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Application of Neural Networks for Estimation of Concrete
Strength
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Abstract: The uniaxial compressive strength of concrete is the most widely used criterion in producing concrete. Although testing of the
uniaxial compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. At thi
point, it is too late to make improvements if the test result does not satisfy the required strength. Therefore, the strength estimation befor
the placement of concrete is highly desirable. This study presents the first effort in applying neural network-based system identificatior
techniques to predict the compressive strength of concrete based on concrete mix proportions. Back-propagation neural networks we
developed, trained, and tested using actual data sets of concrete mix proportions provided by two ready-mixed concrete companies. Ti
compressive strengths estimated by the neural networks were verified by laboratory testing results. This study demonstrated that the neu
network techniques are effective in estimating the compressive strength of concrete based on the mix proportions. Application of thes

techniques will contribute significantly to the concrete quality assurance.
DOI: 10.1061(ASCE)0899-1561200416:3257)
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Introduction

Concrete is the most widely used structural material for construc-

tion today. Traditionally, concrete has been fabricated from a few MiXing techniques have not been investigated or published.
well-defined components: Cement, water, fine aggregate, coarse Generally, concrete testing procedures are time consuming and

aggregate, etc. In concrete mix design and quality control, the experimental errors are inevitable. A typical compression test is
strength of concrete is regarded as the most important property.performEd about 28 days after placing the concrete. Should the

Many other properties of concrete, such as elastic modulus, watert€st results fall short of the required st_re_ng_th, costly remediation
tightness or impermeability, resistance to weathering agents, etc €T0rtS must be undertaken. Therefore, it is important to be able to
are directly related to the strength. The compressive strength of€Stimate the compressive strength of concrete before placing it at
concrete is many times greater than other types of strength, and onstruction sites. Artificial neurgl.lj(.atwc.)rk technlql@.eregfter,
majority of concrete elements are designed to take advantage ofreural networksopen new possibilities in the classification and
the higher compressive strength of the material. Most often, an generalization of available experimental results to estimate con-
ultimate target in the mixture design is the 28th day compressive crete .strength from the mix componepts. L

strength. The 28th day compressive strength is usually determined 1 NiS Study presents, for the first time, the application of the

based on a standard uniaxial compression test and is accepte§€ural networks for estimating the compressive strength of con-
universally as a general index of concrete strength crete. Training and testing patterns of a neural network were pre-

The compressive strength of concrete is related to mix propor- Paréd using the data sets containing the mix proportions of two

ences. However, knowledge from previous experiences is limited
since all possible combinations of components, proportions, and

tions and mix preparation techniques, but the result of the com-
pression test of a specimen can be influenced by the shape, di
mension, and the boundary conditions of the specimen.

Traditionally, concrete mix is designed based on previous experi-
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ready-mixed concrete companies. The estimated strengths were
compared with those tested in the laboratory. It is shown that the

neural network can effectively estimate the strength in spite of the
complexity and incompleteness of the available data, and it can be
used as a new tool by a concrete mix designer to support the
decision process and improve its efficiency.

Neural Network-Based Estimation

Overview of Neural Networks

The human brain represents the most sophisticated biological
neural networks, which are often much more efficient, adaptable,
and tolerant than conventional computers in the field of recogni-
tion, control, and learning. Although the processing speed of bio-

lklogical neurons is much slower than that of digital computers, the

massive parallel processing power of these neurons overcomes
their speed deficiency. The development of artificial neural net-
works was inspired by neuroscience which studies brain, biologi-
cal neurons, and synapses. Neural networks are intended to mimic
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the behavior of biological learning and the decision-making pro- Forward signal Desired value (T)
cess without being biologically realistic, in detail. Neural net- propagation : : : : Output value (0)
QO O e o
\

works represent simplified methods of a human brain and may be
used to solve problems that conventional methods with traditional
computations find difficult to solve. The first wave of interest
emerged after the introduction of simplified neurons, but only in
the past few years have neural networks emerged as a new prac-

Output layer {k}

) O | Hidden layer {j}

tical alternative to mainly deal with a pattern recognition in many W,

fields, such as biological, business, environmental, financial, Backward error ® ® Input layer {i}
manufacturing, medical, and military. In civil engineering, neural propagation L4 4 A Input value ()
networks have been applied to the detection of structural damage P

(e.g., Feng and Bahng 1998tructural system identificatide.g., Fig. 1. Architectural layout of back-propagation neural networks

Chen and Shah 1992; Feng and Kim 1938e modeling of ma-
terial behavior, structural optimizatiofe.g., Adeli and Park
1999, structural control(e.g., Chen et al. 1995ground water
monitoring, and concrete mix proportiofs.g., Oh et al. 1999
Neural networks are networks of many simple processes, attain a desired level of estimation accuracy. The final sets of
which are called units, nodes, or neurons, with dense parallelweights and biases comprise the long-term memory, or synapses,
interconnections. The connections between the neurons are calledf respective events. Consequently, learning corresponds to deter-
synapses. Each neuron receives weighted inputs from other neumining the weights and biases associated with the connections in
rons and communicates its outputs to other neurons by using arnthe networks. The back-propagation networks were used in this
activation function. Thus, information is represented by massive study. Fig. 1 presents a simple architectural layout of the back-
cross-weighted interconnections. Neural networks might be propagation networks that consist of an input layer, a hidden
single-or multilayered. The single-layer neural networks present layer, an output layer, and connections between them.
processing units of the neural networks, which take input from the  The corresponding architecture for the back-propagation learn-
outside of the networks and transmit their output to the outside of ing incorporates both the forward and the backward phases of the
the networks; otherwise, the neural networks are considered mul-computations involved in the learning process. The learning
tilayered. The basic methodology of neural networks consists of mechanism of the back-propagation networks is a generalized
three processes: Network training, testing, and implementation.delta rule that performs a gradient descent on the error space to
The connection weights of the neural network are adjusted minimize the total error between the actual calculated values and
through the training process, while the training effect is referred the desired ones of an output layer during modification of con-
to as learning. Training of neural networks usually involves modi- nection weights. In other words, a least mean square procedure is
fying connection weights by means of a learning rule. The learn- carried out to find the values of the connection weights that mini-
ing process is done by giving weights and biases computed frommize the error function by using a gradient descent method. The
a set of training data or by adjusting the weights according to a training is accomplished in an iterative manner. The training pro-
certain condition. In other words, neural networks learn from ex- cedure is summarized by the following steps:
amples and exhibit some capability for generalization beyond thes Step 1: Assign initial values to connection weightg; and
training data. Then, other testing data are used to check the gen- W,;, and to biase$; and 6.
eralization. The initial weights and biases joining nodes of an « Step 2: Input values ngtbecome activations on the input
input layer, hidden layers, and an output layer are commonly  neurons in an input layer.
assigned randomly. The weights and biases are changed for the Step 3: Training and testing patterns are prepared.
output of networks to match required data values. As input datas Step 4: Calculate input values of a hidden lajyavet,;, using
are passed through hidden layers, sigmoidal activation functions the output values of an input laygrO,;, connection weights
are generally used. During the training procedure, the data are W;;, and biase$; between an input layérand a hidden layer
selected uniformly. A specific pass is completed when all data sets  j. Then, the output values of a hidden laye®,,;, are derived
have been processed. Generally, several passes are required to from net,; and activation functiorf(-):

Table 1. Material Properties of Concrete

Properties of material Experimental data

Property Content Company A Company B
Specific gravity Cement 3.14 3.15

Natural sands;) 2.59 2.58

Crushed sands,) 2,51 —

Coarse aggregate 2.64 2.63
Fineness modulus Natural sand(s;) 3.30 2.70

Crushed sands,) 2.25 —

Coarse aggregate 6.53 6.60
Admixtures Air-entraining admixtures AE water reducit®tandarg AE water reducing Standargl

Note: AE= Air entraining.
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Table 2. Samples of Specified Concrete Mix Proportions of Company A for Training

Specified Fine Unit Unit Unit fine aggregate contekN/m®) ~ Unit coarse _
strength  Slump Water—cement aggregate water contentcement content aggregate  Admixture
(MPa) (cm) ratio percentagé%)  (kN/m°) (kN/m?) Natural sands;) Crushed sands;) content(kN/m®) (%)
15.68 10 64.2 46.6 1.75 2.73 3.28 4.93 9.67 0.84
15.68 15 64.2 47.6 1.86 2.90 3.27 4.92 9.26 0.89
15.68 18 64.3 48.2 1.92 2.99 3.27 491 9.04 0.92
17.64 10 59.3 45.7 1.74 2.94 3.19 4.79 9.75 0.9
17.64 15 59.5 46.7 1.84 3.10 3.19 4.79 9.36 0.95
17.64 18 59.5 47.3 1.91 3.21 3.19 4.77 9.10 0.98
20.58 10 535 44.5 1.72 3.22 3.08 4.62 9.86 0.99
20.58 15 53.4 45.5 1.83 3.43 3.07 4.60 9.44 1.05
20.58 18 53.5 46.1 1.89 3.54 3.07 4.60 9.19 1.08
23.52 10 48.6 43.5 1.72 3.53 2.97 4.46 9.91 1.08
23.52 15 48.6 44.5 1.81 3.73 2.96 4.45 9.50 1.14
23.52 18 48.6 45.1 1.87 3.85 2.96 4.44 9.25 1.18
26.46 10 44.2 42.7 1.70 3.83 2.88 4.32 9.94 1.17
26.46 15 44.3 43.7 1.80 4.07 2.87 4.30 9.49 1.25
26.46 18 44.3 44.3 1.86 4.20 2.86 4.29 9.23 1.29
29.40 10 40.9 42.0 1.69 4.13 2.80 4.19 9.93 1.26
29.40 15 40.9 43.0 1.79 4.38 2.78 4.17 9.47 1.34
29.40 18 40.9 43.6 1.85 4.53 2.77 4.16 9.21 1.39
34.30 10 35.7 40.9 1.68 4.69 2.66 3.98 9.85 1.44
34.30 15 35.7 41.9 1.77 4.97 2.64 3.96 9.39 1.52
34.30 18 35.7 42.5 1.83 5.14 2.63 3.94 9.12 1.57
39.20 10 32.1 40.2 1.67 5.19 2.55 3.82 9.72 1.59
39.20 15 32.1 41.2 1.76 5.50 2.53 3.79 9.26 1.68
39.20 18 32.1 41.8 1.82 5.67 2.51 3.77 8.99 1.74

Opk, are derived from

netpj=2 WjiOpi—l-Gj (1)
! neﬁ)k:z' ijOp]-+6k (4)
OpJ=fl(ne§3]) (2) J
wheref(-)=activation function, which is generally taken as a Opi=fi(nety) (5)
sigmoid function: » Step 6: The erroE between the calculated val@,, and the
fx)=1/(1+e™X) 3) desired valu€l, of an output layer may be defined as
+ Step 5: Calculate input values of an output lajemet,, E—12 O T2 5
using the output values of a hidden layelO,;, connection _Ekzl( ok T )

weightsW,;, and biase$), between a hidden laygrand an

In the back-propagation networks, the error at the output neu-
output layerk. Then, the output values of an output layer propag P
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Fig. 2. Variation of sum-squared error and learning rate with training Fig. 3. Variation of sum-squared error and learning rate with training
iterations in company A iterations in company B
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Table 3. Samples of Specified Concrete Mix Proportions of Company B for Training

Specified Fine Unit Unit Unit fine aggregate contefikN/m® ~ Unit coarse _
strength  Slump Water—cement aggregate water contentcement content aggregate  Admixture
(MPa) (cm) ratio percentagd%)  (kN/m°) (kN/m?) Natural sand ) Crushed sands) content(kN/m?) (%)
15.68 10 63.1 50.9 1.68 2.66 9.23 — 9.08 1.36
15.68 15 63.2 50.4 1.76 2.79 8.98 — 9.01 1.43
15.68 18 63.1 50.1 181 2.87 8.83 — 8.96 1.47
17.64 10 58.6 50.0 1.68 2.86 8.99 — 9.16 1.46
17.64 15 58.5 49.5 1.75 3.00 8.74 — 9.14 1.53
17.64 18 58.4 49.2 1.80 3.09 8.59 — 9.05 1.58
20.58 10 52.6 48.8 1.66 3.15 8.68 — 9.29 1.61
20.58 15 52.7 48.3 174 331 8.42 — 9.18 1.69
20.58 18 52.6 48.0 1.78 3.39 8.29 — 9.15 1.73
23.52 10 48.7 48.0 1.66 3.40 8.44 — 9.32 1.74
23.52 15 48.8 475 1.73 3.56 8.19 — 9.23 1.82
23.52 18 48.7 47.2 1.78 3.67 8.05 — 9.17 1.87
26.46 10 45.2 47.3 1.65 3.65 8.23 — 9.35 1.86
26.46 15 45.2 46.8 1.72 3.81 7.99 — 9.26 1.95
26.46 18 45.3 46.5 1.77 3.92 7.84 — 9.19 2.00
29.40 10 41.8 46.6 1.64 3.92 8.02 — 9.37 2.00
29.40 15 417 46.1 1.72 4.12 7.76 — 9.25 2.10
29.40 18 417 45.8 1.76 4.23 7.61 — 9.18 2.16
34.30 10 37.0 45.7 1.63 4.40 7.69 — 9.32 2.25
34.30 15 37.0 45.2 171 4.61 7.45 — 9.20 2.35
34.30 18 37.0 44.9 1.75 4.74 7.29 — 9.11 242
39.20 10 33.2 44.9 1.62 4.87 7.40 — 9.25 2.49
39.20 15 33.2 44.4 171 5.14 7.11 — 9.08 2.62
39.20 18 33.2 44.1 1.75 5.28 6.96 — 9.00 2.70

rons is propagated backward to the hidden layer neurons, andTraining of Neural Networks

then to the input layer neurons modifying the connection
weights and the biases between them by a generalized delta
rule. The modification of the weights and the biases in a gen-
eralized delta rule is used through a gradient descent of the

error.

From the hidden to output neurons
Aij:nﬁkOpj and ABk:'I]Bk

whered, = (Ty—Op ' (net,;); andm =learning rate.

And from input to hidden neurons

whered;=W,;3,f'(net;).
» Step 7: Repeat Steps 1 to 6 until eribigoes below a target  use their own mix proportions based on codes, previous experi-

value.

A\Nji =n81ne§3i and ABJ :T]Bj

Concrete structures are generally required to have high safety,
strength, durability, and serviceability. In order to produce high-
quality concrete to satisfy these needs, code information, specifi-
cation, and experience of experts in determining concrete mix
proportions play vital roles. The concretes used at construction
sites are mostly produced by a ready-mixed concrete company
@) according to specified concrete mix proportions. Generally, slump
tests are performed before placing the concrete, but the compres-
sion tests of specimens are carried out at the 28th day after the
(8) placing. Therefore, it is difficult to estimate the compressive
strength at construction sites. Ready-mixed concrete companies

ence, and experiments. In this study, the neural networks for es-

100 E
Table 4. Convergence in Training :c:

- £ 80 30=5.15MPa ' 3o i
Experiment Target error Sum squared error Epoch -5 L , ,
Company A 0.10 0.0987907 143 & %0 Son =25.48MPa !

0.05 0.0499762 449 %5 . ) |

0.01 0.0099989 4857 5 * 7 !

0.005 0.0049999 13786 g I
Company B 0.10 0.0999917 1765  © bz o 4 % VYip |

0.05 0.0499948 3159 20 22 24 26 28 30 32
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Fig. 4. Histogram of compressive strength of company180-12
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Table 5. Data Sets of Specified Concrete Mix Proportions for Testing

Unit Unit  ynit fine aggregate contekN/m®)

Specified Fine water cement Unit
Testing Strength Slump Water—cement aggregate content content Natural Crushed coarse aggregatédmixture
data sets (MPa  (cm) ratio percentagd%,) (KN/m°) (kN/m?) sand(s;) sand(s,) content(kN/m°) (%)
Company A 17.64 8 59.4 45.3 1.71 2.87 3.19 4.79 9.91 0.88
20.58 8 53.6 44.1 1.69 3.15 3.08 4.63 10.03 0.96
23.52 8 48.6 43.1 1.67 3.43 2.98 4.47 10.10 1.05
26.46 8 44.4 42.3 1.66 3.73 2.89 4.33 10.11 1.10
29.40 8 40.9 41.6 1.65 4.03 2.80 4.20 10.10 1.31
17.64 12 59.5 46.1 1.78 3.00 3.19 4.79 9.59 0.92
20.58 12 53.6 44.9 1.76 3.29 3.08 4.62 9.70 1.01
23.52 12 48.6 43.9 1.75 3.61 2.97 4.45 9.74 1.10
26.46 12 44.3 43.1 1.74 3.94 2.87 431 9.74 121
29.40 12 40.9 42.4 1.72 421 2.79 4.19 9.75 1.29
Company B 17.64 8 58.6 50.2 1.64 2.79 9.10 — 9.20 1.43
20.58 8 52.5 49.0 1.63 3.10 8.78 — 9.31 1.58
23.52 8 48.7 48.2 1.62 3.32 8.56 — 9.37 1.70
26.46 8 45.2 475 1.62 3.58 8.33 — 9.39 1.83
29.40 8 41.7 46.8 1.61 3.85 8.11 — 9.47 1.97
17.64 12 58.6 49.8 1.71 291 8.90 — 9.14 1.49
20.58 12 52.6 48.6 1.70 3.22 8.57 — 9.24 1.65
23.52 12 48.7 47.8 1.69 3.46 8.35 — 9.29 1.77
26.46 12 45.2 47.1 1.68 3.70 8.14 — 9.32 1.89
29.40 12 41.7 46.4 1.68 4.00 7.92 — 9.33 2.04

timating the concrete compressive strength were trained andparameter. In total, 98 data sets were used to train the neural
tested by actual mix proportion data provided by two companies, networks for each of the two companies. Tables 2 and 3 show the
A and B. The material properties of concrete from the two com- samples of these data sets.
panies are shown in Table 1. Normal Portland cement was used. During the training of the neural networks, the connection
The maximum size of the aggregate is 25 mm, the range of com-weights and biases of the networks were updated following the
pressive strengths is from 9.8 to 39.2 MPa, and slump values areseven-step procedures described in the subsection entitled “Over-
5, 8, 12, 15, 18, and 21 cm. view of Neural Networks,” until the sum of the squared erkor
Nine (for company B or ten (for company A parameters, was less than a required target error. In order to investigate the
including the specified compressive strength, water-cement ratio,computational convergence, the estimation of the compressive
fine aggregate percentage, unit water content, unit cement constrength was carried out for different target errors: 0.10, 0.05,
tent, unit fine aggregate content, unit coarse aggregate contentD.01, and 0.005. Figs. 2 and 3 display training convergences of
admixtures and slump, were used for the training and learning of companies A and B as examples under the target error of 0.005.
the neural networks, where the first parameter is the output andThe neural networks applied to estimate the compressive strength
the rest the input. Company A used a mixture of natural saj)d (s of concrete converged very well. The rate of convergence was
and crushed sand f)swhile Company B used only the natural very fast in the early stage, but gradually became slower as the
sand, so company A has an additional unit fine aggregate contenepoch continued. Table 4 shows the relation of convergence in

Table 6. Estimated Values and Error Percentages in Company A

Predicted compressive strengithéPa)

Slump Specified

Testing data set (cm) strength(MPg) Target error 0.10 Target error 0.05 Target error 0.01 Target error 0.005
1 8 17.64 18.132.8 17.54(0.6) 17.54(0.6) 17.84(1.1)
2 8 20.58 21.765.7) 20.19(1.9 20.19(1.9 20.58(0.0)
3 8 23.52 24.443.9 23.23(1.3 23.42(0.4) 23.42(0.4)
4 8 26.46 26.071.5 25.58(3.3 26.17(1.1) 25.77(2.6)
5 8 29.40 29.500.3 30.87(5.0) 30.18(2.7) 29.99(2.0)
6 12 17.64 16.864.4) 17.64(0.0) 17.64(0.0) 17.74(0.6)
7 12 20.58 20.291.4) 20.48(0.5) 20.48(0.5) 20.68(0.5
8 12 23.52 23.911.7) 23.62(0.4) 23.32(0.9 23.72(0.9
9 12 26.46 27.152.6) 27.34(3.3 26.36(0.4) 26.36(0.4)

10 12 29.40 29.600.7) 30.18(2.7) 29.60(0.7) 28.71(2.3

Note: The numerical values in parentheses present the percent differences between the specified and the predicted strengths.
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Table 7. Estimated Values and Error Percentages in Company B

Predicted compressive strengiihdPa)

Testing data set Slumg@m) Specified strengtiMPa) Target error 0.10 Target error 0.05 Target error 0.01 Target error 0.005

1 8 17.64 17.053.3 16.76(5.0 17.35(1.7) 17.44(1.)
2 8 20.58 20.580.0) 20.68(0.5) 20.68(0.5) 20.78(0.9)
3 8 23.52 24.012.1) 24.01(2.1) 23.72(0.9 23.72(0.9
4 8 26.46 26.751.1) 26.66(0.7) 26.46(0.0) 26.36(0.4)
5 8 29.40 30.383.9 30.67(4.3) 29.99(2.0) 29.40(0.0)
6 12 17.64 16.665.6) 16.56(6.1) 17.25(2.2) 17.35(1.7)
7 12 20.58 20.092.4) 20.29(1.4) 20.48(0.5) 20.68(0.5)
8 12 23.52 23.420.4) 23.42(0.4) 23.42(0.4) 23.52(0.0)
9 12 26.46 26.851.5) 26.66(0.7) 26.56(0.4) 26.56(0.4)
10 12 29.40 29.691.0) 29.40(0.0) 29.50(0.3) 29.30(0.3)

Note: The numerical values in parentheses present the percent differences between the specified and the predicted strengths.

training by neural networks. For company A, with the target er- company B results listed in Table 7, the range of error percentages

rors decreasing from 0.05 to 0.005, the epochs increased 3.1shows 0.0-5.6, 0.0-6.1, 0.0-2.2, and 0.0-1.7 percents, respec-

34.0, and 96.4 times than that of a target error, 0.10. For companytively, for target errors of 0.1, 0.05, 0.01, and 0.005.

B, the epochs increased 1.8, 14.3, and 25.4 times than that of a The errors of the estimated strength compared to the required

target error, 0.10. This means that the amount of calculationsstrength do not decrease beyond a certain level of target error

increase with geometric series to obtain more precise results.  while computation time dramatically increased. Therefore, it is
Once trained, the neural networks were tested using ten datamportant to determine an optimal target error for computational

sets shown in shown in Table 5. Again, these data sets are actuaéfficiency. In this study, the target error was determined to be

data provided by Companies A and B. In the testing process of the0.01.

neural networks, the specified compressive strength of concrete

were estimated using the same nine input parameters as those in

training. Comparison of Estimated and Tested Strengths

In order to verify the effectiveness of the neural networks in es-
timating the compressive strengths of concrete based on the mix
Once trained, the neural networks need to be tested to evaluatgroportion parameters, the strengths estimated by the neural net-
whether they can successfully estimate the compressive strengtiworks were compared with the results from the actual compres-
of concrete based on mixing proportions. The ten data sets showrsion tests carried out by the two companies. The results of the
in Table 5 were used for testing. Again they are actual data pro- compression tests may be affected by the type of test specimens,
vided by Companies A and B, but completely different from those specimen size, the type of molds, curing conditions, the prepara-
used for training the neural networks. In the testing process, thetion of end surfaces, the rigidity of a testing machine, and the rate
data representing the water—cement ratio, fine aggregate percenwf application of stress. Aside from the variations in the type of
age, unit water content, unit cement content, unit fine aggregatePortland cement, admixtures, source of aggregates, mix propor-
content ($,s,), unit coarse aggregate, admixture, and slump were tions, batching, mixing and delivery also have an influence on the
inputted to the neural networks, and the compressive strength ofcompressive strength of concrete. In these tests, the specified
the concrete were estimated as output of the neural network.  strengths of concrete were 17.64, 20.58, and 23.52 MPa and
The compressive strengths of concrete estimated by the trainedslump was 12 cm. Cylindrical specimens with dimensionshof
neural networks are listed in Tables 6 and 7. For the company A 100X 200 mm were tested, which were made according to the
results listed in Table 6, the range of error percentages of themix proportions shown in Tables 2 and 3. The tests followed the
estimated strength compared to the specified strength by mix pro-requirements of KS F2408.997 and ASTM C39-93a at an age
portions show 0.3-5.7, 0.0-5.0, 0.0-2.7, and 0.0-2.7 percentspf 28 days. The results of the tests are shown in Table 8, in which
respectively, for target errors of 0.1, 0.05, 0.01, and 0.005. For thethe coefficient of increas@x) in mix design is predetermined as

Testing of Neural Networks

Table 8. Results of Compression Tests

Specified Standard - . Average Specified

sl'?rength Slump Number  deviation Coefficient of increaséw) streng%h strenZth by tests
Experiment  (f., MP3 (cm) of tests (o, MPa t Design Test (fem="fer, MP3 (fer, MPQ)
Company A 17.64 12 447 1.26 3.0 1.22 1.26 22.15 1839
20.58 12 354 1.72 3.0 1.22 1.24 25.48 20(38)
23.52 12 372 1.77 3.0 1.22 1.24 29.20 23(21)
Company B 17.64 12 345 1.11 3.0 1.20 1.19 20.97 17069
20.58 12 435 1.59 3.0 1.20 1.23 25.38 20(68)
23.52 12 363 1.62 3.0 1.20 1.22 28.71 23(2T)

Note: The numerical values in parentheses present the percent differences between the specified strength by test results and the specifietbstrength on
proportion.
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100 - Table 8 shows the comparison of the strengths estimated by
g B the neural networkgat the target error of 0.0o the test results.
% 80 ' 30=476MPa 3o ' In Table 9, the required average strength in the mix proportions is
2 el 1 £ =25 ;.”SMPa . computed by multiplying the coefficient of mcre_qseéas given in
v L e | Table § to the specified strength. In the specified strengths, the
5 ok : 4% : range of error percent differences between the test and the esti-
@ - 00.59 30111 mated results compared to the estimated values are 0.5%-3.9%
£ 20, | for company A and 0.5%-2.3% for company B. In the required
z Y7 77 775 75> Lo average strengths, the range of error percent differences between
020 2 2 2 28 30 32 the test and the estimated results compared to the estimated val-
Compressive Strength (MPa) ues are 1.7-2.7% for company A and 1.4-3.2% for company B.
_ _ ) Therefore, the compressive strengths of concrete estimated by the
Fig. 5. Histogram of compressive strength of company1B0-129 proposed neural networks agree with those resulting from com-
pressive tests, that demonstrates the effectiveness of the neural
networks.

the ratio of required average strength,,j to specified strength _
(f.,) for various coefficients of variation and the chances of fall- Conclusions
ing below specified strengttACI 214 1989. The coefficient of

increase(w) in the tests is calculated as follows: This paper presented the application of neural networks to esti-
mate the compressive strength of concrete based on its mix pro-
a=fem/fey 9) portion parameters, such as water—cement ratio, fine aggregate
wheref,=average strength of test results and equals,tpand percentage, unit water content, unit cement content, unit fine ag-
f., =specified strength by test results. The specified strerfggh ( 9regate content, unit coarse aggregate, admixture, and slump. The
from the test results was derived as follows: neural networks were developed and trained using the concrete
mix proportion data from two ready-mixed concrete companies
fa<fe—to (10) and the compressive strength of the concrete was estimated by the

wheres=forecast value of the standard deviatidg;=required trained neural networks. In this study, the optimal target error for
average strength; arte-coefficient to be determined by the prob-  training the neural networks was found to be 0.01 for both com-
ability that may fall belowf. according to ACI 214. In this study, ~Putational accuracy and efficiency. The validity of the proposed
t was taken as 3.0 since none of the test results fell below the limit neural network-based technique was proven by comparing the
f.. Comparing the specified strengths in Table 8, the maximum estimated strength with the compressive testing results of the con-
percentage of the differences between the specified strength bycrete specimen provided by the two companies. The maximum
tests f.,) and the specified strength in concrete mix proportions €rrors between the estimated and tested results were 3.9% in the

(1) is 3.9%. This means that the results of the tests show goodSpPecified strengths and 3.2% in the required average strengths.
agreement with the specified strengths. This study demonstrated the effectiveness of the neural
Figs. 4 and 5 show the histograms of the test results for a hetwork-based technique in estimating the compressive strength
specified compressive strength 20.58 MPa and slump 12 cm. Theof concrete based on concrete mix proportion parameters before
numbers of test specimens are 354 and 453, respectively, for comthe placement of concrete. As a future study, other important data
panies A and B. In Figs. 4 and 5, the test results show normal that also affect the concrete strength, such as the uncertainty of
distributions and the standard deviations are 1.715 MPa for com-concrete(i.e., the quality variation of aggregate and cement, mea-
pany A and 1.588 MPa for company B. The strengths obtained suring error, mixing condition, etcand in-field conditiongi.e.,
from the tests are 20.38 MPa for company A and 20.58 MPa for delivery distance, curing condition, etawill be collected and
company B. The strengths from the tests show good agreementonsidered in the neural networks. As more data are accumulated
with those of the concrete mix proportions. Since the histograms over the time, the neural networks trained by these data will be-
of another set of testing results show trends similar to Figs. 4 andcome more effective and the resulting estimation will become
5, they are not presented in this paper. more accurate and reliable.

Table 9. Comparison of the Specified and the Required Average Strengths

Specified strengthéMPa) Required average strengtfidPa)
Experiment Design Test Estimation Design Test Estimation
Company A 17.64 18.33 17.68.9 21.56 22.15 21.562.7)
20.58 20.38 20.480.5 25.09 25.48 24.992.0)
23.52 23.91 23.322.5 28.71 29.20 28.711.7)
Company B 17.64 17.64 17.22.3 21.17 20.97 20.681.4)
20.58 20.58 20.480.5 24.70 25.38 24.603.2
23.52 23.91 23.4722.1) 28.22 28.71 28.1%82.1

Note: The numerical values in parentheses present the percent differences between the test and the estimated values.
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