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Use of Supervisory Control and Data Acquisition for
Damage Location of Water Delivery Systems

Masanobu Shinozuka®; Jianwen Liang? and Maria Q. Feng®

Abstract: Urban water delivery systems can be damaged by earthquakes or severely cold weather. In either case, the damage cann
easily be detected and located, especially immediately after the event. In recent years, real-time damage estimation and diagnosis of buri
pipelines attracted much attention of researchers focusing on establishing the relationship between danfagakatjwer unit length of

pipe) and ground motion, taking the soil condition into consideration. Due to the uncertainty and complexity of the parameters that affect
the pipe damage mechanism, it is not easy to estimate the degree of physical damage only with a few numbers of parameters. As ¢
alternative, this paper develops a methodology to detect and locate the damage in a water delivery system by monitoring water pressu
on-line at some selected positions in the water delivery systems. For the purpose of on-line monitoring, emerging supervisory control an
data acquisition technology can be well used. A neural network-based inverse analysis method is constructed for detecting the extent ar
location of damage based on the variation of water pressure. The neural network is trained by using analytically simulated data from th
water delivery system with one location of damage, and validated by using a set of data that have never been used in the training. It i
found that the method provides a quick, effective, and practical way in which the damage sustained by a water delivery system can b
detected and located.
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Introduction In recent years, real-time damage estimation and diagnosis of
buried pipelines attracted much attention of researchers. Eguchi et

Urban water delivery systems can be damaged by earthquakes ofl- (1994 proposed a methodology for early postearthquake dam-
severely cold weather. In the former situation, usually multiple age detection of water distribution systems, in which a prior pre-
pipelines are damaged together, but damaging earthquakes occufiction of pipeline damage based on early datarthquake mag-
infrequently; while in the latter case, one or several pipes may be Nitude and location was estimated and then a parameter
simultaneously damaged seasonally or under usually traffic loads.estimation technique was used to gradually update the a priori
In either case, the location and severity of breaks cannot easily bePrediction of pipeline damage through hydraulic analysis with
identified, especially immediately after the event. incoming postearthquake field data on system performéamae

An ASCE (1984 guideline summarized the experience for 29€s reported by customerg, hydrant pressure losses reported by
identification of potential damage and pointed out that earthquakethe fire department, sporadic pressure or flowrate readings, re-
damage to buried pipelines is most often associated with somePOrts of pipe leakage, eic.Unfortunately, the method is only
type of permanent ground movement, and the identification of limited to assessments within a large service area, i.e., as the

permanent ground movement along pipelines following an earth- a_uthors said, it is not possible .to provide indications of Whigh
quake can help indicate the damage location. The guideline alsoPiPeS have been damaged, which may be due to the following

suggested instrumentation for measuring ground motion since it is"€S0ns. The primary damage prediction is based on earthquake

difficult to evaluate how much strain or damage pipelines experi- magnitude and location and attenuation of ground motion, and the
enced with little knowledge of ground motion. results are in the form of damage ratioreak number per unit

length of pipe, so the damage position is somewhat arbitrary.
Also, collecting postearthquake field performance data requires
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then the emergency shutoff of gas networks can be decided base@CADA system for estimating the location and extent of damage

on the damage estimation. The service area is divided into a mi-is expected to make much more sense than using the ground
crozone with mesh size of 250 175 m, and the damage ratios motion information, since the water pressure and flow-rate data
in each microzone are calculated based on empirical relationshipsare more sensitive to damage of the water delivery network, as
from historical damage data. It should be noted that the output of long as the location and the number of the sensors are chosen
the damage estimation is the damage réti@ak number per unit  optimally or at least adequately. The proposed method, however,
length of pipg, and not specific damage locations. presents a significant technical challenge due primarily to the lim-

Takada and Ogawé1995 presented a methodology for real- ited number of SCADA sensor units placed in a spatially exten-
time damage estimation of lifeline systems based on seismicsive and functional complex water delivery network. In this re-
monitoring of ground motion, taking liquefaction into consider- spect, use of inverse analysis combined with neural network
ation. This monitoring system consists of 37 seismometers oper-techniques as demonstrated in the present study appears to be
ated by Osaka Gas Company. After the occurrence of an earth-promising to alleviate this technical difficulty.
quake, ground motion data monitored by seismometers are
collected, and PGA and peak ground velocity in each microzone
with size of 300 m<400 m are calculated by interpolation of Database Development
ground motion at monitored stations, then damage estimation is
carried out by liquefaction potential index in each microzone. To establish a relationship between water pressure variation at

Nishio (1994 proposed a relationship between damage ratios monitoring stations and the damage location and severity in a
of buried gas pipelines and ground motion, deformability of pipe- water delivery system, a substantial input-output database is re-
lines and nonuniformity of ground, based on seismic observationsquired. For a given water delivery system, there are basically two
and field experiments. ways in which such a database can be developed; One is to collect

The methodologie¢Nishio 1994; Takada and Ogawa. 1995; the data actually monitored, and the other is to analytically simu-
Yoshikawa et al. 1995all try to establish the relationship be- late the data. Primarily for the purpose of demonstrating the effi-
tween damage ratitbreaks per unit length of pipeand ground ciency of the proposed inverse analysis method, the simulation
motion, taking the soil condition into consideration. On the one Method is used in this study dealing with a system having only
hand, due to the uncertainty and complexity of the parameters thatone location of damage and three monitoring stations. The
affect the pipe damage mechanism, it is not easy to estimate themultiple-damage case will be a cumbersome but straightforward
degree of physical damage with only a few numbers of param- extension of single-damage case, which will be the subject of
eters; and on the another hand, the methodologies may only beanother study.
appropriate for gas networks since the strategy of postearthquake In the following, the severity of the damage is defined in such
emergency operation of gas systems is to shutoff the gas supply2 Way that the major damage represents a pipe rupture equivalent
once the damage ratio exceeds a certain value in that block. How-t0 the pipe cross-sectional area, through which the water leaks,
ever, for postearthquake operation of water distribution systems,and the minor damage is equivalent to one hundrétitioQ of
the damage ratio is not enough, since we expect to find out dam-the cross-sectional area. Other degrees of damage severity can be
age locations and so isolate the damage portions in order to main-described by varying the equivalent rupture area. Damage can be
tain the water supply to important facilities. Therefore, these located by the distance from the breakpoint to the three monitor-
methodologies are not appropriate for water distribution systems,ing stations. In fact, at least three monitoring stations are needed
at least they are not the best strategies. for this method of identification. For simplicity, the break is as-

As an a|ternative, this paper deve|ops a method to |dent|fy the sumed to be located at the middle of a link between two direCtIy
location and severity of damage in a water delivery system by connected nodes in the water delivery system.
monitoring water pressures on-line at some selected positions in ~ The computer program developed by Tanaka e(®93 is
the water delivery system. For this purpose, a neural network- used for the specific system considered in this paper in order to
based inverse analysis method is used to carry out the identificaPerform hydraulic analysis of a water delivery system to generate
tion based on water pressure variation before and after pipethe data needed for the forward analysis.
breaks. As will be shown, this method provides a quick, effective,
and practical tool to identify the damage location and severity.

In the city of Tianjin, China, a real-time water pressure moni-
toring systeniLiang 1996 was installed, in which the water pres-
sure signals are transmitted to headquarters at a certain time in-
terval automatically. The pipe break data due to severely cold
weather have been collected for several years, and they are used
to construct an inverse analysis model to identify the possible
locations and severity of damage.

This study explores the inverse analysis method to identify the
location and extent of damage in the hope that the supervisory
control and data acquisitiofBCADA) technology will be able to
provide pressure and possibly flow measurement data on-line and
in real-time for actual water delivery systems. SCADA systems
have recently been installed in water delivery networks to trans-
mit, by means of wireless communication, water pressure/flow
rate, water quality, and other relevant data collected at remote Input layer
sensor units to a control center for the purpose of surveillance and
control of system function. Taking advantage of an existing

Fig. 1. Neural network model
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Fig. 2. Water delivery system
Neural Network Model updated at all nodes forcing the network to converge to an accept-

able state of performance measured in terms of the root-mean-
A back-propagation neural network is used to train the data ob- square(RMS) error defined as
tained above. The neural network consists of three layers: Input, voN
hidden, and output laydFig. 1). After input data are fed into the 11
neural network at the input layer, they are propagated through the Erms = SQR{MNE E (out; - ouf))* @
hidden layer until output data are generated. The output data are L
then compared with the target output, and an error signal is com-where OL“ and ou§=target and actual output, respectively;
puted for each output node. Then the error signals are transmittedV =number of data sets for training; aht=number of nodes in
backward from the output layer to each node in the intermediate the output layer.
and input layers that contributes directly to the output. This pro-  We train the neural network in this way: Pressure variation at
cess is repeated until each node in the network has received arthree monitoring stations as input, and location of break and dam-
error signal that describes its relative contribution to the total age index as output. In order to normalize the influence of input
error. Based on the error thus evaluated, connection weights arewith different nodes and to prevent the saturation of the transfer

Table 1. Parameter of the Water Delivery System

Diameter Diameter  Length Diameter  Length Diameter  Length

Link No. (m) Length Link No. (m) (m) Link No. (m) (m) Link No. (m) (m)

1 0.80 50 14 0.50 1,000 27 0.40 1,000 40 0.50 2,000
2 0.60 1,000 15 0.50 1,000 28 0.35 1,000 41 0.40 2,000
3 0.60 1,000 16 0.40 1,000 29 0.50 2,000 42 0.40 2,000
4 0.50 1,000 17 0.40 1,000 30 0.50 2,000 43 0.35 2,000
5 0.50 1,000 18 0.60 2,000 31 0.40 2,000 44 0.35 2,000
6 0.40 1,000 19 0.50 2,000 32 0.40 2,000 45 0.30 2,000
7 0.60 2,000 20 0.50 2,000 33 0.35 2,000 46 0.40 1,000
8 0.60 2,000 21 0.40 2,000 34 0.35 2,000 a7 0.40 1,000
9 0.50 2,000 22 0.40 2,000 35 0.50 1,000 48 0.35 1,000
10 0.50 2,000 23 0.35 2,000 36 0.40 1,000 49 0.35 1,000
11 0.40 2,000 24 0.50 1,000 37 0.40 1,000 50 0.30 1,000
12 0.40 2,000 25 0.50 1,000 38 0.35 1,000

13 0.60 1,000 26 0.40 1,000 39 0.35 1,000
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Table 2. Normalized Distances to Three Stations

Distance to Distance to Distance to Distance to Distance to Distance to

Link No. Station 1 Station 2 Station 3 Link No. Station 1 Station 2 Station 3

1 0.5709 0.5396 0.7802 26 0.3862 0.2931 0.3453
2 0.5287 0.5287 0.7585 27 0.3453 0.3862 0.3453
3 0.4515 0.5287 0.7291 28 0.3453 0.4792 0.3862
4 0.3862 0.5511 0.7139 29 0.6189 0.2851 0.4478
5 0.3453 0.5925 0.7139 30 0.5484 0.2465 0.3616
6 0.3453 0.6482 0.7291 31 0.4891 0.2851 0.2851
7 0.5372 0.4478 0.6962 32 0.4478 0.3616 0.2465
8 0.4478 0.4327 0.4547 33 0.4327 0.4478 0.2851
9 0.3616 0.4484 0.6281 34 0.4478 0.5372 0.3616
10 0.2851 0.4891 0.6189 35 0.6482 0.3453 0.3862
11 0.2465 0.5484 0.6281 36 0.5925 0.3453 0.2931
12 0.2851 0.6189 0.6547 37 0.5511 0.3862 0.2000
13 0.4792 0.3453 0.5925 38 0.5287 0.4515 0.2000
14 0.3862 0.3453 0.5511 39 0.5287 0.5287 0.2931
15 0.2931 0.3862 0.5287 40 0.7494 0.4478 0.4478
16 0.2000 0.4515 0.5287 41 0.6962 0.4327 0.3616
17 0.2000 0.5287 0.5511 42 0.6547 0.4478 0.2851
18 0.5372 0.2851 0.5484 43 0.6281 0.4891 0.2465
19 0.4478 0.2465 0.4891 44 0.6189 0.5484 0.2851
20 0.3616 0.2851 0.4478 45 0.6281 0.6189 0.3616
21 0.2851 0.3616 0.4327 46 0.8000 0.5287 0.4515
22 0.2465 0.4478 0.4478 a7 0.7585 0.5287 0.3862
23 0.2851 0.5372 0.4891 48 0.7291 0.5511 0.3453
24 0.5287 0.2000 0.4515 49 0.7139 0.5925 0.3453
25 0.4515 0.2000 0.3862 50 0.7139 0.6482 0.3862

function, the input and output are scaled based on the minimumm. Three nodesFig. 2) were selected as locations of water pres-

and maximum values of the training data. Scaled values-dr®,

1.0) for input and(0.2, 0.8 for output.

Results and Discussions

sure monitoring and referred to as Station 1, Station 2, and Station
3, respectively, and Table 2 shows the normalized distances to the
three stations.

We generate 350 pairs of input-output data for 7 states of
damage with respective break area 0.01, 0.02, 0.05, 0.1, 0.2, 0.5,
and 1.0 times cross-sectional area of the pipe. In the neural net-

Fig. 2 shows an example water delivery system with one supply work training, therefore, the parametdvsandN in Eq. (1) are

station, consisting of 31 nodes and 50 pipe links. Table 1 showsequal to 350 and 4, respectively. Fig. 3 shows the training curve
the diameter and length of each pipe link. The roughness coeffi- expressing the relationship between RMS error and learning time.
cient is 140 for all links, and the demand is assumed to be uni- The training ends after 100,000 time units with the last RMS error

form throughout the water delivery system equal to 0.G%gvat

being 0.00879.

each node. The water pressure at the source node is fixed at 52.0 The following analysis is performed to examine whether the
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Fig. 3. Neural network training
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neural network trained above can provide the results expected.
The data used for training were fed to the neural network as the
input to obtain the location and severity of the damage. Pipe link
Nos. 9, 20, 31, 42, 24, 25, 26, 27, and 28 are examined in Table
3. The numbergexcept those in round brackgta Columns 2 to

5 show the normalized distances to the three monitoring stations
and the normalized severity index of the dama@ée normal-
ized length for each pipe link is 0.247 in the north-south direction
and 0.340 in the east-west direction based on the minimum and
maximum valueg500.0 and 6,946)20f the training data.The
numbers in round brackets indicate the relative error to the data
that was used for training, and the minimum relative error is
0.42% and the maximum relative error is 20.5%. Looking at link
No. 9, the normalized distances from the damage location to the
three monitoring stations are 0.371, 0.427, and 0.636, respec-
tively, and the severity index is 0.545ee Fig. 4. The pipe links
(any points in the linksat distance 0.371 to Station 1 are link
Nos. 4, 9, 14, 20, 26, 32, 33, and 34. The links at distance 0.427

J. Eng. Mech. 2005.131:225-230.
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Table 3. Damage Output for Data Used for Training

Distance to Distance to Distance to
Link No. Station 1 Station 2 Station 3 Severity index
9 0.371 0.427 0.636 0.545
(2.65% (4.86% (1.32% (9.08%
20 0.363 0.268 0.428 0.480
2.77% (6.00% (4.47% (3.969%9
24 0.534 0.239 0.467 0.765
(1.08% (19.4% (3.52% (7.83%
25 0.433 0.228 0.373 0.713
(4.01% (14.1% (3.42% (1.52%
26 0.373 0.299 0.358 0.631
(3.44% (2.05% (3.53% (11.1%
27 0.359 0.367 0.355 0.690
(4.03% (4.87% (2.81% (2.859%
28 0.355 0.456 0.367 0.656
(2.84% (4.84% (5.05% (7.64%
31 0.565 0.343 0.324 0.274
(15.6% (20.5% (13.6% (5.65%
42 0.669 0.446 0.245 0.320
(21.8% (0.42% (14.2% (10.2%

to Station 2 are the link Nos. 7, 8, 9, 10, 16, 27, 38, 43, 42, 41, link Nos. 9, 20, 24, 25, 26, 27, 28, 31, and 42, with the minimum
and 40, and the links at distance 0.636 to Station 3 are link Nos.and maximum relative errors being, respectively, 0.09%, and
7, 8,9, 10, 11, and 12. Only link No. 9 satisfies the three condi- 25.8%, which are larger than the corresponding errors in Table 3
tions and, therefore, link No. 9 is judged to be the damaged link, as expected. Table 4 shows that again only link No. 9 is the
as expected. Other links, Nos. 20, 24, 25, 26, 27, 28, 31, and 42,damaged link, as also expected.
can be checked in the same way. Table 3 shows that the neural The following observations are made with respect to link No.
network trained above is sufficiently effective for the purpose of 31 which has the largest relative error. The links at distance 0.560
identification. to Station 1 are link Nos. 2, 7, 18, 24, 30, 31, 37, 43, 44, and 45,
The same neural network trained above is how examined if it at distance 0.332 to Station 2 are link Nos. 18, 19, 20, 26, 29, 30,
can identify the location and severity of damage well for the data and 31, and at distance 0.359 to Station 3 are link Nos. 21, 30, 31,
never used for training. The results are shown in Table 4 also for 33, 34, 35, 41, 42, 44, and 45. In this way, link Nos. 30 and 31 are
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Fig. 4. Damage location
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Table 4. Damage Output for Data Not Used for Training

Distance to Distance to Distance to
Link No. Station 1 Station 2 Station 3 Severity index
9 0.413 0.471 0.676 0.467
(14.1% (4.95% (7.69% (8.92%
20 0.395 0.318 0.487 0.482
(9.32% (11.4% (8.82% (5.93%
24 0.562 0.239 0.480 0.797
(6.33% (19.5% (6.36% (10.3%9
25 0.470 0.241 0.406 0.678
(4.08% (20.4% (5.02% (6.05%
26 0.361 0.293 0.359 0.645
(6.60% (1.02% (4.03% (10.8%9
27 0.345 0.348 0.357 0.8143
(0.09% (9.84% (3.30% (12.8%9
28 0.365 0.486 0.410 0.703
(5.73% (14.2% (6.08% (2.60%
31 0.560 0.332 0.359 0.369
(14.4% (16.3% (25.8% (21.8%
42 0.666 0.461 0.324 0.280
(1.74% (2.95% (13.7% (7.63%

judged to be potential candidates to be the damaged links. How-Acknowledgments

ever, actually only link No. 31 is the damaged link, and therefore

link No. 30 was mistakenly identified as a damaged link in addi- This work was supported partially by U.S. National Science
tion to link No. 31, though link No. 31 is more consistent with Foundation under Grant No. INT-9604614, the Multidisciplinary
what the data suggest. Actually, if the distance to Station 2 is Center for Earthquake Engineering Research under Grant No.
greater than 0.340 with a relative error of 14.2%, then link No. 30 R92249-A, and the National Natural Science Foundation of China
could be excluded from the candidate group of damaged links, under Grant No. 59878032, which are gratefully acknowledged.
which means that the relative errd@6.3%9 presently for the dis-
tance to Station 2 is still not acceptable. The reason is that the
RMS error in the back-propagation neural network is an average
error for all data used for training in accordance with the learning
rule, and not for each set of data or for each node in the output
layer. This problem can be resolved by additional training effort
or reselecting the three monitoring stations, which will be studied
further.
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