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Use of Supervisory Control and Data Acquisition for
Damage Location of Water Delivery Systems

Masanobu Shinozuka1; Jianwen Liang2; and Maria Q. Feng3

Abstract: Urban water delivery systems can be damaged by earthquakes or severely cold weather. In either case, the dam
easily be detected and located, especially immediately after the event. In recent years, real-time damage estimation and diagno
pipelines attracted much attention of researchers focusing on establishing the relationship between damage ratio~breaks per unit length
pipe! and ground motion, taking the soil condition into consideration. Due to the uncertainty and complexity of the parameters t
the pipe damage mechanism, it is not easy to estimate the degree of physical damage only with a few numbers of parame
alternative, this paper develops a methodology to detect and locate the damage in a water delivery system by monitoring wa
on-line at some selected positions in the water delivery systems. For the purpose of on-line monitoring, emerging supervisory c
data acquisition technology can be well used. A neural network-based inverse analysis method is constructed for detecting the
location of damage based on the variation of water pressure. The neural network is trained by using analytically simulated da
water delivery system with one location of damage, and validated by using a set of data that have never been used in the tr
found that the method provides a quick, effective, and practical way in which the damage sustained by a water delivery syst
detected and located.

DOI: 10.1061/~ASCE!0733-9399~2005!131:3~225!

CE Database subject headings: Damage; Water distribution; Water pipelines; Buried pipes; Urban areas; Data collection.
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Introduction

Urban water delivery systems can be damaged by earthqua
severely cold weather. In the former situation, usually mul
pipelines are damaged together, but damaging earthquakes
infrequently; while in the latter case, one or several pipes ma
simultaneously damaged seasonally or under usually traffic l
In either case, the location and severity of breaks cannot eas
identified, especially immediately after the event.

An ASCE ~1984! guideline summarized the experience
identification of potential damage and pointed out that earthq
damage to buried pipelines is most often associated with
type of permanent ground movement, and the identificatio
permanent ground movement along pipelines following an e
quake can help indicate the damage location. The guideline
suggested instrumentation for measuring ground motion sinc
difficult to evaluate how much strain or damage pipelines ex
enced with little knowledge of ground motion.

1Dept. of Civil Engineering, Univ. of Southern California, 3620
Vermont Ave., KAP 210, Los Angeles, CA 90089-2531. E-m
shino@usc.edu

2Dept. of Civil Engineering, Tianjin Univ., Tianjin 300072, Chin
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In recent years, real-time damage estimation and diagno
buried pipelines attracted much attention of researchers. Egu
al. ~1994! proposed a methodology for early postearthquake
age detection of water distribution systems, in which a prior
diction of pipeline damage based on early data~earthquake mag
nitude and location! was estimated and then a param
estimation technique was used to gradually update the a
prediction of pipeline damage through hydraulic analysis
incoming postearthquake field data on system performance~out-
ages reported by customers, hydrant pressure losses repor
the fire department, sporadic pressure or flowrate reading
ports of pipe leakage, etc.!. Unfortunately, the method is on
limited to assessments within a large service area, i.e., a
authors said, it is not possible to provide indications of w
pipes have been damaged, which may be due to the follo
reasons. The primary damage prediction is based on earth
magnitude and location and attenuation of ground motion, an
results are in the form of damage ratio~break number per un
length of pipe!, so the damage position is somewhat arbitr
Also, collecting postearthquake field performance data req
time and it is usually uneven, so the convergence of upd
process is very difficult, which may need too much time c
pared with the postearthquake emergency response and rec

A real-time earthquake monitoring and early warning sys
of a large-scale city gas network for the Tokyo metropolitan a
called SIGNAL ~Seismic Information Gathering and Netwo
Alert!, was established by the Tokyo Gas Company in 1
~Yamazaki et al. 1994!. The monitoring system consists of 3
spectrum intensity~SI! sensor, 5 accelerometers, and 20 lique
tion sensors. Once an earthquake occurs, monitored valu
these sensors are sent to the network control center by radi
damage estimation of gas networks in each microzone is c

out by SI value combining with peak ground acceleration~PGA!,

NAL OF ENGINEERING MECHANICS © ASCE / MARCH 2005 / 225
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then the emergency shutoff of gas networks can be decided
on the damage estimation. The service area is divided into
crozone with mesh size of 250 m3175 m, and the damage rat
in each microzone are calculated based on empirical relation
from historical damage data. It should be noted that the outp
the damage estimation is the damage ratio~break number per un
length of pipe!, and not specific damage locations.

Takada and Ogawa~1995! presented a methodology for re
time damage estimation of lifeline systems based on se
monitoring of ground motion, taking liquefaction into consid
ation. This monitoring system consists of 37 seismometers
ated by Osaka Gas Company. After the occurrence of an e
quake, ground motion data monitored by seismometers
collected, and PGA and peak ground velocity in each micro
with size of 300 m3400 m are calculated by interpolation
ground motion at monitored stations, then damage estimat
carried out by liquefaction potential index in each microzone

Nishio ~1994! proposed a relationship between damage r
of buried gas pipelines and ground motion, deformability of p
lines and nonuniformity of ground, based on seismic observa
and field experiments.

The methodologies~Nishio 1994; Takada and Ogawa. 19
Yoshikawa et al. 1995! all try to establish the relationship b
tween damage ratio~breaks per unit length of pipe! and ground
motion, taking the soil condition into consideration. On the
hand, due to the uncertainty and complexity of the parameter
affect the pipe damage mechanism, it is not easy to estima
degree of physical damage with only a few numbers of pa
eters; and on the another hand, the methodologies may on
appropriate for gas networks since the strategy of postearth
emergency operation of gas systems is to shutoff the gas s
once the damage ratio exceeds a certain value in that block.
ever, for postearthquake operation of water distribution syst
the damage ratio is not enough, since we expect to find out
age locations and so isolate the damage portions in order to
tain the water supply to important facilities. Therefore, th
methodologies are not appropriate for water distribution syst
at least they are not the best strategies.

As an alternative, this paper develops a method to identif
location and severity of damage in a water delivery system
monitoring water pressures on-line at some selected positio
the water delivery system. For this purpose, a neural netw
based inverse analysis method is used to carry out the iden
tion based on water pressure variation before and after
breaks. As will be shown, this method provides a quick, effec
and practical tool to identify the damage location and severi

In the city of Tianjin, China, a real-time water pressure m
toring system~Liang 1996! was installed, in which the water pre
sure signals are transmitted to headquarters at a certain tim
terval automatically. The pipe break data due to severely
weather have been collected for several years, and they are
to construct an inverse analysis model to identify the pos
locations and severity of damage.

This study explores the inverse analysis method to identif
location and extent of damage in the hope that the superv
control and data acquisition~SCADA! technology will be able t
provide pressure and possibly flow measurement data on-lin
in real-time for actual water delivery systems. SCADA syst
have recently been installed in water delivery networks to tr
mit, by means of wireless communication, water pressure
rate, water quality, and other relevant data collected at re
sensor units to a control center for the purpose of surveillanc

control of system function. Taking advantage of an existing

226 / JOURNAL OF ENGINEERING MECHANICS © ASCE / MARCH 2005
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SCADA system for estimating the location and extent of dam
is expected to make much more sense than using the g
motion information, since the water pressure and flow-rate
are more sensitive to damage of the water delivery networ
long as the location and the number of the sensors are c
optimally or at least adequately. The proposed method, how
presents a significant technical challenge due primarily to the
ited number of SCADA sensor units placed in a spatially ex
sive and functional complex water delivery network. In this
spect, use of inverse analysis combined with neural net
techniques as demonstrated in the present study appears
promising to alleviate this technical difficulty.

Database Development

To establish a relationship between water pressure variati
monitoring stations and the damage location and severity
water delivery system, a substantial input-output database
quired. For a given water delivery system, there are basically
ways in which such a database can be developed; One is to c
the data actually monitored, and the other is to analytically s
late the data. Primarily for the purpose of demonstrating the
ciency of the proposed inverse analysis method, the simu
method is used in this study dealing with a system having
one location of damage and three monitoring stations.
multiple-damage case will be a cumbersome but straightfor
extension of single-damage case, which will be the subje
another study.

In the following, the severity of the damage is defined in s
a way that the major damage represents a pipe rupture equi
to the pipe cross-sectional area, through which the water l
and the minor damage is equivalent to one hundredths1/100d of
the cross-sectional area. Other degrees of damage severity
described by varying the equivalent rupture area. Damage c
located by the distance from the breakpoint to the three mo
ing stations. In fact, at least three monitoring stations are ne
for this method of identification. For simplicity, the break is
sumed to be located at the middle of a link between two dir
connected nodes in the water delivery system.

The computer program developed by Tanaka et al.~1993! is
used for the specific system considered in this paper in ord
perform hydraulic analysis of a water delivery system to gen
the data needed for the forward analysis.

Fig. 1. Neural network model
31:225-230.
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Neural Network Model

A back-propagation neural network is used to train the data
tained above. The neural network consists of three layers: I
hidden, and output layer~Fig. 1!. After input data are fed into th
neural network at the input layer, they are propagated throug
hidden layer until output data are generated. The output da
then compared with the target output, and an error signal is
puted for each output node. Then the error signals are transm
backward from the output layer to each node in the interme
and input layers that contributes directly to the output. This
cess is repeated until each node in the network has receiv
error signal that describes its relative contribution to the
error. Based on the error thus evaluated, connection weigh

Table 1. Parameter of the Water Delivery System

Link No.
Diameter

~m! Length Link No.
Diameter

~m!
Lengt

~m!

1 0.80 50 14 0.50 1,00

2 0.60 1,000 15 0.50 1,0

3 0.60 1,000 16 0.40 1,0

4 0.50 1,000 17 0.40 1,0

5 0.50 1,000 18 0.60 2,0

6 0.40 1,000 19 0.50 2,0

7 0.60 2,000 20 0.50 2,0

8 0.60 2,000 21 0.40 2,0

9 0.50 2,000 22 0.40 2,0

10 0.50 2,000 23 0.35 2,0

11 0.40 2,000 24 0.50 1,0

12 0.40 2,000 25 0.50 1,0

13 0.60 1,000 26 0.40 1,0

Fig. 2. Wat
JOUR
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updated at all nodes forcing the network to converge to an ac
able state of performance measured in terms of the root-m
square~RMS! error defined as

ERMS = SQRTF 1

M

1

No
i=1

M

o
j=1

N

souti j
t − outi j

ad2G s1d

where outi j
t and outi j

a5target and actual output, respective
M5number of data sets for training; andN5number of nodes i
the output layer.

We train the neural network in this way: Pressure variatio
three monitoring stations as input, and location of break and
age index as output. In order to normalize the influence of i
with different nodes and to prevent the saturation of the tra

ink No.
Diameter

~m!
Length

~m! Link No.
Diameter

~m!
Length

~m!

27 0.40 1,000 40 0.50 2,

28 0.35 1,000 41 0.40 2,

29 0.50 2,000 42 0.40 2,

30 0.50 2,000 43 0.35 2,

31 0.40 2,000 44 0.35 2,

32 0.40 2,000 45 0.30 2,

33 0.35 2,000 46 0.40 1,

34 0.35 2,000 47 0.40 1,

35 0.50 1,000 48 0.35 1,

36 0.40 1,000 49 0.35 1,

37 0.40 1,000 50 0.30 1,

38 0.35 1,000

39 0.35 1,000
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function, the input and output are scaled based on the mini
and maximum values of the training data. Scaled values are~−1.0,
1.0! for input and~0.2, 0.8! for output.

Results and Discussions

Fig. 2 shows an example water delivery system with one su
station, consisting of 31 nodes and 50 pipe links. Table 1 s
the diameter and length of each pipe link. The roughness c
cient is 140 for all links, and the demand is assumed to be
form throughout the water delivery system equal to 0.05 m3/s at
each node. The water pressure at the source node is fixed a

Table 2. Normalized Distances to Three Stations

Link No.
Distance to
Station 1

Distance to
Station 2

Distance to
Station 3

1 0.5709 0.5396 0.7802

2 0.5287 0.5287 0.7585

3 0.4515 0.5287 0.7291

4 0.3862 0.5511 0.7139

5 0.3453 0.5925 0.7139

6 0.3453 0.6482 0.7291

7 0.5372 0.4478 0.6962

8 0.4478 0.4327 0.4547

9 0.3616 0.4484 0.6281

10 0.2851 0.4891 0.6189

11 0.2465 0.5484 0.6281

12 0.2851 0.6189 0.6547

13 0.4792 0.3453 0.5925

14 0.3862 0.3453 0.5511

15 0.2931 0.3862 0.5287

16 0.2000 0.4515 0.5287

17 0.2000 0.5287 0.5511

18 0.5372 0.2851 0.5484

19 0.4478 0.2465 0.4891

20 0.3616 0.2851 0.4478

21 0.2851 0.3616 0.4327

22 0.2465 0.4478 0.4478

23 0.2851 0.5372 0.4891

24 0.5287 0.2000 0.4515

25 0.4515 0.2000 0.3862

Fig. 3. Neural network training
228 / JOURNAL OF ENGINEERING MECHANICS © ASCE / MARCH 2005
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m. Three nodes~Fig. 2! were selected as locations of water p
sure monitoring and referred to as Station 1, Station 2, and S
3, respectively, and Table 2 shows the normalized distances
three stations.

We generate 350 pairs of input-output data for 7 state
damage with respective break area 0.01, 0.02, 0.05, 0.1, 0.2
and 1.0 times cross-sectional area of the pipe. In the neura
work training, therefore, the parametersM and N in Eq. ~1! are
equal to 350 and 4, respectively. Fig. 3 shows the training c
expressing the relationship between RMS error and learning
The training ends after 100,000 time units with the last RMS e
being 0.00879.

The following analysis is performed to examine whether
neural network trained above can provide the results expe
The data used for training were fed to the neural network a
input to obtain the location and severity of the damage. Pipe
Nos. 9, 20, 31, 42, 24, 25, 26, 27, and 28 are examined in
3. The numbers~except those in round brackets! in Columns 2 to
5 show the normalized distances to the three monitoring sta
and the normalized severity index of the damage.~The normal
ized length for each pipe link is 0.247 in the north-south direc
and 0.340 in the east-west direction based on the minimum
maximum values~500.0 and 6,946.2! of the training data.! The
numbers in round brackets indicate the relative error to the
that was used for training, and the minimum relative erro
0.42% and the maximum relative error is 20.5%. Looking at
No. 9, the normalized distances from the damage location t
three monitoring stations are 0.371, 0.427, and 0.636, re
tively, and the severity index is 0.545~see Fig. 4!. The pipe links
~any points in the links! at distance 0.371 to Station 1 are l

Link No.
Distance to
Station 1

Distance to
Station 2

Distance to
Station 3

26 0.3862 0.2931 0.345

27 0.3453 0.3862 0.345

28 0.3453 0.4792 0.386

29 0.6189 0.2851 0.447

30 0.5484 0.2465 0.361

31 0.4891 0.2851 0.285

32 0.4478 0.3616 0.246

33 0.4327 0.4478 0.285

34 0.4478 0.5372 0.361

35 0.6482 0.3453 0.38

36 0.5925 0.3453 0.29

37 0.5511 0.3862 0.20

38 0.5287 0.4515 0.20

39 0.5287 0.5287 0.29

40 0.7494 0.4478 0.44

41 0.6962 0.4327 0.36

42 0.6547 0.4478 0.28

43 0.6281 0.4891 0.24

44 0.6189 0.5484 0.28

45 0.6281 0.6189 0.36

46 0.8000 0.5287 0.45

47 0.7585 0.5287 0.38

48 0.7291 0.5511 0.34

49 0.7139 0.5925 0.34

50 0.7139 0.6482 0.38
Nos. 4, 9, 14, 20, 26, 32, 33, and 34. The links at distance 0.427

31:225-230.
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to Station 2 are the link Nos. 7, 8, 9, 10, 16, 27, 38, 43, 42
and 40, and the links at distance 0.636 to Station 3 are link
7, 8, 9, 10, 11, and 12. Only link No. 9 satisfies the three co
tions and, therefore, link No. 9 is judged to be the damaged
as expected. Other links, Nos. 20, 24, 25, 26, 27, 28, 31, an
can be checked in the same way. Table 3 shows that the n
network trained above is sufficiently effective for the purpos
identification.

The same neural network trained above is now examined
can identify the location and severity of damage well for the
never used for training. The results are shown in Table 4 als

Table 3. Damage Output for Data Used for Training

Link No.
Distance to
Station 1

Dista
Stat

9 0.371 0.

~2.65%! ~4.8

20 0.363 0

~2.77%! ~6.0

24 0.534 0

~1.08%! ~19

25 0.433 0

~4.01%! ~14

26 0.373 0

~3.44%! ~2.0

27 0.359 0

~4.03%! ~4.8

28 0.355 0

~2.84%! ~4.8

31 0.565 0

~15.6%! ~20

42 0.669 0

~21.8%! ~0.4

Fig. 4. D
JOUR
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l

link Nos. 9, 20, 24, 25, 26, 27, 28, 31, and 42, with the minim
and maximum relative errors being, respectively, 0.09%,
25.8%, which are larger than the corresponding errors in Ta
as expected. Table 4 shows that again only link No. 9 is
damaged link, as also expected.

The following observations are made with respect to link
31 which has the largest relative error. The links at distance 0
to Station 1 are link Nos. 2, 7, 18, 24, 30, 31, 37, 43, 44, an
at distance 0.332 to Station 2 are link Nos. 18, 19, 20, 26, 29
and 31, and at distance 0.359 to Station 3 are link Nos. 21, 3
33, 34, 35, 41, 42, 44, and 45. In this way, link Nos. 30 and 3

Distance to
Station 3 Severity inde

0.636 0.545

~1.32%! ~9.08%!

0.428 0.480

~4.47%! ~3.96%!

0.467 0.765

~3.52%! ~7.83%!

0.373 0.713

~3.42%! ~1.52%!

0.358 0.631

~3.53%! ~11.1%!

0.355 0.690

~2.81%! ~2.85%!

0.367 0.656

~5.05%! ~7.64%!

0.324 0.274

~13.6%! ~5.65%!

0.245 0.320

~14.2%! ~10.2%!

e location
nce to
ion 2

427

6%!

.268

0%!

.239

.4%!

.228

.1%!

.299

5%!

.367

7%!

.456

4%!

.343

.5%!

.446

2%!
amag
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judged to be potential candidates to be the damaged links.
ever, actually only link No. 31 is the damaged link, and there
link No. 30 was mistakenly identified as a damaged link in a
tion to link No. 31, though link No. 31 is more consistent w
what the data suggest. Actually, if the distance to Station
greater than 0.340 with a relative error of 14.2%, then link No
could be excluded from the candidate group of damaged l
which means that the relative error~16.3%! presently for the dis
tance to Station 2 is still not acceptable. The reason is tha
RMS error in the back-propagation neural network is an ave
error for all data used for training in accordance with the lear
rule, and not for each set of data or for each node in the o
layer. This problem can be resolved by additional training e
or reselecting the three monitoring stations, which will be stu
further.

Conclusions

The purpose of this study is to develop a method to ide
location and severity of damage in a water delivery system
monitoring water pressure on-line~SCADA! at some selected p
sitions in the water delivery system. The method can als
applied in principle to other networks such as electric power
tems.

A neural network-based inverse analysis method is deve
for the stated purpose. The method is based on on-line
pressure variation before and after pipe breaks, and provi
quick, effective, and practical analysis tool to serve the purp
The results also show that the number of monitoring stations
be less than one-tenth of the number of nodes in a water de
system.

Table 4. Damage Output for Data Not Used for Training

Link No.
Distance to
Station 1

Dista
Stat

9 0.413 0.

~14.1%! ~4.9

20 0.395 0

~9.32%! ~11

24 0.562 0

~6.33%! ~19

25 0.470 0

~4.08%! ~20

26 0.361 0

~6.60%! ~1.0

27 0.345 0

~0.09%! ~9.8

28 0.365 0

~5.73%! ~14

31 0.560 0

~14.4%! ~16

42 0.666 0

~1.74%! ~2.9
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Distance to
Station 3 Severity inde

0.676 0.467

~7.69%! ~8.92%!

0.487 0.482

~8.82%! ~5.93%!

0.480 0.797

~6.36%! ~10.3%!

0.406 0.678

~5.02%! ~6.05%!

0.359 0.645

~4.03%! ~10.8%!

0.357 0.8143

~3.30%! ~12.8%!

0.410 0.703

~6.08%! ~2.60%!

0.359 0.369

~25.8%! ~21.8%!

0.324 0.280

~13.7%! ~7.63%!
nce to
ion 2

471

5%!

.318

.4%!

.239

.5%!

.241

.4%!

.293

2%!

.348

4%!

.486

.2%!

.332

.3%!

.461

5%!
31:225-230.


