�k−1�T,Uk−1,Wk−1� �6�

Zk = H��Xk,�k�T,Uk,Vk� �7�

where Eq. �6� is the result of incorporating Eq. �2� with

�k = ��k−1 + Wk−1
� �8�

and Eq. �7� is Eq. �3� undergoing necessary adjustment. When
the structural system is believed not to vary very fast, usually, in
Eq. �8� �=I, where I=unit matrix.

Unfortunately, even when f and h are linear with respect to X,
F and H usually are no longer linear with respect to �, nor to the
extended state �X ,��T. Gaussian probability densities, when
propagating through nonlinear functions, are no longer Gaussian
or tractable, rendering the RBF not to have a close-form solution.

The first solution adopted for nonlinear RBF is the extended
Kalman filter �EKF�, which approximates the nonlinear F and H
by their first-order Taylor expansions about the current expected
mean of the extended state. Adoption of the EKF for parameter
identification of civil engineering structures was pioneered by
Yun and Shinozuka �1980�, Shinozuka et al. �1982�, and Yun et al.
�1989�. Since then, numerous investigations on the EKF have
been carried out, with different levels of success in solving the
identification problem. However, it has been a consensus that the
implementation of the EKF is difficult, especially for complicated
civil structures �Ghanem and Shinozuka 1995; Shinozuka and
Ghanem 1995�. Divergence often is observed due to a number of
factors, such as the initial guess of the parameters �including
mean and variance�, estimation of variances of the process and
measurement noises, choice of observed response, unidentifiabil-
ity of the system, and numerical ill conditioning �Chui and Chen
1991; Grewal and Andrews 2001; Hoshiya and Saito 1984;
Hoshiya and Sutoh 1993; Koh and See 1994; Oreta and Tanabe
1994; Yun et al. 1989�. It has been shown that the major draw-
back of the EKF is that it employs a local linearization to approxi-
mate the propagation of a probability density through a nonlinear
system, which can seriously distort the distribution and shift the
mean, incorrectly emphasizing the local behavior of the nonlinear
functions �Wan and van der Merwe 2001�. In recursive operation,
such errors accumulate and lead to divergence.

Recently, breakthroughs in high-fidelity probability density
propagation in nonlinear systems have been made using concepts
based on the importance sampling principles �e.g., Srinivasan
2002�. They have revived the RBF approach, with many new
versions of RBF proposed, such as the Gaussian sum, grid-based,
Monte Carlo particle, unscented Kalman, central difference, and
divided difference filters. The last three are uniformly presented
as sigma point filters by van der Merwe �2004�. Several of these
new versions of RBF have been applied to civil engineering prob-
lems, especially for SHM applications �Moradkhani et al. 2005;
Yoshida and Sato 2002a,b�. This study focuses on one of the new
RBF methods that compromises the accuracy of the approxima-
tion and the computational efficiency, the central difference

filter �CDF�.
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CDF Algorithm

The CDF proceeds by weighted statistical linear regression of
functions F and H. Instead of linearizing the functions at one
local point, the CDF selects a limit number of representative
points spreading according to the a priori distribution �called the
sigma points�, propagates each individual point through the non-
linear functions, and obtains the new center and spread of the
distribution by linear regression of the points cast forward. �See
Fig. 1�a� for an illustration of the concept of CDF.� It is assumed
that joint distributions �before/after the nonlinear transformation�
are represented adequately by their first and second moments.
Propagation of multiple points and the linear regression enhance
the capacity of the CDF to capture the nonlinear behavior of the
system functions. To elaborate, the CDF can be implemented as
follow �van der Merwe 2004�.

If the distribution of Xk−1 �Z1:k−1 has mean X̂k−1 and variance

P̂k−1
XX �here, for simplicity, Xk represents the extended state

�Xk ,�k�T�, and process noise Wk−1 has mean �k−1
W and variance

Pk−1
WW, let diag�P̂k−1

XX ,Pk−1
WW� denote a block diagonal matrix that

combines P̂k−1
XX and Pk−1

WW in such a way that

diag�P̂k−1
XX,Pk−1

WW� � 	P̂k−1
XX 0

0 Pk−1
WW
 �9�

Sigma points for time update are selected as in Eq. �10�, where
t

(a) Conceptual Illustration of CDF

(b) Estimation of ˆ kX

Extended Kalman Filter projection

Central Difference Filter projection

Xk

or ZkXk+1

1
ˆ
kX −

| 1k kX −

ˆ
kX

| 1k kZ −

+
kZ

|k kZ

1 1 1( , , )k k k kX F X U W− − −= ( , , )k k k kZ H X U V=

Fig. 1. Probability density propagation and estimation of X̂k
sigma points are denoted collectively by Sk−1 in matrix format
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Sk−1
t � 	Sk−1

tX

Sk−1
tW 
 = �X̂k−1

�k−1
W � � �0 �3 · diag�P̂k−1

XX,Pk−1
WW��

− �3 · diag�P̂k−1
XX,Pk−1

WW�� �10�

where symbol � means adding a column vector to each column
in a matrix and �M denotes the Cholesky factor of matrix M.
Note that Sk−1

t is an �ns+np+nW�� �2ns+2np+2nW+1� matrix,
where ns=dimension of the state vector; np=dimension of param-
eter �; and nW=dimension of the process noise Wk−1. And the ith
column in Sk−1

t , Sk−1
t �i�= ith sigma point. For narration conve-

nience, Sk−1
t is divided into two blocks: Sk−1

tX denotes the portion
related to extended state X and Sk−1

tW the portion related to process
noise W.

The ith sigma point propagates through Eq. �6�, resulting in
Xk�k−1�i�

Xk�k−1�i� = FSk−1
tX �i�,Uk−1,Sk−1

tW �i�� �11�

By regression, the first two moments of distribution of Xk�k−1 are

X̄k�k−1 = �
i=1

r

wiXk�k−1�i� �12�

Pk�k−1
XX = �

i=1

r

wiXk�k−1�i� − X̄k�k−1�Xk�k−1�i� − X̄k�k−1�T �13�

where r=2ns+2np+2nW+1 and wi=weights determined by im-
portance sampling principles �van der Merwe 2004�.

To propagate through Eq. �7�, sigma points collected in matrix
format Sk−1

m for measurement update are selected as in Eq. �14�,
where notations are similar to those in Eq. �10�

Sk
m � 	Sk

mX

Sk
mV 
 =�X̄k�k−1

�k
V � � �0 �3 · diag�Pk�k−1

XX ,Pk
VV��

− �3 · diag�Pk�k−1
XX ,Pk

VV�� �14�

where measurement noise Vk, an nV vector, has mean �k
V and

variance Pk
VV. The deduced observation Zk�k−1�i� for the ith point

of Sk−1
m , Sk−1

m �i�, is

Zk�k−1�i� = HSk
mX�i�,Uk,Sk

mV�i�� �15�

The first two moments of deduced observation Zk�k−1 are

Z̄k�k−1 = �
i=1

l

wiZk�k−1�i� �16�

Pk�k−1
ZZ = �

i=1

l

wiZk�k−1�i� − Z̄k�k−1�Zk�k−1�i� − Z̄k�k−1�T �17�

in which l=2ns+2np+2nV+1. And the cross variance is

Pk�k−1
XZ = �

i=1

l

wiSk
mX�i� − X̄k�k−1�Zk�k−1�i� − Z̄k�k−1�T �18�

Now, upon incorporating the information contained in actual ob-
servation Zk, the a posterior estimation of the extended state

Xk �Z1:k is, in terms of its mean X̂k and variance P̂k
XX

X̂ = X̄ + K �Z − Z̄ � �19�
k k�k−1 k k k�k−1
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P̂k
XX = Pk�k−1

XX − KkPk�k−1
ZZ Kk

T �20�

where the Kalman gain Kk is

Kk = Pk�k−1
XZ �Pk�k−1

ZZ �−1 �21�

The procedure in Eqs. �10�–�21� is recursively performed for an
increased k.

Technique to Improve Convergence and
Consistency

New versions of RBF generally perform better than the EKF be-
cause of a more robust propagation of the probability distribution
in nonlinear systems. However, divergence still was observed
when applying new RBF for parameter identification �Yoshida
and Sato 2002a�. Moreover, a phenomenon of undue confidence
that has been well documented in EKF applications still is ex-
pected even using new RBF. In the EKF, the parameter uncer-
tainty evolution usually suffers when the variance is too small that
it has too much trust in the previous identified results, discarding
the new observations. The consistency of uncertainty estimation,
which is important in SHM practice, is sacrificed. Many cases
of divergence and undue confidence are caused by an improper
initial guess of either �1� the a priori mean or �2� the a priori
variance of the parameters, which remains problematic even if
probability distributions are properly propagated. Two techniques
were developed by Hoshiya and Saito �1984� and Koh and See
�1994�, respectively, to address these issues in the EKF context.
These techniques can be adapted for the new RBF versions
to alleviate the divergence and inconsistent estimation of
uncertainty.

To alleviate the divergence in the EKF due to an improper
initial mean, a weighted global iteration �WGI� was developed
by Hoshiya and Saito �1984�, taking advantage of the parameter
stability in Eq. �8�. In the WGI, the EKF is initiated with X̂0

and P̂0
XX to obtain estimation of X̂s and P̂s

XX, where s=time index
of the last datum. Then, X̂0 and P̂0

XX are replaced by X̂s and
aP̂s

XX�a�1�, respectively, and again, the EKF is iterated. This
procedure is repeated until the initial value X̂0 becomes almost
equal to the final value X̂s. It is essentially a procedure that runs
the EKF with various initial means X̂0. The amplification on the
variance P̂s

XX allows more freedom to take a random X̂1. This
technique has been applied in the EKF context by Oreta and
Tanabe �1994� and Yun et al. �1989�, and extended to a local
iteration for segments of data by Hoshiya and Sutoh �1993�. Simi-
lar WGI can be applied easily to the CDF or other new RBF
methods.

The undue confidence phenomenon could be best understood
in a Bayesian framework. For illustration, assuming that all the
probability distributions involved can be approximated by multi-
normal distributions, the a posteriori in Eq. �4� is rewritten as

p�Xk�Z1:k� =
�Zk;H�Xk,Uk,�k

V�,Pk
VV���Xk;X̄k�k−1,Pk�k−1

XX �

��Zk;Z̄k�k−1,Pk�k−1
ZZ �

�22�

where ��x ; x̄ ,P�=multinormal probability density function, as

shown in Eq. �23�

 ASCE license or copyright; see http://pubs.asce.org/copyright



¯

��x; x̄,P� = �2��−n/2�P�−1/2 exp	−
1

2
�x − x̄�TP−1�x − x̄�


�23�

Note that the exponent is a measure of the distance between x and
x weighted by P−1. ��x ; x̄ ,P� increases when the distance
�x− x̄� is shortened. With this geometric interpretation, the maxi-
mum likelihood estimation of X̂k maximizing Eq. �22�, is a com-
promise point that minimizes the sum of weighted distances
�Zk−H�X̂k ,Uk ,�k

V�� and �X̂k− X̄k�k−1�. When undue confidence is
associated with X̄k�k−1, i.e., Pk�k−1

XX is too small, the heavy weight
on �X̂k− X̄k�k−1� will constrain X̂k within the close vicinity of
X̄k�k−1, impairing its ability to adjust to the new observation Zk

�see Fig. 1�b��.
Note that the maximization procedure is independent of the

denominator p�Zk �Z1:k−1�, or ��Zk ; Z̄k�k−1 ,Pk�k−1
ZZ �, which, none-

theless, carries information to evaluate the consistency of the es-
timation. Pk�k−1

ZZ is the predicted error covariance, but the actual
residual rk=Zk− Z̄k�k−1 is available at all k’s in the filtering proce-
dure. Assuming that rk is a stationary process, its ensemble vari-
ance can be obtained by its temporal variance by Eq. �24�, and
compared with Pk�k−1

ZZ . When there is undue confidence that leads

to a biased estimation of Z̄k�k−1, the inconsistent Pk�k−1
ZZ will be

much smaller than the actual residual cov�rk�

cov�rk� = E�rk
Trk� =

1

s �i=1

s

ri
Tri �24�

This idea was explored by Koh and See �1994�, who presented an
adaptive EKF procedure by updating the process noise covariance
Pk−1

WW in time segments in order to ensure statistical consistency
between Pk�k−1

ZZ and cov�rk�. Along the same line, Yang et al.
�2005� updated a diagonal matrix called the adaptive factor ma-
trix, which can be regarded as a modification term of the state
transfer matrix � in Eq. �8�, for a faster adaptation rate so that
EKF could be used to track time-variant systems.

In a CDF context, we propose the following method to update
P̂k−1

XX if a cov�rk� is significantly larger than Pk�k−1
ZZ . Because the

observation function Eq. �7� is usually an underdetermined sys-
tem to reconstruct Pk�k−1

XX given a Pk�k−1
ZZ �the latter is now replaced

by cov�rk��, a least square with regularization �Tikhonov and
Arsenin 1977� is employed.

Assuming addictive process and measurement noises, a simple
linearization first is applied. For ease of notation, defining diago-
nal matrices Dk

r−V, Dk�k−1
X , Dk�k−1

X−W, and Dk−1
� as

Dk
r−V � mdgcov�rk� − Pk

VV� �25�

Dk�k−1
X � mdg�Pk�k−1

XX � �26�

Dk�k−1
X−W � mdg�D̄k�k−1

X − Pk−1
WW� �27�

Dk−1
� � mdg�P̂k−1

�� � �28�

where mdg�M�=diagonal matrix containing the main diagonal of
the square matrix M; and P̂k−1

�� =submatrix in P̂k−1
XX associating

with covariance of �, with row and column indices from 1+ns to
ns+np. Matrices Jk

Z/X and Jk�k−1
X/� =approximation of the Jacobians,
such defined that their �j�th columns are, respectively
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Jk
Z/X�j� �

Zk�k−1�1 + j� − Zk�k−1� l + 1

2
+ j�

2�3Dk�k−1
X �j, j�

; j = 1 to �ns + np�

�29�

Jk�k−1
X/� �j� �

Xk�k−1�1 + ns + j� − Xk�k−1� r + 1

2
+ ns + j�

2�3Dk−1
� �j, j�

;

j = 1 to np �30�

where Zk�k−1�i� is from Eq. �15�; and Xk�k−1�i� is from Eq. �11�.

By least square with regularization, one obtains D̄k�k−1
X from

minimization

D̄k�k−1
X = min

Dk�k−1
X

�trace�Dk
r−V − mdg„Jk

Z/XDk�k−1
X �Jk

Z/X�T
…�2�

+ � · trace�Dk�k−1
X �2�� �31�

where parameter �=0.01 is related to the regularization that tends

to zero in the undetermined terms in D̄k�k−1
X not constrained in

Eq. �7�. Comparing D̄k�k−1
X with Dk�k−1

X , if D̄k�k−1
X �j , j��Dk�k−1

X �j , j�,
accept for the element in D̄k�k−1

X ; otherwise, copy the element in

Dk�k−1
X to D̄k�k−1

X . Now, obtain D̄k−1
� by solving the following equa-

tion in the least-square sense:

Dk�k−1
X−W = mdgJk�k−1

X/� D̄k−1
� �Jk�k−1

X/� �T� �32�

Compare D̄k−1
� with Dk−1

� and update P̂k−1
XX using the larger ele-

ments from either of them in the corresponding position on

the main diagonal of P̂k−1
XX. With this updated P̂k−1

XX, filtering in
Eqs. �10�–�21� can be redone to obtain a consistent estimation of

X̂k and P̂k
XX.

In this study, WGI is not implemented explicitly for computa-
tional efficiency, but a similar idea is adopted; the entire recorded
data are divided into segments and various a priori means are
used for the filtering of different data segments. The consistency
enhancement technique for the CDF outlined in Eqs. �24�–�32� is
used in the two examples to be presented.

Implementation

For a structural dynamic system, inputs generally are specified
in either �1� external forces on a degree of freedom �DOF�,
described by time histories of the external forces �a subscript f
will denote these DOFs and the entries in the mass, damping, and
stiffness matrices that are associated with inputs of this category�;
or �2� a constrain trajectory on a DOF, specified by time histories
of its displacement, velocity, or acceleration �a subscript c will
denote those DOFs and matrix entries associated with inputs of
this category�. Theoretically, displacement, velocity, and accelera-
tion time histories are equivalent mutually, because given any of
them one can integrate or differentiate to obtain the other two
�there are practical difficulties doing so�. Other DOFs are “free”
in a sense that they are not subjected to prescribed time histories
of external forces or trajectory constrains. However, they are
brought into the first category by exerting a zero external force
time history. Therefore, the structural dynamic model is described

in the finite-element approach
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Since Ẍc, Ẋc, and Xc are known by given time histories, Eq. �33�
can be reduced to

M f fẌ f + C f fẊ f + K f fX f = F f − M fcẌc − C fcẊc − K fcXc �34�

The state-space representation is then

�Ẋ f

Ẍ f

� = 	 0 I

− M f f
−1K f f − M f f

−1C f f

�X f

Ẋ f
�

+ 	 0

M f f
−1 
�F f − M fcẌc − C fcẊc − K fcXc� �35�

where M f f, C f f, K f f, M fc, C fc, and K fc all may be parametrized
by �.

The locations where a structure is most vulnerable to damage
can be narrowed based on previous experiences. It is assumed that
only elements at those locations may suffer stiffness reduction,
while the other elements shall have constant stiffness. Represent
potential stiffness changes by stiffness correction coefficients �i

�i =
Ki

A

Ki
D �36�

where �i=stiffness correction coefficient at the ith element; while
Ki

A=actual element stiffness; and Ki
D=estimated element stiffness

based on a priori knowledge, for which design documents usually
are consulted to reach a starting point. Parameter 	 is a collection
of �’s of a limited number of elements that are vulnerable
to damage

� = ��1,�2, . . . ,�l�T �37�

Application Examples

Two simulation examples, one of a tower structure and the other
of a bridge structure, will be presented first to demonstrate the
applications of RBF for the SHM purpose in Examples 1 and 2,
respectively. Then, in Example 3, a large-scale shake table test is
presented to validate the proposed method.

Example 1: Tower Model Subjected to Biaxial
Earthquake Excitation

In this example, a tower is modeled by two beam–column ele-
ments with two concentrated masses, as depicted in Fig. 2. Both
elements are composed of the same elastic material with Young’s
modulus E=28.7 GPa and mass density 
=2,400 kg /m3. They
are of the same length l=0.5 m, but with different rectangular
cross sections: 0.67�0.8 cm2 for Element 1 and 1�1.2 cm2

for Element 2. Concentrated masses are m1=0.96 kg and m2

=3.84 kg, respectively. The tower model has its first four natural
frequencies of 1.22 Hz �first mode along the X axis�, 1.46 Hz

�first mode along the Y axis�, 3.67 Hz �second mode along the X
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axis�, and 4.40 Hz �second mode along the Y axis�. Raleigh’s
damping is assumed with a 5% damping ratio assigned to the first
two modes.

At the base �node N3�, the tower model is subjected to ground
motions simultaneously from two directions: El Centro �1940�
E–W along the X axis and El Centro �1940� N–S along the Y axis.
The ground motion displacement, velocity, and acceleration time
history records were obtained from the COSMOS Virtual Data
Center �http://db.cosmos-eq.org�, with displacement and velocity
histories resampled at 50 Hz; the beginning of the time histories
have been tapered to zeros to eliminate the effects of the nonzero
initial displacements and velocities in the records. The time his-
tories of the acceleration records and their power spectrum den-
sity functions are plotted in Fig. 3. The tower responses to these
ground motions are simulated, with velocity response at N1 along
the X direction �V1X� and that at N2 along the Y direction �V2Y�
being graphed as examples in Fig. 4.

Assume that four velocity responses are observed, i.e., V1X,
V1Y, V2X, and V2Y. Four stiffness correction coefficients,
��1 ,�2 ,�3 ,�4� for the bending stiffness �represented by moments
of inertia of the cross sections� I1X and I1Y of Element 1, and I2X
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Fig. 2. Tower model subjected to biaxial earthquake excitation
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Resulting from the central difference filter.
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and I2Y of Element 2, in both axes, respectively, are to be identi-
fied in order to assess the structural integrity of the tower model
in both directions up to the element level.

Simulated responses, V1X, V1Y, V2X, and V2Y, are contaminated
with white noises to form the noisy observations. The root-mean-
squares �RMS� of the white noises are 5% of the RMS of the
simulated responses. Similarly, noisy inputs are obtained by add-
ing 5% noise on top of the ground motion records. Feeding the
noisy inputs and observations to the CDF implemented by
Eqs. �9�–�21� with the improvement by Eqs. �24�–�32�, and
starting from a initial guess of element stiffness, i.e.,
��1 ,�2 ,�3 ,�4�int= �0.9,1.1,1.1,0.9�, the element stiffness cor-
rection coefficients ��1 ,�2 ,�3 ,�4� evolute to their true values
�1, 1, 1, 1�. Meanwhile, the standard deviations of the parameters
��1 ,�2 ,�3 ,�4� are gradually reduced, from the rather large a pri-
ori, �0.2, 0.2, 0.2, 0.2� to the much smaller a posteriori �0.015,
0.019, 0.026, 0.020�, showing the reduction of their uncertainties.
The evolution of the parameters and their uncertainties during a
typical 3-s period �t=1–4 s� is graphed in Fig. 5, together with
the noisy response observations during this period. This demon-
strates that the mathematical model of the structure is corrected
and the uncertainty associated with the model parameters is sig-
nificantly diminished during this Bayesian model updating/
correction procedure, utilizing the measurements with a noise
level feasible in most vibration monitoring systems.

It is observed that it requires less than 3-s measurement data
for the CDF to converge to the true stiffness parameters. To test
the consistency of the proposed method, nine nonoverlapping data
segments, 3-s long, were taken from the earthquake record, and
for each of the segments, an initial incorrect guess of
��1 ,�2 ,�3 ,�4�int with initial standard deviation �0.2, 0.2, 0.2, 0.2�
was assigned to start the filtering. Each initial �i was picked ran-
domly from a uniform distribution over interval �0.6, 1.4�. The
CDF results in Table 1 show that they all converged to the correct

ne Data Segments

�3 �4

Initial
mean
values

Resulting
mean
values

Standard
deviationa

Initial
mean
values

Resulting
mean
values

Standard
deviationa

0.652 0.986 0.018 0.828 0.977 0.014

1.012 0.999 0.014 1.066 0.964 0.020

1.064 1.005 0.021 0.946 0.976 0.024

0.767 0.992 0.013 1.023 0.967 0.013

0.969 1.009 0.021 1.227 1.004 0.030

1.082 0.995 0.027 1.235 1.007 0.034

1.300 0.953 0.037 0.932 1.023 0.033

1.392 1.014 0.035 1.214 0.885 0.040

0.771 1.010 0.031 0.951 0.953 0.022

10.6 10.8 11 11.2 11.4 11.6 11.8
0.9

1

1.1

Time (s)

Identified Mean
Mean ± Std.

β 3

Fig. 6. Correction of inconsistent estimation
Table 1. Example 1: Identified Element Stiffness Correction Coefficients in Ni

Data
segment

�1 �2

Initial
mean
values

Resulting
mean
values

Standard
deviationa

Initial
mean
values

Resulting
mean
values

Standard
deviationa

1 1.391 1.007 0.016 0.975 1.016 0.021

2 0.867 0.996 0.018 0.939 1.032 0.024

3 1.208 0.985 0.024 0.781 1.014 0.024

4 0.904 1.004 0.017 1.112 1.032 0.017

5 1.054 0.988 0.020 1.145 0.976 0.029

6 0.640 1.004 0.030 0.647 0.951 0.028

7 0.612 1.024 0.036 0.844 1.023 0.028

8 1.231 0.960 0.030 1.377 1.015 0.022

9 1.115 1.000 0.035 0.999 1.030 0.029
a
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Fig. 4. Simulated tower responses
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Fig. 5. Example 1: evolution of stiffness coefficients and their
uncertainty
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element stiffness, despite the various initial parameters that were
far from the true values.

Note that in this example �and, also, in the next example�, the
consistency check by Eq. �24� was performed in every 30 data
point and compared with the predicted error variance Pk�k−1

ZZ . If
inconsistency is found, correction of the estimation confidence
was performed following Eqs. �25�–�32�. The filtering segment in
Fig. 6 illustrates the effect of this technique devised in this study
that assures consistent estimation. In this segment, �3 was incor-
rectly identified to a value at about 0.95 in the first 30 data points,
where t� 10.6,11.2� s, with undue confidence found by the
consistency check performed at t=11.2 s. Although ideally, filter-
ing of the first 30 points should be redone with the corrected a
priori covariance; in order to illustrate the efficacy of the devised
technique, the filtering of the first 30 points was not redone, but
the corrected a priori covariance was carried to the next datum at
t=11.2 s. It was shown that with the a priori uncertainty surges,
the CDF regained its capacity to correct its estimation of the �3,
adapting to the new datum.

It is interesting to investigate the effect of modeling errors.
Table 2 shows the results by CDF based on a model with an error,
i.e., the mass at N2, m2 is assigned to 4.61 kg, 20% more than the
true value. Note that since m2 is not a parameter to be updated in
CDF, such an error cannot be corrected during filtering. However,
the results in Table 2 show that CDF still converges and obtains

Table 2. Example 1: Identified Element Stiffness Correction Coefficient

Data
segment

�1 �2

Initial
mean
values

Resulting
mean
values

Standard
deviationa

Initial
mean
values

Resulting
mean
values

St
dev

1 1.138 0.924 0.020 1.020 0.938 0

2 0.904 0.935 0.015 0.616 0.922 0

3 0.943 0.958 0.019 1.002 0.904 0

4 1.146 0.976 0.019 0.752 0.950 0

5 1.158 0.936 0.019 1.033 0.949 0

6 1.075 0.965 0.031 1.288 0.877 0

7 1.116 0.929 0.041 1.320 0.905 0

8 0.832 0.873 0.027 1.128 0.889 0

9 0.847 0.884 0.026 1.027 0.922 0
aResulting from the central difference filter.

(b)

X

Z
Y

1

3
8

5
2

(a)

Fig. 7. Bridge model and response observations
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��1 ,�2 ,�3 ,�4�= �0.93,0.92,1.10,1.10�. CDF compensates the
modeling error in m2 by identifying a stiffer Element 2. An inves-
tigation into the modes of the resulted model �larger m2 with
stiffer Element 2� showed similarity of its modal properties to
those of the true model �e.g., its natural frequencies were 122,
1.47, 3.39, and 4.09 Hz versus frequencies of the true model
given above�. This suggests that both models produce almost
identical responses when subjected to same excitation. Should
mass be included in the parameters to be identified together with
element stiffness, such a system is ill conditioned and hard to
identify because of nonuniqueness. Nonetheless, the slightly
larger standard deviations associated with the error model in
Table 2 compared with those in Table 1 indicated that the true
model was a better fit to the observed data, and thus, more prob-

Modeling Error

�3 �4

Initial
mean
values

Resulting
mean
values

Standard
deviationa

Initial
mean
values

Resulting
mean
values

Standard
deviationa

0.762 1.109 0.025 1.277 1.085 0.026

1.145 1.106 0.015 1.271 1.104 0.026

1.168 1.082 0.018 1.265 1.133 0.028

0.755 1.066 0.016 0.844 1.079 0.026

0.721 1.100 0.023 0.842 1.067 0.026

1.283 1.076 0.029 0.903 1.084 0.025

1.257 1.078 0.040 0.997 1.198 0.038

0.874 1.111 0.035 1.254 1.060 0.045

1.182 1.168 0.041 0.873 1.069 0.022
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Fig. 8. Simulated bridge response at Channel 1
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Table 3. Example 2: Identified Stiffness Correction Coefficients in Nine Data Segments

Data
segment

�1 �2

Initial
mean values

Resulting
mean values

Standard
deviationa

Initial
mean values

Resulting
mean values

Standard
deviationa

1 1.100 1.012 0.024 1.100 0.988 0.035

2 1.048 1.008 0.043 1.120 0.977 0.053

3 1.172 0.997 0.023 1.096 0.995 0.038

4 0.872 1.002 0.033 0.964 1.006 0.049

5 1.176 1.023 0.039 1.168 1.002 0.065

6 0.968 1.004 0.042 1.160 0.969 0.071

7 0.824 0.972 0.035 0.944 1.027 0.058

8 1.128 0.997 0.031 0.804 1.022 0.057

9 0.856 1.006 0.035 0.884 0.973 0.052
a
Resulting from the central difference filter.
(a) 2-span 3-bent bridge specimen

(b) Sensor layout
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Fig. 10. Large-scale shake table test setup
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able. How to assure the identifiability of a system is an important
issue, it is related to the parametrization, sensor number, location
selection, and the choice of excitation sources. Thorough discus-
sion on this issue is beyond the scope of this paper.

Example 1 demonstrates that the proposed CDF algorithm can
correctly identify the bending stiffness of each individual element
in both directions, and can obtain a consistent estimation of the
uncertainty of the stiffness coefficients. Therefore, this method
can detect stiffness changes to the element level. It also is noted
that in this example, filtering of each of the short segments is
initiated randomly, blind to previous and later data or the system
status. This indicates the rapid convergence of CDF: data of very
short length, a few seconds in this case �only a couple of cycles in
terms of the system fundamental period� are sufficient for the
CDF algorithm to reach a meaningful identification. This is a
significant advantage over most existing parameter identification
methods. This feature is desirable especially in SHM applications.
When any element stiffness steps down in a damaging event,
applying CDF to very short data segments recorded before and
after the event will reveal the structure health condition change
�including damage location and intensity�. Although the intent is
not to trace the instantaneous stiffness during a highly nonlinear
event when a system experiences complicated hysteresis loops,
the proposed method is able to keep track of degradation of a
structure when its stiffness changes are not faster than its funda-
mental frequency. This method also is good for postevent struc-
tural condition evaluation when a structure assumes a decreased
but stable stiffness.

Example 2: Bridge Model Subjected to Earthquake
Excitation

This example imitates the situation of a typical highway bridge
instrumented for longterm health monitoring purposes. The pro-
totype bridge in Fig. 7�a� is a three-span continuous cast-in-place
posttensioned box-girder bridge. The total length of the bridge
was 110.9 m with each span length of 35.5, 46.1, and 30.3 m. The
bridge was straight and supported on two monolithic single col-
umns and sliding bearings on both abutments. There were offsets
from the centers of the columns to the central line of the super-
structure. It was instrumented with 16 vibration sensors. During
earthquakes, the major concern was the structural integrity in the
transverse �Y� direction, therefore, only the vibration measure-
ments in the Y direction �Channels 1, 2, 3, 5, and 8, as shown in
Fig. 7� were considered as the observations. It was assumed that
the ground motion time histories were identical at the bases of
both columns, and could be recorded by the sensors at the footing
�i.e., Channel 10 in this case�. The finite-element model of this
bridge is shown in Fig. 7�b�.

To evaluate the integrity conditions of the super- and sub-
structures, respectively, two parameters were to be identified by
the CDF: ��1 ,�2�, where �1=stiffness correction coefficient of
the transverse bending �about the Z axis� for all the elements
of the box-girder deck; and �2=stiffness correction coefficient of
the transverse bending �about the X axis� for all the elements
of the two columns. To illustrate the capacity of the CDF method,
bridge responses to the El Centro �1940� N-S earthquake �tapered
as in Fig. 3� along the Y axis first were simulated with ��1 ,�2� set
to �1, 1�. The simulated velocity response at Channel 1 is graphed
in Fig. 8.

Similar to Example 1, earthquake records and the simulated
responses were contaminated with 5% noise to form the noisy

inputs and the noisy observations, which were fed into the CDF to
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update the structural model. Nine nonoverlapping data segments,
each with a 3-s duration, were taken from the earthquake record.
For each of the data segments, random initial guesses of �1 and
�2 were picked independently from a uniform distribution over
the interval �0.8, 1.2�, with their initial standard deviation as-
signed to �0.4, 0.4�. Despite the random starting values, ��1 ,�2�
converged to the true values �1, 1� in all the filtering using differ-
ent data segments �Table 3�. The evolution of estimation of stiff-
ness coefficients and their uncertainties during the first data
segment �t=1–4 s� is graphed in Fig. 9.

Example 3: Large-Scale Shake Table Test
of a Two-Span Three-Bent Bridge Model

A series of large-scale shake table tests were conducted at the
University of Nevada, Reno �UNR�, in a National Science
Foundation–Network for Earthquake Engineering Simulation
�NSF-NEES� sponsored research to explore the seismic behaviors
of reinforced concrete bridges �Johnson et al. 2006�. Taking ad-
vantage of this opportunity, the writers collaborated with re-
searchers at UNR and installed additional accelerometers on the
bridge specimen to verify the proposed methodology of structural
condition assessment for bridge bents using pre- and postevent
vibration data.

Shake table tests were performed on a two-span three-bent
reinforced concrete bridge specimen, shown in Fig. 10�a�. Each of
the three bents was supported on an individual shake table. The
bents were linked by the bridge deck, with a total length of
18.29 m �720 in.�. Each of the bents consisted of two columns,
having the same design cross sections with a diameter of 0.3 m
�12 in.�. The bents were of different heights, 1.83 m �72 in.�,
2.44 m �96 in.�, and 1.52 m �60 in.� for Bents 1, 2, and 3, respec-
tively, so that they processed significantly different transverse
stiffnesses. To resemble the inertia of other parts of the super-
structure not built into this specimen, compensative masses were
added. The shake tables were driven by input acceleration signals
in the transverse direction of the bridge. Eleven accelerometers
were installed on the specimen to obtain the acceleration inputs
and responses of the bridge, as illustrated in Fig. 10�b�.

Table 4. Test Procedure

Tests

Ground motion
description

�in transverse�

Peak
ground

acceleration
Damage

description

WN-X-1 White noise

T-12 Low earthquake 0.085

T-13 Low earthquake 0.173 Bent 1 yields

T-14 Moderate earthquake 0.319 Bent 3 yields

WN-X-2 White noise

T-15 High earthquake 0.627 Bent 2 yields

T-16 Severe earthquake NA

T-17 Extreme earthquake 1.14

WN-X-3 White noise

T-18 Extreme earthquake 1.398

T-19 Extreme earthquake 1.703 Bent 3 steel
buckles

WN-X-4 White noise

T-20 After shot 1.286

WN-X-5 White noise

Note: NA=not available.
During the tests, earthquake ground motions of increasing in-
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tensity, from low, moderate, high, severe, and extreme, were used
as the driving signals of the shake tables to simulation of strong
motions. After the strongest ground motion, a smaller motion was
input to mimic an after-shot earthquake. In Table 4, the sequence
of the strong motions �denoted by “T-�number�”� and their input
peak ground accelerations �PGA� are listed. Different levels of
damage were introduced to the bridge specimen by these strong
motions. In between the strong motions, low-amplitude white
noise �denoted by “WN-X-�number�”� with a PGA of approxi-
mately 0.05g, drove the shake tables to perturb the specimen in
the corresponding damage level. Such perturbations did not intro-
duce further nonlinearity and the system under a perturbation be-
haved as a linear system with a stable stiffness.

As indicated in Table 4, the damage procedure observed can be
outlined as: Bent 1 yields→Bent 3 yields→Bent 2 yields
→Bent 3 steel buckles. This procedure is largely determined by
the relative heights of the bents. The onset of Bent 1 yielding is
due to the fact that the first mode of this bridge specimen �in its
undamaged stage� has the largest displacement on Bent 1. After
the yielding of Bent 1, Bent 3 attracts most of the seismic force
and yields, and then so happens to Bent 2 after the yielding of
Bents 1 and 3. The final collapse is associated with the steel
buckling at Bent 3, which has the smallest ductility capacity
among the three.

Acceleration measurements at bent footings are considered as
inputs �Ch-1, Ch-6, and Ch-9�, while those on the superstructure
�Ch-4, Ch-5, Ch-7, Ch-8, and Ch-11� are system outputs. Data
obtained in low-amplitude white-noise vibrations WN-X-1–WN-
X-5 were fed into the CDF described above to identify the out-
of-plan bending stiffness of each bent. Identification results are
tabulated in Table 5. Note that the identified sectional stiffness
coefficients clearly indicate the same damage procedure as ob-
served in the tests. Between WN-X-1 and WN-X-2, �1 and �3

dropped from 0.75 to 0.51 and from 0.76 to 0.56, respectively,
while �2 remained at the same level, indicating in a quantitative
manner the yielding of Bents 1 and 3 between these two tests.
Then, between WN-X-2 and WN-X-3, the decrements in all, �1,
�2, and �3 signal that not only Bent 2 yielded, but also the dam-
age in Bents 1 and 3 further developed. In WN-X-4, �3 touched
down to a very low value, 0.10, associated with the severe dam-
age in Bent 3 �steel buckling�. And the results of WN-X-5 are
comparable to those in WN-X-4, which is consistent with the
observation that the after-shot earthquake actually had not further
damaged the bridge specimen significantly.

The identified bent stiffness changes also were found to be
consistent with those extracted from the experimental hysteresis
curves recorded by the researchers at UNR �Johnson et al. 2006�.
The UNR data were downloaded from the NEES database and

Table 5. Example 3: Identified Stiffness Correction Coefficients

Data
�test�

�1

Initial
mean values

Resulting
mean values

Standard
derivationa

Initial
mean value

X-WN-1 1.00 0.754 0.023 1.00

X-WN-2 0.75 0.512 0.014 0.75

X-WN-3 0.50 0.190 0.004 0.70

X-WN-4 0.15 0.175 0.006 0.50

X-WN-5 0.17 0.169 0.004 0.13
aResulting from the central difference filter.
replotted by Chen et al. �2008�.
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Conclusion

This paper presents a new vision of SHM in a Bayesian point of
view, where SHM is a procedure of information collection that
corrects and updates the probabilistic mathematical model of a
structure, and gradually diminishes the modeling uncertainty. The
RBF implemented by CDF, a superior algorithm over the conven-
tional EKF because of its utilizing a high-fidelity propagation of a
probability density in a nonlinear system, is applied in this re-
search in conjunction with a consistency enhancement technique
to achieve the redefined goal of SHM. Two numerical examples,
one of a tower model and one of a bridge structure, are presented
to illustrate the capacities of the CDF algorithm to correctly and
consistently estimate the model parameters and their uncertain-
ties. Data from a large-scale shake table test on a reinforced con-
crete bridge specimen validate the proposed method. The data-
updated probabilistic models �represented by parameters and their
uncertainties� of the structures are indicators of the structural in-
tegrity conditions, and useful for evaluating the current or future
structural performances in a probabilistic sense.

The proposed CDF algorithm requires both excitation and re-
sponse measurements. The Bayesian method, however, is general
and can adapt easily to output-only situations, if the system exci-
tation is described adequately in a statistical model. The proposed
CDF algorithm converged rapidly. Data of only a couple of cycles
in terms of the system fundamental period were sufficient for it to
reach a meaningful identification. This significant advantage is
especially desirable in SHM applications, which enables a SHM
system to keep track of degradation of a structure when the rate of
structural status variation is slightly lower than its fundamental
frequency. This method also is suitable for postevent structural
condition evaluation when a structure assumes a decreased but
stable stiffness compared with the preevent condition.
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