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Application of Neural Networks for Estimation of Concrete
Strength

Jong-In Kim, M.ASCE1; Doo Kie Kim, M.ASCE2; Maria Q. Feng, M.ASCE3; and Frank Yazdani, M.ASCE4

Abstract: The uniaxial compressive strength of concrete is the most widely used criterion in producing concrete. Although test
uniaxial compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placem
point, it is too late to make improvements if the test result does not satisfy the required strength. Therefore, the strength estima
the placement of concrete is highly desirable. This study presents the first effort in applying neural network-based system ide
techniques to predict the compressive strength of concrete based on concrete mix proportions. Back-propagation neural net
developed, trained, and tested using actual data sets of concrete mix proportions provided by two ready-mixed concrete com
compressive strengths estimated by the neural networks were verified by laboratory testing results. This study demonstrated th
network techniques are effective in estimating the compressive strength of concrete based on the mix proportions. Applicatio
techniques will contribute significantly to the concrete quality assurance.

DOI: 10.1061/~ASCE!0899-1561~2004!16:3~257!

CE Database subject headings: Neural networks; Compressive strength; Estimation; Concrete; Mixing.

provided by Columbia University Academic
truc-
few

oarse
, the
perty.
water
, etc.
th of
and a
ge of
, an

ssive
ined

epted

por-
com-
e, di-
en.

peri-

ited
, and

g and
st is
d the
ation
le to

g it at
,
nd
con-

the
con-
pre-

f two
were

t the
f the
an be
rt the

gical
able,
gni-
bio-

, the
omes
net-
logi-

an,

niv.,

. of

orth

until
vidual
t must
aper
r 24,

E,
Introduction
Concrete is the most widely used structural material for cons
tion today. Traditionally, concrete has been fabricated from a
well-defined components: Cement, water, fine aggregate, c
aggregate, etc. In concrete mix design and quality control
strength of concrete is regarded as the most important pro
Many other properties of concrete, such as elastic modulus,
tightness or impermeability, resistance to weathering agents
are directly related to the strength. The compressive streng
concrete is many times greater than other types of strength,
majority of concrete elements are designed to take advanta
the higher compressive strength of the material. Most often
ultimate target in the mixture design is the 28th day compre
strength. The 28th day compressive strength is usually determ
based on a standard uniaxial compression test and is acc
universally as a general index of concrete strength.

The compressive strength of concrete is related to mix pro
tions and mix preparation techniques, but the result of the
pression test of a specimen can be influenced by the shap
mension, and the boundary conditions of the specim
Traditionally, concrete mix is designed based on previous ex
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ences. However, knowledge from previous experiences is lim
since all possible combinations of components, proportions
mixing techniques have not been investigated or published.

Generally, concrete testing procedures are time consumin
experimental errors are inevitable. A typical compression te
performed about 28 days after placing the concrete. Shoul
test results fall short of the required strength, costly remedi
efforts must be undertaken. Therefore, it is important to be ab
estimate the compressive strength of concrete before placin
construction sites. Artificial neural network techniques~hereafter
neural networks! open new possibilities in the classification a
generalization of available experimental results to estimate
crete strength from the mix components.

This study presents, for the first time, the application of
neural networks for estimating the compressive strength of
crete. Training and testing patterns of a neural network were
pared using the data sets containing the mix proportions o
ready-mixed concrete companies. The estimated strengths
compared with those tested in the laboratory. It is shown tha
neural network can effectively estimate the strength in spite o
complexity and incompleteness of the available data, and it c
used as a new tool by a concrete mix designer to suppo
decision process and improve its efficiency.

Neural Network-Based Estimation

Overview of Neural Networks

The human brain represents the most sophisticated biolo
neural networks, which are often much more efficient, adapt
and tolerant than conventional computers in the field of reco
tion, control, and learning. Although the processing speed of
logical neurons is much slower than that of digital computers
massive parallel processing power of these neurons overc
their speed deficiency. The development of artificial neural
works was inspired by neuroscience which studies brain, bio

cal neurons, and synapses. Neural networks are intended to mimic

ATERIALS IN CIVIL ENGINEERING © ASCE / MAY/JUNE 2004 / 257
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the behavior of biological learning and the decision-making
cess without being biologically realistic, in detail. Neural n
works represent simplified methods of a human brain and m
used to solve problems that conventional methods with tradit
computations find difficult to solve. The first wave of inter
emerged after the introduction of simplified neurons, but on
the past few years have neural networks emerged as a new
tical alternative to mainly deal with a pattern recognition in m
fields, such as biological, business, environmental, finan
manufacturing, medical, and military. In civil engineering, ne
networks have been applied to the detection of structural da
~e.g., Feng and Bahng 1999!, structural system identification~e.g.,
Chen and Shah 1992; Feng and Kim 1998!, the modeling of ma
terial behavior, structural optimization~e.g., Adeli and Par
1995!, structural control~e.g., Chen et al. 1995!, ground wate
monitoring, and concrete mix proportions~e.g., Oh et al. 1999!.

Neural networks are networks of many simple proces
which are called units, nodes, or neurons, with dense pa
interconnections. The connections between the neurons are
synapses. Each neuron receives weighted inputs from othe
rons and communicates its outputs to other neurons by usi
activation function. Thus, information is represented by mas
cross-weighted interconnections. Neural networks might
single-or multilayered. The single-layer neural networks pre
processing units of the neural networks, which take input from
outside of the networks and transmit their output to the outsid
the networks; otherwise, the neural networks are considered
tilayered. The basic methodology of neural networks consis
three processes: Network training, testing, and implementa
The connection weights of the neural network are adju
through the training process, while the training effect is refe
to as learning. Training of neural networks usually involves m
fying connection weights by means of a learning rule. The le
ing process is done by giving weights and biases computed
a set of training data or by adjusting the weights according
certain condition. In other words, neural networks learn from
amples and exhibit some capability for generalization beyon
training data. Then, other testing data are used to check the
eralization. The initial weights and biases joining nodes o
input layer, hidden layers, and an output layer are comm
assigned randomly. The weights and biases are changed f
output of networks to match required data values. As input
are passed through hidden layers, sigmoidal activation func
are generally used. During the training procedure, the dat
selected uniformly. A specific pass is completed when all data
have been processed. Generally, several passes are requ

Table 1. Material Properties of Concrete

Properties of material

Property Content

Specific gravity Cement

Natural sand(s1)
Crushed sand(s2)
Coarse aggregate

Fineness modulus Natural sand(s1)
Crushed sand(s2)
Coarse aggregate

Admixtures Air-entraining admixtures
Note: AE5Air entraining.
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o

attain a desired level of estimation accuracy. The final se
weights and biases comprise the long-term memory, or syna
of respective events. Consequently, learning corresponds to
mining the weights and biases associated with the connectio
the networks. The back-propagation networks were used in
study. Fig. 1 presents a simple architectural layout of the b
propagation networks that consist of an input layer, a hid
layer, an output layer, and connections between them.

The corresponding architecture for the back-propagation l
ing incorporates both the forward and the backward phases
computations involved in the learning process. The lear
mechanism of the back-propagation networks is a genera
delta rule that performs a gradient descent on the error spa
minimize the total error between the actual calculated value
the desired ones of an output layer during modification of
nection weights. In other words, a least mean square proced
carried out to find the values of the connection weights that m
mize the error function by using a gradient descent method
training is accomplished in an iterative manner. The training
cedure is summarized by the following steps:
• Step 1: Assign initial values to connection weightsWji and

Wk j , and to biasesu j anduk .
• Step 2: Input values netpi become activations on the inp

neurons in an input layer.
• Step 3: Training and testing patterns are prepared.
• Step 4: Calculate input values of a hidden layerj, netp j , using

the output values of an input layeri, Opi , connection weight
Wji , and biasesu j between an input layeri and a hidden laye
j. Then, the output values of a hidden layerj, Op j , are derived
from netp j and activation functionf (•):

Fig. 1. Architectural layout of back-propagation neural network

Experimental data

Company A Company B

3.14 3.15
2.59 2.58

2.51 —

2.64 2.63

3.30 2.70

2.25 —

6.53 6.60

E water reducing~Standard! AE water reducing~Standard!
A
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netp j5(
i

Wji Opi1u j (1)

Opj5f j~netp j! (2)
wheref (•)5activation function, which is generally taken a
sigmoid function:

f~x!51/~11e2x! (3)
• Step 5: Calculate input values of an output layerk, netpk ,

using the output values of a hidden layerj, Opi , connection
weightsWk j , and biasesuk between a hidden layerj and an
output layerk. Then, the output values of an output layek,

Fig. 2. Variation of sum-squared error and learning rate with trai
iterations in company A

Table 2. Samples of Specified Concrete Mix Proportions of Com

Specified
strength
~MPa!

Slump
~cm!

Water–cement
ratio

Fine
aggregate

percentage~%!

Unit
water content

~kN/m3!

U
ceme

~k

15.68 10 64.2 46.6 1.75
15.68 15 64.2 47.6 1.86
15.68 18 64.3 48.2 1.92
17.64 10 59.3 45.7 1.74
17.64 15 59.5 46.7 1.84
17.64 18 59.5 47.3 1.91
20.58 10 53.5 44.5 1.72
20.58 15 53.4 45.5 1.83
20.58 18 53.5 46.1 1.89
23.52 10 48.6 43.5 1.72
23.52 15 48.6 44.5 1.81
23.52 18 48.6 45.1 1.87
26.46 10 44.2 42.7 1.70
26.46 15 44.3 43.7 1.80
26.46 18 44.3 44.3 1.86
29.40 10 40.9 42.0 1.69
29.40 15 40.9 43.0 1.79
29.40 18 40.9 43.6 1.85
34.30 10 35.7 40.9 1.68
34.30 15 35.7 41.9 1.77
34.30 18 35.7 42.5 1.83
39.20 10 32.1 40.2 1.67
39.20 15 32.1 41.2 1.76
39.20 18 32.1 41.8 1.82
JOURNAL OF M
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Opk , are derived from

netpk5(
j

Wk jOp j1uk (4)

Opk5fk~netpk! (5)
• Step 6: The errorE between the calculated valueOpk and the

desired valueTk of an output layer may be defined as

E5
1

2 (
k51

~Opk2Tk!
2 (6)

In the back-propagation networks, the error at the output

Fig. 3. Variation of sum-squared error and learning rate with trai
iterations in company B

A for Training

tent
Unit fine aggregate content~kN/m3! Unit coarse

aggregate
content~kN/m3!

Admixture
~%!Natural sand(s1) Crushed sand(s2)

3.28 4.93 9.67 0.8
3.27 4.92 9.26 0.8
3.27 4.91 9.04 0.9
3.19 4.79 9.75 0.9
3.19 4.79 9.36 0.9
3.19 4.77 9.10 0.9
3.08 4.62 9.86 0.9
3.07 4.60 9.44 1.0
3.07 4.60 9.19 1.0
2.97 4.46 9.91 1.0
2.96 4.45 9.50 1.1
2.96 4.44 9.25 1.1
2.88 4.32 9.94 1.1
2.87 4.30 9.49 1.2
2.86 4.29 9.23 1.2
2.80 4.19 9.93 1.2
2.78 4.17 9.47 1.3
2.77 4.16 9.21 1.3
2.66 3.98 9.85 1.4
2.64 3.96 9.39 1.5
2.63 3.94 9.12 1.5
2.55 3.82 9.72 1.5
2.53 3.79 9.26 1.6
2.51 3.77 8.99 1.7
pany

nit
nt con
N/m3!

2.73
2.90
2.99
2.94
3.10
3.21
3.22
3.43
3.54
3.53
3.73
3.85
3.83
4.07
4.20
4.13
4.38
4.53
4.69
4.97
5.14
5.19
5.50
5.67
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rons is propagated backward to the hidden layer neurons
then to the input layer neurons modifying the connec
weights and the biases between them by a generalized
rule. The modification of the weights and the biases in a
eralized delta rule is used through a gradient descent o
error.
From the hidden to output neurons

DWkj5hdkOpj and DBk5hdk (7)
wheredk5(Tk2Opk) f 8(netp j); andh5 learning rate.
And from input to hidden neurons

DWji5hdjnetpi and DBj5hd j (8)
whered j5Wk jdkf 8(netp j).

• Step 7: Repeat Steps 1 to 6 until errorE goes below a targ
value.

Table 3. Samples of Specified Concrete Mix Proportions of Com

Specified
strength
~MPa!

Slump
~cm!

Water–cement
ratio

Fine
aggregate

percentage~%!

Unit
water content

~kN/m3!

U
ceme

~k

15.68 10 63.1 50.9 1.68
15.68 15 63.2 50.4 1.76
15.68 18 63.1 50.1 1.81
17.64 10 58.6 50.0 1.68
17.64 15 58.5 49.5 1.75
17.64 18 58.4 49.2 1.80
20.58 10 52.6 48.8 1.66
20.58 15 52.7 48.3 1.74
20.58 18 52.6 48.0 1.78
23.52 10 48.7 48.0 1.66
23.52 15 48.8 47.5 1.73
23.52 18 48.7 47.2 1.78
26.46 10 45.2 47.3 1.65
26.46 15 45.2 46.8 1.72
26.46 18 45.3 46.5 1.77
29.40 10 41.8 46.6 1.64
29.40 15 41.7 46.1 1.72
29.40 18 41.7 45.8 1.76
34.30 10 37.0 45.7 1.63
34.30 15 37.0 45.2 1.71
34.30 18 37.0 44.9 1.75
39.20 10 33.2 44.9 1.62
39.20 15 33.2 44.4 1.71
39.20 18 33.2 44.1 1.75

Table 4. Convergence in Training

Experiment Target error Sum squared error Ep

Company A 0.10 0.0987907 14
0.05 0.0499762 44
0.01 0.0099989 485
0.005 0.0049999 1378

Company B 0.10 0.0999917 17
0.05 0.0499948 315
0.01 0.0099984 2518
0.005 0.0049999 4479
260 / JOURNAL OF MATERIALS IN CIVIL ENGINEERING © ASCE / MAY/JU
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Training of Neural Networks

Concrete structures are generally required to have high s
strength, durability, and serviceability. In order to produce h
quality concrete to satisfy these needs, code information, sp
cation, and experience of experts in determining concrete
proportions play vital roles. The concretes used at constru
sites are mostly produced by a ready-mixed concrete com
according to specified concrete mix proportions. Generally, s
tests are performed before placing the concrete, but the com
sion tests of specimens are carried out at the 28th day aft
placing. Therefore, it is difficult to estimate the compres
strength at construction sites. Ready-mixed concrete comp
use their own mix proportions based on codes, previous ex
ence, and experiments. In this study, the neural networks fo

Fig. 4. Histogram of compressive strength of company A~180-12!

B for Training

tent
Unit fine aggregate content~kN/m3! Unit coarse

aggregate
content~kN/m3!

Admixture
~%!Natural sand (s1) Crushed sand (s2)

9.23 — 9.08 1.36
8.98 — 9.01 1.43
8.83 — 8.96 1.47
8.99 — 9.16 1.46
8.74 — 9.14 1.53
8.59 — 9.05 1.58
8.68 — 9.29 1.61
8.42 — 9.18 1.69
8.29 — 9.15 1.73
8.44 — 9.32 1.74
8.19 — 9.23 1.82
8.05 — 9.17 1.87
8.23 — 9.35 1.86
7.99 — 9.26 1.95
7.84 — 9.19 2.00
8.02 — 9.37 2.00
7.76 — 9.25 2.10
7.61 — 9.18 2.16
7.69 — 9.32 2.25
7.45 — 9.20 2.35
7.29 — 9.11 2.42
7.40 — 9.25 2.49
7.11 — 9.08 2.62
6.96 — 9.00 2.70
pany

nit
nt con
N/m3!

2.66
2.79
2.87
2.86
3.00
3.09
3.15
3.31
3.39
3.40
3.56
3.67
3.65
3.81
3.92
3.92
4.12
4.23
4.40
4.61
4.74
4.87
5.14
5.28
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timating the concrete compressive strength were trained
tested by actual mix proportion data provided by two compa
A and B. The material properties of concrete from the two c
panies are shown in Table 1. Normal Portland cement was
The maximum size of the aggregate is 25 mm, the range of
pressive strengths is from 9.8 to 39.2 MPa, and slump value
5, 8, 12, 15, 18, and 21 cm.

Nine ~for company B! or ten ~for company A! parameters
including the specified compressive strength, water-cement
fine aggregate percentage, unit water content, unit cement
tent, unit fine aggregate content, unit coarse aggregate co
admixtures and slump, were used for the training and learni
the neural networks, where the first parameter is the outpu
the rest the input. Company A used a mixture of natural sand1)
and crushed sand (s2) while Company B used only the natu
sand, so company A has an additional unit fine aggregate co

Table 5. Data Sets of Specified Concrete Mix Proportions for T

Testing
data sets

Specified
Strength
~MPa!

Slump
~cm!

Water–cement
ratio

Fine
aggregate

percentage~%!

Unit
water

conten
~kN/m3

Company A 17.64 8 59.4 45.3 1.7
20.58 8 53.6 44.1 1.69
23.52 8 48.6 43.1 1.67
26.46 8 44.4 42.3 1.66
29.40 8 40.9 41.6 1.65
17.64 12 59.5 46.1 1.7
20.58 12 53.6 44.9 1.7
23.52 12 48.6 43.9 1.7
26.46 12 44.3 43.1 1.7
29.40 12 40.9 42.4 1.7

Company B 17.64 8 58.6 50.2 1.6
20.58 8 52.5 49.0 1.63
23.52 8 48.7 48.2 1.62
26.46 8 45.2 47.5 1.62
29.40 8 41.7 46.8 1.61
17.64 12 58.6 49.8 1.7
20.58 12 52.6 48.6 1.7
23.52 12 48.7 47.8 1.6
26.46 12 45.2 47.1 1.6
29.40 12 41.7 46.4 1.6

Table 6. Estimated Values and Error Percentages in Company

Testing data set
Slump
~cm!

Specified
strength~MPa! Target error

1 8 17.64 18.13~2.8
2 8 20.58 21.76~5.7
3 8 23.52 24.40~3.8
4 8 26.46 26.07~1.5
5 8 29.40 29.50~0.3
6 12 17.64 16.86~4.4
7 12 20.58 20.29~1.4
8 12 23.52 23.91~1.7
9 12 26.46 27.15~2.6

10 12 29.40 29.60~0.7
Note: The numerical values in parentheses present the percent differenc
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,

parameter. In total, 98 data sets were used to train the n
networks for each of the two companies. Tables 2 and 3 sho
samples of these data sets.

During the training of the neural networks, the connec
weights and biases of the networks were updated following
seven-step procedures described in the subsection entitled ‘‘
view of Neural Networks,’’ until the sum of the squared erroE
was less than a required target error. In order to investigat
computational convergence, the estimation of the compre
strength was carried out for different target errors: 0.10, 0
0.01, and 0.005. Figs. 2 and 3 display training convergenc
companies A and B as examples under the target error of 0
The neural networks applied to estimate the compressive str
of concrete converged very well. The rate of convergence
very fast in the early stage, but gradually became slower a
epoch continued. Table 4 shows the relation of convergen

it
ent

tent
m3!

Unit fine aggregate content~kN/m3!
Unit

coarse aggregate
content~kN/m3!

Admixture
~%!

Natural
sand(s1)

Crushed
sand(s2)

2.87 3.19 4.79 9.91 0.8
3.15 3.08 4.63 10.03 0.9
3.43 2.98 4.47 10.10 1.0
3.73 2.89 4.33 10.11 1.1
4.03 2.80 4.20 10.10 1.3
3.00 3.19 4.79 9.59 0.9
3.29 3.08 4.62 9.70 1.0
3.61 2.97 4.45 9.74 1.1
3.94 2.87 4.31 9.74 1.2
4.21 2.79 4.19 9.75 1.2

2.79 9.10 — 9.20 1.4
3.10 8.78 — 9.31 1.58
3.32 8.56 — 9.37 1.70
3.58 8.33 — 9.39 1.83
3.85 8.11 — 9.47 1.97
2.91 8.90 — 9.14 1.49
3.22 8.57 — 9.24 1.65
3.46 8.35 — 9.29 1.77
3.70 8.14 — 9.32 1.89
4.00 7.92 — 9.33 2.04

Predicted compressive strengths~MPa!

Target error 0.05 Target error 0.01 Target error

17.54~0.6! 17.54~0.6! 17.84~1.1!
20.19~1.9! 20.19~1.9! 20.58~0.0!
23.23~1.3! 23.42~0.4! 23.42~0.4!
25.58~3.3! 26.17~1.1! 25.77~2.6!
30.87~5.0! 30.18~2.7! 29.99~2.0!
17.64~0.0! 17.64~0.0! 17.74~0.6!
20.48~0.5! 20.48~0.5! 20.68~0.5!
23.62~0.4! 23.32~0.8! 23.72~0.8!
27.34~3.3! 26.36~0.4! 26.36~0.4!
30.18~2.7! 29.60~0.7! 28.71~2.3!
esting

t
!

Un
cem
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6
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es between the specified and the predicted strengths.
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training by neural networks. For company A, with the targe
rors decreasing from 0.05 to 0.005, the epochs increased
34.0, and 96.4 times than that of a target error, 0.10. For com
B, the epochs increased 1.8, 14.3, and 25.4 times than tha
target error, 0.10. This means that the amount of calcula
increase with geometric series to obtain more precise result

Once trained, the neural networks were tested using ten
sets shown in shown in Table 5. Again, these data sets are
data provided by Companies A and B. In the testing process o
neural networks, the specified compressive strength of con
were estimated using the same nine input parameters as th
training.

Testing of Neural Networks

Once trained, the neural networks need to be tested to ev
whether they can successfully estimate the compressive str
of concrete based on mixing proportions. The ten data sets s
in Table 5 were used for testing. Again they are actual data
vided by Companies A and B, but completely different from th
used for training the neural networks. In the testing process
data representing the water–cement ratio, fine aggregate pe
age, unit water content, unit cement content, unit fine aggre
content (s1 ,s2), unit coarse aggregate, admixture, and slump w
inputted to the neural networks, and the compressive streng
the concrete were estimated as output of the neural network

The compressive strengths of concrete estimated by the tr
neural networks are listed in Tables 6 and 7. For the compa
results listed in Table 6, the range of error percentages o
estimated strength compared to the specified strength by mix
portions show 0.3–5.7, 0.0–5.0, 0.0–2.7, and 0.0–2.7 perc
respectively, for target errors of 0.1, 0.05, 0.01, and 0.005. Fo

Table 7. Estimated Values and Error Percentages in Company

Testing data set Slump~cm! Specified strength~MPa! Targe

1 8 17.64 1
2 8 20.58 2
3 8 23.52 2
4 8 26.46 2
5 8 29.40 3
6 12 17.64 1
7 12 20.58 2
8 12 23.52 2
9 12 26.46 2

10 12 29.40 2

Note: The numerical values in parentheses present the percent diff

Table 8. Results of Compression Tests

Experiment

Specified
strength

( f c8 , MPa!
Slump
~cm!

Number
of tests

Standard
deviation
~s, MPa! t

Company A 17.64 12 447 1.26
20.58 12 354 1.72
23.52 12 372 1.77

Company B 17.64 12 345 1.11
20.58 12 435 1.59
23.52 12 363 1.62

Note: The numerical values in parentheses present the percent diffe

proportion.
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company B results listed in Table 7, the range of error percen
shows 0.0–5.6, 0.0–6.1, 0.0–2.2, and 0.0–1.7 percents, re
tively, for target errors of 0.1, 0.05, 0.01, and 0.005.

The errors of the estimated strength compared to the req
strength do not decrease beyond a certain level of target
while computation time dramatically increased. Therefore,
important to determine an optimal target error for computati
efficiency. In this study, the target error was determined t
0.01.

Comparison of Estimated and Tested Strengths

In order to verify the effectiveness of the neural networks in
timating the compressive strengths of concrete based on th
proportion parameters, the strengths estimated by the neura
works were compared with the results from the actual com
sion tests carried out by the two companies. The results o
compression tests may be affected by the type of test speci
specimen size, the type of molds, curing conditions, the pre
tion of end surfaces, the rigidity of a testing machine, and the
of application of stress. Aside from the variations in the typ
Portland cement, admixtures, source of aggregates, mix pr
tions, batching, mixing and delivery also have an influence o
compressive strength of concrete. In these tests, the spe
strengths of concrete were 17.64, 20.58, and 23.52 MPa
slump was 12 cm. Cylindrical specimens with dimensionsf
1003200 mm were tested, which were made according to
mix proportions shown in Tables 2 and 3. The tests followed
requirements of KS F2405~1997! and ASTM C39-93a at an a
of 28 days. The results of the tests are shown in Table 8, in w
the coefficient of increase~a! in mix design is predetermined

Predicted compressive strengths~MPa!

r 0.10 Target error 0.05 Target error 0.01 Target error

3! 16.76~5.0! 17.35~1.7! 17.44~1.1!
0! 20.68~0.5! 20.68~0.5! 20.78~0.9!
1! 24.01~2.1! 23.72~0.8! 23.72~0.8!
1! 26.66~0.7! 26.46~0.0! 26.36~0.4!
3! 30.67~4.3! 29.99~2.0! 29.40~0.0!
6! 16.56~6.1! 17.25~2.2! 17.35~1.7!
4! 20.29~1.4! 20.48~0.5! 20.68~0.5!
4! 23.42~0.4! 23.42~0.4! 23.52~0.0!
5! 26.66~0.7! 26.56~0.4! 26.56~0.4!
0! 29.40~0.0! 29.50~0.3! 29.30~0.3!

es between the specified and the predicted strengths.

Coefficient of increase~a!
Average
strength

( f cm5 f cr , MPa!

Specified
strength by test

( f c18 , MPa!Design Test

1.22 1.26 22.15 18.33~3.9!
1.22 1.24 25.48 20.38~1.0!
1.22 1.24 29.20 23.91~1.7!
1.20 1.19 20.97 17.64~0.0!

1.20 1.23 25.38 20.58~0.0!
1.20 1.22 28.71 23.91~1.7!

s between the specified strength by test results and the specified smix
B

t erro

7.05~3.
0.58~0.
4.01~2.
6.75~1.
0.38~3.
6.66~5.
0.09~2.
3.42~0.
6.85~1.
9.69~1.
3.0
3.0
3.0
3.0

3.0
3.0
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the ratio of required average strength (f cr) to specified strengt
( f c18 ) for various coefficients of variation and the chances of
ing below specified strength~ACI 214 1989!. The coefficient o
increase~a! in the tests is calculated as follows:

a5 f cm / f c18 (9)

wheref cm5average strength of test results and equals tof cr ; and
f c18 5specified strength by test results. The specified strengthf c18 )
from the test results was derived as follows:

f c18 < f cr2ts (10)

wheres5forecast value of the standard deviation;f cr5required
average strength; andt5coefficient to be determined by the pro
ability that may fall belowf c8 according to ACI 214. In this stud
t was taken as 3.0 since none of the test results fell below the
f c8 . Comparing the specified strengths in Table 8, the maxim
percentage of the differences between the specified streng
tests (f c18 ) and the specified strength in concrete mix proport
( f c8) is 3.9%. This means that the results of the tests show
agreement with the specified strengths.

Figs. 4 and 5 show the histograms of the test results
specified compressive strength 20.58 MPa and slump 12 cm
numbers of test specimens are 354 and 453, respectively, for
panies A and B. In Figs. 4 and 5, the test results show no
distributions and the standard deviations are 1.715 MPa for
pany A and 1.588 MPa for company B. The strengths obta
from the tests are 20.38 MPa for company A and 20.58 MP
company B. The strengths from the tests show good agree
with those of the concrete mix proportions. Since the histog
of another set of testing results show trends similar to Figs. 4
5, they are not presented in this paper.

Fig. 5. Histogram of compressive strength of company B~180-12!

Table 9. Comparison of the Specified and the Required Averag

Experiment

Specified strengths~MPa!

Design Test Esti

Company A 17.64 18.33 17.
20.58 20.38 20.4
23.52 23.91 23.3

Company B 17.64 17.64 17.
20.58 20.58 20.4
23.52 23.91 23.4
Note: The numerical values in parentheses present the percent differenc

JOURNAL OF M
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Table 8 shows the comparison of the strengths estimate
the neural networks~at the target error of 0.01! to the test result
In Table 9, the required average strength in the mix proportio
computed by multiplying the coefficient of increasea ~as given in
Table 8! to the specified strength. In the specified strengths
range of error percent differences between the test and the
mated results compared to the estimated values are 0.5%
for company A and 0.5%–2.3% for company B. In the requ
average strengths, the range of error percent differences be
the test and the estimated results compared to the estimate
ues are 1.7–2.7% for company A and 1.4–3.2% for compan
Therefore, the compressive strengths of concrete estimated
proposed neural networks agree with those resulting from
pressive tests, that demonstrates the effectiveness of the
networks.

Conclusions

This paper presented the application of neural networks to
mate the compressive strength of concrete based on its mix
portion parameters, such as water–cement ratio, fine agg
percentage, unit water content, unit cement content, unit fin
gregate content, unit coarse aggregate, admixture, and slum
neural networks were developed and trained using the con
mix proportion data from two ready-mixed concrete compa
and the compressive strength of the concrete was estimated
trained neural networks. In this study, the optimal target erro
training the neural networks was found to be 0.01 for both c
putational accuracy and efficiency. The validity of the propo
neural network-based technique was proven by comparin
estimated strength with the compressive testing results of the
crete specimen provided by the two companies. The maxi
errors between the estimated and tested results were 3.9%
specified strengths and 3.2% in the required average streng

This study demonstrated the effectiveness of the n
network-based technique in estimating the compressive str
of concrete based on concrete mix proportion parameters b
the placement of concrete. As a future study, other importan
that also affect the concrete strength, such as the uncertai
concrete~i.e., the quality variation of aggregate and cement, m
suring error, mixing condition, etc.! and in-field conditions~i.e.,
delivery distance, curing condition, etc.! will be collected and
considered in the neural networks. As more data are accum
over the time, the neural networks trained by these data wi
come more effective and the resulting estimation will bec
more accurate and reliable.

ngths

Required average strengths~MPa!

Design Test Estimatio

21.56 22.15 21.56~2.7!
25.09 25.48 24.99~2.0!
28.71 29.20 28.71~1.7!
21.17 20.97 20.68~1.4!
24.70 25.38 24.60~3.2!
28.22 28.71 28.13~2.1!
e Stre

mation

64~3.9!
8~0.5!
2~2.5!
25~2.3!
8~0.5!
2~2.1!
es between the test and the estimated values.
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Notation

The following symbols were used in this paper:
E 5 error betweenOpk andTk ;

f (•) 5 sigmoid function;
netpi 5 input value of input neurons;
netp j 5 input value of hidden neurons;
netpk 5 input value of output neurons;
Op j 5 activation value of hidden neurons;
Opk 5 activation value of output neurons;

Tk 5 desired value of output neurons;
Wji , Wk j 5 connection strengths; and
u j , uk 5 biases.
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